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ABSTRACT
&

Expressions are presented for the electric and magnetic fields
due to a pulse of charge, which may be oscillating transversely while
moving down an infinitely long hlghly‘conducting pipe of_circular cross
~section. The expressions are evaluated at large distances from the |

‘z“pulse and the.fields arebshown to decrease algehraically;in the
) distance'behind the pulse. In the absence of transverse oscillations

H',the longitudinal electric field varies as the inverse three-halves

power of the distance, in the presence of oscillations the dominant
'field component is the transverse magnetic field which decreases as
the inverse one-half power._”In ‘the long-range 1imit the amplitude of
the fields is proportional to’the square root-of the wall resistivity. .
The phase of the field associated with the oscillating pulse is shown |

to be the phase of the pulse at the time when it passed the point of

'observation.

Research supported by the United States Atomic Energy Commission.
T Present addreSS° Stanford Linear Accelerator Center, Stanford

University, stan;ordyzpalifornia.
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INTRODUCTION

Iﬁvhas been shown that the finite conductivity of the ﬁalls of

_ an_accelerator vacuum chamber can lead to unstable coherent oscillations
of'azimuthaliy uniform beams.l’2 The question of stability arises

for a longitudinally bunched beam in which the distance between bunches
ia‘large'compared with the radius of the vacuum pipe; if the eiectric
and magnetic fields fall off fast enough with distance from the bunch,

- the motion of separate bunches would be independent of one another.

It has been shown that the local self fields of a bunch do not lead »
~to unstable-motion.3 Therefore one might expect to stabilize coherent
beam oscillations by bunching the beam longitudinally.

_Eg_the vacuum chamber walls are infinitely conducting, fhe
fields fall off exponentially in a distance of the order of the pipe
radius (which ie typically small compared with the distance bet#een
' bunches); and'therefore-a_longitadinal bunching of a uniforn beanm
~would stabilize the coherent motion.

It 1is the purpose of this paper to obtain expreesiono for the
- fields at large distances from,a moving bunch of charge surrounded
by walls ﬁith finite conductivity. These fields are the basic
ingredients in an analysis of the coherent motion of a bunched
- beam.h We limit our analysis to.ootaining the fields at distances
' large compared with the pipe radius and the bunch length ' The
v‘conductivity of the wall is sucn that the displacement current in

the wall can be neglected compared with the conduction current,
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A discuésioh ié givenvﬁf.the dependence of the fields upon
distance from fhe pulse, with.particular attention to the different
functioﬁal dependences whiéh’occur at various distances. Over a
- very large range the fields are shown to fall off algebraically, and
in agreement with the independeﬁt results of a number of workers;5’6
the_mdsf important aspect of the work reported here is a careful
delineation of the range of validity of these previously obtained
formulas.

The impértant reéuits for the analysis of the coherent
motion of azimuthally bunch.ed beams are that: (1), the ldominant
tefm in the longitudinal force of one bunch on.a subsequent bunch
decreases algebraiéally with the distance =z betﬁeen bunches as
[zl's/% (Eq. l.lGa);'and‘(ii), the dominant term in the traﬁsverée
force has a phase that depends onlyvupon position (as measured in
the léboratory), and an qmplitude that decreases a;gebraically with
distanées between bunches as 12l“l/é [Eq. (2.20)]. suffice it to
say, here, that bunched beams afe ﬁof generelly stable and the
stability criteria arevdiffe:enf from that for uniform beams.
Discussion of all of this may be found in Ref. L and forthcoming
papers based on the _abétracts ‘of Ref. b. |

In the first section, the fields created by rectiiinear

7 longitudinal motion of a pulse of charge are obtained; in the second.

section the fields created by transverse oscillation of the pulse

are derived.

The éeneral mathematical method which we employ, namely the

i .

*»
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use of Fourier transforms, was suggestediby S. Weipberg's analysis7
of a related broblém. In Appendix A we discuss some mathemdtical

. questions associated‘wiﬁh approximating Fourier integrals, and:
sﬁmmar_ize the transforms employed in this paper. Appendix B ‘

summarizes properties of Bessel functions which are required in the

analysis.
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I. PURELY IONGITUDINAL MOTTON

1. Derivation of the Fields

In this seeﬁion'we obtaih the‘expressions for the electric and
magnetic filelds arising from a buﬁch.of charge in purely longitudinal
motion.. The pulse of charge moves in the 2 _direcfion\with veloeity
v inside an infinitely long straight pipe of circular cross sectioh'
~and wall cenductivity o . The inner and oufer radil of the pipe
are~ band 4, respectively. The puise of charge has constant radial |
density iﬁside a radius . a.. The charge and current deﬁsity ere

taken as

: po(r,z,t) = 1y £(z-v t) H - 1), (1.12)
Top (Ts2,8) = v o (r,2,t) , | (1.1v)
Joy = Jox = %0 o (e

where cylindricel coordinates are used, and H(x) is the Heaviside
unit step function that is unity for positive argument and zero for

negative argument. - The function £(x) 1s normalized such that
f f(x)dx = 1 . (1.2)

Consequentlyv E1¢ aeno = eN , with N the number of particles in the

i

pulse.
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Due to the symmetry of 'po gnd JO , only Ez,.Er, and Be
are nonzero. It will be useful to use Fourier transformations
in solving for the flelds, and the convention will be adopted that'a

‘tilde above a quantity designates the transform as defined by

e8]

£z - vt) = f F(x) ot 'k(z_ - V) 4 , (1.%)
-0
| © -
E(z-vt) = [ %:'Z(k) ol k(z - vt) 4 | (1.3Y)
~Q0

analogous expressions hoid for Er and Be .

We define the following regions:

Region 1 O<r<a,

Region 2 a<r<b,
Region 3 b<r<d,
‘Region k4 o d<r .

From Maxwell's equations and Ohm's law we obtain the relationships
between the field COmponents in the various regions._.Ih'regions

1,2, and 4 we have

- ) -

,Er = ,3% :5%- 4 o (1.k)
q . . .

. 3F :

By = 22—, | (1.1)

o L , , ) -1
with L q? - (k/§)2 and 72 =‘v{l -1(y/c)2] .



~ In region 3 (inside

iy

{s-14

where o

In region 1,

-6~

the metal) we have

(140 - brofe) F,

2
o? ~ dr

= _q? +Rik and R = bngo/c .

the equation for Ez takes the form

. v : SR
OE \ o bsn gkk)

r =% + q? E = 4 —_ X
.Br Mo N 2 .

4

we have
JEF -
i —a- r z + q_2 E = 0 ,
¥ dr or z

and in fegion 3

H

| 3% o
2 r —2)+of B , o .
or or /- 2

Equations (1.6) are zero-order Bessel equations, or simply related

Il

(1.52)

(1.5v)

(1.6a)

(1.6p)

(1.6c)

to Bessel's equation. -Various properties of the solution to Bessel's

equation, that are used in this work, are given in Appendix B..

At this point it is necessary to-clarify our definition of gq

and o . So fér, only qe and 02 have been defined and we are left
R ,

with a choibd of sign for qand ¢ . The sign convention is arbitrary,

PR
.



T
however, 1t is convenient to choose the Sign in such a way that the
imaginary part of q and a is always positive.

The expressions for . Ez that are finite everywhere are

~ v hnnog :
Region 1: E_ = C. J.(ar) + , o (1.72)
z 170 :
ik
. ~ 21r2noqa§
~ Region 2: E = |C, - N (qa)] J (ar)
: Z L71 1 0
T 2:r2noqa%/ . ‘ -
L ik A : ‘ .
Region 3: E = c3 Jo(ocr) +C, No(ocr) 5 S | (1.7¢)
¥ () | ey
Reglon bt E = C5 H'/ (ar) . | (1.74)

In these expressions Jn(x),.Nn(x) and Hn(l)(x) are defined, in

- Appendix B , by Eqgs. (132), (B.B),.and_ (B.»’-&), The constants C, ,

i = 1,3,4,5 are té be determined fI:dn the cdn’tinuity c_onditi.ons of
the fields at the boundaries beﬁwé_e_n the vafious régidhs. The |
‘boundary conditions at r = a are a,lréady satisfied by the expreséions

for Ez ', while the continuity of %z and B, at T =b gives

)
2 ~ : | 2
" | 21rnoqaf‘- | ! ika bp
C; = -3 {[Cl T T o Nl(qa?] [qb Tolab)my (ab) - (118 - beo/o)
y ' 2ﬂ2n0q.ai’? |
< 3y (@) wpe)] [ 7)) [or(an) w @)

- - : b b 5 1.8

, -~ q(ix8 - bxg/c) e ) NO‘(Q _ . -

Al
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and

1X o°b B “

2 ~
2n n.qaf v .
b1¢ 0 -
C, = % {[Cl - T Nl(q_a)] [ab Jo(gb_)ql(ab) -

a(ixg - Lno/c)

X

' 2ﬁ2noq af
ENCOENCY | = 7,(ae)] [0 m (av) 7, (b)
ik o°b B ‘ C
- mhMJJmﬂ}, (1.80)

a(ikp - lxo/c)

where we have employed Eq. (B.8). The boundary conditions at

r =4 are used to obtain

1% ofd

-C {od Jl_(ad) Ho(lb)(qd) -

5 3ol0a) 1 M (ea))

q(iks - hnf.f/C)

1k8 a2d
a(1kg - bno/c)

= C, [ad Nl(ad)Ho(_l)(qd) - No(ad)ftl<l)(qd)] (1.9)
l‘Equations (1.8) apd (1.9) ére solved for C, , C3 ,‘and Cy »

and these constants are then substituted into Egs. (1.7) to obtain the

‘expression for E; - When this general expression is.insérted into

“ Eqg. (lF}b).the résulting Fourier integfal is much too complicated to

be performed analytically. Numerical integration would yield the

. complete expreésion for %;(z - vt) valid for all values of z and t .

‘In the following subsection we shall restrict ourselves to large

values of (2 - vt), and present results of the integration for three

simplified geghetries.
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2. TField Expressions.for Certain Geometries

(1) Wall removed (b > o0 or g - 0)

In this example the fields are those of s pulse of charge in

free space so that Ch 05 . On the cylinder axis (r = O),.

a. (172) ylelds

g nO%/

T (k) =
z 1k .

215 wrn®e)] (.20)

where usevhes been made of qu.'(B.Q)'and (B.lb) to siﬁplify the -
coefficient C, . Equation (1.10) is to be substituted into the
“Fourier integral Eq. (1.3b) in order te determine E;(z - vt) . For
the region [z - vt] >>Qa' we may invoke Appendix A - Case 2_to

l eoﬁeludevthat ka, <<el 3 censequenply we may emplo& the approximation

of Eq. (B.5) and obtain.

-E;(k) ~ ‘i_noag k fn |ka| . o (1.11)
In obtaining this expression we have made use of the fact that, for
|z - vt| large compared'with the length of the bunch, the field is
'independent of the form of t(z - vt) and we may replace (k) by
f(O) = 1/2x .
" We now use the results of Table I (Appendix A) to obtain
oN Sign(z - vt)

E(z -vt) = &N 7 ., .12
z,z, ) v 72 | (z _ vt)2 v (} )




-10-

where Nv ié the numbér of particles in the buncﬁ. This-is the
result one woﬁld obfain frém a more elemen?gry_treatment; the‘.,
factor 7-2 originates in the'Lbrentz coﬁtract. [The'same result
could be obtained, directly from Eq. (1.10), by 1n&ok1ng Appendix A -

Case 1.]

(11) Wall of infinite thickness (d » o)

Tn this example an infinitely thick conducting wall surrounds
the pulse. Because of the relativistic velocity of the beam and the
high COnductivity of the wall, conduction-current terms dominate inside

the metal. Consequently, for example, o? ~ R 1k, so that

2 ) ) v
1kBo ~ -8 q . (1.13)
o q(ixg - bxo/c) : |

With this approximation and taking d - ® wevobtéin in the region
r<b- | |

2 .2 (1),
n,a” Bk Hy (ab) (1.1)

B(x) = 1 _
- ab Hl(l)(ab)
where we have again restricted ourselves to a distance lz - vt]
- much greater than both the vacuum chamber's inner radius and the.pulse=
| ‘ | T ~ 1,
length, so that (by Appendix A - Case 2) k b << 1 and f 53,55/ .
In obtaining Eq. (1.1h) we'havé employed Egs. (B.2), (B.B), and (B.4).
Even Vith this restriction there are two regibns of interest.

The first is the region in which |z - vt] <<R b° (R 2 10% en.l gor

copper ) and¢%he second is the regioﬁ_in which lz -vt] >> R b2 .
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For |z - vt| «R b° we employ Appendix A - Case 3, noting that -
most. of the‘contributiqnvto the Fourier.integral [Eq.‘(l.}b)] Qccﬁrs
for &alues of ab >>1; for |z - vt >>R be we have the situa-

. tlon of Appendix A - Case 1, and mey fake' a ﬁ K1l . ‘We usevthese
facts,along with the proper approximations ﬁvvappendix B, to dbtain

the following approximate expressions for :Ez(k) :

5

~ eNB 1 2 e
E,(k) = 1 —— [k|Z[1 +sign(x)], |z - vt| << RO> (1.152)
z2° Jr'b(ER)'é' ) . : ) ;
o 182 : .

E (k) = -t eei k [en]io] - 1§ stan(x)], [z - vt| >> Ro (1.15b)

where & term proportional to 'k has been omitted in Eq. (1.15b)
since it contributes to Ez(z;t)' only in the region of.the‘pulse,

We now use the results of Table I (Appendix A) to obtain

_ > ‘_ i 's'(’s, % )'_»»

- : o | . o o
Ez(z,t) = "(“{R)%b , ].sl3/2 ;- lz - vtl'<< Rb” , o »(l.l6a)
E,(z,8) = ep® S—(%El , e e vt e, © (1.16p)

s=

" where s = (z - vt) and S(z,t) .1s defined as zero for z > vt and
unity for z < vt .. Thus we see that the field at large distance from
the pulse is zero. in front of the pulse but falls off algebraically
behind the bunch. Equation’ (1. 16) presents only the term with the
slowest fall&ff and completely dgnores the fields with a falloff

| distance of @he order of the pipe's inner ;adlus or the pulse length,

Y l

P
(£
¢
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(441) Thin wall ,{(d - ) < b] .

: In order to simplify the algebra we will restrict ourselves, ¢-
in this example, to a bunch that fills the pipe, and to an observation
point at the pipe radius. Thus we take r=8a-=>» ; [Actuale, as 1s
.bsuggested by Egs. (1.16), we expect our results to be valid even -
: without these restrictions, but we have not studied the more general

case,] “As with examples (ii) we ignore the displacement current and

obtain
o ,
) - 1 2
4 (1.17)
od £n lkd[[N (ab) J,(ea) - J olom) N, (cd)]

ad 4n |xa [ [, (ab)J (aﬂ) J (ab)N (ad)]- op®y [N (ob)J (ad) J, (ob) (ea)]

a'where agein we have restricted ogrselves to large distahces; 50 ﬁhat v
lz = vt| >4, ang have conseqﬁently (Appendix A - Case 2) used the.
expansions of Eq. (B. 2) and (B.3) that are valid for kd << 1
| The electric field E, (z,t) can be cbtained by evaluating the
Fourier inversien [Eq. (1.3b)] with Eq. (1.17) for %;(k) .

" We will restrict our attention, here, to tWo_regions in which
the integral'can be readily approximated.’ The first region,
Jz - vt] «<R(a - b)2',_ has the major contribution to the Fourier
integral occﬁrring ferevalues ofl_a(d -b) > 1, so g;(k) can be

~ approximated by (Again, Appendix A - Case 3)



Ez(k) = 1
_

coé[(i

e N 82
x b (2R)1/2

+
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]k].l/z‘ (1 + Sign(k)]:_ ) (1.18)

where use has been made of Eq. (B.6) and the fact that

1)x]

sin{ (i

for large x . The second region considered is lz - vt['>> Rd™

+

T ~ -1

2

2

by Appendix A - Case 1 we may take od~ << 1, and E, (x) 1is

approximated by

| i eNk
T

> . 4n Ikdl ) | . | | (1.19)

where use has been made of Eqs. (B.2) and (B.3). We now use Table I,

Sy A s

vto-obﬁain
: Yy e N~  3(z,t) - Y3 .
B(zt) = s el l _.vtl.<<R(.c1 v)%,  (1.20)
: ahd.
E(z,t) = 9321 Sign(; “"t)., [z_ - vt >> Rde_'.- | (1.21)
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II. TRANSVERSE OSCILﬁATIONS WITH UNIFORM LONGITUDINAL MOTION

1. Exact Formulas for the Fields

In this section we solve for the electric and megentic field -

due to a pulse of charge oscillating transversely, in the x direction

with amplitude €&  and frequency w , while traveling longitudinally,
‘in the z direction with constant velocity v . As in the preceding
.section, the charge is surrounded by an infinitely long straight
pipe With circular cross section, conductivity o, énd inner radius
b . The‘outef-wall radius 1s taken to be infinite, |

The amplitﬁde £ 1is assumed-émall compared to the beam

radius -a so that we may take the charge and current distribution

to be
o= Py te | (2.1a)
- and .
g = 3y+dy | o | (2.1v)
vhere p, and J, are defined by Eq. (1.1), and
o -iat
pl(r,z,t) = ny & cos 8.8(r ~a) f(z - vt) e s (2.22a)

_ ~lat .. oA A ]
I - nO g f(z - vt)‘e {}u)H(a -r) [- cos 6'e + sin 8 gy

+ vo(¥-a)cos o gz } s o (2.2v)
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with H(x) the Heaviside step function, and &(x) the Dirac delta
function.

The field due to the sources and ,ﬁo has been presented

Po
| in Section I ; we will consider only the fieids due to the sources
) andgl in this section. The total field will, of céurse, be the
superposition of the fields due to each set of sources,

Again it will be useful to use Fourier transformations in
solving for the fields. The definition, Eq. (1. 3&), is st11l valid
| for F(k), but we shall replace Eg. (1.3b) by

!

E,(t,z - vt) = cos © efi“’b f Ez(k,co) k(z - vt) 5 s (2.3)

where we have explicitly introduced both the theta-dependent and

the. frequency-dependent terms in the definitions to simplify the

subsequent_exp;essions for the transformed field components, all’of

which -occur in this pfqblem.' We have  Er ’ Ez » and Be propbrtio#al

to cos 8 , ﬁhile 'Ee‘, Br ,»and Bé 'are’proportiénal to éin 8 .
From Maxwell's equation and Ohmis law we obtain relationships

-between the various caomponents. Inside the pipe (r < b) we have

P | Bf; ' (6+Bw);g, o ~ v
VT E = ik -a-r- + ik . B,- by x aw(sfaw) ¢ nyf Hia - r), (2.4a)
2?3’—115(')E ik’iuk  2~“< ) (2.14v)
v By = B+6w' - +r;7 - 4 | B 3 no H{a - r), .

and
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2 :Lk | 3B,
v" Ey = - E - ik (B+8 )T + by 2 By (f3+{3 ) & ng T H(a -r), (2.5a) |
o aB ‘
v'Br= (B+B)E +ik—6—-h:rk5§n fH(a-r), (2.5v)
where B = ‘k‘;’ and v° = - k2[l - (B + BW)EJ . Inside the metal
(r >b) we have
2~ ik aNz 1%, N |
}"~YEr ‘= T 3r T T (B+Bw) B, » ! (2.62)
A By = [1x(p +B ) - nc/cj ~=+ =73 , (2.6v)
aB
2~ 1k :
A Ey = -5 E - ik(B + B, ) T . (2.6¢)
5~ E, 35
A B, = [ix(B + aw) - bxo/e] — + ik 3 (2.64)
22 SR
with N = v7 4+ (b ikofe) (B'+ B ) .

: By means ofAEqs. (2.4), (2.5), and (2.6)Vwe see that we can
determine the expressions for the components E s Be » Ee and ﬁ;
from expressibns for the coméonents E; and % ; The transverse
fields found from %; s and the transverse fields found from gz s

are two independent solutions to Maxwell's equations.

. A s
Inside of the pipe (r <b), the equation for E, and B, is



7

1 9 /9 2Ny R oL 4. |
)« Ry - &7
: ‘ , z : v ,

inside the metal (r >b) we have

ooy, gelay®) 2.8
’[r,ar (rar fé\._rgﬁ 5 = 0 . . (2.8)
r/ . | |

Equations (2.7) end (2.8) are Bessel's equations. In addition to
sétisfying' Equations (2.4) through (2.8), the transformed expressions
must sati_sf_y the proper boundary condition at r =a and r =Db .

At r =a we have %Z s E , E and /gr ~all continuous, and

A (v
+
ot

.%/e(r =a’) - %'e(r =a )= lm./_c fa_ SJZdr = by B NS (2.%)

V'and :

~ D+ ~ T - ’ ~ . o~ )
‘Er(rza)-Er(.r=va)=lm f- pdr=1mno§f . (2.90)
, _ o

At r=b wehave B, ® , E., B and B_ all continuous.
: yA Z S 8 r : v

‘The solutions to Equation (2.7) that are valid inside the

“pipe are

lﬁz = C J_l(v?) + ¢l(vr) H(r - a) , - (2lOa)
and _ | |

,%i - _DlJl(vr) f'wl(vr) Hr-a) , . (2.200)
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with ¢l end V¥, glven by

#,0m)

‘and

n(r) = BN () 3 (va) - 3, (vr) W (ve)] (2.110)
and the phases of v and A chosen in such & way that the imaginary
parts are always posiﬁive. The constants M and P are determinéd by
the boundgry conditions at r = a . The continuity of ;Ez and Bz is
alregdy included in the definition of ¢l and Wl : of tﬂe remaining |
bqundary conditions tw§ are redundant, and we obtain the lelowing

equations:

M = (2n2 & nyt ‘%/ik) (1 - 52 -8 Bw). 5. . | (2.12a)
and h
P - (27° & notf k)8 . S (2.120)

The expressions for 'Ez and BZ in the metal are obtained

from Eq. (2.8) and are given by

T = [c.J (vb) + ¢_(vb)] Hi.(l')(u) , o (2.13a)
and

. #, ) |

B, = [DlJl(vb) + \yl(vb)] T - (2.1313)‘

H ()

M [Nl(yr) Jl(va)‘- Jl(n}r) Nl(va)] , | - | (2.115)' |

1 = e y— e s e e o

e At e e v
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. The continuity of "’ﬁz-a.nd ?3; at r =Db are included in Eq. (2.13)
 and the remaining boundary conditions yield explicit expressions

for Vth'e constants C, and D, . These expressions are

AlA 1
C, = {Num}cl/{Den} , o (2.1ka) :
and _ ' |
D = {Ngm}Dl/{Den} , - . ‘(2.lhb)

where_ _ o _ : : ’ . _
o 1 _1__ _;_L_ vb) lm E (b vb) ( ) vb) H'(?x.b)] :
c, = - 2 J2 B 2 Jb) " Tke B )Tvb) ‘BB, vJ(vbT NI{Ab )

© {Num)
- 2 Jt(vb)  H'(Wb)] d' (vb H'(xﬁ) (vb)
- (B+8,) [VJ&,% mgm ngzbg NEL(ND )T :b ]

) g 3! 1]
b [v—e.-g]{%’§>v§)(Vb) CORTY >]} ;)

[—15 -. l].Q-‘p(_Vb) -' heo H'(AD) (840 ){\V’(Vb) ﬁ'(?\b)\lf(vb)] ‘

: (vum) Zl J(Vb7 Tke m(}f} vJ(vb) ~ AH(AD)J(vb)

-
n
)
L ——
O‘ml -

- (g+8.) [J' (vb) H'(kb)][\.&'(vb) ) H'(kb)\y(vb)J
B+B, vI(vB) ~ AE(W) ) LvT(vb) ~ NE(ho )T (Vo)

(p+8,) : - .
e (- ) ] oy

/

© . and
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1 1 1 L H' ()\.b) b)  H'(\b) '
(Den} = ¢ 5 [;‘é‘ - ;5} - 1;;2 NEEN)) (B + B ) [vJEZb) \.H(\DT} -

b

_ o S | )
2 [divd) | H'(Ab, .
e 5w)’ [vqub%' ')\HEM)%] . (2-.lhe)

In Egs. (2. lh) the subscripts and sunerscrlpts on the Bessel, Neamann,and Hankel
functions have been omitted for brev1ty., The prime denotes.dlfferentia-

tion with respect to argument.

2. Approximations: : o _

The expressions.for Cl and Dl are'exacﬁ; we now restrict
ourselves to values of = ® that are considérably below the cut-off '
frequency fér-the:pipe (i.e;, frequencies sﬁch that' 7&5 <€ c). We
will also assume that the conductivity is hlgh so thaﬁ the displace-
'ment current in the metal can be neglccted |
- - Wltn these restrictions, which are easily fulfilled in an

. R _ . - ‘ o
actual accelerator or storage ring, the expression for A  reduces to.

BCET D
22 = R LA T ; (2.15)
B o
with R = bnBo/c . Next we expand the expression for Cl‘and'Dl
to first order in the quantity o /2 with the resuit o
__ Mi(h») oikp | - T N
Q7w gn (B e - w0 (Ra6e)

and
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5. = - op - 1 vI(vb)H'(Zb) v+’» AE(D) . 21k B8 J(vb)
1 mvbdt(vb AN T(vo )H(AD) - H'(\b) 6+ 6 )n v3b2RJ,(vb)
. W

X

M P : : '
{(B+Bw) ooy - VbJ,(vb)} . (2.16b)

When Egs. (2;16) are substituted into Egs. (2.10) one obtains

' expressions for ﬁz and %; inside the pipe. Equations (2.&) and
(235) may then be used to obtain the expressions for the other
'components; These expressions for the fransformed field'édmponents
may be inverted by means of Eq. (2.3). |

If the value of (z - vt) is much iargervfhan either the
radius of the pipe or»the bunch length, the major contribution to
the integral arises (Aypendix A - Case 2) for such values of k ‘that
: kb <<1l. As in the preceding section, we again réplace ?(k) by
?(O).= l/éﬁ . The region of most physical interest is that in which
the obserﬁation diétance;.(z - vt), is large compared with the pipe
radius and small compared to the quantlty Rb (whlch is of the order
~of lO9cm for a copper pipe of 3-cm radius). Reétricting ourselves

to the range

b << |z - vt] < RS - (2.17)
. <1 . -2

we may, by Appendix A - Case 2 eand Case 3 , taxe kK>>R 7D .
" Thus. we have v b <1 (we have already assumed 7wb/c << 1) and

'Kb > 1, so that the expresaiona for the transformed fields become;_.

if



20

o

~ X .eNg(b2_ aéj e a,g> éeNge V[l 1 si (K)] !K'l/2
= -3 — e — Y - —_— r - n Ve
z  xat v 0- n(ER)Zb3 ' e v
_ . . (2.18a)
< eNE (b2- a?) N eNgsé @_63> (302- 2) [1 i1 -n(K)] IK'1/2
r - x a° bo ~ 2n(2R)2 b Pe/ o g’ L
+' (b2 + r2) [1 + 1 Sign"(x)] | lKl3/2} o | _(2.18b)
~ A eNé(be- ae) | eN & 52 © 5 o ” _ 1/2
W e S (R b ree] i
+ (b2- ) [1 + 1 Sign (K)] .]K]B/Q} : | (2.18¢)

eNE (bo+ 8°)

%/z . b1 8.2 b2 : %-),r ' f(-:%r—igrié P > [l fi Sign(K).] 'K’-l/e '
i [1 " Sign(K)]_ ‘Kll/Q} | . ‘ . R _. (2.1&1)‘

. - éNEB(bE—, &) . 2N [1 3 éigr;'(x)]' v]Kl-l/E (2.180)

T a2vb2 ~ x(2R)? B2 » .

B, = ,%r - (2.18¢)

where X = é— x(B + sw.) » We make the change of_vari_ables from .

k t0~>K-; ‘as indicated in Appendix A, this gives all of the field
| components e phase factor expl-1(z - vt)(w/Be)]. Teking into account
" the additional phase factor exp (- 1 at) that occurs in Eq. (2. 3),

we find the total phase of the field components to be - w z/v . Thus

the phase<d§§the field is a function onlyvof position, and does not



23

V vary with time. By means of Table I (Appendix A) Egs. (2.18) may ve

V,inverted, and the resulting expre551ons for the fileld components are8

2 | - ' |
E = ‘2 e N ¢ B. r S(z,t ‘ 'e-i;DZ/BC cos 8 , . (2.19&)
()R |2 - w32 | |
| n2 2y ) |
F . _eN¢ 69 S(z t) (: ﬁ;b . B(bv +r°) e-lwz/ﬁc cos 6
r | Q(ﬂR)sz B/ 1, . vtp/e 2z - vt]5/2
| (2.1m)
' 2 2 2 2 2
By = EH—E—%— S(z,t) <: iéé—iFE—l—— + %» —19—145-1- é‘iwz/bc sin ©
2 (xR )21 B s - wu|3/2 lz - vt [5/2
3 | ! (2.19¢)
~ 2eNER 1 1w 1 -iwz/Be
B, = - =3P . S(z,t) —_— —_— Y sin 6
z (KR)%bB { lz - Vt]5/2 ﬁc) lz’ _ Vt,l/2
| . (2.1%)
T LheNER s(z,t) -1 wz/Bec.
B = - ‘ e sin 6 - (2.1%e)
T Bz - )12
. Lentp S(z,t) | ! miﬂsc
B, = .- cos © , _ (2.19r)
® . (J’fR )—%bE ‘,Z - vt ,1/2 S S

‘.vwhere N is the total number of particles and S(z,t) 1is defined
(as before) as unity for = < vt and zero for z > vt . Obviously,
. (2.19) contains only dominant terms for each field; the fields
are not zero when S(z,t) is zero. TIf we ignore the field components
that fall off faster than |z - vtl'l/ » We see that a particle
moving in the- z direction with velocity v and arriving at posifion

z at time t would experienee‘a force in the X direction given

by
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L egmlg 32 S(z,t) . ‘ e-iwz/Bc
(xR)Z b° |z - vt|2

It will be recalled [from Eq. (2.2)] that the pulse source passed

the position z at time z/v and had--at that moment--phase - (mz/v).
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APPENDIX A. ESTIMATION OF FOURIER TRANSFORMS

': This appendix is devoted to mathematical questions related
to the approximate evaluation of Fourier transforms, that is, to the

properties of the integral:

£(s) = f Fa) o™ a . (a)
~-m® - o -

The general procedure that we. emnlo& ie to aoproximate ?(k)
by a sultable f (k) for which the integral in Eq. (A.l) can be
evaluated exactly. 1In the sitUations encountered in thils paper, the
:%;(k) are generally piece-wise anelytio functions for which the
Fouriler transforms,_althpugh well-known; are nevertheless uncommon.

- In Table I we list all of the transforms which we require; the _
results quoted are established in the literature.9

A particularly simple oransformation can be employed when the
' nonanalyticity of f(k) {which for the f(k) of Table-I 1s always

at k = 0] occurs at k = k. . Letting k =k, +K we find that

0 0
(A.1) becomes
o v .
- ik s -
£(s) = e © f Flkg + %) M ax  (a.2)
. v ~ 00 :

so that the nonanalyticity is transformed to K = Q ’ and the reaul+s
of Table I are readily applicable
We turn now to the problem of’ bounding the error in £(s)

. generated by replacing f(k) with £ (A)  To state the problem
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-1 Jk,%.Signv(k)
| .lklf% |
§ el st ()

.'ik,3/2 '

:i X &n ,k1v v'_'“

k sign (x)

1_[k|5/? Sigﬁ (x)

|s]3/2
2(2)5 121%
2(%)% §%5?:L51
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more positively: f(k) is generaliy-rather complicated; we want to
know how roughly we can'appr0¥imate it withOut>significant loss of

accuracy in f(s) . There are a number of cases which we must consider.

1. Asymptotlic evaluation

The problem of approximatély evé.luating f(s) .in the limit
of very iarge s , 1is treated exhauétively in Ref. 9. The situatioﬁ
- is that the asympfotic behavior of f(s) is determinéd by the points
of nonanalyticity.of vg(k) . Assuming, as ié always the case in.this
report,'thatv F(x) 1is analytic for k.# 0, .we conclude that (k)
may be approximatédkby %;(k) , with no error in  f(s) as s~ o,
provided %;(k) is analytic for k # O and the singularity in

’,?;(k) (at k = 0) is the same as that in f(k) .

2. Ewaluation for large argument

We often have the situation that fkk) 1s well approximated
by f?a(k) for k < ko, » end both T and ?;' are anglytic except

at k=0 . It then is true--as an extension of Case l--that f(s)

is well approximated by the transform of E;(k) provided s >>'k01?1 ’

In this paper, where we are concerned with distances'large
‘compared to the pipe’s transverse dimensions and the bunch length, we -

will invoke the present theorem to always limit attention to

: ~ el 1
k¥ < kOl L

approximations in .%kk) .

, 8, b'l, at , and thus are permitted many simplifying
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%;(k) from £(k) can be tolerated within X
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S. Small region of inaccuracy

Suppose %(k) 1s closely approximated by %;(k) , except PV
for |x| <k, and '
k02 ~ ~ 7 ' '
f [lf(k)l - e )] ax<s .o (A.3)
“Xop " .

It is then the case that the transform of %;(k) differs from f(s)
by less than & ., '

Consequently, f(s) 1s well approximsted exceg}l when it is

' smaller_in value than & . (This is ﬁhe reason Case 1 isn't

contradicted by the present result, since f(s) generally approaches

Zero asymptotically.) In our applications, the rahge k will be

L
, - -1 .2 =1, L \=2 .
exceedingly small [of the order of R™™ b or R (4 - b) © , with
R« 10" enm l] It follows that even a rether large departure of

op 2 With f(s) well

approximated except where it 1is exceedinglyvsmall, namely; at very

large distances,
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- APPENDIX B. BESSEL FUNCTION PROPERTIES

In this Appendix we summarize--without derivation--various
prbperties of Bessel i‘uﬁctions which are necessary to the analysis
employed in the paper. More ciomplete discussions can be found in
‘any standard tex-t.lo

The Bessel function Jv(x),‘ where v is any integer, is the

solution of Bessel's equation:

dz 2 : :
1l a \Z v I
)—(-—(x-—-—-—>+ C'x—2->.zv = 0, | (B.1)

defined by the power series

. , X x 2k + v
o . @ (-1) (5)
J,x) = 3 . — . (3.2)
, ' k=0 Nk +1) Mk +v + 1)
The Neumann function 'Nv(x) also satisfies Eq.. (B.1l), but with
- different boundary conditions, and has the property
| 2 2
| NO(X) - ; £n < 2
" I‘gvlz 2 v |
Nv(x), no- (;) s for x <<landvf 0, - (B.3)

- where the (Euler) constant y = 1,7811 . The Hankel functions
-ﬁv (l)(x) and }%(2)(}:) are defined by
| 1 | |
RS (x) = g ) iw (), (B

L e
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5 o ®
and clearly also satisfy Eq. (B.1).. For small argument, H/ (x)

may be obtained from Egs. (B.2) and SE.B); Thé special case of

1 - %? X [Jl(x)'+'i Nl(x)].

il

1-4 g'x Hl(l)(x)

%4

LS .
1+zxN(x), for x <1,

~ %?- In x , for x <1 o - (B.5)

. _ A ;
requires the next term in the expansion of Eq. (B.3).

Asymptotically, namely for large argument;,

o 1 :
' 2,2 T owv
JV(X) ~ (;;) cos <% -3 -5 )

2
e~ ) e (x-E-F), )
o i

from which it is evident that va (1x) approaches asymptotically

- ES N G TSI S-S |

The Wronskian relation (the prime indicates derivations with respect

- to argument) -

N0 3,0 - T ) = 2, (.8
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‘or the eqpivalénﬁ'relationsh;p
N, . l(x) Jv(x) -3, l(x)‘Nv(x) =

is often usefﬁl, as are the analogous relations for

I, . l(x) H§(l)(x) - Jv(x)"Hv } l(l)(x)- =

x)

H, '1(2.)'()() 7 (x) - Hv(e)(x)vJv _

2
nx

3)

Hv

(B.9)

(B.10)
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