Lawrence Berkeley National Laboratory

Recent Work

Title

BEVATRON VACUUM IMPROVEMENT QUADRANT CRYOLINER - LOW TEMPERATURE BEND OF POLYESTER POLTRUSION

Permalink <u>https://escholarship.org/uc/item/3m2857dd</u>

Author

Kennedy, Kurt.

Publication Date

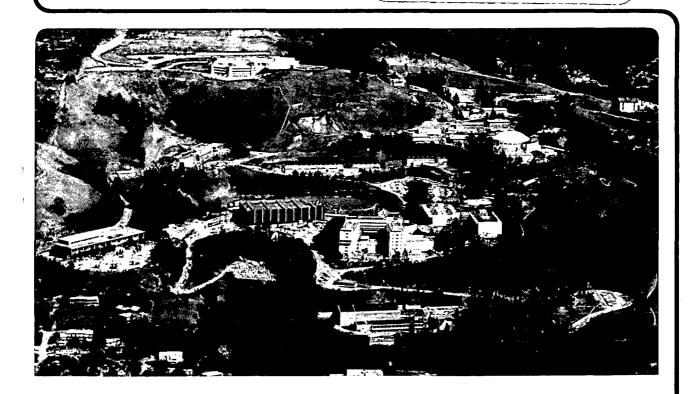
1980-09-01

UC-38 C. LBID-292

Lawrence Berkeley Laboratory

UNIVERSITY OF CALIFORNIA

Engineering & Technical Services Division


RECEIVED LAWRENCE SERKELEY LABORATORY

OCT 22 1980

LIBRARY AND DOCUMENTS SECTION

For Reference

Not to be taken from this room

DISCLAIMER

This document was prepared as an account of work sponsored by the United States Government. While this document is believed to contain correct information, neither the United States Government nor any agency thereof, nor the Regents of the University of California, nor any of their employees, makes any warranty, express or implied, or assumes any legal responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by its trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof, or the Regents of the University of California. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof or the Regents of the University of California.

AUTHOR KURT KENNEDY PROGRAM - PROJECT - JOB BEVATRON VACUUM IMPROVEMENT	JULY 29,	1980
PROGRAM - PROJECT - JOB	Y JULY 29,	1980
	······································	
	Part 1 - 19 - 19 - 19 - 19 - 19 - 19 - 19 -	
QUADRANT CRYOLINER		
TITLE		
LOW TEMPERATURE BEND OF POLYESTER PULTRUSION		

The support beams for the Bevatron cold bore (High-Intensity Uranium Beam Design Report, November 1979) must prevent the 1/8" G-10 panels from sagging during normal operation. However, during an unlikely up-to-air accident the beams must deflect 3.5". G-10 has suitable mechanical properties, both at room temperature and cryogenic temperatures. Large sheets must be machined to make 1/2"-deep by 2"-wide sections of G-10. The residual stress in G-10 sheet warps the 1/2" by 2" sections as they are being sawed. No vender would quote on the 1/2" by 2" sections to the straightness required.

An alternate product with adequate room temperature properties is fiberglass-polyester pultrusion. This product is pulled out of a die that forms the final cross-section without additional machining. Typical properties from a pultrusion manufacturer are shown in Figure 1.

No cryogenic properties could be obtained from the manufacturer, so a simple 77°K bending test was made. A beam 1" wide by 1/2" deep and 4" long was beam loaded in an Instron testing machine at 77°K. The force versus deflection curve is shown in Figure 2. At maximum deflection the strain is equivalent to twice the strain that would occur in the 48" beams of the cold bore where they deflected 3.5".

The maximum strain experienced by the test beams was 0.6%, giving a maximum fiber stress of 15,000 psi and modulus of 2.5 million psi. No permanent set could be observed.

Distribution: B. Avery

- T. Henderson
- K. Kennedy

/nh

TYPICAL PROPERTIES OF MMFG EXTREN®

9

Mechanical (coupon)	Rod & Ber	Flat Sheet Series 500 & 525	Standard Series 50 Roymat	
			Rovinat	amproved
Longitudinal Direction	100 000	20.000	30,000	30.000
Ultimate Tensile Strength, psi	100,000	20,000	20,000	
Ultimate Compressive Strength, psi Ultimate Rexural Strength, psi	60,000 100,000	30,000		30,000 30,000
Tensile Modulus, psi ×10°	6.0		2.3	2.5
	N-T	2.0	2.3	2.5
Compressive Modulus, psi ×10° Rexural Modulus, psi ×10°	6.0	2.0	1.3	1.6
Ultimate Shear Strength, psi	5,500	4,500	4,500	5,500
olamate offear ou enguit, par	(in torque)	-,000	-,000	0,000
Ultimate Bearing Stress, psi	N-T	30,000	20,000	30,000
Izod Impact Strength (ASTM-D256) ft-lbs per inch of note				
[Sample Thickness %" except ¼" for rod]	40	18	18	25
Transverse Direction				
Ultimate Tensile Strength, psi	N/A	10,000	5,000	7,000
Ultimate Compressive Strength, psi	N/A	15,000	10,000	15,000
Ultimate Rexural Strength, psi	N/A	13,000	-	10,000
Tensile Modulus, psi ×10 ⁶	N/A	1.2	10,000 0.8	0.8
Compressive Modulus, psi × 10 ⁶	N/A	1.2	1.0	1.0
Hexural Modulus, psi × 10 ⁶	N/A	1.2	0.6	0.8
Ultimate Shear Strength, psi	N/A		-	
Ultimate Bearing Stress, psi	N/A	4,500	4,500	5,500
lzod Impact Strength (ASTM-D256) ft-lbs per inch of note		30,000	20,000	30,000
Barcol Hardness	n N/A 50	9 50	50	50
Full Section in bending				
Modulus of Elasticity, psi ×10°	6.0	2.0	2.3	2.5
Tensile Strength, psi	100,000	N/A	20,000	20.000
Compressive Strength, psi	<u>N/A</u>	N/A	20,000	20,000
Electrical		1		
Electric Strength, short term in oil, %" (ASTM-D149), vpr	m* ⋅N-T	200	200	200
Electric Strength, short term in oil, KV per inch**	60	25	25	35
Dielectric Constant, 60 Hz. (ASTM-D150)*	6.0	4.5	5.0	.50
Dissipation Factor 60 Hz. (ASTM-D150)*	0.01	0.03	0.03	0.03
Arc Resistance (ASTM-D495), seconds***	130	80	80	80
Thermal				
Thermal Coefficient of Expansion (ASTM-D696)				
[inches/inch/°F]***	3×10-*	5×10-*	5×10-	5×10-4
Thermal Conductivity, BTU per sq. ft./hr./°F/in.	5	4	4	4
Specific Heat, BTU/Lb/°F	0.24	0.28	0.28	0.26
Other		,		
Density (ASTM-D792) lbs./in ³				
Solid Shapes	0.072	0.058(\$-500)	0.059 [S-500]	0.062 (\$-500)
•			0.062 (5-525)	
Hollow Shapes	N/A		D.061 (S-500)	NOTE
			0.064 (S-525)	
Specify Gravity (ASTM-D792)				
Solid Shapes	2.00	1.61 (S-500)	1.64 (S-500)	1.72 (S-500
·		1.69 (S-525)	1.72 (S-525)	1.80 (S-525)
Hollow Shapes	N/A	N/A		NOTE 2
Alexan Alexandra (D.4 have a second as a			1.78 (S-525)	
Water Absorption (24 hour immersion)				
[ASTM-D570] Max. % by weight	0.25	0.60	0.75	0.60
Fire Retardant Properties—Series 525				
Rame Resistance (FTMS 406-2023) ign./burn, seconds		83/58		
Intermittent Rame Test (HLT-15), rating		100		
Rammability Test (ASTM-D635)		self. ext.		
Surface Burning Characteristics (ASTM-E84), maximum		25		
UL APPROVED (Yellow Component Card)		20		
UL 94 Rammability Classification		SE-O		
Temperature Index [°C]		130		
*Specimen tested perpendicular to laminate face.				
*1" long specimen tested parallel to laminate face using l	D# dia			
electrodes			NOTE 2 Len	gthwise Izod In

BW7811 M5555 page 2

FIGURE I

MORRISON MOLDED FIBER GLASS COMPANY

P. O. BOX 508, BRISTOL, VIRGINIA 24201 PHONE: 703—669-1181

STOCKING DISTRIBUTORS

Advance Electrical Sales, Inc. Belmont, Calif. [Electrical] The Altair Co., E. H. Cutler Plastics, Inc. Bellaire, Texas Dart Plastics Metairie, La. Fibergrate Corp. Dallas, Texas R. W. Fowler & Assoc. Atlantic Beach, Ra. Gulf Wandes Corp. Baton Rouge and New Orleans, Imco Reinforced Plastics, Inc. Moorestown, N.J. Industrial Plastics, Inc. Wisconsin Rapids, Wisc. Plywood & Plastics Co. Richmond, Va Rio Grande Metals & Supply Co. Albequerque, N.M. Chem. Proof Corp. Woodinville, Wash. Polymer Systems Harrison, Ark. Jos. T. Ryerson & Son, Inc. in 24 major cities Form No. MMFG 876-2 Printed in U.S.

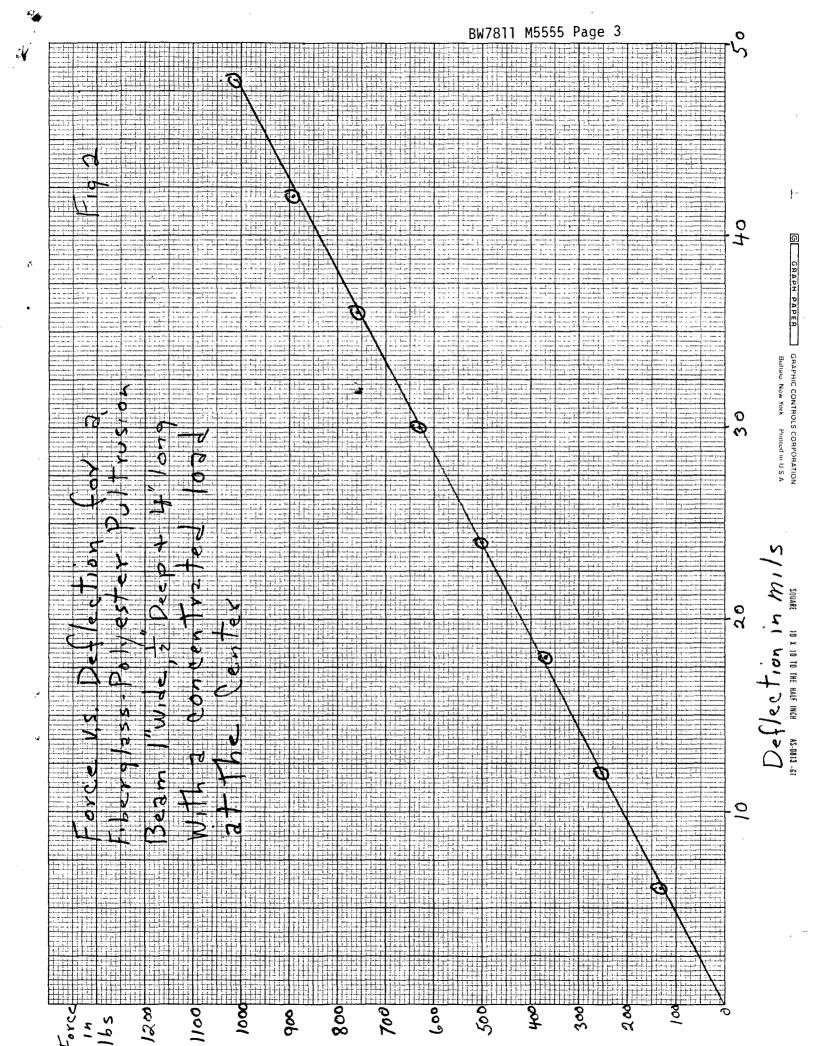
NOTE 2 Lengthwise Izod Impact Strength increases with thickness except strength for ½" Rat Sheet is about 67% of reporte value. Tensil Strength of Rod: as determined on a full sectio piece. Rexural Strength of Rod: as determined in simple ber d i n g.

NOTE 3 We have been unable to adapt the improved process to all star dard shapes, so some standard shapes are available only in th Rownat material. Properties of custom products can be tailore to meet the requirements of the customer within above limita tions.

is minimum	standard for	all shapes.	Properties	for individual
shapes are o	obtainable from	n MMFG.		

***Indicates reported value measured in longitudinal direction.

NOTE 1: Modulus of elasticity shown for full section in bending properties


CORROSION RESISTANCE GUIDE

electrodes.

N/A-Not applicable

N-T-Not tested

Chemicals	75°F	160°F	Chemcials	75°F	160°F	Chemicals	75°F	160°
Acetic acid, 5%	R	R	Ethylene dichloride	NR	NR	Sodium bicarbonate, 10%	R	
Acetic acid 25%	R	NR	Ethylether	NR	NR	Sodumbisulfate	R	
Acetone	NR	NR	Ethylene glycal	R	R	Sodum carbonate	R	N
Alumnum sulfate, 5%	R	R	Ferrous sulfate	R	A	Sodum chlande	R	
Alumnum potassium sulfate, 5%	R	A	Fatty acids, 100%	R	R	Sodum hydroxide, 5%	NR	N
Ammonium hydroxide, 10%	A	NR	Russicc and, 10%	NR	NR	Sodum hypochionite, 5%	R	•
Ammonumnitrate	R	R	Hydrochlonc acid, 1%	R	R	Sodumintrate	R	
Benzene	NR	NR	Hydrochlonc acid, 15%	R	NR	Sodum sincate	R	N
Benzenesulfonic acid, 5%	R	A	Hydrochionc acid, 37%	R	NA	Sodum suffate	R	
Calcum chlonde	R	R	Kerosene	R	Ŕ	Suffunc acid, 1%	8	
Carbon disulfide	NR	NR	Magnesium chlonde	R	R	Suffunc acid, 5%	R	
Carbon tetrachinoide	MP	NA	Methylaicobol/methanoli	8	NR	Sitter and 10%	8	

This report was done with support from the Department of Energy. Any conclusions or opinions expressed in this report represent solely those of the author(s) and not necessarily those of The Regents of the University of California, the Lawrence Berkeley Laboratory or the Department of Energy.

2

1 .

1

Reference to a company or product name does not imply approval or recommendation of the product by the University of California or the U.S. Department of Energy to the exclusion of others that may be suitable. TECHNICAL INFORMATION DEPARTMENT LAWRENCE BERKELEY LABORATORY UNIVERSITY OF CALIFORNIA BERKELEY, CALIFORNIA 94720