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ABSTRACT
Spontaneous neural activity coherently relays information across the brain. Several efforts have been made to understand how 
spontaneous neural activity evolves at the macro-scale level as measured by resting-state functional magnetic resonance imaging 
(rsfMRI). Previous studies observe the global patterns and flow of information in rsfMRI using methods such as sliding window 
or temporal lags. However, to our knowledge, no studies have examined spatial propagation patterns evolving with time across 
multiple overlapping 4D networks. Here, we propose a novel approach to study how dynamic states of the brain networks spa-
tially propagate and evaluate whether these propagating states contain information relevant to mental illness. We implement a 
lagged windowed correlation approach to capture voxel-wise network-specific spatial propagation patterns in dynamic states. 
Results show systematic spatial state changes over time, which we confirmed are replicable across multiple scan sessions using 
human connectome project data. We observe networks varying in propagation speed; for example, the default mode network 
(DMN) propagates slowly and remains positively correlated with blood oxygenation level-dependent (BOLD) signal for 6–8 s, 
whereas the visual network propagates much quicker. We also show that summaries of network-specific propagative patterns 
are linked to schizophrenia. More specifically, we find significant group differences in multiple dynamic parameters between 
patients with schizophrenia and controls within four large-scale networks: default mode, temporal lobe, subcortical, and visual 
network. Individuals with schizophrenia spend more time in certain propagating states. In summary, this study introduces a 
promising general approach to exploring the spatial propagation in dynamic states of brain networks and their associated com-
plexity and reveals novel insights into the neurobiology of schizophrenia.

1   |   Introduction

Spontaneous neural activity in the human brain can occur in 
the absence of external stimuli and be observed at different spa-
tial and temporal scales (Kucyi et al. 2018). The neural activity 

throughout the cortex has been studied via various imaging 
modalities, such as calcium imaging (Ikegaya et al. 2004; Stroh 
et al. 2013) and voltage-sensitive dye (Petersen et al. 2003). For 
noninvasive, macro-scale functional neuroimaging studies, 
resting-state functional magnetic resonance imaging (rsfMRI) 
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is used to understand and study intrinsic brain activity (Fox 
and Raichle  2007). The standard approach computes tempo-
ral coupling between the blood oxygenation level-dependent 
(BOLD) signals, also known as functional connectivity (Biswal 
et al. 1995). Such studies were then extended to estimate multi-
ple functional networks spanning the brain, including the visual 
and default mode networks (DMN) (Buckner et al. 2011). Among 
the various methodologies, independent component analysis 
(ICA) is a well-known approach that extracts spatial patterns 
of different brain networks (i.e., functional connectivity maps) 
and their associated temporal activity (McKeown, Hansen, and 
Sejnowski 2003; Calhoun, Kiehl, and Pearlson 2008).

Understanding the nature of spontaneous neural activity is an 
active area of research. Introducing temporal lags to capture 
whole-brain lag structures and representing patterns that shift 
over time has been studied in the context of region of interest 
analyses (Mitra et  al.  2015). Other approaches have focused 
on capturing a set of global recurring consecutive activity pat-
terns, such as quasiperiodic patterns, highlighting propagation 
across areas of the task-positive and the DMN (Abbas, Bassil, 
and Keilholz 2019; Xu et al. 2023). Global coactivation patterns, 
for example, transient neuronal coactivation patterns, can also 
be related to globally propagating waves (Majeed, Magnuson, 
and Keilholz 2009; Liu and Duyn 2013), with most focusing only 
on signal peaks, while other approaches focus on continuously 
varying contributions (Iraji et al. 2022). Other studies show the 
ability to capture time-varying brain connectivity, which can 
be helpful in diagnosing disorders such as schizophrenia (SZ) 
(Calhoun et  al.  2014; Miller et  al.  2022; Miller, Pearlson, and 
Calhoun  2019). Studies of whole-brain dynamic connectivity 
also focus on the temporal coupling within and between the 
functional domains (Allen et  al.  2014; Damaraju et  al.  2014). 
Other work has specifically evaluated spatial brain networks 
using a sliding window approach (Kiviniemi et al. 2011). This 
work suggests that the fMRI data captures moment-to-moment 
voxel-wise changes within functional brain networks, such as 
the DMN. However, previous studies ignore the spatial fluidity 
of the brain networks which evolve with time. Spatial fluidity 
can be defined as the transitory spatial pattern of a given func-
tional network over time at the voxel-level measurement (Iraji 
et al. 2019).

To our knowledge, there is no work focused on quantifying 
propagating spatial patterns in fMRI data within spatial dy-
namic states (i.e., substates voxel-wise dynamics within specific 
brain networks) (Matsui, Murakami, and Ohki 2016). Here, we 
focus on understanding network-specific dynamic spatial state 
propagation. This study presents an approach to estimating 
multiple brain networks using ICA and capturing time-varying 
propagation using lagged windowed correlations and spatial dy-
namic state analysis. We first evaluate the replicability of the 
results, followed by a study focused on changes linked to mental 
illness. Results show clear evidence that we can detect replicable 
evolution of brain networks over time, such as default mode, vi-
sual, and temporal networks. Important propagation properties, 
such as propagation speed and pattern show variation across 
dynamic states. Results also show that these spatially propagat-
ing patterns are linked to mental illness. For example, studied 
networks showed that subjects who are diagnosed with SZ have 

higher dwell time compared to the control group, suggesting 
that subjects diagnosed with SZ have less activity in their brain 
networks and remain dominant in a particular dynamic state. 
This study is a first step toward understanding the complex na-
ture of network-specific spatial dynamic propagation.

2   |   Materials and Methods

2.1   |   Data Information and Preprocessing

In this study, we used resting-state eyes-closed fMRI data. One 
of the challenges of eyes closed is individuals may sleep more 
easily. In our case, individuals did indicate that they were awake 
in post-scan interviews conducted on a random subset of sub-
jects. While this is not definitive, it does provide confidence that 
they were following instructions.

For the data, two different datasets are used. The first dataset 
is from the Human Connectome Project for Early Psychosis 
(HCP-EP) (Human Coonectome Dataset n.d.). The second data-
set is the Functional Imaging Biomedical Informatics Research 
Network (FBIRN) (Keator et al. 2016). The HCP-EP dataset is 
used to validate our proposed method and evaluate replicability 
across two scan sessions. We select a subsection of the HCP-EP 
dataset where subjects are common across the two scan ses-
sions. To evaluate the replicability of our proposed method, we 
used the data from the two scan sessions and matched the re-
sults after running the pipeline independently. The FBIRN data-
set will be our primary dataset for evaluating links to clinical 
diagnosis and result analysis.

In the HCP-EP dataset, there were 163 subjects in each session 
remaining after preprocessing and quality control were done. 
The data were collected from 4 clinical recruitment sites and the 
consent form of each participant was collected before scanning. 
Medically stable male and female subjects with a confirmed 
psychiatric diagnosis and healthy control (HC) subjects were 
enrolled in the HCP-EP study. The image data were scanned 
using Siemens MAGNETOM Prisma 3T scanners with a mul-
tiband sequence and a 32/64-channel head coil. The rs-fMRI 
data had 2-mm isotropic resolution, multiband acceleration fac-
tor of 8, repetition time (TR) = 720 ms, and was acquired twice 
with posterior–anterior (PA) and anterior–posterior (AP) phase 
encoding. More details about the dataset can be found on the 
official website of the National Institutes of Health (Human 
Coonectome Dataset n.d.).

The fMRI data were preprocessed using a combination of FSL 
and statistical parametric mapping (SPM12) under the MATLAB 
2020 environment. Before motion correction, a distortion field 
was calculated from the PA and AP phase-encoded field maps 
by the top-up/FSL algorithm to correct for intensity and geomet-
ric distortions. Then, a rigid body motion correction was per-
formed using SPM to fix the head motions in fMRI scans. After 
that, the fMRI data were normalized to the standard Montreal 
Neurological Institute (MNI) space using an echo-planar im-
aging (EPI) template and slightly resampled to 3 × 3 × 3 mm3 
isotropic voxels. The resampled fMRI images were smoothed 
using a Gaussian kernel with a full-width at half-maximum 
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(FWHM) = 6 mm. Since dynamic functional connectivity anal-
ysis can be sensitive to the data quality, we performed quality 
control (QC). We selected subjects with functional data provid-
ing near-full brain successful normalization for further analysis. 
This yielded a total of 170 subjects. More details can be found in 
the following study (Fu, Iraji, Sui, et al. 2021).

The second dataset for evaluating links to clinical diagnosis was 
fBIRN (Keator et  al.  2016). The groups consisted of 160 typi-
cal controls with a mean age of 36.9 years and 150 individuals 
with SZ with a mean age of 37.8 years. There were 115 control 
males and 114 males with SZ. Also, 45 female controls and 36 
females with SZ. Seven sites across the United States collected 

TABLE 1    |    Selected components and their information.

Network Peak value Coordinate's

Default mode network (Comp 13)

•	 Precuneus right •  12.10 •  27, 17, 35

•	 Posterior cingulate gyrus right •  10.01 •  27, 27, 35

•	 Dorsal anterior cingulate gyrus •  8.41 •  27, 30, 37

•	 Prefrontal cortex •  3.57 •  27, 57, 22

•	 Rostral anterior cingulate gyrus •  6.14 •  43, 22, 35

•	 Angular gyrus right •  8.96 •  42, 18, 36

•	 Angular gyrus left •  8.27 •  13, 17, 36

Subcortical network (Comp 14)

•	 Putamen right •  15.60 •  35, 40, 25

•	 Putamen left •  16.25 •  19, 40, 35

Visual Network (Comp 16)

•	 Lingual gyrus left •  11.56 •  22, 12, 20

•	 Cuneus right •  9.85 •  27, 11, 26

•	 Fusiform gyrus right •  9.57 •  32, 37, 38

Temporal network (Comp 4)

•	 Postcentral gyrus left •  11.3 •  46, 38, 32

•	 Postcentral gyrus right •  10.7 •  8, 38, 33
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eyes-closed rsfMRI data. Consent forms were collected follow-
ing the regulation of Internal review boards of the affiliated in-
stitutions prior to scanning. Six sites used the Siemens Tim Trio 
System, and one used the General Electric Discovery MR750 
scanner. Resting-state fMRI scans were acquired following a 
standard gradient-echo EPI paradigm: Field of view (FOV) of 
220 × 220 mm2 (64 × 64 matrices2), TR = 2000 ms, TE = 30 ms, 
FA = 770°, 162 volumes, 32 sequential ascending axial slices of 
4 mm thickness, and 1 mm skip. Data preprocessing used a com-
bination of various toolboxes, such as AFNI (Cox  1996), SPM 
(SPM12 n.d.), and GIFT (Gift Toolbox for ICA n.d.). We used the 
INRIAlign toolbox to correct head motion in SPM. 3dDespike 
algorithm from AFNI was applied to remove outliers. Then, 
fMRI data were resampled to 3 mm3 isotropic voxels. Then, data 
were smoothed to 6 mm FWHM using the BlurToFWHM algo-
rithm of the AFNI toolbox, and each voxel time course was vari-
ance normalized.

2.2   |   Independent Component Analysis

ICA is one of the most common approaches for blind source 
separation. It is based on the assumption that any captured 
signal (x) can be defined as a linear combination (A) of its 
latent sources (s), which are mutually independent such that 
x = As (Calhoun et  al.  2001), where x is a vector represent-
ing the captured mixtures, represents latent sources, and A 
is a mixing matrix where A ∈ ℝ (N ×M). ICA aims to esti-
mate an unmixing matrix called W ∈ ℝ (N ×M) such that 
y =Wx, which approximates the latent sources (s) subject to 
permutation and scaling ambiguities. Implementation of ICA 
was via the GIFT toolbox (http://​trend​scent​er.​org/​softw​are/​
gift). In practice, M > N , so dimension reduction is first ap-
plied. First subject-level spatial principal component analysis 
(PCA) was applied, and 99% of the subject-level variance was 
retained. Next, group-level spatial PCA was applied on con-
catenated subject-level principal components (PCs) for all sub-
jects. Twenty group-level PCs were selected for future analysis, 
which is sufficient to capture the standard large-scale resting 
networks. Next, Infomax ICA was applied to estimate 20 max-
imal ICs. Infomax was repeated 100 times, and the ICASSO 
framework was used to select the best (most central) com-
ponent run to ensure the stability and reliability of the ICs 
(Calhoun et al. 2001). Subject-specific ICs and associated time 
courses were derived using spatially constrained ICA, group 
information-guided ICA using the group map as the reference 
(Du and Fan 2013). Finally, different brain networks, such as 
the DMN, visual, temporal lobe, and subcortical (SC) network 
were identified based on their spatial maps and power spectra 
(Allen et al. 2011). The selected network information is men-
tioned in Table 1.

2.3   |   Calculating Spatial Maps With Lagged 
Window Correlation

The dynamic spatial propagation of various brain networks 
can be evaluated at a voxel-wise level. For this purpose, the 
temporal coupling between the selected brain network and 
every brain voxel using the lagged sliding window approach 

was calculated. The same cleaning procedures were followed, 
effectively capturing dynamic patterns on time courses and 
every brain voxel to reduce noise (Damaraju et al. 2014). The 
cleaning procedure included orthogonalizing to estimated 
subject motion parameters, linear detrending, despiking, 
and bandpass filtering using a fifth-order Butterworth filter 
(0.01–0.15 Hz). The tapered window was obtained by convolv-
ing a rectangle (width = 30 TRs: with a Gaussian) (σ = 3 TRs), 
and the sliding step size of 2 TR was used. In this study, a 
parameter, lag (�) was introduced, to indicate the temporal 
correlation between a given brain network and every voxel of 
the brain for every (t ± �).

As the sliding window shifts along the time course of the tar-
get network, temporal correlation between the windowed time 
points located at time t  of the selected ICA time course and the 
windowed time points located at (t ± �) for every value of � is 
calculated. In more general terms, multiple voxel-level tempo-
ral correlations by shifting the window over bold time signals 
for different � values are computed while keeping the ICA net-
work's window location fixed.

For example, if � = 2 and TR = 2 s is selected, then a set of 5 spa-
tial maps located at (−4, −2, 0, 2, and 4 s) for every sliding step t  
will be captured. These are called “lag points”. More generally, 
if � = n, the 2n + 1 spatial maps are computed for each window 
step. Each window's correlation variation at different times was 
captured by introducing the lag parameter.

2.4   |   Calculation of Dynamic Spatial States

For each resting-state network, after calculating the lagged 
spatial maps for every subject, a three-dimensional ma-
trix was created with dimensions representing as follows: 
(voxel × lag × window). Then, this matrix was flattened along 
the first two dimensions, resulting in a two-dimensional ma-
trix (voxel*lag × window). Next, concatenated all subject's 
lagged windowed spatial maps (voxel*lag × window*#sub-
ject). Then K-means clustering was applied to this matrix to 
find the dynamic states (voxel*lag × 1). For each cluster, the 
spatial maps at each lag point were retrieved. k-means clus-
tering was used to identify the spatial dynamic states and as-
sociated patterns. For this study, the cluster number of 4 was 
selected, the determination of the optimal cluster number was 
determined with the Elbow criteria within the GIFT software 
(Gift Toolbox for ICA  n.d.), this is also consistent with the 
prior clustering work (Fu, Iraji, Turner, et al. 2021). The clus-
tering was replicated 50 times with different initializations 
using the k-means++ method to increase the probability of 
avoiding local minima (Arthur and Vassilvitskii  2007). The 
correlation distance was used as the metric to calculate the 
similarity between the data points. The analysis of dynamic 
states was done in two steps. First, ran k-means clustering 
for each subject and captured exemplar (or reference) states. 
Next, run a second level of k-mean, merging all the exemplar 
states to obtain exemplar centroids. These centroids are used 
as a reference for calculating the final centroids, computed by 
concatenating all subject's spatial maps and running k-means 
clustering. The complete pipeline is shown in Figure 1.

http://trendscenter.org/software/gift
http://trendscenter.org/software/gift
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2.5   |   Statistical Experiments

A number of summary measures were calculated on the out-
put, including mean dwell time (MDT), fraction time (FT), and 
disperse rate (DR). MDT calculates the average time spent at 
each state before transitioning to other states. FT gives the per-
centage of total time in each state. DR represents the distance 
between spatial maps at different lag points, which tells us how 

fast the network propagates. We observed group differences 
based on the calculated features.

3   |   Experiments and Results

In a data-driven approach, replicability is an important factor 
both for validity and interpretability (Adali and Calhoun 2022). 

FIGURE 1    |    Analysis pipeline of the proposed lagged windowed correlation approach. The proposed pipeline uses a lagged sliding window ap-
proach to capture voxel-level network propagation that evolves with time.

FIGURE 2    |    Replicability of results across multiple sessions. The left figure represents the spatial similarity between the centroids or dynamic 
states calculated from session 1 data. Each cell represents the correlation coefficient between two centroids calculated from clustering. The middle 
figure represents the spatial similarity between the dynamic states or clustering centroids calculated from session 2 data. The correct figure rep-
resents the spatial similarity between the centroids of session 1 and session 2 data. This shows a high similarity between the states between the two 
sessions, which can be seen from the main diagonal cells. The high correlation value proves that the proposed pipeline produces reproducible cen-
troids over multiple sessions.
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FIGURE 3    |    Simulation of network propagation with time shows how network changes as signal propagates.

FIGURE 4    |    Spatial propagation of the DMN over time. The figure shows how different dynamic states of DMN are fully formed early at a time 
(lag point: −4 s) and slowly dissipate at lag point 0 s (state 3). Also, the speed of disperses varies from state to state. It also shows that DMN stays 
positively correlated with the BOLD signal for around 6–8 s (starting from the lag point: −6 s to lag point: 2 s) before it slowly dissolves and becomes 
anticorrelated.

FIGURE 5    |    Spatial propagation of the visual network over time. The figure shows how different dynamic states of the visual network are fully 
formed early (lag point: −4 s) and start to dissipate at lag point 0 s. Also, the speed of disperses varies from state to state. It also shows that the visual 
network stays positively correlated with the BOLD signal for around 4 s (starting from the lag point: −4 s to lag point: 0 s) before it slowly dissolves 
and become anticorrelated.
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Replicability ensures that given same subjects with different 
data produce similar results. The proposed method was tested 
over two sessions of the HCP-EP dataset to evaluate replicabil-
ity. Analysis was run over the same subjects over two different 
sessions, and the final aggregated centroids, called dynamic 
states, in two independent analyses. After obtaining two sets 
of dynamic states, correlation was calculated between the cen-
troids in each session and between sessions. The results show 
that the dynamic state captured by the two sessions was highly 
correlated. Figure 2 shows highly replicable results across mul-
tiple sessions. Figure  2a represents the spatial similarity be-
tween spatial maps in the dynamic states calculated from data 
using session 1. Cell values represent how similar the spatial 
maps across the states are calculated from session 1 data only.

Similarly, Figure 2b represents the spatial similarity between the 
spatial maps at different states computed from session 2 data. 
Figure 2c represents spatial similarity between the spatial maps 
located at session 1 against the spatial maps of different states 
of session 2. After reordering the states based on the maximum 
similarity, it was observed that spatial maps at state 1 of sessions 
1 and 2 were highly similar as they had a high correlation value 
of 0.99. A similar observation was observed in the case of state 4 
of both sessions 1 and 2. Also, spatial maps at state 2 of session 
1 were highly similar to spatial maps calculated at state 3 of ses-
sion 2 with correlation values of 0.95–0.99. The primary diago-
nal value of Figure 2c shows how the spatial maps at different 
states are similar. These results also provide evidence that the 
proposed pipeline provides replicable results.

FIGURE 6    |    Spatial propagation of the subcortical network over time. The figure shows how different dynamic states of the subcortical network 
are fully formed at the time (lag point: 0 s) and start to dissipate at lag point 2 s. Also, the speed of disperses varies from state to state. It also shows 
that the subcortical network stays positively correlated with the BOLD signal for around 2 s (starting from the lag point: 0 s to lag point: 2 s) before it 
slowly dissolves and becomes anticorrelated.

FIGURE 7    |    Spatial propagation of the temporal network over time. The figure shows how different dynamic states of temporal network are fully 
formed early at the time (lag point: −4 s) and start to dissipate quickly at lag point 2 s. Also, the speed of disperses varies from state to state. It also 
shows that the temporal network stays positively correlated with the BOLD signal for around 4 s (starting from the lag point: −4 s to lag point: 0 s) 
before it quickly dissolves and becomes anticorrelated.
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To illustrate the proposed propagation approach, we designed a 
simple simulation. Using simulation toolbox (simTB) (Erhardt 
et al. 2012), we sampled 2D fMRI data consisting of 200 volumes 

and applied PCA and ICA to generate component maps and time 
courses. Then, we calculated the lagged correlation between 
fMRI data and component time courses. The simulation maps 

FIGURE 8    |    For the visual network, the mean dwell time between two groups captures significant differences at different states at different 
lags. Each cell value represents the difference between the two groups' average MDT (HC–SZ). Significant differences (p < 0.05 (FDR corrected) 
are marked. The marks are based on corrected p value < 0.05 collected form the t-test between healthy controls and individuals with schizophrenia 
group. States 2 and 4 captured significant group differences where in state 2, most schizophrenia subjects dwelled longer; in state 4, healthy controls 
dwelled longer on average in visual network states where schizophrenia patients dwelled more captured significant group differences.

FIGURE 9    |    For the default mode network, mean dwell time between two groups captures significant group differences at different states at dif-
ferent lags. Each cell value represents the difference between the two groups' average MDT (HC–SZ). Significant differences (p < 0.05) are marked. 
The marks are based on corrected p value < 0.05 collected form the t-test between healthy controls and individuals with schizophrenia group. The 
SZ group dwells more in states 1 and 4 than the healthy controls, unlike visual network states where healthy control resides more capture significant 
group difference.
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are shown in Figure 3. Based on the simulated data, we showed 
how a network's spatial map behaves as signal propagates over 
time. In Figure 3, we can see that as signal propagates the spatial 
maps also change accordingly with respect to the state of the 
network. The change in correlation value between signal and 
network changes with time indicates this phenomenon.

Next, to observe the spatial propagation of brain networks, we 
plotted the dynamic spatial maps of the networks. In Figure 4, 
we plotted the DMN. With our proposed approach, we were able 
to capture the spatially propagating patterns over time. Figure 4 
shows how the dynamic states of the DMN propagate in dif-
ferent states. We also can observe the DMN network remains 

FIGURE 10    |    For the subcortical network, the mean dwell time between two groups captures significant group differences at different states at 
different lags. Each cell value represents the difference between the two groups' average MDT (HC–SZ). Significant differences (p < 0.05) are marked. 
The marks are based on corrected p value < 0.05 collected form the t-test between healthy controls and individuals with schizophrenia group. Most 
of the schizophrenia group dwelled in most of the time in state 4 over the evolving time. On average, most healthy controls also resided in state 3, 
suggesting groups do not change conditions between the dynamic and subcortical states.

FIGURE 11    |    For the temporal network, the mean dwell time between two groups captures significant group differences at different states at 
different lags. Each cell value represents the difference between the two groups' average MDT (HC–SZ). The marks are based on corrected p value 
< 0.05 collected form the t-test between healthy controls and individuals with schizophrenia group. Significant differences (p < 0.05) are marked. 
After the network is formed, the schizophrenia group dwells more in a particular state, such as state 3, and healthy control resides more in state 1 
most of the time.
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positively correlated for a certain period before it slowly be-
comes anticorrelated.

To observe the spatial propagation of other networks, visual, 
SC, and temporal were selected. The spatial propagation pat-
terns were observed after running the pipeline independently 
for each network. Figure 5 shows the visual network, Figure 6 
shows the subcortical network, and Figure 7 shows the temporal 
network. From the figures, it is observed that different networks 
propagate similarly. However, the propagation rate is different 
for each network individually.

To analyze the importance of various spatial patterns that were 
captured, several measurements, such as MDT, were calculated 
for each spatial map. First, the group differences based on the 
MDT at different lags were computed and plotted. It captured 
group differences at different lag points for different states. In a 
lag-less analysis, this information is never captured. Figures 8–
11 plot the average difference of MDT of two groups, and sig-
nificant states are marked. The marks are based on corrected p 
value < 0.05 collected form the t-test between HCs and individ-
uals with SZ group. For example, we observed group differences 
at states 2, 3, and 4 when the lag was at 8 s in DMN in Figure 9. 
However, only states 2 and 4 show significant group difference 
at lag 0 s.

Similarly, we can capture group differences for all the states 
if we observe lag at −8 and −2 s for the SC network shown in 
Figure  10. Similarly, the FT was computed to capture group 
differences between the two groups. Figures  8–11 plot the FT 
calculated at different lag points for all dynamic states. It was 
observed that FT at other lag points changes with time as the 
network propagates with time, and FT changes, too. However, 
different states located at different lag points capture significant 
group differences.

Although some significant states are not shown in the figure due 
to p value correction for FDR, Figures 8–11 capture an overview 
of different dynamic states, capturing information regarding the 
group differences related to neurological illness. Results reveal 
some interesting patterns among the spatial states, such that 
most group effects are located around the center when the net-
work is more visible, and lag is minimal. Also, it was observed 
that in some dynamic states, subjects with SZ dwell significantly 
longer than the healthy control group on average.

4   |   Discussion

The brain is a complex dynamic system. Static analysis of fMRI 
data may provide important information; however, such re-
search cannot capture the time-varying behavior of the brain. 
Recent studies have proposed various ways to capture import-
ant aspects of brain dynamism by brain connectivity. Still, these 
studies ignore the brain's spatial aspects, which evolve with time. 
The proposed study focused on how each brain network propa-
gates with time over space. The proposed approach showed that 
spatial information of brain networks changes with time. This 
study examined four brain networks individually and found that 
spatial pattern changes as the BOLD signal propagates across 
the brain. The spatial patterns may differ based on the selected 

network. However, the observed brain network showed similar 
propagation behavior. Observing these propagating patterns 
was the primary goal of this study. There has been little work in 
this area focused on understanding the dynamics of the propa-
gation of time-varying states of the brain.

Propagation refers to how neural activity of a network propa-
gated over time causing the changing pattern of the network at 
the voxel level, which includes, but is not specific to, the borders. 
The distance between spatial maps at different lags gives us an 
indirect measurement of the speed of propagation. The changes 
in the distance values provide an indication of how the spatial 
maps change over time.

In neuroimaging dynamic analysis, replicability is a considerable 
concern. In our proposed pipeline, strict correspondence cannot 
be enforced between different runs due to the data-driven na-
ture of the approach. For example, ICA may not always produce 
the same network in the same order. Calculated dynamic states 
occur in different orders. Despite these challenges, we show that 
the proposed analysis produces similar states across multiple 
runs, irrespective of their ordering, in data collected from the 
same subjects at different times. That supports the hypothesis 
that the proposed analysis has a high level of replicability.

This study captures how the brain network patterns propagate 
over time. As the signal travels through the brain, the brain net-
works interact. From our analysis, we captured dynamic spatial 
maps and their propagation patterns with respect to time. Each 
map captures the spatiotemporal correlation values between the 
ICA time course and the BOLD signals. The maps also represent 
which brain parts are related to the target network that becomes 
active with time. For example, from the spatial map propagation 
maps, we can observe that at different lag points, different brain 
areas show activation other than the target network, which 
suggests that brain networks are related and interact with each 
other as signals travel through time.

In the analysis of the networks, the visual network exhibits 
the least diversity in state maps. The propagation structures 
across the four states between lags −4 and +4 are largely sim-
ilar, with the exception of state 2, which demonstrates a lower 
correlation beginning at lag 4. Additionally, the propagation 
maps tend to resemble those observed at lower lag points after 
lag 8, indicating the emergence of a periodic structure. This 
periodicity is consistent with the controlled nature of the vi-
sual network, particularly under the eyes-closed condition. 
Impaired visual processing is a well-documented issue in SZ, 
with the visual sensory network (VSN) likely playing a signif-
icant role in the disorder (Weinberger 1987). A previous study 
explored the dynamic functional network connectivity within 
the VSN, including middle temporal, middle occipital, cal-
carine, inferior occipital, lingual, fusiform gyri, and cuneus 
and its association with visual learning in SZ subjects (Sendi, 
Pearlson, et al. 2021).

The propagation patterns of the SC networks exhibit considerable 
diversity across different states. As lag increases, the SC networks 
propagate to various regions. For example, positive correlations 
with the somatomotor (SM) regions are observed in states 1 and 
4, while states 2 and 3 show negative correlations with these 
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regions. Additionally, propagation to visual (VI) areas is evident 
in both states 1 and 4. Notably, in state 3, the network propagates 
to frontal regions at lag −10. These findings are consistent with 
the broad functional roles associated with subcortical networks. 
A prior study also demonstrated that spontaneous neural activ-
ity in subcortical regions can be broken down into multiple in-
dependent signals, which correlate with or “echo” the activity of 
functional networks across the cortex. Specific subregions of the 
thalamus, striatum, claustrum, and hippocampus exhibited di-
verse echo patterns from networks involved in attention, control, 
visual processing, somatomotor functions, and the default mode 
(Groot et al. 2023). Considering their essential role in functional 
integration, subcortical regions, are significantly impaired in in-
dividuals with SZ (Fan et al. 2019; Yamamoto et al. 2022).

Similarly, in DMN network propagation structures across the 
four states between lags −6 to 0 are largely similar. In the spa-
tial maps showed spontaneous connections between the DMN, 
left postcentral gyrus and right postcentral gyrus. The DMN is 
suggested to play a pivotal role in SZ; previous works also stud-
ied the different dynamic patterns and connectivity between 
the different regions of DMN with respect to the individuals 
with SZ (Rashid et al. 2019; Hu et al. 2017; Sendi, Zendehrouh, 
et al. 2021; Wang et al. 2015).

We also observed that the ICA network becomes positively cor-
related and more visible with time. Most of the significant group 
differences were captured within such periods. However, in 
some cases, we also observed that while the network can capture 
group differences in different dynamic states, it remains visi-
ble, although anticorrelated, with respect to the BOLD signal. 
This suggests that anticorrelated spatial patterns can also cap-
ture important neurological information related to illness. Such 
anticorrelated brain network patterns were captured before in 
traditional dynamic studies, suggesting that different networks 
are anticorrelated with respect to temporal correlations (Uddin 
et al. 2009; Fox et al. 2009). Our study shows that these anticor-
related patterns are time-dependent. Also, these anticorrelated 
patterns suggest that the networks do not work independently; 
instead, different networks share a time-dependent correlation 
between them. Previous static analysis did not capture such 
information.

We also observed that subjects with SZ dwell in a particular 
state longer before they traverse to the next state. For example, 
state 3 of temporal, state 3 of visual, state 4 of DMN, and sub-
cortical shows the dwell time of subjects with SZ is larger than 
that of HC subjects. From the state maps, we also observed how 
different subnetworks become active with time. For example, 
different subnetworks of the ICA subcortical network were ac-
tive at different lag points, and each of them was able to capture 
significant group differences based on calculated MDT. Because 
we had a model order of 20, which is considered a lower model 
order, some of the subnetwork overlapped, and these networks 
do capture group differences when they become active with 
time. This explains why we were able to capture group differ-
ences when the target network was not very visible.

We also observed that each network has a particular state where 
SZ group members dwell longer than other states. These states 

also showed a significant group difference. Networks such as 
the temporal lobe, visual, and subcortical showed a similar pat-
tern. Previous studies also observed that dwell time in one of the 
dynamic states was longer than other dynamic states (Adali and 
Calhoun 2022; Erhardt et al. 2012), which is aligned with our 
observations.

Furthermore, our results show that lag-based analysis can cap-
ture more states than lag-less analysis results where no lag is 
used. These additional lagged states can also capture substan-
tial group differences and convey potentially important and 
distinct information. Also, it was observed that different states 
contain different amounts of information. For example, MDT 
and FT between groups change as the spatial pattern varies with 
time. This also strengthens our second hypothesis that spatial 
patterns at different times contain significant information that 
can be useful for identifying groups and clinical purposes. Such 
states were ignored in previous studies.

Moreover, temporal embedding transforms time series data 
into a lower-dimensional state space, making it invaluable for 
studying chaotic and nonlinear systems such as time series 
forecasting, fMRI data analysis, and pattern recognition (Tan 
et  al.  2023). By reconstructing state spaces, it reveals hidden 
structures, attractors, and periodic behaviors, offering insights 
into a system's evolution and long-term dynamics. Our pro-
posed fMRI method builds on these principles, using lagged 
windowed correlations to track brain network activity over 
time. These lagged spatial maps serve as embedding dimen-
sions, capturing neural activity's spatial and temporal prop-
agation. Similar to temporal embedding, this approach relies 
on lagged correlations to uncover dynamic patterns and tran-
sitions, balancing temporal resolution to capture meaningful 
brain network changes.

5   |   Limitations and Future Directions

The results presented in this study have certain limitations. In 
this study, we used resting-state eyes-closed fMRI data. One 
of the challenges of eyes closed is individuals may sleep more 
easily. In our case, individuals did indicate they were awake in 
post-scan interviews conducted on a random subset of subjects. 
While this is not definitive, it does provide confidence that they 
were following instructions. Readers should consider this lim-
itation while interpreting the results.

We only studied four brain networks independently ignoring 
the presence of internetwork interaction. Another limitation 
of the current study is that we could not fully understand the 
fact that whether the observed propagation pattern can be solely 
attributed to changing neuronal activation, or by the hemody-
namic nature of the fMRI BOLD signal. The current study is 
only the primary step toward understanding the complex nature 
of dynamics.

In future studies, we will explore these internetwork relation-
ships and how networks relay information. We will also extend 
the work to extract more features that would help us understand 
the complexity of spatial propagation patterns.
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6   |   Conclusion

This study proposed a novel approach to observe the propaga-
tion patterns in the dynamic spatial states of brain networks. 
The proposed method was tested against data collected from 
two sessions of the HCP dataset, which showed high replica-
bility. The study focuses on the evolution of spatial patterns of 
various brain networks that vary over time, which have not been 
studied previously. These time-varying spatial networks are sta-
tistically significant for group analysis between patients with SZ 
and controls. In summary, this study can be considered a build-
ing block toward thoroughly understanding the complexity of 
global propagation.
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