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INTRODUCTION 
 
Since what seems to be the first treatment in the 1882 [M] as an “algebra”, the topic now known 
as “kinship algebra” has focused on the correct composition of strings of symbols used to form 
empirical systems of kinship terms, as used in naturally occurring languages.  The papers and 
Comments here, especially [B, R2, WD] have summarized much of the history since that initial 
treatment.  While their principal focus is on a particular set of kinship terminologies which have 
come to be known as Dravidian, the papers and discussion raise a number of issues on the basic 
form of, and purpose of, the use of mathematics in developing cultural theory.  [B], following the 
extensive discussions in [T], recognizes the nonassociative context of natural languages and of 
kinship generally, but refers to associative algebras for kinship, while [R2] seems to simply 
assume the necessary forms are associative.   [B] applies group theory, as have many others 
summarized in the citations of these papers; [WD] evaluates that use.  Finally, the Comments 
also focus on “careful ethnographic description” [WD].   
 
The present Comment observes that all of those forms, associative as well as nonassociative 
kinship terminologies, and their group theoretical properties when they exist, are all properties of 
a common and nonassociative description of natural languages.  [S] makes clear on the first page 
of his basic reference on nonassociative algebras, that when an algebra is called nonassociative 
this simply means that associativity is not assumed to hold, it does not mean that associativity 
does not hold.  Thus, there is no reason why a nonassociative algebra for natural languages 
cannot have both associative and nonassociative subsets, and from among the associative such 
subsets, it is no conflict that some or even many might also be groups.   
 
Similarly, if we focus the entire effort on the act of description, then the power of mathematics to 
make inferences about what is described is lost.  Almost paradoxically, certain parts of the 
papers here that most extol description, illustrate exactly the value of that power of inference.  If 
the description has found some mathematical property, there is no reason to not study that 
property, and in doing so, no need to re-do or restate the description.  One can make inferences 
from and about the mathematical property, and test them on other observed or predicted 
mathematical properties, or on the same or other aspects of the description.  One can also use 
study of the mathematics to predict the forms of description, and then observe if those forms are 
found.  In any of these cases, if a suitable description already exists, one may simply cite it.  This 
is how other theoretical sciences are built and tested, and one sees no reason why theory cannot 
be constructed for anthropology in a similar way.  
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While we present this Comment by way of discussing the two original papers here [B, R2], we 
also think the framework has much more general application in linguistics and other aspects of 
cultural theory.   Few if any natural languages are associative, hence are not moniods, nor 
semigroups, which however are the usual subject of an algebraic theory of language. We avoid 
this pitfall.  We begin by describing a natural language as a set with a nonassociative partially 
defined binary operation, subject to a cancellation law, which we call a “partially defined 
expanded quasigroup” or “peq”, on a set called a “dictionary”.  Using peq’s, which are 
nonassociative, then a relevant grammar of a properly defined natural language on a finite non-
empty dictionary induces a non-distributive lattice on that dictionary.  A clearly defined relevant 
grammar of a properly defined natural language induces an ortholattice on its dictionary, which 
may also define a new class of nonassociative mathematical languages.  A subset of a natural 
language can then be associative or nonassociative, and indeed may be a quasigroup or even a 
quasigroup which is also a group.  Specifically as to the present topic, the Dravidian 
terminologies are then a good example of a class of isotopic quasigroups, each of which is 
therefore a grammatical structure of some natural language.   
 
In proposing a nonassociative presentation of natural languages, we generalize the insight of 
[G&O] that kinship algebras are nonassociative, which led us to review quasigroups as a theory 
for kinship algebra, which quasigroups in turn are noted here to be subsets of natural languages.  
We make little use of descriptive terminology of traditional grammar.  In particular, we do not 
discuss phonetics, so if two different dictionary entries might “sound the same”, that is not a 
present concern.  Unlike [RJ, PC1, PC2] and very many others in recent linguistic theory, we 
make no claim relating the structures we describe to “mental” or “neurological” states.   While 
we discuss “languages” and “sentences”, we do not present a theory of the logic of propositions 
[H&G].  However, we follow [HJO] and [C&J] in recognizing that morphology and syntax use 
similar techniques, and that both are tied to the objects in the dictionary or lexicon of the 
language.  Our terminology is adapted from that of [HJO] but we use especially the term “frame” 
to refer to a specific defined sequence of components, and not to its “cultural meaning” [HJO: 
pg. 72].  When we say that some operation is defined, we mean, it reflects the “usage” of the 
individual(s) who employ that language at some point in time; thus our notion of what is 
“allowed” or “defined” might be considered as derived from the “experience” as defined in [E].  
Specifically, we assume what [HJO] calls “linguistic competence”, of knowing how to form 
grammatically correct sentences by a native speaker; but except in so far as [B, R2 and WD] use 
the notion of “rules”, as we do also in Part II, we do not here study what [HJO] calls 
“communicative competence” -- the social and cultural contexts in which they may be used.  Our 
terms such as poset, ortholattice and others, follow definitions in [DGG: Chapter 1].  We assume 
a natural language written from right to left.  We denote the relevant non-empty set as D, called a 
“dictionary”; where b  D is an entry of D.    
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PART I:  FOUNDATIONS 
 
A quasigroup is a nonempty set D with a fully defined binary operation subject to both a left and 
a right cancellation law1, commonly stated [S] as in Definition 1:   
 

Definition 1:  A quasigroup (D, *) is a non-empty set D with a binary operation * 
such that for each a, b  D, there exist unique elements x, y  D such that:  
(1)  a*x = b ;  and (2)  y*a = b .  

 
Definition 2:  Let D be a finite non-empty dictionary and let * be a partially 
defined binary operation on D, such that for (a, b, x, y)  D if a*x = b and a*y = b 
are defined, then x = y; and if x*a = b and y*a = b are defined then x = y.  Then: 
(1) D is left-expanded, if for x  D there exist a,b,c,d  D such that if a*x = b is defined, 
and c*x = d is defined, and a ≠ c; such x is called a suffix.    
(2) D is right-expanded if for y  D there exist a,b,c,d  D such that if y*a = b is 
defined, and y*c= d is defined, and a ≠ c; such y is called a prefix.  
(3) If D is both left and right expanded then D is doubly expanded.   
(4) D is expanded if D is left expanded, or right expanded, or doubly expanded.   
(5) We call such object (D, *) a partially defined expanded quasigroup, or “peq”.   

 
Comment 1:  So if such * is fully defined on D, then (D, *) is just a quasigroup, and if (D, *) is a 
(fully defined) quasigroup and | D | > 2, then D is expanded.  If a, b, c  D and a*b = c is 
defined, we shall refer to the object c (the right hand side of such equation) as a “product”.  
 

Definition 3:  Let (D, *) be a peq.  Let x  D and let there exist a, b  D for which 
a*x = b is defined.  Then:  
(1) Px := { (a, b) | x  D,  a*x = b is defined }, we call such Px a grammatical 
component of D determined by x, we call such x the marker of Px.   
(2) Px := {a, b} | (a, b)  Px} {x}; such Px is called the support for Px, and that x 
generates Px.   
(3) If m is a marker of D, r,b  Pm, r*m =b, then r is a root of Px.   
 
Definition 4:  Let D be a dictionary and let Pm be a grammatical component of D, 
let PG := { Pmi |  Pmi = Pmj,  mi ≠ mj } be a set of roots of Pm, and PGm := { mi  | Pmi 
  PG } be a set of markers corresponding to that set of roots.  Then: 
(1) G := (PG, PGm) is a grammatical structure of D; 
(2) If G is a grammatical structure of D then G := PG  PGm is the support of G;  
(3) GD := {G | G is a grammatical structure of D } is a set of grammatical 

structures of D;  
(4) If GD is a set of grammatical structures of D, then k(GD) :=  G, G  GD, is 

the support of GD.  
                                                 
1   We thank Dick Greechie for suggesting use of the cancellation law form applied in Definition 2.  All errors are 
my own. 
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Comment 2:  In each case a support is a subset of D.  From Definition 3, (Px, *) is a peq, and 
since Px  D and both Px and D are peq’s, then Px is a sub-peq of D.  Nothing prevents that b is a 
product in one context and a root or marker in another.  Nothing prevents that m is idempotent so 
that m*m = m is allowed.  
 

Definition 5:  Let X be a non-empty peq; then r  X, r ≠ , is a representative of 
X. Let X1, X2 be finite non-empty peq’s, c1 a representative of X1, c2 a 
representative of X2, and c1c2 = c3  an allowed product, we call such sequence an 
example.   

 
Convention 1:  We shall use “punctuation mark” as an undefined primitive term.   We define TD 
to be a set of “final markers” of D (commonly written as “.”, “?”, “!” and possibly others), and ID 
to be a set of “intermediate markers” of D (commonly written as “, “;”, and others), and assert 
that ED := TD  ID, TD ∩ ID =  is the set of all “punctuation marks” of D.  We assert that TD and 
ID are grammatical components. 
 

Definition 6:  Let D be a dictionary, let G1, G2 be grammatical structures of D, let 
c1  G1, c2  G2.  Then: 
(1) F := { c | c1c2 = c is defined } := (G1, G2) is an allowed frame of D; 
(2) FD := { F | F is an allowed frame of D } is a set of frames of D. 
(3) Let F be an allowed frame of D, let TD  D be a non-empty set of final markers of 
D, and let SF := { s | s = ft, f  F, t  TD} := (F, t).  Then SF is a sentence of D, using F. 
(4) Let F  FD, let SF = (F, t), then SF := F  {t} is the support of S. 
(5) Let SFD := { S | S is an allowed sentence on D } be a set of sentences on D. 
(6) Let k(SFD) :=  Si, Si  SFD, be the support of SFD.   
(7) A natural language LD on D is a non-empty set SFD of sentences on D.   
 

Comment 3:  The support of LD is therefore the support k(SD) of the set SD of sentences that 
defines LD.  A sentence (singular) is a class of objects defined by a particular product of a frame 
and a final marker.  If S is a sentence then a representative s  S is a particular “sentence” in the 
common language use, and is an example of “the sentence S” in our use.  Typically, linguistics 
uses representatives to define or illustrate frames and sentences.  Because frames require 
grammatical components in particular sequences, they identify a “sentence structure” of a 
particular language.  
 

Axioms:  Let D be a dictionary, let (D, *) be a peq, and let GD be a set of 
grammatical structures of D.  We adopt two axioms: 

Axiom 1:  if a  D there exists G  GD such that a  G.   
Axiom 2:  D may include “punctuation marks”.   

 
Comment 4:  Axioms 1 and 2 permit to construct a language LD from the properties of an 
empirical natural language.  Nothing assures that the result of thus constructing sets of 
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grammatical structures GD of LD will yield the same sets that carry the traditional names.  Our 
intuition is that if traditional concepts of grammar are correct, that should normally be the result.   
 
Comment 5:  Let a, b, c be representatives of grammatical structures A, B and C on a non-empty 
dictionary D.  Let ab represent a defined frame AB, and (ab)c represent a defined frame (AB)C.  
Assume a frame BC is not defined, so a frame represented by bc is not defined, and so a(bc) is 
not defined, so (ab)c ≠ a(bc).  And even if bc and a(bc) are defined, nothing requires that (ab)c = 
a(bc).  Thus in general frames are not associative, so sentences are not associative, hence natural 
languages are not associative, hence are not monoids [I] nor semigroups [P&P], so are not 
included within the mathematical theory of languages as normally described.  
 

Definition 7:  If D is a dictionary then a language LD is properly defined if for a  
D there exists an allowed frame F and an allowed sentence SF such that a  F.   

 
Comment 6:  That is, k(SD) = D iff every entry in D appears in at least one sentence.  This 
condition seems also to be a working axiom of field linguistics to properly define a language.  
 

Definition 8:  Let D be a non-empty dictionary, let FD be a finite non-empty set of 
allowed frames on D, let (FD

*,) be an algebra where  is a partially defined 
symmetric binary operation; if F  FD then F  FD

*; if Fi, Fj  FD
* and if Fi  Fj is 

defined then Fi  Fj  FD
*.  If Fi  Fj  FD

* then Fij := Fi  Fj is a compound 
frame.  If S = (Fij, t ), t TD,  is an allowed sentence then S is a compound 
sentence.  Then Fi and Fj are each a component of Fij, and (FD

*, ) is a set of 
frame compositions.  If Fij = Fi  Fj is a compound frame then Fij := Fi  Fj. 

 
Definition 9:  Let D be a dictionary and LD a language on D.  Let GD := { G | G is 
an allowed grammatical structure on D } be a non-empty set of allowed 
grammatical structures of LD; let FD := { F | Gi, Gj  GD and F = (Gi, Gj) is a 
defined frame on D } be a finite non-empty set of allowed frames of LD; let FD

* be 
a finite non-empty set of frame compositions on D; and let SFD := { SF | F  FD

* 
and SF is an allowed sentence on LD } be a finite non-empty set of allowed 
sentences on D.  Then GFD :=  FD

*  GD is a finite grammar of LD, or simply a 
grammar.  If LD is properly defined using only sentences in SFD then GFD is 
properly defined on LD.  Then k(GD) :=  G, G  GD, supports GD and k(FD

*) := 
 F , F  FD

*, supports FD
*.  If FD

* is the least set of allowed frames, including 
compound frames, necessary to define all allowed sentences in SFD, we call the 
resulting GFD a relevant grammar. 

 
Comment 7:  While FD

* is potentially indefinitely large, in a finite grammar GFD = FD
*  GD 

only a finite number of sentences are defined, so only a finite subset of FD
* are used to form 

sentences.  So we lose nothing by assuming FD
* is finite, and henceforth do so.  From Definition 

8, SFD  FD
*, that is, since a sentence is also a frame, all allowed sentences of a language LD are 

also found in a set of frame compositions on LD, and a grammar contains all defined sentences.    
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Comment 8:  From Definition 8, a set (FD

*,  ) of frame compositions is a peq, so a grammar GFD 
is a set of peqs, thus a peq.  In general compound frames are not commutative nor associative: a 
change in sequence of writing a string, or in the arrangements of parenthesis, may result in 
creating frames that are not allowed.  Thus as for peqs, in general a grammar GFD is neither 
commutative nor associative. 
 

Definition 10:  Adopting conditions of Definition 8, let LD be a natural language 
on a non-empty dictionary D, TD a set of final markers of D, and GFD = FD

*  GD 
be a grammar on D.   
(i) Then for Gi, Gj, Gw  GD, if  

1. Gi  Gj   …  Gw =  D, and  
2. Gi ∩ Gj =  whenever i ≠ j, then GFD (resp. LD) is clearly structured.   

(ii) For Fi, Fj, Fw  FD
* where Fi, Fj, Fw  SFD, and Fi, Fj, Fw  k(FD

*)\TD,  
3. Fi  Fj   …  Fw =  D, and  
4. Fi ∩ Fj =  whenever i ≠ j, then GFD (resp. LD) is clearly framed.  

(iii) For Fi, Fj, Fw  FD
*, where Fi, Fj, Fw  SFD, and Fi, Fj, Fw  k(FD

*), 
5.  Fi  Fj   …  Fw =  D, and  
6. Fi ∩ Fj =  whenever i ≠ j, then GFD (resp. LD) is clearly framed as 
sentences.   

(iv) If GFD (resp. LD) is clearly structured, clearly framed and clearly framed as 
sentences, then GFD (resp. LD) is clearly defined.  If GFD (resp. LD) is not 
clearly defined then it is ambiguous.   

 
Comment 9:  If LD is properly defined and (i)2 holds, then (i)1 follows: since for LD to be 
properly defined then each a  D occurs in at least one frame and therefore in at least one 
grammatical structure; and if these are disjoint, then each a is in only one grammatical structure, 
so 1 follows, and LD is clearly structured.  In empirical natural languages, "roots" (which 
typically in natural languages comprise “morphemes”) often occur in more than one grammatical 
component; the “role” of markers is to give different "meanings" to the same root.  Thus, in 
general GD does not partition D, so in general empirical natural languages are ambiguous. 
 
Comment 10:  Let D be a finite non-empty dictionary and let P(D) be a set of subsets of D.  If 
every X  P(D) supports at least one grammatical component of a properly defined and clearly 
structured language LD, we call such language efficient.   Then such LD is not efficient, unless 
each grammatical component is an idempotent object a  D, with r = a, m = a and a*a = a.  And 
apparently also few if any naturally occurring natural languages are efficient for a different 
reason: some subsets of D may not support any grammatical component.   
 
Comment 11:  Let D be a finite non-empty dictionary, and LD. an allowed language on D. A set 
P(D) of subsets of D is also a Boolean lattice using set inclusion as the partial order.  If G, F, S, 
GD, FD*, SD are allowed on LD, then the corresponding sets of support G, F, S, k(GD), k(FD

*), 
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k(SD)  P(D), since also G, F, S, k(GD), k(FD
*), k(SD)  D.  But not all members of P(D) will 

normally be used in a grammar GFD of LD.  Further, while each frame in a set of frame 
compositions on D is itself a single (possibly compound) frame, a set of two or more frames of a 
natural language LD is not a frame.  Let FD

* be a finite non-empty set of (possibly compound) 
frames of LD and let P(FD

*) be a finite non-empty set of subsets of FD
*.  Then P(FD

*) is a 
Boolean lattice using set inclusion as the partial order, and in particular, is a Boolean lattice of 
sets of frame compositions.  If SFD is a language on D on a set FD  FD

* of frames on D then SFD 
P(FD

*).  But there may be members of P(FD
*) which do not define grammars of LD. 

 
Comment 12:  Let D be a finite non-empty dictionary, let G1, G2 be allowed grammatical 
structures on D, let F = (G1, G2) be an allowed frame on D, and SF be an allowed sentence using 
F.  Since F = G1 G2, then SF = F  {t} = G1 G2  {t}.  Since allowed grammatical structures 
are non-empty sets, and allowed frames are pairs of non-empty sets, we adopt as a convention to 
denote a “frame” or “grammatical structure” (, )  as “0”, as they are not allowed.  Using 
ordinary set inclusion as the partial order, then we have SF ≥ (G1  G2) ≥ G1 ≥ 0, and also SF ≥ 
{t} ≥ 0.  (We can write a similar inequality SF ≥ (G1  G2) ≥ G2 ≥ 0).  But we have now 
constructed a lattice with SF on the “top”, and 0 on the “bottom” and which is isomorphic to the 
lattice N5.  Therefore, provided |D\TD| > 1, a lattice of sets comprised of dictionary entries 
supporting grammatical structures, frames and sentences of a natural language LD is in general 
neither distributive nor modular.   
 
Comment 13:  We now examine a special lattice.  Let D be a finite nonempty dictionary, let G be 
a grammatical structure on D, with support G, and let R := { r | r  G },  M := { m | m  G },  
and P := { p | p  G } partition G.  On the “top” is the set G; beneath G are the three disjoint sets 
R, M, and P of which it is comprised; on the bottom we place 0.  Then G is an example of the 
non-distributive lattice M3 [G].  So any lattice induced on D by a grammar that induces this 
special lattice is not distributive.  While some empirical natural languages may have some 
product of a marker and a root equal to the root (for example), in general they do not.  So in 
general a lattice of the supports of a grammar of an empirical natural language will contain this 
special sublattice, and not be distributive. 
 
Comment 14:  Let D be a finite non-empty dictionary, LD a language on D, FD

* a set of allowed 
frames on LD, GD allowed grammatical structures on LD, and GFD = FD

*  GD a relevant finite 
grammar on LD.  We construct a lattice L(GFD) of subsets of D, which we shall call the lattice 
induced on LD by GFD, as follows.  Place 0 on the bottom; above 0 place the sets G  GD of 
entries in D supporting members of G; between each G and 0 insert the respective subsets R, M, 
P  D as defined in Comment 13; above the row of G’s place the objects F  FD

*, F  SFD, of 
entries of D that support frames that are not sentences; above that the sets F  FD

*, F  SD, of 
entries in D that support sentences; place D on top.  L(GFD) is a lattice provided GFD is relevant, 
since 0  L(GFD) and since if GFD is relevant then for each pair of entries some least upper 
bound exists; if GFD is not relevant, then some set G and/or F may exist but for which there is no 
least upper bound with each other element of L(GFD).  In general L(GFD) is not distributive, since 
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it contains a sub-lattice per Comment 12; and for that reason and since it will also often contain 
as a sub-lattice an object as described in Comment 13, L(GFD) is not Boolean.  
 
Comment 15:   For any grammar GFD in which there exists tTD such that t occurs in two or 
more distinct sentences of GFD (which seems to be the case for terminal markers of most 
empirically occurring natural languages) then each such sentence S has relative complement S~ in 
D such that {t} = S ∩ S~ ≠ 0, so L(GFD) is not a bounded involution poset (thus not an orthoposet 
nor ortholattice.)    
 
Comment 16:  However, if D is a finite non-empty dictionary, LD is properly defined on D, and 
GFD is a relevant clearly defined grammar of LD, then L(GFD) is a bounded involution poset, an 
orthoposet and ortholattice.  This occurs since first, each object in L(GFD) other than D or 0 is the 
support of a defined sentence, frame, or grammatical structure.  Then following notation of 
Comment 12 we have that L(GFD) is constructed as a collection of partial orders D ≥ SF = (F 
 {t} ) = (G1  G2  {t})  ≥ (G1  G2) ≥ G1 ≥ 0.  Because GFD is clearly defined, each object in 
each “layer” of such partial orders of L(GFD) is the cell of a partition of D and thus each such cell 
is uniquely relatively complemented as a subset of D.  In the ascending direction each object is a 
union of some set of cells in the partition in the layer beneath it.  Then clearly also, 0 = D~ ≤ (G1 
 G2  {t})~ ≤  (G1  G2)

 ~
 ≤ G1

~ ≤ 0~ = D.  So the orthoposet condition holds everywhere, and 
thus L(GFD) is also an ortholattice.  Thus a clearly defined relevant grammar on a properly 
defined language on a finite non-empty peq, while apparently not describing empirical natural 
languages, forms a non-distributive orthoposet.  This also appears to be a new class of 
nonassociative formal languages. 
 
Conclusion to Part I:  The topic known as mathematical linguistics is based on semigroups; but 
as an associative fully defined binary operation on a set semigroups do not describe natural 
languages.  In general natural languages are not associative, are partially defined, and when 
defined are not commutative.  Thus we construct nonassociative non-commutative objects called 
peqs: partially defined expanded quasigroups.  Quasigroups are a well known topic, but the 
notion of a partially defined quasigroup appears to be new here.   
 
PART II:  TERMINOLOGIES AND CONSISTENT CULTURES 
 
We next recognize a special subset of a natural language LD on a finite non-empty dictionary D. 
 

Definition 11:  Let G = (PG, PGm) be a grammatical structure on D.  If every object 
in PGm is doubly expanded with every object in PS, then G is a complete 
terminology.   

 
Comment 17:  Definition 11 is equivalent to stating that the operation * is fully defined on the set 
G = PG PGm, which is to say, that (G ,*) is a quasigroup.  So a complete terminology is also a 
quasigroup (and vice versa).  Thus in a complete terminology PG = PGm, so citing definitions of 
Comment 13, R = M = P = PG = PGm = G.  Then if D is a finite non-empty dictionary, G ≠  and 
G is a complete terminology of D with support G  D, then G is a grammatical component of D, 
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and (in contrast to the special lattice of Comment 13) D ≥ G ≥ R ≥ 0 is a chain; note that any of 
R, M, P, PG, PGm or G can be substituted for R in that chain.  Now notice that because a complete 
terminology G is a quasigroup (G,*) therefore (G,*) is a set of permutations.  Because 
quasigroups may also be groups, then at least some complete terminologies may also be groups.  
Let g(P(D)) := { G | D is a finite non-empty dictionary, G is a complete terminology of D, the 
support of G is G  P(D)  and (G, *) is a group }.  Then g(P(D))  P(D) is a set of complete 
terminologies (quasigroups) that also form groups.    
 
Comment 18:  In [R, R2] it is required that in a kinship algebra, if Q is a set of kinterms, then for 
each “pair” of kin terms, x, y  Q, if xy  Q then yx  Q; such pairs of sequences are called 
“reciprocals”; and also xy = yx = 1.  But this simply restates Definition 1:  the condition if a, b  
Q, abQ, assures existence of reciprocals since it also implies baQ and therefore also, and ab 
= ba = 1 assures existence of a cancellation law.  Thus these conditions imply that a kinship 
algebra is a quasigroup, which is a complete terminology and a grammatical structure of a 
natural language.  In fact, in [R2] not only are kinship terminologies quasigroups, they are peqs:  
[R2] identifies a kinship algebra as a set of kin terms with binary operation which allows that “a 
product … does not yield a kin term”, hence the operation is partially defined relative to the set 
Q.  Therefore, following [R2] a kinship algebra is a set with a partially defined binary operation 
subject to a cancellation law: a peq.  [R2] also seems to assume such algebras are associative; in 
fact, apparently many are.  Those properties together are part of why many kinship algebras also 
form groups.  In study of quasigroups [KKP, SVA, S] sets of permutations are arranged in tables, 
called Latin Squares or “Cayley Tables” [Go].   Then empirical examples of complete 
terminologies, hence quasigroups, are found in “kinship algebras” using a finite set of symbols 
and a rule of concatenation of those symbols [G1, G2, G&O, H, R, W], which may be organized 
as Cayley Tables [K, G1, G2], and which often also form groups [G1, G2, K, W].   
 
Notational Citation:  To next discuss properties of internal consistency of cultures, we need 
some terminology for properties other than kinship algebras.  We adopt the notation of [B1, B2], 
to which the reader is referred for more detail.  In brief we assume a finite non-empty set P 
whose members are called individuals.  If dP the there exists a discrete “generation at time t” 
such that d  Gt   P.  We defined three binary relations  D, B, and M on P, satisfying these four 
axioms: (1) D is totally non-symmetric and transitive; (2) M is symmetric; (3)  if bDc and there 
exists no dP, d b,c for which bDd and dDc, then we write  cPb, and then require B = { (b,c) | 
there exists dP with both dPb and dPc }; and (4) #bM 2, where bM:={ cP | (b,c) M } 
and a rule RR, R ≠ , is a statement concerning the relationships between the D, B, and/or M, 
which does not violate those four axioms.  Since a viable rule also implies a sequence over time 
we can also describe the same idea as a history, and denote a history (that is, the rules which 
generate it) with a notation .  A set  G ={Gt | tT} is called a descent sequence of S in case, for 

all GtG, each cell B occurs in only one generation, each subset M occurs in only one 

generation, and when Gt  G, bGt, and cPb, then cGt-1 (that is, the set Gt+1 contains all of, and 
only, the immediate descendants of individuals in Gt).  Given a generation Gt, a,b,c,..,k Gt, a ≠ 
b ≠ c ≠ … ≠ k, a regular structure is a closed cycle of alternating M and B relations, such as aBb, 
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bMc, cBd, … kMa.  If there are j instances of M in such cycle, then the cycle is of type Mj.  An 
ordered list counting the numbers of regular structures present in a particular Gt is a 
configuration C:= (m1, …, mj, …) where mj is the number of regular structures of type Mj in C.  
Thus a configuration consisting only of 2 of the M2 structures would be written (0,0,2,0, …).  
We let C = { Ci in } be a finite non-empty set of n distinct configurations Ci We 
here consider only finite sets C.  In general, if Ci and Cj are configurations then Ci + Cj is also a 
configuration, though Ci + Cj  C is not required (since C is finite).   All marriages in a regular 
structure are assumed to be reproducing.   So if C is a configuration, then C = (jmj), or simply 
“” when C is understood, is the number of reproducing marriages in C;  is the number of cells 
induced by B (sibships) in C; and = 2 is the total population included into regular structures of 
the generation Gt on which Ci is formed.  We denote the set of smallest “self-reproducing” 
configurations (“minimal structures”) of a history  by M.  Often a history  has one minimal 
structure; so if C M and  | M| = 1, we write simply M = C, not M = {C}.  If C is a 
minimal structure of , then (jcj) = s is the structural number of .  
 

Definition 12:   We have required that if cPb and if bGtP then cGt-1P.  If G={Gt | 

tT} is a descent sequence of P, Gk,GjG, j, k T then the integer g = |j - k| is the 

generation interval between Gk and Gj.  If Gk, GjG bGk and cGj then we also say that 
g = |j – k| is the generation interval between b and c.   We shall write that when cP b and 
d Pc then dP2b, and in general if there is a transitive sequence of g such pairs cPb , dPc, 
… nPm we write mPgb.  Then bBc iff  (d)( dP1b and dP1c ), so we set bBgc iff  (d)( 
dPgb and dPgc ), and say that b is a gth order relative of c, and say b is a gth order 
descendant of d and d is a gth order ancestor of b.  We define bB0c iff b=c.   

 
Comment 19:  So if cPb then g = |t – (t-1)| = 1.  And if cPb and dPc then the generation interval 
between b and d is 2.  Note that “b is a gth order relative of c” is symmetric. 
 

Definition 13:  Let P be a finite non-empty set P, b, c, dP.  Let R, S be binary relations 
on P.  Let  be a binary operation such that (cBgb) iff c   bBg.   Let  be a symmetrical 
binary operation such that RS iff bRc and bSc.  Let  be a symmetrical binary operation 
such that RS iff bRc or bSc.   Let KBR be a finite non-empty set such that:  
(1) If for non-negative integer g, cMb only if cBgb ) then   KBR;  
(2) If for non-negative integer g, cMb only if (cBgb)) then   KBR; 
(3) if , KBR then KBR;  
(4) if , KBR then KBR; 
(5) nothing else is a member of KBR; 
then if KBR then is a kin based marriage rule.  

 
Comment 20:  KBR uses a simplified version of the notation of [G&O].  Members of KBR are 
rules, since they define when an M-relation can form and do not violate the applicable four 
axioms.  The operations  and  are each idempotent, commutative and associative, and the 
absorption laws also hold.  Therefore if we construct only rules consisting of statements of type 
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(1), (2) and (3) then we have a meet semilattice which we describe as KBR.  If we allow only 
statements of the form (1), (2) and (4) then we have a join semilattice which we denote as KBR.  
And therefore (KBR, , ,  , 0) is a lattice.        
 
Comment 21:  We give examples of rules in KBR.   
(1) Let 0 := (cMb only if cB0b).  Then cMb only if c = b.  Since D is onto the sets M (see [2]) a 

set P subject to 0  is a set of “self-mating” or “self-reproducing” organisms, such as single 
cell organisms.  M0 = M0.   

(2) Let 1 := (cMb only if (cB0b)).  Then cMb only if c ≠ b, so a set P subject to 0 is a set of 
“bisexual” organisms in the sense that descent can only be assigned to a “marriage” of two 
distinct individuals.  M1 = M1.   

(3) Let 2 := 1  (cMb only if cB1b).  If cMb then b and c are required to have “committed 
incest”, since cB1b.  M2  = M1 as well.   

(4) Let 3 := 1  (cMb only if (cB1b).  3 requires to “avoid incest”.  M3 = M2.   
(5) Let 4 := 1  3  (cMb only if cB2b).  4 is marriage to a “first cousin”.  M4 = M2.   
(6) Let 5 := 1  3  (cMb only if (cB2b)).  5 prohibits marriage among second degree or 

closer (lower degree) relatives, often called “first cousin prohibition”.  M5 = 2(M2).  Only 
2(M2) is a fixed point under 5 on a descent sequence whose generation size is always 2s.  
However 5 also allows 2(M2) to create both 2(M2) and M4, but allows M4 only to create 
2(M2).  So we can denote a history  = 55  = 5

2, in which  is an automorphism on C with 
fixed points {2(M2), M4}) that occur in a two generation cycle of application of 5.   

(7) Let 6 := 1  3  5  (cMb only if cB3b).  6 prohibits marriage among second degree or 
“closer” relatives, but requires marriage with a third degree relative, or “second cousin”.  
M6 = 2(M2) as well. 

 
Definition 14:  (1) let C be a set of configurations, let C,DC, let C be the configuration 
defined on a generation G, and let b,cG.  Then h : C  C is a homomorphism 
(isomorphism when one-one and onto) of configurations iff both h(bBc)=h(b)Bh(c) and 
h(bMc)=h(b)Mh(c).   (2)  let X and Y be non-empty sets, let x,yX, and let f:  X  Y be a 
function.  Then ker f : = {(x,y)  X2 : f(x) = f(y)}.  If S and T are algebras and f:  ST is a 
homomorphism, then ker f is a congruence.   

 
Comment 22:   Let C be a finite non-empty set of configurations, let KBR be a set as defined in 
Definition F, and define Min : KBR  C as Min () = { C : CC,  KBR, C is a minimal 
structure of  } so Min () = M.  That is, if AKBR is a non-empty set of rules then ker Min 
identifies the equivalence classes of rules in A that share the same sets of minimal structures.   
For example from Comment 21, ker Min maps { 5, 6 } → 2(M2),  { 3, 4 } → M2, { 1, 2 } 
→ M1, { 0 } → M0.    
 
Comment 23:  Following Comment 22, we can extend a congruence "back" to sets of kinship 
terminologies (that is, to complete terminologies of a natural language; that is, to quasigroup 
subset of a peq) which map to the sets of rules.  Let Kin be a set of quasi-groups, each of which 
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generates a kinship terminology.  That is, let Kin be a set of complete terminologies.  Let G be a 
set of finite permutations.  Let g :  Kin  G.  Then ker g(Kin) classifies kinship algebras (quasi-
groups) by permutations, if any, to which they are homomorphic.  If we let f : KBR  (ker 
g(Kin)) then ker f(MBR) identifies rules in KBR to kinship terminologies, also according to the 
permutations.   When the permutations are also groups [G1, G2] then we have also applied [N, 
Theorem 4.3] "Every lattice can be embedded into the lattice of subgroups of a group".  In the 
notation of Comment 17, we have found a set ker f(MBR) = g(P(D))  P(D) of complete 
terminologies (quasigroups) that also form groups.  Thus we have a congruence between 
marriage rules and permutations, and a classification of marriage rules and kinship terminologies 
of similar orders.  Isotopic quasigroups (which have the same “structure” but use distinct sets), 
hence isomorphic kinship terminologies expressed using languages with different systems of 
representation whether notational or phonological, will be similarly classified by this procedure.   
It is natural to think of the existence of mappings which have non-empty kernels  as identifying 
internally consistent cultures.2  We know at least that for viable rules, such kernels are non-
empty, therefore consistent cultures exist.  In fact the entire topic of “Dravidian kinship 
terminologies” is itself an example of a set of classes of isotopic quasigroups.  The examples are 
isotopic since the subject of Dravidian terminologies discusses languages which might have very 
different phonologies and other properties, yet share similar quasigroup or peq structures as 
kinship algebras.  [A] is a very good example of an ethnographic analysis of Dravidian which 
uses the minimal structure of a pure system of a rule, illustrating the use of the identity transform 
on a minimal structure, and a mapping of a kinship terminology onto a descent sequence of that 
pure system, showing permutations of the kinship labels onto successive presentations of the 
minimal structure.    
 
Comment 24:  Let be a viable rule with minimal structure C  M and structural number s.  
Let G be a grammatical structure which is also a kinship terminology (a complete terminology of 
a natural language) placed in 1-1 correspondence with the individuals in C, called a labeling of 
that configuration.  Then | G | =  2s terms since C has 2s individuals.   Thus if we label the 
minimal structure of a viable rule with the kin terms of a quasigroup of order 2s, then each 
permutation of the terms defines a permutation of the minimal structure, such as by one of the 
symmetries of a dihedral group [G1, G2]. If we consider isomorphic configurations with 
different orientations of labelings as distinct, then in a pure system, the orbits are among the 
differently labeled copies of the minimal structure.  Ethnography very often uses these properties 
to draw illustrations of the use of kin terms and application of marriage rules.  A very good 
example of this is provided by [R2] whose Figure 9, though only illustrating one generation, is 
exactly an example of rule 4 on its M2 minimal structure; this this figure thus also illustrates 
that the particular kinship terminology in association with that rule and that configuration form 
an internally consistent culture.  Examples of such illustrations, used for exactly such purposes, 
are pervasive in ethnography.  While not all cultures can be represented by configurations that 
assume discrete generations quite evidently a very large class of cultures do so.   
   

                                                 
2  [WD] would apparently prefer a weaker concept than homomorphism here; simply a many-one map.   
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Comment 25:  Following Comment 24, let D be a finite non-empty dictionary and let LD be a 
natural language on D.  Let G be a set of kin terms assigned to each relation form cBgb, let G be 
the support of G so that G   D, and let M   D be an entry of D that expresses when the relation 
M holds.  Then the forms of Definition 13 are frames, indeed are compound frames.  If we 
require that each of the forms of statement used in Definition 13(1) through 13(4) must end with 
a terminal marker such as ".", as is done in the examples of Comment 21, then each defines a 
frame which is also a sentence.  Thus modified, Definition 13 defines a language on the set { G 
  M }  D since it identifies a set of sentences on that set, and also { G   KBR } is a grammar 
on { G   M }.  We further invite comparison of the concept of grammatical structure, from 
Definition 4, to the description by [B] of classes of “contracted words”, which therefore appear 
to be examples of grammatical structures.  Thus we can formalize a commonly if not universally 
held intuition that study of kinship terminologies is a sub-topic of linguistics, which if one adds a 
terminal marker to his notation, appears to be how [B] views his subject. 
 
Comment 26:  A commonly found definition of a quasigroup is to write the unique solutions to 
Definition 1 equations (1) and (2) as x = a \ b and y = b / a.  Here, '\' and '/' denote, respectively, 
binary operations of left and right division which are taken as primitive.  Then:  
 

Definition 1A:  A quasigroup (D, *, \, /) is a type (2, 2, 2) algebra satisfying the 
identities:   y = x * (x \ y); y = x \ (x * y); y = (y / x) * x; y = (y * x) / x.  

 
If (D, *) is a quasigroup according to Definition 1, then (D, *, \, /) is an equivalent quasigroup 
under Definition 1A [S].  If the operations in the first form are partially defined, then the second 
form is also only partially defined.  Note that if in this second definition we take as the elements 
x and y some particular pair composed of a marker m and a root r, then the second definition 
identifies unique “divisions” and thus shows how to “add or remove the markers”.  That is, the 
logic of “divisions” in Definition 1A seems to be a model for how field linguists go about 
“decoding” an observed language, in order to then construct a grammar, or structured 
terminology, using definitions of the first sort. 
 
CONCLUSION: 
 
We have defined a mathematical object called here a "partially defined expanded quasigroup", to 
describe natural languages, which may have as subsets objects with the known properties of 
kinship algebras.  While the topic often called "mathematical linguistics" uses semigroups, hence 
does not describe natural languages, peq's are nonassociative.  As such not only may they 
describe natural languages, under certain conditions they have properties that define a new class 
of mathematical languages.  A common technique of social and cultural anthropology is to 
describe a culture by first describing the language of the bearers of that culture.  Use of peq's to 
describe natural languages leads in a direct way to recognizing kinship terminologies as subsets 
of natural languages, and in turn to characterizing relationships among such terminologies and 
marriage rules.  The Dravidian classes of isotopic quasigroups which, are also compete 
terminologies and grammatical structures of natural languages, provide good illustrations.      
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