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evaluate their empirical validity. In Chapter 2, which is co-authored with Professor Charles

Sprenger, we extend the model of salience theory into a multi-dimensional setting and test the
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new model using both existed dataset and novel experiments. In Chapter 3, I propose a method

to test cumulative prospect theory.
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Chapter 1

An Axiomatic Test for Salience and Regret
Theory

Abstract

Salience and regret theories describe how the manipulation of relative differences
between potential outcomes of risky options affects individuals’ decisions. In this project,
we present axiomatizations for both theories. The axioms for salience theory formulate
hypotheses concerning preferences for a large difference in outcomes compared to the
summation of smaller differences that partition it. In contrast, axioms for regret theory
ensure that comparisons between outcome pairs maintain the ordinal measure of their
utility differences. To test these axioms, we conduct an online experiment with 800
participants. The current experiment finds supportive evidence for both theories at the
aggregate level. However, there’s notable heterogeneity in the results: The violation rates
of our main hypotheses are between 39% to 72%.

1.1 Introduction

It is well known in economic and psychological studies that when decision-makers

choose among alternatives, they may not evaluate each option independently. Instead, they

tend to compare these options jointly and focus on their relative differences. This phenomenon

of relative comparison underpins a multitude of significant behavioral phenomena, including

reference dependence, loss aversion, the endowment effect, and categorical thinking, as evidenced

in various studies.1

1Relative comparisons can explain various interesting phenomena such as reference dependence and loss aversion
(Kahneman and Tversky, 1979a; Gul, 1991; Kőszegi and Rabin, 2006), endowment effect (Kahneman et al., 1990),
and categorical thinking (Koszegi and Szeidl, 2012; Bordalo et al., 2012, 2013b; Bushong et al., 2021).

1



Within the context of decisions under uncertainty, the process of choosing a preferred

option often involves contrasting the potential outcomes of different lotteries and weighting

these gains and losses based on their probabilities. In response to this phenomenon, theories

such as regret theory (Bell, 1982; Loomes and Sugden, 1982) and salience theory Bordalo et al.

(2012) have been introduced. These theories, grounded in psychological principles, have been

instrumental in explaining stylized patterns observed across various domains, including auction

bidding, insurance purchasing, and investment.2

Despite their widespread application and influence, a comprehensive qualitative under-

standing of these theories remains elusive. This gap raises several concerns, such as the ambiguity

of the validity of their foundational assumptions, the difficulty in distinguishing them from other

models, and the challenges in identifying which aspects of the theory require modification when

empirical data contradicts their predictions.

This project addresses these issues by exploring these two models from a qualitative

standpoint. To this end, we adopt an axiomatic approach to characterize both theories under the

framework introduced by Fishburn (1990a) and Lanzani (2022). Additionally, we conduct a

novel experiment to empirically test these axioms.

To illustrate the mechanisms of salience and regret theory, their generalizations from

the canonical expected utility theory, and the intuitions behind their key axioms, let’s consider

the following stylized example. Suppose a decision-maker is deciding whether to purchase an

insurance at a price of $20. An accident happens with probability 10%. In case the the accident

occurs, the decision-maker loses $100 if she has insurance and $200 otherwise. The following

table describes the two possible scenarios and payoffs of the corresponding options.

Accident (10%) No Accident (90%)

Purchase insurance −$120 −$20

Forfeit insurance −$200 $0

2See Filiz-Ozbay and Ozbay (2007) for auction bidding, Braun and Muermann (2004) for insurance purchasing,
Bordalo et al. (2013a) for investment.

2



Expected utility posits that the decision-maker prefers purchasing the insurance if it leads

to a higher expected utility value than forfeiting the insurance. Putting it mathematically, we have

0.1u(−120)+0.9u(−20)≥ 0.1u(−200), where u(·) is the decision-maker’s utility function over

monetary outcomes with u(0) = 0.3

Regret theory introduces a nuanced perspective to decision-making under uncertainty,

emphasizing the role of anticipated regret – decision-makers may experience such feelings

thinking about how they could have been better off had they chosen differently. Specifically, in

the previous example, according to regret theory the decision-maker is willing to purchase the

insurance if

0.1Q
(

u(−120)−u(−200)
)
+0.9Q

(
u(−20)

)
≥ 0,

where Q(·), named as the regret function, is strictly increasing and skew-symmetric. It quantifies

the individual’s emotional response to gains and losses in utility. A critical aspect of this theory

is its proportionality assumption: the intensity of regret (or joy) is directly proportional to the

magnitude of the utility difference. Therefore, our axiom demands that the regret experienced

from two different outcome pairs should be identical if their respective utility differences are

perceived as equivalent.

Salience theory, on the other hand, suggests that the decision-maker’s cognitive ability is

limited. As a result, she focuses on states in which the alternatives are strikingly distinct. Using

the previous example again, salience theory posits that the decision-maker prefers the insurance

if

0.1 f
(

σ(−120,−200)
)(

u(−120)−u(−200)
)
+0.9 f

(
σ(−20,0)

)(
u(−20)

)
≥ 0,

where σ(·, ·) is the salience function measuring the distinctiveness between outcomes and f is

some positive monotonic transformations. Bordalo et al. (2012) propose several properties of
3Since this equation can be expressed as 0.1(u(−120)−u(−200))+0.9u(−20)≥ 0, one way to interpret the

rationale is that the decision-maker is performing a state-contingent evaluation of the utility difference between the
two possible options and choose the one with a higher utility on average.

3



the salience function, and these regulations formulate the essence of salience theory. For this

reason, our axioms for salience theory closely reflect the hypotheses of the salience function.

In particular, the axioms identify lotteries such that expected utility theory provides strict and

identical behavioral predictions regardless of the shape of the utility function u(·). Further,

the magnitude of deviations from expected utility theory constitute non-parametric bounds on

the value of f ◦σ . Lastly, appropriately regulating these bounds completes characterization of

salience theory.

Additional to the main axioms, we also characterize an empirically important class of

preferences wherein the utility function is concave. Further, we provide a mild restriction on the

salience function that facilitates our subsequent experimental investigation. Lastly, applying our

representation theorems, we extend the prior work by Herweg and Müller (2021) and determine

a precise delineation between these models based on parameterizations. Essentially, a preference

aligns with both regret and salience theories if it exhibits a regret representation with a concave

utility, its regret function is almost convex, and its average regret value from 0 to x remains

distinct from 0. Figure 1.1 visualizes our characterization.

Figure 1.1. Characterization of Salience and Regret Theories
Figure 1 presents an overview of this project’s theoretical results. It provides separate characterizations for salience
and regret theories. In addition, besides being expected utility theory, it shows the exact situation in which these two
models overlap: roughly speaking the requirements are the decision-maker’s preference has a concave utility and
convex regret function with a positive derivative.
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With the current axioms, we conduct a novel experiment to qualitatively investigate

regret and salience theories. Due to their distinct axioms, these two theories require different

experimental formats. For this reason, we divide our experiment into two parts. Questions in

the first part are called payment-variation tasks wherein we fix the state probabilities and vary

the outcome pairs under each state. This part aims at testing the axiom for regret theory. In

the second part, subjects are asked to complete probability-variation tasks wherein we fix the

outcome pairs under each state and manipulate states’ probabilities. This part tries to test salience

theory.

The experimental results suggest that subjects exhibit correlation-sensitive behaviors. On

the aggregate level, our results support both regret and salience theory. Nevertheless, for each

axiom, the experiment identifies a significant proportion of violations. For regret theory, in each

test, around 40% of subjects follow its predictions strictly. In contrast, for salience theory, in

each test, around 55% of subjects follow its hypothesis. Furthermore, the results also suggest

that there are positive correlations between the violations of different hypotheses within each

theory, but only weak correlations of violations across the two theories.

This project closely relates to literature that studies representations of correlation-sensitive

preferences, regret, and salience theory. Fishburn (1989, 1990b); Sugden (1993); Quiggin (1994);

Bikhchandani and Segal (2014); Lanzani (2022) study the general representation. Diecidue and

Somasundaram (2017) give an axiomatization for regret theory under the subjective probability

setting.4 Lanzani (2022) formulates axioms for salience theory with linear utility.5 Our current

work extends these works by axiomizing regret and salience theory with general functional forms

under the preference set setting introduced in Fishburn (1990a).

Further, this project is related to the parameterization of these two models. While these

4Contemporary works such as Liu (2023) also provides axiomatizations of regret theory in the subjective setting.
5To illustrate the limitation of imposing linear utility on salience theory, let’s consider the following example.

Suppose the decision-maker is betting on a basketball game. Team 1 wins with probability 75% while Team 2 wins
with probability 25%. Option A provides $100 in case team 1 wins while option B pays $300 if team 2 wins. Under
salience theory with linear utility, the decision maker will always choose lottery B. However, since option B is a
mean preserving spread of option A, the decision-maker prefers option A if she is risk averse.
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theories have distinct structures, they share some common intuitions and predictions. For

instance, Herweg and Müller (2021) show that under certain structural assumptions, regret theory

is a special case of salience theory while in general each has its own merit. As a direct application

of our characterization results, we provide the precise parametric boundaries between these two

models. Our results offer qualitative guidance for the future application and estimation of these

theories in a parametric context.

This project also contributes to the debate over the empirical validity of correlation-

sensitive preferences. Previous experimental literature finds controversial results. On the one

hand, Loomes et al. (1991); Zeelenberg et al. (1996); Zeelenberg (1999); Bleichrodt et al. (2010);

Frydman and Mormann (2018); Königsheim et al. (2019); Dertwinkel-Kalt and Köster (2020)

find supportive evidence for correlation-sensitive behaviors that can be rationalized by these two

theories. On the other hand, Starmer and Sugden (1993a); Humphrey (1995); Loewenfeld and

Zheng (2021); Ostermair (2021); Loewenfeld and Zheng (2023) argue that these findings are

subject to “event-splitting” effect, which stems from nonlinear probability weightings (Kahneman

and Tversky, 1979a; Tversky and Kahneman, 1992). To control for the event-splitting effect,

it is important to restrict variations in probability when testing correlation-sensitive effects. In

addition to these concerns, in order for relative differences to have bite, the experiment needs

to elicit state-by-state comparisons, which can be cognitively demanding (Esponda and Vespa,

2019; Niederle and Vespa, 2023). We introduce a new presentation format that guides subjects to

make contingent reasoning. Furthermore, our tasks control for variations in probabilities and

the total number of states. In addition, our tests also alleviate the potential biases introduced by

varying numbers of winning states for each option. Therefore, our current design provides a

more robust evaluation over correlation-sensitive behaviors.

More broadly, the current project is also related to works analyzing the impact of attention

on a decision maker’s choices. Previous literature has proposed various mechanisms that can

shift people’s attention towards different options or certain features of the options (Koszegi and

Szeidl, 2012; Bordalo et al., 2020; Bushong et al., 2021; Landry and Webb, 2021). Further, it has
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been shown that manipulating subjects’ attentions toward different options can elicit preference

reversals (Krajbich and Rangel, 2011; Li and Camerer, 2022). Our qualitative analysis provide

direct evidence for the effectiveness of channels proposed in regret and salience theory.

The manuscript organizes as follows. Section 2 lays out the background. Section

3 characterizes salience theory and corresponding extensions. Section 4 axiomatizes regret

theory and summarizes its parametric connections with salience theory. Section 5 describes the

experimental design. Section 6 presents our results. Section 7 concludes.

1.2 Preliminaries: Correlation-Sensitive Preferences

For completeness, we now review the setting in Lanzani (2022). Let X ⊂ R be the set of

possible outcomes. We denote ∆(X ×X) the set of finitely supported bivariate joint distributions

on X ×X . We now introduce some useful notation. For every π in ∆(X ×X), let π1 = ∑y π(x,y)

be the marginal distribution of the first argument of π while π2 = ∑x π(x,y) be the marginal

distribution of the second argument. For every π ∈ ∆X ×X , we define the conjugate of π as π̄ ,

where π̄(x,y) = π(y,x). For every pair of outcomes (x,y), we denote δ(x,y) the Dirac distribution

where δ(x,y)(x,y) = 1. For every π,π ′ in ∆(X ×X) and α ∈ [0,1], we have the mixed distribution

π̃ = απ +(1−α)π ′ such that for every (x,y) in (X ×X), π̃(x,y) = απ(x,y)+(1−α)π ′(x,y).

Every π ∈ ∆X ×X describes a binary choice problem: a decision maker is choosing

between two options: option A and option B. Option A gives the monetary distribution π1

while option B gives the distribution π2, and together they form a distribution π . To express a

decision-maker’s preference, we denote a nonempty subset Π of ∆(X ×X) as the preference set

wherein π ∈ Π implies the decision-maker (weakly) prefers option A in the decision problem

described by π . In addition, we also denote the strict preference set by Π̂ = {π ∈ Π|π̄ /∈ Π}.

Comparing to the classical settings in von Neumann and Morgenstern (1944) where a preference

order is imposed on the univariate distribution, the current setting is more natural to address

the issue of correlation sensitivity. For instance, given two lotteries π1 and π2, there can exist
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multiple joint distributions to describe correlations between them. However, if the preference

is imposed directly on π1 and π2, it suggests that π1 is preferred to π2 under all correlation

structures.

Finally, a function φ(x,y) : X ×X → R is skew-symmetric if φ(x,y) = −φ(y,x). In

addition, φ(x,y) is monotonic if it increases in the first argument while decreases in the second.

A decision maker has a correlation-sensitive preference if

π ∈ Π ⇔ ∑
(x,y)∈suppπ

π(x,y)φ(x,y)≥ 0.

Lanzani (2022) proves that the following five axioms provide equivalent conditions for a

correlation-sensitive preferences with a continuous and monotonic φ .

Axiom 1 (Completeness). For every π ∈ ∆(X ×X), π ∈ Π or π̄ ∈ Π.

Axiom 2 (Strong Independence). For every π , π ′ ∈Π and α ∈ [0,1], we have απ+(1−α)π ′ ∈Π.

In addition, if π ∈ Π̂, απ +(1−α)π ′ ∈ Π̂.

Axiom 3 (Archimedean Continuity). For every π ∈ Π̂ and π ′ /∈ Π, we can find α,β ∈ [0,1] such

that απ +(1−α)π ′ ∈ Π̂ and βπ +(1−β )π ′ /∈ Π

Axiom 4 (Monotonicity). For every x,y,z ∈ X such that x > y, π ∈ ∆(X ×X), and α ∈ (0,1] if

αδ(y,z)+(1−α)π ∈ Π, αδ(x,z)+(1−α)π ∈ Π̂.

Axiom 5 (Coordinate-wise Continuity). Let {xn}n∈N → x. Then for every α ∈ [0,1], yinX,

π ∈ ∆(X ×X)

αδxn,y +(1−α)π ∈ Π,∀n ∈ N⇒ αδx,y +(1−α)π ∈ Π

, and

αδy,xn +(1−α)π ∈ Π,∀n ∈ N⇒ αδy,x +(1−α)π ∈ Π

.
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Lemma 1. Π induces a correlation-sensitive preference representation with monotonic and

continuous φ if and only if Axiom 1-5 are satisfied.6

Proof. See Lanzani (2022) theorem 1.

Since regret and salience theories can be thought as special cases for the correlation-

sensitive preference, our subsequent characterizations are built upon the existence of a correlation-

sensitive preference.

1.3 Axioms for Salience Theory

1.3.1 Baseline Characterization

First, we review the key ingredients for salience theory in Bordalo et al. (2012). A

function σ : X ×X 7→ R+ is a salience function if it satisfies the following properties:

• Symmetry: For every x,y ∈ X , σ(x,y) = σ(y,x) and σ(x,x) = 0.

• Weak Continuity: σ(x,y) is continuous in each argument.

• Ordering: For every x ≤ y and ε > 0, σ(x,y)≤ σ(x− ε,y+ ε).

• Diminishing Sensitivity: For every 0 ≤ x ≤ y and ε > 0, σ(x,y)≥ σ(x+ ε,y+ ε).

• Weak Reflexivity: For all x,y,x′,y′ ∈ R+ with |x− y|= |x′− y′|,

σ(x,y)≥ σ(x′,y′)⇔ σ(−x,−y)≥ σ(−x′,−y′).

Π induces a salience representation if

π ∈ Π ⇔ ∑
x,y

f (σ(x,y))(u(x)−u(y))π(x,y)≥ 0,

6Here, continuous means continuous in each argument.
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where u and f are both continuous and strictly increasing, with f also being positive. 7

Readers familiar with salience theory (Bordalo et al., 2012) may observe the discrepancy

between our current setting and the original one. In their original work, two parametric versions

are introduced. The first is the rank-based version wherein decision-makers rank the states based

on their salience levels. Roughly, states with larger salience levels are assigned higher ranks,

and states with higher ranks are more likely to be overweighted than their objective probabilities.

Since the ranking of one state will depend on salience level of other states, strictly speaking,

this version is not nested in our current consideration. Nevertheless, as pointed out in Bordalo

et al. (2012), the rank-based version is mainly a simplified parametric model that provides

tractability and intuition8, and hence, we leave it out of the current discussion. The second

version introduced in Bordalo et al. (2012) is a solution to deal with the potential concerns

surrounding the rank-based version. Specifically, they suggest that f (σ(x,y)) = δ σ(x,y) with

δ > 1. This parameterization is included in our setting. In summary, our current version abstracts

away from the actual effect size of salience distortion and focus on the qualitative properties of

salience function.

In the current baseline analysis, we restrict the outcome space to a compact set within

non-negative real numbers since this environment is sufficient for our following experimental

investigation.9 To simplify the description of axioms, we introduce some convenient definitions.

{xi}n
i=0 is an increasing arithmetic sequence (IAS) if it is increasing, and xi+1 − xi = xi − xi−1

for all i with 0 < i < n. Given a sequence {xi}n
i=0, define the joint distribution U({xi}n

i=1) as

{(x1,x0),
1
n

; (x2,x1),
1
n

; . . . ; (xn,xn−1),
1
n
},

7Since σ is symmetric and u(x)−u(y) is skew symmetric, their product is skew symmetric. Therefore, salience
theory is a special case in correlation-sensitive preference. Notice that the above equation is additive separable:
π ∈ Π ⇔ ∑x,y f (σ(x,y))u(x)π(x,y) ≥ ∑x,y f (σ(x,y))u(y)π(x,y). Due to this separability, Bordalo et al. (2012)
defines v(π1) = ∑x,y f (σ(x,y))u(x)π(x,y) the local utility of marginal distribution π1.

8See footnote 9 in Bordalo et al. (2012)
9For the complete characterization, please see Appendix A.2.
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and define U({xi}n
i=1) as its conjugate. Intuitively, U({xi}n

i=1) is the uniform joint distribution

such that under each state the first option will always provide an additional bonus defined by

the difference between two adjacent terms in {xi}n
i=1. Furthermore, for the sake of economic

notation, we denote απ +βπ ′ the mixed distribution α

α+β
π + β

α+β
π ′ for every α,β > 0. In

other words, to ensure that the mixture is describing a distribution, we scale down the likelihood

of each state by a constant factor α +β .

Before introducing our axioms, we now briefly describe their underlying principles. It’s

important to note that the regularities of salience theory are closely tied to the properties of

salience functions. As a result, most axioms of the theory should impose behavioral regulations

to meet the requirements of salience functions. However, as we just hinted, decision-makers’

perceptions of outcome differences are a composite of both salience function distortions and

utility differences between the outcomes. Such convolution prevents us from directly regulating

the salience function. To address this challenge, we explore a particular class of bivariate

distributions wherein expected utility theory has specific behavioral predictions. Further, within

these bivariate distributions, deviations from expected utility theory arise solely from variations

in the salience function.

Our first axiom guarantees the existence of an increasing utility function and the identifi-

cation of the salience function.

Axiom 6 (Increasing Utility). For every x,y ∈ X with y < x, there exists p ∈ (0,1] such that for

all IAS {xi}n
i=0 with x0 = y and xn = x, we have

(1− p)U({xi}n
i=1)+

p
n

δ(y,x) ∈ Π̂.

Furthermore, p → 0.5 as x → y.

To fix ideas, consider the bivariate distribution in the above axiom with p = 0.5, or
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equivalently:

U({xi}n
i=1)+

1
n

δ(y,x).

Within the framework of expected utility theory, since the marginal distributions are identical,10,

decision-makers should be indifferent between these two options. However, salience theory

posits that decision-makers prefer the second option in this bivariate distribution.11 To see this,

notice that when the second option provides a bonus, its amount is huge: x−y. In contrast, when

the first option provides a bonus, y−x is segmented into small pieces – y to x1, x1 to x2, and so on.

According to the ordering property of the salience function, partitioning the difference from y to x

into smaller pieces will diminish the perceived value of x compared to directly contrasting it with

y. This is because, when comparing y and x directly, decision-makers experience not only the

pleasure of this additional x−y amount but also a stark contrast between x and y that can amplify

such pleasure. Conversely, this distortion from contrast diminishes when the difference from x to

y is broken down into small pieces. As a result, such discrepancies in value distortions lead to a

preference for the second option. Further, the magnitude of the distortion can be captured by 1−p
p

where p is the probability at which the two marginal distributions of (1− p)U({xi}n
i=1)+

p
n δ(y,x)

are indifferent to the decision-maker. Increasing utility asserts that 1−p
p is bounded across all

IAS, which implies that there is a positive inherent value of x relative to y, one that remains

unaffected by any such partitioning. Within the model, this inherent value is represented by the

utility difference u(x)−u(y). Moreover, when x and y are close, comparing them only endures a

marginal contrast distortion, so approximately, the preference behaves similar to expected utility

theory.

The next two axioms provide hypotheses that implies ordering and diminishing sensitivity.

Axiom 7 ( Skewness Preference). For all IAS sequences {xi}n
i=0 with 0 ≤ x0, we have

p
n−1

δ(xn−1,x0)+(1− p)U({xi}n−1
i=0 ) ∈ Π ⇒ p

n
δ(xn,x0)+(1− p)U({x0}n

i=0) ∈ Π,

10Both marginal distributions are {x0,
1
n ;x1,

1
n ; . . . ,xn,

1
n}.

11A similar observation is used in Loewenfeld and Zheng (2021).
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for all p ∈ [0,1].

To get intuition, consider the two bivariate distributions in the axiom:

p
n−1

δ(xn−1,x0)+(1− p)U({xi}n−1
i=0 ) and

p
n

δ(xn,x0)+(1− p)U({x0}n
i=0).

While for both of these distributions expected utility theory posits that the first option is preferred

if and only if p≥ 0.5, salience theory suggests that decision-makers may prefer the first option for

p≤ 0.5 because it provides a bonus in the most salient state. Further, salience theory also predicts

that the attention will be distorted more severely in p
n δ(xn,x0)+(1− p)U({x0}n

i=0). The reason is

that the first option in this bivariate distribution offers a higher bonus compared to the first option

in the other one. By ordering of salience function, such differences move decision-makers’

attention in favor of the first option. In addition, due to diminishing sensitivity, adding a state

in which the first option returns the additional bonus to the second option can barely move the

attention. Taking these two factors together, keeping p constant, the Skewness Preference axiom

suggests that if a decision-maker favors the first option in p
n−1δ(xn−1,x0)+(1− p)U({xi}n−1

i=0 ), she

will also prefer the first option in p
n δ(xn,x0)+(1− p)U({x0}n

i=0).

Axiom 8 (Diminishing Relative Sensitivity). For every IAS {xi}n
i=0, p ∈ [0,1], and 0 ≤ y0 ≤ x0,

there is an IAS {yi}m
i=0 with ym − y0 = xn − x0 such that

p
n

δ(xn,x0)+(1− p)U({xi}n
i=0) ∈ Π ⇒ p

m
δ(ym,y0)+(1− p)U({yi}m

i=0) ∈ Π.

According to the constructions, the endpoints of the sequence {xi}n
i=0 are derived by

shifting the endpoints of the sequence {yi}m
i=1 parallelly to the right on the real line. The Relative

Diminishing Sensitivity axiom dictates that, compared to xn and x0, the perceived difference of ym

and y0 is inflated more. This restriction aligns precisely with the diminishing sensitivity property

of the salience function. We state our representation theorem below. All proofs can be found in

Appendix A.1.
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Theorem 1. A decision-maker satisfies Axiom 1-8 if and only if her preference has s a salience

representation. Furthermore, the salience function and utility are unique up to affine transforma-

tions.12

One implication from our representation result is that although salience function imposes

various restrictions on the behaviors, salience theory is still close to the general correlation-

sensitive preference. Axiom 6 implies that breaking down a large profit into small pieces cannot

vanquish its value. Furthermore, Axioms 7 and 8 only concern a special type of joint distributions

wherein the two options have an identical support and the occurrence order of their outcomes

under different states are merely a change of rotation. Salience theory’s flexibility has been

reflected in relevant literature. For instance, Landry and Webb (2021) shows that under different

parameterizations salience theory is able to rationalize a large range of behavioral patterns.

Experimental predictions related to salience theory (Frydman and Mormann, 2018; Dertwinkel-

Kalt and Köster, 2020; Somerville, 2022) usually impose additional structural assumptions. In

the next subsession, we discuss some extensions to further regulate the model.

1.3.2 Extensions

K-Regular Salience Function

In salience theory, there are two competing forces that regulate the salience function.

First is ordering, which requires the salience function’s value to increase as the two outcomes

move further apart. The second one is diminishing sensitivity, which posits that the salience

function decreases if both outcomes are shifted to the right while their distance is kept constant.

However, salience theory imposes no restriction on the salience function if the outcomes’ distance

is expanding and shifting to the right simultaneously. For instance, a salience function may

12Requiring f (·) to be strictly positive is crucial to achieve the uniqueness result. For instance, Lanzani (2022)
requires the salience representation to be σ(x,y)(x− y). Consider the example |

√
x−√

y|(x− y). With the outcome
space being non-negative real numbers, one can show that |

√
x−√

y| is indeed a salience function. However,
|
√

x−√
y|(x− y) = |x− y|(

√
x−√

y). Therefore, the representation is not unique.
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posit that σ(1,0)> σ(x,0.01) for arbitrarily large x.13 Indeed, one can argue that although the

difference between 1and0 is smaller than the difference between 1000and0.01, this disparity

mainly comes from the utility difference rather than the salience difference. Consequently,

it might be true that σ(1,0) > σ(1000,0.01). However, σ(1,0) > σ(1000,0.01) implies that

ordering is weak, and if diminishing sensitivity is the only dominating force, there is an easy

way to characterize salience theory.14 We now state a new condition that avoids such an extreme

case. Given k ≥ 1, we call a salience function k-regular if:

• For all (x,y),(x′,y′) ∈ X ×X such that k|x− y|≤ |x′− y′|, σ(x,y)≤ σ(x′,y′).

k-regular imposes a lower bound on the magnitude of ordering effect. It suggests that as long as

the distance between two outcomes is extended k times, no matter how their locations are shifted,

they will now have a higher salience level. As an example, let us consider the salience function

proposed by Bordalo et al. (2012):

σ(x,y) =
|x− y|

x+ y+θ
,

where x,y ≥ 0, and θ > 0. Suppose the maximal value of x and y is 30, σ(x,y) is k-regular for

all k ≥ 60+θ

θ
.

Before we provide additional axioms, we first analyze the restrictiveness of k-regular.

Roughly speaking, every salience function is k-regular except for outcome pairs with almost

identical elements. Conversely, given k > 1, every salience function, is k-regular on some subset

of the outcome space. We summarize the results below:

13In some research, including Bordalo et al. (2013b), σ(x,y) = |x−y|
x+y ,x,y ≥ 0 while σ(0,0) = 0 is used to

formulate salience theory predictions. According to this form, σ(x,0) > σ(x′,y) for all x and x′ unless y = 0.
Nevertheless, this functional form is ruled out in the current analysis because it is not continuous at (0,0).

14The reason is that since σ(·, ·) is continuous, σ(1,0) ≈ σ(1.01,0.01). As a result, while ordering indicates
σ(1.01,0.01)≤ σ(x,0.01), we also have σ(1.01,0.01)≥ σ(x,0.01) for arbitrarily large x. Consequently, extending
the distance between outcomes hardly affects their salience value. Therefore, φ(x,0.01) ≈ u(x)− u(0.01), and
hence there is a natural way to separate utility from the salience function.
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lemma 1a. Given any compact outcome space X ⊂ R, salience function σ(·, ·), and ε > 0, for

every x,y,x′,y′ ∈ X with |x− y|> ε , |x′− y′|> ε , there exists k > 1 such that σ(x,y)≤ σ(x′,y′)

whenever k|x− y|≤ |x′− y′|.

lemma 1b. Given any compact outcome space X ⊂ R, salience function σ(·, ·), and k > 1, there

exists δ > 0 such that for every x,y,x′,y′ ∈ X with |x− y|> δ , |x′− y′|> δ , σ(x,y) ≤ σ(x′,y′)

whenever k|x− y|≤ |x′− y′|.

Lemma 1a and 1b have two implications. First, as k increases to infinity, the set of

k-regular salience functions converges to the set of salience functions. Second, for suitable k,

even if we mistake a salience thinker for a k-regular salience thinker, her violations of axioms

related to k-regular should not be significant. The reason is that the violations can occur only

when outcome pairs with small differences are considered in the choice problem. However,

the salience distortions over such outcome pairs are negligible. Therefore, the deviations from

predictions should also be marginal. We now state our new axiom.

Axiom 9 (k-regular). For every p ∈ [0,1] and IAS {xi}n
i=0,

p
n

δ(xn,x0)+(1− p)U({xi}n
i=0) ∈ Π ⇒ p

m
δ(ym,y0)+(1− p)U({yi}m

i=0) ∈ Π.

for all IAS {yi}m
i=0 such that y1 − y0 = x1 − x0, y0 ≥ xn, and ym − y0 ≥ k(xn − x0).

The current axiom is similar to skewness preference. To see this, instead of requiring the

length of the IAS {xi}n
i=0 to be extended k times, skewness preference requires that the starting

location of the IAS stays fixed while its length is stretched. We now state the representation

result.

Proposition 1. A decision-maker’s preference has s a k-regular salience representation if and

only if she satisfies axiom 1 - 9.
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Our next result suggests that by imposing k-regular condition, we can strengthen di-

minishing relative sensitivity.15 Consequently, k-regular not only constitutes a self-contained

restriction but also facilitates empirical analysis for other properties of the salience function.

Proposition 2. Suppose a decision-maker’s preference has a k-regular salience representation,

then for every p > 0 and IAS {xi}n
i=0

p
n

δ(xn,x0)+(1− p)U({xi}n
i=0) ∈ Π ⇒ p

m
δ(ym,y0)+(1− p)U({yi}n

i=0) ∈ Π.

for all IAS {yi}m
i=0 such that ym − y0 = xn − x0, 0 ≤ y0 ≤ x0, and k(y1 − y0)≤ x1 − x0.

According to the condition in proposition 2, given an IAS {xi}n
i=0, we can precisely

identify a set of IAS such that diminishing relative sensitivity holds. Compared to the existence

condition in diminishing relative sensitivity, such identifications facilitates our latter experimental

analysis regarding the axiom.

Salience Theory with Concave Utility

As suggested by the example from our introduction, diminishing sensitivity alone cannot

capture some prevail patterns of risk aversion. A natural way to accommodate such behav-

iors is to assume that decision-makers are inherently risk averse. We now briefly discuss the

characterization.

Axiom 10 (Concavity). For every h > 0 and x,y ∈ X with x ≥ y ≥ 0 and x ≥ h ≥ 0,

{(x,x−h),0.5; (x,x+h),0.5} ∈ Π.

Proposition 3. The utility function of a decision-maker with a salience representation is concave

if and only if she follows axiom 10.

15Furthermore, by introducing k-regular, the requirement in increasing utility that p → 1 as x → 0 can be dropped.
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An example of the decision problem in the axiom is asking decision-makers to choose

between options such as ($x, 1) vs. ($x1, 0.5; $x2, 0.5) with x1 − x = x− x2 > 0.16 Concavity

predicts that decision-makers choose the safe option, ($x, 1).

Interestingly, concavity is similar but weaker than the condition in Lanzani (2022) that

characterizes diminishing sensitivity of the salience function assuming that utility is linear. In

this sense, these results suggest that diminishing sensitivity and classical risk aversion share some

common features. Indeed, it is straightforward to show that for an expected utility maximizer,

the regularity in the above axiom is equivalent to risk aversion. Nevertheless, comparing the

current restriction with Diminishing Relative Sensitivity, salience theory suggests that risk

aversion would be exacerbated when comparing large outcome differences. Such postulation can

address the inconsistency between realistic utility curvatures and observed magnitudes of risk

aversion (Rabin, 2000) and is aligned with the assumption of “local linearity” that prevails in the

experimental and empirical literature.

Negative and Mixed Outcomes

Since we restricted the outcome space to be nonnegative, the weak reflexivity requirement

of salience function is not relevant. Notice that for any four nonnegative outcomes x,y,x′,y′,

if |x− y|= |x′− y′|, their salience function value is purely governed by diminishing sensitivity.

Therefore, in the negative outcome space, weak reflexivity is equivalent to a reversed diminishing

sensitivity. That is, for every y ≤ x ≤ 0, and ε > 0, σ(x,y)≥ σ(x− ε,y− ε). Consequently, we

can adjust Skewness Preference and Diminishing Relative Sensitivity to provide an equivalent

set of axioms.

In the presence of mixed outcomes,17 Skewness Preference doesn’t hold, and it needs

to be weakened to an existence statement analogous to Diminishing Relative Sensitivity. The

reason is that the salience function doesn’t impose any restriction on the relation of magnitudes

16Such a decision problem belongs to the well-known certainty equivalent elicitation tasks (Tversky and Kahne-
man, 1992; Tversky and Fox, 1995).

17That is, for some x < 0 and y > 0, π(x,y)> 0.
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between negative outcome pairs and positive outcome pairs. For instance, a decision maker is

allowed to be an expected utility maximizer on lotteries with negative outcomes while a salience

thinker on lotteries with positive outcomes. This flexibility prevents us from inferring changes in

salience levels as IAS alternates. Nevertheless, the investigation of non-mixed outcomes leads

to a unique utility function representation, which is preserved if we extend the analysis to the

mixed outcome space.

1.4 Axioms for Regret Theory

Regret theory is another special case of correlation-sensitive preference. In Bell (1982);

Loomes and Sugden (1982), the functional form is defined as φ(x,y) = Q(u(x)−u(y)), where

u(·) is a continuously increasing utility function and Q(·) is an increasing, continuous, and skew-

symmetric function. Recall the underlying psychological foundation for regret theory is that

decision-makers tend to avoid options that may result in large losses in utility. This phenomenon

is captured by the functional specification Q(·) if it is convex on the positive domain and concave

on the negative domain.

To understand the intuition of our axiom, notice that since φ(x,y) under regret theory

is a monotonic transformation of the utility difference between x and y, the magnitudes of

utility differences are proportional to the magnitudes of regret levels. For instance, u(5)−u(4)≥

u(2)−u(1) if and only if Q(u(5)−u(4))≥Q(u(2)−u(1)). Moreover, u(5)−u(4)≥ u(2)−u(1)

is equivalent to u(5)− u(2) ≥ u(4)− u(1), so it implies Q(u(5)− u(2)) ≥ Q(u(4)− u(1)). In

other words, swapping payoffs from $2 and $4 shouldn’t change the the order of these regret

levels. The next axiom captures this principle.

Axiom 11 (Swapping Independence). For all (x1,y1),(x2,y2) ∈ X ×X:

{(x1,y1),0.5; (x2,y2),0.5} ∈ Π ⇒ {(x1,y2),0.5; (x2,y1),0.5} ∈ Π.
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Theorem 2. A decision-maker’s preference has a regret representation if and only if she satisfies

axiom 1-5, and 11. Furthermore, the utility is unique up to affine transformations.18

Swapping independence requires the behavior to be correlation-insensitive for joint

distributions with two equiprobable states. With two states, correlation insensitivity only requires

the ordinal differences between outcomes are preserved after correlation distortions. In contrast,

correlation insensitivity for joint distributions with three states requires the cardinal differences

are unchanges. In appendix A.3, we prove that if the decision-maker is ”swapping independent”

for lotteries with three states, she is an expected utility maximizer.

Our current analysis provides different axioms for salience and regret theories. This

suggests that without further structural assumption, these two models are generally different.

Nevertheless, as shown in Herweg and Müller (2021), salience and regret theory share some

similarities. We conclude the current session with some complementary results. Our first result

suggests that requiring the utility function to be concave imposes identical restrictions on both

salience and regret theory.

Proposition 4. The utility function of a decision-maker with a regret representation is concave if

and only if she satisfies axiom 10.

Since (weak) risk aversion is ubiquitous in theoretical analysis and verified by extensive

empirical and experimental literature, it is reasonable to impose this assumption when calibrating

salience and regret theories. In fact, having a concave utility is a necessary consequence if the

two theories intersect with each other (other than being expected utility theory), our next result

provides an exact boundary between these two theories in terms of parameterizations.

Proposition 5. Suppose the outcome space is a compact subset of R+, a decision-maker’s

preference either has an expected utility representation or has a regret representation with
18The proof uses a similar technique from Diecidue and Somasundaram (2017), which propose a behavioral

foundation for regret theory under Savage’s subjective environment (Savage, 1954). However, their axiom are
not sufficient for Swapping Independence. In terms of trade-off consistency, a sufficient condition is α1α2 ∼t
γ1γ2,α2α3 ∼t γ2γ3, then α1α3 ∼t γ1γ3. See Köbberling and Wakker (2004); Diecidue and Somasundaram (2017)
for more details.

20



concave u(·), increasing Q(x)
x for x ≥ 0, and lim

x→0

Q(x)
x > 0 if and only if she satisfies axioms 1-8,

and 11.

Proposition 5 is an extension of Theorem 2 in Herweg and Müller (2021). Their result

establishes that convexity in Q(·) and concavity in u(·) are sufficient for achieving the equiva-

lence between salience and regret theories. They construct the salience theory representation as
Q(u(x)−u(y))

u(x)−u(y) (u(x)−u(y)) and verify that all requirements of salience function are satisfied. Propo-

sition 5 implies that their construction represents the only candidate for salience representation

and provides equivalent structural conditions between these two theories.19

Additionally, in case u(·) is concave and has a strictly positive derivative, if both salience

and regret theories are satisfied, the induced salience representation is also k-regular. To see the

reason, let x̄ denote the maximal outcome on space X . Because the decision-maker has a concave

utility, for all x,y ∈ X , we have u′(x)
u′(y) ≤

u′(0)
u′(x̄) . Due to the Mean Value Theorem, u(h)−u(0)

u(x̄)−u(x̄−d) ≤
u′(0)h
u′(x̄)d where h,d > 0. Furthermore, for a decision-maker following both salience and regret

theories, her salience function’s value σ(x,y) is proportional to |u(x)− u(y)|. Consequently,

since u(x+h)−u(x)
u(y)−u(y−kh) ≤

u′(0)
u′(x̄)k for all x,y ∈ X , σ(x,x+d)< σ(y,y− kh) if u′(0)

u′(x̄)k ≤ 1. Therefore, the

decision-maker’s preference satisfies k-regular for k ≥ u′(0)
u′(x̄) .

1.5 Experimental Methodology

1.5.1 General Designs

Our experiment aims to test the validity of the axioms underpinning salience and regret

theory. The central axioms of salience are skewness prereference, diminishing relative sensitivity,

and k-regular. The central axiom of regret is swapping independence. In addition to these

axioms, our experiment is also designed to test more basic properties like monotonicity and

19It is important to note that there are two differences between the settings in our current analysis and those in
Herweg and Müller (2021). First, we require the monotonic transformation f of salience function to be strictly
positive while they only require it to be non-negative. The key distinction is that we require Q′(0)> 0. Second, we
regard the shape of Q(·) as a modeling choice while they restrict Q(·) to be convex.
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independence.20

The experiment is conducted online through Prolific (Palan and Schitter, 2018). Subjects

are asked to complete 16 tasks. Each task consists of multiple decisions. Each decision problem

requires subjects to choose between two lotteries marked by option A and option B. Subjects are

told that payments from both options depend on the color of a ball that is randomly drawn from

a box at the end of the experiment.

The experimental interface is designed using Otree (Chen et al., 2016a), and Figure 1.2

presents an example decision problem. The presentation consists of three parts: the table, the

bar chart, and the pie chart. The table records all relevant information regarding possible colors

of balls, the probability of selecting a ball in each color, and payoffs from options A and B. In

Figure 1.2, there are four possible ball colors: red, black, blue, and orange. These colors are

recorded in the first row of the table. Next to each color is the probability of a ball in that color

being selected. In this example, all colors have an equal chance (25%) to be picked. Under each

color, there are two columns that record payments from option A and B in case a ball in that

color is drawn. In Figure 1.2, if a red ball is drawn, option A pays $13.5 while option B pays

$15. The bar chart above the table represents payments from options A and B under each ball

color, while the pie chart shows the probabilities of selecting each color. Subjects make their

decisions by selecting the radio buttons at the bottom.

The experiment consists of two parts. Tasks in the first part are called ”payment-variation

tasks,” and tasks in the second part are called ”probability-variation tasks.” Before the experiment

starts, participants are randomly divided into two groups. Questions from payment-variation

tasks differ between groups. Subjects are asked to finish the payment-variation tasks first.21

Once participants finish all tasks, their payments will be determined.

20The experiment is pre-registered in the AEA RCT Registry in July 2023 with ID AEARCTR-0011753.
21The reason is that all decision problems in this type contain four possible states while all remaining decision

problems contain five possible states. In order to help subjects understand the questions, we design the flow in a
way with progressive difficulty levels.
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Figure 1.2. Example Decision Problem
Note: This is a presentation of decision problems. The first row of the table records all possible colors and their
probabilities. The second and third rows record payments from options A and B under each ball color. The bar chart
on top of the table represents the amount of payments from each option under every state. The pie chart under the
table represents the chance of each ball color being picked.

1.5.2 Details and Hypotheses of Payment-Variation Tasks

Subjects are asked to complete 7 tasks in payment-variation tasks. One task serves as an

attention check, the remaining tasks are designed to test swapping independence, independence,

and correlation sensitivity in general. In each of the tasks, there are eight decision problems.

Across these eight decision problems, one option’s payments stay constant while the payment

from the other option under a specific ball color is increasing from problem one to eight.

Furthermore, for every decision problem in part 1, there are always four equiprobable states.

The first task asks subjects to choose between options A and B under the joint distribution

{(15,X),
1
4

; (2,2),
1
4

; (1,1),
1
4

; (0,0),
1
4
},
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where X ∈ {12,13.5,14,14.5,15.5,16,16.5,17}. In this task, options A and B only provide

different payments under one state. Therefore, this task serves as a comprehension check to see

whether subjects are able to choose the option with statewise weakly dominant payments. The

corresponding hypothesis is that subjects choose option A if and only if X <= 14.5.

The remaining six tasks can be grouped into three pairs. Between the two tasks within

the same pair, each option’s marginal distributions stays constant while the correlation between

the options’ payments changes. In one task, the payments are positively correlated, and in the

other task they are negatively correlated.22 Table 1.1 provides an overview of each pair. Since

probabilities of states stay constant in payment-variation tasks, they are omitted in the joint

distribution descriptions of table 1.1.

Table 1.1. Summary of payment-variation Tasks

Positively Correlated Negatively Correlated
Pair 1:
Group 1 {(22,X); (1.5,1.5); (1.5,1.5); (5,0.5)} {(22,0.5); (1,1); (1,1); (5,X)}

Group 2 {(22,X); (1,1); (1,1); (5,0.5)} {(22,5); (1.5,1.5); (1.5,1.5); (0.5,X)}

X ∈ {25, 26.5, 27, 27.5, 28.5, 29, 29.5, 30}
Pair 2:
Group 1 {(20,X); (1,1); (1,1); (0,5)} {(20,5); (1.5,1.5); (1.5,1.5); (0,X)}

Group 2 {(20,X); (1.5,1.5); (1.5,1.5); (0,5)} {(20,5); (1,1); (1,1); (0,X)}

X ∈ {12, 13.5, 14, 14.5, 15.5, 16, 16.5, 17}
Pair 3:

{(20,20); (18,10); (0,0); (2,X)} {(20,0); (0,X); (2,10); (18,20)}

X ∈ {7, 8.5, 9, 9.5, 10.5, 11, 11.5, 12}

Note: Summary of all payment-variation tasks excluding the comprehension check. Participants are randomly
divided into two different groups. Tasks in pairs 1 and 2 are slightly different between groups. In each task,
there are four equiprobable states. Since the states’ chances are fixed, they are omitted in the descriptions of joint
distributions.

Pairs 1 and 2 test swapping independence. To see this, let us consider the two tasks in

22For questions in pair 3, if X = 7, options in both versions of tasks are, in fact, positively correlated. Nevertheless,
their correlation is still higher if the joint distribution is {(20,20); (18,10); (0,0); (2,7)}.
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pair 1:

{(22,X),
1
4

;(a,a),
1
4

;(a,a),
1
4

;(5,0.5),
1
4
} and {(22,0.5),

1
4
(b,b),

1
4

;(b,b),
1
4

;(5,X),
1
4
},

where X ∈ {25, 26.5, 27, 27.5, 28.5, 29, 29.5, 30}, and a = 1.5,b = 1 for subjects in group

1 while a = 1,b = 1.5 for subjects in group 2. Notice that for both tasks, the options only

provide different payments in two states. According to correlation-sensitive preferences, states

with identical payments from both options are irrelevant for the decision. As a result, mixing

lotteries with such states or alternating payment amounts under these states will not change the

decision-maker’s preference towards to two option. Therefore, for both groups, pair 1’s decision

problems is equivalent to decision problems {(22,X), 1
2 ; (5,0.5), 1

2} and {(22,0.5), 1
2 ; (5,X), 1

2}.

Swapping independence posits that decision-makers will make identical decisions between these

two tasks, and hence, it also predicts that subjects make consistent choices between the 2 tasks

in pair 1. Following a similar argument, we can get the same hypothesis for tasks in pair 2.

It is important to note that, however, according to some theories, the irrelevancy of

states with identical payments can be violated.23 Realizing such possibilities, we provide a

between-subject analysis to test the aggregate behaviors over tasks that are only distinct in states

with identical payments.

Since both regret theory and expected utility theory make the same prediction regarding

choices for pairs 1 and 2, it is indistinguishable whether the choice consistencies in these tasks

originate from swapping independence of regret theory or correlation independence of expected

utility theory. To further differentiate these models, we include pair 3 to test whether participants’

choices respond to the general correlation manipulations. The difference between the two tasks

in pair 3 lies in the occurrence order of payments from option B. While salience and regret

theories do not provide specific predictions, correlation-insensitive preference still predicts

23One example is expectation-based reference dependence preference (Gul, 1991; Kőszegi and Rabin, 2006).
The reason is that such manipulation will change the options’ distributions.
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choice consistency for the tasks in pair 3.

1.5.3 Details and Hypotheses of Probability-Variation Tasks

The second part of our experiment consists of nine tasks. In each task, subjects are asked

to complete nine decision problems. Within each task, the payments of both options are fixed

while the probabilities of states vary. The nine tasks in this part can be separated into three

classes. Each class contains three tasks and tests one of the three axioms for salience theory –

skewness prereference, diminishing relative sensitivity, and k-regular with k = 2. It is for this

reason, we name the three classes by the names of the axioms they’re investigating. Within each

class, we denote the three tasks as High Contrast task, Normal Contrast task, and Low Contrast

task. These tasks are summarized in table 1.2.

For all probability-variation tasks, the first option “wins” (provides a higher payment)

in one state with probability p while the second option (weakly) wins in the remaining four

equiprobable states. Under such structure, monotonicity of preferences predict that the first

option is becoming more attractive as p increases. It follows that for each task, there is a unique

probability p such that the decision-maker is indifferent. At this specific probability p, we call q
p

the switching odds, and denote q
p H

, q
p N

, and q
p L

, the switching odds for High, Normal, and Low

Contrast tasks respectively.

Axioms of salience theory formulate hypotheses regarding the relative magnitudes of

the switching odds among the three tasks within each class. As an example, consider the High

Contrast and Normal Contrast tasks testing skewness preference:

High Contrast Task: {(30,0), p; (0,7),q; (7,7.5),q; (7.5,14.5),q; (14.5,15),q},

Normal Contrast Task: {(30,0), p; (0,15),q; (1,1),q; (1,1),q; (1,1),q}.
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At the switching odds, we obtain the following identities:

q
pH

=
f (σ(30,0))

µ1 f (σ(7,0))+µ2 f (σ(7.5,7))+µ3 f (σ(14.5,7.5))+µ4 f (σ(15,14.5))
u(30)
u(15)

,

where µ1 =
u(7)
u(15)

,µ2 =
u(7.5)−u(7)

u(15)
,µ3 =

u(14.5)−u(7.5)
u(15)

,µ4 =
u(15)−u(14.5)

u(15)
.

q
pN

=
f (σ(30,0))
f (σ(15,0))

u(30)
u(15)

.

Hence,
q
pH

/
q
pN

=
f (σ(15,0))

µ1 f (σ(7,0))+µ2 f (σ(7.5,7))+µ3 f (σ(14.5,7.5))+µ4 f (σ(15,14.5))
.

(1.1)

Table 1.2. Summary of probability-variation Tasks

Skewness Preference:
High Contrast {(30,0), p; (0,7),q; (7,7.5),q; (7.5,14.5),q; (14.5,15),q}
Normal Contrast {(30,0), p; (0,15),q; (1,1),q; (1,1),q; (1,1),q}
Low Contrast {(15,0), p; (0,7.5),q; (7.5,15),q; (15,22.5),q; (22.5,30),q}

Diminishing Relative Sensitivity:
High Contrast {(15,0), p; (15,23),q; (1,1),q; (1,1),q; (23,30),q}
Normal Contrast {(15,0), p; (15,30),q; (1,1),q; (1,1),q; (1,1),q}
Low Contrast {(30,15), p; (0,4),q; (4,8),q; (8,11.5),q; (11.5,15),q}

2-Regular:
High Contrast {(30,10), p; (0,4.5),q; (4.5,5),q; (1,1),q; (5,10),q}
Normal Contrast {(30,10), p; (0,10),q; (1,1),q; (1,1),q; (1,1),q}
Low Contrast {(10,0), p; (10,15),q; (15,20),q; (20,25),q; (25,30),q}
Note: Summary of all probability-variation tasks. In each task, p + 4q = 1 and p ∈
{4%,8%,12%,16%,20%,24%,28%,32%,36%}.

Notice that µ1 +µ2 +µ3 +µ4 = 1 for all monotonic utility functions. Under expected

utility theoy, f ◦σ is a constant function, so q
p H

/ q
p N

= 1. Consequently, deviations of winning

odds from 1 can only stem from the salience distortion difference between comparing $15 to $0

directly and comparing them in four smaller pieces.
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Furthermore, consider the Low Contrast task:

{(15,0), p; (0,7.5),q; (7.5,15),q; (15,22.5),q;(22.5,30),q}.

q
pL

=
f (σ(15,0))

ν1 f (σ(7.5,0))+ν2 f (σ(15,7.5))+ν3 f (σ(22.5,15))+ν4 f (σ(30,22.5))
u(15)
u(30)

,

where ν1 =
u(7.5)
u(30)

,ν2 =
u(15)−u(7.5)

u(30)
,ν3 =

u(22.5)−u(15)
u(30)

,ν4 =
u(30)−u(22.5)

u(30)
.

Therefore,

q
pN

· q
pL

=
f (σ(30,0))

ν1 f (σ(7.5,0))+ν2 f (σ(15,7.5))+ν3 f (σ(22.5,15))+ν4 f (σ(30,22.5))
. (1.2)

On one hand, under certain smoothness conditions, skewness preference predicts q
p H

/ q
p N

≤
q
p N

· q
p L

.24 On the other hand, q
p H

/ q
p N

≤ q
p N

· q
p L

implies skewness preference.25 Therefore,

refuting skewness preference by rejecting q
p H

/ q
p N

≤ q
p N

· q
p L

constitutes a marginally stronger test

for the axiom. A simple way to interpret
q
p H

/ q
p N

q
p N

· q
p L

is that it imposes an upper bound on f (σ(15,0))
f (σ(30,0)) .
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Using similar arguments, q
p H

/ q
p N

≤ q
p N

· q
p L

is also a slightly stronger prediction for diminishing

relative sensitivity and 2-regular.

Our design also contains some other auxiliary tests for salience theory. First, notice that

for the Normal Contrast task testing skewness prereference, monotonicity of correlation-sensitive

preferences predicts that the first option is preferred whenever p ≥ q. Therefore, we also use

24The requirements are µ1 f (σ(7,0)) + µ2 f (σ(7.5,7)) ≈ u(7.5)
u(15) f (σ(7.5,0) and µ3 f (σ(14.5,7.5)) +

µ4 f (σ(14.5,7.5)) ≈ u(15)−u(7.5)
u(15) f (σ(15,7.5). These conditions hold if f ◦ σ(·, ·) and u(·) have locally stable

curvatures.
25Consider IAS {0,7.5,15,22.5} and {0,7.5,15,22.5,30}, by applying skewness preference twice, the

exact prediction is
f(σ(15,0))

(µ1+µ2) f(σ(7.5,0))+(µ3+µ4) f(σ(15,7.5))
< q

p N
· q

p L
. Moreover, by ordering of salience

function, we have σ(7.5,0) ≥ max{σ(7,0),σ(7.5,7)} and σ(15,7.5) ≥ max{σ(15,14.5),σ(14.5,7.5)}, so
f(σ(15,0))

(µ1+µ2) f(σ(7.5,0))+(µ3+µ4) f(σ(15,7.5))
< q

p H
/ q

p N
.

26To fix ideas, notice that under the same smoothness condition, the denominator in equation 1.1 is a weighted
average between the denominator in equation 1.2 and ν3 f (σ(22.5,15))+ν4 f (σ(30,22.5)). Due to diminishing
sensitivity of salience function, the latter term must be smaller than the denominator in equation 1.2, and hence
leading to a smaller average between them.
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this task as a comprehension check, and subjects “pass” this test if they switches to option A

when p ≥ q. Second, it is straightforward to show that salience theory implies q
p H

/ q
p N

≥ 0,

q
p N

∗ q
p L

≥ 0, and q
p H

∗ q
p L

≥ 0.27

Table 1.3 summarizes every hypothesis’s targeting axioms, involving tasks, and state-

ments. In total, there are nine tests, and we categorize them by the specific models they are

investigating: four for correlation-sensitive preference, two for regret theory, and three for

salience theory.

1.5.4 Recruitment and Attention Requirements

We recruited 800 participants through Prolific who list English as their first language and

maintain a high approval rating on Prolific (detailed summaries in Table A.9). We recruited an

equal number of male and female participants. Participants receive a $4.5 payment upon comple-

tion. Every subject also has 25% chance to receive an additional bonus payment based on their

decisions in the study. Each task as an equal to chance to determine subjects’ bonus payment.28

Participants in current sample took on average 37 minutes to complete the experiments. 190

of them received a bonus payments with the average amount equaling $8.53. In addition, the

average completion times for each task are recorded in Table A.10. On average, they took 74.1

seconds to complete each task.

Since this experiment is conducted online, it is challenging to measure subjects’ attentions

throughout the experiment. To ameliorate this issue, we require subjects to stay in full screen

mode and do not switch to other tabs throughout the experiment. Violating these rules more

than four times will terminate the experiment and drop the subject from the sample.29 After

the instructions, there are four comprehension questions to ensure that subjects understand the

experimental design. For each question, participants have three chances to provide the correct

27However, as we will explain in sections 1.5.5 and 6.2, these tests may be influenced by a well-known confounder
called event-splitting effect in a way that is against salience theory.

28Once the task is randomly selected, one decision problem within that task will be randomly chosen to determine
the payment amount.

29Only 3 subjects dropped out because of violating more than four times.
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answer. The experiment will also terminate in case they fail to provide the correct answers.30

Subjects are informed about these rules before the experiment starts.

The order of tasks, options, and the colors of balls are all conditionally randomized.

Regarding the task order, the first task every subject encounters is the comprehension check

within the payment-variation tasks. After this task, the remaining six payment-variation tasks are

conditionally randomized. We randomize their sequence while ensuring that tasks from the same

pair are always separated by two tasks from different pairs. This randomization standard is also

applied to the probability-variation tasks: Between any two tasks from the same class, there are

always two tasks from different classes.

For the order of options in the payment-variation tasks: if a lottery is labeled as ‘A’ in

one task, it will be labeled as ‘B’ in its paired task. In the probability-variation tasks, for each

subject, either all options are listed according to the joint distributions in table 1.2, or all of them

are based on the conjugate joint distributions in table 1.2.

Lastly, regarding color assignments: for each subject, the colors of all questions either

match those in Figure 1.231 or they are reversed. For instance, in payment variation tasks, the

sequence from left to right becomes orange, blue, black, and red if the occurrence is reversed.

Failure of Contingent Reasoning

Failure of contingent reasoning refers to the phenomenon wherein decision makers have

trouble to explicitly and separately account for potential outcomes under each possible state.

This pattern is observed in various domains, such as decisions under uncertainty (Ellsberg, 1961),

auction (Li, 2017), and voting (Esponda and Vespa, 2019). In the current experiment, contingent

reasoning is the basic underlying assumption since it is the very foundation of correlation-

sensitive preference. Therefore, failure of contingent reasoning imposes serious challenges on

experiments testing correlation manipulations.

To encourage subjects to perform state-wise comparisons instead of other heuristics. We
30No subjects dropped out from failing to provide correct asnwers.
31For probability variation tasks, there is an additional color, marked by purple, on the right.
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use a presentation frame different from the conventional matrix presentation. In our design,

individual lotteries are never listed in isolation. Instead, they are jointly presented under each

state. Due to juxtaposition effect, we believe that not only our presentation helps subjects to

perform a state-wise comparison, but also prevent them from using other heuristics, such as

calculating expected values, for doing so requires them to read the table several times back and

forth.

Another potential source for the failure of contingent reasoning comes from the similarity

between tasks. Given limited time and energy, if two questions deem similar to a subject,

they may not think about these two questions individually. To accommodate this effect, for

regret tasks, we add states with different common payments. For salience theory, we use a

three-question format instead of two-question format.32

1.5.5 Discussion of Design

We now discuss some potential confounders documented in previous literature, and how

the current design addresses them.

Event-Splitting Effects

One of the most common confounders for testing correlation-sensitive preference is the

event-splitting effect noted by Starmer and Sugden (1993a); Humphrey (1995). It posits that

changing the number of states without altering its underlying distribution can impact subjects’

behaviors. For instance consider the following two joint distributions:

{(1,0),50%; (3,4),50%} and {(1,0),25%; (1,0),25%;(3,4),50%}.

32Consider the three tasks testing skewness preference, instead of using the three
tasks. One can just test {(30,0), p; (0,7.5),q; (7.5,15),q; (15,22.5),q; (22.5,30),q} and
{(15,0), p; (0,7.5),q; (7.5,15),q; (1,1),q; (1,1),q}. Nevertheless, in case subjects realize that these two
marginal distributions are just permutations to each other, they may not be willing to conduct state-wise
comparisons, but instead, just compare probabilities.
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Although these two joint distributions are identical in the sense that they can be expressed

by π ∈ ∆(X ×X) with π(1,0) = 0.5 and π(3,4) = 0.5, event-splitting effect predicts that more

subjects will choose option A in the latter joint distribution.

To address this issue, some contemporary research aims at controlling event-splitting

effect while testing salience and regret theory (Loewenfeld and Zheng, 2021; Ostermair, 2021;

Dertwinkel-Kalt and Köster, 2020). The common approach they adopted is to increase the

number of states to guarantee that the relevant tasks have identical state space. Controlling the

total number of states is crucial to eliminate certain confounders. For instance, varying quantities

of states usually come with changing of states’ probabilities. If such probabilistic alternation is

not well-regulated, observed preference reversals may caused by nonlinear probability weightings

(Kahneman and Tversky, 1979a) other than correlation sensitivity. Although controlling the

total number of states is efficient to manage probabilistic variations among tasks, it ignores an

important underlying principle of event-splitting effect. As pointed out in Humphrey (2001), a

prominent factor driving the event-splitting effect is the favoring of a higher number of winning

states. In the previous example, splitting (1,0) into two states increases the number of winning

states for option A, so more subjects prefer option A under the latter joint distribution, as

predicted by the event-splitting effect. If this factor is the dominant force, equalizing the number

of total states instead of each option’s winning state smay even exacerbate the event-splitting

effect.33.

Our current experimental design controls for both the total number of states and the

quantity of winning states for each option. For tasks investigating regret theory, each option

33As an illustration, let us consider tasks relevant to MAO pairs (Mao, 1970) used in both Dertwinkel-Kalt
and Köster (2020); Loewenfeld and Zheng (2021). First, they find evidence for preferential reversal in the task
pairs such that the total number of states is not controlled. In this case, one example of the paired tasks are
{(135,81),64%; (60,156),36%} and {(135,156),36%; (135,81),28%; (60,81),36%}. On the other hand, they
find no evidence after fixing the number of total states across tasks. However, to control the total number of
states, the former task with 2 states is changed to {(135,81),36%; (135,81),28%; (60,156),36%}. Notice that,
when the number of states is not controlled, the ratio of winnings states from each option changes from 1 to 2
between tasks. In contrast, after controlling the states’ number, this ratio changes from 1

2 to 2 between tasks. In this
particular example the forces between event-splitting effect and salience effect are working in opposite directions,
so the absence of preference reversal can be caused by the cancellation of these two forces after strengthening
even-splitting effect.
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has exactly one winning state. Furthermore, for salience theory’s tasks, we keep the ratio of

winning states between the two options similar across High and Low contrasts problem. Since

the main hypotheses perform a subtraction between the switching odds of these two tasks, the

event-splitting effect influencing the switching odds for individual questions is canceled out.

And hence, the potential confounding issue can be at least alleviated.

Random Choices

Overall, the current experiment can be thought of as price lists questions assembled

by binary choices. This design has some advantages over tasks that consist of single binary

choices, which is a prevalent format in previous experimental literature studying correlation-

sensitive preferences. First, the current design allows us to obtain a precise measure of valuation

changes caused by correlation manipulations. Furthermore, recent work by McGranaghan et

al. (2022) suggests that in the presence of random noise in decisions, single binary choices

problems may suffer from the varying error magnitudes among tasks and produce unintended

predictions. To see how the same issue can contaminate the current experiment, consider the pair

1 payment-variation tasks. In the positively correlated version, regret theory posits that option A

is chosen if and only if Q(u(X)−u(22))≥ Q(u(5)−u(0.5)). Regret theory suggests that in this

case Q(u(X)−u(5))≥ Q(u(22)−u(0.5)), and hence predicts subjects to make the consistent

choice in the negatively correlated version. However, regret theory stays silent on the cardinal

difference between the options. That is, it is possible that Q(u(X)−u(22))−Q(u(5)−u(0.5)) ̸=

Q(u(X)− u(5))− Q(u(22)− u(0.5)). Following the rationale from random utility models

(McFadden, 1974), subjects’ choices may be more disbursed for the task with the smaller regret

difference. Consequently, random errors may lead to false rejection of regret theory.

According McGranaghan et al. (2022), adopting a price list design can ameliorate this

issue because at the switching pair, the choice probabilities of each option are identical, and

random noise cannot change this balance. Nevertheless, it is important to note that adopting price

lists directly in the current experiment can introduce other biases. The reason is that options
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in price lists may become references while subjects make decisions, and hence influence their

choices. Therefore, in our experimental design, we still present each decision problem as binary

choice.

1.6 Main Experimental Results

We begin by investigating the two hypotheses regrading monotonicity. 284 out of 800

(35.5%) subjects violate at least one of the hypotheses.34 Since these two tasks are relatively

easier than remaining ones, their violations may indicate subjects’ confusion or inattention.

Therefore, we exclude these subjects from subsequent analysis.

Additionally, since each tasks consist of multiple binary choices, it is possible that

subjects switch back and forth between the two options as they complete the decision problems,

and hence exhibit the so-called “multiple switching points”. For each of the 16 tasks, the

occurrence rates of multiple switching points range from 9.3% - 36.9%.35 On one hand, multiple

switch points indicate subjects’ confusion or attentional noise, so include these subjects may

incur additional randomness in our analysis. On the other hand, given that most subjects exhibit

multiple switching points at least once in our experiment, mechanically excluding these subjects

may result in selection bias. Due to these conflicting rationales, in current analysis we evaluate

each hypothesis over two different populations – Poa and Pos – as described below.

1. Poa contains all subjects that follow monotonicity. 36

2. Pos contains all subjects following monotonicity and do not exhibit multiple switching

points in all tasks that are relevant to the hypothesis.37

34159 subjects violate the hypothesis of the first payment-variation tasks while 174 subjects violate the hypothesis
of the Normal Contrast task testing skewness preference.

35The average rate of multiple switching points among the tasks is 20.8%. On average, subjects exhibit this
behavior 3.1 times.

36The current analysis focus on the switch point in each task. For subjects with multiple switching points, their
first and last switching points provide a range of the payments or probabilities at which they are indifferent between
the options.

37For instance, for regret theory analysis, subjects in this population never exhibit multiple switching points in
the pairs 1 and 2 payment variation tasks and follow monotonicity.
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We focus on individual-level data for tasks relevant to regret and salience theory in our main

analysis. Roughly, based on subjects’ responses, we can at least identify a range of the payment

amounts or probability magnitudes that make subjects indifferent between the two options. As a

result, we can conduct our hypotheses by comparing the differences between these switching

choices across tasks. In Appendix A.4.3, we provide aggregate results and tests for the general

correlation-sensitive preferences.

Figure 1.3. Regret Theory – ∆X
Note: This is the summary of Pos population behaviors regarding payment-variation tasks pertaining to
regret theory. Panel A draws the CDF for ∆X ≡ Xpos −Xneg for pair 1 and 2 in the payment variation tasks.
Panel B plots ∆X from pair 1 against pair 2, with the scatters jittering at a 3 percent level. Panel B also
includes the Lowess line that fits the data excluding subjects with both ∆X equaling to 0.
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1.6.1 Results for Regret Theory

For each subject, we calculate the switching payments Xpos and Xneg in every task pair

and analyze ∆X ≡ Xpos −Xneg.38 Figure 1.3 presents the result. Panel A presents the CDFs for

∆X in both pair 1 and 2. Two features stand out in the figure. First, the two CDFs look strikingly

similar to each other. Although, based on the figure, the CDF of ∆X for pair 1 appears to first

order stochastic dominates that of pair 2, this trend is not significant.39 Second, both CDFs imply

that a large proportion of ∆X is centered around 0. 40 Table 1.4 presents the mean tests using

interval regressions (Stewart, 1983). Panel A in Table 1.4 represents the average of ∆X in Pairs 1

and 2 tasks under populations Poa and Pos. The results are mixed for different task pairs. For

pair 1 task, a significant difference between Xpos and Xneg is detected at the aggregate level. In

both populations Poa and Pos, the evidence suggests that subjects switch to option B at lower

X values when the outcomes of options are negatively correlated. In contrast, no significant

difference in switching payments is found for pair 2 tasks. Panel A also presents ∆X at group

level. The deviation is slightly larger from group 1 subjects.41

The significant deviation from swapping independence in the mean test may be driven

by a minority of subjects who make decisions at two distinct corners in a paired tasks.42 To

investigate such possibility, Panel B in Table 1.4 presents the sign test. For subjects with multiple

switch points, we take the midpoint of their largest and smallest switch decision as an indicator.

38The calculation is based on midpoints formulated by the maximal X value the subject choosing option A and the
minimal X value that she chooses option B. Furthermore, there is a major proportion of subjects who make at least
one corner decision – choosing a same option throughout all decision problems in a task. For the current analysis,
we use minX −2 and maxX +2 as the lower and upper bounds. Altering these two endpoints in a symmetric way
doesn’t affect our current conclusion.

39A two-sample Kolmogorov–Smirnov test cannot reject that ∆X from pair 1 is larger than ∆X from pair 2.
Excluding subjects with ∆X = 0 in both pairs, the p-values are 0.16 for Poa subjects and 0.23 for Pos subjects.

40∆X = 0 for 37.6% of the Poa subjects in pair 1 and 40.9% in pair 2. These numbers 39.3% and 42.2% for Pos
subjects.

41Options A and B between the two groups are different in the amount of their common payments. Appendix
A.4.3 provides a between-group analysis controlling this factor, and the results still indicate violations of swapping
independence.

42A similar phenomenon is documented in Loewenfeld and Zheng (2023). In the current experiment, there are in
total 131 subjects that exhibit such behaviors at least once. On average, these subjects complete tasks in which they
made corner decisions around 9 seconds faster than the remaining subjects.
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The results are largely aligned with Panel A.

Table 1.4. Swapping Independence

Panel A: Mean Test Panel B: Sign Test
(1) (2) (3) (4) (1) (2) (3) (4)

Task Pair 1 2 1 2 1 2 1 2

∆X 0.37** -0.10 0.45* -0.10 + - + -
(0.17) (0.16) (0.26) (0.26) 0.02 0.62 0.08 0.69

∆Xgroup=1 0.63*** -0.10 0.93** -0.15 + - + +
(0.24) (0.23) (0.38) (0.38) 0.02 0.78 0.01 0.62

∆Xgroup=2 0.11 -0.09 0.02 -0.05 + - - -
(0.24) (0.23) (0.36) (0.35) 0.33 0.67 0.87 0.88

Population Poa Poa Pos Pos Poa Poa Pos Pos
N 516 516 211 211 369 346 128 122

Note: Summary of tests for swapping independence. Each test is performed under Pos and Poa. Panel
A provides estimates for the mean differences in the switching value ∆X ≡ Xpos −Xneg obtained from
interval regressions (Stewart, 1983). In addition, Panel A also records ∆X at group level. The standard
errors are included in parentheses. Panel B presents the sign test at both aggregate and group levels.
The dominate group is presented. “+” suggests a majority of subjects has ∆X > 0 while “-” suggests a
majority of subjects has ∆X < 0. P-values are recorded under each test. When Performing each sign
test, subjects with ∆X = 0 are excluded.

We now investigate potential heterogeneity at subject-level. Panel B in Figure 1.3 plots

the relative values of ∆X between the two paired tasks. It suggests that there only exists a weak

correlation between magnitudes of deviations across pairs. The correlations between ∆X of Pairs

1 and 2 tasks are 0.13 (p = 0.004) and 0.18 (p = 0.008) for Poa and Pos population, which are

considered as significant but weak. Further, there is no evidence suggests the heterogeneity

regarding average values of ∆X between groups. Nevertheless, although we don’t find a strong

correlation between the values of ∆X across different pairs, Panel B also suggests a significant

proportion of subjects are clustering at (0,0). Indeed, conditional on ∆X = 0 in pair 1 leads to

a 18.6% higher chance to have ∆X = 0 in pair 2 for Poa subjects and a 23.8% higher chance

for subjects in Pos.43 Therefore, the results suggest a consistency of respecting swapping

43Denote ∆X1 the value of ∆X at Pair 1 and ∆X2 the value of ∆X at Pair 2. For Poa subjects, P(∆X2 = 0|∆X1 = 0)=
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independence at subject level.

Taking stock, the current results find evidence that subjects violate swapping indepen-

dence. However, the violation is not robust across questions parameters, populations, and groups.

Furthermore, the deviation magnitudes on average are under $1. In addition, we find a significant

correlation for violations among tasks at subject-level. Specifically, the result suggests that a

subject violating the axiom in one task pair has a higher chance to violate again in the other pair.

1.6.2 Results for Salience Theory

We now conduct a similar exercise regarding probability-variation tasks. The number of

subjects in Pos for this part of experiment is 350. Among these subjects, only 148 of them never

submit a corner decision. To accommodate the majority of subjects, we assume an upper bound

for switching winning odds at exp(3.5) and a lower bound at exp(−3.5). These bounds are not

restrictive because for a switching winning odds to be exp(3.5), the decision maker is expected

switch to the choice with one winning state at winning probability less than 1%. Furthermore,

in order for the winning odds to be exp(−3.5), the decision maker is expected to choose the

option with four winning states when of the total winning probability is smaller than 0.12 (each

winning states has a chance smaller than 0.03).

Fiugre 1.4 provides CDFs of ln( q
p H

)−2ln( q
p N

)− ln( q
p L
) from Pos subjects for each of

the three task groups.44 Their CDFs share two common features. First, a majority of subjects

have a negative difference in winning odds. Under current boundary specifications, 207 out

of 350 (59.1%) subjects follow skewness prereference, 196 out of 350 (56%) subjects follow

diminishing relative sensitivity, 193 out of 350 (55.1%) subjects follow 2-regular, and overall 80

68
147 ≈ 46.26% and P(∆X2 = 0|∆X1 ̸= 0) = 102

369 ≈ 27.64%. For Pos subjects, P(∆X2 = 0|∆X1 = 0) = 47
83 ≈ 56.63%

and P(∆X2 = 0|∆X1 ̸= 0) = 42
128 ≈ 32.81%. The p-values of the two-sample Kolmogorov-Smirnov test are 0.001 for

the 18.62% increasing chance and 0.007 for the 23.8% increasing chance. Additionally, conditional on violating
swapping independence, ∆X < 0 in pair 1 leads to a 17% (0.042) increasing chance to have ∆X < 0 in pair 2 for
subjects in Poa and 16.3% (0.618) increasing chance for subjects in Pos.

44For more intuitive visualization, the logarithm of winning odds are generated by taking the midpoint of the
intervals in which they lie.
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Figure 1.4. Salience Theory: ln( q
p H

)−2ln( q
p N

)− ln( q
p L
)

Note: Figure 1.4 presents the cumulative distribution functions of ln( q
p H

)−2ln( q
p N

)− ln( q
p L
) for task

groups related to each of the three axioms. Each CDF ignores the bottom and top 2% subjects for
better visualization. The red curve presents data from tasks testing skewness preference.The blue curve
presents data from investigating diminishing relative sensitivity. The black curve presents data from
investigating 2-Regular. The purple dash line serves as a reference for ln( q

p H
)−2ln( q

p N
)− ln( q

p L
) = 0.

out of 350 (22.8%) subjects are consistent with all three axioms.45

Secondly, all CDFs in Figure 1.4 have long left tails. This indicates that subjects

following salience theory deviate more severely from expected utility theory. To fix ideas, Figure

1.5 draws individual-level data testing the corresponding axiom. In Figure 1.5, subjects are

separated into followers, meaning their behaviors are consistent with predictions from salience

theorem, and violators. For the followers, it’s expected that ln( q
p H

)− ln( q
p N

) to be smaller

than ln( q
p N

)+ ln( q
p L
).46 Table 1.5 Panel A presents the results. For the main hypotheses, we

find supportive evidence for salience theory’s prediction that is robust across populations and

45In our design, each axiom can rationalize 52% of all responses assuming single switch. Therefore, around 14%
of responses are considered to be consistent with all axioms.

46In terms of visualization, scatter points from followers should lie above the 45 degree line. Furthermore, a
subject behaves more like a expected utility maximizer if her scatter point is located closer to the 45 degree line.
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different axioms. To interpret the magnitudes, consider the statistics under column (1), which

presents results for tasks investigating skewness preference for popuation Poa. Roughly, the

result suggests that f (σ(15,0))
f (σ(30,0)) ≤ exp(−0.19)≈ 0.83 (0.05). For Pos subjects, the bound is 0.85

(0.06). Moving on to relative diminishing sensitivity, the upper bound of f (30,15)
f (15,0) is 0.83 (0.06)

for population Poa and 0.84 (0.08) for population Pos. Lastly, for 2-Regular, the upper bound of
f (10,0)
f (30,10) is 0.75 (0.06) and 0.82 (0.07) for Poa and Pos respectively.

Table 1.5. Salience Axioms

(1) (2) (3) (4) (5) (6)
Panel A: Main Hypotheses

-0.19*** -0.16** -0.18** -0.18* -0.29*** -0.20**
(0.06) (0.07) (0.08) (0.09) (0.08) (0.09)

Panel B: Auxiliary Hypotheses
Mean Tests:
ln( q

p H
)− ln( q

p N
) -0.11*** -0.10** 0.04 0.04 0.07* 0.12**

(0.04) (0.05) (0.05) (0.05) (0.04) (0.05)

ln( q
p H

)+ ln( q
p L
) 0.09* 0.06 0.24*** 0.24*** 0.46*** 0.44***

(0.05) (0.05) (0.05) (0.05) (0.06) (0.06)

Population: Poa Pos Poa Pos Poa Pos
N 516 350 516 350 516 350

Sign Tests:
ln( q

p H
)− ln( q

p N
) - - + + + +

p-value 0.036 0.005 0.851 0.353 0.069 0.024

ln( q
p H

)+ ln( q
p L
) + + + + + +

p-value 0.489 0.682 0.000 0.000 0.000 0.000
Note: This table summarizes the mean values of differences in logarithm winning odds using interval
regression. Columns (1) and (2) present results from skewness preference for both Poa and Pos
populations. Columns (3) and (4) present results from diminishing relative sensitivity. Columns (5)
and (6) present results from 2-Regular. The axiom test records result for ln( q

p H
)−2ln( q

p N
)− ln( q

p L
).

In Auxiliary tests, ln( q
p H

)− ln( q
p N

) and ln( q
p N

) + ln( q
p L
) are presented using interval regression.

Furthermore, sign tests are also performed. In the table, sign tests record the sign of dominant group
and corresponding p-value.

One potential confounder of the results is nonlinear probability weighting. Specifically,
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Figure 1.5. Salience Theory Subject-Level Analysis
Note: The graph summarizes individual level differences in switching winning odds. X-axis indicates values
of ln( q

p H
)− ln( q

p N
), and Y-axis presents ln( q

p N
)+ ln( q

p L
). The data for each of the three axioms are plotted

individually. Salience theory posits that ln( q
p N

)+ ln( q
p L
)≥ ln( q

p H
)− ln( q

p N
). The green scatters represent

subjects who follows the predictions while red scatters represent subjects who violates the predictions.

since we compare the difference between ln( q
p H

)− ln( q
p N

) and ln( q
p N

)+ ln( q
p L
), if probabilities

are nonlinear, it is possible that their magnitudes are distorted and the estimates in Table 1.5

can be misleading. To circumvent this issue, we analyze the auxiliary tests from probability-

variation tasks. Unlike the main hypotheses, these auxiliary tests are not influenced by nonlinear

probability weighting because they compare the winning odds between different tasks directly

and analyze the ordinal ranking between them. Since we keep the probabilistic variations identical

across tasks, the winning ratio can serve as a measure of this ordinal ranking. Specifically, the

tests we consider are ln( q
p H

)− ln( q
p N

)> 0 and ln( q
p H

)+ ln( q
p L
)> 0. As mentioned before, the

results of this direct comparison may be contaminated by the fact that options with identical

marginal distributions have different numbers of winning states. Nevertheless, we argue that the
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impact from event-splitting effect is working against salience theory in our setting. To illustrate,

consider the test ln( q
p H

)− ln( q
p N

) > 0. The event-splitting effect will decrease the value of

ln( q
p H

) because option A only has a single winning state with probability p while option B

has four winning states each with probability q. In order for the decision-maker to consider

switching the option, she demands a higher p, and hence drags down the value of ln( q
p H

). In

contrast, ln( q
p N

) is not influenced by event-splitting effect since both options have exactly one

winning state. Therefore, ln( q
p H

)− ln( q
p N

) decreases in the presence of event-splitting effect.

The idea works similarly for ln( q
p N

)+ ln( q
p L
). Table 1.5 Panel B reports the mean tests and sign

tests for ln( q
p H

)− ln( q
p N

) and ln( q
p H

)+ ln( q
p L
).47 The results between the main and auxiliary

hypotheses are largely aligned. Nevertheless, notice that salience theory’s predictions are only

rejected at ln( q
p H

)− ln( q
p N

) ≥ 0 in tasks testing skewness preference. The cause of rejection,

other than the failure of theory, can also originate from the fact that we exlude subjects with

ln( q
p N

)≤ 0. The reason we exclude these subjects is that their behaviors constitute violations

from monotonicity and indicate misunderstanding of the experiment.48 However, through this

process, subjects’ noise in the normal contrast task are eliminated while keep the noise in others.

As a result, the discrepancy in how noise is excluded may contribute to the violation. One way to

ameliorate this issue is to also exclude certain noises from the high contrast problem. We present

the corresponding results in Table A.5.

We conclude current analysis with a brief discussion about subject-level heterogeneity.

For each axiom there is a significant proportion of subjects who violate its hypothesis. First, we

find significant but weak positive correlations (around 0.13 for Poa and 0.19 for Pos) among the

magnitudes of the responses across the three task groups. Table A.6 presents the correlations.

Furthermore, we find a significant correlation between the indicators of violating k-regular and

diminishing relative sensitivity. Specifically, conditional on following k-regular, there is a 17%

(0.01) increasing chance for subjects to follow diminishing relative sensitivity compared to

47When conduct the sign tests, the proportion with 0 differences are excluded.
48ln( q

p H
)< 0 also violates monotonicity. However, it may also be caused by event splitting effect.
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conditional on violating k-regular.

In summary, we find supportive evidence for all three axioms of salience theory at the

average level. However, it is important to note that there is a significant amount of violations for

each of our main tests. In addition, there exists positive correlations among violating different

axioms.

1.6.3 Model Evaluation

We now briefly assess each theory’s predictive performances. To this end, we implement

two measures. First, we use a deterministic approach to evaluate their abilities to rationalize

behaviors by categorizing subjects into followers and violators for each axiom. Second, we use

the completeness measure introduced in Fudenberg et al. (2022) to appraise their performances

to fit out-of-sample data.

Table 1.6 presents categorizations of subjects. Out of 516 subjects who pass our attention

checks, 68 (13.2%) follow regret theory, 121 (23.4%) follow salience theory, and 24 (4.7%)

follow both. Table 1.6 also presents the results for the 107 subjects who never exhibit multiple

switches throughout the experiment. The performances of most tests become better under

this more conservative subject pool.49 It is important to notice that axioms for regret and

salience theories provide distinct hypotheses on behaviors. Therefore, one should account for the

differences in restrictiveness when assessing their predictive successes. Specifically, for regret

theory, Pairs 1 and 2 in payment-variation tasks provide two tests for the same hypothesis that

Xpos −Xneg = 0. For each test, there are in total 81 different possible choice combinations and

regret theory can rationalize 9 of them. In contrast, for salience theory, each hypothesis can be

rationalized by 53.7% of arbitrary choice combinations.50

49Only 1 person followed Expected utility theory based on our main tests. For probability-variation tasks,
expected utility theory posits that ln( q

p H
)−2ln( q

p N
)− ln( q

p L
) = 0. However, there is no behavioral pattern in our

design can hit exact 0. Therefore, we count subjects as expected utility followers if the absolute value of differences
in winning odds is smaller than 0.04.

50One way to assess the predictive power of these theories is through the Selten measure (Selten, 1991), which
can be expressed as r− a. Here, r is the fraction of observations that can be rationalized by the theory, and a
is the proportion of choice combinations that are consistent with the theory. Considering monotonicity as an
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Table 1.6. Model Evaluations

Poa Pos
N: 516 107
Regret Theory:
Pair 1 147 42

(28.5%) (39.3%)
Pair 2 170 49

(32.9%) (45.8%)
Overall 68 29

(13.2%) (27.1%)
Salience Theory:
Skewness Preference 315 64

(61%) (59.8%)
Diminishing Relative Sensitivity 290 63

(56.2%) (58.9%)
2-Regular 292 66

(56.6%) (61.7%)
Overall 121 33

(23.4%) (30.9%)
Overall 24 8

(4.7%) (7.5%)
Note: This table summarizes the number of subjects following each hypothesis. Poa is the population
that passed the attention checks. Pos is the sub-population of Poa that exhibit single switch behaviors
in all tasks.

Now we measure their out-of-sample performances. To give a suitable assessment, we

use the “completeness” measure introduced in Fudenberg et al. (2022).51 The completeness

measure requires a cost function and three prediction rules: the best rule, the theory’s rule,

and the baseline rule.52 We choose squared errors as our cost function. For regret theory, we

use observations from negatively correlated tasks to predict behaviors in positively correlated

tasks. In this case, the best prediction rule is E(Xpos|Xneg). The theory’s prediction rule is

additional layer of requirement, the Selten measures are 0.082 for regret theory and 0.092 for salience theory over
Poa population.

51Section A.4.1 lays out the detailed construction.
52The best prediction rule presents the most accurate model one can obtain based on the explanatory data. The

theory’s prediction rule is specified by the model of interests. The baseline prediction rule represents the “worst”
prediction rule we consider.
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Xneg. In addition, we set the baseline rule as the minimal possible value of Xpos.53 Under these

specifications, the completeness measure for regret theory is 15.1% for Pair 1 tasks and 19.1%

for Pair 2 tasks. One driving factor for these low values is the minority of subjects providing

responses at two different extreme corners in the paired tasks. Excluding these subjects, we find

that the completeness measure is 75.5% for Pair 1 and 90% for Pair 2.

For salience theory,we predict Y = ln( q
p H

)− ln( q
p N

) based on X = ln( q
p N

)+ ln( q
p L
). The

best prediction rule is E(Y |X). Since salience theory posits that Y ≤ X , its prediction rule is

min{E(Y |X),X}. Additionally, the baseline prediction rule is X . Based on these specifications,

the completeness measures of salience theory are 80% for skewness prereference, 63.7% for

diminishing relative sensitivity, and 73.9% for k-regular.

1.6.4 Robustness Checks and Other Results

Our previous main analysis suggests that a significant proportion of subjects exhibit

correlation-sensitive behaviors. Furthermore, the current results also imply that on average both

salience and regret theories perform reasonably well. Nevertheless, in each of our tests, we

observe individual heterogeneity. Since there are significant correlations between individuals’

violations across relevant axioms, the observed correlation-sensitive behaviors cannot be fully

attributed to randomness. Here we discuss some robustness checks to further validate our main

conclusions.

The first issue we consider is the ordering effect. Since relevant tasks in our experiment

have similar parameters, it is possible that subjects realize this and forfeit statewise comparisons

in each question.54 To address this issue, for each relevant test, we conduct a between-subject

analysis wherein the data of each task only consists of subjects who encounter that task before

53Since regret theory’s prediction involves no parameter specification, we set the baseline rule to be extremely
uninformative. In fact, since Xneg and Xpos are only weakly correlated and there is significant heterogeneity between
subjects, the out-of-sample performance of both Xneg and E(Xpos|Xneg) are both worse than taking the mean of
possible Xneg values.

54The direction of biases is unclear. On one hand, subjects may realize the similarity and choose consistently. On
the other hand, subjects may deliberately randomize between similar questions (Machina, 1985; Cerreia-Vioglio et
al., 2019).
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other relevant ones. Table A.7 presents the results. Panel A corresponds to Table 1.4 while

Panel B corresponds to Table 1.5.55 The results are reasonably stable and hence qualitatively

unchanged among these tables.

Another potential concern regarding salience theory is the unbalanced winning odds at

two endpoints. In order to help subjects comprehend the probabilistic variations, the parameters

are chosen in a way that the changes of p and q are constant between two subsequently questions.

However, this leads to the max q
p = 24

4 = 6 and min q
p = 16

36 = 0.44. Ideally, these two winning

odds ratios should be reciprocals. In this way, if a subject switches from the beginning in

high or normal contrast tasks while never switches in the low contrast task is considered to be

uninformative.56 To address this issue, we trim the data such that subjects switches at or before

p = 0.12 and subjects switches at or after p = 0.32 are considered to be censored.57 Table A.8

presents the results, and they are in line with our previous analysis.

We now briefly describe some other results omitted in the main discussion. In appendix

A.4.2, we conduct a similar analysis towards the pair 3 payment-variation tasks, which aims

at uncovering general correlation sensitive behaviors. We find a significant proportion of

subjects exhibiting correlation sensitivity behaviors (72.5% for Poa and 62% for Pos). At the

average level, there is a significant tendency to switch to option B at a smaller X value in the

negatively correlated task. Nevertheless, the magnitude of ∆X is less than $1 for both Poa and

Pos. Additionally, we find no significant correlation between violation of swapping independence

and correlation insensitivity.

In Appendix A.4.3, we perform a test for strong independence. To this end, we compare

the values of ∆X between two subjects groups for each of the payment-variation tasks in pairs

1 and 2. For each of the tasks, the only difference between groups 1 and 2 is the common

payments from option A and B – while one group gets $1 under states in which the two options

55The sign test in Table 1.5 is ignored since we are comparing averages obtained from different subjects.
56The number of subjects that exhibit such behaviors is 53 for skewness prefrence, 45 for diminishing relative

sensitivity, and 35 for 2-regular.
57 0.22

0.12 ≈ 1.83 and 0.17
0.32 ≈ 1.88−1, they are almost reciprocals.
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provide identical payments, the other group gets $1.5. We find group heterogeneity for Pos

subjects in pair 1 positively correlated task. Since the heterogeneity is not persistent across

different correlation structures, we conclude that the violation of strong independence is at most

mild in our experiment, and it is unlikely such violations can alternate our results qualitatively.

Additionally, we conduct a between-group analysis for ∆X in pairs 1 and 2 controlling the

amount of common payments. The results are almost identical with our main analysis.58

1.7 Conclusion

In this study, we undertake a qualitative analysis of salience and regret theory, identifying

independent axioms that characterize each. Salience theory’s axioms enable us to examine the

salience function independently of the utility function’s shape by focusing on special lotteries.

In contrast, regret theory’s axiom hinges on correlation-insensitive preferences in scenarios

involving lotteries with two equiprobable outcomes. Additionally, we describe the parametric

boundaries distinguishing salience from regret theory. Further, the current experiment, designed

to control confounders such as event-splitting effects, failures in contingent reasoning, and

random errors, yields two primary insights. Firstly, our findings lend aggregate-level support

to both theories. Secondly, a noteworthy rate of axiom violations in each theory suggests their

limitations in accounting for certain heterogeneous factors, even though they provide valuable

benchmarks for predicting average behaviors.

This project paves the way for future explorations in salience and regret theory. From

a theoretical standpoint, it would be beneficial to investigate decision-making patterns in the

context of arbitrary choice sets and to understand how deviations from standard optimization

can be influenced by salience and regret. Furthermore, while regret theory has been axiomatized

within a subjective framework as per Savage (1954), to our knowledge such comprehensive

58Additionally, to test salience and regret theory’s abilities to rationalize behaviors in the aggregate level, we
perform a similar analysis by comparing the average switching values (winning odds) across relevant tasks. These
additional results are largely in line with our main analysis.
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treatment appears scarce for salience theory.59

For future experimental research, a key objective is to identify functional forms that allow

for a quantitative evaluation of these theories. Moreover, it’s critical to distinguish between the

effects of correlation sensitivity and nonlinear probability weighting, as they can sometimes lead

to similar outcomes.60 Disentangling these influences remains a vital challenge for advancing

our understanding of decision-making processes.

59We postulate that different characterizations may be necessary for finite state spaces.
60See Abdellaoui (2000) and Bleichrodt et al. (2010) for an example.

49



Chapter 2

Multidimensional Salience: Theoretical
Foundations and Experimental Tests

Abstract

Economic decisions frequently involve uncertainty along multiple dimensions.
This manuscript proposes and characterizes an extension of salience theory (Bordalo
et al., 2012, 2013a) for the treatment of such multidimensional lotteries. The model’s
predictions are explored in three existing data sets and a novel experiment focused on a
canonical example of multidimensional risk, intertemporal risky choice, where prior data
differ markedly from the benchmark of Discounted Expected Utility. Around 70-80% of
the prior data are consistent with multidimensional salience, and new experimental data
largely confirm the predictions of the theory.

2.1 Introduction

Many economic decisions involve trade-offs across different dimensions: buyers trade off

price and quality for different goods; workers trade off effort and pay for different jobs; investors

trade off streams of returns across states of nature for different assets. Importantly, in many of

these cases, the outcomes in each dimension may be uncertain: quality may be uncertain, the

costs of effort may not be deterministic, and states of nature are realized probabilistically. Thus,

many canonical decisions are both multidimensional and risky.

Within behavioral economics two largely separate literatures have emerged for analyzing

context dependence in either multidimensional deterministic choice or one-dimensional risky
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choice.1 In this manuscript, we attempt to bridge these two approaches to provide a multidimen-

sional model of context-dependent risky choice that can be applied to a broad range of economic

environments. We extend the salience model of Bordalo et al. (2012), henceforth BGS, to choices

over multidimensional lotteries. The model provides a new perspective on how attention drives

risky decisions and leads to deviations from neoclassical, context-independent theories.

The mechanism we consider follows from a simple two-dimensional example. Consider

the choice between a pair of deterministic two-dimensional options, [x1,x2] ∈ {[100,0], [50,50]}

where the objects of choice provide payoffs relevant to the decision maker in two generic

monotonic dimensions.2 Suppose a decision-maker is indifferent between [100,0] and [50,50].

What happens when the dimension payoffs, x1 and x2, are subject to risk, each being paid with

an independent probability, p = 0.5?3 Such multidimensional risk delivers a choice set over

lotteries, {L[100,0],L[50,50]}, each with four equiprobable states — B(oth) dimension payoffs are

made, N(either) dimension payoff is made, only the F(irst) dimension payoff is made, or only

the S(econd) dimension payoff is made. The payoffs in each state for the two options are thus:

Option State

B N F S

L[100,0] [100,0] [0,0] [100,0] [0,0]

L[50,50] [50,50] [0,0] [50,0] [0,50].

In State B, the two lotteries yield outcomes which are of equal value by the assumption of

1One theoretical exception is the contemporaneous work of Köster (2021), who considers a two-layer salience
model both within deterministic dimensions and then across states of nature. The fundamental distinction between
our baseline model and that of Köster (2021) is that while he aims to integrate Bordalo et al. (2012) and Bordalo et al.
(2013a) into a single decision-making process, we directly extend the salience comparisons of Bordalo et al. (2012)
from single to multi-dimensional outcomes. In addition, our baseline model separates behavioral effects from inter-
dimensional comparisons and from risk. For other recent theoretical advances on ‘correlation-sensitive’ preferences
see Lanzani (2022); Diecidue and Somasundaram (2017). For experimental results confirming correlation-sensitive
risk preference, see Frydman and Mormann (2018); Dertwinkel-Kalt and Köster (2020). For experimental results
against it, see Loewenfeld and Zheng (2021). For a summary on different context-dependent effects, see Landry and
Webb (2021). For an experimental investigation in a riskless environment, see Somerville (2022).

2Here, we leave the dimensions unspecified. Our theoretical analysis is general; dimensions could be quality and
minus price, leisure and earnings, or different time periods’ returns.

3Throughout this manuscript we assume that all risks are resolved immediately after choice, eliminating any
mechanism related to the timing of the resolution of uncertainty.
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indifference in the deterministic case. In State N, the two lotteries yield the same outcome,

while in States F and S, L[100,0] yields a better or worse outcome than L[50,50], respectively. The

canonical model of Expected Utility (EU) with separable utility across dimensions requires

that a decision-maker who is indifferent in the deterministic setting remain indifferent under

these risks.4 Salience posits that attention is drawn to states of nature depending on the absolute

payoffs and payoff differences between lotteries in each state. Attention leads to distortions

of state probabilities away from their objective likelihoods and drives behavior away from EU

predictions. Under our extension, attention will be drawn to state S in this example, distorting its

probability upward and driving the preference away from indifference towards L[50,50]. In effect,

the decision-maker behaves as if she is disproportionately worried about the chance of receiving

nothing in State S from L[100,0] when she could have received 50 (in dimension 2) in the same

state from L[50,50].

In Section 2 of the manuscript we provide our formal theoretical extension of BGS to

multidimensional risk. The central component of our theory is a salience function, which maps

from multidimensional options to attention, and determines exactly how different two options

are perceived to be. In our example, the salience function captures the psychologically plausible

pattern of attending disproportionately to the state where one option pays something while the

other pays nothing at all.

To generate multidimensional salience, our theoretical development begins with a lattice

construction and a set of assumptions connecting differences between options to perceived

salience. Unlike the original BGS model, our construction implies that the salience level between

options is not always proportional to their geometric distance. The previous example illustrates

this distinction and highlights the central challenge of applying the original salience model in the

multidimensional lottery setting. With only a single payoff dimension, BGS provides principles

connecting the Euclidean distance between two lottery payoffs in a state to the perceived

4In this example, we assume a separable utility across dimensions only to illustrate intuitions behind our model.
In general, multidimensional salience theory doesn’t require such separability.
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difference of the pair, and hence, the level of salience. Consequently, the salience of a state

is positively correlated with the Euclidean distance between lottery payments in that state. In

multidimensional lottery choice this is plausibly not the case: State B has the greatest Euclidean

distance between the two lotteries, differing by 50 in both dimensions, but the decision-maker has

already expressed indifference between the two outcomes obtained in State B in the deterministic

case. Hence, it seems unlikely this state would be most salient under uncertainty. Our extension

overcomes this implausible implication.

With our extension’s measure of salience in hand, we posit that the decision-maker’s

attention is drawn to states in which the options differ most substantively, as in the original BGS

model. Following from the general construction, we connect our model with BGS and discuss

structural simplifications to facilitate empirical analysis. We end our theoretical development with

an axiomatization and organize our empirical analysis around testing the model’s corresponding

implications for behavior.

In Section 3 of the manuscript, we consider a canonical decision environment to which

multidimensional salience applies: intertemporal risk. By regarding time periods as different

dimensions, we apply our theory to intertemporal settings in which decision-makers choose be-

tween multi-period streams of payments and each period’s payments may be uncertain. Relevant

examples that correspond to this application include human capital formation, consumption-

savings problems, and insurance choice. Our model provides some intuitive predictions. The

first prediction, “Salience-Based Present Bias,” makes a connection between multidimensional

salience and apparently present-biased behaviors (Laibson, 1997; O’Donoghue and Rabin, 1999).

If the present is certain while the future is uncertain, our theory predicts that individuals will

be relatively impatient for decisions involving certain, present payments and relatively patient

for decisions involving only uncertain, future payments.5 The second prediction, which we

5As in work on temporal probability weighting (Halevy, 2008), our theory associates present-biased behaviors
with violations of DEU rather than non-exponential discounting. This is not to say that non-exponential discounting
is not an important driver of behavior overall, only that apparently present-biased behaviors can be exacerbated by
the failure to keep risks constant over time.
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call “Intertemporal Hedging,” predicts that individuals will be more likely to smooth their in-

tertemporal allocations when facing risk than when facing certainty. For instance, Intertemporal

Hedging predicts that present bias should be reduced in the presence of risk, which is indeed

documented by previous experiments (Keren and Roelofsma, 1995; Weber and Chapman, 2005;

Baucells and Heukamp, 2010; Reddinger, 2020). The third prediction, which we call “Corre-

lation Dependence,” is that sensations of salience, and, hence, behaviors will depend on the

correlation of intertemporal risks.6 If risks over time are positively correlated, opportunities for

Intertemporal Hedging are reduced; while if risks over time are perfectly negatively correlated,

hedging remains an attractive possibility.7

A number of experimental studies have been conducted to study choices in intertemporal

risky environments. These publicly-available data provide an opportunity to test the specific

predictions of multidimensional salience for intertemporal risks. We conclude Section 3 with an

an exploration of prior data from Andreoni and Sprenger (2012b), Miao and Zhong (2015), and

Cheung (2015). We show that the data in all three data sets deviate from Discounted Expected

Utility (DEU) with high frequency, up to around 80% in some comparisons. Multidimensional

salience is able to rationalize many of these observed deviations. In tests of Salience-Based

Present Bias, 70% of DEU deviations are consistent with our multidimensional model. In tests

of Intertemporal Hedging, 78% of DEU deviations can be rationalized. Additionally, 80% of

observations with positive correlation and 74% of observations with negative correlation are

consistent with the model’s predictions for Correlation Dependence.

6The idea of Correlation Dependence, which fixes the marginal distributions of every choice and manipulates
the joint distribution, is a crucial consequence of salience theory and has been exploited in the previous literature
on atemporal salience. For instance, Bordalo et al. (2012) show that the “common consequence effect” of Allais
(1953) is not robust to changing the correlation between lottery outcomes; Frydman and Mormann (2018) conduct
an experiment altering correlations to explore salience-based sensitivity to the joint distribution of lottery outcomes;
and Dertwinkel-Kalt and Köster (2020) also provide an experiment that manipulates correlation structures in an
atemporal setting.

7Consider the example above and regard x1 and x2 as payments in two time periods. Suppose intertemporal risks
are perfectly positively correlated – if the first payment is received, the second will be as well. This correlation
structure eliminates State F and State S from consideration. If only State B or State N can obtain, our model predicts
State B will be salient, and the decision-maker will adhere to their deterministic statement of indifference. In
contrast, if intertemporal risks are perfectly negatively correlated, such that only State F or State S will obtain, State
S will be salient, and the individual will prefer L[50,50].
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In addition to exploring the predictions of multidimensional salience in prior data sets,

in Section 4 of the manuscript we consider a new experimental test, also in the intertemporal

risk setting. The new experiment focuses on replicating evidence on Intertemporal Hedging

in a simpler decision environment, and testing a final prediction of the theory when applied to

intertemporal risks, called “Reordering Dependence.” Reordering Dependence differentiates

multidimensional salience from other non-attention based explanations for some DEU deviations

(Miao and Zhong, 2015; Epper and Fehr-Duda, 2015). Holding fixed two lotteries’ marginal

distributions (i.e., the number of distinct payoff states,8 and the probability of each state),

decision-makers’ sensations of salience depend on the stream differences between lotteries

in each state. If salience depends on the difference between streams in each state, then total

sensations of salience and corresponding choices can be altered by reordering; changing which

outcomes are compared to each other under each state.9

Our new experiment asks subjects to choose between pairs of lotteries L[$c1,$c2] on two-

period monetary streams [$c1,$c2] such that, subject to payment uncertainty, $c1 arrives one

week after the experiment while $c2 arrives four weeks after the experiment. In our primary

design with 105 subjects, individuals make decisions involving the monetary streams [$18, $2]

and [$10, $10] under three different risk structures. First, in the deterministic choice between

the two streams, 55% of subjects choose [$10,$10] over [$18,$2]. Second, with common and

independent payment probability of p = 0.5 in each period, 75% of subjects chose L[$10,$10]

8Two states are distinct in payoffs if there exists some lottery in the choice set that yields different outcomes in
the two states. Without controlling this, behavioral patterns may be subject to an event-splitting effect (Starmer and
Sugden, 1989; Humphrey, 1995).

9Consider the independent equiprobable case above, but re-order the outcomes of L[100,0] by exchanging the
State N and F outcomes to make L′

[100,0]. Leaving L[50,50] unchanged, the outcomes in each state are:

Option State
B N F S

L′
[100,0] [100,0] [100,0] [0,0] [0,0]

L[50,50] [50,50] [0,0] [50,0] [0,50]

Now attention will be disproportionately drawn to State N, where L′
[100,0] pays [100,0] while L[50,50] pays [0,0]. A

decision-maker whose state probabilities are sufficiently distorted by salience will prefer L′
[100,0] to L[50,50], prefer

L[50,50] to L[100,0], and be indifferent between L[100,0] and L′
[100,0] in pairwise choices.
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over L[$18,$2], a significant deviation from the DEU prediction of equal choice across these first

two conditions (F1,104 = 9.69, p < 0.01). This deviation replicates the findings of Intertemporal

Hedging from the prior literature in a simple choice environment. Third, only reordering the

streams of L[$10,$10], but maintaining the marginal distribution of each lottery leads subjects to

choose L[$18,$2] more frequently: 64% of subjects chose the reordered L′
[$10,$10] over L[$18,$2], a

significant decrease from the condition with independent risks (F1,104 = 4.95, p < 0.05). This

sensitivity of behavior to the joint distribution of outcomes corresponds to the prediction of

Reordering Dependence. Our experiment shows deviations from DEU in line with the predictions

of multidimensional salience. With the remaining subjects in our design we also document some

experimental effects of the ordering of questions for deviations from DEU.10

Our theoretical and empirical results connect to several literatures. First, our theory

provides a uniform environment for the analysis of salience-based attention effects in both

deterministic and risky settings when the objects of choice are multidimensional. This permits

researchers to analyze salience in richer, potentially more ecologically relevant choice environ-

ments. We provide functional forms and corresponding assumptions that facilitate this future

analysis. Further, though our baseline model focuses on salience-based context dependence

between multidimensional objects, our extensions permit the incorporation of other attentional

forces such as focusing or relative thinking within dimensions (Koszegi and Szeidl, 2012;

Bushong et al., 2021), as well (see Appendix B.2). Second, we show that multidimensional

salience is able to explain a substantial portion of behavior in prior and new data sets on in-

tertemporal risky choice. Thus, the theory provides a useful, novel account for the pronounced

DEU deviations in such data sets. The central logic of Intertemporal Hedging, and sensitivity to

correlation structure and reordering could have broad economic implications. For example, in

10In our development of this study we forecasted that order effects could be substantial for choices between
intertemporal lotteries. Subjects who face a choice between deterministic streams as their first choice are more
likely to both pass interim attention checks and exhibit the effects of intertemporal salience; subjects who face the
more complicated independently risky streams or re-ordered risky streams as their first choice are more likely to fail
the interim attention checks, choose apparently randomly, and exhibit consistency in choice probabilities across
conditions. See Section 4 for additional detail.
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Appendix B.3 we show multidimensional salience’s Intertemporal Hedging can manifest a form

of precautionary savings beyond what standard economic models would imply based on third

derivatives of utility (Leland, 1968; Kimball, 1990; Eeckhoudt and Schlesinger, 2006). Future

behavioral applications in areas like retirement savings and human capital formation are readily

apparent from such results.

The paper proceeds as follows. Section 2 lays out our theory, axiomatization, sim-

plifications, and connections with other models. Section 3 provides examples tailored to the

intertemporal risky setting and examines prior published data. Section 4 presents our new

experimental design. Section 5 concludes.

2.2 General Model for Multidimensional Salience

In this section, we present our formal model of multidimensional salience. The pre-

sentation is carried out in three subsections: Subsection 2.2.1 provides model primitives and

definitions of salience for multidimensional lotteries; Subsection 2.2.2 discusses properties of

our model, provides connections to the single dimension lottery setting of BGS, and describes

additional assumptions to facilitate applications in the multidimensional lottery setting; Subsec-

tion 2.2.3 gives a complete axiomatization for our baseline model. Additionally, Appendix B.2

discusses potential extensions and connections to other context-dependent models.

2.2.1 Primitives and Conditions for Multidimensional Salience

We consider a world in which there is a collection S of finitely many possible states.

Every state, s, has a positive objective probability, ps > 0, with ∑s∈S ps = 1. A decision-

maker chooses between M lotteries {Li}M
i=1. Each lottery, Li, yields an n-dimensional payoff

X i
s = [xi

s1,x
i
s2, . . . ,x

i
sn] in each state, s. xi

sk ∈ R for all k ≤ n. We assume that the decision-maker

processes a utility function U(X i
s) over n-dimensional payoffs.

In the evaluation of Li, a decision-maker assigns each state, s, with a non-negative

decision weight π i
s ≥ 0 such that ∑s∈S π i

s = 1. We assume the decision-maker chooses the lottery
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from {Li}M
i=1 with the highest expectation, U(Li) = ∑

s∈S
π i

sU(X i
s). If the decision weight, π i

s,

is equal to the objective probability, ps, for all states and lotteries, U(Li) corresponds to the

neoclassical Expected Utility (EU) model.

Under multidimensional salience, decision-makers will potentially deviate from EU by

applying a decision weight that differs from a state’s objective probability. This deviation from

EU is driven psychologically by attention. For a given lottery, attention is drawn to states where

the resulting outcome “differs most substantively” from other lotteries in the choice set under the

same state. These states become salient for the given lottery and receive disproportionate weights.

The requirement ∑s∈S π i
s = 1 implies that overweighting of one state generates underweighting of

another. Our definition of salience below lays out precisely what is meant by the phrase “differs

most substantively” in the multidimensional context.

Before discussing the main construction of our model, we introduce some useful notations,

borrowing from the lattice literature. Let X = [x1,x2, . . . ,xn] and Y = [y1,y2, . . . ,yn] in Rn be two

multidimensional outcomes. We say X ≥ (≤)Y if xi ≥ (≤) yi for all i. Similarly, X > (<)Y if

X ≥ (≤)Y and xi > (<)yi for some i. Additionally, X +Y = [x1 + y1,x2 + y2, . . . ,xn + yn], and

X ∈ Rn
+ if xi ≥ 0 for all i. Define X ∧Y ≡ [min{x1,y1},min{x2,y2}, . . . ,min{xn,yn}]; X ∨Y ≡

[max{x1,y1},max{x2,y2}, . . . ,max{xn,yn}]. Letting ρ be a permutation on {1,2, . . . ,n}, define

Xρ ≡ [xρ(1),xρ(2), . . . ,xρ(n)]. The values X ∧Y and X ∨Y consider minimal and maximal elements

between two outcomes in each dimension, while Xρ considers a re-ordering of a given outcome.

These values will provide a structure for defining multidimensional salience.

Definition 1. A multidimensional salience function is a continuous map σ : Rn ×Rn 7→ R+

satisfying the following five conditions:

1. Ordering: For every X, Y , Z in Rn,

(a) Upper Ordering: σ(X ,Y )≤ max{σ(X ∨Z,Y ),σ(X ,Y ∨Z)}.

(b) Lower Ordering: σ(X ,Y )≤ max{σ(X ∧Z,Y ),σ(X ,Y ∧Z)}.
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(c) Inclusion: Suppose X ≤ Y ≤ Z, σ(X ,Y ) ≤ σ(X ,Z) and σ(Y,Z) ≤ σ(X ,Z). In

addition, σ(X ,Y ) = 0 if X = Y.11

2. Diminishing sensitivity: For every X, Y in Rn
+ such that X ≥ Y , we have σ(X ,Y ) ≥

σ(X + ε,Y + ε) for all ε > 0.

3. Reflection: For every X, Y , Z, H in Rn
+,

σ(X ,Y )≤ σ(Z,H) if and only if σ(−X ,−Y )≤ σ(−Z,−H).

4. Symmetry: For every X, Y in Rn
+, σ(X ,Y ) = σ(Y,X)

5. Compatibility: For every X, Y , and permutation ρ , σ(X ,Y ) = σ(Xρ ,Yρ).

We call a multidimensional salience function free if it only satisfies the first four conditions.

The conditions on σ(·, ·) establish what it means for two outcomes to be perceived as

different. These conditions represent analogs of the BGS assumptions for the multidimensional

setting but carry some nuance relative to the one-dimensional lottery setting, which is discussed

below in Subsection 2.2.1

Having described how a decision-maker evaluates differences between two outcomes,

we explore how a decision-maker evaluates the differences among M alternative lotteries, each

yielding an outcome in each state.

Definition 2. Let ∆i
s =

1
M−1

∑
j ̸=i

σ(X i
s,X

j
s ) be the multidimensional salience level of a state s

when evaluating lottery Li.

The multidimensional salience level of a state for a given lottery is derived from the

average perceived difference of that lottery’s outcome from all other outcomes in the choice set

in the corresponding state.12

11Under BGS formulation, for the single dimension salience function we have σ(X ,Y ) = 0 if and only if X = Y .
12This criterion is proposed in Bordalo (2011). Other related works usually assume that when facing multiple

lotteries, the salience level is defined by comparing the outcome of each option with the average of remaining

59



Our theory posits that decision-makers put more decision weight on states with higher

salience levels. The deviation of the decision weight of a state from its objective probability is

quantified by the following mechanism.

Definition 3. Let f : R+ 7→ R++ be an increasing function, the decision weight of state s when

evaluating lottery Li is

π
i
s =

f (∆i
s)

∑
s′∈S

ps′ f (∆i
s′)

ps

Note that ∑s π i
s = 1 and

π i
s

π i
s′
=

ps

ps′

f (∆i
s)

f (∆i
s′)

. As a result, the ratio of decision weights

between states s and s′ is related to both the ratio of their objective probabilities and the ratio of

the salience levels of these two states.

BGS propose a simplification of f (·), which is called rank-based salience.13 It proceeds

in two steps. First, given a lottery, Li, one ranks every state by its salience level from high to low.

Second, if a state, s, has rank k,

f (∆i
s) = θ

k−1, θ ∈ [0,1].14 (2.1)

Consequently, in this rank-based salience representation, a state with lower salience rank will

be weighted less than its objective probability. This simplification is favored by most of the

salience literature since it doesn’t rely on a cardinal measure of salience level. Instead, it

options. Despite its simplicity, the “compare to the average” criterion may lead to counterintuitive predictions.
Consider the following example: suppose there are three equiprobable states: a,b, and c, and there are three lotteries,
X ,Y, and Z. In state a, all lotteries yield $0; in state b, X yields $8, Y yields $5, and Z yields $2; in state c, X yields
$2, Y yields $5, and Z yields $8. When evaluating Y , the averages of payoffs from the remaining options are $0 in
state a, $5 in state b, and $5 in state c. Thus, if one compares Y to the remaining averages, no state is more salient
than others as the distance to the average of alternative is zero in every state. Consequently, each state receives a
weight of 1/3. When evaluating X and Z, states b and c will be more salient than state a, where the distance to
the average remains zero. Hence, state a will receive less than proportionate weight in the evaluation of X and Z.
Ignoring the zero payment in state a may lead to a preference for X or Z over the less risky option, Y . This pattern
seems to be unlikely (see the isolation effect in Kahneman and Tversky (1979b)). To circumvent such implausible
predictions, we adopt the alternate criterion proposed in Bordalo (2011).

13This name is used in Herweg and Müller (2021).
14Strictly speaking, under rank-based salience representation, the value of f (·) depends on information from

multidimensional salience levels of all states when evaluating a lottery.
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provides qualitative intuitions from an ordinal perspective. Nevertheless, rank-based salience

may introduce some difficulties (?Lanzani, 2022). To resolve these issues, BGS also propose a

continuous salience representation with f (∆i
s) = γ∆i

s where γ ≥ 1.

Discussion of Conditions and Assumptions for Multidimensional Salience

While our assumptions for σ(·, ·) are analogs of the BGS assumptions in the multidimen-

sional setting, they carry a somewhat different logic than the single-dimension lottery case. The

BGS assumptions in the single-dimension lottery case generate a positive correlation between

the Euclidean distance between two lotteries in a given state and the salience level of that state.

In the multidimensional lottery setting, this linkage between Euclidean distance and salience

levels seems more tenuous. Consider the outcome [3,9] in R2 and contrast it with either [9,3]

or [3,3]. The corresponding three vectors are drawn in Figure 2.1. Note that the Euclidean

distance between [3,9] and [9,3] is larger than between [3,9] and [3,3]. Nonetheless, the former

difference seems plausibly smaller: the decision-maker receives twelve in total from [3,9] and

[9,3], and six from the outcome [3,3]. Our conditions ensure that this plausible relation maintains

in such examples.15 Consequently, ordering rules out certain forms for multidimensional salience

functions. For instance,
∑

n
i=1|xi − yi|

∑
n
i=1(|xi|+|yi|)

records the sum of distances in each dimension but

completely ignores the distinction between distance and difference, so it violates the ordering

property. As shown in Figure 2.1, intuitively speaking, the difference in lengths is more relevant

than the difference in directions when evaluating salience. In Subsection 2.2.2, we also explore

the restrictions on the salience function if the direction is completely irrelevant (Proposition 7).

Diminishing sensitivity states that the perceived difference between two outcomes is

diminishing in the baseline level of the outcomes. Two outcomes which differ by one in a single

dimension would appear more similar if baseline values were one thousand rather than one.

Note that diminishing sensitivity does not imply that all increases in outcomes reduce salience.

As in the previous example, outcomes [9,3] and [3,9] are similar to a decision-maker since in
15To see this, lower ordering implies that σ([9,3], [3,9])≤ max{σ([9,3], [3,3]),σ([3,9], [3,3])}. Then, compati-

bility suggests that σ([9,3], [3,3]) = σ([3,9], [3,3]).
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Figure 2.1. Difference vs. Distance

Notes: The Figure presents three two-dimensional outcomes [c1,c2] as vectors in R2
+: [3,9] (green), [3,3] (purple), and [9,3] (red). The blue

dash line represents nonnegative vectors having a same Euclidean length with [3,9]. The orange dash line represents nonnegative vectors having
a same Euclidean length with [3,3].

each dimension one outcome gives nine while the other gives three. If we increase only each

outcome’s first dimensional payment by 1000, they become [1009,3] and [1003,9]. It is possible

that the two outcomes actually become more different after the increment of 1000 in the first

dimension, as the second dimension difference could loom large in this case. Acknowledging

such possibilities, diminishing sensitivity only requires that the salience function is monotonically

decreasing when comparisons are “trivial” in the sense that one outcome is uniformly larger

than the other in all dimensions. As we will show in Subsection 2.2.2, combined with reflection,

requiring such diminishing sensitivity results in a close connection between multidimensional

salience theory and the diminishing sensitivity for gains and losses discussed in applications of

prospect theory. BGS make a similar diminishing sensitivity assumption in their one-dimensional

lottery application16, and explicitly assume monetary amounts are the drivers of salience.

While the first four conditions of a salience function describe how the difference between
16When there is only a single dimension, every outcome is either larger of smaller than others, so diminishing

sensitivity holds for all pairs of non-negative outcomes.
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two outcomes pertains to their numerical values, the last condition, compatibility, discusses

how the unit of outcomes affects salience. As a simple example, when compatiblity holds we

have σ([1,0], [0,0]) = σ([0,1], [0,0]). The outcomes [1,0] and [0,0] are different in the first

dimension, while [0,1] and [0,0] yield an identical difference in the second dimension. As

a result, compatibility implies that the marginal effects of differences are independent of the

dimension in which they occur. It is for this reason that perhaps the most natural way to think of

the entries of X and Y is as utilities reduced to some common unit. In practical applications, we

recognize that outcomes would be initially comprised of physical outcomes rather than separable

utilities. One can use functional form assumptions, such as constant relative risk aversion in

each dimension, and corresponding empirical estimates, to map physical values to utilities. More

abstractly, as we axiomatize the model in Subsection 2.2.3, the salience level between two

outcomes is not necessarily proportional to their utility difference. Therefore, under the full

generality of our model, compatibility can also be considered as a requirement for comparable

salience units independent from utility.

Under some circumstances compatibility may not be appropriate. For instance, as in

Bordalo et al. (2013b), when choosing from several commodities decision-makers compare the

options in the dimensions of prices and qualities. In this case, X = [price,quality]. Without an

assumption under which price differences can be substituted for quality differences, compatibility

does not hold. Therefore, the requirement of compatibility is optional. While we keep the

assumption in most subsequent analyses, we explore some extensions in Appendix B.2.

2.2.2 Lottery Dimensions, Reduction to Standard BGS, and Facilitating
Applications

In Subsection 2.2.1, we described the fundamental ingredients of multidimensional

salience. The current section describes how these general properties are connected to the

previous literature. The results in this section provide a way to simplify empirical analysis

by reducing the problem to the standard BGS framework of one-dimensional lottery choice.
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In addition, the results establish a connection between BGS salience theory and diminishing

sensitivity to gains and losses often discussed in prospect theory applicationss.

To begin, note that if there is only a single dimension, our definition of multidimensional

salience coincides with that of BGS. Thus, a one-dimensional salience function in our setting is

a BGS salience function (and defined as such). To see this, note that inclusion implies that if

x1,x2,y1,y2 ∈ R and the interval (x1,x2) is a subset of (y1,y2), then σ(x1,x2)≤ σ(y1,y2). This

corresponds to the ordering property of BGS, that the salience function is increasing with respect

to the difference between two outcomes. Diminishing sensitivity retains its prior meaning and

reflection describes the similarity between comparing gains and comparing losses. Compatibility

does not have practical meaning in the one-dimensional case as no dimensions can be exchanged.

In contrast, in the presence of multiple dimensions, our definition is more demanding than

BGS. To better understand the effects of the properties in definition 1, we present the following

proposition:

Proposition 6. Consider σ :Rn×Rn 7→R+ such that for all X ,Y ∈Rn, σ(X ,Y )= σ̃(h(X),h(Y ))

where h : Rn 7→ R is continuously differentiable and additively separable, and σ̃ : R×R 7→ R+

is a BGS salience function. Then:

1. If σ(X ,Y ) = σ̃(h(X),h(Y )) is a multidimensional salience function, then h(X) =
n
∑

i=1
g(xi)

where g(·) is some strictly monotonic function.

2. If g(xi) is concave for xi > 0, convex for xi < 0, and g(0) = 0, then σ̃(
n
∑

i=1
g(xi),

n
∑

i=1
g(yi))

is a multidimensional salience function for all BGS salience functions σ̃ .

3. Furthermore, if we assume that in addition for every X, Y in Rn
+, we have σ(X ,Y ) ≥

σ(X +ε,Y +ε) for all ε > 0. Then σ(X ,Y ) = σ̃(
n
∑

i=1
g(xi),

n
∑

i=1
g(xi)) is a multidimensional

salience function if and only if g(·) is a non-constant linear function.

Proof. See Appendix B.5.1.
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The first part of Proposition 6 suggests that as a special case, one can operationalize

multidimensional salience theory in two steps. First, for outcomes [X ,Y ], the values h(X) and

h(Y ) can serve as “utility indices.” The ordering property for salience in definition 1 implicitly

requires that each dimension of an outcome is an economic good to the decsion-maker. Therefore,

the utility indices, h(·), should be monotonic. Second, use the BGS salience functional form, σ̃(·),

to evaluate the difference created by these utility indices.17 This result provides a simplification

to greatly facilitate empirical analysis. For example, if h(X) =
n
∑

i=1
xi, one can construct a natural

extension of the salience function proposed by Bordalo et al. (2012):

σ(X ,Y ) =
|{

n
∑

i=1
(xi − yi)}|

|
n
∑

i=1
xi|+|

n
∑

i=1
yi|+β

, where β is a positive real number. (2.2)

In many applications, including the empirical exercise in this project, using the simplified

salience function of equation (2.2) seems quite reasonable. Indeed, if each entry of the outcome

represents an appropriately normalized flow utility, its sum should represent a sufficient statistic

to capture the difference between outcomes.

The second part of Proposition 6 provides a more stringent connection between multidi-

mensional salience, gain-loss attitudes, and BGS salience. Since σ(X ,Y )= σ̃(
n
∑

i=1
g(xi),

n
∑

i=1
g(yi)),

the properties of function g(·) flow through to σ(·). Hence, the salience function takes into

account the differential effect of gains and losses and transfers them to salience-based probability

distortions. In general, g(·) need not be consistent with the underlying utility over deterministic

outcomes, so multidimensional salience can accommodate differential attitudes towards gains

and losses without additional assumptions on utility.

The last part of Proposition 6 reflects that by requiring different levels of diminishing

sensitivity, one restricts allowable curvatures on g(·). The statement shows that with the strongest

17Notice that the additively separable condition is necessary for the result. For any nonlinear function h(·), there
is some BGS salience function that can use the tension between ordering and diminishing sensitivity to induce
indeterminable salience comparisons.
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version of diminishing sensitivity, there is no room for curvature at all for g(·).18

Moreover, note that under equation (2.2), each entry of an outcome is comparable to

all entries of another. For instance, the difference between [1,1] and [1,0] is identical to the

difference between [2,0] and [1,0]. In this case, the directional difference between outcomes

is totally irrelevant. This results in a stronger version of compatibility, which turns out to be

the necessary and sufficient condition to appropriately simplify the index h(·) from a sum over

monotonic transformations of outcome entries to the exact sum. Formally speaking:

Strong Compatibility: A function σ : Rn ×Rn 7→ R satisfies strong compatibility if for every

X ,Y,Z ∈ Rn and permutation ρ , σ(X +Z,Y ) = σ(X +Zρ ,Y ).

The next proposition gives the more restrictive result.

Proposition 7. A multidimensional salience function σ : Rn ×Rn 7→ R+ satisfies strong com-

patibility if and only if σ(X ,Y ) = σ̃(
n
∑

i=1
xi,

n
∑

i=1
yi) where σ̃ : R×R 7→ R+ is a BGS salience

function.

Proof. See Appendix B.5.1.

Proposition 6 and 7 also provide an appealing path for choosing an appropriate salience

function.19 One can choose a reasonable salience function from decisions under uncertainty

regarding one-dimensional risk, such as that of Bordalo et al. (2012). Then, we can expand

the salience function to a multidimensional environment by keeping the functional form and

integrating each outcome with a linear sufficient statistic.

18When there are multiple dimensions, under compatibility, summarizing X and Y into h(X) and h(Y ) guarantees
the existence of distinct X and Y that generate no difference, σ(X ,Y ) = 0. Imposing diminishing sensitivity upon
these two outcomes requires that adding the same amount to both does not make them different. This implies the
rate of increment is constant on g(·).

19In addition, proposition 7 bridges our model with the additively integrable representation in Köster (2021) and
?. However, our model is different from the general form in Köster (2021). According to his model, decision-makers
first categorize dimensions into different groups, and within each group, they perform a salience analysis using the
form in Proposition 7.
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2.2.3 Axioms for Multidimensional Salience Theory

In this subsection, we give a representation theorem for multidimensional salience theory

when decision makers are choosing from two options. For the main text we present results under

the maintained assumption that a well-defined preference relation over deterministic outcomes

and a corresponding utility function exists. We provide axioms related to the difference between

potentially observable choices and those implied by EU given their known preference over

deterministic outcomes. The primary result of this subsection demonstrates that the axioms on

choice are equivalent to a multidimensional salience representation. To smooth our main analysis,

we impose a differentiability assumption. Both a technical axiom to approximate differentiability

and a discussion of how differentiability separates utilities from salience distortions are presented

in Appendix B.1, along with other proofs.

Our axiomatic environment can be considered as a generalization from Lanzani (2022)

for “correlation-sensitive” preferences. Thus, we divide this subsection into two parts. First,

we review the choice environment and provide the axioms for our generalization of correlation-

sensitive preferences. Then, we analyze the axioms for multidimensional salience theory.

Axioms for Correlation-Sensitive Preferences

For completeness, we first review the setting in Lanzani (2022). Let X = Rn be the

set of outcomes, and X+,X++ the sets of positive and strictly positive outcomes respectively.

We denote by ∆(X ×X) the set of finitely supported bivariate joint distributions on X. For

every π in ∆(X ×X), let π1 = ∑y π(x,y) be the marginal distribution of the first argument, and

π2 = ∑x π(x,y) be the marginal distribution of the second argument. For every π in ∆(X ×X),

denote the conjugate distribution by π̄ where π̄(x,y) = π(y,x). For every π,π ′ in ∆(X ×X) and

α ∈ [0,1], we have the usual mixed distribution π̃ = απ +(1−α)π ′. That is, for every (x,y) in

(X ×X), π̃(x,y) = απ(x,y)+(1−α)π ′(x,y). For every pair of outcomes (x,y), we denote by

δ(x,y) the Dirac distribution such that δ(x,y)(x,y) = 1. We write a specific element in ∆(X ×X) as

{(x1,y1), p1;(x2,y2), p2; . . . ;(xn,yn), pn}, which means that the outcome pair x1 from option 1
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and y1 from option 2 happens with probability p1, x2 from option 1 and y2 from option 2 happens

with probability p2, etc.

Let Π ⊂ ∆(X ×X) be a nonempty subset. We call Π the preference set in the following

sense: a decision maker is choosing between two lotteries 1 and 2. Lottery 1 has marginal

distribution π1, lottery 2 has marginal distribution π2, and together they form a joint distribution,

π . If the decision-maker weakly prefers lottery 1 to lottery 2 under π , we have π ∈ Π. We

also denote the strict preference by Π̂ = {π ∈ Π|π̄ /∈ Π}. Since we focus on objective lotteries,

using the preference set is more convenient than working on orderings or choice functions over

∆X . While capturing choices over paired lotteries, the preference set Π also summarizes any

preference reversal caused by manipulating correlations and thus altering the joint distribution of

lottery 1 and lottery 2. Such context-dependence in choice can only be illustrated by orderings

or choice functions after adding a further layer of flexibility.20

A function φ(x,y) : X × X → R is called skew-symmetric if φ(x,y) = −φ(y,x). In

addition, we call φ(x,y) is monotonic if it increases in the first argument and decreases in

the second.21 We say that Π induces a smooth correlation-sensitive presentation if π ∈ Π ⇔

∑x,y φ(x,y)π(x,y)≥ 0 for some continuous φ . Using techniques similar to Lanzani (2022) for

the one-dimensional case, the following five axioms provide equivalent conditions for a smooth

correlation-sensitive representation with monotonic φ .

• (Completeness) For every π ∈ ∆(X ×X), π ∈ Π or π̄ ∈ Π.

• (Strong Independence) For every π , π ′ ∈ Π and α ∈ [0,1], we have απ +(1−α)π ′ ∈ Π.

In addition, if π ∈ Π̂, απ +(1−α)π ′ ∈ Π̂.

• (Archimedean Continuity) For every π ∈ Π̂ and π ′ /∈ Π, we can find α,β ∈ [0,1] such that

απ +(1−α)π ′ ∈ Π̂ and βπ +(1−β )π ′ /∈ Π.

20In addition, as mentioned by Lanzani (2022), this method avoids an arbitrary state space. Since choice sets
come from the whole set of objective lotteries, this state space must have an infinite cardinality.

21Recall that x > y if xi ≥ yi for all i ≤ n. By increasing we mean that if x ≥ x̃, φ(x,y)≥ φ(x̃ y).
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• (Monotonicity) For every x,y,z ∈ X such that x > y, π ∈ ∆(X ×X), and α ∈ (0,1] if

αδ(y,z)+(1−α)π ∈ Π, αδ(x,z)+(1−α)π ∈ Π̂.

• (Continuity) For every sequence (xn,yn) converges to (x,y), α ∈ [0,1], and π ∈ ∆(X ×X),

if αδ(xn,yn)+(1−α)π ∈ Π for all but finitely many n, αδ(x,y)+(1−α)π ∈ Π.

Lemma 2. Π induces a smooth correlation-sensitive presentation with monotonic φ if and only

if completeness, strong independence, Archimedean continuity, monotonicity, and continuity are

satisfied.22

Proof. See Appendix B.5.1

We end the current review with an assumption on φ(·, ·).

Assumption 1. φ(·, ·) is uniformly differentiable with positive partial derivatives with respect to

x at all points (x,y) such that φ(x,y) = 0.23

In Appendix B.1, we provide a technical axiom for this assumption. For multidimen-

sional salience theory, this assumption is satisfied if the utility over deterministic outcomes has

continuous and positive partial derivatives. Requiring partial derivatives to be positive is minor

given the preference is strictly monotonic. Furthermore, as we show in Appendix B.1, having

a continuous differentiable utility allows us to separate the salience function, σ(·, ·), from the

utility function, u(·).

Axioms for Multidimensional Salience Theory

Our goal now is to provide further axioms for multidimensional salience theory. We

begin by simplifying the presentation for decisions with two alternatives.

22The only difference between current setting and one in Lanzani (2022) is that here we require φ has a stronger
version of continuity, pointwise continuity, while Lanzani (2022) only requires continuity in each argument.

23We define uniform differentiability as: For all ε ∈R+ and compact set K ∈ X , there is δ > 0 that ∀x,y ∈ K with
x ∼u y, | φ(x+t,y+l)−D(x,y)·(t,l)

||(t,l)|| |< ε for all (t, l) ∈ X ×X such that ||(t, l)||≤ δ , where D(x,y) is the derivative of φ(·, ·)
at (x,y). In addition, we can relax this assumption by just requiring φ(·, ·) to be uniformly partial differentiable. See
axiom 10 in appendix B.1 for further discussion.
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Definition 4. Π induces a smooth salience presentation if π ∈ Π implies

∑
x,y

(
u(x)−u(y)

)
f (σ(x,y))π(x,y)≥ 0,

for some salience function σ(·, ·), utility function u(·) with strictly positive and continuous partial

derivatives, and f (·)> 0 that is strictly increasing and continuous.

Definition 4 is different from Lanzani (2022) in two respects.24 First, we propose that

salience distortions are characterized by a positive monotonic transformation of the salience

level instead of by the salience level itself. Both the rank-based and continuous version of BGS

salience are rooted in this fashion. Second, we require the utility function to be differentiable with

positive partial derivatives. Both differences are technical, but they enable us to separate salience

distortions over outcome pairs from their utility differences using hypotheses on potentially

observable choice instead of structural assumptions on utility.25 We begin our axiomatization

with the existence of a utility representation over deterministic outcomes.

Axiom 12 (Deterministic Transitivity). For every x,y,z∈X, if δ(x,y) ∈Π and δ(y,z) ∈Π, δ(x,z) ∈Π.

In addition if δ(x,y) ∈ Π̂, δ(x,z) ∈ Π̂.

Consider function u : X → R, we say Π induces utility u on X if for every x,y ∈ X ,

δ(x,y) ∈ Π ⇔ u(x)−u(y)≥ 0, and δ(x,y) ∈ Π̂ ⇔ u(x)−u(y)> 0.

Lemma 3. If a correlation sensitive preference satisfies axiom 1, it induces a continuous utility

u(·) on X that is strictly increasing.

Proof. See Appendix B.5.1

We are now ready to give the axioms for multidimensional salience theory. The charac-

terization is closely related to the identification of u(·). When there are multiple dimensions, u(·)

24Lanzani (2022) defines a smooth salience representation as π ∈ Π if ∑x,y

(
u(x)−u(y)

)
σ(x,y)π(x,y)≥ 0 for

some continuous utility function u.
25Both Lanzani (2022) and Köster (2021) assume utility to be linear.
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can be quite complex. In practice, studies often impose additional structural assumptions on this

utility, such as additive separability, constant elasticity of substitution, or constant relative risk

aversion. For now, we assume that u(·) is known and leave its characterization to the last axiom.

Our main axioms characterize all properties in definition 1 except for compatibility.

They share a common intuition. On one hand, given the preference u(·) over deterministic

outcomes, we can induce the expected utility preference over the lotteries. This preference takes

into account the effect of the shape of u(·), while removing the influence of salience. On the

other hand, definitions of the salience function regulate its variation along specific directions of

outcome changes. Therefore, comparing the deviations between the proposed expected utility

and potentially observable choices provide testable axioms for salience.

To simplify subsequent descriptions, we introduce a new notation. Given two outcomes

x,y ∈ X , let |(x,y)|∈ X ×X be (x,y) if x ⪰u y and (y,x) otherwise, where x ⪰u y is the implied

deterministic preference according to the assumed utility u(·). Similarly, let −|(x,y)| be (y,x)

if x ⪰u y and (x,y) otherwise. In other words, |·| puts the more preferred outcome in the first

the argument. Furthermore, it is also useful for later analysis to introduce ΠE(u), the preference

set over ∆(X ×X) induced by the expected utility application of u(·). For instance, π ∈ ΠE(u)

implies ∑x π1(x)u(x)≥ ∑x π2(x)u(x). 26The strict preference set Π̂E(u) is defined similarly.

Axiom 13 (Upper Ordering). ∀x,y,z ∈ X s.t. x ⪰u y, at least one of the following is true.

1. ∀p ∈ [0,1] s.t. {(y,x), p;(x∨ z,y),(1− p)} ∈ ΠE(u), {(y,x), p;(x∨ z,y),(1− p)} ∈ Π.

2. ∀p ∈ [0,1] s.t. {(y,x), p; |(y∨ z,x)|,(1− p)} ∈ ΠE(u), {(y,x), p; |(y∨ z,x)|,(1− p)} ∈ Π.

To understand the two cases in the above axiom, let us consider a two-dimensional

environment. For the first case, with x ⪰u y and x∨ z ≥ x, the difference between x∨ z and y is

more extreme than the difference between x and y. The decision-maker’s attention will be drawn

to the state under which the first option gives x∨ z, and this distortion favors of the first option.

26In appendix B.1, we argue that ΠE(u) can be approximated by preferences over bivariate joint lotteries with
almost identical outcome pairs under each state.
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In this case, the axiom states that if the first option were favored on EU grounds, it would be

favored on salience grounds as well. The other case has a similar basis.

The axiom for lower ordering follows the same logic.

Axiom 14 (Lower Ordering). ∀x,y,z ∈ X s.t. x ⪰u y, at least one of the following is true.

1. ∀p ∈ [0,1] s.t. {(y,x), p;(x,y∧ z),(1− p)} ∈ ΠE(u), {(y,x), p;(x,y∧ z),(1− p)} ∈ Π.

2. ∀p ∈ [0,1] s.t. {(y,x), p; |(x∧ z,y)|,(1− p)} ∈ ΠE(u), {(y,x), p; |(x∧ z,y)|,(1− p)} ∈ Π.

Our next two axioms govern inclusion and diminishing sensitivity. Since these two

properties are straightforward extensions from BGS salience theory, their corresponding axioms

share some common features with those of Lanzani (2022). For inclusion, the axiom suggests

that compared to EU predictions, decision-makers will behave as if they’re paying more attention

to the state with larger outcome differences. For diminishing sensitivity, the axiom implies

that when facing two states with the same outcome difference but at different outcome levels,

decision-makers will focus more on the state in which the outcome levels are closer to zero.

Axiom 15 (Inclusion). ∀p∈ [0,1] and ∀x,y,z, t ∈X with z≥ y> x≥ t, if {(x,y), p;(z, t),1− p} ∈

ΠE(u), {(x,y), p;(z, t),1− p} ∈ Π.

Axiom 16 (Diminishing Sensitivity). For every x,y ∈ X s.t. x > y ≥ 0, ε > 0, and α ∈ (0,1) s.t.

{(x,y), p;(y+ ε,x+ ε),1− p} ∈ ΠE(u), {(x,y), p;(y+ ε,x+ ε),1− p} ∈ Π.

Our next axiom regulates reflection. It suggests that fixing the supports of lotteries

to |(x,y)| and −|(x′,y′)|, if the actual preference set, Π, is expanded relative to the expected

utility preference set ΠE(u), the actual preference set should also be expanded if we change their

supports to |(−x,−y)| and −|(−x′,−y′)|.

Axiom 17 (Reflection). For every nonnegative outcomes x,y,x′,y′ ∈ X with −x′ ⪰u −y′, if

∀p∈ [0,1], {|(x,y)|, p;−|(x′,y′)|,1− p} ∈ΠE(u) ⇒{|(x,y)|, p;−|(x′,y′)|,1− p} ∈Π, then ∀q∈

[0,1], {|(−x,−y)|,q;(−y′,−x′),1−q} ∈ ΠE(u) ⇒{|(−x,−y)|,q;(−y′,−x′),1−q} ∈ Π.
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We end the main analysis with two technical axioms. They both impose restrictions on

preferences regarding lotteries supporting outcome pairs that exhibit minimal utility differences.

The first axiom addresses variation in attention. It suggests that decision-makers will behave as

if they pay less attention to states in which outcome pairs are almost identical. One important

implication from this axiom is that our model doesn’t require the utility difference between two

outcomes to be perfectly aligned with their salience level. Specifically, even when two outcomes

yield an identical utility, they can still be perceived as different.

Axiom 18 (Local Ignorance). ∀x,y ∈ X s.t. x ̸∼u y, if for every natural number n we have

{|(x,y)|, pn;(x − e1
n ,x),1− pn} ∈ Π̂E(u), then {|(x,y)|, pn;(x − e1

n ,x),1− pn} ∈ Π̂ for all but

finitely many n.

Our last axiom connects the utility function u(·) with preference set Π from a cardinal

perspective. It requires the sets Π and ΠE(u) to be identical if we restrict them to lotteries

supporting outcome pairs with vanishing distances. Together with skew-symmetry of φ , axiom 8

implies that when two outcomes, x and y, are equally preferred, the percentage change in the

marginal utility of x when y is present must be the same as the percentage change in the marginal

utility of y when x is present. Furthermore, axiom 8 imposes limitations on the existence of u(·).

Roughly, it requires that local behaviors of φ(x,y) at x = y to coincide with some utility u(x)

representing the preference over deterministic outcomes.27

Axiom 19 (Local Identity). For all p ∈ [0,1] and x,h, t ∈ X with h, t > 0, we have

{(x+ h
n ,x), p;(0, t

n),1− p} ∈ Π for all but finitely many n ∈ N if and only if

{(x+ h
m ,x), p;(0, t

m),1− p} ∈ ΠE(u) for all but finitely many m ∈ N.

We now state our main representation result.

27In appendix B.1, we provide an alternative for axiom 8 addressing the existence of utility function in smooth
salience representation. Technically, it implies that the partial derivatives of x, ∂φ(x,y)

∂xi
, at points x = y must be a

vector field.

73



Proposition 8. Under assumption 1, a correlation sensitive preference induces a smooth salience

representation with utility function, u(·), and some free salience function, σ(·, ·), if and only if Π

satisfies axioms 1 to 8.

Proof. See Appendix B.5.1.

In addition, compatibility requires that permuting coordinates of outcome pairs doesn’t

change their salience levels. The following axiom governs this restriction.

Axiom 20 (Compatibility). For every (x,y) in X ×X s.t. x ⪰u y, α ∈ [0,1], and permutation τ

for {1,2, . . . ,n}, we have

{(y,x),α; |(xτ ,yτ)|,1−α} ∈ ΠE(u) ⇔{(y,x),α; |(xτ ,yτ)|,1−α} ∈ Π,

Corollary 1. Under assumption 1, a correlation sensitive preference induces a smooth salience

representation with utility function u(·), and some salience function, σ(·, ·), if and only if Π

satisfies axioms 1 to 9.

Proof. See Appendix B.5.1.

As an extension, since we are working with multiple dimenstions, one could imagine

that preferences over deterministic payoffs are context-dependent as well. This would add a

further layer of context dependence to that analyzed here.28 Following work from the literature

on context-dependent preferences (Koszegi and Szeidl, 2012; Bordalo et al., 2013b; Bushong et

al., 2021; Landry and Webb, 2021), in Appendix B.2, we allow decision-makers to have salience

functions convoluted with these effects by providing a general formulation that encompasses

models of focusing Koszegi and Szeidl (2012), deterministic relative thinking (Bushong et al.,

2021), salience for consumer choice (Bordalo et al., 2013b), and pairwise normalization (Landry

28For models in this fashion, see Bushong et al. (2021); Köster (2021).
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and Webb, 2021).29 In the end, we provide conditions in a two-option setting under which

the difference in context-dependent utilities can serve as the basis of a free salience function.

Consequently, these results also indicate that definition 1 is general enough to encompass a large

class of models.30

2.3 Application: Intertemporal Risky Choice

We now turn to a prominent potential application for multidimensional salience: intertem-

poral risky choice. In many economic problems, risk and time are intertwined. By considering

different time periods as dimensions, our model can explain a variety of behavioral phenomena

in the study of intertemporal risky choice. In this section, we present three stylized examples

with four predictions, and test their validity using data from previous experiments.

2.3.1 Examples

Our examples consider a market in which there are two (risky) assets: I1 and I2 and two

periods. For every dollar invested in I1, it either returns $0 or $1 in period 1 while for every

dollar invested in I2, it either returns $0 or $(1+r) in period 2 with 1 > r > 0. The probabilities

and correlations between their returns will vary between examples. A decision-maker chooses

between two portfolios, F1 and F2, over these two assets. Under each state, a portfolio yields

a two-period stream, [x1,x2]. To simplify the exposition, we assume that the decision-maker

follows the rank-based multidimensional salience model with an underlying discounted utility

function u([x1,x2]) = v(x1)+δv(x2) and δ ≈ 1.31 We denote the decision-maker’s salience-based

utility for portfolio F , U(F). In each example, the canonical model of Discounted Expected

29Such extensions can provide further insights on certain behavioral patterns. For example, in an intertemporal
consumption model, by considering each period’s payment as a separate attribute, the Bordalo et al. (2013b) salience
theory can rationalize the well-known magnitude effect (Thaler, 1981; Prelec and Loewenstein, 1991). By analyzing
preferences on lotteries over large and small stakes, one can further differentiate these context-dependent preference
models with previous ones addressing the magnitude effect (Noor, 2009; Ericson and Noor, 2015).

30In a relevant work, ? introduce ”categorical thinking model” under which the decision-maker view options or
attributes differently according to the categories they belong to. As the results in Appendix B.2 suggest, their model
in general cannot serve as a basis unless certain monotonicity conditions across different categories are imposed.

31Therefore, we preclude the case of extreme time discounting.
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Utility (DEU), predicts no sensitivity of behavior in the setting studied.

Example 1. Salience-Based Present Bias:

Suppose that a decision-maker is choosing from two portfolios (F1,F2): F1 invests a dollar in I1

while F2 invest the dollar in I2. It follows that there are four potential states, and in each state a

portfolio yields the two-period stream, [x1,x2], summarized in the following table:

Option State

HH LL HL LH

F1 [1,0] [0,0] [1,0] [0,0]

F2 [0,1+ r] [0,0] [0,0] [0,1+ r]

Regardless of how probabilities are assigned to the four states, for relatively small interest rates,

r, the salience level ranking of the four states is ∆LH > ∆HL > ∆HH > ∆LL; the decision-maker

disproportionately attends to state LH, where F2 pays [0,1+ r] while F1 pays [0,0].

One central distinction between intertemporal and atemporal allocations is that the

future is inherently uncertain whereas the present is plausibly certain (absent exogenous risk).

Consequently, risk structures for trade-offs between today and tomorrow are different from

tomorrow and the next day. We capture such insight as follows: let I1’s return be paid with

probability p, while I2’s return is paid with an independent probability p ·q. In this case then

the state probabilities in the table above are p2q,(1− p)(1−q), p(1− pq),(1− p)pq. Note that

p = 1 corresponds to the trade-off between today and tomorrow, while p < 1 corresponds to the

trade-off between two future dates. Under multidimensional salience, we have that
U(F2)

U(F1)
is

a decreasing function of p.32 This corresponds to the decision-maker more greatly preferring

the portfolio with the more delayed reward if all reward dates are pushed into the future: a

Salience-Based Present Bias. The mechanism for the result is that the most salient state, LH,

never obtains for p = 1; while for p < 1 it does, and it substantively influences the relative

preference. When p < 1, the decision-maker attends to the salient LH risk of getting their second

32Formal derivations of results in this and following examples are presented in Appendix B.3.

76



payment but not getting their first in a manner conducive to greater patience. As noted above

DEU predicts that
U(F2)

U(F1)
is a constant with respect to p.

Example 2. Intertemporal Hedging and Correlation Dependence:

Suppose that a decision-maker is choosing from two portfolios (F3,F4): F3 invests a dollar in I2

while F4 evenly splits the dollar between I1 and I2. It follows that there are four potential states,

and in each state a portfolio yields the two-dimensional stream summarized in the following

table:

Option State

HH LL HL LH

F3 [0,1+ r] [0,0] [0,0] [0,1+ r]

F4 [
1
2
,
1+ r

2
] [0,0] [

1
2
,0] [0,

1+ r
2

]

1. Intertemporal Hedging : Suppose returns of I1 and I2 are paid independently with an

identical probability p∈ (0,1), then the state probabilities are p2,(1− p)2, p(1− p), p(1−

p). In addition, suppose r is moderate such that the salience level ranking of the four

states is ∆HL > ∆LH > ∆HH > ∆LL: the decision-maker disproportionately attends to state

HL, where F4 pays [
1
2
,0] while F3 pays [0,0]. Under multidimensional salience,

U(F3)

U(F4)

is increasing in p. Therefore, with p = 1, the relative preference is more likely to favor

F3, while for p < 1 the relative preference is more likely to favor F4. The mechanism

is as follows: for p = 1 only state HH will obtain and the decision-maker may choose

the temporally unhedged portfolio, F3, for return and discounting reasons. When p < 1,

the decision-maker now considers the additional states LH and HL, the latter of which

is likely to be more salient for moderate r. State HL corresponds to the decisionmaker

receiving nothing from the intertemporally unhedged portfolio, F3, but receiving [1
2 ,0] from

the intertemporally hedged portfolio, F4. This hedging benefit leads to a great relative

preference for F4. As noted above DEU predicts that
U(F3)

U(F4)
is a constant with respect to

p.
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2. Correlation Dependence: building on the previous example, fix the return probability at

p = 0.5 and change the states’ probabilities to 0.25+γ , 0.25+γ , 0.25−γ , 0.25−γ where

γ ∈ [−0.25,0.25]. In other words, γ is a measure for correlation between the assets. In

this case,
U(F3)

U(F4)
is an increasing function of γ . The intuition is similar to Intertemporal

Hedging : when I1 and I2 are negatively correlated(γ < 0), hedging between them counters

the risk. On the other hand, when the assets are positively correlated(γ > 0), hedging

between them can no longer eliminate the risk. As noted above DEU predicts that
U(F3)

U(F4)

is a constant with respect to γ .

Example 3. Reordering Dependence:

Suppose that a decision-maker is choosing from two portfolios (F3,F ′
4) where F3 is the

same as in the previous example, while the stream payoffs of F ′
4 come from the permutation of F4

summarized in the following table:

Option State

HH LL HL LH

F3 [0,1+ r] [0,0] [0,0] [0,1+ r]

F ′
4 [0,0] [0,

1+ r
2

] [
1
2
,0] [

1
2
,
1+ r

2
]

Compare utility differences between F3 vs. F4 and F3 vs. F ′
4 evaluated when the decision-

maker’s choice set is (F3,F4) and (F3,F ′
4), respectively. Multidimensional salience predicts

that U(F3)−U(F4) ≤ U(F3)−U(F ′
4). The underlying reason is that a permutation of one

portfolio’s streams changes the joint distribution of streams and, hence, changes all relevant

salience distortions. When the choice set is (F3,F4), the intertemporally hedged portfolio F4 is

attractive because it insures against the salient state HL in which F3 pays nothing, [0,0] while

F4 pays [
1
2
,0]. After the permutation, F ′

4 loses some attractiveness because it cannot insure

against the salient state HH, in which F ′
4 itself pays nothing, [0,0], while F3 pays [0,1+ r].

As noted above DEU predicts that U(F3)−U(F4) = U(F3)−U(F ′
4). In addition, note that

because F4 and F ′
4 are simple reorderings, any context-independent theory of choice where
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U(F4) is independent of the choice set or environment in which it is embedded will also imply

U(F3)−U(F4) =U(F3)−U(F ′
4).

33

Salience-Based Present Bias, Intertemporal Hedging , and Correlation Dependence all

speak to the effects of changing joint distributions’ probabilities on decision-makers’ behaviors.

On the other hand, Reordering Dependence is a special correlation manipulation in which states’

probabilities stay constant but streams are swapped across states. While there is no data on

Reordering Dependence in the intertemporal setting (and so a new experiment is presented in

Section 4), previous experimental studies using a common Convex Time Budget design (Andreoni

and Sprenger, 2012a,b; Miao and Zhong, 2015; Cheung, 2015) implement conditions analogous

to the first three predictions. We now review the experimental design and test corresponding

predictions of multidimensional salience using these data.

2.3.2 CTB Design and Predictions of Multidimensional Salience

The Convex Time Budget (CTB) design was introduced in Andreoni and Sprenger

(2012a) to measure individual time preferences. Subjects are given a budget of $m and are asked

to allocate this budget over two periods, t and t + k, at a given gross interest rate, 1+ r. In effect,

the task asks subjects to maximize the utility of sooner payment, ct , and later payment, ct+k,

subject to the linear budget constraint

(1+ r)ct + ct+k = m.

The experimental budget establishes a menu of potential streams [ct ,ct+k], from [ m
(1+r) ,0] to

[0,m].34 The CTB design has been widely adopted for the study of time preferences in the lab

and the field (for a meta-analysis of the CTB literature, see Imai et al., 2020).
33One could, of course, imagine pathological examples where U(F4) ̸= U(F ′

4) because the individual prefers
to win on HH and lose on LL rather than lose on HH and win on LH, but the labeling of the states should be
inconsequential.

34The term “convex” in CTB derives from the fact that the prior standard Multiple Price List design (Coller and
Williams, 1999) common in the experimental literature asked subjects to decide between the two budget end-points:
a sooner payment versus a later payment.
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In Andreoni and Sprenger (2012b), there are two extensions of the standard CTB, which

we name as MULT and SING. Under MULT , ct is paid with probability 0.5 while ct+k is paid

with probability 0.4. As a result, in MULT , the possible streams are [ct ,ct+k], [ct ,0], [0,ct+k],

and [0,0]. On the other hand, under SING, ct is paid with probability 1 while ct+k is paid with

probability 0.8. Consequently, in this case, the possible streams are [ct ,ct+k], [ct ,0]. SING

and MULT correspond to conditions appropriate for examining Salience-Based Present Bias

(Example 1), as the former has p = 1, the latter has p = 0.5, and both have q = 0.8 for the

additional risks on future payments.

Andreoni and Sprenger (2012b), Cheung (2015), and Miao and Zhong (2015) also

implement both the standard risk-free CTB and an additional condition in which ct is paid

with probability 0.5 and ct+k is paid with independent probability 0.5. We term the former

condition CERT , with only one possible stream associated with a given choice: [ct ,ct+k]. We

term the latter condition IND, and there are four streams identical to those in MULT , but paid

equiprobably. CERT and IND correspond to conditions appropriate for examining Intertemporal

Hedging (Example 2), as the former has p = 1, and the latter has independent payment risk of

p = 0.5 in each time period.

Miao and Zhong (2015) provide an additional extension of the CTB with two conditions

termed POS and NEG. In both of these conditions, payments are subject to a probability of 0.5.

In POS either both payments are paid or both payments are not paid. In NEG if the first payment

is paid, the second is not and vice versa. In both POS and NEG there are two equiprobable

streams associated with a given choice: for POS, they are [ct ,ct+k] and [0,0]; for NEG, they

are [ct ,0] and [0,ct+k]. POS and NEG correspond to conditions appropriate for examining

Correlation Dependence (Example 2), as the former has γ = 0.25, and the latter has γ =−0.25,

and both have p = 0.5 in each time period.

Appendix B.4 formalizes the predictions of multidimensional salience within the CTB

environment for sooner allocations c j
t with j ∈ {SING,MULT,CERT, IND,POS,NEG} repre-
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senting all relevant conditions.35 For each of type of comparison, predictions for c j
t are organized

around a threshhold, c∗. The value of c∗ depends on parameters of the assumed salience function

for our application, i.e., equation (2.2), and the interest rate, r. For reasonable parameteriza-

tions of the salience function, c∗ ≈ m
2(1+r) , i.e., exactly half the budget. The predictions can be

summarized as follows:

• Salience-Based Present Bias:

(1). If cSING
t ≥ c∗, cMULT

t ∈ [c∗,cSING
t ].

(2). If cSING
t ≤ c∗, cMULT

t ∈ [cSING
t ,c∗].

(3). If cSING
t = c∗, cMULT

t = c∗.

• Intertemporal Hedging :

(1). If cCERT
t ≥ c∗, cIND

t ∈ [c∗,cCERT
t ].

(2). If cCERT
t ≤ c∗, cIND

t ∈ [cCERT
t ,c∗].

(3). If cCERT
t = c∗, cIND

t = c∗.

• Correlation Dependence:

(1). If cIND
t ≥ c∗, cNEG

t ∈ [c∗,cIND
t ].

(2). If cIND
t ≤ c∗, cNEG

t ∈ [cIND
t ,c∗].

(3). If cIND
t = c∗, cNEG

t = c∗.

(4). cCERT
t = cPOS

t .

Note that, with the exception of cCERT
t = cPOS

t , in each case the predictions of multidimensional

salience admit deviations from DEU, which predicts equality across all comparisons. Testing

these predictions of multidimensional salience on the aggregate and individual data of Andreoni

and Sprenger (2012b), Cheung (2015), and Miao and Zhong (2015) is the focus of the next

subsection.
35The corresponding prediction for ct+k on the budget constrained is implicitly established.
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Figure 2.2. Mean Behavior

2.3.3 Prior Experimental Results

Figure 2.2 provides the average data from Andreoni and Sprenger (2012b), Cheung

(2015), and Miao and Zhong (2015) in the conditions where t = 7 days and k = 28 or 35 days.

The experimental gross interest rate, 1+r, is graphed against the average sooner menu choice, c j
t ,

for all relevant conditions j ∈ {SING,MULT,CERT, IND,POS,NEG}. Figure 2.2 also provides

the midpoint of the CTB budget, m
2(1+r) , as an approximation of c∗ in each panel.

Testing Salience-Based Present Bias: SING vs. MULT

While DEU predicts that behaviors should be identical between SING and MULT ,

multidimensional salience theory generates deviations from the DEU benchmark. In Figure 2.2,
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on average, all earlier choices under SING in Andreoni and Sprenger (2012b) lie above budget

midpoints. Consequently, multidimensional salience predicts cMULT
t should be weakly below

cSING
t and weakly above c∗. At every interest rate the average cMULT

t < cSING
t , but in two cases

cMULT
t falls slightly below our approximation of c∗ = m

2(1+r) .

Figure 2.3, Panel A provides disaggregated individual data. For every observation we

calculate d j = c j
t − c∗, for j ∈ {SING,MULT}, assuming c∗ = m

2(1+r) . dSING is graphed against

dMULT for every observation, along with the DEU benchmark, dSING = dMULT . Prediction

regions for multidimensional salience established in Appendix B.4 are highlighted in purple. Out

of 1120 total observations, 872 violate DEU (77.86%). Among violations, 612 of 872 (70.18%)

are consistent with the predictions of our theory. The accuracy of prediction for multidimensional

salience for these prior data is notably high. As indicated by the area of the prediction regions

in Figure 2.3, Panel A, random data would yield only 25% of observations consistent with

multidimensional salience.

Testing Intertemporal Hedging : CERT vs. IND

In all three data sets a clear deviation is observed between the data and the DEU prediction

of cCERT
t = cIND

t in Figure 2.2. For the lowest value of 1+r, cCERT
t lies above the budget midpoint,

m
2(1+r) ; and cIND

t lies below cCERT
t . At precisely the point cCERT

t crosses our approximation for

the threshold c∗ ≈ m
2(1+r) , cIND

t passes above cCERT
t . This cross-over in intertemporal demands

between the conditions CERT and IND follows exactly the pattern predicted by multidimensional

salience. And, the location of the cross-over is also where the theory predicts it should be at

c∗ ≈ m
2(1+r) .

The aggregate data displayed in all three data sets is consistent with multidimensional

salience. Figure 2.3, Panel B graphs dCERT against dIND from every observation in the three

data sets. The data deviates frequently from DEU: only 857 of 3556 (24.10%) observations

correspond to the DEU prediction, dCERT = dIND. The remaining 2699 observations deviate from

DEU in a manner that is largely consistent with the predictions of multidimensional salience:
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Figure 2.3. Individual Data

Notes: The Figure represents the performance of multidimensional salience theory on individual level data. Predicted areas by Proposition 12
assuming β = 0. Panel A uses data from Andreoni and Sprenger (2012b) under either SING or MULT . In panel A, dSING = cSING

t − m
2(1+r) is

plotted against dMULT = cMULT
t − m

2(1+r) . Panel B uses all data from three previous experiments with (p1, p2) = (0.5,0.5). In panel B,

dCERT = cCERT
t − m

2(1+r) is plotted against dIND = cIND
t − m

2(1+r) . Panel C uses data from Miao and Zhong (2015) under either POS or CERT

condition. In Panel C, dPOS = cPOS
t − m

2(1+r) is plotted against dCERT . Panel D uses data from Miao and Zhong (2015) under either NEG or IND

condition. In Panel D, dNEG = cNEG
t − m

2(1+r) is plotted against dIND.

2158 of 2699 (79.96%) DEU deviations are consistent with multidimensional salience. As in

panel A, random data would yield only 25% of observations consistent with the theory.

Testing Correlation Dependence: POS vs. NEG

Figure 2.2 also provides data for Miao and Zhong (2015) in conditions POS and NEG.

Aggregate choices again deviate from the DEU prediction, cPOS
t = cNEG

t . Interestingly, the

intertemporal demand for cPOS
t is virtually identical to that of cCERT

t , while that for cNEG
t is
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virtually identical to that of cIND
t . The correspondence between cPOS

t and cCERT
t is exactly

predicted by multidimensional salience. Figure 2.3, Panel C plots the individual observations of

cPOS
t against cCERT

t . For 1248 of 1554 (80.03%) observations cPOS
t = cCERT

t .

The relation between cNEG
t and cIND

t is also predicted by our theory. Figure 2.3, Panel

D graphs dNEG against dIND. The data again largely sit in the prediction region for multidi-

mensional salience: 1151 of 1554 (74.07%) observations are consistent with the predictions of

multidimensional salience.36

Overall within the Miao and Zhong (2015) data, 791 of 1554 (50.09%) observations

are consistent with the combined predictions of multidimensional salience: cCERT
t = cPOS

t ≥

cIND
t ≥ cNEG

t ≥ c∗ or c∗ ≥ cNEG
t ≥ cIND

t ≥ cPOS
t = cCERT

t . In contrast, only 189 of 1554 (12.16%)

observations satisfy DEU: cCERT
t = cPOS

t = cIND
t = cNEG

t . Given 16 possible orderings of these

four observations, random data would be consistent with these predictions only 8.33% of the

time (conditional on the equality cCERT
t = cPOS

t ).37

To quantitatively measure the multidimensional salience effects in prior experiments, in

Appendix B.6 we provide structural estimates under the assumed functional form of equation (2).

The results are broadly consistent across data sets and show a quantitatively important role for

salience. For the cIND
t data, we estimate the most salient state’s probability is upweighted from

0.25 to 0.36-0.49 across data sets. These distortions deliver the behavioral phenomena associated

with multidimensional salience observed in the data.

2.4 Experimental Test of Multidimensional Salience

The prior section demonstrated that a substantial portion of the DEU deviations docu-

mented by Andreoni and Sprenger (2012b), Cheung (2015), and Miao and Zhong (2015) are

naturally accommodated by multidimensional salience. These data, however, are also consistent

36Strictly speaking, the development of Appendix B.4 requires that decision-makers violating DEU must have
dNEG ̸= dIND unless dNEG = dIND = 0. Overall, 1026 of 1237 (82.94%) observations violating DEU hypothesis are
consistent under this more stringent requirement.

37Normalize c ∈ [0,1] and c∗ = 0.5, the probability is obtained as 2∗
∫ 0.5

0
∫ cNEG

0
∫ cIND

0 1dcPOSdcINDdcNEG.
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with alternative theories proposed in those manuscripts and others. For example, Andreoni and

Sprenger (2012b) note the possibility of differences between riskless and risky utility functions

as an explanation of the data; Miao and Zhong (2015) describe formulations that separate risk

aversion from intertemporal elasticities of substitution; and Epper and Fehr-Duda (2015) argue

the data are driven by a specific form of intertemporal prospect theory. These alternative theories

all posit that the value of an intertemporal lottery depends only upon that lottery’s marginal

distribution. In contrast, multidimensional salience posits that salience levels are determined by

comparing potential outcomes in each state across different options in the choice set. Conse-

quently, reordering one option’s outcomes, as suggested in example 3 for Reordering Dependence,

may provide a basis for distinguishing multidimensional salience from these context-independent

alternatives.

An experiment using reordering provides three advantages to distinguish salience theory

from other models. First, reordering outcomes keeps each option’s marginal distribution constant,

so the above context-independent models predict null effects. Second, reordering fixes the

number of nonidentical states and their probability in each comparison. Therefore, unlike our

tests of Correlation Dependence, which change the number of states that may be realized and their

probabilities across comparisons, reordering doesn’t introduce the possibility of event-splitting or

differential probability distortions across comparisons. (Starmer and Sugden, 1993b; Humphrey,

1995).38

We designed our experiment to test the multidimensional salience prediction of Re-

ordering Dependence and assess replicability of Intertemporal Hedging in a simple decision

environment. In our experiment subjects faced the three choices presented in Figure 2.4. Each

choice was presented as a decision between two options: Option A and Option B. In Choice

1, subjects chose between the deterministic monetary streams [x1,x2] ∈ {[$18,$2], [$10,$10]},

where x1 would be paid one week from the study date and x2 would be paid four weeks from the

38Recent experimental literature find evidence suggesting event-splitting effect may contaminate previous results.
See Loewenfeld and Zheng (2021) and a replication for Dertwinkel-Kalt and Köster (2020) for details.
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Choice 1: Riskless Payments

Choice 2: Independent Risks

Choice 3: Re-ordered Risks

Figure 2.4. Experimental Decisions

study date. In Choice 2, subjects chose between the temporal lotteries {L[$18,$2],L[$10,$10]}. Four

equiprobable states were implemented by flipping two virtual coins with potential outcomes

{HH,HT,T H,T T}. In state HH both x1 and x2 would be received; in state HT only x1 would

be received; in state T H only x2 would be received; and in state T T neither would be received.

This mapping from states to outcomes was identical for both options in Choice 2. In Choice 1,

the states were presented but the streams were identical in each state for each option.

Under multidimensional salience’s Intertemporal Hedging , individuals would be pre-

dicted to deviate from DEU in a particular way between Choice 1 and Choice 2. Due to

diminishing sensitivity, state T H should receive the greatest salience weight and have its proba-

bility distorted upwards. As Option B is superior in state T H, a salience theory decision-maker
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is predicted to be more likely to choose Option B in Choice 2 relative to Choice 1. Appendix

B.7 formalizes this prediction under our proposed functional form assumptions for rank-based

multidimensional salience.

In Choice 3, L[$10,$10] is re-ordered to construct L′
[$10,$10] by moving the state payments

of HH to HT , HT to T T and T T to HH. L[$18,$2] is left unchanged. This re-ordering, while

irrelevant in prior non-DEU models, is relevant for our model’s prediction of Reordering De-

pendence. State HH should now receive the greatest salience weight and have its probability

distorted upwards. As Option A is superior in state HH, a decision-maker is predicted to be

less likely to choose Option B in Choice 3 relative to Choice 2.39 Appendix B.7 formalizes this

prediction under our proposed functional form assumptions for rank-based multidimensional

salience.

In addition to these three choices, subjects also faced one attention check between choices.

This question asked subjects to make a choice between temporal lotteries conditional on a given

first coin outcome, H or T . Conditional on a first coin outcome, the choices of the attention check

have a dominance relation and so a clearly superior option. Figure 2.5 provides an example

attention check question. We also asked two questions without a temporal dimension at the end

of the study, which are not discussed here. At the end of the study, one random question was

chosen for each subject, the two coins were flipped, and outcomes were conveyed. Subjects were

given a minimum payment of $5 both 1 and 4 weeks from the study date in addition to their

experimental payments to overcome differential transaction costs as in Andreoni and Sprenger

(2012a). All payments were made via Amazon gift card.

A total of 240 subjects participated in our experiment. Sessions were conducted via

Otree (Chen et al., 2016b) using the Zoom video conference interface to simulate a laboratory

39Moreover, according to rank-based multidimensional salience, the elimination of Intertemporal Hedging in
Choice 3 should be complete. That is, Option A is more preferable in Choice 3 than in Choice 1. This is a sharper
prediction than others in the sense that it’s only valid under rank-based salience model. On the contrary, other
predictions should also hold under a more general class of preferences related to regret theory given our propositions
over differences (see definition 1). See Herweg and Müller (2021) for a detailed exposition of the relation between
salience theory and regret theory.
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Figure 2.5. Attention Check

experience.40 Of the 240 subjects, 206 (85.8%) passed the attention checks. In order to examine

order effects all six orders of the three choices were implemented. In developing our design, we

forecasted that it would be particularly relevant to have Choice 1 first to organize a subject’s

understanding of the task, and so we oversampled to ensure that roughly half of subjects would

receive Choice 1 first. In total 117 subjects (48.9%) faced Choice 1 first, 56 (23.3%) faced

Choice 2 first, and 67 (27.9%) faced Choice 3 first. The principle of giving subjects a simple task

first to guide their understanding is supported in attention check and choice data. Individuals

who receive the deterministic Choice 1 first are somewhat more likely to pass the attention

checks (90% vs. 82%, F1,239 = 2.92, p < 0.10). Individuals who fail the attention checks exhibit

choices that are consistent with a random choice benchmark, choosing Option B 51% of the

time; those who pass choose Option B 67% of the time (F1,239 = 6.11, p < 0.05). Given the

40Due to technical videoconferencing issues, we exclude one session. In addition, two subjects are excluded
because they were not able to follow instructions for the online experiment.
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relationship between order, attention, and apparent random choice, we focus on the 105 subjects

who received Choice 1 first and passed the attention checks as our primary sample. We use the

remaining subjects to examine order effects.

Table 2.1 presents the results of our study as linear probability models with standard

errors clustered at the individual level. In columns (1) and (2) we examine our primary sample

with and without those subjects who failed the attention checks. For those who passed the

attention checks, 55% of subjects chose Option B, [$10,$10], in Choice 1. Moving to Choice

2, with common independent risks, 75% of subjects chose Option B, L[$10,$10]. This 20%-

age point change in responses represents a significant deviation from DEU relative to Choice

1, F1,104 = 9.69, p < 0.01. The direction of this effect is consistent with the predictions of

Intertemporal Hedging in our model and reproduces the findings of Andreoni and Sprenger

(2012a), Cheung (2015), and Miao and Zhong (2015) in a different choice environment.

Moving to Choice 3, 64% of subjects choose Option B, L′
[$10,$10]. The difference in choice

proportions between Choice 2 and Choice 3 identifies the extent of Reordering Dependence

in our study. Overall, this effect is measured at 11%-age points in our primary sample and is

statistically significant at the 5% level (F1,104 = 4.95, p < 0.05). Under our theory, the salience

of state T H in Choice 2 increases the attractiveness of Option B, and the salience of state HH

in Choice 3 decreases the attractiveness of Option B. This Reordering Dependence is precisely

what is observed in our primary sample.41 Overall the data in our primary sample reject DEU

(F2,104 = 5.39, p < 0.01), and deliver results closely consistent with multidimensional salience.

In columns (3) and (4) of Table 2.1 we analyze the results for subjects who faced Choice

2 or Choice 3 first. While the order matters little on average for Choice 1 and Choice 2, behavior

in Choice 3 appears quite sensitive to the order. Without prior deterministic choices, subjects

seem somewhat more likely to choose Option B in Choice 3. While the effects of Intertemporal

41As discussed above, in our experiment the predictions of multidimensional salience are directional. For
completeness, we include p-values of the various one-sided tests: 1) for the null hypothesis that more subjects
choose Option B in Choice 1 than in Choice 2, p < 0.01; 2) for the hypothesis that more subjects choose Option B
in Choice 3 than in Choice 2, p = 0.014; for the hypothesis that more subjects choose Option B in Choice 1 than in
Choice 3, p = 0.091.
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Table 2.1. Experimental Results

Primary Sample Alternate Orders
(1) (2) (3) (4) (5)

Dependent variable: Chose Option B

Choice 2 0.17 0.20 0.11 0.18 0.17
(0.06) (0.06) (0.05) (0.06) (0.06)

Choice 3 0.06 0.09 0.16 0.24 0.06
(0.06) (0.06) (0.05) (0.06) (0.06)

Alternate Order 0.03
(0.07)

Alternate Order × Choice 2 -0.06
(0.08)

Alternate Order × Choice 3 0.10
(0.08)

Failed Attention Check -0.17
(0.06)

Constant (Choice 1) 0.56 0.55 0.57 0.55 0.57
(0.05) (0.05) (0.04) (0.05) (0.05)

Intertemporal Hedging (H0: Choice 1 = Choice 2): F1,116 = 7.50 F1,104 = 9.69 F1,122 = 4.79 F1,100 = 10.35 F1,239 = 7.51
(p < 0.01) (p < 0.01) (p = 0.03) (p < 0.01) (p < 0.01)

Reordering Dependence (H0: Choice 2 = Choice 3): F1,116 = 5.28 F1,104 = 4.95 F1,122 = 1.05 F1,100 = 1.28 F1,239 = 5.29
(p = 0.02) (p = 0.03) (p = 0.31) (p = 0.26) (p = 0.02)

DEU (H0: Choice 1 = Choice 3): F2,116 = 0.92 F2,104 = 1.80 F2,122 = 8.82 F2,100 = 15.61 F2,239 = 0.92
(p = 0.34) (p = 0.18) (p < 0.01) (p < 0.01) (p = 0.34)

DEU (H0: Choice 1 = Choice 2 = Choice 3): F2,116 = 4.65 F2,104 = 5.39 F2,122 = 4.53 F2,100 = 8.41 F2,239 = 4.66
(p = 0.01) (p < 0.01) (p = 0.01) (p < 0.01) (p = 0.01)

Order Effect (H0: Alternate Order and Interactions = 0): F3,239 = 2.22
(p = 0.09)

# Observations 351 315 369 303 720
# Clusters 117 105 123 101 240
Attn Check Failure Removed No Yes No Yes No

Notes: Ordinary least squares regressions. Standard errors clustered at individual level in parentheses. Hypotheses tested as restrictions on
regression coefficients.

Hedging and overall deviations from DEU are maintained for these alternate orders, we no longer

find empirical support for Reordering Dependence. In column (5) of Table 2.1, we include all

of the data and account for the correlation between order, failure of the attention checks, and

choice in multiple regression. The results are largely unchanged: Intertemporal Hedging and

Reordering Dependence are observed in our primary sample leading to an overall rejection of

DEU (F2,239 = 4.66, p = 0.01), and an order effect that borders on statistical significance is

estimated (F3,239 = 2.22, p = 0.09)

Our results indicate support for the multidimensional salience, but they also indicate some

important sensitivity with respect to the context of choice. In our primary design where subjects
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face a deterministic choice over streams prior to choosing between temporal lotteries, subjects

validate the predictions of Intertemporal Hedging and Reordering Dependence. However, if

subjects do not face a deterministic choice first, their choices over temporal lotteries are more

consistent across conditions, eliminating Reordering Dependence. We suspect that subjects’

confusion may be at play in producing this order effect as individuals are more likely to fail

attention checks in these alternate orders, and such attention failures are linked to apparent

randomness in choices.

2.5 Discussion and Conclusion

Multidimensional risky choice is a common decision environment. We extend the seminal

(Bordalo et al., 2012) (BGS) salience model to this environment to provide a theory of multi-

dimensional salience. We then provide examples for predictions of multidimensional salience

in a canonical decision environment: intertemporal risky choice. We show the model deviates

from Discounted Expected Utility (DEU) in several intuitive ways, including delivering a form

of Salience-Based Present Bias and Intertemporal Hedging, a disproportionate willingness to

smooth allocations when facing risk. We take these predictions to prior data sets and demonstrate

robust DEU deviations consistent with multidimensional salience 70-80% of the time. To distin-

guish multidimensional salience from context-independent alternatives, we also provide a novel

experiment of a prediction called Reordering Dependence; simply swapping state payments

for one option in a choice set. We show deviations from DEU and other context-independent

theories, consistent with multidimensional salience.

Our theoretical development provides useful methodology for the analysis of multi-

dimensional risky choice, bridging prior applications of salience in either mutildimensional

deterministic choice or one-dimensional risky choice. This permits researchers to analyze

salience in richer, potentially more ecologically relevant choice environments. Though such

environments are fundamentally complex, we show that salience-based analysis is tractable. We
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illustrate conditions under which analysis is as straightforward as BGS when one can reduce

the dimensionality of options into scalars. This simplified formulation is used in our analysis of

prior and new data, and is capable of capturing a number of meaningful behaviors.

Within our formulation attention is drawn to states of nature where multidimensional

options are perceived to differ most substantially. One could imagine cases where the multidi-

mensional objects themselves would be subject to attention effects, even with only one state

of nature. For example, when considering the deterministic options, [x1,x2], of [100,0] and

[50,50], dimension x2 may draw more attention. In Appendix B.2, we consider such an extension

incorporating salience or other attentional forces, such as focusing or relative thinking, within

dimensions (Koszegi and Szeidl, 2012; Bushong et al., 2021). This extension demonstrates that

even with such forces within states, the predictions of multidimensional salience for risky choice

are generally maintained.

Multidimensional salience makes a number of interesting predictions that could be

explored in future work. For example, the prediction of Intertemporal Hedging is closely related

to a form of precautionary savings generated by the model. In Appendix B.3, we provide a

corresponding example. Standard rationalizations of precautionary savings have been developed

which associate “prudent” behavior with the sign of third derivative of an expected utility function

(Leland, 1968; Kimball, 1990; Eeckhoudt and Schlesinger, 2006). Multidimensional salience

delivers prudent behavior without appeal to higher order derivatives, and so can potentially

provide an alternative mechanism for precautionary savings motives. Behavioral applications

in areas like retirement savings and human capital formation may be generated from this

observation.
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Chapter 2, in full, is a working paper coauthored with Professor Charles Sprenger. The

dissertation author was the primary author of this paper.
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Chapter 3

A Nonparametric Test for Cumulative
Prospect Theory

Abstract

As a leading non-expected utility model, Cumulative Prospect Theory (CPT)
rationalizes wide range of deviations from expected utility theory while keeps most of
its theoretical axioms. This project proposes an experiment to jointly analyze the two
major factors in CPT: probability weighting function and rank dependence. Specifically,
under a nonparametric framework, we test the validity of rank dependence and estimate
the first-order derivative of probability weighting functions.

3.1 Introduction

Modeling individual’s behaviors under uncertainty has long been a fundamental task in

economic studies. Under the paradigm of objective uncertainties, expected utility theory (EUT)

serves as a central foundation to various economic analyses across most fields. While EUT

provides a elegant mathematical tool for normative analysis, numerous experimental studies,

such as (Allais, 1953), bring evidence of systematically violations from EUT predictions and

cast doubts on its descriptive validity. In response to these issues, researchers have proposed

various modifications and extensions to the classical EUT framework. Among these, cumulative

prospect theory (CPT), introduced by Tversky and Kahneman (1992), has emerged as one of the

most influential models addressing deviations from EUT. CPT is promising for both theoretical

and empirical reasons. Theoretically, CPT maintains a robust mathematical foundation by
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only relaxing the highly debated and criticized independence axiom of EUT. Further, CPT can

rationalize a wide span of empirical regularities including health economics (Bleichrodt and

Pinto, 2000),finance (Barberis et al., 2001), and environmental economics (Heutel, 2019).

To describe the essence of CPT, let us consider the following example. Suppose the

decision maker is choosing between a one dollar cash $1 and a lottery L, which is denoted by

(p : $X ;q : $Y ;1− p−q : $Z) with X > Y > Z ≥ 0, p,q > 0, and p+q < 1. In this case, if the

decision maker chooses lottery L, she will receive $X with probability p, $Y with probability q,

and $X with probability 1− p−q. CPT posits that the decision maker’s preference for both the

one-dollar cash $1 and lottery L can be summarized by a functional V (·) such that V ($1) = u(1|r)

and

V (L) = π(p)u(X |r)+
(

π(p+q)−π(p)
)

u(Y |r)+
(

1−π(p+q)
)

u(Z|r) (3.1)

Following from CPT, the decision maker chooses lottery L if and only if V (L)≥V ($1).

There are three central components in the presentation functional V (·): the nonlinear

probability weighting function π(·), rank dependence, and the intrinsic utility function u(·|r).

First, π : [0,1] → [0,1] is a strictly increasing and bijective function. It predicts that given

objective probability p, instead of perceiving it directly, the decision maker distorts it to π(p) and

treats the probability as if it was π(p). Second, rank dependence suggests that decision weights

of outcomes depend not only on their objective probabilities but also on the ranking of their

magnitudes. For instance, in the above example, while the lottery offers $Y with probability q ,

the decision weight putted on $Y is not π(q). Instead, it is the weight difference between getting

at least $Y and receiving strictly higher than $Y . Third, u(·|r) presents the decision maker’s

preference over deterministic monetary outcomes with an exogenously given reference point r.

While the probability weighting function, utility function, and rank dependence collec-

tively determine the decision-maker’s risk attitude, few studies have systematically investigated

these factors within a unified framework (see section 3.2 for a review). The lack of such analysis

imposes certain challenges for CPT. For instance, the effect of rank dependence is closely related
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to the shape of the probability weighting function. Consequently, it is difficult to judge the

strength of rank dependence without estimations of the probability weighting function. Further-

more, since preference parameters are rarely stable across different paradigms, testing these

factors separately undermines the credibility of CPT as a robust model for predictions. Finally,

given the interdependent characteristics of CPT, it is unclear to what extent changes in one aspect

can influence the performance of others.

In this chapter, we design a novel experiment to provide a measurement for probability

weighting function and test for rank dependence while controlling effects from utility function.

1 The estimations only require a structural assumption on smoothness: for CPT preference we

assume that both π(·) and u(·|r) have strictly positive and continuous derivatives.

We now describe the intuition of our experiment. Given a lottery L = (p : $X ;q : $Y ;1−

p− q : $Z), we can decompose it into two components: winning at least $Y with in total of

p+ q probability and winning $Z with probability 1− p− q. Following the rationale from

Choquet integration (Choquet, 1954; Schmeidler, 1989), so long as the cumulative probability of

winning at least $Y remains constant, the individual probabilities of winning higher amounts

do not affect the decision weight put on winning $Z. Consequently, for lottery L, keeping p+q

constant, the marginal effect of increasing probability of winning $X on lottery L’s value is

linear to the first order derivative of probability weighting function π(·) and is independent with

$Z.2 On the other hand, still keeping p+q constant, the marginal effect of increasing amount

$Z on lottery L’s value is independent from the probability of winning X . Therefore, the ratio

between these two marginal effects, their marginal rate of substitution (MRS), is linear to the

first order derivative π ′(·). Furthermore, the ratio between MRS at different probabilities of

winning $X cancels the marginal effect from increasing $Z. To estimate MRS, we use a technique

that is similar to “equalizing reduction” from Bernheim and Sprenger (2020). Consider lottery

1The experiment can also give a measurement for the intrinsic utility function u(·|r), but this is not the focus of
current project.

2According to equation 3.1,
∂V
∂ p

|p+q=k= π ′(p)
(

u(x|r)−u(y|r)
)

.
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L′ = (p−∆ : $X ;q+∆ : $Y ;1− p−q : $Z+ k) with ∆,k > 0. Fixing ∆, for each decision maker

there is a k such that L and L′ are indifferent. For small ∆, k
∆

provides an approximation for

the MRS. Notice that, estimations on the first derivative provides sufficient information on the

probability weighting. For instance, in the absence of nonlinear probability weighting, the ratio

of π ′(·) should constantly be one. For a probability weighting function with the “reverted-S”

shape, the ratio defined by π ′(p)
π ′(0.5) should roughly be a U-shape across different values of p.

For our test of rank dependence, notice that there is another way to decompose lottery L:

winning a large amount $X with probability p and winning some amount strictly smaller than $X

with probability 1− p. Keeping the probability of winning $X constant, by a similar argument,

the MRS between the marginal effect of increasing amount of $X and of increasing probability

of winning $Y is linear in π ′(p+ q).3 Therefore, rank dependence has strong predictions for

these two different types of MRS at specific probabilities p and q.

This chapter organizes as follows. Section 3.2 provides a brief literature review on related

literatures testing CPT. Section 3.3 lays out the theoretical background. Section 3.4 introduces

the experimental design in detail. Lastly, section 3.5 illustrates powers of our hypotheses using

simulations.

3.2 Literature Review

Our project is relevant to a large literature discussing rank dependent utility theories. Wu

(1994) tests ordinal independence (Green and Jullien, 1988), which roughly states that for every

pair of lotteries sharing a common right tail, identically alternating that tail for the two lotteries

doesn’t affect the preference. More recently, Machina (2009) provides a thought experiment for

rank dependent preferences under the subjective uncertainty framework. Machina (2009) uses

tail-separability to address the fact that changing outcome magnitudes in either left or right tail

3 ∂V
∂q

|p=p= π ′(p+q)
(

u(y|r)−u(z|r)
)

and
∂V
∂X

= π(p)u′(X |r).
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without interfering overall rankings does not affect preference under rank dependent utility.4

We use a parallel rationale that changing conditional distributions or outcomes within one tail

(without alternating rankings) doesn’t affect value of the other. We then take an additional step

by realizing the fact that the trade-off rate between values in two tails provides measures that are

linear to either the increment rate of decision weights or the marginal utilities of outcomes. Other

related works include Wakker et al. (1994) and Weber and Kirsner (1997) in which they test the

descriptive validity of independence axiom and comonotonic independence axiom. Diecidue

and Wakker (2001) provide a psychological intuitive argument for rank dependence. Birnbaum

(2008) compares the performances of CPT and configural weighted models.

Our work also speaks to the literature on measuring nonlinear probability weighting.

Tversky and Fox (1995) estimates probability weighting using certainty equivalence assuming

linear utility.5 Wu and Gonzalez (1996) nonparametrically test the convexity/concavity of

probability weighting at different probability levels and provide a structural estimation for both

probability weighting and utility function.6 Abdellaoui (2000) proposes a two-stage experiment

to nonparametrically estimate the shape of utility function and probability weighting in both

gains and losses domains. Our method can be treated as a “local version” of their experiment.

Moreover, employing lotteries with three outcomes allow us to integrate their two stages into a

uniform question form.

This paper differs from aforementioned researches in three aspects. First, our experiment

provides a uniform framework to simultaneously investigate the validity of rank dependence and

measure of probability weighting. In this way, we minimize the problem brought from preference

alternations across different settings. Second, under a single environment, we eliminate or control

4Since the analysis in Machina (2009) works on subjective uncertainty, the outcomes are associated with “events”
instead of objective probabilities. The ranking should be considered as one over states based upon the outcome
magnitudes in each state.

5Specifically, Tversky and Fox (1995) denote C(x,A) the certainty equivalence of the lottery in which one wins
x dollars if event A happens. In case C(x,A) = y, under linear utility the decision weight on the probability of event
A is y

x . They justify linear utility by showing that 2C(75,A) and C(150,A) are not significantly different.
6In addition, Gonzalez and Wu (1999) nonparametircally estimate the shape of probability weighting and utility

function by eliciting certainty equivalents for lotteries with different outcomes and probabilities.
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correlations among probability weighting, utility function, and rank dependence. Therefore, we

can provide independent analysis regarding each subject. Third, our measurement of probability

weighting is novel in the sense that it directly reflects the first order derivative at different

probability points. As we mentioned in the introduction, information on the first order derivative

is sufficient to analyze properties of the weighting function itself. Furthermore, this information

provide a direct investigation over debates on whether the probability weighting function is

approximately linear in the interior of [0,1].7

Two recent works (Bernheim and Sprenger, 2020; Bernheim et al., 2022) are closely

related to ours. They consider the same lottery L as we described in equation 3.2 and elicit MRS

between outcome $Y and $Z. They name this method “equalizing reduction”. By changing the

magnitude of $X , as the rank between $X and $Y alternates, CPT predicts a discontinuity in

MRS.8 Current work has two major differences. First, in addition to test rank dependency, we

measure local curvatures of probability weighting function while Bernheim and Sprenger (2020);

Bernheim et al. (2022) estimate the average change rates of π(·) within several probability

regions.9 Second, and more importantly, while our hypothesis states that rank dependence

results in no difference in MRS ratios, “equalizing reduction” investigates the existence of

discontinuity. The magnitude of the discontinuity, however, depends on the decision weight
π(p+q)−π(p)

π(q) . Consequently, the shape of the decision weight function π(·) can lead to small

discontinuity.10 Further, heterogeneous weighting functions can affect signs of discontinuity.

7Tversky and Fox (1995) provide an argument for boundary subadditivity, Camerer (1992) shows that the
indifference curve in the interior of Machina’s Triangle is fairly linear, and Andreoni and Harbaugh (2009) suggest
that EUT performs reasonable well for probabilities away from boundaries. On the other hand, Wu and Gonzalez
(1996) suggest that a nonlinear probability weighting function fits the data better.

8Importantly, like the current method, “equalizing reduction” also provides a nonparmaetric test by only requiring
the utility function to be locally stable. This feature contrasts “equalizing reduction” from other earlier work trying
to elicit MRS between different outcomes (Diecidue et al., 2007)

9In principle, by refining parameter changes among experimental tasks, “equalizing reduction” also can estimate
the curvature of π(·). However, for this measuring purpose, the current method is more data efficient.

10As an artificial illustration, in Bernheim and Sprenger (2020), they estimate that ln(π(0.7)−π(0.4)
0.3 ) −

ln(π(0.9)−π(0.7)
0.2 ) =−0.21 with standard error 0.06. To get an estimate about ln(π(0.7)−π(0.4)

π(0.9)−π(0.6) ), let’s use the functional

form π(p) = pγ

(pγ+(1−p)γ )1/γ
. Then, it is reasonable to assume that γ is between 0.73 and 0.87 (two numbers are

both within the 95% confidence interval), so ln(π(0.7)−π(0.4)
π(0.9)−π(0.6) ) is between −0.22 and −0.09. Consider the situation
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These elements may post challenges on the statistical power for “equalizing reduction”.

3.3 Theoretical Background

Let (p : $X ;q : $Y ;1− p−q : $Z) with X > Y > Z ≥ 0 denote the objective lottery that

gives $X with probability p, $Y with probability q, and $Z with probability 1− p−q. Hence

under CPT, the preference functional is

π(p)u(X)+

(
π(p+q)−π(p)

)
u(Y )+

(
1−π(p+q)

)
u(Z),

where π(·) is the probability weighting function, and u(·) is the utility function from monetary

outcomes.11 Through out this project, we assume that both π(·) and u(·) have strictly positive

and continuous derivatives. Fixing payments X , Y , and probability p+q to be some constant k

between 0 and 1, the trade-off between p and Z is an additive separable function:

U(p,Z) = π(p)
(

u(X)−u(Y )
)

︸ ︷︷ ︸
term of p

+

(
1−π(k)

)
u(Z)︸ ︷︷ ︸

term of Z

+π(k)u(Y )︸ ︷︷ ︸
constant

. (3.2)

The corresponding MRS is

MRS(p,Z) =−
π ′(p)

(
u(X)−u(Y )

)
(

1−π(k)
)

u′(Z)

in which the previous functional form doesn’t fit well with small probabilities and that the true π(0.3) lies in the
middle of π(0.9)−π(0.6) and π(0.7)−π(0.4). In case γ is around 0.87, we can have ln(π(0.9)−π(0.6)

π(0.3) )≈ 0.065 and

ln(π(0.7)−π(0.4)
π(0.3) )≈−0.028, which are both in estimated 95% confidence intervals in Bernheim and Sprenger (2020)

(table III) and unlikely to be rejected.
11We can generalize the utility function by including a reference point, that is u(·|r). Our current results stay

valid as long as r is fixed.
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Now, consider the ratio between two MRS measured at two points with different p and identical

Z:
MRS(p1,Z)
MRS(p2,Z)

=
π ′(p1)

π ′(p2)
,

similarly for the pair with identical p and different Z, we have:

MRS(p,Z1)

MRS(p,Z2)
=

u′(Z2)

u′(Z1)
.

Therefore, by varying p we obtain information on the shape of probability weighting function

while by varying Z we obtain information on the shape of individual utility.

So far we discussed the potential of using MRS and additive separable functional structure

to identify both probability weighting and utility function up to affine transformations. However,

rank dependence is left out of discussion. We now show that by altering the format slightly,

we obtain a test for rank dependence. Consider instead of varying p and Z while holding p+q

constant, we now vary q and X while holding p constant. Rewrite U(p,Z) in equation 3.2 as

V (q,X) = π(p)u(X)︸ ︷︷ ︸
term of X

+π(p+q)
(

u(Y )−u(Z)
)

︸ ︷︷ ︸
term of q

+u(Z)−π(p)u(Y )︸ ︷︷ ︸
constant

. (3.3)

The corresponding MRS is

MRS(q,X) =−
π ′(p+q)

(
u(Y )−u(Z)

)
π(p)u′(X)

.

Its ratio between two different probability q is

MRS(q1,X)

MRS(q2,X)
=

π ′(p+q1)

π ′(p+q2)
.

This gives us an opportunity to test rank dependence. For instance, by fixing z and
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manipulating p, we observe data from some probability points p1 and p2. Next, when switching

to manipulate q and X , we fix the chance of getting the highest amount X at 15% and observe

data from q1 = p1 −0.15 and q2 = p2 −0.15. According to CPT, we have a null hypothesis:

MRS(q1,X)

MRS(q2,X)
=

MRS(p1,Z)
MRS(p2,Z)

.

Preceding analyses are based solely on the information from MRS. Therefore, any

monotonic transformations of U(p,Z) and V (q,X) shares identical MRS. Nevertheless, recalling

that both functional forms are additive separable. As a result, monotonic transformations that

are additive separable can only be affine transformations. Therefore, the results in this section

remain valid if we replace U(p,Z) and V (q,X) with their monotonic transforms.

3.4 Experimental Design and Hypotheses

Our experiment has two treatments. (p,Z) treatment collects MRS information following

equation 3.2, and (q,X) treatment collects MRS information following equation 3.3. To elicit

MRS, both treatments adopt multiple price lists (Holt and Laury, 2002). In (p,Z) treatment, the

price lists reveal the monetary bonus over the smallest prize $Z that is equivalent to a 5% bonus

of receiving the highest payment $X instead of the middle payment $Y . In (q,X) treatment, the

price lists induce the bonus over $Y that is equivalent to a 5% bonus of receiving $Y rather than

the lowest payment $Z. To simplify the tasks, we enforces a unique switching point. At the

beginning of the experiment, subjects are randomly assigned into two groups. Subjects in group

1 complete (p,Z) treatment first while group 2 subjects complete (q,X) treatment first.

In (p,Z) treatment, subjects face two options :

Option A: ($10, p−0.03;$7,0.95− p+0.03,$0.5+ e,0.05),
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where e ranges from $0 to $5 with 25 cents per increment, and

Option B: ($10, p+0.02;$7,0.93− p,$0.5,0.05).

The labeling of options A and B are randomized at subject-level.12 An example task with p = 0.8

is illustrated in panel A of figure 3.1. In the task presentation, the probabilistic differences

between options A and B are highlighted in blue while the monetary differences are highlighted

in red. Subjects decide at what value of e she would like to switch from option B to A, and they

inform the decisions by clicking the “switch” button on the row of the corresponding e value.

Once subjects clicked, the option they will receive for different values of e are highlighted as

shown in figure 3.1.

For every subject, we elicit their preferences at seven different values of p: pi ∈

{0.05,0.2,0.35,0.5,0.65,0.8,0.9}. Consequently, we can approximate MRS(pi,0.5) by
ei

0.05

where ei is subjects switching value of pi. And hence, we obtain
π ′(pi)

π ′(0.5)
≡ MRS(pi,0.5)

MRS(0.5,0.5)
at

i = 1, . . . ,7. If subjects process a linear weighting function, we should observe that
π ′(pi)

π ′(0.5)
= 1

for all i. We summarize the hypothesis below.

Hypothesis 1. Subjects have a linear weighting function: ei = e4 for all i ̸= 4.

In (q,X) treatment, the two options are

Option A: ($15+ v,0.15;$3,q−0.03,$0,0.88−q),

where v also ranges from $0 to $5 with 25 cents per increment, and

Option B: ($15,0.15;$3,q+0.02,$0,0.83−q).

12That is, for half of the subjects option A is ($10, p;$7,0.95 − p,$0.5,0.05) while option B is ($10, p −
0.05;$7,0.95− p+0.05,$0.5+ e,0.05). However, to reduce complexity, for each subjects either she is deciding
when to switch from option A to B in all tasks, or she is deciding when to switch from option B to A in all tasks.
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The task presentation of (q,X) treatment is similar to that of (p,Z) treatment. panel B of figure

3.1 presents an example task with q = 0.05.

We elicit every subject’s preference at qi ∈ {0.05,0.2,0.35,0.5,0.65,0.75}. Under the

current parameters qi = pi −0.15, i = 1, . . . ,6. Since
π ′(qi +0.15)

π ′(0.35+0.15)
=

π ′(pi)

π ′(0.5)
, we shouldn’t

observe any difference between the MRS ratios across these two treatments. We summarize the

hypothesis for rank dependence below.

Hypothesis 2. Subjects follow rank dependence:
ei

e4
=

vi−1

v3
for i = 2, · · · ,7.

3.5 Simulations

While MRS constitutes foundations of our hypotheses, it is not empirically observable

given its infinitely small nature. In the current experiment, we use ei
e4

and v j
v3

to approximate MRS

at targeted probability levels. The accuracy of such approximation depends on local change rates

of curvatures of π(·) and u(·). On one hand, following Rabin (2000) one can argue that u(·)

should have locally stable curvatures. On the other hand, little is known regarding local changes

of the probability weighting function. Consequently, it is not guaranteed a priori that the current

approximation will reflect the true parameters or provide sharp tests. In this section, we address

these concerns by simulating feedback from subjects and test performance of proposed tests.

We simulate 250 subjects and assume they are CPT utility maximizers endowed with a

CRRA utility function u(x) = xα ,α ∼ U (0.7,1.1) as well as a probability weighting func-

tion π(p) = pγ/(pγ +(1− p)γ)1/γ ,γ ∼ U (0.4,0.9).13 Since our results may be sensitive

to the parameter regions, we provide separate simulations for γ under three distributions

U (0.5,1),U (0.8,1), and U (0.9,1).

13U (a,b) represents the uniform distribution from a to b.

105



Fi
gu

re
3.

1.
Pr

ic
e

L
is

ts

106



Table 3.1. Estimations of Probability Weighting Curvature

Distribution of γ U (0.5,1) U (0.8,1) U (0.9,1)
(1) (2) (3) (4) (5) (6)

p = 0.05 0.958∗∗∗ 1.018∗∗∗ 0.347∗∗∗ 0.315∗∗∗ 0.156∗∗∗ 0.143∗∗∗

(0.042) (0.042) (0.015) (0.013) (0.007) (0.005)

p = 0.2 0.184∗∗∗ 0.159∗∗∗ 0.094∗∗∗ 0.080∗∗∗ 0.049∗∗∗ 0.041∗∗∗

(0.019) (0.004) (0.007) (0.003) (0.004) (0.001)

p = 0.35 0.016∗∗∗ 0.007∗∗∗ 0.016∗∗∗ 0.015∗∗∗ 0.008∗∗∗ 0.008∗∗∗

(0.004) (0.001) (0.004) (0.000) (0.002) (0.000)

p = 0.65 0.111∗∗∗ 0.101∗∗∗ 0.031∗∗∗ 0.024∗∗∗ 0.008∗∗∗ 0.011∗∗∗

(0.017) (0.005) (0.005) (0.001) (0.002) (0.000)

p = 0.8 0.341∗∗∗ 0.403∗∗∗ 0.108∗∗∗ 0.104∗∗∗ 0.050∗∗∗ 0.046∗∗∗

(0.023) (0.019) (0.007) (0.004) (0.004) (0.002)

p = 0.92 0.951∗∗∗ 1.234∗∗∗ 0.271∗∗∗ 0.275∗∗∗ 0.120∗∗∗ 0.117∗∗∗

(0.047) (0.064) (0.012) (0.012) (0.006) (0.005)
N 250 250 250 250 250 250

Notes: Conditional Expectations of curvatures π ′(p)−1 are recorded at p = 0.05,0.2,0.35,0.65,0.8, and 0.92. Standard errors clustered at
individual level in parentheses. Columns (1), (3), and (5) reports estimations from simulated subjects’ responses while columns (2), (4), and (6)
records true averages of π ′(p)−1 at corresponding probability levels. Columns (1) and (2) are results for γ ∼ U (0.5,1). Columns (3) and (4)
are results for γ ∼ U (0.8,1). Columns (5) and (6) are results for γ ∼ U (0.9,1).

The first object of this study is to investigate the shape of probability weighting functions.

To provide valid conclusions, the estimations from simulated subjects’ responses should be able

to detect nonlinearity, and their value should be close to the true parameter values. Table 3.1

reports estimations and true sample averages of π ′(p)−1 at different probability levels across

the three distributions of γ . As the results suggest, we can accurately test nonlinearity from

simulated subjects’ feedback. Even when the overall probability weighting function is close

to linear (γ ∼ U (0.9,1)), with the 250 simulated subjects, linearity is rejected at p = 0.35 and

p = 0.65. Further, the estimates are fairly close to the true average since their most differences

are within 0.1. The largest discrepancy, 0.28, occurs at p = 0.92 when γ ∼ U (0.5,1). This

107



indication does reflect the fact that our estimation can be noisy if the curvature of probability

weighting function changes dramatically. Nevertheless, according to previous results, subjects’

probability weighting functions are likely to be smooth, which implies that they shouldn’t change

dramatically at all probabilities. Further, the quantitative estimation of γ , as shown in table 3.2,

can reflect the true parameter reasonably well. The comparison between true and estimated

curvatures with γ ∼ U (0.5,1) at individual level is shown in figure 3.2. The result aligns with

our previous observation.

Table 3.2. Nonlinear Least Square Estimation

(1) (2) (3)
γ Distribution: U (0.5,1) U (0.8,1) U (0.9,1)
True γ average: 0.75 0.90 0.95

γ̂ 0.747 0.895 0.947
(0.008) (0.004) (0.002)

N 250 250 250

Figure 3.2. Individual Level Curvatures
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The current experiment also aims at testing validity of rank dependence. Hypothesis

2 suggests that subjects following CPT should yield similar MRS between (p,Z) and (q,X)

treatments. Since our current simulated samples follow CPT, our MRS estimations should be

close to each other. Table 3.3 provides the results. It records π ′(p)
π ′(0.5) between the two treatments

under various γ distributions. Overall, the results indicates that our current method reflects rank

dependence for most of the time. However, when curvature of π(·) is changing fast, there can

be some noises in our estimation. In table 3.3, when p+q = 0.92 in (q,X) treatment, the result

rejects rank dependence. Nevertheless, the magnitude of (all) deviations are less than 0.1. As a

result, the magnitudes also implies that rank dependence can explain the current data reasonably

well.

Table 3.3. Rank Dependence with CTP Subjects

(1) (2) (3)
p+q = 0.2 -0.013 -0.005 -0.001

(0.011) (0.01) (0.003)
p+q = 0.35 0.001 0.007 0.004

(0.08) (0.008) (0.004)
p+q = 0.65 -0.02 0.002 0.004

(0.02) (0.018) (0.004)
p+q = 0.8 -0.01 -0.014 0.005

(0.023) (0.021) (0.006)
p+q = 0.92 -0.083** -0.058 0.006

(0.04) (0.034) (0.006)
N 250 250 250

Notes: The average difference between estimated curvatures between (p,Z) and (q,X) treatments conditional on cumulative probabilities are
reported. Standard errors clustered at individual level in parentheses. Columns (1) records results for γ ∼ U (0.5,1). Columns (2) presents
results for γ ∼ U (0.8,1). Columns (3) shows results for γ ∼ U (0.9,1).

Previous simulation results suggest that if subjects’ are CPT thinkers, our data and tests

fail to reject the null hypothesis. We now investigate the case in which subjects are not CPT

thinkers. To this end, we keep the parameters’ settings – subjects are endowed with a utility

function u(x) = xα as well as a probability weighting function π(p) = pγ/(pγ +(1− p)γ)1/γ .

We now simulate the results of previous tests if the subjects are acting according to Prospect
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Theory (Kahneman and Tversky, 1979a). Specifically we have

V (p,Z) =V (q,X) = π(p)u(X)+π(q)u(Y )+π(1− p−q)u(Z).

In both cases, the additive separable feature is preserved. Therefore, results from section 3.3

follow through. However, the difference is that now
π ′(qi +0.15)
π ′(q̃+0.15)

̸= π ′(pi)

π ′(p̃)
in general.Table 3.4

summarizes the results. As expected, the differences are mostly significantly different from 0.

Further, comparing magnitudes of deviations between Table 3.3 and 3.4, when subjects follow

Prospect Theory instead of CPT, the magnitudes of deviations are at least 50% larger, and they

go up to 200%. Therefore, the current method is sufficiently powerful to reject rank dependence.

Table 3.4. Rank Dependence with Non-CTP Subjects

(1) (2) (3)
p+q = 0.2 -0.477∗∗∗ -0.078∗∗∗ -0.034∗∗∗

(0.028) (0.006) (0.003)

p+q = 0.35 -0.212∗∗∗ -0.034∗∗∗ -0.017∗∗∗

(0.018) (0.008) (0.006)

p+q = 0.65 0.196∗∗∗ 0.022∗∗∗ 0.000
(0.017) (0.005) (0.002)

p+q = 0.8 0.460∗∗∗ 0.032∗∗∗ 0.004∗

(0.040) (0.005) (0.003)

p+q = 0.92 -0.120∗∗∗ -0.164∗∗∗ -0.096∗∗∗

(0.027) (0.009) (0.007)
N 250 250 250

Notes: The average difference between estimated curvatures between (p,Z) and (q,X) treatments conditional on cumulative probabilities are
reported. The behaviors are simulated from subjects following Propspect Theory instead of CPT. Standard errors clustered at individual level in
parentheses. Columns (1) records results for γ ∼ U (0.5,1). Columns (2) presents results for γ ∼ U (0.8,1). Columns (3) shows results for
γ ∼ U (0.9,1).
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Appendix A

Supplement Materials for Chapter 1

A.1 Proofs

Theorem 1: Π satisfies Axiom 1-8 if and only if it has s a salience representation.

Furthermore, the salience function and utility are unique up to affine transformations.

Proof. (⇒) According to Lanzani (2022), Π satisfies axiom 1-5 if and only if it has a correlation-

sensitive preference representation with monotonic and continuous φ . We start from this φ

function and achieve a salience representation.

First , we restrict the outcome space to be the non-negative rational numbers. For all

x,x′ ≥ 0 with x′ > x, n ∈ N, we consider the sequence defined by {xi}n
i=0 with xi =

i
n(x

′− x)+ x

and define un
x→x′ = ∑

n
i=1 φ(xi+1,xi). Basically, {xi}n

i=0 is the IAS from x to x′ with n-1 terms in

between, and un
x→x′ is the sum of its step differences. Define ν(x′,x) = liminf

n→∞
un

x→x′ , we begin

by showing ν(x,x′) is linear: ν(x′,x) = ν(x′,0)−ν(x,0).

To this end, for all k ∈N, consider the subsequence of {un
x→x′}

∞
n=1 defined by {ukn

x→x′}
∞
n=1.

We now show liminf
n→∞

ukn
x→x′ = ν(x′,x). By definition, subsequences will have higher limit inferiors

than the sequence itself, so liminf
n→∞

ukn
x→x′ ≥ ν(x′,x). On the other hand, for every n ∈ N, ukn

x→x′ ≤

un
x→x′ . To see the reason, consider a special case of skewness prereference: one with the IAS
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{x, x+x′
2 ,x′}, it follows by the axiom that

pφ(
x+ x′

2
,x)+(1− p)φ(x,

x+ x′

2
)≥ 0,

⇒ p
2

φ(x′,x)+
(1− p)

2
(φ(x,

x+ x′

2
)+φ(

x+ x′

2
,x′))≥ 0.

According to monotonicity, the first inequality holds whenever p ≥ 0.5. Consequently, when

p= 0.5, the second inequality becomes, φ(x′,x)+(φ(x, x+x′
2 )+φ(x+x′

2 ,x′))≥ 0, or just φ(x′,x)≥

φ(x′, x+x′
2 )+φ(x+x′

2 ,x) = u2
x→x′ because φ is skew-symmetric. By iterating this argument, one

can get un
x→x′ ≤ φ(x′,x) for all n ≥ 1. Notice that ukn

x→x′ = ∑
n
i=1 uk

(x+ i
n (x

′−x),x+ i−1
n (x′−x))

, and

un
x→x′ = ∑

n
i=1 φ(x+ i

n(x
′− x),x+ i−1

n (x′− x)). Therefore, ukn
x→x′ ≤ un

x→x′ , so

liminf
n→∞

ukn
x→x′ = ν(x′,x).

If x,x′ ∈Q, we can identify k ∈ N such that {xi}kn
i=0 with xi =

i
knx′, and x = x j for some

j ≤ n.1 Consider ukn
0→x′ , we have the identity:

ukn
0→x′ = uk′n

0→x +uk′′n
x→x′, (A.1)

for some k′,k′′ ∈ N.2

Hence, by sub-additive of limit inferior, liminf
n→∞

ukn
0→x′ ≥ liminf

n→∞
uk′n

0→x + liminf
n→∞

uk′′n
x→x′ . To-

gether with liminfn→∞ ukn
x→x′ = ν(x′,x), we have

ν(x′,0)≥ ν(x,0)+ν(x′,x).

1If x = a
b , x′ = c

d with a,b,c,d ∈ N. define k = bc and j = adn Since x < x′, bc > ad, so j < kn, and we have
j

kn x′ = a
b .

2If x = a
b , x′ = c

d , we have k′ = ad,k′′ = bc−ad.
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On the other hand, for every ε > 0, we can identify n1,n2 ∈ N such that

0 ≤ uk′n1
0→x − liminf

n→∞
uk′n

0→x < 0.5ε,

and

0 ≤ uk′′n2
x→x′ − liminf

n→∞
uk′′n

x→x′ < 0.5ε,

Let n∗ = n1 ×n2, and use the identity in equation A.1, we have ukn3
0→x′ = uk′n1n2

0→x +uk′′n1n2
x→x′ .

Since ukn
x→x′ ≤ un

x→x′ , so we have uk′n1n2
0→x ≤ uk′n1

0→x and uk′′n1n2
0→x ≤ uk′′n2

0→x. Thus,

ukn3
0→x′ ≤ liminf

n→∞
uk′n

0→x + liminf
n→∞

uk′′n
x→x′ + ε.

Furthermore, ukn3
0→x′ ≥ liminf

n→∞
ukn

0→x′ . The reason is that umkn3
0→x′ ≤ ukn3

0→x′ for all m ∈ N, so there are

infinitely many terms in {ukn
0→x′}

∞
n=1 with ukn

0→x′ ≤ ukn3
0→x′ . Consequently, we achieve

liminf
n→∞

ukn
0→x′ ≤ liminf

n→∞
uk′n

0→x + liminf
n→∞

uk′′n
x→x′ + ε.

Since ε is arbitrary, we have

liminf
n→∞

ukn
0→x′ ≤ liminf

n→∞
uk′n

0→x + liminf
n→∞

uk′′n
x→x′,

which is equivalent to:

ν(x′,0)≤ ν(x,0)+ν(x′,x).

And hence, ν(x′,0) = ν(x,0)+ν(x′,x).

Our next step is to define the utility function u(x) for x∈R+. For x∈Q, let u(x) = ν(x,0),

otherwise let u(x)= lim
x′∈Q,x′→x

v(x′,0). We now show that u(x) is strictly increasing and continuous

on rational numbers.

We first deal with continuity. Let x,x′ ∈Q with x′ > x. Notice, u(x′)−u(x) = ν(x′,0)−
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ν(x,0) = ν(x′,x) by the linearity we just showed. From skewness preference, we know that

0 ≤ ν(x′,x)≤ φ(x′,x), hence as x′ → x, by continuity of φ , φ(x′,x)→ 0, so u(x′)→ u(x).

We now show monotonicity, again, u(x′)−u(x) = ν(x′,0)−ν(x,0) = ν(x′,x), so mono-

tonicity can be achieved if ν(x′,x)> 0. Consider axiom increasing utility, its statement directly

translates to 1−p
n un

x→x′ +
p
n φ(x,x′) > 0. Or just, un

x→x′ ≥
p

1−pφ(x′,x) for all n ∈ N. Therefore,

ν(x′,x)≥ p
1−pφ(x′,x). With p > 0, ν(x′,x)> 0.

Since Q is dense on real numbers, continuity and monotonicity follow directly by a

standard convergence argument. It is omitted here.

Next, we define the salience function as:

f (σ(x,y)) =



φ(x,y)
u(x)−u(y)

if x ̸= y;

1 otherwise.

(A.2)

For expression A.2 to be a valid salience function, we check four things: it satisfies

ordering, it satisfies diminishing sensitivity, it satisfies continuity, and it obtains minimal at x = y.

We start with checking these four properties at rational outcome pairs.

Let, x,x′,x′′ ∈Q with 0 ≤ x < x′ < x′′. We show that f (σ(x′,x))≤ f (σ(x′′,x)). Using

a similar argument as before, we can find k ∈ N such that for all IAS {xi}kn
i=0 with x0 = x

and xkn = x′′, we can identify xi∗ = x′ for some i∗. According to skewness prereference, for

all p ∈ (0,1], p
i∗ φ(x′,x)+ 1−p

i∗
i∗

∑
j=1

φ(x j−1,x j)≥ 0 implies p
knφ(x′′,x)+ 1−p

kn

kn
∑
j=1

φ(x j−1,x j)≥ 0.3

Therefore,
φ(x′,x)

∑
i∗
j =1 φ(x j,x j−1)

≥ 1− p
p

=⇒ φ(x′′,x)
∑

n
j =1 φ(x j,x j−1)

≥ 1− p
p

.

3Starting with {x,x1} and extend this IAS one step at a time until it reaches x′′. Skewness preference posits that

1 =
φ(x1,x0)

φ(x1,x)
≤ φ(x2,x)

φ(x2,x1)+φ(x1,x0)
≤ φ(x3,x)

φ(x3,x2)+φ(x2,x1)+φ(x1,x0)
≤ . . .≤ φ(x′,x)

ui∗
x→x′

. . .≤ φ(x′′,x)
un

x→x′′
.
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In other words,
φ(x′,x)
uk′n

x→x′
≤ φ(x′′,x)

ukn
x→x′′

, for some k′ ∈ N.

As a result, liminf
n→∞

φ(x′,x)
uk′n

x→x′
≤ liminf

n→∞

φ(x′′,x)
ukn

x→x′′
. Therefore, φ(x′,x)

ν(x′,x) ≤
φ(x′′,x)
ν(x′′,x) . By the linearity of ν(·),

the axiom implies that

φ(x′,x)
u(x′)−u(x)

≤ φ(x′′,x)
u(x′′)−u(x)

⇒ f (σ(x′,x))≤ f (σ(x′′,x)).

Therefore, Ordering is satisfied on all rational outcomes.

For diminishing sensitivity, let’s consider axiom diminishing relative sensitivity.

Given φ(x′+ε,x+ε) and un
x+ε→x′+ε

, there exists p ∈ [0,1] such that pφ(x′+ε,x+ε) =

(1− p)un
x+ε→x′+ε

.4 By a similar argument, we have

φ(x′+ ε,x+ ε)

un
x+ε→,x′+ε

=
1− p

p
and

φ(x′,x)
um

x→,x′
≥ 1− p

p
for some m ∈ N.

Therefore,
φ(x′+ ε,x+ ε)

un
x+ε→x′+ε

≤ φ(x′,x)
um

x→,x′
≤ φ(x′,x)

v(x′,x)
.

The second inequality holds because um
x→,x′ ≥ ukm

x→,x′ for all k > 1, and it implies um
x→,x′ > v(x′,x).

Hence,
φ(x′+ ε,x+ ε)

v(x′+ ε,x+ ε)
≤ φ(x′,x)

v(x′,x)
.

Therefore, diminishing sensitivity also holds for rational outcomes.

Next, let us show that f (σ(x,y)) is continuous at all outcome pairs (x,y). For all pairs

such that x ̸= y, continuity of the salience function is implied by continuity of u(·) and φ(·, ·).

Now we show, as x′ → x, φ(x′,x)
u(x′)−u(x) → 1. According to increasing utility, there exists p such that

φ(x′,x)
v(x′,x) ≥

p
1−p . Since the axiom also states that as x′ → x, p → 0.5. The result follows.

Lastly, using skewness preference as in footnote 41, we have 1 ≤ φ(x′,x)
v(x′,x) (here we don’t

4The statement results from median value theorem.
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need to restrict the outcome to be rationals). Therefore, f ◦σ obtains minimal at x = y. Since

f (σ(x,y)) is continuous, using a standard convergence argument, f (σ(x,y)) satisfies ordering

and diminishing sensitivity at all outcome pairs.

(⇐) Given a salience representation φ(x,y) = f (σ(x,y))(u(x)−u(y)), we now show it

must satisfies, increasing utility, skewness prereference, and diminishing relative sensitivity.

Without losing the generality, let’s assume that f (σ(0,0)) = 1.

For increasing utility, given x > y ≥ 0, let p = 1
f (σ(x,y)) . For all IAS {xi}n

i=0 we have

1
n

n

∑
i=1

φ(xi,xi−1)−
p
n

φ(y,x),

=
1
n

( n

∑
i=1

f (σ(xi,xi−1))u(xi,xi−1)− p f (σ(x,y))(u(y)−u(x))
)
,

≥1
n

( n

∑
i=1

(u(xi)−u(xi−1))− (u(y)−u(x))
)
= 0.

Therefore, (1− p)U({xi}n
i=0)+

p
n δy,x ∈ Π̂. And the axiom follows.

Now we show the necessity of skewness preference. Given an IAS {xi}n
i=0, we have

f (σ(xn−1,x0))

∑
n−1
i=1

u(xi)−u(xi−1)
u(xn−1)−u(x0)

f (σ(xi,xi−1))
≤ f (σ(xn,x0))

∑
n
i=1

u(xi)−u(xi−1)
u(xn)−u(x0)

f (σ(xi,xi−1))
.

To see this, first notice that for the numerators, by the ordering of salience theory, we have

f (σ(xn−1,x0))≤ f (σ(xn,x0)). Furthermore, for the denominators, denote

n−1

∑
i=1

(u(xi)−u(xi−1)

u(xn −1)−u(x0)
f (σ(xi,xi−1)) = Λ.

Intuitively, Λ is an weighted average of f (σ(xi,xi−1)) where the corresponding weights are

defined by u(xi)−u(xi−1)
u(xn−1)−u(x0)

. Then it follows that

n

∑
i=1

(u(xi)−u(xi−1)

u(xn −1)−u(x0)
f (σ(xi,xi−1)) =

u(xn−1)−u(x0)

u(xn)−u(x0)
Λ+

u(xn)−u(xn−1)

u(xn)−u(x0)
f (σ(xn,xn−1)).
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Since |xi − xi−1| is constant for an IAS, f (σ(xn,xn−1)) ≤ f (σ(xi,xi−1)) for all i < n due to

diminishing sensitivity of salience function. Consequently, f (σ(xn,xn−1)) is smaller than any

form of their average. Hence, ∑
n
i=1

(u(xi)−u(xi−1)
u(xn−1)−u(x0)

f (σ(xi,xi−1))< Λ. And the proposed inequality

follows. In skewness prereference, p
n−1δ(xn−1,x0) + (1 − p)U({xi}n−1

i=0 ) ∈ Π is equivalent to
f (σ(xn−1,x0))

∑
n−1
i=1

u(xi)−u(xi−1)
u(xn−1)−u(x0)

f (σ(xi,xi−1))
≥ 1−p

p . Hence, f (σ(xn,x0))

∑
n
i=1

u(xi)−u(xi−1)
u(xn)−u(x0)

f (σ(xi,xi−1))
≥ 1−p

p , and it suggests that

p
n δ(xn,x0)+(1− p)U({x0}n

i=0) ∈ Π.

Lastly, given {xi}n
i=0 and y0 ≤ x0, find y1 > y0 such that f (σ(y1,y0))≤ f (σ(xn,xn−1)),

and |x1 − x0| is a multiple of |y1 − y0|. Next construct the IAS {yi}m
i=0 based on y0 and y1 with

ym − y0 = xn − x0. We have

f (σ(xn,x0))

∑
n
i=1

u(xi)−u(xi−1)
u(xn)−u(x0)

f (σ(xi,xi−1))
≤ f (σ(xn,x0))

f (σ(xn,xn−1))
,

≤ f (σ(ym,y0))

f (σ(y1,y0))
,

≤ f (σ(ym,y0))

∑
m
i=1

u(yi)−u(yi−1)
u(yn)−u(y0)

f (σ(yi,yi−1))
.

Following a similar argument as in skewness prereference, the necessity of diminishing relative

sensitivity is established.

For uniqueness, if φ(x,y) = f̂ (σ̂(x,y))h(x)−h(y) = f (σ(x,y))(u(x)−u(y)). Set y = 0,

without losing generality, we can assume u(0) = h(0) = 0. Fix x, we can identify the supreme of

probability p such that

(1− p)U({xi}n
i=1)+

p
n

δ(y,x) ∈ Π̂.

From increasing utility, we know that this supreme is positive, let’s denote it p∗. In this case, we

have
φ(x,0)

f (σ(0,0))u(x)
=

φ(x,0)
f̂ (σ̂(0,0))h(x)

=
1− p∗

p∗
.

As a result, u(x) = f̂ (σ̂(0,0))
f (σ(0,0))h(x). Hence, they are at most affine transformations. Here they are

linear transformations to each other because we set them to have 0 utility at x = 0.

117



Lemma 1a: Given any compact outcome space X ⊂R, salience function σ(·, ·), and ε > 0,

for every x,y,x′,y′ ∈ X with |x−y|≥ ε , |x′−y′|≥ ε , there exists k > 1 such that σ(x,y)≤ σ(x′,y′)

whenever k|x− y|≤ |x′− y′|.

Proof. For simplicity, let 0 ∈ X . Notice that the set Xε = X ×X
⋂
{(x,y) : |x− y|≥ ε}. Since X

is compact and {(x,y) : |x− y|≥ ε} is closed, Xε is compact. Denote x̄ the maximal value on X .

For every x ∈ X and x ≥ ε , we can identify T (x)⊂ X such that f (σ(x,0))≤ f (σ(x̄,y)) for all

y ∈ T (x).5 Let t(x) = sup{T (x)}. Due to ordering of salience function, f (σ(x,0)) is increasing

in x, so t(x) is decreasing in x. Further, t(x) is continuous because f (σ(·, ·)) is continuous.

In summary, we have x̄−t(x)
x continuous on {x ∈ X |x ≥ ε}. In addition, x̄−t(x)

x continuous on

{x ∈ X |x ≥ ε} is compact, so x̄−t(x)
x obtains it maximal value, which we denoted as k.

To complete the analysis, let (x,y),(x′,y′) ∈ Xε with k|x− y|≤ |x′− y′|. By diminishing

sensitivity of salience function, we have f (σ(x,y))≤ f (σ(|x−y|,0)) and f (σ(x′,y′))≥ f (σ(x̄−

|x′− y′|, x̄)). Since |x′−y′|
|x−y| ≥ k, f (σ(|x− y|,0)) ≤ f (σ(x̄− |x′− y′|, x̄)). Hence, f (σ(x,y)) ≤

f (σ(x′,y′)).

Lemma 1b: Given any compact outcome space X ⊂R, salience function σ(·, ·), and k > 1,

there exists δ > 0 such that for every x,y,x′,y′ ∈X with |x−y|> δ , |x′−y′|> δ , σ(x,y)≤σ(x′,y′)

whenever k|x− y|≤ |x′− y′|.

Proof. Following the notations in the previous lemma, we have as ε → diam(X),6 x̄−t(x)
x → 1.

To see it, we have f (σ(x,0))→ f (σ(x̄,0)) as x → x̄. In addition, as ε → diam(X), if (x,y) ∈ Xε ,

|x− y|→ x̄. The result follows.

Proposition 1: A decision-maker’s preference has s a k-regular salience representation if

and only if she satisfies axiom 1 - 9.

5T (x) is not empty because f (σ(x̄, x̄))≤ f (σ(x,0))≤ f (σ(0, x̄)) and f (σ(·, ·)) is continuous.
6diam(X) = max

x∈X
x−minx∈X x
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Proof. (⇒) Given IAS {xi}n
i=0, we still denote un

x0→xn
the summation

n
∑

i=1
φ(xi,xi−1). First, as-

sume y0 ≥ xn, by the design of axiom k-regular, we have min
i≤n

f (σ(xi,xi−1))≥max
i≤m

f (σ(yi,yi−1)),

and ym−y0 ≥ k(xn−x0). Therefore, if the decision-maker has a k-regular salience representation,

we have
f (σ(xn,x0))

n
∑

i=1

u(xi)−u(xi−1)
u(xn)−u(x0)

f (σ(xi,xi−1))
≤ f (σ(ym,y0))

m
∑

i=1

u(yi)−u(yi−1)
u(yn)−u(y0)

f (σ(yi,yi−1))
.

Therefore, the axiom is true.

(⇐) If axiom is true, we have

φ(xn,x0)

un
x0→xn

≤ φ(ym,y0)

um
y0→ym

,

For all m,n such that xn−x0
n = ym−y0

m . Therefore,

liminf
n→∞

φ(xn,x0)

un
x0→xn

≤ liminf
m→∞

φ(ym,y0)

um
y0→ym

,

⇒ f (σ(xn,x0))(u(xn)−u(x0))

u(xn)−u(x0)
≤ f (σ(ym,y0))(u(ym)−u(y0))

u(ym)−u(y0)
,

⇒ f (σ(xn,x0))≤ f (σ(ym,y0)).

The second line holds because the salience representation is unique, and u(x) = liminf
n→∞

un
0→x.

The axiom posits that f (σ(xn,x0)) ≤ f (σ(ym,y0)) if k(xn − x0) ≤ ym − y0 and y0 ≥ xn.

According to diminishing sensitivity, for all ε ≥ 0, f (σ(ym − ε,y0 − ε))≥ f (σ(ym,y0)) given

that y0 − ε ≥ 0. Therefore, k-regular of salience function follows.

Proposition 2: Suppose a decision-maker’s preference has a k-regular salience represen-

tation, then for every p > 0 and IAS {xi}n
i=0

p
n

δ(xn,x0)+(1− p)U({xi}n
i=0) ∈ Π ⇒ p

m
δ(ym,y0)+(1− p)U({yi}n

i=0) ∈ Π.
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for all IAS {yi}m
i=0 such that ym − y0 = xn − x0, 0 ≤ y0 ≤ x0, and k(y1 − y0)≤ x1 − x0.

Proof. This is a direct check of the definitions.

Proposition 3: The utility function of a decision-maker with a salience representation is

concave if and only if she follows axiom 10.

Proof. (⇒) φ(x,x−h) = f (σ(x,x−h))(u(x)−u(x−h)) and φ(x+h,x) = f (σ(x+h,x))u(x+

h)− u(x). By diminishing sensitivity of salience function, f (σ(x,x− h)) ≥ f (σ(x+ h,x)).

Furthermore, by concavity of u, we have u(x)−u(x−h)≥ u(x+h)−u(x). The result follows.

(⇐) Since utility of the salience representation is continuous, according to Sierpinski’s

theorem, it is sufficient to show that for all x > 0, u(x+h)−u(x)< u(x)−u(x−h) given x ≥ h.

Since salience representation is unique up to affine transformations, from the proof of theorem 1,

u(x)−u(x−h) = ν(x,x−h) = liminf
n→∞

un
x−h→x, and u(x+h)−u(x) = ν(x+h,x) = liminf

n→∞
un

x→x+h.

For all ε > 0, we can identify n∗ such that |u(x)−u(x−h)−un∗
x−h→x|≤ ε and |u(x+h)−

u(x− h)− u2n∗
x−h→x+h|≤ ε . Hence, |u(x+ h)− u(x)− (u2n∗

x−h→x+h − un∗
x−h→x)|< 2ε . Notice that,

u2n∗
x−h→x+h − un∗

x−h→x =
2n∗

∑
i=n∗+1

φ(xi,xi−1) and un∗
x−h→x =

n∗

∑
i=1

φ(xi,xi−1) where {xi}2n∗
i=0 is the IAS

from x−h to x+h. By axiom concavity, there is an order post upon these differences:

φ(x1,x0)≥ φ(x2,x1)≥ φ(x3,x2)≥ . . .≥ φ(x2n∗,x2n∗−1).

Therefore, u2n∗
x−h→x+h −2un∗

x−h→x ≤ 0, so (u(x+h)−u(x))− (u(x)−u(x−h))≤ 3ε . Since ε is

arbitrary, we have u(x+h)−u(x)≤ u(x)−u(x−h).

Theorem 2: Π has a regret representation if and only if it satisfies axiom 1-5, and 11.

Furthermore, the utility is unique up to affine transformations.

Proof. (⇒) {(x1,y1),0.5; (x2,y2),0.5} ∈ Π implies that Q(u(x1)− u(y1)) ≥ Q(u(x2)− u(y2).

Since Q(·) is monotonic, u(x1)−u(y1)≥ u(y2)−u(x2). It follows that u(x1)−u(y2)≥ u(y1)−

120



u(x2). Therefore, Q(u(x1)−u(y2))≥ Q(u(y1)−u(x2)), which implies

{(x1,y2),0.5; (x2,y1),0.5} ∈ Π.

(⇐) The technique here is similar to Diecidue and Somasundaram (2017). We start

by find a sequence A1 = {a0,a1,a2, . . .} (can be finite) such that a0 = 0, and φ(ai+1,ai)> 0 is

constant. To this end, set a0 = 0, and a1 = 1. Suppose we identified ai for some i ≥ 1. Since φ is

continuous, one of the following must be true:

A. There is ai+1 such that φ(ai+1,ai) = φ(1,0).

B. For all x > ai, φ(x,ai)< φ(1,0).

If B is true, terminate. If A is true, record ai+1 and continue.

Now, between a0 and a1, we define a0.5, where φ(a0.5,a0) = φ(a1,a0.5). This a0.5

exists because φ is continuous. Consider T (x) = φ(x,a0)−φ(a1,x), so T is continuous. T (0) =

−φ(a1,a0) and T (1)= φ(a1,a0). By median value theorem, there is x∈ (0,1) such that T (x)= 0.

Set a0.5 = x.

Now we find a1.5 such that φ(a1.5,a1) = φ(a0.5,a0). Because φ(a1,a1)< φ(a0.5,a0)<

φ(a2,a1). We can find a1.5 ∈ (a1,a2) satisfies the requirement. We now show φ(a2,a1.5) =

φ(a0.5,a0). φ(a1.5,a1) = φ(a0.5,a0) implies {(a1.5,a1),0.5; (a0,a0.5),0.5} ∈ Π. By swapping

independence, {(a1.5,a0.5),0.5; (a0,a1),0.5} ∈ Π, so φ(a1.5,a0.5)≥ φ(a1,a0). Using a similar

argument, we can get φ(a1.5,a0.5)≤ φ(a1,a0), and hence, φ(a1.5,a0.5) = φ(a1,a0). Therefore,

φ(a1.5,a0.5) = φ(a2,a1). Apply swapping independence again, we have φ(a2,a1.5) = φ(a1,a0.5).

Hence, φ(a2,a1.5) = φ(a0.5,a0). We continue the process, for each ai ∈ A1, we find ai+0.5.

Notice, if A1 is finite and ends at an, we may not find an+0.5, since it may be the case that

φ(x,an)< φ(a0.5,a0) for all x > an. In that case, we terminate.

The kew property of this sequence is that the value of φ(ai+0.5k,ai) only depends on k.

To see this, we just showed that adjacent pair has a constant difference: φ(a0.5+0.5k,a0.5k) =
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φ(a0.5,a0), by swapping independence, φ(a0.5+0.5k,a0.5) = φ(a0.5k,a0).

Next, we have φ(a1+0.5k,a0.5+0.5k) = φ(a1,a0.5). Hence, φ(a1+0.5k,a1) = φ(a0.5+0.5k −

a0.5).

Keep iterating, we get φ(ai+0.5k,ai) = φ(a0.5k,a0) for all i.

Denote A2 = {a0,a0.5,a1,a1.5,...}.

Similarly, for each ai in A2, we find ai+0.25 and get A3. The process proceeds inductively,

after getting An, we find ai+0.5n for each ai ∈ An and get An+1. In the end, we get ∪∞
n=1An.

By a similar argument, φ(a j,ai) only depends on the differences between j and i. For every

ai ∈ ∪∞
n=1An, we define u(ai) = i.

We now claim that a0.5n → 0 as n → ∞. Since a0.5n is monotonically decreasing and

positive, the limit exists, denoted it by a and we have a ≤ a0.5n for all n. On the other hand, by

construction, φ(a0.5n,0) = φ(a0.5n−1,a0.5n), for all n. so φ(a0.5n,0) ≤ φ(a0.5n−1,a). Therefore,

φ(a0.5n,0) converges to 0, and hence a0.5n → 0 as n → ∞.

For every generic x ∈ R+ such that x /∈ An for all n, we claim there is a sequence {bi}∞
i=1

s.t. bi ∈ Ai for all i and |bi − x|→ 0 as i goes to infinity. For each x ≥ 0, we can find a j1 ∈ A1

s.t. 0 < φ(x,a j1) < φ(a1,a0). Because x /∈ A1, so we can ignore equality on both ends. Set

b1 = a j1 . If φ(x,a j1) < φ(a0.5,a0), set b2 = a j1 . Otherwise, set b2 = a j1+0.5. The process

continuous. In the end, we have 0 < φ(x,bi) < φ(a0.5(i−1),a0) for all i. Since fix x, φ(x,y) is

continuously increasing in y for y ≤ x and φ(a0.5(i−1),a0)→ 0 as i → ∞, we have bi → x. Define

u(x) = limi→∞ u(bi). By design, u is continuous.

Similarly, we can perform the same process over negative outcomes, the detailed construc-

tion is omitted here. Expand A1 = {a0,a1,a2, . . .}∪{a−1,a−2, . . .} and expand Ai accordingly.

Since for every ai,a j ∈ ∪∞
n=1An, we have φ(ai,a j) only depends on the differences between i

and j, so we can find a function Q such that φ(ai,a j) = Q(i− j) = Q(u(ai)−u(a j)).

By previous argument, for all x,y ∈ R, we can find sequences {bx
i }∞

i=1 and {by
i }∞

i=1, s.t
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bx
i ,b

y
i ∈ Ai for all i and bx

i → x, by
i → y. Notice

φ(x,y) = lim
i→∞

φ(bx
i ,b

y
i ) = lim

i→∞
Q(u(bx

i )−u(by
i )) = Q(u(x)−u(y)).

It is direct to verify that Q is continuous, skew-symmetric, and increasing. Therefore, the

preference can be presented by regret theory.

For uniqueness, notice that for every utility function that can represent the preference,

∪∞
n=1An stays invariant. Therefore, if u(·) and v(·) both represent the same preference, we have

u(x1)−u(y1)≥ u(x2)−u(y2) =⇒ v(x1)− v(y1)≥ v(x2)− v(y2)∀x1,x2,y1,y2 ∈ ∪∞
n=1An.

This implies that u and v must be affine transformations to each other on ∪∞
n=1An. Since ∪∞

n=1An

is dense, the result follows.

Proposition 4: The utility function of a decision-maker with a regret representation is

concave if and only if her preference set satisfies axiom 10.

Proof. The conclusion follows from the following equivalent statements.

{(x,x−h),0.5; (x,x+h),0.5} ∈ Π,

⇔Q(u(x)−u(x−h))≥ Q(u(x+h)−u(x)),

⇔u(x)−u(x−h)≥ u(x+h)−u(x),

⇔u(·) is concave at x.

Proposition 5: Suppose the outcome space is a compact subset of R+, a decision-maker’s

preference either has an expected utility representation or has a regret representation with concave

u(·), increasing Q(x)
x , and lim

x→0

Q(x)
x > 0 if and only if she satisfies axioms 1-8, and 11.
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Proof. (⇒) Without losing generality, let lim
x→0

Q(x)
x = 1. In this case, we show that the regret

representation can be rewritten as a salience representation. Following Herweg and Müller

(2021), let

f (σ(x,y)) =



Q(u(x)−u(y))
u(x)−u(y) if x ̸= y

1 otherwise

Since increasing the distance between outcomes will enlarge their utility differences and Q(x)
x

is increasing in x, f (σ(x,y)) satisfies ordering. In addition, with u(·) being concave, we have

u(x)−u(y)≥ u(x+ ε)−u(y+ ε) for all x > y ≥ 0. Again, with Q(x)
x being increasing in x, we

have f (σ(x,y))≥ f (σ(x+ε,y+ε)). For continuity, by continuity of u(·) and Q(·), the proposed

salience function is continuous at points with x ̸= y. As for x = y, the continuity follows from

lim
x→0

Q(x)
x > 0 and Q(x)

x is increasing in x.

(⇐) Since axioms 1-8 and 11 are satisfied, the preference can be presented by φ(x,y) =

Q(u(x)−u(y)). It also has a unique salience representation f (σ(x,y))(h(x)−h(y)). In principle,

u(·) ̸= h(·). However, as we will show, they are indeed equal to each other. Without losing

generality, we assume h(0) = u(0) = 0.

Consider a sequence {y j}n
j=0 wherein u(y j)−u(y j−1) stays constant for all i, and define

τn
y0→yn

= ∑
n
j=1 Q(u(y j)−u(y j−1)). Comparing to IAS, the current sequence cuts utility from y0

to yn into equal pieces. Notice that if the preference has a salience representation, fixing y0 = 0

and yn = y, we have lim
n→∞

τn
0→y = f (σ(0,0))h(y). In other words,

lim
n→∞

nQ(
u(y)

n
) = f (σ(0,0))h(y),

⇒u(y) lim
n→∞

Q(1
n)

1
n

= f (σ(0,0))h(y).

Since Q is monotonic and continuous, we just showed lim
x→0

Q(x)
x > 0. In addtion, the result also
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suggests that u(·) and h(·) are identical up to linear transformations. For simplicity, we proceed

with u(x) = h(x). In this case, we have f (σ(x,0)) = Q(u(x))
u(x) . By ordering, Q(x)

x must be increasing

in x. By diminishing sensitivity, u(·) must be concave.

A.2 Characterizations with Mixed Outcomes

When the outcome space is non-negative, straight forward extensions of skewness prefer-

ence and diminishing relative sensitivity provide a basis for salience representation. However,

when the outcome space X contains mixed outcomes, skewness preference needs to be slightly

relaxed.

Axiom 21 (Strong Increasing Utility). For every x,y ∈ X with y < x, there exists p ∈ (0,0.5]

such that for all IAS {xi}n
i=0 with x0 = y and xn = x, we have

(1− p)U({xi}n
i=1)+

p
n

δ(y,x) ∈ Π̂.

Furthermore, p → 0.5 as x → y.

The difference between strong increasing utility and increasing utility is now, p is

restricted to be at most 0.5. This condition is originally implied by skewness preference. Since

we are about to relax the axiom, we add the restriction back. Now, we state the generalized

skewness preference.

Axiom 22 (Generalized Skewness Preference). For all IAS {xi}n
i=0 and y0 ≤ x0 < xn ≤ yn there

exists an IAS {yi}m
i=0 such that

p
n

δ(xn,x0)+(1− p)U({xi}n
i=0) ∈ Π ⇒ p

m
δ(ym,y0)+(1− p)U({yi}m

i=0) ∈ Π.

Axiom 23 (Generalized Diminishing Relative Sensitivity). For every non-mixed IAS {xi}n
i=0,
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|y0|≤ |x0|, and y0x0 ≥ 0, there is an non-mixed IAS {yi}m
i=0 with ym − y0 = xn − x0 such that

p
n

δ(xn,x0)+(1− p)U({xi}n
i=0) ∈ Π ⇒ p

m
δ(ym,y0)+(1− p)U({yi}m

i=0) ∈ Π.

Crudely, generalized diminishing relative sensitivity adds a mirrored restriction for

non-positive IAS. Here we state and prove the representation theorem.

Proposition 9. Π induces a salience representation if and only if it satisfies axiom 1-5, A.1, A.2,

and A.3.

Proof. Similar to Theorem 1.

A.3 Characterization of Expected Utility Theory

We now characterize expected utility theory. From general correlation-sensitive pref-

erence to regret theory, we introduce swapping independence to ensure that decision-makers’

behaviors respect the ordinal order upon utility differences. Once this ordinal order is preserved,

the representation becomes some monotonic transformation of the utility difference. It is natural

to ask whether a stronger version of swapping independence can preserve the cardinal order

between utility differences and hence recover the expected utility representation. We present the

appropriate version below.

Axiom 24 (Conditional Swapping Independence). For all (x1,y1),(x2,y2).(x3,y3) ∈ X ×X:

{(x1,y1),
1
3

; (x2,y2),
1
3

; (x3,y3),
1
3
} ∈ Π ⇒ {(x1,y2),

1
3

; (x2,y1),
1
3

; (x3,y3),
1
3
} ∈ Π.

To see how conditional swapping independence can preserve the cardinal information, let

us denote {(x1,y1),
1
2 ; (x2,y2),

1
2} as π and {(x1,y2),

1
2 ; (x2,y1),

1
2} as πswap. Conditional swap-

ping independence requires that 2
3π + 1

3δ(x3,y3) ∈ Π implies 2
3πswap +

1
3δ(x3,y3) ∈ Π. Therefore,

the valuation of π and πswap must be identical in order for the conclusion to hold.
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Proposition 10. A decision-maker’s preference has a expected utility representation if and only

if she satisfies axiom 1-5, and A.4.

Proof. (⇒) Since conditional swapping independence implies preference consistency under a

certain type of correlation manipulation, if the decision-maker is an expected utility maximizer,

she will follow the axiom.

(⇐) Since conditional swapping independence implies swapping independence, the

decision maker has a regret representation φ(x,y) = Q(u(x)− u(y)). We now show that her

regret function Q(·) has to be linear.

To this end, it is sufficient to show Q(x+ y) = Q(x)+Q(y). Let us find Qx,x′,x′′ ∈ X

with x > x′ > x′′, then according to monotonicity we have {(x,x′′), 1
3 ; (x′,x′), 1

3 ; (x′′,x), 1
3} ∈

Π/Π̂. By conditional swapping independence, we have {(x,x′), 1
3 ; (x′,x′′), 1

3 ; (x′′,x), 1
3} ∈ Π/Π̂.7

Therefore, Q(u(x′)−u(x))+Q(u(x′′)−u(x′)) =Q(u(x′′)−u(x)). Therefore, Q(·) must be linear.

Since it is also monotonically increasing, φ(x,y) = c(u(x)−u(y)) for some c > 0.

7The design of lottery reflects proposition 1 in Loewenfeld and Zheng (2023)
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A.4 Additional Experimental Results

A.4.1 Completeness Measure

Fudenberg et al. (2022) introduce the completeness measure of a model as follows:

Ebase −Emodel

Ebase −Eirreducible
,

where Ebase , Emodel , and Eirreducible are the out-of-sample prediction errors from the baseline

model, model of interest, and the best model. Specifically, given observations (x,y) ∈ X ×Y , a

prediction rule f is a mapping from explanatory variables X to dependent variables Y . Given

a prediction rule f , a cost function l : Y ×Y 7→ R+, and a joint distribution P over X ×Y , the

expected prediction error of f is EP[l( f (x),y)]. Let us denote the baseline model’s prediction

rule as fb and the best prediction rule as f ∗. For current exercise, l(x,y) = (x− y)2. Hence

f ∗(x) =E[Y |X = x]. Since current experiment only concerns qualitative properties the prediction

rules for regret and salience theories, fr and fs, are uniquely defined. For regret theory, X is

subjects’ choices from negatively correlated tasks and Y is their decisions in positively correlated

tasks. Based on swapping independence, fr(x) = x. For salience theory, X is the value of

ln( q
p N

)+ ln( q
p L
) based on subjects’ choices from normal and low contrast tasks while Y is the

value of ln( q
p H

)− ln( q
p N

) based on their decisions from high and normal contrast tasks. Since

all axioms of salience theory posits that y ≤ x, we define fs(x) as min{E[Y |X = x],x}, that is

they are only able to rationalize y given it is smaller than x. Lastly, because the experimental

settings for regret and salience are different, we define separate baseline prediction rules for each

theory. First, for regret theory, the baseline fb = miny∈Y y, which is the smallest possible value

in positively correlated tasks. In contrast, for salience theory, we let fb(x) = x, which reflects the

hypothesis from Expected Utility Theory: x = y.

To estimated the out-of-sample performance for each theory, we follow the procedure

proposed in Fudenberg et al. (2020):
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1. Given our 516 sample, we randomly divide into 10 groups with group 1 has 66 subjects,

and remaining groups have 50 subjects. Denote these groups by G1,G2, . . . ,G10.

2. Fix a group Gi, we train the prediction rules based on subjects that are not in this group. In

our specification, E[Y |X = x] = 1
|G−ix| ∑

j∈G−ix

y j, where G−ix represents the subjects not in

group i that has X = x.

3. Calculate the average out-of-sample errors: ei( f ) = 1
|Gi| l( f (xi),yi).

4. Repeat steps 2 and 3 for each group and estimate

Ebase =
1
10

10

∑
i=1

ei( fb), Emodel =
1

10

10

∑
i=1

ei( fm), and Eirreducible =
1

10

10

∑
i=1

ei( f ∗).

A.4.2 Correlation Dependence

We use pair 3 payment-variation tasks to test the general correlation sensitivity. Figure

A.1 presents the CDF of ∆X . The results suggest that there is a significant choice reversal

between the two questions. For Poa population, 27.5% subjects exhibit correlation-insensitive

behaviors in this pair while for Pos population, 38% subjects exhibit such behaviors. The

percentage of preference reversals for this pair is indeed lower than the percentages in both pairs

1 and 2. This result implies that preference consistency in pairs 1 and 2 cannot be fully explained

by correlation insensitivity. Table A.1 presents the aggregate results for ∆X in pair 3 payment-

variation task. Therefore, from an aggregate level, even the deviations are significant, their

magnitudes on average are small (less than $1). Additionally, we find no significant correlation

between violation of swapping independence and correlation insensitivity.8

It is important to note that, however, unlike pairs 1 and 2, in pair 3 the ratio of winning

states from options A and B are significantly distinct: in positively correlated task, the ratio is 1

8Let us denote ∆X1, ∆X2, and ∆X3 as the ∆X levels for pairs 1, 2, and, 3 respectively. P(∆X1 = 0|∆X3 =
0)−P(∆X1 = 0|∆X3 ̸= 0) = 11.22% and P(∆X2 = 0|∆X3 = 0)−P(∆X2 = 0|∆X3 ̸= 0) = 4.1% Both increments are
not significant according to Kolmogorov-Smirnov tests.
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while in the negatively correlated task, the ratio is 1
3 . Therefore, the observed violations may be

a combined effect from both correlation sensitivity and even-splitting.

Figure A.1. CDF of ∆X from Pair 3 payment-variation Task
Note: This graph presents CDF of ∆X = Xpos −Xneg for Poa subjects in Pair 3 payment-variation tasks.

Table A.1. Results for Pair 3 payment-variation Tasks

(1) (2) (3) (4)
∆X 0.39** 0.53** 0.63*** 0.85***

(0.16) (0.21) (0.22) (0.30)
⊮group=2 -0.50 -0.67

(0.32) (0.43)
N 516 263 516 263

Note: Summary of tests for correlation independence. Each test is performed under Pos and Poa and
provides estimates for the mean differences in the switching value X (X in positively correlated task - X
in negatively correlated task) obtained from interval regressions (Stewart, 1983). In addition, columns
3 - 4 present ∆X at group level with ⊮group=2 being the indicator variable for being in the second group.
The standard errors are included in parentheses.
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A.4.3 Aggregate Experimental Results

Before we dive into the axioms for salience and regret theories, we summarize the

results regarding strong independence.9 The current experiment provides mixed results. On

one hand, for both pairs of tasks, when the outcomes are negatively correlated, manipulating

both options’ identical payments does not impact the aggregate behavior. On the other hand,

for both task pairs, when the outcomes are positively correlated, such manipulations may elicit

significant differences between the two groups with subjects from Pos. Figure A.2 summarizes

their behaviors. What stands out from the figure is that for subjects in Pos, increasing payments

in states seems to encourage them to choose option B, which is the option with a changing

payment, across different X values. Table A.2 reports the mean difference of the switching

payments values between the two groups.

We now briefly discuss the mixed results. This pattern is in line with the failure of

contingent reasoning (Niederle and Vespa, 2023). Nevertheless, this abnormality is usually

observed when the underlying problem has subjective uncertainty (Ellsberg, 1961) and the

state space is implicitly constructed by subjects (Esponda and Vespa, 2019), so it is surprising

that we still observe this effect when all states are explicitly specified and highlighted in the

representation. Furthermore, it is important to note that this discrepancy doesn’t behave as noise.

First, the violations are both observed from the subjects who never make multiple switches in

our experiment and pass the two comprehension checks regarding monotonicity. Therefore,

their choices are considered to have the highest qualities among our samples. Second, we only

observe violations in negatively correlated tasks, so noise cannot explain such heterogeneity in

treatments.

We believe that its impact on our subsequent results is minor and can be addressed.

First, the significant violations are only observed among subjects in Pos. Although these two

populations are the subjects with least noise, they only consist of around 16% of the whole

9The violation of transitivity will become self-evident from other tasks. Therefore, we delegate the discussion of
pair 3 tasks to the Appendix.
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Figure A.2. Independence Axiom
Note: The current figure records group-wise average behaviors for the four payment-variation tasks.
Subjects used in this figure follow monotonicity and never exhibit multiple switching points in payment-
variation tasks (N = 211). Group 1 has 99 subjects while group 2 has 112 subjects. The subtitles represent
the pair numbers of joint distributions. For all four tasks, a = 1.5 for subjects in group 1 while a = 1 for
subjects in group 2. b = 1 for subjects in group 1 while b = 1.5 for subjects in group 2. Horizontal-axis
represents values of X in each joint distribution normalized by subtracting the smallest X value in each task.
Vertical-axis presents proportion of subjects choosing option B. 95% CI are constructed at each point.

population. Therefore, it is possible that this is not a representative sample group for the large

population. Second, this effect, if it indeed has a persistent impact, works in contradictory

directions for subjects from different groups. Since subjects in our experiment are randomly

assigned to the groups, the average treatment effect should offset this potential confounder. In

addition, for relevant tasks, we can still perform a between-group analysis fixing the common

payments amount. Therefore, while we acknowledge its existence, our current experiment

will remain largely unaffected. Since independence is not our main focus, we leave further
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discussions to future research.

Table A.2. Independence

Panel A Panel B
Negatively Correlated Positively Correlated

(1) (2) (3) (4) (1) (2) (3) (4)
∆X 0.07 0.06 0.40 0.59 -0.30 -0.85** 0.38 0.69*

(0.25) (0.40) (0.25) (0.41) (0.25) (0.39) (0.25) (0.39)
Common Payments:
Group 1: 1.5 1.5 1 1 1 1 1.5 1.5
Group 2: 1 1 1.5 1.5 1.5 1.5 1 1

Population: Poa Pos Poa Pos Poa Pos Poa Pos
Task Pair 1 1 2 2 1 1 2 2
N 516 211 516 211 516 211 516 211

Note: Summary of tests for strong independence. The results are estimates for the mean between-group
differences (Group 2 - Group 1) in the switching value X obtained from interval regressions (Stewart, 1983)
of subjects’ decisions on the indicator of group identity. Each test is performed on the two populations. Panel
A records between-group results negatively correlated tasks from pairs 1 and 2 while Panel B provides results
for positively correlated tasks. Standard errors clustered at individual level and are shown in parentheses.

A.4.4 Aggregate Results for Regret Theory

We now turn our attention to swapping independence, and the estimations are recorded

in table A.3. Panel A performs a between-group test over ∆X = Xpos −Xneg fixing the amount

of payments under states in which the two options are identical. From the results, we observe

a suggestive pattern that subjects exhibit higher risk tolerance if the options are negatively

correlated. To see this, In pair 1, {(22,X); (a,a); (a,a); (5,0.5)}, option B has higher variances

for X values in the tasks. Since ∆X = Xpos−Xneg, where Xpos and Xneg represent the switching X

values when the two options are positively and negatively correlated, a positive ∆X value implies

that subjects switch to option B at lower X values when the two options are negatively correlated,

and hence they exhibit higher risk tolerance. In contrast, for pair 2 questions, so option B has

lower variances, so a negative ∆X would reach the same conclusion. Nevertheless, such pattern

is not robustly significant across all population groups and identical payments values.
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Table A.3. Swapping Independence

Panel A Panel B
(1) (2) (3) (4) (1) (2) (3) (4)

∆X
Pair 1: 0.48* 0.88** 0.25 0.08 0.63*** 0.93** 0.11 0.02

(0.25) (0.39) (0.25) (0.40) (0.42) (0.74) (0.41) (0.90)
Pair 2: 0.31 0.54 -0.47* -0.74* -0.10 -0.15 -0.09 -0.05

(0.25) (0.40) (0.25) (0.40) (0.24) (0.39) (0.22) (0.34)
Common Payments:
Group 1: 1 1 1.5 1.5 - - - -
Group 2: 1 1 1.5 1.5 - - - -

Subjects’ Group: - - - - 1 1 2 2
Population: Poa Pos Poa Pos Poa Pos Poa Pos
N 516 211 516 211 260 99 256 112

Note: Summary of tests for swapping independence. Each test is performed under the four populations.
The results are estimates for the mean differences in the switching value X (Xpos −Xneg) obtained from
interval regressions (Stewart, 1983) of subjects’ decisions on either the indicator of group identity (Panels
A) or the indicator of payments correlations (Panel B). Standard errors are clustered at individual level.

To complete the investigation for swapping independence, panel B in Table A.3 shows

the results on the impact of correlation changes on the switching X values within each group. The

results indicate that there exist heterogeneous treatment effects between groups. This discrepancy

can be explained by the combined effects from both violations of strong independence and

swapping independence. The relations among the results are summarized in Figure A.3. As an

illustration, let us consider pair 1 tasks for subjects in group 1 and group 2. Since option B is

the more risky option in these two tasks, according to the suggestive pattern that subjects are

more risk tolerant in negatively correlated tasks, we have ∆X = Xpos −Xneg > 0. Furthermore,

according to the other suggestive pattern wherein subjects are more willing to switch if the

common payments from both options are higher, for subjects in group 1 this will increase ∆X

because for them the common payment is $1.5 in pair 1 negatively correlated task while $1 in

current positively correlated tasks. In contrast, this pattern suggests ∆ decreases for subjects

from group 2 because the common payment is $1.5 for them in the current positively correlated
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task while $1 in negatively correlated task. As the result, the two forces are working collectively

for subjects in group 1 while they are working inconsistently for subjects in group 2, and hence,

result in heterogeneous treatment effect. In addition, the average treatment effect is documented

in table A.3. In general the conclusion from average treatment effects and the previous between-

group analysis are consistent: At the aggregate level, while there is evidence for violation of

swapping independence, but the violation is not robustly significant across different scenarios.

Group 1: Xpos
(common payment = $a)

Group 1: Xneg
(common payment = $b)

Group 2: Xneg
(common payment = $a)

Group 2: Xpos
(common payment = $b)

Table 5 Panel B

Table 5 Panel B

Table 4 Panel B Table 4 Panel A
Table 5 Panel A

Figure A.3. Results Diagram
Note: Xpos is the switching X value for tasks with positively correlated outcomes. Xneg is the switching
X value for tasks with negatively correlated outcomes. The arrows presenting a subtracting relation
between the boxes. For instance the blue arrows always point from Group 2 to Group 1, so they suggest
that table A.2 panel B reports ∆X for Group 2 - Group 1. For the common payments of pair 1 tasks,
a = 1, b = 1.5 for subjects in group 1 while a = 1.5, b = 1 for subjects in group 2. For the common
payments of pair 2 tasks, a = 1.5, b = 1 for subjects in group 1 while a = 1, b = 1.5 for subjects in
group 2.

A.4.5 Aggregate Results for Salience Theory

We now move on to the three axioms for salience theory: skewness prereference, di-

minishing relative sensitivity, and k-regular. Figure A.4 plots the CDF of ln( q
p H

), ln( q
p N

), and

ln( p
q L
), which is the negative of ln( q

p L
), for Poa subjects. To intuitively visualize the hypothesis,

notice that the higher the CDF’s position, the lower the average value of the variable. Therefore,

if the CDF of ln( p
q L
) is higher than that of ln( q

p H
), the inequality roughly requires that the CDF

of ln( q
p N

) is closer to the CDF of ln( q
p H

). In contrast, the requirement would be reversed in case

the relative position between CDF of ln( p
q L
) and ln( q

p H
) switches.
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Figure A.4. CDF of Switching Odds
Note: The cumulative distribution functions of ln( q

p H
) (red), ln( q

p N
) (blue), and ln( p

q L
) (black), which is

the negative of ln( q
p L
), are shown in the graph. Panel A depicts the three CDF for tasks testing Skewness

Preference. Panel B draws the CDF for tasks relevant to diminishing relative sensitivity. Pancel C shows the
CDF from 2-Regular tasks.

Table A.4 presents the results for the three axioms of salience theory. In general, the

aggregate behaviors follow the salience theory’s predictions. To understand the magnitudes,

let us consider the tasks testing skewness prereference. Recall the analysis from subsection

5.1,
q
p H

/ q
p N

q
p N

∗ q
p L

provides an upper bound for f (σ(30,0))
f (σ(15,0)) . Taking statistics from Pos as an illustration,

the results suggest that the salience level between $15 and $0 is at most exp(−0.29) ≈ 0.75

(0.05) of the salience level between $30 and $0. Similarly, for population P2, the salience

level ratio f (σ(30,15))
f (σ(15,0)) is bound above by exp(−0.28)≈ 0.76 (0.06), and f (σ(10,0))

f (σ(30,10)) is bounded

by exp(−0.26)≈ 0.77 (0.07). Therefore, at the aggregate level, current experiment’s tests find

supportive evidence for salience theory’s axioms.
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Table A.4. Salience Axioms

(1) (2) (3) (4) (5) (6)
ln q

p H
0.52 0.43 0.65 0.43 0.12 0.23

(0.04) (0.04) (0.13) (0.05) (0.11) (0.04)

ln q
p N

0.62 0.52 0.55 0.39 0.12 0.12
(0.03) (0.03) (0.12) (0.05) (0.11) (0.04)

ln q
p L

-0.35 -0.33 -0.10 -0.08 0.38 0.25
(0.03) (0.03) (0.12) (0.05) (0.13) (0.06)

Main Test: -0.38*** -0.29*** -0.34* -0.28*** -0.49*** -0.26***
(0.07) (0.08) (0.19) (0.09) (0.17) (0.08)

ln q
p H

− ln q
p N

: -0.10** -0.09* 0.11 0.03 0.00 0.11**
(0.04) (0.05) (0.11) (0.05) (0.10) (0.05)

ln q
p H

+ ln q
p L

: 0.17*** 0.10* 0.56*** 0.35*** 0.50*** 0.49***
(0.05) (0.06) (0.14) (0.07) (0.12) (0.07)

N 516 350 516 350 516 350
Note: The results are estimates for the mean ln values of switching winning odds obtained from interval
regressions (Stewart, 1983) of subjects’ decisions on indicators of question type. Columns (1) and (2)
report results for skewness preference. Columns (3) and (4) show results for diminishing relative sensitivity.
Columns (5) and (6) record results for 2-regular. ln( q

p H
), ln( q

p N
), and ln( q

p L
) for each axiom are estimated.

Statistics for ln( q
p H

)− ln( q
p N

)− ln( q
p N

)− ln( q
p L
) are obtained by delta method and reported under main

test. Statistics fo ln( q
p H

)− ln( q
p N

) and ln( q
p H

)+ ln( q
p L
) are also documented. Standard errors are cluster at

individual level in parentheses.

We now briefly discuss other auxiliary tests. As shown in subsection 5.1, salience theory

also suggests that in all three classes of tasks, we should observe q
p H

≥ q
p N

≥ p
q L

. The relevant

results are also included in Table A.4. In large, the aggregate level results are in line with our

individual analysis.

A.5 Additional Tables
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Table A.5. Salience Axioms Excluding Noise in High Contrast Problem

(1) (2) (3) (4) (5) (6)

Axiom Test: -0.18*** -0.14** -0.18** -0.17* -0.29*** -0.20**
(0.06) (0.07) (0.08) (0.09) (0.08) (0.08)

Auxiliary Tests:
ln( q

p H
)− ln( q

p N
) -0.08* -0.07 0.05 0.05 0.09** 0.13***

(0.04) (0.05) (0.05) (0.05) (0.04) (0.05)

ln( q
p H

)+ ln( q
p L
) 0.13*** 0.11** 0.27*** 0.27*** 0.48*** 0.47***

(0.05) (0.05) (0.05) (0.05) (0.06) (0.06)

N 506 342 506 342 506 342

Sign Tests:
ln( q

p H
)− ln( q

p N
) - - + + + +

p-value 0.094 0.053 0.488 0.423 0.021 0.005

ln( q
p H

)+ ln( q
p L
) + + + + + +

p-value 0.040 0.372 0.000 0.000 0.000 0.000
Note: This table summarizes the mean values of differences in ln winning odds using interval regression.
Columns (1) and (2) present results from skewness preference for both Poa and Pos populations.
Columns (3) and (4) present results from diminishing relative sensitivity. Columns (5) and (6) present
results from 2-Regular. The axiom test records result for ln( q

p H
)− 2ln( q

p N
)− ln( q

p L
). In Auxiliary

tests, ln( q
p H

)− ln( q
p N

) and ln( q
p N

)+ ln( q
p L
) are presented using interval regression. Furthermore, sign

tests are also performed. In the table, sign tests record the sign of dominant group and corresponding
p-value.
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Table A.6. Correlations of Salience Tasks Responses

Panel A: Poa Population
Skewness Preference DRS 2-Regular

Skewness Preference 1

DRS
0.1285

(0.0038) 1

2-Regular
0.1329

(0.0027)
0.1329

(0.0027) 1

Panel B: Pos Population
Skewness Preference DRS 2-Regular

Skewness Preference 1

DRS
0.2103

(0.0001) 1

2-Regular
0.1875

(0.0005)
0.14334
(0.0079) 1

Note: Pearson correlations among values of ln( q
p H

)−2ln( q
p N

)− ln( q
p L
) across the tests for three axioms

of salience theory. Panel A presents correlations for Poa population while Panel B presents correlations for
Pos population.
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Table A.7. Robustness Check: Ordering Effect

Panel A: Regret Theory
(1) (2) (3) (4) (5) (6) (7) (8)

Task Pair 1 2 1 2 1 2 1 2

∆X 0.72*** 0.28 0.81** 0.18 0.88** 0.51 1.04* 0.15
(0.25) (0.25) (0.40) (0.40) (0.36) (0.35) (0.58) (0.60)

∆X ×⊮group=2 -0.32 -0.46 -0.43 0.03
(0.50) (0.50) (0.79) (0.81)

Population Poa Poa Pos Pos Poa Poa Pos Pos
N 516 516 211 211 516 516 211 211

Panel B: Salience Theory
(1) (2) (3) (4) (5) (6)

Main Test -0.18 -0.03 -1.27*** -0.83*** -0.94* -0.85***
(0.16) (0.22) (0.42) (0.21) (0.54) (0.23)

ln( q
p H

)− ln( q
p N

) 0.08 0.42*** -0.22 -0.14 0.02 -0.17
(0.10) (0.13) (0.24) (0.11) (0.30) (0.12)

ln( q
p H

)+ ln( q
p L
) 0.33*** 0.86*** 0.84*** 0.55*** 0.98*** 0.52***

(0.09) (0.13) (0.32) (0.13) (0.30) (0.13)

Population: Poa Pos Poa Pos Poa Pos
N 516 350 516 350 516 350

Note: This table is the replication of Table 1.4 and 1.5 controlling ordering effect. In Panel A, the
average difference of ∆X is presented for pairs 1 and 2. For each pair, ∆X is computed by subtracting
the average of Xneg over subjects who encountered the negatively correlated task first from the average
of Xpos over subjects who answered the positively correlated task first. In Panel B, for each task group,
the averages of winning odds from High, Normal, and Low contrast tasks are computed from subjects
who countered the corresponding versions first.
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Table A.8. Salience Axioms With Censored Data

(1) (2) (3) (4) (5) (6)

Axiom Test: -0.25** -0.21* -0.35*** -0.37*** -0.41*** -0.32**
(0.10) (0.11) (0.11) (0.14) (0.12) (0.13)

Auxiliary Tests:
ln( q

p H
)− ln( q

p N
) -0.22*** -0.24*** -0.01 -0.03 0.12* 0.18**

(0.06) (0.07) (0.06) (0.07) (0.06) (0.07)

ln( q
p H

)+ ln( q
p L
) 0.13 0.08 0.30*** 0.25*** 0.69*** 0.72***

(0.08) (0.09) (0.08) (0.09) (0.09) (0.10)

N 516 350 516 350 516 350

Sign Tests:
ln( q

p H
)− ln( q

p N
) - - + + + +

p-value 0.027 0.005 0.859 0.962 0.012 0.002

ln( q
p H

)+ ln( q
p L
) + + + + + +

p-value 0.000 0.000 0.000 0.000 0.000 0.000
Note: This table summarizes the mean values of differences in ln winning odds using interval regression.
Columns (1) and (2) present results from skewness preference for both Poa and Pos populations.
Columns (3) and (4) present results from diminishing relative sensitivity. Columns (5) and (6) present
results from 2-Regular. The axiom test records result for ln( q

p H
)− 2ln( q

p N
)− ln( q

p L
). In Auxiliary

tests, ln( q
p H

)− ln( q
p N

) and ln( q
p N

)+ ln( q
p L
) are presented using interval regression. Furthermore, sign

tests are also performed. In the table, sign tests record the sign of dominant group and corresponding
p-value.
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Table A.9. Participant Demographics

Total Group 1 Group 2
Number of Participants 792 397 395
Completion Time (Minutes) 36.5 36.6 36.4
Number of Approvals 1993 1949 2038
Student 68 34 34
Age 39.6 39.2 40.1

Sex
Female 397 189 208
Male 395 208 187

Race
Asian 56 24 32
Black 85 43 42
Mixed 61 27 34
White 561 290 271
Other 16 4 12
N/A 13 9 4

Employment Status
Full-Time 256 153 151
Starting Job Next Month 3 3 0
Not in Paid Work 56 22 34
Unemployed and Job Seeking 70 38 32
Other 28 14 14
N/A 304 153 151
Completion Time (Seconds)

Note: Participant demographics for 792 out of 800 participants. The demographic data for the remaining
8 subjects are lost due to incorrect submissions.
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Table A.10. Participant Completion Times

Total Group 1 Group 2
Average Completion Time (Seconds)
Task 1 86.3 86.3 86.2
Task 2 75.3 73.2 77.3
Task 3 71.7 70.2 73.1
Task 4 73.5 72.5 74.4

Task 5 71.6 71.1 72.1
Task 6 65.0 63.2 66.9
Task 7 82.8 81.3 84.3
Task 8 76.8 73.0 80.6

Task 9 74.0 70.2 77.8
Task 10 75.6 69.3 81.9
Task 11 70.8 70.1 71.6
Task 12 73.3 71.6 75.0

Task 13 73.4 71.7 75.0
Task 14 75.9 69.3 82.6
Task 15 71.9 67.4 76.5
Task 16 75.2 71.5 78.8

Note: Participant Completion time in seconds. Due to technical issues, the completion times of 5
subjects are not recorded. Additionally, two subjects’ time counter resets at the end of each round,
which prevents their completion time for the last question in each task being recorded. We use their
times spent on second to the last question in each round as approximations.
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Appendix B

Supplement Materials for Chapter 2

B.1 Additional Elements of Theoretical Axiomatization

Our theoretical development is constructed with an assumption of differentiability (as-

sumption 1). We now present a technical axiom that assures this differentiability (axiom 10). The

technical consequences of this assumption are described in a subsequent lemma. We focus on

the decision-maker’s preference over sequences of lotteries with statewise converging outcome

pairs. The axiom requires that the decision-maker’s preferences between the options in such

sequences should converge to indifference at appropriate rates. Before stating the axiom, we

introduce three pieces of notation. First, let ||·|| be the Euclidean norm on Rn. Second, given a

finite sequence {xi}n
i=1 over Rn, define the sequence length as ∑

n−1
i=1 ||xi+1 − xi||. Third, define

mesh({xi}n
i=1) = max

i=1,...,n−1
||xi+1 − xi||.

Axiom 25 (Regularities at Indifference). Given a compact set K on X and a positive sequence

{αi}n
i=1 on R+ converging to 0, then for all outcome pairs x,y ∈ K with x ∼u y and unit vector

ei, if {pn}∞
n=1 are the probabilities such that {(x+αnei,y),1− pn;(0,e1), pn} ∈ Π\ Π̂ for all n,

we have pn
αn

and αn
pn

converges uniformly for every x,y in K.

The consequence of axiom 10 is summarized below:

Lemma 4. A correlation sensitive preference satisfies axioms 10 if and only if φ(x,y) is uniformly

differentiable at points x ∼u y.
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Proof. See Appendix B.5.1

Our next axiom speaks to the existence of utility, u(·), in a smooth salience representation.

Such a utility function exists if and only if there exists a utility function representing the

preference over deterministic outcomes satisfying axiom 8. To formalize this observation, we

construct the following “local” lotteries. For every outcome pair x and y, we define Ln
(x,y) as

{(x,x+ 1
n
(y− x)),

1
n

; (x+
1
n
(y− x),x+

2
n
(y− x)),

1
n

; . . . ;(x+
n−1

n
(y− x),y),

1
n
}.

Intuitively, Ln
(x,y) first divides the line segment from x to y into n segments of the same length, and

in each state it moves outcome pairs from the endpoints of one segment to the endpoints of the

next. Notice that a smooth salience representation assigns Ln
(x,y) the value ∑

n
i=1 f (σ(x+ i−1

n (y−

x),x+ i
n(y−x)))(u(x+ i−1

n (y−x))−u(x+ i
n(y−x))). Consequently, as n approaches infinity, the

value is approximately f (0)(u(y)−u(x)), which eventually separates out the salience distortion

from the utility difference. This argument shows that {(a1,a2), p;(b1,b2),1− p} ∈ Π̂E(u) if

and only if pLn
(a1,a2)

+(1− p)Ln
(b1,b2)

∈ Π̂ for all but finitely many n. Therefore, ΠE(u) can be

approximated by elements inside Π generated by a mixture of lotteries Ln
(·,·). Our next axiom

suggests that when inspecting properties of Ln
(·,·), the preference approximately follows EU.

Axiom 26. For every x,y ∈ X, let πn
(x,y) =

1
3Ln

(0,x)+
1
3Ln

(x,y)+
1
3Ln

(y,0) and pn be the probability s.t.

pnπn
(x,y)+(1− pn)δ(e1,0) ∈ Π\ Π̂ or pnπn

(x,y)+(1− pn)δ(0,e1) ∈ Π\ Π̂, then pn → 1 as n → ∞.

Lemma 5. Given assumption 1, a correlation sensitive preference satisfies axioms 1, 7, and 11

if and only if φ(x,y) = f (σ(x,y))(u(x)−u(y)) where u(·) is continuously differentiable and has

positive partial derivatives while f ◦σ is positive, symmetric, continuous, and obtain its global

minimum at all points (x,y) such that x = y.

Proof. See Appendix B.5.1
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B.2 Extensions to Context-Dependent Preferences

Following settings from the context-dependent preferences literature, we allow decision-

makers to formulate flexible preferences over deterministic outcomes under different choice sets.

Formally, let there be N options in the consumption set, each choice Ci is an element of l0(R),

which is the set of sequences on real numbers with finitely many non-zero terms. We assume

that there is a utility representation u : ΠN
i=1l0(R)→ RN . One can think of u as a collection of

utility indices over N options, such that option Ci would be chosen from the choice set {Ck}N
k=1 if

ui({Ck}N
k=1), the ith entry of u({Ck}N

k=1), obtains the highest value of all u({Ck}N
k=1). We assume

u is continuous w.r.t. the product norm. Given A ∈ l0(R), denote RA = (0,A1,A2, . . .). Now, we

impose some regularities on u:

R1. (Absolute Monotonicity) If Ci ≥C j, ui(C1,C2, . . . ,CN)−u j(C1,C2, . . . ,CN)≥ 0 with strict

inequality if Ci >C j.

R2. (Comparative Monotonicity) If C′
1 ≥C1, then

u1(C′
1,C2, . . . ,CN)−u j(C′

1,C2, . . . ,CN)≥ u1(C1,C2, . . . ,CN)−u j(C1,C2 . . . ,CN) for all j.

R3. (Diminishing Sensitivity) If Ci ≥ 0 for all i, and there exists Cm such that C1 ≥Cm then for

all ξ ≥ 0 at least one of the following holds:

(a) (Pairwise Diminishing Sensitivity)

|u1(C1 + ξ ,C2,C3, . . . ,Cm + ξ , . . . ,CN)− um(C1 + ξ ,C2,C3, . . . ,Cm + ξ , . . . ,CN)| is

decreasing in ξ .

(b) (Uniform Diminishing Sensitivity)

|u1(C1+ξ ,C2+ξ , . . . ,CN +ξ )−um(C1+ξ ,C2+ξ , . . . ,CN +ξ )| is decreasing in ξ .

R4. (Reflexive) For all collections {Ck}N
k=1,{Sk}N

k=1 in l0(R+) and i, j ≤ N,

ui(C1, . . . ,CN)−u j(C1, . . . ,CN)≤ ui(S1, . . . ,SN)−u j(S1, . . . ,SN) implies

ui(−C1, . . . ,−CN)−u j(−C1, . . . ,−CN)≥ ui(−S1, . . . ,−SN)−u j(−S1, . . . ,−SN).
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R5. (Ordering Symmetry) For all permutations σ over {1, . . . ,N},

ui(C1,C2, . . .) = uσ(i)(Cσ(1),Cσ(2), . . .)

R6. (Non-myopia) When time is involved, as in our leading application, we impose one

additional assumption: For all {Ci}N
1 , we have

|u1(RC1,RC2, . . .)−u j(RC1,RC2, . . .)|≤ |u1(C1,C2, . . .)−u j(C1,C2 . . .)| for all j, and there

exists ϕ ∈ l0(R) such that:

|u1(RC1 +Rϕ,RC2, . . .)−u j(RC1 +Rϕ,RC2, . . .)|≥ |u1(C1,C2, . . .)−u j(C1,C2 . . .)|.

We now give a brief discussion on these regularities. Absolute monotonicity implies each

dimension of choices is an economic good since an increasing consumption in any dimension

leads to a higher utility index.1

For a general context-dependent utility representation, an increase in one option may

influence the utility assigned to others. Although we allow such possibilities, we retain a re-

quirement that the increased option always becomes relatively more attractive. Comparative

monotonicity guarantees that a measure of such relative attractiveness is provided by the utility

differences between those options before and after the increment. In turn, comparative mono-

tonicity imposes a certain degree of consistency on utility representations across consumption

sets.

Diminishing sensitivity and reflection are analogous to the same components in definition

1. As shown in proposition 6, these two regularities lead deliver a connection between gain-loss

attitudes and salience theory. Notice that when preferences are context independent, or there are

only two alternatives in the consumption set, pairwise and uniform diminishing sensitivity are

equivalent. Otherwise, these two are independent requirements. To the best of our knowledge,

1Absolute monotonicity may not hold under some circumstances, but one can always salvage this property by a
change of measure. For example, if one is choosing a wine by comparing among different qualities and prices, one
would prefer a lower price under similar quality. Nevertheless, we can change redefine the price attached to each
wine as the consumer’s remaining savings after corresponding purchase.
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there is no consensus on a precise definition of diminishing sensitivity in general settings, so

to keep the generality of the current presentation, we admit both criteria. Ordering symmetry

is a technical assumption requiring that changes of the order assigned to options doesn’t alter

corresponding utility indices assigned to the options. One immediate implication is that we can

always change the order of options so that the comparison between option i and j is equivalent to

between option 1 and 2. Lastly, Non-myopia in intertemporal applications implies a weak form

of time discounting – as we move all options to future, their differences become less significant,

but we can always offset this discounting by changing some option’s payoffs in future periods.

Models endowed with this representation include focusing (Koszegi and Szeidl, 2012),

deterministic version of relative thinking (Bushong et al., 2021), a general version of salience

for consumer choice (Bordalo et al., 2013b),2 and pairwise normalization (Landry and Webb,

2021).3

Definition 5. Let the consumption set be C ≡ {Ck}N
k=1, then:

• A preference obeys the focusing model of Koszegi and Szeidl (2012), if for each option

Ci, u(Ci) = ∑
k
n=1 µ

(
maxC′

i∈C {C′
in}−minC′

i∈C {C′
in}
)
·Cin, where Cin is the nth entry of

option Ci and µ(·) is an increasing and positive function. In addition µ(x)x is increasing

in x.

• A preference obeys the relative thinking model of Bushong et al. (2021), if for each option

Ci, u(Ci) = ∑
k
n=1 ν

(
maxC′

i∈C {C′
in}−minC′

i∈C {C′
in}
)
·Cin, where Cin is the nth entry of

option Ci and ν(·) is an decreasing and positive function. In addition ν(x)x is decreasing

in x.
2The general structure is proposed in Herweg and Müller (2021). As shown in ?, the original model in Bordalo

et al. (2013b) may violate the absolute monotonicity requirement for some exogenous reference point. Furthermore,
one can show that even with only two options (so that the reference point is fully endogenized), in the presence of
three or more attributes, the model can also violate monotonicity, which we find less intuitive.

3More broadly, the categorical preference introduced by ? doesn’t fall into the current setting unless more
restrictions are fulfilled. Specifically, the additional requirement is that for every x ≥ y, regardless of their categories,
we have x ⪰r y for all reference points, r.
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• A preference obeys the pairwise normalization model of Landry and Webb (2021), if for

each option Ci, u(Ci) = ∑
k
n=1 ∑C j ̸=Ci

Cin

C jn +Cin +β
with the convention

0
0
= 0, where Cin

is the nth entry of option Ci, and β ≥ 0. In addition, all attributes are required to be

non-negative.

We now show that the above models satisfy all regularities. Since time plays no role in

these models, we can restrict our attention to options in Rk for some positive integer k instead of

the whole l0(R) set. Given an option Ci ∈ Rk from some consumption set {Ck}N
k=1, assuming all

attributes, which are entries of Ci, are economic goods, it’s clear that R1, absolute monotonicity,

trivially holds. In addition, since in all models, there is some utility assigned to each choice, R5,

ordering symmetry, also trivially holds. Also, by a direct check using definitions, one can show

that all three models satisfy R3,4 diminishing sensitivity, and R4, reflection.5 Hence, the only

nontrivial part is comparative monotonicity.

Lemma 6. Focusing, relative thinking, and pairwise normalization all satisfy comparative

monotonicity.

Proof. See Appendix B.5.1.

Unfortunately, the general salience theory of Bordalo et al. (2013b) doesn’t satisfy com-

parative monotonicity. The reason is that when there are three or more nonconstant dimensions,

the normalization of total salience weights makes the difference under various consumption

sets incomparable. To circumvent this issue, we can use the form of salience theory pro-

posed in Herweg and Müller (2021): given a consumption set C , the utility of each option

u(Ci) = ∑
k
n=1 f (∆k

i )Cik, where ∆k
i is the salience level of dimension k for option i, and f is an

increasing function. One can easily show that this form satisfies all regularities.

In our definitions of the salience function, level, and decision weight, all evaluations are

independent from the preference within each state. Therefore, for the predictions in example 1,
4Focusing and relative thinking satisfy uniform diminishing sensitivity while pairwise normalization satisfies

pairwise diminishing sensitivity.
5For pairwise normalization, reflection is irrelevant.
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2, and 3, so long as the preference between streams under the most salient state agrees with the

discounted utility we assumed before, our predictions stay valid given the effect from salience is

sufficiently large (i.e., that θ is small enough). It turns out that only absolute monotonicity and

non-myopic discounting are needed for the preferences to align.

What if the independence between state salience and intrastate utility doesn’t hold? For

instance, small physical differences may produce enormous utility differences. If the decision-

maker weights state salience according to utilities instead of physical units, will behavior be

dramatically altered? To investigate this problem, we introduce the following proposition.

Proposition 11. Let d : R+ → R+ be a continuous and strictly increasing function. Suppose

the context-dependent utility presentation u over the consumption set satisfies R1 to R5, then the

function σ̃ defined by σ̃(X ,Y ) = d(|u1(X ,Y )−u2(X ,Y )|) is a free salience function.6

Proof. See Appendix B.5.1.

Proposition 11 implies that the determination of state salience is flexible. One can replace

classical utility theory with some other model that incorporates interstate salience comparisons.

Since salience theory implies that the decision-maker places higher decision weight on larger

differences, proposition 11 suggests that results from salience and other models mentioned

above should be similar. For preferences under uncertainty, so long as outcome comparisons

are made within each state, and each state’s decision weight is adjusted accordingly, our results

are qualitatively invariant.7 While for future investigations, it is worthwhile to explore effects

from combinations of behavioral sources, in this paper, we focused on multidimensional salience

theory and keep the basic discounted utility formulation over deterministic payoff streams for

subsequent empirical analysis.
6Notice that σ̂(·, ·) defined by σ̂(u1(X ,Y ),u2(X ,Y )) = d(|u1(X ,Y )− u2(X ,Y )|) can also be considered as a

BGS salience function.
7Leland and Schneider (2016); Schneider et al. (2018); Schneider and Leland (2021) investigate a relevant model

in which state uncertainty is nested with attributes. In particular, they consider that under each subjective state,
lottery X and Y give different monetary rewards with different objective probability in an Anscombe-Aumann act
style (Anscombe et al., 1963). In their model, the state probability is subject to distortion from both probabilities of
winning and magnitudes of reward.
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B.3 Behavioral Deviations from DEU

1. Salience-Based Present Bias:

Lemma 7. Suppose the decision-maker follows rank-based multidimensional salience

theory
U(F2)

U(F1)
is decreasing in p.8

Proof. The utility difference ratio between these two options is:

U(F2)

U(F1)
=

p2qθ 2 +(1− p)pq
p2qθ 2 +(1− pq)pθ

δv(1+ r)
v(1)

Taking derivative w.r.t. p, we have
U(F2)

U(F1)
is decreasing w.r.t p:

∂

∂ p
pqθ 2 +(1− p)q

pqθ 2 +(1− pq)θ

=

(
qθ 2 −q

)[
pqθ 2 +(1− pq)θ

]
−
(

qθ 2 −qθ

)[
pqθ 2 +(1− p)q

]
(pqθ 2 +(1− pq)θ)2

=

qθ 2
[
(1− pq)θ − (1− p)q− pq+ pqθ

]
−q
[

θ −qθ

]
(pqθ 2 +(1− pq)θ)2

=

qθ 2
[

θ −q
]
−q
[

θ −qθ

]
(pqθ 2 +(1− pq)θ)2 =

qθ

[
θ(θ −q)− (1−q)

]
(pqθ 2 +(1− pq)θ)2 ≤ 0

2. Intertemporal Hedging

Lemma 8. Suppose the decision-maker follows rank-based multidimensional salience

theory, then
U(F3)

U(F4)
is increasing in p.

8Notice that, prospect theory and other non-expected utility models based on nonlinear probability also have
similar predictions. Nevertheless, multidimensional salience predicts a monotonic change in preference while others
may require p,q to be within certain ranges.
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Proof.

U(F3)

U(F4)
=

(pθ 2 +(1− p)θ)δv(1+ r)
(pθ 2 +(1− p))v(1

2)+(pθ 2 +(1− p)θ)δv(1+r
2 )

=
δv(1+ r)

pθ 2 +(1− p)
pθ 2 +(1− p)θ

v(1
2)+δv(1+r

2 )

Since
pθ 2 +(1− p)

pθ 2 +(1− p)θ
is decreasing in p and v(1

2)> 0,
U(F3)

U(F4)
is increasing in p.

3. Correlation Dependence

Lemma 9. Suppose the decision-maker follows rank-based multidimensional salience

theory, then
U(F3)

U(F4)
is increasing in γ .

Proof.

U(F3)

U(F4)
=

((1+4γ)θ 2 +(1−4γ)θ)δv(1+ r)
((1+4γ)θ 2 +(1−4γ))v(1

2)+((1+4γ)θ 2 +(1−4γ)θ)δv(1+r
2 )

=
δv(1+ r)

(1+4γ)θ 2 +(1−4γ)

(1+4γ)θ 2 +(1−4γ)θ
v(1

2)+δv(1+r
2 )

As γ ∈ [−0.25,0.25]
(1+4γ)θ 2 +(1−4γ)

(1+4γ)θ 2 +(1−4γ)θ
is decreasing in γ and v(1

2) > 0,
U(F3)

U(F4)
is

increasing in γ .

4. Reordering Dependence

Lemma 10. Suppose the decision-maker follows rank-based multidimensional salience

theory, then U(F3)−U(F4)≤U(F3)−U(F ′
4).

Proof.

4(U(F3)−U(F4)) = (θ 2 +θ)δv(1+ r)− (θ 2 +1)v(
1
2
)− (θ 2 +θ)δv(

1+ r
2

)
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4(U(F3)−U(F ′
4)) = (θ 3 +1)δv(1+ r)− (θ 3 +θ

2)v(
1
2
)− (θ 3 +θ)δv(

1+ r
2

)

Since θ 3 +1 ≥ θ 2 +θ , θ 2 +1 ≥ θ 3 +θ ≥ θ 3 +θ 2, the result follows.

5. Precautionary Saving. Consider the following two-period example, suppose that the

decision maker receives an expected payment I in each period. In the first period, the

payment is deterministic while in the second period the payment is either 0 or 2I with

equal chances. The decision maker now chooses between whether or not to save half

of the first-period payment to hedge the risk in the second period. The state space and

corresponding choices are summarized in the following table.

Option State

H L

F5 [I,0] [I,2I]

F6 [
I
2
,

I
2
] [

I
2
,
5I
2
]

For simplicity, assume the decision maker has utility function v(c1)+v(c2). Then U(F6)−

U(F5)> 0 if and only if v(I)−v( I
2)≤ πH ·v( I

2)+πL ·(v(5I
2 )−v(2I)), where πH and πL are

decision weights on state H and L, respectively. Notice that under DEU, πH = πL = 0.5,

therefore, a sufficient condition for the inequality to hold is v has a positive third derivative.

On the other hand, for multidimensional salience theory, it is possible that ∆H > ∆L, which

implies πH > πL.9 In the limiting case where πH = 1 and πL = 0, a sufficient condition for

the aforementioned inequality to hold is v being concave. Therefore, in the presence of

salience distortions, we can relax the classical restriction on the third derivative to predict

prudent behaviors.
9Furthermore, πH > πL has to be true if one imposes diminishing sensitivity on all pairs of nonnegative streams

as in proposition 6 part 3.
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B.4 Convex Time Budget Predictions

To provide predictions of multidimensional salience theory in the Convex Time Budget

(CTB) design, we first require a mapping from stream payments, denominated in currency

units, to discounted utility values. We follow the prior time preference literature on CTBs

without “present” payments and assume a time separable, exponentially discounted utility

function, such that the stream [ct ,ct+k] has value u(ct)+δ ku(ct+k). We assume u(·) is weakly

concave, but not dramatically so.10 This assumption is consistent with the prior time preference

literature from CTBs (Andreoni and Sprenger, 2012a,b). We also assume that individuals

follow the rank-based salience model of equation (2.2), applied to the stream values noted

above. One subtlety of the CTB environment is that subjects face a continuum of possible

menu choices in each condition, with salience evaluated for every possible stream comparison.

Two technical assumptions ruling out extreme subjective time value of money and extreme

diminishing sensitivity of the salience function facilitate the statement of our results. Under

these assumptions, we prove analogs of behaviors in examples 1, 2, and 3 for CTB choice, c j
t ,

j ∈ {MULT,SING,CERT, IND,POS,NEG} with multidimensional salience.11 Proofs are in

the Appendix.

Proposition 12. Preference for Certainty and Intertemporal Hedging in CTBs:

Suppose that

a. u(·) is strictly increasing and weakly concave, while the approximation

σ(u(ct)+δ ku(ct+k), u(c′t)+δ ku(c′t+k))≈ σ(ct +δ kct+k,c′t +δ kc′t+k) maintains ;

b. individuals follow rank-based multidimensional salience theory with salience function as

in equations (2.1) and (2.2) and β ≤ (
√

2−1)
m

1+ r
;

10Provided u(·) is not dramatically concave, the perceived difference between [ct ,ct+k] and [c′t ,c
′
t+k] can be

approximated by the perceived difference between ct +δ kct+k and c′t +δ kc′t+k. This approximation is used in the
proof of our analog propositions.

11Given the budget constraint in each problem, predictions for the sooner choice, c j
t , in these conditions also

provide implicit predictions for the later choice, c j
t+k = m− (1+ r)c j

t .
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c. 0.5 ≤ (1+ r)δ k ≤ 2

Then, there exists c∗ > 0 such that:

(1). If cCERT
t ≥ c∗, cIND

t ∈ [c∗,cCERT
t ].

(2). If cCERT
t ≤ c∗, cIND

t ∈ [cCERT
t ,c∗].

(3). If cCERT
t = c∗, cIND

t = c∗.

Similarly,

(1). If cSING
t ≥ c∗, cMULT

t ∈ [c∗,cSING
t ].

(2). If cSING
t ≤ c∗, cMULT

t ∈ [cSING
t ,c∗].

(3). If cSING
t = c∗, cMULT

t = c∗.

Moreover:

(4). Fixing interest rate to some r, if cCERT
t is the choice under r, and cSING

t is the choice under

r/0.8, then cCERT
t < cSING

t .

In addition, c∗ ≤ m
2(1+ r)

if and only if (1+ r)δ k ≥ 1 and c∗ → m
2(1+ r)

as β → 0.

Proof: See Appendix B.5.1

Proposition 12 states that there exists some threshold, c∗, related to the midpoint of the

CTB budget, m
2(1+r) . If cCERT

t is above this adjusted midpoint, c∗, then cIND
t will lay weakly

below cCERT
t , while if cCERT

t is below c∗, then cIND
t will lay weakly above cCERT

t . Given different

values of (1+ r) across tasks, the intertemporal demand schedule of cCERT
t against 1+ r is likely

to cross the adjusted midpoint, c∗. Proposition 12 implies that the intertemporal demand schedule

for cIND
t will cross that of cCERT

t at exactly the point that cCERT
t crosses the modified midpoint,

c∗. This behavioral prediction of multidimensional salience differs from that of DEU, which

predicts cCERT
t = cIND

t . The analysis for SING vs. MULT is similar.
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The intuition of Proposition 12 follows from our introductory example of avoiding a

critical state of non-payment. For example, if a decision, cCERT
t ≥ c∗, generates unequal payoffs

through time, then subjecting both ct and ct+k to independent payment risk induces decision-

makers to hedge towards more equal payoffs with c∗ ≤ cIND
t ≤ cCERT

t . Such hedging allows

the decision-maker to receive a better stream in the critical state where only the later payment

is made. The comparison between cCERT
t and cSING

t is similar. However, under SING, ct has

a higher payment probability than ct+k, so under a same interest rate, cCERT
t < cSING

t should

trivially hold. Regardless, our theory predicts that after balancing the probability difference with

a higher interest rate, cCERT
t < cSING

t should still hold. The reason is identical as before: to avoid

a critical state of non-payment.

Proposition 12 also clarifies that c∗ will be the budget midpoint for β near zero.12 Bordalo

et al. (2012, 2013b) indicate that β should indeed be close to zero such that the exact budget

midpoint, m
2(1+r) , should be a reasonable approximation of c∗.

Proposition 13. Correlation Dependence in CTBs:

Suppose the conditions and c∗ > 0 are the same as in proposition 12, then:

(1). If cIND
t ≥ c∗, cNEG

t ∈ [c∗,cIND
t ].

(2). If cIND
t ≤ c∗, cNEG

t ∈ [cIND
t ,c∗].

(3). If cIND
t = c∗, cNEG

t = c∗.

(4). cCERT
t = cPOS

t .

Proof: See Appendix B.5.1.

Proposition 13 states that deterministic and positively correlated intertemporal risks will

yield the same menu choice, cCERT
t = cPOS

t . There also exists a connection between independent

12Intuitively, β in our salience function captures the relative strength of ordering and diminishing sensitivity. As
β decreases, the relative effect of diminishing sensitivity increases. States in which streams differ by the same
amount, but have different absolute levels, can thus be treated more differently.
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and negatively correlated risks, cIND
t and cNEG

t . While cIND
t will be pulled towards the modified

midpoint, c∗, relative to cCERT
t , cNEG

t will be even further pulled towards c∗. Reasonable

parameterizations of equations (2.1) and (2.2) and utility indicate that the first of these effects is

quite large, leaving relatively little distance between cIND
t and c∗. Hence, quite similar behavioral

predictions are made for cNEG
t and cIND

t .13 In contrast, DEU predicts equality for all of the values

cCERT
t , cIND

t , cPOS
t and cNEG

t .

The intuition of Proposition 13 also follows from our introductory examples. The

correlation structure of intertemporal risks alters what states can be realized. In POS, either

both payments or neither payment will be realized; the latter state generates no differences

between options and so induces no additional distortion beyond CERT . In NEG, only one of

the payments will be made, and so individuals will hedge similarly to IND to assure themselves

positive stream values in all states.

B.5 Proofs

B.5.1 Proofs in Main Text

Proposition 6: Consider σ : Rn ×Rn 7→ R+ such that for every X ,Y ∈ Rn, σ(X ,Y ) =

σ̃(h(X),h(Y )) where h : Rn 7→ R is continuously differentiable and additive separable, and

σ̃ : R×R 7→ R+ is a BGS salience function. Then:

1. If σ(X ,Y ) = σ̃(h(X),h(Y )) is a multidimensional salience function, then h(X) =
n
∑

i=1
g(xi)

where g(·) is some strictly monotonic function.

2. Conversely, if g(xi) is concave for xi > 0, convex for xi < 0, and g(0) = 0,

σ̃(
n
∑

i=1
g(xi),

n
∑

i=1
g(yi)) is a multidimensional salience function for all BGS salience functions

σ̃ .

3. Furthermore, if we assume that in addition for every X , Y in Rn
+, we have σ(X ,Y ) ≥

13As one example, if cIND
t = m/2(1+ r), then cIND

t = cNEG
t .
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σ(X +ε,Y +ε) for all ε > 0. Then σ(X ,Y ) = σ̃(
n
∑

i=1
g(xi),

n
∑

i=1
g(xi)) is a multidimensional

salience function if and only if g(·) is a non-constant linear function.

Proof. Since h(X) is additively separable, h(X) =
n
∑

i=1
fi(xi) where fi(·) are functions on real

numbers. Define gi(x) = fi(x)− fi(0), then h(X) =
n
∑

i=1
gi(xi)+ b, where b =

n
∑

i=1
fi(0). since

h(X) is continuously differentiable, so is gi(x).

Claim 1: for every i, gi(x) is monotonic.

Proof of claim 1: We now show g1(x) is monotonic, cases for other gi(x) can be

proved similarly. Suppose not, that is there are x,y ∈ R such that g′1(x) > 0 and g′1(y) < 0.

We now show x must be equal to y, and hence reach a contradiction and prove the claim. If

x > y, with g1(·) continuously differentiable and g′1(y)< 0, there is ε > 0 such that ε < x− y,

g1(y+ ε) < g1(y), and |g1(y+ ε)− g1(y)|< |g1(x)− g1(y)|. By inclusion of salience func-

tion, σ([x,0,0, . . . ,0], [y,0,0, . . . ,0])>σ([x,0,0, . . . ,0], [y+ε,0,0, . . . ,0]). Therefore, σ̃(g1(x)+

b,g1(y)+ b) > σ̃(g1(x)+ b,g1(y+ ε)+ b). With g1(y+ ε) < g1(y), by inclusion, it must be

that g1(x) < g1(y). But, with g′1(x) > 0, there is δ > 0 such that g1(x) < g1(x+ δ ) < g1(y).

Therefore, σ̃(g1(x) + b,g1(y) + b) > σ̃(g1(x + δ ) + b,g1(y) + b). On the other hand, with

x > y, σ([x,0,0, . . . ,0], [y,0,0, . . . ,0])< σ([x+δ ,0,0, . . . ,0], [y,0,0, . . . ,0]) which contradicts to

σ(X) = σ̃(h(X)). Therefore, x ≤ y.

If x < y, by a similar argument, we will reach a contradiction. Hence, it must be that

x = y. As a result, g′1(x)> 0 and g′1(y)< 0 cannot be true. Therefore, g1(·) is monotonic.

Claim 2: either g′i(x)> 0 for all i, or g′i(x)< 0 for all i.

Proof of claim 2. Let ei be the unit vector of the ith coordinate. That is e1 = [1,0, . . . ,0],

e2 = [0,1,0,0, . . . ,0], . . . Given x > 0, find ε > 0 such that |gi(x)|> |g j(ε)| for all j ̸= i, by upper

ordering and inclusion, σ(xei ,⃗0) < σ(xei + εe j ,⃗0) where 0⃗ = [0,0, . . . ,0]. That is, σ̃(gi(x)+

b,b)< σ̃(gi(x)+g j(ε)+b,b). If g′i(x)≥ 0, with |gi(x)|> |g j(ε)|, by inclusion it must be true

that g j(ε) > 0. Therefore, with claim 1, g′j(·) ≥ 0. If g′i(x) ≤ 0, with |gi(x)|> |g j(ε)|, by
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inclusion it must be true that g j(ε)< 0. Therefore, with claim 1, g′j(·)≤ 0. Since by ordering

g′i(·) ̸= 0, the claim follows.

From now on, we assume g′i(x) > 0. By reflection of salience function, following

arguments still hold if g′i(x)< 0.

Claim 3: there is g(x) : R 7→ R s.t. gi(x) = g(x) for all i.

Proof of claim 3. for every x ∈ R, by compatibility, σ(xei,0) = σ(xe j,0). That is

σ̃(gi(x)+ b,b) = σ̃(g j(x)+ b,b). By claim 2, gi(x)+ b ≥ b if and only if g j(x)+ b ≥ b. By

inclusion, gi(x) = g j(x) for all x.

The sufficiency of concave in g for x > 0 and convex in g for x < 0 follows directly from

diminishing sensitivity and reflection. Now we prove the last part of the proposition: assume for

every X , Y in Rn
+, σ(X ,Y )≥ σ(X + ε,Y + ε) for all ε > 0.

Claim 4: Given an arbitrary a ∈ R+, g(x+ a)− g(x) is constant for all x ∈ R+;

g(z−a)−g(z) is constant for all z ∈ R−.

Proof of claim 4. Let x,y≥ 0, consider σ(xe1+ye2,ye1+xe2)= σ̃(g(x)+g(y)+b,g(x)+

g(y)+ b) = 0. By diminishing sensitivity and ae1 > 0, σ((x+ a)e1 + ye2,(y+ a)e1 + xe2) ≤

σ(xe1+ye2,ye1+xe2) = 0. According to the BGS formulation, g(x+a)+g(y)+b = g(y+a)+

g(x)+b. The rest of claim 4 can be proved using reflection of the salience function.

(⇒) With claim 4, the rest of the proof is straightforward. Since g(x) is differentiable,

g′(x) exists for all x ∈ R. With lim
a→0

g(x+a)−g(x)
a

= g′(x), g′(x) is constant for all x ∈ R+.

In addition, at 0, we have g′(0) = lim
a→0+

g′(x) = lim
a→0−

g′(x). It follows that g′(x) is constant.

With upper and lower ordering, g′(x) ̸= 0. That is, h(X) =
n
∑

i=1
axi +b with a ̸= 0. If b ̸= 0, by

diminishing sensitivity and reflection, we have σ(− b
3a

ei,0)> σ(− b
3a

ei,−
2b
3a

ei). But, we also

have σ̃(2/3b,b)< σ̃(1/3b,2/3b), and so we reach a contradiction. Therefore, b = 0.

(⇐) If h(X) = a
n
∑

i=1
xi, one can easily check that σ̃(h(X),h(Y )) fulfills all requirements

in definition 1 and the stronger version of diminishing sensitivity.

Proposition 7: A salience function σ : Rn ×Rn 7→ R+ satisfies strong compatibility if
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and only if σ(X ,Y ) = σ̃(
n
∑

i=1
xi,

n
∑

i=1
yi) where σ̃ : R×R 7→ R+ is a salience function.

Proof. (⇒) As an example, consider outcomes in R2, strong compatibility means

σ([x1,x2], [y1,y2]) = σ([x1,0]+ [0,x2], [y1,0]+ [0,y2]) = σ([x1 + x2,0], [y1 + y2,0]).

In this way, we can combine the whole vector to its first row by summing it up entry-by-entry.

Notice for every X ∈ Rn, X =
n
∑

i=1
xiei. If σ() satisfies strong compatibility, σ(X ,Y ) =

σ(
n−1
∑

i=1
xiei + xne1,

n−1
∑

i=1
yiei + yne1) = σ(

n−2
∑

i=1
xiei +(xn−1 + xn)e1,

n−2
∑

i=1
yiei +(yn−1 + yn)e1). By in-

duction, σ(X ,Y ) = σ(e1
n
∑

i=1
xi,e1

n
∑

i=1
yi). The result follows from the fact that σ(e1

n
∑

i=1
xi,e1

n
∑

i=1
yi)

is equivalent to σ̃(
n
∑

i=1
xi,

n
∑

i=1
yi).

(⇐) If

σ([x1,x2], [y1,y2]) = σ([x1,0]+ [0,x2], [y1,0]+ [0,y2]) = σ([x1 + x2,0], [y1 + y2,0]).

By the definition of strong compatibility, the result is straightforward.

Lemma 2: Π induces a smooth correlation-sensitive presentation with monotonic φ if

and only if completeness, strong independence, Archimedean continuity, monotonicity, and

continuity are satisfied.

Proof. In Lanzani (2022), he shows axiom 1 , 2, and 3 are necessary and sufficient for the

existence of skew symmetric φ() such that π ∈ Π ⇔ ∑(x,y)φ(x,y)π(x,y)≥ 0. Axiom 4 is a direct

generalization from the same axiom in Lanzani (2022). The only difference is that when there

is only a single dimension the natural ordering on real numbers is complete while it’s not for

higher dimensional spaces. Therefore, here we focus on the continuity axiom.

Suppose φ(·) is not continuous, there is a sequence (xn,yn)→ (x,y) such that φ(xn,yn)↛

φ(x,y). This implies that there are outcomes (z,w) such that φ(z,w)> 0 (picking some (xn,yn)
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or (x,y) and reversing the coordinates if necessary). Within {(xn,yn)}∞
n=1, we can identify a

subsequence (xnk ,ynk) such that either φ(x,y)−φ(xnk ,ynk)≥ δ or φ(x,y)−φ(xnk ,ynk)≤−δ for

some δ > 0 and all k. In addition, by skew-symmetry of φ , we can assume φ(x,y)≤ 0.

First, suppose that φ(x,y)−φ(xnk ,ynk)≥ δ . Equivalently, φ(ynk ,xnk)−φ(y,x)≥ δ . Be-

cause φ(x,y)≤ 0 and φ(z,w)> 0, let p =
φ(z,w)

φ(z,w)−φ(x,y)+0.5δ
, we have {(y,x), p;(w,z),1−

p} /∈ Π since

φ(y,x)p+φ(w,z)(1− p) =
0.5φ(w,z)δ

φ(z,w)−φ(x,y)+0.5δ
< 0.

But, on the other hand,

φ(ynk ,xnk)p+φ(w,z)(1− p) =
φ(z,w)(φ(ynk ,xnk)−φ(y,x)−0.5δ )

φ(z,w)−φ(x,y)+0.5δ
> 0.

In summary, if φ(x,y)−φ(xnk ,ynk)≥ δ , we have

{(y,x), p;(w,z),1− p} /∈ Π and {(ynk ,xnk), p;(w,z),1− p} ∈ Π (∀k),

and hence, it violates axiom 5.

Second, suppose that φ(xnk ,ynk)−φ(x,y)≥ δ .

On one hand, if φ(x,y)< 0, let q =
φ(z,w)

φ(z,w)−φ(x,y)−aδ
for some a ∈ (0,1) such that

aδ < φ(y,x). We have {(x,y),q;(z,w),1−q} /∈ Π since

φ(x,y)q+φ(z,w)(1−q) =
−aφ(z,w)δ

φ(z,w)−φ(x,y)−aδ
< 0.

But,

φ(xnk ,ynk)q+φ(z,w)(1−q) =
φ(z,w)(φ(xnk ,ynk)−φ(x,y)−aδ )

φ(z,w)−φ(x,y)−aδ
> 0.

Consequently, Axiom 5 is also violated.

On the other hand, if φ(x,y) = 0, let q =
φ(z,w)

φ(z,w)+δ
. We have {(x,y),q;(w,z),1−q} /∈

Π because φ(w,z) < 0. Since φ(xnk ,ynk)− φ(x,y) > δ , we have φ(xnk ,ynk) > δ . Therefore,
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{(xnk ,ynk),q;(w,z),1−q} ∈ Π because

qφ(xnk ,ynk)+φ(w,z)(1−q)≥ qδ +φ(w,z)(1−q) =
φ(z,w)(δ −δ )

φ(z,w)+δ
= 0.

Hence, Axiom 5 is still violated. Therefore, Axiom 5 implies continuity in φ .

Conversely, if φ is continuous, axiom 5 is the direct consequence of correlation-sensitive

presentation. The detail is omitted here.

Lemma 3: If Π in addition satisfies axioms 1, it induces a continuous utility u on X that

is strictly increasing.

Proof. Define a binary relation ⪰ on outcome X by x ⪰ y if δ(x,y) ∈ Π. Then this relation is

complete, transitive, and continuous. By Debreu’s representation theorem, the result follows.

Proposition 8: Under assumption 1, a correlation sensitive preference induces a smooth

salience representation with utility function u(·), and some salience function, σ(·, ·), if and only

if Π satisfies axioms 1 to 8.

Proof. We proceed with several claims:

Claim 1: Assumption 1 and continuity of φ(·, ·) imply that φ(x,y) is continuously

differentiable at points x ∼u y.14

Proof of claim 1. Since φ(·, ·) is uniformly differentiable, given x,y ∈ X , for all ε ∈ R+,

we can find n∗ ∈ N s.t. ∀(x′,y′) ∈ X ×X with x′ ∼u y′ and ||(x′,y′)− (x,y)||< 1,
∣∣∣∣φ(x′+ ei

n∗ ,y
′)

1/n∗ −

∂φ(x′,y′)
∂xi

∣∣∣∣ < ε

3 . Since φ(·, ·) is continuous, we can find δ ∈ (0,1) such that
∣∣∣∣φ(x′′+ ei

n∗ ,y
′′)

1/n∗ −

φ(x+ ei
n∗ ,y)

1/n∗

∣∣∣∣< ε

3 if ||(x′′,y′′)−(x,y)||< δ . Since δ < 1, it is also true that
∣∣∣∣φ(x′′+ ei

n∗ ,y
′′)

1/n∗ − ∂φ(x′′,y′′)
∂xi

∣∣∣∣<
ε

3 . Therefore, using triangle inequality, we arrive at
∣∣∣∣∂φ(x,y)

∂xi
− ∂φ(x′′,y′′)

∂xi

∣∣∣∣< ε for all indifferent

outcome pairs (x′′,y′′) such that ||(x′′,y′′)− (x,y)||< δ . Since ε is arbitrary, the result follows.

14Formally, our continuously differentiable means for all sequences of outcome pairs {(xn,yn)}∞
n=1 s.t. xn ∼u yn

for all n and (xn,yn)→ (x,y), we have ∇φ(xn,yn)→ ∇φ(x,y) under the sup norm.
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Claim 2: Given assumption 1 and utility u with continuous and positive partial deriva-

tives, a correlation sensitive preference satisfies axioms 1, 7, and 8 if and only if φ(x,y) =

f (σ(x,y))(u(x)− u(y)) where f ◦σ is positive, symmetric, continuous, and obtain its global

minimum at all points (x,y) such that x = y.

Proof of claim 2. Define f ◦σ as

f (σ(x,y)) =



φ(x,y)
u(x)−u(y)

u(x) ̸= u(y)

lim
t↓0

φ(x+ te1,y)
u(x+ te1)−u(y)

u(x) = u(y).

When u(x) = u(y), f (σ(x,y)) is well-defined due to the fact both φ and u have nonzero partial

derivatives at indifference. Since u represents the preference over deterministic outcomes, f ◦σ

is positive.

The continuity of f ◦σ at points (x,y) such that u(x) ̸= u(y) follows from the continuity

of φ and u. For points (x,y) at which u(x) = u(y), for every sequence (xn,yn) converging to (x,y),

we can find at least one of the following type of subsequences (xnk ,ynk). First, u(xnk) = u(ynk)

for all but finitely many k. In this case, f (σ(xnk ,ynk))→ f (σ(x,y)) by the continuity of partial

derivatives.

Second, u(xnk) > u(ynk) for all k. In this case, using monotonicity, for all nk, we can

identify tnk ∈ R+ such that (xnk − tnk ∑
n
i=1 ei) ∼u ynk . Let us denote (xnk − tnk ∑

n
i=1 ei) as x′nk

,

we have f (σ(xnk ,ynk)) =
φ(xnk ,ynk)

u(xnk)−u(ynk)
=

φ(xnk ,ynk)−φ(x′nk
,ynk)

u(xnk)−u(x′nk
)

. With (xnk ,ynk) → (x,y),

tnk → 0. By uniform differentiability of φ and continuous differentiability of u, for all ε > 0,

there is N∗ ∈N, s.t. for all nk > N∗, |∑n
i=1

∂φ(x′nk
,ynk )

∂xi
−

φ(xnk ,ynk )−φ(x′nk
,ynk )

tnk
|< ε and |∑n

i=1
∂u(x′nk

)

∂xi
−

u(xnk )−u(x′nk
)

tnk
|< ε .

Furthermore, since u represents the preference over deterministic outcomes, for every

x ∈ X , we have {s ∈ X : u(s) = u(x)} = {s ∈ X : φ(s,x) = 0}. Since u(·) is continuously
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differentiable and has positive derivatives, by implicit function theorem, for every x ∈ X , if

we denote it as (x1, . . . ,xn), there is a continuously differentiable map t : Rn−1 7→ R such that

t(x1, . . . ,xn−1) = xn and u(s1, . . . ,sn−1, t(s1, . . . ,sn−1)) = u(x), for all s within some open set

containing (x1, . . . ,xn−1). On one hand, we have ti(s) =− ui(s,t(s))
un(s,t(s))

for all i = 1, . . . ,n−1. On the

other hand, we have

φ

(
s1, . . . ,sn−1, t(s1, . . . ,sn−1),y

)
= 0,

for every y ∈ X such that y ∼u x. Consequently, when s = (x1, . . . ,xn−1), using chain rule, we

have

ti(x1, . . . ,xn−1) =− ui(x)
un(x)

=− ∂φ(x,y)/∂xi

∂φ(x,y)/∂xn
,

for i = 1, . . . ,n−1. This implies that ui(x)
∂φ(x,y)/∂xi

is constant across all dimensions. Therefore, for

nk large enough, we have f (σ(xnk ,ynk))≈
∑

n
i=1 ∂φ(x′nk

,ynk )/∂xi

∑
n
i=1 ∂u(x′nk

)/∂xi
=

∂φ(x′nk
,ynk )/∂x1

∂u(x′nk
)/∂x1

which converges

to f (σ(x,y)) by definition.

For the last type of subsequences, we have u(xnk) < u(ynk) for all k. By a similar

argument, we still have f (σ(xnk ,ynk))→ f (σ(x,y)).

In summary, we just showed that every subsequence of sequence (xn,yn) has a further

subsequence whose salience values converge to f (σ(x,y)). Therefore, f (σ(x,y)) is continuous.

For the symmetry of f (σ(x,y)), if u(x) ̸= u(y), the result follows trivially. If u(x) = u(y),

consider the sequence {(x+ e1
n ,y)}

∞
n=1. Since f ◦σ is continuous, we have f (σ(x+ e1

n ,y))→

f (σ(x,y)) and f (σ(y,x+ e1
n )) → f (σ(y,x)). By monotonicity, for every n, x+ e1

n ≻u y, so

f (σ(x+ e1
n ,y) = f (σ(y,x+ e1

n )). Therefore, f (σ(x,y)) = f (σ(y,x)).

For global minimal at (x,x) for all x ∈ X , let us consider axiom 7. With x ̸∼u y, it

suggests that given ε ∈ R+ and {pn}∞
n=1 with |u(x)−u(y)|

u(x)−u(x−e1/n)
pn

(1−pn)
= 1+ ε , it must be true

that |φ(x,y)|
φ(x,x−e1/n)

pn
1−pn

> 1 for all but finitely many n. Hence, f (σ(x,y))
f (σ(x,x−e1/n)) >

1
1+ε

for all but

finitely many n. Therefore, f (σ(x,y))
f (σ(x,x)) ≥

1
1+ε

since f ◦ σ is continuous. Since ε is arbitrary,

f (σ(x,y))≥ f (σ(x,x)). By a similar argument, we have f (σ(x,y))≥ f (σ(y,y)). For points at

which x∼u y, we can consider (x+ e1
n ,y)→ (x,y) and achieve the same conclusion. The last thing
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we need to show is f (σ(x,x)) = f (σ(y,y)) for all x,y∈X . According to axiom 8, for all x,x′ ∈X ,

we have ∂u(x)/∂xi
∂u(0)/∂x j

=
∂φ(x,y)/∂xi|(x,y)=(x,x)
∂φ(x,y)/∂x j|(x,y)=(0,0)

, so ∂u(x)/∂xi
∂φ(x,y)/∂xi|(x,y)=(x,x)

= ∂u(0)/∂x1
∂φ(x,y)/∂x j|(x,y)=(0,0)

. Moreover,

Since both u(x) and φ(x,y) have positive partial derivatives over x, we can find a constant

number c> 0 such that c∂u(x)
∂x1

|x=0=
∂φ(x,y)

∂x1
|(x,y)=(0,0). Therefore, f (σ(x,x))= lim

t↓0

φ(x+te1,x)
u(x+te1)−u(x) =

∂φ(x,y)/∂x1|(x,y)=(x,x)
∂u(x)/∂x1

= c.

Claim 3: If Axiom 2 holds, f ◦σ satisfies upper ordering; if Axiom 3 holds, f ◦σ

satisfies lower ordering; if Axiom 4 holds, f ◦σ satisfies inclusion.

Proof of claim 3. We can assume u(x) > u(y). For if u(x) = u(y), we can consider

(x+ ε,y) for arbitrary ε ∈ Rn
++. By continuity in φ and f ◦σ , we can use a limit argument in

the end. As an illustration, let x′ ≥ x such that u(x′)> u(y).

Consider axiom 2. If the first case is true, we can find α ∈ [0,1] such that [u(y)−

u(x′)]α + [u(x′ ∨ z)− u(y)](1−α) = 0 while [u(y)− u(x′)] f ◦σ(x,y)α + [u(x′ ∨ z)− u(y)] f ◦

σ(x′∨z,y)(1−α)≥ 0. With u(x′)> u(y), α is in the interior. In this case, we have f ◦σ(x′,y)≤

f ◦σ(x′∨ z,y). As x′ ↓ x, we have f ◦σ(x,y)≤ f ◦σ(x∨ z,y).

For the second case, if u(y∨ z) = u(x′), we can find z′ arbitrarily close to z that breaks the

equality. The condition implies the existence of α ∈ (0,1) such that |u(x′)−u(y)|α = |u(x′)−

u(y∨ z′)|(1−α). And |u(x′)− u(y)| f ◦σ(x′,y)α ≤ |u(x′)− u(y∨ z′)| f ◦σ(x′,y∨ z′)(1−α).

Therefore, with α in the interior, we have f ◦ σ(x′,y) ≤ f ◦ σ(x′,y∨ z′). Fix x′, as z′ → z,

by continuity we have f ◦σ(x′,y) ≤ f ◦σ(x′,y∨ z). Next, as x′ ↓ x, we have f ◦σ(x,y) ≤

f ◦σ(x,y∨ z).

Therefore, f ◦σ(x,y)≤ max{ f ◦σ(x∨ z,y), f ◦σ(x,y∨ z)}. This is the exact definition

of upper ordering.

The analysis for axiom 3 and axiom 4 are similar, they are omitted here.

Claim 4: If Axiom 5 holds, then f ◦σ satisfies diminishing sensitivity.

Proof of claim 4. If {(x,y), p;(y+ ε,x+ ε),1− p} ∈ ΠE(u), we have [u(x)− u(y)]p ≥

[u(x+ ε)− u(y+ ε)](1− p). Consider the probability p that makes the equality holds. With
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x > y ≥ 0, p ∈ (0,1). By Axiom 5, we have [u(x)− u(y)] f (σ(x,y))p > [u(x + ε)− u(y +

ε)] f (σ(x + ε,y+ ε))(1− p), so f (σ(x,y)) > f (σ(x + ε,y+ ε)). Therefore, f ◦ σ satisfies

diminishing sensitivity.

Claim 5: If Axiom 6 holds, then f ◦σ satisfies reflection.

Proof of claim 5. Again, thanks to continuity and monotonicity of utility, we can assume

x ≁u y, x′ ≁u y′, −x ≁u −y, and −x′ ≁u −y′. In this case, there exists some α,β ∈ (0,1), we

have |u(x)−u(y)|α = |u(x′)−u(y′)|(1−α), and |u(−x)−u(−y)|β = |u(−x′)−u(−y′)|(1−β ).

Axiom 6 states the following equivalence

|φ(x,y)|α ≥ |φ(x′,y′)|(1−α)⇔ |φ(−x,−y)|β ≥ |φ(−x′,−y′)|(1−β ),

which is equivalent to

f (σ(x,y))≥ f (σ(x′,y′))⇔ f (σ(−x,−y))≥ f (σ(−x′,−y′)).

This is exactly the reflection condition.

Therefore, we conclude that with axioms 1-8, φ(x,y) = f (σ(x,y))(u(x)− u(y)) with

f (σ(x,y)) satisfying all properties of a free salience function except for f (σ(x,x)) = 0 for all

x ∈ X . However, we can define σ̂(x,y) = f (σ(x,y))− f (σ(0,0)) and f̂ (x) = x+ f (σ(0,0)).

With f (σ(x,x)) being constant, σ̂(x,x) = 0, so σ̂(x,y) is a free salience function. Furthermore,

f̂ (σ̂(x,y)) = f (σ(x,y)), so φ(x,y) indeed has a smooth-salience presentation.

The only if direction to check the necessity of axiom 1-8 is straightforward given a

smooth-salience presentation. The proof is omitted here.

Corollary 1: Under assumption 1, a correlation sensitive preference induces a smooth

salience representation with utility function u(·), and some salience function, σ(·, ·), if and only

if Π satisfies axioms 1 to 9.

Proof. Given x ⪰u y, for r ∈ R+ sufficiently small, there exits ε ∈ X+ with ||ε||= r such that
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u(x+ ε)> u(y) and u(xτ + ετ) ̸= u(yτ). By Axiom 13, for some α ∈ (0,1) we have

(u(x+ ε)−u(y))α = |u(yτ)−u(xτ + ετ)|(1−α)

⇒ (u(x)−u(y))σ(x+ ε,y)α ≥ |u(yτ)−u(xτ)|σ(xτ + ετ ,yτ)(1−α)

⇒σ(x+ ε,y)≥ σ(xτ + ετ ,yτ).

As ε goes to 0, ετ also goes to 0. With σ(·) being continuous, σ(x,y)≥ σ(xτ ,yτ). Since τ is a

permutation, it is invertible. With a same argument (switch (xτ ,yτ) to its conjugate if necessary),

we have σ(xτ ,yτ)≥ σ(xττ−1,yττ−1) = σ(x,y). Therefore, σ(x,y) = σ(xτ ,yτ).

The other direction is a direct check of the definition. The proof is omitted here.

Proofs of Appendix B.1

Lemma 4: A correlation sensitive preference satisfies axiom 10 if and only if φ(x,y) is

uniform differentiable at points x ∼u y.

Proof. Consider the lottery in axiom 10: {(x+αnei,y),1− pn; (0,e1), pn}. If the decision-maker

is indifferent between the two options in this lottery, correlation-sensitive preference implies that

φ(x+αnei,y)(1− pn) = φ(e1,0)pn, for all n, and hence,

φ(e1,0) liminf
n→∞

pn

(1− pn)αn
= liminf

n→∞

φ(x+αnei,y)
αn

.

Since both αn
pn

and pn
αn

converges, lim
n→∞

pn
αn

is positive and finite. Therefore, φ(e1,0) lim
n→∞

| pn
αn
|=

lim
n→∞

|φ(x+αnei,y)−φ(x,y)
αn||ei|| |. Therefore, by skew-symmetry of φ(·, ·), we showed that all right partial

derivatives of φ(x,y) at x ∼u y exists with ∂+φ(x,y)
xi

> 0 and ∂+φ(x,y)
yi

< 0 for all i = 1, . . . ,n.

Since given a compact set K, pn
αn

converges uniformly for every x,y ∈ K with x ∼u y,

using an argument similar to claim 1 from the proof of proposition 2.3, we can conclude φ(x,y)

has continuous right partial derivatives if x ∼u y. Furthermore, for all ε ∈R+, we can find n∗ ∈N

s.t. for all n > n∗ and ei, we have
∣∣∣∣φ(x,y)−φ(x− ei

n ,y)
1/n − ∂+φ(x− ei

n ,y)
∂xi

∣∣∣∣< ε for all x,y in some compact
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set K. In addition, with continuous right derivatives, ∂+φ(x− ei
n ,y)

∂xi
→ ∂+φ(x,y)

∂xi
as n → ∞. Since K is

compact, the right partial derivative is uniformly continuous over K. Thus, we can find ñ > n∗

s.t. ∀n > ñ,
∣∣∣∣φ(x,y)−φ(x− ei

n ,y)
1/n − ∂+φ(x,y)

∂xi

∣∣∣∣ < ε for all x,y ∈ K with x ∼u y. Therefore, φ(x,y) is

uniformly partial differentiable and has continuous partial derivatives at x ∼u y.

To avoid potential confusion, for now we denote κ the number of dimensions. Let {ei}2κ
i=1

be the natural orthonormal basis for X ×X , for every h ∈ X ×X with h ̸= 0 and ||h||< 1, we

decompose h = ∑
2κ
i=1 ah

i ei with ||h||= ∑
2κ
i=1|ah

i |∈ (0,1). Fixing a compact set K, notice that the

set K +{h ∈ X ×X : ||h||≤ 1} is also compact.15 By uniformly partial differentiability, given

ε ∈ R+, we can find n∗ ∈ N such that if |ai|< 1
n∗ for all i = 1, . . . ,2κ . we have

∣∣∣∣φ((x,y)+∑
j
i=1 ah

i ei)−φ((x,y)+∑
j−1
i=1 ah

i ei)

|a j|
−

a jφ j((x,y)+∑
j−1
i=1 ah

i ei)

|a j|

∣∣∣∣< ε

4κ
,

where j = 1, . . . ,2κ , ∑
0
i=1 ah

i ei = 0, and φ j(·, ·) is the partial derivative of φ(·, ·) respect to the

jth coordinate. Therefore, whenever |ai|< 1
n∗ for all i = 1, . . . ,2κ , we have

∣∣∣∣φ((x,y)+h)−φ(x,y)
||h||

∣∣∣∣= ∣∣∣∣ 2κ

∑
j=1

φ((x,y)+∑
j
i=1 ah

i ei)−φ((x,y)+∑
j−1
i=1 ah

i ei)

|a j|
|a j|
||h||

∣∣∣∣.
Therefore, for every (x,y) ∈ K we have

∣∣∣∣φ((x,y)+h)−φ(x,y)
||h||

−
2κ

∑
j=1

a jφ j((x,y)+∑
j−1
i=1 ah

i ei)

||h||

∣∣∣∣
=

∣∣∣∣ 2κ

∑
j=1

(
φ((x,y)+∑

j
i=1 ah

i ei)−φ((x,y)+∑
j−1
i=1 ah

i ei)

|a j|
−

a jφ j((x,y)+∑
j−1
i=1 ah

i ei)

|a j|

)
|a j|
||h||

∣∣∣∣
≤ε

2
.

Furthermore, since φ(·, ·) has uniformly continuous partial derivatives over any compact

15Given two sets A and B of a vector space V , A+B = {x ∈V : ∃a ∈ A,b ∈ B s.t.a+b = x}.

168



set, we can identify ñ > n∗ s.t. ∀h ∈ X ×X with ||h||≤ 1
ñ , we have

φ j((x,y)+h)−φ j(x,y)<
ε

4κ
.

Together with the above inequality, we have

∣∣∣∣φ((x,y)+h)−φ(x,y)
||h||

−
2κ

∑
j=1

a jφ j(x,y)
||h||

∣∣∣∣< ε,

for all (x,y) ∈ K. Therefore, φ(·, ·) is uniformly differentiable.

The other direction is a direct check of the definition. The proof is omitted here.

Lemma 5: Given assumption 1, a correlation sensitive preference satisfies axioms 1, 7,

and 11 if and only if φ(x,y) = f (σ(x,y))(u(x)−u(y)) where u(·) is continuously differentiable

and has positive partial derivatives while f ◦σ is positive, symmetric, continuous, and obtain its

global minimum at all points (x,y) such that x = y.

Proof. In light of claim 2 in the proof of proposition 8, it suffices to construct a utility function

u(·) that satisfies axiom 8. Since φ is continuously differentiable, we define

ψ(x) = [φ1(x,x),φ2(x,x), . . . ,φn(x,x)],

where φi(x,x) is the partial derivative of φ(·, ·) with respect to the ith coordinate at point (x,x).

Notice, as n → ∞, the valuation of Ln
(y,x) converges to the line integral

∫ 1

0
ψ(x+(y− x)t) · (y− x)dt,

which is the integration of ψ(·) over the straight line from x to y. Axiom 11 suggests that for

any x,y ∈ X , line integrals of φ(·) from 0 to x, from x to y, and from y to 0 sum up to 0. Since

X =Rn is a path-connected set, every piecewise smooth curve can be approximated by piecewise
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linear curves, and ψ(·) is continuous, axiom 11 implies that ψ(x) is a conservative vector field

on X . In other words, there is a function u : X 7→ R such that ∇u(x) = ψ(x).

We now show u(·) represents the preference over deterministic outcomes. Suppose

φ(x,y) = 0. From x to y, along the surface {s ∈ X : φ(y,s) = 0}, we can construct a curve

of finite length. Specifically, let γ : [0,1] 7→ X be the parametrization of the curve. Since the

preference is monotonic, we can find a γ such that γi is strictly monotonic for i= 1,2, . . . ,n.16 The

resulting curve has length at most ∑
n
i=1|xi − yi|. Let us denote this length L. Let {s1,s2, . . . ,sn}

be a finite partition from x to y along the curve γ , we have ∑
n−1
i=1 u(si+1)−u(si) = u(y)−u(x).

Furthermore, since every such partition is contained in the cube
n
∏
i=1

[xi ∧ zi,xi ∨ zi], for every

ε > 0, we can find δ > 0 such that if ||si − si−1||< δ , |u(si)−u(si−1)−∇u(si−1) · (si − si−1)|≤
ε

2L ||si−si−1|| and |φ(si,si−1)−∇u(si−1) ·(si−si−1)|≤ ε

2L ||si−si−1|| for i = 1, . . . ,n−1 because

u(·) is continuously differentiable and φ(x,y) is uniformly differentiable if x ∼u y. In addition,

since φ(si,si−1) = 0, combining the two inequalities we have |u(si)− u(si−1)|≤ ε

L ||si − si−1||.

Hence |u(y)−u(x)|≤ ε . Since ε is arbitrary, we have u(x) = u(y). To conclude, notice that if

φ(x,y)> 0, there is t ∈ R+ such that φ(x− t ∑
n
i=1 ei,y) = 0. Since u(·) has positive derivatives,

u(x)> u(x− t ∑
n
i=1 ei). By previous argument, u(x− t ∑

n
i=1 ei) = u(y). Therefore, u(x)> u(y).

In summary, φ(x,y)≥ 0 ⇒ u(x)≥ u(y). The reverse direction also holds because φ(·, ·) is skew

symmetric.

At last, u(·) satisfies axiom 8 follows naturally from its construction. The reverse direction

is a direct check from the definitions, it is omitted here.

Proofs for Appendix B.2

Lemma 6: Focusing, relative thinking, and pairwise normalization all satisfy comparative

monotonicity.

16Since γi : [0,1]→ R are monotonic, they are differentiable almost everywhere.
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Proof. We begin with two useful claims:

Claim 1: for all x,δ ,ε > 0 and y ∈ R s.t. y < x,ε ≤ δ , and y+δ ≥ 0, then µ(x+ ε)(y+δ )−

µ(x)y and ν(x+ ε)(y+δ )−ν(x)y are both positive.

Proof of claim 1. Since µ is an increasing and positive function, µ(x+ ε)(y+ δ )− µ(x)y is

positive. On the other hand,

ν(x+ ε)(y+δ )−ν(x)y ≥ ν(x+δ )(y+δ )−ν(x)y

= ν(x+δ )(x+δ )−ν(x)x+(x− y)(ν(x)−ν(x+δ ))

> 0

The last inequality holds because ν(x)x is increasing in x and ν(x) is decreasing in x. Hence the

claim is valid.

Claim 2: for all x,ε > 0 and y ≤ 0 s.t. ε ≤ x, and x+y ≥ 0, then µ(x−ε)(y+ε)−µ(x)y

and ν(x− ε)(y+ ε)−ν(x)y are both positive.

Proof of claim 2. Since µ is increasing in x and positive while y is non-positive, µ(x− ε)(y+

ε)−µ(x)y = (µ(x− ε)−µ(x))y+µ(x− ε)ε is positive. On the other hand, with ν(x)x being

increasing in x and ν(x) being decreasing in x

ν(x− ε)(y+ ε)−ν(x)y =−
(

ν(x− ε)(−y− ε)+ν(x)y
)

=−
(

ν(x− ε)(x− ε)−ν(x)x+(x+ y)(ν(x)−ν(x− ε))

)
> 0.

For focusing and relative thinking, since the utility is a summation of utilities from

different attributes’ dimensions, we compare the change in differences in each dimension.
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Specifically, it suffices to show if increasing Ci to C′
i , for every attribute n and option C j, we have

µ

(
max

C′
k∈C ′

{
C′

kn
}
− min

C′
k∈C ′

{
C′

kn
})

· (C′
in −C jn)≥ µ

(
max
C′

k∈C

{
C′

kn
}
− min

C′
k∈C

{
C′

kn
})

· (Cin −C jn),

ν

(
max

C′
k∈C ′

{
C′

kn
}
− min

C′
k∈C ′

{
C′

kn
})

· (C′
in −C jn)≥ ν

(
max
C′

k∈C

{
C′

kn
}
− min

C′
k∈C

{
C′

kn
})

· (Cin −C jn),

where C ′ is obtained from C by changing Ci to C′
i .

There are three fundamental situations in each attribute dimension. First, if increasing from Cin

to C′
in doesn’t alter the range of some dimension, in that dimension the difference between C′

in

and any other C j is indeed bigger than Cin comparing with C j. Second, Cin is not the original

minimal and increasing in Cin enlarges the range of that attribute (now C′
in is the maximal

element), the increasing in Cin to C′
in is at least as large as the increasing in the maximal element

of that attribute. Therefore, let x = maxC′
i∈C {C′

in}−minC′
i∈C {C′

in}, ε = C′
i −maxC′

i∈C {C′
in},

δ =C′
in−Cin, y =Cin−C jn, using Claim 1, we reach the same conclusion as in the first situation.

Third, if increasing from Cin to C′
in shrinks the range (Cin is minimal in that dimension) and

C′
in doesn’t exceed the original maximal, again let x be the original range of that dimension,

y =Cin−C jn ≤ 0, ε =C′
in−Cin > 0. Using Claim 2, we reach the same conclusion as the above

two situation. The only case left is that Cin is originally the minimal, and C′
in is the new maximal.

In this case, we can decompose the increment from Cin to C′
in into a linear combination of smaller

increments that fit in the three fundamental cases. Therefore, comparative monotonicity holds in

both focusing and relative thinking.

For pairwise normalization, notice with all attributes being non-negative, for all other

options Ck,
C′

in
C′

in +Ckn +β
− Cin

Cin +Ckn +β
≥ 0, and for all C j,

C′
in −C jn

C′
in +C jn +β

is increasing in C′
in.

Therefore, comparative monotonicity also holds.

Proposition 11 Let d : R+ → R+ be some continuous and strictly increasing function.

Suppose the context-dependent utility presentation u over the consumption set satisfies R1 to R5,
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then the function σ̃ defined by σ̃(X ,Y ) = d(|u1(X ,Y )−u2(X ,Y )|) is a free salience function.17

Proof. For ordering, given X ,Y , suppose u1(X ,Y )−u2(X ,Y )> 0, then for any other option Z,

X ∨Z ≥ X , hence σ̃(X ∨Z,Y )≥ σ̃(X ,Y ) by comparative monotonicity. Hence upper ordering

holds. The arguments for lower ordering and inclusion are similar. Also, diminishing sensitivity

and reflection holds due to the corresponding two properties of u(·). At last, symmetry holds by

ordering symmetry.

Proofs for Convex Time Budget Predictions

First, we derive tangency conditions under different risk structures. When there is no

uncertainty, the Euler equation associated with cCERT
t is

u′(cCERT
t )

u′(m− (1+ r)cCERT
t )

= (1+ r)δ k. (B.1)

Notice that since u(·) is weakly concave,
u′(ct)

u′(m− (1+ r)ct)
is decreasing in ct .

Recall that there are four potential states: sa,ss,sl,sn. In sa, all allocations are paid. In ss,

only the sooner allocation ct is paid. In sl , only the later allocation ct+k is paid. In sn, nothing is

paid. Let πs be the objective probability of state s. In case of each payment is paid with 50%

chance, πsa = πss = πsl = πsn = 0.25. And the problem becomes choosing ct to maximize

(pct
sa
+ pct

ss
)u(ct)+δ

k(pct
sa
+ pct

sl
)u(m− (1+ r)ct).

Next, we establish the ordering of states. Consider the salience function of choosing ct

and comparing to some other choice ci.

In sa, the salience function is σ(u(ct)+δ ku(m− (1+ r)ct),u(ci)+δ ku(m− (1+ r)ci);

in ss, the salience function is σ(u(ct),u(ci));

17Notice that σ̂(·, ·) defined by σ̂(u1(X ,Y ),u2(X ,Y )) = d(|u1(X ,Y )− u2(X ,Y )|) is “almost” a BGS salience
function in the sense that it satisfy all requirements except for diminishing sensitivity.
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in sl , the salience function is σ(δ ku(m− (1+ r)ct),δ
ku(m− (1+ r)ci));

and in sn the salience function is always σ(0,0) = 0.

With u(·) approximately linear, and with the salience function satisfying strong compati-

bility, we approximate the above four values as

sa: σ(ct +δ
k(m− (1+ r)ct),ci +δ

k(m− (1+ r)ci));

ss: σ(ct ,ci);

sl: σ(δ k(m− (1+ r)ct),δ
k(m− (1+ r)ci));

sn: σ(0,0);

since when the individual chooses ct , the salience level of each state is the average value of

salience function of ct and all possible ci in that state. Due to the fact that there are infinitely

many ci, we assume ci has a uniform distribution over [0, m
1+r ]. The salience levels of the four

states are thus:

∆
ct
sa
=

1+ r
m

m/(1+r)∫
0

σ(ct +δ
k(m− (1+ r)ct),ci +δ

k(m− (1+ r)ci))dci;

∆
ct
ss
=

1+ r
m

m/(1+r)∫
0

σ(ct ,ci)dci;

∆
ct
sl
=

1+ r
m

m/(1+r)∫
0

σ(δ k(m− (1+ r)ct),δ
k(m− (1+ r)ci))dci;

∆
ct
sn
= 0.

With 0.5 ≤ (1+ r)δ k ≤ 2, we have
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σ(ct +δ
k(m− (1+ r)ct),ci +δ

k(m− (1+ r)ci))

≤ min{σ(δ k(m− (1+ r)ct),δ
k(m− (1+ r)ci)),σ(ct ,ci)},

for all ct ,ci. The reason is that in sa both allocations are paid, so comparing it to either ss or

sl it is “penalized” more from diminishing sensitivity. Furthermore, the difference between

payments in sa is (1−δ k(1+ r))(ct −ci), the difference in ss is ct −ci, and the difference in sl is

δ k(1+ r)(ct −ci). With 0.5 ≤ (1+ r)δ k ≤ 2, |1−δ k(1+ r)| is smaller than both 1 and δ k(1+ r).

In summary, in sa, the payments are the highest while the difference between two streams is the

lowest.

Notice that for all ct , there is a ci which makes the inequality strict. Therefore, ∆
ct
sa and

∆
ct
sn will always be in the third and fourth place among the four levels. Using change of variables,

we can rewrite

∆
ct
sl
=

1+ r
m

m/(1+r)∫
0

σ(δ k(1+ r)c′t ,δ
k(1+ r)c′i)dc′i

≡ 1+ r
m

m/(1+r)∫
0

σ(δ k(1+ r)c′t ,δ
k(1+ r)ci)dci.

where c′t =
m

1+ r
− ct , and c′i =

m
1+ r

− ci.

Now we show that there is a threshold c∗ such that ∆
ct
ss ≥ ∆

ct
sl if and only if ct ≤ c∗.

175



Suppose β > 0 and δ k(1+ r)≥ 1, then

∆
ct
ss
−∆

ct
sl

=

m/(1+r)∫
0

(
|ct − ci|

ct + ci +β
− |c′t − ci|

c′t + ci +
β

δ k(1+ r)

)dci

=

m/(1+r)∫
0

(
|ct − ci|

ct + ci +β
− |c′t − ci|

c′t + ci +β
)dci︸ ︷︷ ︸

Π(ct)

+

m/(1+r)∫
0

(
|c′t − ci|

c′t + ci +β
− |c′t − ci|

c′t + ci +
β

δ k(1+ r)

)dci

︸ ︷︷ ︸
e(ct)

.

where c′t = m/(1+ r)− ct . We now use two lemmas to show Π(ct) is decreasing in ct , and

e(c+ t)) decreasing in ct if ct ≤
m

2(1+ r)
. Then, on one hand, we have ∆

ct
ss −∆

ct
sl is decreasing if

ct ≤
m

2(1+ r)
. On the other hand, we have e(ct)< 0 while Π(

m
2(1+ r)

) = 0 and is decreasing,

so ∆
ct
ss −∆

ct
sl < 0 if ct ≥

m
2(1+ r)

. And hence, we prove the existence of c∗.

Lemma 11. Π(ct) is decreasing in ct .

proof for lemma 11.

dΠ(ct)

dct
= 2ln(

2ct +β

ct +β
)− 2ct +β

ct +β
+2ln(

2ct +β

ct +
m

1+ r
+β

)− 2ct +β

ct +
m

1+ r
+β

+2

︸ ︷︷ ︸
A(ct)

+2ln(
2c′t +β

c′t +β
)− 2c′t +β

c′t +β
+2ln(

2c′t +β

c′t +
m

1+ r
+β

)− 2c′t +β

c′t +
m

1+ r
+β

+2

︸ ︷︷ ︸
A(c′t)

.

Given that A(c′t) = A(
m

1+ r
− ct), notice:

a. A(ct) is concave.

b. A(
m

2(1+ r)
)≤ 0.
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For a. notice that

A′(ct) =
β 2

(2ct +β )(ct +β )2 +
(

2m
1+ r

+β )2

(ct +
m

1+ r
+β )2(2ct +β )

.

with 0 ≤ ct ≤
m

1+ r
, both terms are decreasing in ct . Thus, A(ct) is concave.

Let β ′ =
2(1+ r)β

m
, then

A(
m

2(1+ r)
) = 2ln(

2+β ′

1+β ′ )−
2+β ′

1+β ′ +2ln(
2+β ′

3+β ′ )−
2+β ′

3+β ′ +2

= 2ln
(2+β ′)2

(1+β ′)(3+β ′)
−2

(2+β ′)2

(1+β ′)(3+β ′)
+2.

with
(2+β ′)2

(1+β ′)(3+β ′)
> 1 and decreasing in β ′, we have A(

m
2(1+ r)

) is increasing in β ′ while

lim
β ′→∞

A(
m

2(1+ r)
) = 0, so A(

m
2(1+ r)

)≤ 0. Using Jensen’s inequality, we have

dΠ(ct)

dct
= 2(0.5A(ct)+0.5A(c′t))≤ 2A(

m
2(1+ r)

)≤ 0.

Since we restrict our attention to δ k(1+ r)> 1, we have the following result:

Lemma 12. e(ct) is decreasing in ct if β ≤ (
√

2−1)
m

1+ r
and ct ≤

m
2(1+ r)

.

proof of lemma 12. Notice that

de(ct)

dct
=−de(ct)

dc′t
=− d

dc′t

m/(1+r)∫
0

|c′t − ci|
c′t + ci +β

dci +
d

dc′t

m/(1+r)∫
0

|c′t − ci|

c′t + ci +
β

δ k(1+ r)

dci.
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With δ k(1+ r)> 1 and fundamental theorem of calculus, we have

de(ct)

dct
=−

∫
β

β

δk(1+r)

(
d2

dc′tdβ

m/(1+r)∫
0

|c′t − ci|
c′t + ci +β

dci

)
dβ .

Therefore, it suffices to show that

d2

dc′tdβ

m/(1+r)∫
0

|c′t − ci|
c′t + ci +β

dci ≥ 0.

Using the Newton-Leibniz formula and some algebraic manipulations, it can be shown that

d2

dc′tdβ

m/(1+r)∫
0

|c′t − ci|
c′t + ci +β

dci

=
1

2c′t +β


m

1+ r
− c′t

c′t +
m

1+ r
+β

+(

m
1+ r

− c′t

c′t +
m

1+ r
+β

)2 − c′t
c′t +β

+(
c′t

c′t +β
)2

 .

Notice
1

2c′t +β
> 0, − c′t

c′t +β
+(

c′t
c′t +β

)2 ≥−1
4

and

m
1+ r

− c′t

c′t +
m

1+ r
+β

+(

m
1+ r

− c′t

c′t +
m

1+ r
+β

)2

is decreasing in c′t . Thus, it suffices to show the equation above is non-negative at c′t =
m

2(1+ r)
.

With β ≤ (
√

2−1)
m

1+ r
, the result follows.

Notice that Π(ct) = −Π( m
1+r − ct). By lemma 11, we have Π(ct) ≥ 0 if and only if

ct ≤
m

2(1+ r)
. With δ k(1+ r)≥ 1, e(ct)≤ 0, so ∆

ct
ss −∆

ct
sl ≤ 0 if ct ≥

m
2(1+ r)

.

In addition, by lemma 12, we have ∆
ct
ss −∆

ct
sl is decreasing if ct ≤

m
2(1+ r)

. Under

δ k(1+ r) ≤ 2 and β ≤ (
√

2− 1)
m

1+ r
, it can be shown numerically that ∆0

ss
−∆0

sl
> 0. Thus,

with intermediate value theorem, there is a threshold 0 < c∗ <
m

2(1+ r)
such that ∆

ct
ss = ∆

ct
sl at c∗.

Moreover, ∆
ct
ss ≥ ∆

ct
sl if and only if ct ≤ c∗. Therefore,
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
∆

ct
ss > ∆

ct
sl > ∆

ct
sa > ∆

ct
sn if ct < c∗,

∆
ct
sl > ∆

ct
ss > ∆

ct
sa > ∆

ct
sn if ct > c∗,

∆
ct
ss = ∆

ct
sl > ∆

ct
sa > ∆

ct
sn if ct = c∗.

(B.2)

These three rankings also hold if 0.5 ≤ δ k(1+ r) < 1. Notice that ct =
m

1+ r
− c′t , simplify

β

δ k(1+ r)
= β ′, for each ct we have:

∆
c′t
sl −∆

c′t
ss =

m/(1+r)∫
0

(
|ct − ci|

ct + ci +β ′ −
|c′t − ci|

c′t + ci +β
)dci

=

m/(1+r)∫
0

(
|ct − ci|

ct + ci +β ′ −
|c′t − ci|

c′t + ci +β ′ )dci︸ ︷︷ ︸
Π(ct)

+

m/(1+r)∫
0

(
|c′t − ci|

c′t + ci +β ′ −
|c′t − ci|

c′t + ci +β
)dci︸ ︷︷ ︸

e(ct)

.

Therefore, by the exact argument above, the results maintain (except that now c∗ >
m

2(1+ r)
).

Proposition 12: Suppose that

a. u(·) is strictly increasing, and weakly concave, but the approximation

σ(u(ct)+δ ku(ct+k),u(c′t)+δ ku(c′t+k))≈ σ(ct +δ kct+k,c′t +δ kc′t+k) maintains ;

b. individuals follow rank-based salience theory with salience function as in equations (2.1)

and (2.2) and β ≤ (
√

2−1)
m

1+ r
;

c. 0.5 ≤ (1+ r)δ k ≤ 2

Then, there exists c∗ > 0 such that:

(1). If cCERT
t ≥ c∗, cIND

t ∈ [c∗,cCERT
t ].

(2). If cCERT
t ≤ c∗, cIND

t ∈ [cCERT
t ,c∗].

(3). If cCERT
t = c∗, cIND

t = c∗.
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Similarly,

(1). If cSING
t ≥ c∗, cMULT

t ∈ [c∗,cSING
t ].

(2). If cSING
t ≤ c∗, cMULT

t ∈ [cSING
t ,c∗].

(3). If cSING
t = c∗, cMULT

t = c∗.

Moreover:

(4). Fixing interest rate to some r, if cCERT
t is the choice under r, and cSING

t is the choice under

r/0.8, then cCERT
t < cSING

t .

In addition, c∗ ≤ m
2(1+ r)

if and only if (1+ r)δ k ≥ 1 and c∗ → m
2(1+ r)

as β → 0.

Proof. Notice that the first two rankings in (B.2) hold for a certain range of ct , so the decision

weight is constant around ct if ct ̸= c∗. Therefore, assuming ct ̸= c∗, the tangency condition
u′(ct)

u′(m− (1+ r)ct)
= (1+ r)δ k pct

sa + pct
sl

pct
sa + pct

ss

where

(1+ r)δ k pct
sa + pct

sl

pct
sa + pct

ss

=



(1+ r)δ k 1+θ 2

θ +θ 2 if ct > c∗,

(1+ r)δ k θ +θ 2

1+θ 2 if ct < c∗.

(B.3)

where θ ∈ (0,1]. At the boundary point c∗, however, the tangency condition is not well-defined.

Recall
u′(ct)

u′(m− (1+ r)ct)
is decreasing in ct , and cCERT

t solves the decision-maker’s

problem under certainty while cIND
t solves decision-maker’s problem under uncertainty. Suppose

cCERT
t > c∗, the tangency condition under certainty is

u′(cCERT
t )

u′(m− (1+ r)cCERT
t )

≥ (1+ r)δ k,
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with equality holds whenever cCERT
t < m/(1+ r). If cIND

t < c∗, the tangency condition from

equation B.3 says that

u′(cIND
t )

u′(m− (1+ r)cIND
t )

≤ (1+ r)δ k θ +θ 2

1+θ 2 ,

with equality holds for every cIND
t > 0. With θ ∈ (0,1] and monotonicity of MRS, this requires

cIND
t ≥ cCERT

t , which cannot be true. On the other hand, if cIND
t > c∗, by a similar argument

of decreasing MRS and structure from equation B.3, we get cIND
t ≤ cCERT

t . In addition, if θ is

sufficiently small, it is possible that there is no solution for either tangency condition in equation

B.3. In this case, individual would allocate c∗ to the sooner account.18 A similar argument is

sufficient to prove the rest of proposition 12. Notice that if cCERT
t = c∗, cIND

t can only be at c∗ if

θ < 1.

Proposition 13:

Suppose the conditions and c∗ > 0 are the same as in proposition 12, then:

(1). If cIND
t ≥ c∗, cNEG

t ∈ [c∗,cIND
t ].

(2). If cIND
t ≤ c∗, cNEG

t ∈ [cIND
t ,c∗].

(3). If cIND
t = c∗, cNEG

t = c∗.

(4). cCERT
t = cPOS

t .

Proof. The salience ranking conditions are analogous to those in proposition 12. On the other

hand, correlation changes tangency conditions. Under negative-correlated risk structure, the

tangency condition becomes

18Assume θ < 1, since
2+2θ

2+θ +θ 2 >
1+θ +2θ 2

1+θ +θ 2 +θ 3 , by continuity of utility function, allocation (c∗,
m

1+ r
−c∗)

yields greater utility than other allocations which sufficiently close to c∗.
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u′(cNEG
t )

u′(m− (1+ r)cNEG
t )

= (1+ r)δ k pct
sl

pct
ss

where

(1+ r)δ k pct
sl

pct
ss

=


(1+ r)δ k 1

θ
if cNEG

t > c∗

(1+ r)δ kθ if cNEG
t < c∗.

(B.4)

Notice that θ+θ 2

1+θ 2 > θ , by a similar argument from proposition 12 we can get 1, 2, and 3.

Under positive-correlated risk structure, the tangency condition becomes

u′(cPOS
t )

u′(m− (1+ r)cPOS
t )

= (1+ r)δ k pct
sa

pct
sa

= (1+ r)δ k,

which is the same as equation B.1. The result follows.

B.6 Structural Estimation

In this section, we describe two structural estimators. Within the CTB design under

multidimensional salience, there is no decision weight distortion when both the sooner and later

payments are both riskless. On the other hand, by proposition 12, under independent risks, our

theory predicts a specific behavioral pattern. Notice, in CTB design subjects modify choices due

to variations in interest rates, time delays, and risk structures. Consequently, the degree to which

salience distorts attention is endogenously determined. Therefore, pooling all data together may

cause misidentification of utility curvature and the salience effect. To circumvent this issue,

these two structural estimators can both be considered as two-stage estimators. In stage one, they

both use data under riskless condition to identify utility curvature and time discounting. In the

second stage, they deploy different assumptions to estimate salience effect from risky condition.

In practice, we use MLE estimators to conduct these two stages simultaneously.
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We begin with assuming every subject processes a CRRA utility function, that is:

u(ct ,ct+k) = (ct −w)α +δ
k(ct+k −w)α ,

where α is a measure for risk aversion, δ is the time discounting factor, and w is the Stone -

Geary minimum consumption level.

With this structural assumption, from tangency conditions (B.1) and (B.3), we get:

log(cCERT
t −w)− log(cCERT

t+k −w) = log
cCERT

t −w
cCERT

t+k −w
=

1
α −1

log(1+ r)+
k

α −1
log(δ ). (B.5)

log
cIND

t −w
cIND

t+k −w
− log

cCERT
t −w

cCERT
t+k −w

=



1
α −1

log(
1+θ 2

θ +θ 2 ) if cIND
t >

m
2(1+ r)

,

1
α −1

log(
θ +θ 2

1+θ 2 ) if cIND
t <

m
2(1+ r)

.

(B.6)

For simplicity, we denote Y ∗
CERT = log

cCERT
t −w

cCERT
t+k −w

and Y ∗
IND = log

cIND
t −w

cIND
t+k −w

. Notice,

however, Y ∗
CERT ,Y ∗

IND are not completely identified since ct is restricted to be in [0,
m

1+ r
]. As a

result, Y ∗
CERT and Y ∗

IND are censored in to

YCERT = max
(

min(Y ∗
CERT , ln

−w
m/(1+ r)−w

), ln
m/(1+ r)−w

−w

)
,

YIND = max
(

min(Y ∗
IND, ln

−w
m/(1+ r)−w

), ln
m/(1+ r)−w

−w

)
.

At the boundary point, ct =
m

2(1+ r)
, the first order condition is not well-defined. For this

reason, we discard these observations in subsequent structural analysis. Nevertheless, one should

notice that according to proposition 12 choosing ct at
m

2(1+ r)
only under risky environment
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Figure A1. Average Difference of log Consumption Ratio

Notes: The Figure presents the aggregate behavior of N = 226 from Andreoni and Sprenger (2012b), Miao and Zhong (2015), and Cheung
(2015). The averages are calculated after dropping data whose allocations are doubly censored. The red and green lines represent log values of
allocation ratio between sooner and later account under risky and riskless condition. To ensure existence, we add a minimal consumption value
0.1 to both allocations in all data. The blue line gives the demeaned absolute difference between the log allocation ratio. The black dash line is a
horizontal reference line.

indicates a strong salience distortion. That is, assuming subjects follow rank-based salience

theory, they would choose the portfolio (
m

2(1+ r)
,
m
2
) if the salience parameter θ is below some

lower bound between 0 and 1. In this case, discarding these subjects would potentially understate

the salience effect. However, the two strategies give different degrees of credibility to rank-based

salience theory, so for consistency, we choose to discard those subjects. The results suggest that

there is still significant salience distortion even if after discarding the observations that are most

likely to be severe.

Equation B.6 implies |Y ∗
IND −Y ∗

CERT | is a constant which equals to
1

1−α
ln(

1+θ 2

θ +θ 2 ).

Figure A1 presents the aggregate behavior and difference permitting a direct assessment of
1

1−α
ln(

1+θ 2

θ +θ 2 ), which appears quite stable across values of (1 + r). Since the absolute

differences are relatively stable, our first strategy uses a two stage method to approach this

problem. In the first stage, we use the allocation ratio under the riskless condition to derive the

utility curvature, α , and discounting, δ . In the second stage, we use the sample mean of the
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absolute difference level and estimators from the first stage to estimate the salience parameter, θ .

Two implicit assumptions are made in our initial estimation method. The first is that all

the discrepancies between Y ∗
CERT and Y ∗

IND can be explained by rank-based multidimensional

salience theory, but in fact only 78% of data is consistent. One can ameliorate this issue by

ignoring those data. The second is that the errors in decisions made under uncertainty do not

directly contribute to the error in second stage. Otherwise, the second stage estimation is biased.

To circumvent these issues, we introduce the following approach. The exact form of tangency

condition in equation B.6 can be inferred from cIND
t and proposition 12. Therefore, we develop a

different two-stage method. As in the first strategy, we use observed choices from the riskless

environment to estimate curvature and discounting. Then, we use subjects’ choices from risky

condition to infer the exact tangency form in equation B.6 and estimate the salience parameter.

However, we cannot exogenously control for the salience effect. As a consequence, one may be

concerned that the tangency condition we deduct is endogenous. Therefore, we use the interest

rate, (1+ r) as an instrumental variable for the actual rank of the states. Estimations from both

approaches are provided in Table B.1. While similar estimates for θ to those previously discussed

are obtained in Andreoni and Sprenger (2012b) and Cheung (2015), estimates for Miao and

Zhong (2015) show some sensitivity to methodology.19 Across all the estimates of Table B.1, we

document values of the salience parameter, θ , that differ substantially and significantly from the

DEU value of θ = 1. To complete current discussion, we describe the estimation procedures in

detail.
19One reason for the estimation difference is that Miao and Zhong (2015) have substantially more choices in

condition IND that are exactly at the midpoint of budget constraints, (715/1554 ≈ 46%), compared to Andreoni and
Sprenger (2012b) (240/1120 ≈ 21%) and Cheung (2015) (247/882 ≈ 28%). These middle allocations are treated
as censored observations in the IV approach and imply a strong salience effect.
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Absolute Difference Approach

Fixing time span, k, and interest rate, (1+ r), for each individual we have

Y ∗
CERT =

1
α −1

ln(1+ r)+
k

1−α
ln(δ )+u,

|Y ∗
CERT −Y ∗

IND|=
1

1−α
ln(

1+θ 2

θ +θ 2 )+ v,

u ∼ N (0,σ2
u ),

v ∼ N (0,σ2
v ).

In the first stage, we use data collected from the riskless condition to infer curvature, α ,

and discount factor, δ . The likeihood function we estimate here is ln f (YCERT |α,r,k,δ ), which

can be expressed as:

I{YCERT =
m

1+ r
} ln

(
Φ

( 1
α −1

log(1+ r)+
k

α −1
log(δ )− m

1+ r
σu

))

+I{YCERT ∈ (0,
m

1+ r
)} ln

(
1

σu
φ

( 1
α −1

log(1+ r)+
k

α −1
log(δ )−YCERT

σu

))

+I{YCERT = 0} ln

(
Φ

(
1−

1
α −1

log(1+ r)+
k

α −1
log(δ )

σu

))
.

where I is the indicator function and Φ, φ are the standard normal cdf and pdf.

As mentioned above, if both Y ∗
CERT and YIND are not identified, we are not able to infer

the accurate range of absolute difference. On the other hand, if either Y ∗
CERT or YIND is at some

bound, we observe a lower bound of the absolute value. Thus, the likelihood function for the
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second stage is

I{(YCERT ,YIND) /∈ (0,
m

1+ r
)2} ln

(
Φ

( |YIND −YCERT |−
1

α −1
ln(

1+θ 2

θ +θ 2 )

σv

))

+I{(YCERT ,YIND) ∈ (0,
m

1+ r
)2} ln

(
1
σv

φ

( |YIND −YCERT |−
1

α −1
ln(

1+θ 2

θ +θ 2 )

σv

))
.

IV Approach

Define a variable rank equals to sgn
(

ct −
m

2(1+ r)

)
. That is, rank = 1 if sl is most

salient. Notice that, we ignore the data in which ct =
m

2(1+ r)
. As discussed before, we use

ln(1+ r) as an instrument for rank. Since ln(1+ r) is exogeneously given and has a relatively

narrow range, we use a linear probability model in the first stage:

rank = d +β ln(1+ r)+ e.

where d is a constant. Then, the structural equations are:

Y ∗
CERT =

1
α −1

ln(1+ r)+
k

1−α
ln(δ )+ γ1e+u,

Y ∗
IND =

1
α −1

ln(1+ r)+
k

1−α
ln(δ )+

1
α −1

rank ln(
1+θ 2

θ +θ 2 )+ γ2e+ v,u

v

∼ N (0,Σ), where Σ =

 σ2
u ρσuσv

ρσuσv σ2
v

 .
By design, rank is independent of v, and e is independent of u,v. Denote

Π1 =
1

α −1
ln(1+ r)+

k
1−α

ln(δ )+ γ1e, and

Π2 =
1

α −1
ln(1+ r)+

k
1−α

ln(δ )+
1

α −1
rank ln(

1+θ 2

θ +θ 2 )+ γ2e.

If both choices are uncensored, the likelihood function becomes:
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I(riskless = 1) ln(
1

σu
φ(

YCERT −Π1

σu
))+ I(riskless = 0) ln(

1
σv

φ(
YIND −Π2

σv
)),

where I(riskless = 1) is the indicator function suggesting the data point is under riskless

condition(I(riskless = 0) indicates whether data is under risky condition).

Next, we consider the case in which only one of two choices from an individual is

uncensored. Notice, since u,v are potentially correlated, we may reduce the standard error of

one given another. Let u =
ρσu

σv
v+ ε where ε ∼ N (0,(1−ρ2)σ2

v ), and v =
ρσv

ßu
u+η where

η ∼ N (0,(1−ρ2)σ2
u ). Denote the variance of ε and η as σ2

ε and σ2
η respectively.

If choices under certainty is censored, we have the likelihood function as:

I(riskless = 1∩YCERT = Ȳ ) ln(Φ(
Π1 − Ȳ − ρσu

σv
(YIND −Π2)

σε

))

+ I(riskless = 1∩YCERT = Y ) ln(1−Φ(
Π1 −Y − ρσu

σv
(YIND −Π2)

σε

))

+ I(riskless = 0) ln(
1
σv

φ(
YIND −Π2

σv
)).

If choices under uncertainty is censored, we have the likelihood function as:

I(riskless = 0∩YIND = Ȳ ) ln(Φ(
Π2 − Ȳ − ρσv

σu
(YCERT −Π1)

ση

))

+ I(riskless = 0∩YIND = Y ) ln(1−Φ(
Π2 −Y − ρσv

σu
(YCERT −Π1)

ση

))

+ I(riskless = 1) ln(
1

σu
φ(

YCERT −Π1

σu
)).

If both are censored notice that u = Y ∗
CERT −Π1 and v = Y ∗

IND −Π2. Let F(X ,Y,z) be the cdf

of bivariate normal distribution of (X ,Y ) with marginal variances 1 and correlation z. The
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likelihood function is:

I(YCERT = Ȳ ∩YIND = Ȳ )F(−
Y ∗

CERT −Π1

σu
,−YIND −Π2

σv
,ρ)

+ I(YCERT = Y ∩YIND = Ȳ )F(
Y ∗

CERT −Π1

σu
,−YIND −Π2

σv
,−ρ)

+ I(YCERT = Ȳ ∩YIND = Y )F(−
Y ∗

CERT −Π1

σu
,
YIND −Π2

σv
,−ρ)

+ I(YCERT = Y ∩YIND = Y )F(
Y ∗

CERT −Π1

σu
,
YIND −Π2

σv
,ρ).

Table B.1 provides the full results of the two methodologies.

Table B.1. Estimation Results

Andreoni and Sprenger (2012b) Miao and Zhong (2015) Cheung (2015)
Method: Absolute Difference IV Absolute Difference IV Absolute Difference IV

(1) (2) (3) (4) (5) (6)
Parameters:
Curvature: α 0.963 0.978 0.955 0.982 0.970 0.969

(0.009) (0.003) (0.012) (0.004) (0.005) (0.004)
Discounting: δ 1.003 1.001 1.010 1.002 0.999 0.999

(0.001) (0.000) (0.004) (0.000) (0.000) (0.000)
Salience: θ 0.648 0.614 0.556 0.339 0.754 0.730

(0.033) (0.011) (0.064) (0.009) (0.019) (0.012)
Variances:
lnσ(u) 2.074 2.192 2.185 2.500 1.935 1.823

(0.146) (0.116) (0.138) (0.145) (0.121) (0.086)
lnσ(v) 1.650 1.160 1.791 0.966 1.457 0.974

(0.091) (0.110) (0.076) (0.110) (0.090) (0.129)
Correlations:
γ1 6.389 4.060 3.472

(1.184) (1.580) (0.846)
γ2 17.246 52.744 7.699

(2.552) (11.782) (1.162)
ρ 0.649 0.592 0.287

(0.074) (0.080) (0.100)
N 594.000 880.000 615.000 839.000 501.000 635.000
ll -1405.616 -2461.735 -1321.036 -2395.512 -1582.251 -2186.345

Notes: Estimates of salience parameter, θ , utility curvature α , and daily discount factor δ assuming background consumption parameter
ω =−0.1. lnσ(u) and lnσ(v) are log standard variances. γ1,γ2 are the correlation between the log consumption ratio and first-stage residual. ρ

represents the correlation between choices under certainty and independent risk. Columns 1, 3, and 5 use the absolute difference between the log
consumption ratio of individuals decisions made under uncertainty and certainty condition. Columns 2, 4, and 6 use the IV approach. Columns 1
and 2 gives results from Andreoni and Sprenger (2012b) using data with p1 = p2 = 1 or p1 = p2 = 0.5. Columns 3 and 4 gives results from
Miao and Zhong (2015). Columns 4 and 5 gives results from Cheung (2015) using the observation in which the first payment was paid 1 week
after the experiment. Standard errors clustered at individual level in parentheses.
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B.7 Experimental Hypothesis

In this section, we provide a formal analysis of our experimental hypotheses. The

first hypothesis, we call Intertemporal Hedging , is also documented in Andreoni and Sprenger

(2012b), Miao and Zhong (2015), and Cheung (2015). The second hypothesis, we call Reordering

Dependence, is novel and can distinguish from other models positing decisions only depend on

marginal distributions of options. Below, we explain the predicted behavioral patterns in detail.

Intertemporal Hedging

Recall in Choice 1, Option A gives $18 in one week and $2 in four weeks after the

experiment while Option B gives $10 in both one week and four weeks after the experiment.

Since there is no risk in Choice 1, multidimensional salience theory predicts that decison makers’

choices are governed by their intertemporal utility function: u(x)+ δ tu(y), where u(·) is the

flow utility with u(0) = 0 and δ is the time discounting. Denote Di f f (1)AB is the utility difference

between Option A and Option B in Choice 1. That is, Di f f (1)AB = u(18)+ δ tu(2)− u(10)−

δ tu(10). As a result, Option A is preferred than Option B in Choice 1 if Di f f (1)AB ≥ 0. In addition,

we define Di f f (2)AB and Di f f (3)AB analogously. On the other hand, in Choice 2, salience levels in

different states are: ∆HH = σ([18,2], [10,10]) in HH, ∆HT = σ([18,0], [10,0]) in HT, ∆T H =

σ([0,2], [0,10]) in TH, ∆T T = σ([0,0], [0,0]) in TT. According to definition 1, by lower ordering,

we have σ([18,2], [10,10])≤ σ([18,2], [10,2]). By diminishing sensitivity, we have ∆HH ≤ ∆HT .

By compatibility, we have ∆HT ≤ ∆T H . Therefore, we have ∆T T ≤ ∆HH ≤ ∆HT ≤ ∆T H . Thus,
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we have:

(1+θ +θ
2 +θ

3)Di f f (2)AB

= (θ +θ
2)u(18)+(1+θ

2)δ tu(2)− (θ +θ
2)u(10)− (1+θ

2)δ tu(10)

= (θ +θ
2)Di f f (1)AB +(1−θ)δ t

(
u(2)−u(10)

)
≤ (θ +θ

2)Di f f (1)AB .

where θ ∈ (0,1] is the salience parameter. As a result, we have the following prediction: if one

subject chooses Option B in Choice 1, she will choose Option B in Choice 2. However, the

reverse may not be true. Therefore, our theory predicts that there should be more subjects choose

Option B in Choice 2 than in Choice 1.

Reordering Dependence

In Choice 3, the salience levels are:

∆′
HH = σ([18,2], [0,0]) in HH, ∆′

HT = σ([18,0], [10,10]) in HT, ∆′
T H = σ([0,2], [0,10]) in TH,

∆′
T T = σ([0,0], [10,0]) in TT. Consequently, by a similar analysis, ∆′

HT ≤ ∆′
T H ≤ ∆′

T T ≤ ∆′
HH .

Then:

(1+θ +θ
2 +θ

3)Di f f (3)AB

= (1+θ
3)u(18)+(1+θ

2)δ tu(2)− (θ 2 +θ
3)u(10)− (θ +θ

3)δ tu(10)

⇒ (1+θ +θ
2 +θ

3)(Di f f (3)AB −Di f f (2)AB )

= (1+θ
3 −θ −θ

2)u(18)+(θ −θ
3)u(10)+(1−θ)(1+θ

2)δ tu(10)

= (1−θ
2)(1−θ)u(18)+(θ −θ

3)u(10)+(1−θ)(1+θ
2)δ tu(10)≥ 0.

Therefore, our theory predicts that there should be more subjects choose Option B in Choice 2

compared with in Choice 3.
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