
UC San Diego
UC San Diego Electronic Theses and Dissertations

Title
Subcellular Localization and Prediction of Qualitative Expression of the Proteome of 
Sorghum and Maize

Permalink
https://escholarship.org/uc/item/3kw810sv

Author
de Boer, Laura Ashley

Publication Date
2019

Supplemental Material
https://escholarship.org/uc/item/3kw810sv#supplemental
 
Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/3kw810sv
https://escholarship.org/uc/item/3kw810sv#supplemental
https://escholarship.org
http://www.cdlib.org/


UNIVERSITY OF CALIFORNIA SAN DIEGO 
 
 

 
Subcellular Localization and Prediction of Qualitative Expression of the Proteome of 

Sorghum and Maize 
 
 
 

A dissertation submitted in partial satisfaction of the requirements for the degree of 
Doctor of Philosophy 

 
 

 
in 
 
 

 
Biology 

 
 
 

by 
 
 
 

Laura de Boer 
 
 
 
 
 

 
Committee in charge:  
 
 Professor Steven P. Briggs, Chair 
 Professor Vineet Bafna 
 Professor Eric Bennett 
 Professor Alisa Huffaker 
 Professor Scott Rifkin 
 Professor Yunde Zhao 
 
 
 

2019 
 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright 
 

Laura de Boer, 2019 
 

All rights reserved 



 iii 

 

 

 

The Dissertation of Laura de Boer is approved, and it is acceptable in quality and form for 

publication on microfilm and electronically: 

   

 

 

 

 

 

 

 

 

 

 

Chair 

 

 

University of California San Diego 

2019 

 

 



 iv 

DEDICATION  

 

I would like to dedicate this dissertation to my husband, Patric de Boer, for his 

immutable love and support. He embodies the natural curiosity, optimism, and kindness 

all scientists hope to achieve.  

 

I would also like to dedicate this dissertation to the undergraduate students who not only 

assisted in this work, but also provided inspiration every day. I am honored and 

humbled by the time, energy, and trust you have given me. Thank you for giving me the 

chance to relive the experience of learning research through you.  

 

 

 

 

 

 

 

 

 

 

 

 

 



 v 

EPIGRAPH 

 

We are in the right spot, somehow, like a breath 

Entering a singer’s chest, that shapes itself 

For the song that is to follow. 

 
Alicia Ostriker, Excerpt from Move 

 
   

 

 
 

 
 

 

 

 

 

 

 

 

 

 

 

 

 



 vi 

TABLE OF CONTENTS 

 

Signature Page ............................................................................................................... iii 

Dedication ....................................................................................................................... iv 

Epigraph .......................................................................................................................... v 

Table of Contents ............................................................................................................ vi 

List of Abbreviations ........................................................................................................ xi 

List of Supplemental Files ............................................................................................. xiii 

List of Figures ................................................................................................................. xv 

List of Tables ................................................................................................................ xvii 

Acknowledgements ..................................................................................................... xviii 

Vita ................................................................................................................................. xx 

Abstract of the Dissertation ........................................................................................... xxi 

Chapter 1 Direct evidence for the sub-cellular locations of proteins encoded by 3,378 

genes of maize .......................................................................................... 1 

 1.1 Introduction ................................................................................................ 1 

 1.2 Results ....................................................................................................... 4 

  1.2.1 Isolation and proteomics of organellar proteins ............................... 4 

  1.2.2 Identification of organelle-enriched and -depleted proteins  ............ 5 

  1.2.3 Comparison of organellar proteins to gold standard proteins .......... 5 

  1.2.4 Overlap of enriched and depleted proteins across target organelles 

    ........................................................................................................ 9 



 vii 

  1.2.5 Observed overlap between organelle protein sets differs from 

overlap of gene ontology location annotations and previously 

published organellar proteins ........................................................ 11 

  1.2.6 Distribution of enrichment scores of GO CC annotated and 

previously published organelle proteins ........................................ 12 

  1.2.7 Comparison of organelle enriched and depleted proteins to 

previously reported localization ..................................................... 14 

  1.2.8 Subcellular localization of maize classical genes .......................... 16 

  1.2.9 Identification of gene-splicing isoform-specific subcellular 

localization .................................................................................... 19 

  1.2.10  Functional enrichment analysis of organelle proteins ................... 20 

 1.3 Discussion ............................................................................................... 24 

 1.4 Materials and Methods............................................................................. 29 

  1.4.1  Plasma Membrane Isolation .......................................................... 29 

  1.4.2  Intact Glyoxysome Isolation ........................................................... 31 

  1.4.3  Intact Mitochondria Isolation .......................................................... 32 

  1.4.4  Intact Chloroplast Isolation ............................................................. 33 

  1.4.5  Proteomics of subcellular organelle enriched fractions .................. 34 

  1.4.6  Identification of subcellular localized proteins ................................ 35 

  1.4.7  Gene ontology categorical enrichment analysis of organelle over-

enriched proteins ........................................................................... 35 

  1.4.8  Additional data analysis ................................................................. 36 

 1.5 Acknowledgements .................................................................................. 36 



 viii 

 1.6 References .............................................................................................. 37 

 1.7 Supplemental Material ............................................................................. 40 

  1.7.1  Supplemental Table Legends ........................................................ 54 

  1.7.2  Supplemental Materials and Methods ............................................ 55 

  1.7.3  Supplemental Reference ............................................................... 57 

Chapter 2 Discovery of species-specific expressible genes via machine learning with 
omics data ............................................................................................... 64 

 
 2.1 Introduction .............................................................................................. 64 

 2.2 Results  .................................................................................................... 66 

  2.2.1 Identification of protein expressible genes of sorghum stems under 

fungal elicitation ............................................................................ 66 

  2.2.2 Creation of sorghum gene express-ability classifiers .................... 67 

  2.2.3 Model feature importance ............................................................. 69 

  2.2.4 Prediction of sorghum expressible gene sets ................................ 73 

  2.2.5 Comparison of sorghum expressible genes to syntenic gene sets 

identifies uniquely expressible genes of sorghum and maize ....... 74 

  2.2.6 Express-ability of sorghum syntenic genes across grass species . 77 

 2.3 Discussion ............................................................................................... 79 

 2.4 Materials and Methods............................................................................. 81 

  2.4.1 Data sources ................................................................................. 81 

  2.4.2 Sorghum slit-stem fungal elicitation assay .................................... 82 

  2.4.3 Proteomics of sorghum fungal and non-fungal treated tissue ....... 82 

  2.4.4 Methylation Feature Construction ................................................. 82 

  2.4.5 Classification of training data ........................................................ 83 



 ix 

  2.4.6 Construction of Classification Models ........................................... 83 

  2.4.7 Discovery of expressible gene sets ............................................... 84 

  2.4.8 Data analysis................................................................................. 84 

 2.5 Acknowledgements .................................................................................. 85 

 2.6 References .............................................................................................. 85 

 2.7 Supplemental Material ............................................................................. 88 

Chapter 3 Comparison of expressible gene sets across maize genome annotation 
versions ................................................................................................... 90 

 
 3.1 Introduction .............................................................................................. 90 

 3.2 Results ..................................................................................................... 93 

  3.2.1 Detectable protein products observed from v2 gene models without 

annotated v4 equivalents .............................................................. 93 

  3.2.2 Discovery of expressible gene sets for v2 and v4 ......................... 93 

  3.2.3 Comparison of protein express-ability of maize annotated gene sets 

from v2 and v4 .............................................................................. 96 

  3.2.4 Filtering by protein express-ability reduces number of candidate 

genes in QTL studies .................................................................... 97 

 3.3 Discussion ............................................................................................... 98 

 3.4 Materials and Methods........................................................................... 100 

  3.4.1 Plant materials ............................................................................ 100 

  3.4.2 Proteomics .................................................................................. 100 

  3.4.3 Quantitation of gene body methylation level and creation of model 

methylation features .................................................................... 102 

  3.4.4 Identification of class variables for model training and testing .... 103 



 x 

  3.4.5 Creation of classifiers .................................................................. 103 

  3.4.6 Classification of expressibility of maize v2/v4 genes ................... 104 

  3.4.7 Additional data analysis .............................................................. 104 

 3.5 Acknowledgements ................................................................................ 104 

 3.6 References ............................................................................................ 104 

  

  



 xi 

LIST OF ABBREVIATIONS 

 

ATP: Adenosine Triphosphate 

AUC: Area Under the Curve 

Bd: Brachypodium distachyon 

BP: Biological Process 

CC: Cellular Compartment 

Chloro: Chloroplast 

DTT: Dithiothreitol 

DNA: Deoxyribonucleic acid 

EPC: Express-ability Protein Classifier 

ER: Endoplasmic Reticulum 

ERC: Express-ability RNA Classifier 

FDR: False Discovery Rate 

FGS: filtered gene set 

Glyoxy: Glyoxysome 

GO: Gene Ontology 

HDAC: Histone de-acetylase 

HPLC: high-performance liquid chromatography 

IMP: Inosine monophosphate 

Mito: Mitochondria 

MS: Mass spectrometry or mass spectrometer 

PEG: Polyethylene glycol 



 xii 

PM: Plasma Membrane 

PMSF: Phenylmethylsulfonyl fluoride 

PR: Precision/Recall 

PTS1: Peroxisomal Targeting Signal1 

PTS2: Peroxisomal Targeting Signal2 

RNA: Ribonucleic acid 

RPKM: Reads per kilobase measured 

ROC: Receiver Operating Characteristic 

Sb: Sorghum bicolor 

Sv: Setaria viridis 

TMT: Tandem Mass Tags 

WGS: Working Gene Set 

Zm: Zea mays 

 

 

 

 

 

 

 

 

 

 



 xiii 

LIST OF SUPPLEMENTAL FILES 

1. deBoer_TableS1 

2. deBoer_TableS2 

3. deBoer_TableS3 

4. deBoer_TableS4 

5. deBoer_TableS5 

6. deBoer_TableS6 

7. deBoer_TableS7 

8. deBoer_TableS8 

9. deBoer_TableS9 

10. deBoer_TableS10 

11. deBoer_TableS11 

12. deBoer_TableS12 

13. deBoer_TableS13 

14. deBoer_TableS14 

15. deBoer_TableS15 

16. deBoer_TableS16 

17. deBoer_TableS17 

18. deBoer_TableS18 

19. deBoer_TableS19 

20. deBoer_TableS20 

21. deBoer_TableS21 

22. deBoer_TableS22 



 xiv 

23. deBoer_TableS23 

24. deBoer_TableS24 

25. deBoer_TableS25 

26. deBoer_TableS26 

27. deBoer_TableS27 

28. deBoer_TableS28 

29. deBoer_TableS29 

30. deBoer_TableS30 

31. deBoer_TableS31 

32. deBoer_TableS32 

33. deBoer_TableS33 

34. deBoer_TableS34 

35. deBoer_TableS35 

36. deBoer_TableS36 

37. deBoer_TableS37 

38. deBoer_TableS38 

39. deBoer_TableS39 

40. deBoer_TableS40 

41. deBoer_TableS41 

 

  



 xv 

LIST OF FIGURES 

 

Figure 1-1: Comparison of Organelle Enriched Proteins to Manually Curated Gold 
Standard Proteins ......................................................................................... 8 

 
Figure 1-2: Maize proteins with localization in multiple organelles ................................ 10 

Figure 1-3: Distribution of enrichment scores of previously published and GO CC 
annotated organellar proteins ..................................................................... 13 

 
Figure 1-4: Comparison of localization of organelle enriched or depleted proteins with 

GO CC localization annotation or localization in previous organellar 
proteomes .................................................................................................. 15 
 

Figure 1-5: Subcellular localization of maize classical gene-encoded proteins ............. 17 

Figure 1-6: Purification schema for two phase partitioning of plasma membranes and 
endomembranes ......................................................................................... 40 

 
Figure 1-7: Chloroplast and Etioplast isolation .............................................................. 41 

Figure 1-8: Volcano plots of enrichment scores of proteins detected in organelle 
datasets ...................................................................................................... 42 
 

Figure 1-9: Organelle set size and true and false positive rates across fold-enrichment 
and p-value thresholds ............................................................................... 44 
 

Figure 1-10: Overlap of GO CC annotated and previous organelle proteome protein sets
 ................................................................................................................... 45 
 

Figure 1-11: Volcano plots of enrichment scores of previously published organelle 
proteome proteins ....................................................................................... 46 
 

Figure 1-12: Volcano plots of enrichment scores of proteins annotated in GO CC target 
and contaminating organelle ...................................................................... 48 
 

Figure 1-13: Localization of classical genes in this work, maizeGDB annotations, or 
literature ..................................................................................................... 50 
 

Figure 1-14: Percent of organelle enriched proteins in ARAMEMNON database of 
predicted membrane proteins ..................................................................... 51 
 

Figure 1-15: Immunoblot detection of Catalase and Porin in glyoxysome isolation step 
samples ...................................................................................................... 52 



 xvi 

Figure 1-16: Purity analysis of B73 maize glyoxysome preparations ............................ 53 
 
Figure 2-1: Creation of gene express-ability classifier ................................................... 68 
 
Figure 2-2: Classifier testing: Receiver Operating Characteristic (ROC) and precision 

recall (PR) curves for classifier models ...................................................... 70 
 
Figure 2-3: Classifier feature importance ...................................................................... 71 
 
Figure 2-4: Comparison of predicted expressed gene sets to previously annotated high 

confidence gene sets .................................................................................. 74 
 
Figure 2-5: Comparison of maize and sorghum expressible gene sets ......................... 76 
 
Figure 2-6: Effect of species of comparison on express-ability of syntenic genes ......... 78 
 
Figure 2-7: Relative signed feature importance of ERC classifier ................................. 88 
 
Figure 2-8: Percent of maize subgenome 1 and 2 genes detectable as protein ............ 89 
 
Figure 3-1: Creation of v2/v4 express-ability classifier .................................................. 94 
 
Figure 3-2: v2/v4 classifier testing: Receiver Operating Characteristic (ROC) and 

Precision Recall (PR) curves for classifier models ..................................... 96 
 
Figure 3-3: Comparison of v2/v4 expressible gene set to previously annotated high 

confidence sets of maize ............................................................................ 97 
 

 

 

 

 

 

 

 

 

 



 xvii 

LIST OF TABLES 

 

Table 1-1: Organelle over-enriched and depleted proteins ............................................. 7 
 

Table 1-2: Top Enriched GO Categories of Organelle Proteins .................................... 22 
 

Table 2-1: Species-specific over- or under-enriched mapman categories..................... 77 
 
 
  



 xviii 

ACKNOWLEDGEMENTS 

 

I would like to acknowledge my advisor Dr. Steven Briggs, for his support and 

guidance. I additionally thank all Briggs lab members with whom I have worked over 

these last six years, especially Dr. Zhouxin Shen, Ann Tong, and Dr. Ryan Sartor. I 

would also like to thank Briggs lab undergraduate volunteers Bonny Pham, Kevin 

Celniker, Riran Kawakami, Serena Zhang, and Martin Galvan for their assistance. 

Lastly, I would like to thank the remainder of my thesis committee: Dr. Yunde Zhao, Dr. 

Eric Bennett, Dr. Alisa Huffaker, Dr. Scott Rifkin, and Dr. Vineet Bafna, for providing 

excellent leadership and scientific advice which has shaped the following work.  

 I would like to acknowledge the Cellular and Molecular Genetics Training Grant, 

and Chancellor’s Research Excellence Scholarship for funding and support.  

Chapter 1, in full, is currently being prepared for submission for publication of the 

material. de Boer, Laura; Shen, Zhouxin; Putarjunan, Aarthi; Paschold, Anja; Dorchak, 

Alexandria; Helzer, Kyle T.; Sartor, Ryan C.; Facette, Michelle; Hochholdinger, Frank; 

Olsen, Laura J.; Rodermel, Steven; Smith, Laurie G.; Briggs, Steven P. “Direct 

Evidence for the Sub-cellular Localization of Proteins Encoded by 3,378 Genes of 

Maize.” In preparation. The dissertation author was the primary investigator and author 

of this material.  

 Chapter 2, in full, is currently being prepared for submission for publication of the 

material. de Boer, Laura; Sartor, Ryan C.; Shen, Zhouxin; Noshay, Jaclyn; Springer, 

Nathan M.; Schmelz, Eric A.; Huffaker, Alisa; Schnable, James; Briggs, Steven P. 

“Discovery of species-specific expressible genes via machine learning with omic data.” 



 xix 

In preparation. The dissertation author was the primary investigator and first author of 

this material. 

Chapter 3, in part, is currently being prepared for submission for publication of 

the material. de Boer, Laura; Sartor, Ryan C.; Shen, Zhouxin; Noshay, Jaclyn; Springer, 

Nathan M.; Schmelz, Eric A.; Huffaker, Alisa; Schnable, James; Briggs, Steven P. 

“Discovery of species-specific expressible genes via machine learning with omic data.” 

In preparation. The dissertation author was the primary investigator and first author of 

this material. 

. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 xx 

VITA 

 

2012   Bachelor of Science, University of Massachusetts, Amherst 

2019   Doctor of Philosophy, University of California San Diego 

 

PUBLICATIONS 

Duan, Q., Kita, D., Johnson, E.A., Aggarwal, M., Gates, L., Wu, H.-M., and Cheung, 

A.Y. (2014). Reactive oxygen species mediate pollen tube rupture to release sperm for 

fertilization in Arabidopsis. Nature Communications 5:3129 

 

Li, C., Yeh, F.-L., Cheung, A.Y., Duan, Q., Kita, D., Liu, M.-C., Maman, J., Luu, E.J., 

Wu, B.W., Gates, L., Jalal, M., Kwong, A., Carpenter, H., Wu, H.M. (2015). 

Glycosylphosphatidylinositol-anchored proteins as chaperones and co-receptors for 

FERONIA receptor kinase signaling in Arabidopsis. ELife 4:e06587 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 xxi 

 

 

 

 

ABSTRACT OF THE DISSERTATION 

 

Subcellular Localization and Prediction of Qualitative Expression of the Proteome of 

Sorghum and Maize 

 

by 

 

Laura de Boer 

 

Doctor of Philosophy in Biology 

 

University of California San Diego, 2019 

 

Professor Steven P. Briggs, Chair 

 

 Study of the regulation and location of the protein products of genes is essential 

for understanding the phenotype of the organism. The quantitative and qualitative 

control of protein production, as well as post-translational modification and subcellular 

localization of the protein, in part determine the effect of a gene on a biological system. 



 xxii 

As it becomes more apparent that complex traits are controlled by effects from many 

loci, it has become more imperative that we seek a proteome-wide understanding of 

protein regulation and localization. The proteomes of four maize subcellular organelles 

were characterized by comparison to their source tissues, defining both organelle-

enriched and depleted protein sets. High confidence localizations to organelle were 

obtained for plasma membranes (2154), mitochondria (1079), glyoxysomes (461), and 

plastids (539). Many cases of localization were novel or revised existing annotations, 

including that of nearly 40% of localized maize classical genes. Many proteins localized 

to multiple compartments, including a large overlap between mitochondrial and 

chloroplast proteins, whereas few proteins were shared between the chloroplast and 

non-mitochondrial organelles. A machine learning approach was used to identify the 

expressible gene sets of sorghum and gene set annotations from versions 2 and 4 of 

the maize genome. These gene sets were identified by a classifier trained using only 

DNA methylation data as model features. Synteny was leveraged to identify species-

specific expressible genes, revealing enrichment of biotic and abiotic stress-associated 

genes in the species-specific pools. Expressible gene sets also provide evidence for 

express-ability of gene models absent from the maize version 2 annotated filtered gene 

set or the maize version 4 annotated gene set.  
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CHAPTER 1 
 

Direct evidence for the sub-cellular locations of proteins encoded by 3,378 genes 
of maize 

 
1.1 Introduction 

Proteins are localized to subcellular compartments that enable them to carry out 

their cellular functions. A full understanding of protein functions and biochemical 

pathways depends on knowledge of their spatial distributions within the cell. While the 

subcellular locations of individual proteins have been determined empirically, high 

throughput methods are needed to assign protein subcellular locations on a proteome-

wide scale. Protein subcellular locations can be predicted by homology-based methods 

or via prediction of transit peptides, but these methods have limitations. While they can 

predict true organelle proteins, some experimentally validated organellar proteins lack 

canonical transport peptides, and membrane proteins often use an alternate import 

mechanism into organelles (Mayerhofer, 2016; Reumann et al., 2009). It can be difficult 

to infer localization based on sequence homology to proteins of distant species, and 

inference can only be as complete as the annotation of the comparator species. Both 

predictive approaches are biased against discovery of novel or species-specific 

organellar proteins. Additionally, computational prediction of all putative organellar 

proteins does not provide information regarding changes in organelle contents in 

specific tissues or stages of development. Information about protein post-translational 

modifications that may affect protein activity, such as phosphorylation, also cannot 

currently be determined via computational prediction. Thus, computational prediction of 

the subcellular localization of plant proteins cannot fully replace experimental 

proteomics, especially in non-Arabidopsis species or for understudied organelles. 
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However, proteomic methods face many challenges, including difficulty purifying intact 

organelles, co-purification of organelles, challenges with identification of membrane 

proteins particularly via gel-based methods, and the presence of highly expressed 

enzymes that obscure detection of lower abundance proteins. 

Experimental proteomics studies have identified proteins from the major 

organelles of Arabidopsis thaliana (see Hooper et al., 2017 for collective resource). 

Fewer studies have been performed in the food crop model organism maize. These 

include investigations of the mitochondria (Dahal et al., 2012; Hochholdinger et al., 

2004; Wang et al., 2018), plasma membrane (Hopff et al., 2013; Voothuluru et al., 

2016a; Zhang et al., 2013), and the chloroplast at various stages of development and 

from different cell types (Friso et al., 2010; Huang et al., 2013; Majeran et al., 2005, 

2008). No proteomics studies have been published on the peroxisome from monocots 

or on any C4-photosynthetic plants. Membrane proteins are underrepresented in 

proteomic studies, particularly when proteins are separated by 2D-gel electrophoresis 

(Tan et al., 2008). Characterization of plant organelles can be significantly improved by 

more comprehensive identification of their membrane protein contents. Recent 

advances in mass spectrometry and protein sample preparation have enabled greater 

depth in proteomic profiling and have enhanced detection of low-solubility membrane 

proteins (Walley et al., 2016).  

Given the essential role of both the peroxisome and mitochondria in 

photorespiration, it is necessary to characterize differences in the peroxisome and 

mitochondrial proteome between C3 and C4 plants to fully understand the C4 

photosynthetic pathway. Glyoxysomes are specialized peroxisomes involved in lipid 
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beta-oxidation; they are found in the cotyledons of germinating seeds. Glyoxysomes 

contain enzymes of the glyoxylate cycle, which bypass decarboxylation steps of the 

citric acid cycle to produce carbohydrates from mobilized lipids. No studies of this sub-

functionalized peroxisome have previously been published from maize. The maize 

plasma membrane is under-characterized despite its key roles in transport and 

response to the environment. Etioplasts are non-pigmented plastids from dark grown 

tissues, which rapidly green in response to light. The maize leaf displays a gradient from 

photosynthetically immature at the leaf base to mature, C4 photosynthetic tissue at the 

leaf tip. The transition from photosynthetically inactive plastids to C4, photosynthetically 

mature chloroplasts is associated with corresponding changes in the chloroplast 

proteome. Further study of these maize organelles will provide a valuable resource for 

plant researchers.  

We present here the proteome of four major maize subcellular organelles: 

plasma membrane, mitochondria, and chloroplast; as well as the only peroxisome 

proteome from a C4 species. Etioplasts from five stages of greening were profiled. 

Intact organelles were isolated from their source tissues by density-based centrifugation 

and total protein was extracted from both the purified organelles and their 

corresponding source tissues. Additionally, phosphopeptides were enriched and 

identified from the plasma membrane protein samples. Extracted peptides were 

subjected to tandem mass spectrometry with label-free quantification. Protein 

abundance was compared between source tissue and purified organelle samples to 

identify proteins enriched in organellar fractions. These include known organelle 

markers as well as novel proteins.  
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1.2 Results 

1.2.1 Isolation and proteomics of organellar proteins 

All organelle and source tissue samples were obtained from Zea mays inbred 

line B73. The maize plasma membrane-enriched fraction was obtained from a five-day 

old whole seedling extract via a dextran-PEG two-phase partitioning system (SI Fig. 1-

6).  Maize mitochondria were isolated from non-pollinated ears. Glyoxysomes were 

isolated from the scutella of seedlings three days after germination. Mitochondria and 

glyoxysomes were purified using density-based centrifugation through a percoll 

gradient. Chloroplasts from one month old eight-leaf stage plants were isolated using 

density-based centrifugation from the bottom, middle, and top of the eighth leaf (SI Fig. 

1-7A-B). Greening etioplasts were isolated from dark grown 14-day old seedlings at 0, 

2, 4, 12, and 24 hours of light exposure (SI Fig. 1-7C). Trypsin-digested protein extracts 

from purified organelles and source tissues were analyzed independently by mass 

spectrometry. Phosphopeptides were enriched from a subset of the plasma membrane 

peptide samples prior to analysis. Mass spectra were searched against the B73 

Ref.Gen. V4 working gene set (Jiao et al., 2017), identifying 15582 unique proteins from 

15033 gene models (Table S1). The proteomes of intact leaf and ear used as source 

tissues for the chloroplast and mitochondria samples were previously published with 

mass spectra searched against B73 Ref.Gen.V2 working gene set (Walley et al., 2016). 

Mass spectra from these ear and leaf samples, were re-searched against Ref.Gen.V4 

along with the organelle, scutella, and germinating seedling samples. We identified 

4095 phosphopeptides from 4035 gene models in the phosphopeptide-enriched plasma 

membrane samples (Table S2).  



 5 

1.2.2 Identification of organelle-enriched and -depleted proteins 

To distinguish organelle-localized proteins from proteins of contaminating 

organelles, we compared the spectral counts observed for a given protein in the 

organelle-enriched sample versus the intact source tissue using the single-tailed 

Fisher’s exact test. The resultant p-values were adjusted using the Benjamini-Hochberg 

correction for multiple comparisons. A p-value cutoff of 0.05 was used to identify 

proteins for which significantly more spectral counts were observed in the organelle 

samples versus the source tissue from which organelles were derived. The converse 

process was repeated to identify proteins depleted from the organelle fraction. 

Additionally, the fold-enrichment of spectral counts observed from the organelle versus 

source tissue was also calculated. A fold-enrichment or fold-depletion threshold of two 

was chosen to further constrain the set of organelle enriched or depleted proteins. The 

plasma membrane was compared to germinating kernel; the glyoxysome was compared 

to the scutellum; and the mitochondria were compared to the immature ear. Chloroplast 

samples derived from the tip, middle, and bottom of the leaf were each compared 

separately to intact mature leaf (SI Fig. 1-7A). The organelle protein enrichment and 

depletion scores are available in Table S3. Volcano plots of enrichment scores showed 

a substantial portion of proteins detected in the organelle samples have significantly 

fewer spectral counts observed in the organellar fraction versus the source tissue (Fig. 

1-1A-B; SI Fig. 1-8A-L). 

1.2.3 Comparison of organellar proteins to gold standard proteins 

One challenge of organelle isolation is the co-enrichment of contaminating 

organelles. Mitochondria, chloroplasts, and peroxisomes are frequently co-isolated. To 
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assess the level of purity of the organelle-enriched protein samples, organellar proteins 

were compared to a manually curated list of maize proteins with previously published 

localizations based on direct observation (Table S4). While many false positive gold 

standards were detected in the organelle fractions, setting thresholds for enrichment 

decreased the false positive rate by many fold (Fig 1-1C). Volcano plots of enrichment 

and depletion p-value versus fold enrichment for all detected proteins across organelles 

show discrimination between false and true positives as fold enrichment increases and 

p-values decrease (Fig. 1-1A-B). This trend is consistent across all organelles (SI Fig. 

1-8A-L). Increasing the fold-change threshold for significance beyond two reduced the 

true positive rate for the chloroplast protein sets, whereas decreasing increases the 

false positive rate of the glyoxysome proteins (SI Fig. 1-9A). The plasma membrane and 

chloroplast true positive rates were sensitive to decrease in the threshold for p-value 

from 0.05 to 0.01, whereas the false positive rates remained similar at both thresholds 

(SI Fig. 1-9B). Given the decrease in organelle protein set size at more stringent p-value 

and fold change thresholds, the threshold for significance of p-value less than 0.05 and 

greater than two-fold enrichment or depletion is optimal (SI Fig. 1-9C-D). We located 

2154, 1079, and 461 proteins to the plasma membrane, mitochondria, and glyoxysome, 

respectively (Table 1-1). Across all chloroplast over-enriched sets, there were 539 

unique proteins. Out of all three chloroplast types, chloroplasts from the leaf bottom had 

to most over-enriched proteins, 381, but had the fewest depleted proteins, 569.  The 

chloroplasts from the leaf top had 301 enriched proteins and the most depleted proteins. 

The chloroplasts from the leaf middle had the fewest enriched proteins. From plasma 

membrane phosphopeptide enriched samples, 4095 unique phosphopeptides were 
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identified, including 524 phosphopeptides from genes encoding plasma membrane 

localized proteins (Tables S2-S3). Among greening etioplast sample proteins, 539 were 

from genes encoding chloroplast localized proteins (Table S1 and Table S3).  

Table 1-1: Organelle over-enriched and depleted proteins: Organelle over-enriched 
and depleted proteins. Number of genes for each observed protein from organelle-
enriched samples compared to their background tissues, p-value < 0.05; greater than 2-
fold enrichment. Chloroplast (All) represents genes from all unique proteins significantly 
enriched or depleted in any of the three chloroplast samples. We detected 524 
phosphopeptides from genes which produced plasma membrane proteins.  

Organelle Enriched Proteins Depleted Proteins 

Plasma Membrane (phospho) 2154 (524) 1224 

Glyoxysome 461 964 

Mitochondria 1079 2219 

Chloroplast (Bottom) 381 569 

Chloroplast (Mid) 265 992 

Chloroplast (Top) 301 1146 

Chloroplast (All) 539 1206 

 

Many known organelle “gold standard” proteins were enriched in the 

corresponding target organelle, including 90% of glyoxysome, 54% of mitochondria, and 

93% of plasma membrane gold standards detected in the organelle or source tissue 

(Fig. 1-1D). Only one gold standard protein from the mitochondria and none from any 

other contaminating organelles were enriched in the chloroplast, whereas 42% of gold 

standard chloroplast proteins were enriched indicating that the chloroplast preparations 

were pure. Less than 9% of detected chloroplast gold standard proteins and only a 

single peroxisome gold standard was enriched in the mitochondria, indicating that these 

organelles were not co-enriched during mitochondrial isolation. Only a single gold 

standard from other possible contaminating organelles was enriched in the 

mitochondrial fraction. Plasma membrane-enriched proteins included low percentages 

of detected gold standard proteins from contaminating organelles, apart from  
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Figure 1-1: Comparison of Organelle Enriched Proteins to Manually Curated Gold 
Standard Proteins. 

 
Figure 1-1: Comparison of Organelle Enriched Proteins to Manually Curated Gold 
Standard Proteins. A-B: volcano plots of proteins detected in combined organelle 
dataset. Fold enrichment represents proportion of normalized spectral counts for each 
protein observed in the organelle sample versus the source tissue. P-values derived 
from one-tailed fishers exact test comparing spectral counts observed in organelle 
versus source tissue for individual protein compare to spectral counts observed for all 
proteins. For proteins with negative fold-enrichment, depletion p-values were used; for 
proteins with positive fold-enrichment, enrichment p-values were used. Points colored 
based on gold standard true or false positives for target organelle. A: All detected 
proteins. B: subset of detected proteins with -log10(p-value) between 0 and 5. C: False 
positive rate of all organelle detected proteins versus all significantly enriched proteins 
for each organelle. False positive rate determined based on comparison to all detected 
(in organelle or source tissue) gold standards. D-E: Heatmap of percent of manually 
curated gold standard marker proteins localized to various organelles enriched (D) or 
depleted (E) in each target organelle fraction. Rows represent organelle fraction, with 
columns representing maize organelle gold standard proteins. Cell color fill represents 
percentage of detected gold standards over-enriched in each organelle. Cell label 
fractions represent number of enriched proteins over number of detected proteins. 
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endomembrane gold standards, for which 50% of detected proteins were enriched. The 

glyoxysome-enriched proteins included 60% of plasma membrane detected gold 

standard proteins. While the percentages of detected gold standard proteins from the 

endomembrane system enriched in the plasma membrane, and from the plasma 

membrane enriched in the glyoxysome, are high, proportionately few gold standards 

from other contaminating organelles were enriched in the target organelles. Few gold 

standard true positives were depleted from the target organelles (Fig. 1-1E). 

1.2.4 Overlap of enriched and depleted proteins across target organelles 

Six proteins were enriched in all four organelles (Fig. 1-2A). Comparatively few 

proteins enriched in the plasma membrane were enriched in the other organelles, with 

82% uniquely enriched in the plasma membrane. The highest number of enriched 

proteins shared between the plasma membrane and another organelle was shared with 

the glyoxysome, representing 11.4% of plasma membrane enriched proteins and 53% 

of glyoxysome enriched proteins. A minority of proteins enriched in the glyoxysome 

were also enriched in the chloroplast or mitochondria. There was a large overlap in 

mitochondria and chloroplast enriched proteins, representing 30% of chloroplast 

proteins and 15% of mitochondrial proteins. Few proteins were shared between the 

chloroplast and other, non-mitochondria organelles. The plasma membrane, 

glyoxysome, mitochondria and chloroplast depleted proteins were 30%, 51%, 9% and 

24% unique, respectively (Fig. 1-2B).  Between leaf bottom, middle, and top-derived 

chloroplast samples, 27% of proteins were over-enriched in chloroplasts from all three 

tissues (Fig. 1-2C). The chloroplasts from the middle leaf shared more enriched proteins 

with the bottom than with the top derived chloroplasts. Few chloroplast depleted  
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Figure 1-2:  Maize proteins with localization in multiple organelles. 

 
Figure 1-2:  Maize proteins with localization in multiple organelles. A. Venn 
diagram showing overlap of significantly over-enriched proteins between organelles. B. 
Venn diagram showing overlap of significantly depleted proteins between organelles. C: 
Venn diagram showing overlap of significantly over-enriched proteins between leaf 
bottom-, middle-, and top-derived chloroplasts. D: Venn diagram showing overlap of 
significantly depleted proteins between leaf bottom-, middle-, and top-derived 
chloroplasts. E: Percent overlap of each organelle combination in this work (yellow), 
maize GAMER GO CC annotations (teal), and previously published organelle 
proteomes (purple). Percent calculated comparing overlap set size to total organelle 
localized protein set size of the first organelle. As there are no previously published 
proteomes from the peroxisome, bars are absent for overlaps containing peroxisome. 
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proteins were unique to the bottom and middle leaf derived chloroplasts, representing 

less than 5% of depleted proteins from each, while over 16% of the leaf top chloroplast 

depleted proteins were unique (Fig. 1-2D). 

1.2.5 Observed overlap between organelle protein sets differs from overlap of 

gene ontology location annotations and previously published organellar proteins 

We compared our protein localization data to published annotations from the 

maize GAMER Gene Ontology (GO) cellular compartment (CC) database 

(Wimalanathan et al., 2018) and to previously published proteomes of the plasma 

membrane (Voothuluru et al., 2016b; Zhang et al., 2013), mitochondria (Dahal et al., 

2012, 2016; Hochholdinger et al., 2004; Wang et al., 2018), and chloroplast (Friso et al., 

2010; Fristedt et al., 2012; Huang et al., 2013; Majeran et al., 2012; Zörb et al., 2009). 

As no maize peroxisome proteomes have been published, the glyoxysome proteins 

were compared only to GO CC annotations. The overlap between mitochondrial and 

chloroplast proteins in this work exceeded the overlap of previously published 

mitochondrial and chloroplast proteins (Fig. 1-2E; SI Fig. 1-10A-B). The observed 

overlap was similar or smaller than was annotated in the GO chloroplast and 

mitochondrial CC (Fig. 1-2E; SI Fig. 1-10C-D). Of the observed overlap between 

mitochondria and chloroplast proteins, 37% were annotated as localized in both target 

organelles (SI Fig. 1-10D). In contrast, the overlap between the glyoxysome and plasma 

membrane proteins observed was larger than the corresponding overlap in GO CC 

annotations (Fig. 1-2E; SI Fig 1-10C). The overlap between genes annotated in GO CC 

was larger than that observed in this work or previous proteomes for the chloroplast and 

plasma membrane, the peroxisome and chloroplast, and the peroxisome and 
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mitochondria (Fig. 1-2E; SI Fig 1-10C). Only the overlap between the mitochondria and 

plasma membrane was higher between previously published proteome than between 

GO CC or this work (Fig. 1-2E; SI Fig. 1-10A).  

1.2.6 Distribution of enrichment scores of GO CC annotated and previously 

published organelle proteins 

Given the significant difference of organelle shared protein sets between this 

work, previously published proteomes, and GO CC annotations, we then looked at the 

distribution of enrichment scores for proteins with previous localization information. In 

the volcano plots, previously published plasma membrane, mitochondria, and 

chloroplast proteins detected in this work are biased towards enrichment versus 

depletion (Fig. 1-3A-C; SI Fig. 1-11A-G). However, many previously published proteins 

are significantly depleted in this work. Compared to the organellar proteins from this 

work, which were defined in part by a fold-enrichment threshold of two, the distribution 

of previously published organellar proteins was biased towards lower fold enrichment 

(Fig. 1-3D). The density curve of previously published mitochondrial proteins showed 

two peaks, one with positive fold enriched and the other with negative fold enrichment. 

We then compared the enrichment scores of proteins annotated in GO CC target 

organelles and contaminating organelles of interest, as determined by proportion of 

false positive gold standards enriched (Fig. 1-3E-H, SI Fig. 1-12). The mitochondria and 

chloroplast, which had few enriched false positive gold standards, but for which many 

proteins are shared, were compared to each other (Fig. 1-3G-H; SI Fig. 1-12). For all 

four organelles of interest, we see a bias towards enrichment for proteins with GO CC 

annotation in the target organelle. For the plasma membrane and mitochondria, proteins  
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Figure 1-3: Distribution of enrichment scores of previously published and GO CC 
annotated organellar proteins 

 
Figure 1-3: Distribution of enrichment scores of previously published and GO CC 
annotated organellar proteins. A-C: Volcano plots of enrichment scores of detected 
proteins from organelle datasets. Color based on localization in previously published 
proteome of plasma membrane (A) mitochondria (B) and chloroplast, compared to leaf 
top (C). D: Density plot showing fold enrichment of normalized spectral counts observed 
in target organelle versus source tissue for organelle enriched proteins and previously 
published organellar proteins. E-H: Volcano plots of enrichment scores of detected 
proteins from target organelle datasets. Color based on GO CC annotation in target 
organelle or contaminating organelle of interest for plasma membrane (E) glyoxysome 
(F) mitochondria (G) and chloroplast derived from the leaf top (H). 
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with GO CC annotation in the contaminating organelle of interest (endomembrane for 

plasma membrane, chloroplast for mitochondria) also show a bias towards enrichment. 

In contrast, plasma membrane GO CC annotated proteins detected in the glyoxysome 

were both enriched and depleted. Mitochondrial GO CC annotated proteins detected in 

the chloroplast were biased towards depletion. 

1.2.7 Comparison of organelle enriched and depleted proteins to previously 

reported localization 

More than 80% of chloroplast localized proteins were annotated as localized in 

the target GO CC (Fig. 1-4A). More than half of plasma membrane and mitochondria 

proteins and just over a quarter of glyoxysome proteins were also annotated as 

localized to the target CC. More proteins were annotated as localized to the plasma 

membrane, mitochondria, and chloroplast than were experimentally observed (Fig. SI 1-

10C). Interestingly, fewer proteins were predicted to be localized to the peroxisome than 

were experimentally enriched in the glyoxysome (317 versus 461). Just over 30% of 

chloroplast and mitochondrial proteins and over 70% of plasma membrane proteins 

were novel compared to previously published subcellular proteomics data (Fig. 1-4B).  

We then compared the GO CC annotation to our experimental observation for all 

genes with detected proteins in the work, as well as for the subset of detected genes 

predicted to produce membrane proteins from the ARAMEMNON database (Schwacke 

et al., 2003). For all detected proteins, 36% had no localization evidence, neither 

experimental nor in GO CC annotations. Among detected proteins with localization 

evidence, over 35% showed revised localization in this work (Fig. 1-4C). A smaller 

percentage of predicted membrane proteins than all detected proteins had novel  
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Figure 1-4: Comparison of localization of enriched or depleted proteins with GO 
CC localization annotation or localization in previous organellar proteomes. 

 
Figure 1-4: Comparison of localization of enriched or depleted proteins with GO 
CC localization annotation or localization in previous organellar proteomes.  A: 
Percent of enriched proteins annotated as localized to the target GO CC. B: Percent of 
enriched proteins which are novel or supported by localization in previously published 
organelle proteome. C: Percent of proteins localized in this work or in GO CC 
annotation out of all detected proteins (purple), ARAMEMNON predicted membrane 
proteins (teal), maizeGDB “named” genes (yellow), and maize classical genes (orange).  
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localization in this work. Maize “named” and maize classical genes are genes which are 

overrepresented in the literature (Schnable and Freeling, 2011). A lower percentage of 

these best studied subsets of all detected genes have no localization information in this 

work or GO CC annotations. Surprisingly, experimental results presented here offer 

evidence of new and revised localization for 42% of maize “named” genes and nearly 

70% of proteins encoded by maize classical genes (Fig. 1-4C). 

1.2.8 Subcellular localization of maize classical genes 

For a more detailed comparison of our subcellular localization of maize classical 

genes to published results, we hand-annotated the subcellular localization of all 

detected maize classical genes, using maizeGDB annotations and experimental 

evidence from the literature (Table S5). Of the 268 maize classical gene-encoded 

proteins identified in our data, 51 had no annotated localization and were not 

significantly over-enriched or depleted in any organelle in this work. 225 were 

significantly over-enriched or depleted from profiled organelles, 120 had localization 

annotation in maizeGDB, and 100 had experimental evidence for localization in the 

literature (SI Fig. 1-13). All three sources provided information about the localization of 

products of 50 classical genes, while 99 classical gene-encoded proteins were localized 

only in this work (Fig. SI Fig. 1-13). Of the detected classical genes with localization 

both in this work and in either maizeGDB or the literature, the annotated localization of 

15 was supported by this work (Fig. 1-5A). For nine proteins, our data indicates 

significant depletion from the annotated organelle. Additionally, 102 proteins show over-

enrichment or depletion in at least one additional organelle beyond the annotation, for a 

total of 111 classical gene proteins with revised localization (Fig. 1-5B).  
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Figure 1-5: Subcellular localization of maize classical gene-encoded proteins. A-
B: Heatmap of enrichment p-values across subcellular organelles for maize classical 
genes. Fill denotes negative log transformed p-value, with outliers fixed at 300. Asterisk 
denotes starch biosynthesis and sugar transport associated genes. A. Maize classical 
genes for which this work provides additional organelle localization annotation beyond 
maizeGDB or literature. B. Subset of maize classical genes without localization 
annotation in the literature or maizeGDB, but with significant enrichment in this work 
and subset of maize classical genes for which localization annotation in maizeGDB or 
literature differs from localization in this work. 
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Figure 1-5: Subcellular localization of maize classical gene-encoded proteins: 
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Classical genes localized in this work included many involved in starch 

biosynthesis, degradation, or sugar transport (Fig 1-5A-B; asterisks)(Walley et al., 2013; 

MaizeCyc). The detected starch biosynthetic enzymes were not enriched in the 

chloroplast fraction, with UGP1, SH1, and PGM2, significantly depleted from the 

chloroplast. PGM2 is additionally significantly depleted from the plasma membrane, 

mitochondria, and glyoxysome. Surprisingly, proteins from several starch biosynthetic 

enzymes were enriched in the plasma membrane fraction: BT1, BT2, DU1, SH1, SH2, 

SU2, SUS1, STP1, and SBE3. SH2, BT1, and BT2 are also enriched in the glyoxysome. 

BT2, SU1, and SBE3 are enriched in the mitochondria.  

1.2.9 Identification of gene-splicing isoform-specific subcellular localization 

Examples of gene isoform-specific localization were identified by comparing the 

enrichment of isoforms across subcellular samples. Gene models from which one 

isoform was significantly over-enriched, while another was significantly under-enriched, 

in an individual organelle (p-value<0.01), were distinguished as genes with evidence of 

isoform specific localization (Table S6). There were five examples of isoform specific 

localization, including protein products from genes on the maize classical or maizeGDB 

curated gene lists, AHH1 (ADENOSYL HOMOCYSTEINE HYDROLASE1), PDK1 

(PYRUVATE ORTHOPHOSPHATE DIKINASE1), and ELFa2 (ELONGATION FACTOR 

ALPHA2). PDK1 had nine detected isoforms, all of which were significantly enriched in 

the plasma membrane and chloroplasts from the leaf middle and top, while depleted 

from the glyoxysome (Table S3). Interestingly, six of the PDK1 isoforms were 

significantly depleted while two isoforms were significantly enriched from the bottom leaf 

derived chloroplasts. The two detected isoforms of AHH1 were both significantly 
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depleted from the glyoxysome, mitochondria, and chloroplast. One isoform of AHH1 

was significantly enriched, while the other was significantly depleted from the plasma 

membrane. Likewise, the two detected isoforms of ELFa2 showed the same localization 

pattern.  The other two examples showed evidence of mitochondrial and plastid isoform-

specific localization respectively.  

1.2.10 Functional enrichment analysis of organelle proteins 

To determine statistical significance for organelle proteins annotated in GO CCs, 

gene ontology enrichment analysis was performed on organelle enriched or depleted 

proteins compared to all detected proteins. For all organelles, the over-enriched protein 

set had highest cellular compartment GO enrichment for the target organelle (Table 1-2; 

Tables S7-S12). All three chloroplast protein sets were under-enriched for proteins from 

contaminating organelles such as the nucleus, cytosol, plasma membrane and 

endomembrane system, among others (Tables S10-S12). The chloroplast bottom 

protein set was also slightly enriched for mitochondrial proteins, but under enriched for 

mitochondrial membrane and peroxisome proteins. There was no significant enrichment 

of mitochondrial and peroxisome proteins from the chloroplast middle nor chloroplast 

top. Interestingly, the chloroplast depleted proteins were over-enriched for 

mitochondrial, chloroplast, peroxisome, plasma membrane, and endomembrane system 

proteins, but under enriched for chloroplast membrane proteins (Tables S18-S20). The 

mitochondria protein set was significantly under-enriched for plasma membrane, 

nuclear, and endomembrane system organelle proteins, but highly enriched for plastid 

proteins (Table S9). While the mitochondrial depleted proteins were over-enriched for 

nuclear, cytosolic, plasma membrane and cell wall proteins, they were also under-
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enriched for plastid parts, plastid membrane, and mitochondrial proteins (Table S17). 

The glyoxysome localized protein set was over-enriched for proteins annotated in 

membranes of multiple organelles, including the vacuole and plasma membrane (Table 

S8). The glyoxysome localized protein set was also over-enriched for chloroplast and 

mitochondrial proteins. The glyoxysome protein set was under-enriched for nuclear or 

cytosolic proteins (Table S8). Glyoxysome depleted proteins were over-enriched for 

plastid, vacuole, nuclear, cytosol and plasma membrane proteins, while being under-

enriched for endosome, endoplasmic reticulum, and plastid and mitochondrial 

membrane proteins (Table S16). The plasma membrane protein set was over-enriched 

for endomembrane system proteins, including the golgi, ER, and vacuole, as well as 

membrane proteins from the mitochondria and chloroplast (Table S7). The plasma 

membrane protein set was under-enriched for nuclear and cytosolic proteins (Table S7). 

Plasma membrane depleted proteins were over-enriched for the other target organelle 

and vacuole proteins, but under-enriched for endomembrane system proteins (Table 

S15). Given the significant overlap between both mitochondrial and chloroplast enriched 

proteins and plasma membrane and glyoxysome enriched proteins, GO cellular 

compartment enrichment analysis was performed on the shared enriched proteins 

compared to the set union of detected proteins in both organelle datasets. The 

chloroplast and mitochondria shared enriched proteins were over-enriched for both 

chloroplast and mitochondrial annotated proteins (Table S13). Additionally, the 

chloroplast and mitochondrial shared proteins were under-enriched for nuclear and 

endomembrane system proteins. The peroxisome and plasma membrane shared 
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proteins were over-enriched for vacuole, plasma membrane, plastid, mitochondrial and 

peroxisome proteins, and under-enriched for cytosolic and nuclear proteins (Table S14).  

Table 1-2: Top Enriched GO Categories of Organelle Proteins: GO cellular 
compartment and biological process categories most highly enriched in organelle 
protein sets.  

Organelle Top GO CC Top GO BP 

Plasma Membrane plasma membrane Transport, signaling 

Glyoxysome Peroxisome transmembrane transport, proton transport 

Mitochondria Mitochondrion 
small molecule metabolic process, generation of 

precursor metabolites and energy 

Chloro (Bottom) plastid part 
plastid organization, organic acid metabolic 

process 

Chloro (Mid) plastid part photosynthesis, plastid organization 

Chloro (Top) plastid part photosynthesis, plastid organization 

 

For GO biological process annotations (Tables S21-S28, “BP”), glyoxysome 

localized proteins were enriched for known glyoxysomal processes, such as the 

glyoxylate cycle, reactive oxygen species metabolism, photorespiration, and lipid 

oxidation (Table S22). Glyoxysomal proteins were also enriched for biotic and abiotic 

stress related processes, including salt, osmotic and water-deprivation stress. 

Interestingly, glyoxysomal proteins were highly enriched for multiple types of membrane 

transport (Table 1-2; Table S22). Mitochondria proteins were significantly over-enriched 

for expected metabolic processes and photorespiration (Table S23). Mitochondrial 

proteins were also over-enriched for inosine monophosphate (IMP) metabolism, and 

biosynthesis of poly-unsaturated fatty acids; both metabolic pathways with ambiguous 

or unknown subcellular localization. Enriched biological processes among plasma 

membrane proteins include expected categories such as response to stimulus, 
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signaling, and transport (Table S21). Additional enriched plasma membrane categories, 

however, included regulation of cell size and cell developmental growth. Plasma 

membrane enriched development-associated GO subcategories included root 

morphogenesis, root epidermal cell differentiation and trichoblast differentiation 

(GO:0010015, GO:0010053, GO:0010054, respectively).  

The most enriched GO BP categories were shared across all three chloroplast 

samples: photosynthesis, plastid organization, glyceraldehyde-3-phosphate metabolic 

process, and isoprenoid metabolism, in addition to many others (Tables S24-S26). To 

investigate the differences between photosynthetically mature, leaf tip-derived 

chloroplasts and photosynthetically immature leaf-base chloroplasts, functional 

enrichment analysis was also performed on chloroplast enriched proteins which are 

unique to either chloroplast sample (Tables S27-S28). Few of the most enriched GO BP 

categories were shared between groups of unique proteins, indicating that not only the 

identities, but also the biological roles of these proteins are unique.  

Enrichment of GO biological process categories was performed on protein sets 

localized in two organelles (Fig 2A; Tables S29-S30). Proteins enriched in both the 

plasma membrane and glyoxysome were highly enriched for multiple transport-

associated GO categories, as well as nucleoside phosphate metabolism, ATP 

synthesis, and response to multiple stresses (Table S30). More than 58% of plasma 

membrane and glyoxysome dual localized proteins were annotated as being involved in 

response to stress, with over-enrichment for response to salt and osmotic stress (Table 

S30). Chloroplast and mitochondria dual localized proteins were over-enriched for a 

wide variety of small molecule metabolic processes and chloroplast protein import and 
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membrane transport associated GO categories (Table S29). Interestingly, plant ovule 

development was enriched among chloroplast and mitochondrial dual localized proteins, 

along with response to salt, osmotic, and oxidative stresses.  

1.3 Discussion 

The total number of enriched proteins for the plasma membrane, glyoxysome, 

and mitochondria was consistent with predicted organelle proteome sizes, as the 

peroxisome proteome is predicted to contain several hundred proteins, whereas the 

plasma membrane, mitochondria, and chloroplast are each predicted to have thousands 

of proteins (Emanuelsson et al., 2000). Fewer chloroplast proteins were localized than 

were predicted, annotated in GO CC, or detected in previous proteomes (Friso et al., 

2010; Fristedt et al., 2012; Huang et al., 2013; Majeran et al., 2012; Zörb et al., 2009). 

Additionally, the percentage of gold standard true positives enriched in the chloroplast 

was lower than other target organelles. However, the chloroplast enriched proteins 

showed few enriched gold standard false positives, indicating the that chloroplast 

samples were relatively free of contaminating organelles. Thus the chloroplast protein 

set shows high specificity but at the cost of lower sensitivity. Relaxing the fold 

enrichment or p-value threshold for chloroplast localization did not substantially increase 

the true positive rate for the Comparison to gold standard false positives indicated low 

cross-contamination between the mitochondria, chloroplast, and glyoxysome samples, 

which are commonly co-purified. Individual gold standard proteins detected in 

subcellular fractions other than the target organelle may represent single protein 

contaminants, or bona fide dual-localized proteins.  
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In this work, the organelle proteins sets were defined with the threshold for 

enrichment of two-fold. In contrast, detected proteins from previously published 

mitochondria, chloroplast, and plasma membrane proteomes had overall lower fold 

enrichment, including proteins with fewer spectral counts observed in the organelle than 

the source tissue (Fig. 1-3A-D). The distribution of proteins in the volcano plot, where 

many proteins detected in the organelle have negative fold enrichment, indicates that 

detection of a protein within an organelle enriched subcellular fraction is not adequate to 

discriminate organelle proteins from contaminants. This was true even for the purest 

organelle based on comparison to gold standards, the chloroplast. As the sensitivity of 

proteomics methods increases, the detection of low abundance proteins in individual 

samples will also increase. To distinguish between low abundance contaminants and 

low abundance true organelle proteins requires a statistical measure of enrichment. 

False positive gold standards were detected in the organelle fraction of each organelle 

(Fig. 1-1A-B; SI Fig 1-8). Many of these false positives are excluded by comparison to 

the source tissue. Fold-enrichment alone does not reflect reproducibility nor variability, 

while proteins with low fold-enrichment may still receive a significant p-value. Filtering 

the organelle protein sets based on both p-value and fold enrichment gave the lowest 

false positive rate. Only one of the previously published maize subcellular proteomes 

compared in this work used comparison to a source tissue to filter the organelle protein 

set, using a fold-enrichment threshold only (Huang et al., 2013).  

Although we cannot exclude the possibility of organelle cross-contamination, 

given the low percentage of contaminating gold standard proteins enriched in 

chloroplast and mitochondrial organelle protein sets, proteins present in both organelles 
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may represent dual-localized proteins. Functional enrichment analysis among 

chloroplast and mitochondrial dual localized proteins did not show a strong bias towards 

single organelle specific processes. The prevalence of salt, osmotic, and oxidative 

stress associated genes among dual localized mitochondrial and chloroplast proteins 

suggests complex multi-organelle involvement in these pathways. The observed overlap 

between chloroplast and mitochondrial proteins was larger than the overlap of 

previously published chloroplast and mitochondrial proteins. Similarly, the overlap 

between plasma membrane and glyoxysome enriched proteins was much larger than 

the overlap between GO CC annotated plasma membrane and peroxisome proteins 

(Fig. 1-2C). However the observed overlap between the plasma membrane and 

chloroplast proteins, and between peroxisome and chloroplast proteins was smaller 

than in the GO CC annotation (Fig. 1-2C). As each organelle was isolated from a 

different source tissue, some proteins enriched in more than one organelle may have 

tissue-specific or condition-specific subcellular localization, and thus may not exist in 

both organelles within the same cell.    

Comparison to a source tissue also allows for definition of an organelle depleted 

set. Few chloroplast depleted proteins were unique from the bottom and middle leaf, 

while a much higher percentage were unique from the leaf top derived chloroplasts. 

Additionally, more leaf middle depleted proteins were shared between the leaf top than 

with the leaf bottom. Organelle-specific variation in number of unique depleted proteins 

could be related to variation in the number or complexity of contaminating organelles. 

Scores for both enrichment and depletion from a given organelle enabled identification 

of five examples of protein isoform specific subcellular localization. Isoforms of PDK1 



 27 

are have differential splicing and transcript initiation sites, resulting in both cytosolic and 

plastid localized proteins (Sheen, 1991). Nine protein isoforms of PDK1 were detected, 

with isoform specific enrichment and depletion from leaf bottom-derived chloroplasts. 

The subcellular localization of the other isoform-specific localized proteins was 

previously unknown.  

Comparison to previously published subcellular proteomes and to GO CC 

annotations showed both supported and novel subcellular localization of proteins 

detected in this work (Fig. 1-4). Interestingly, the proportion of proteins with novel 

localization compared to GO CC annotations increased when looking at the best studied 

subset of maize genes: the classical genes (Fig. 1-4C). Comparison to manually 

annotated subcellular localization of maize classical genes identified many classical 

genes with additional or revised localization in this work. While starch biosynthesis from 

sucrose is thought to occur in both the cytosol and plastid (Walley et al., 2013), several 

starch biosynthetic enzymes were enriched in multiple organelles. The role of the 

peroxisome in starch biosynthesis is not fully understood, but several starch 

biosynthetic enzymes were over-enriched in the glyoxysome. These results suggest 

broad participation of the profiled subcellular organelles in starch biosynthesis. PGM2 is 

significantly depleted from all target organelles, consistent with the annotated cytosolic 

localization. 

Due to difficulties with purification and detection of insoluble proteins, organelle 

membrane proteins are less studied than their soluble counterparts. Computational 

prediction of organelle membrane proteins is also challenging, for example while 

transport of many proteins to the peroxisome matrix involves recognition of PTS1 or 
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PTS2-type peroxisomal transit peptides, peroxisomal membrane proteins require an 

alternative import mechanism (Mayerhofer, 2016). Transport associated GO BP 

categories were enriched in all organelle protein sets, suggesting success of enrichment 

for and detection of organelle membrane proteins. Greater than 10% of each organelle 

protein set was in the ARAMEMNON database of predicted maize membrane proteins 

(SI Fig. 1-14). A similar percentage of glyoxysomal proteins were predicted to be 

membrane proteins in the ARAMEMNON database, compared to plasma membrane 

proteins (SI Fig. 1-14). However, high overlap between the plasma membrane and 

glyoxysome proteins, as well as the presence of plasma membrane gold standard 

proteins in the glyoxysome enriched protein set, revealed possible contamination of the 

glyoxysome with plasma membrane proteins. The plasma membrane and glyoxysome 

were both isolated from seedling tissues at similar stages of development. These similar 

source tissues could have similar potential contaminants during the glyoxysome and 

plasma membrane isolation. It is unknown what percentage of shared glyoxysome and 

plasma membrane proteins represent true dual-localized proteins, contamination 

between the two organelles, or shared contaminants from another organelle.  

We present here evidence for the subcellular localization of proteins from 3,378 

maize genes, including proteins localized to the plasma membrane, glyoxysome, 

mitochondria, and chloroplast. Organelle localized proteins include both novel and 

supported localization, in comparison to both gene ontology and previously published 

work. Revised and additional localization information is provided for over a hundred 

maize classical genes. Enrichment and depletion scores for all detected proteins from 
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the newest reference genome of maize across each organelle are provided as a unique 

resource for the maize community. 

1.4  Materials and Methods 

1.4.1 Plasma Membrane Isolation 

For plasma membrane isolation, B73 seeds were sterilized in 100% bleach and 

0.01% Triton X 100. Seeds were vacuum infiltrated for 5 minutes, incubated for an 

additional 30 minutes with shaking, then washed 5X with sterile water.  The seeds were 

placed in pyrex dishes lined with a layer of moistened Gel Blot Paper 

(GB003,Whatman) and a layer of wet germination paper (Anchor Paper, GP1015), and 

covered with another layer of wet germination paper.  The dishes were wrapped in 

aluminum foil and placed in the dark chamber at 25 °C for 5 days. At harvest, seedlings 

had coleoptiles 1-3 cm long, primary roots of 3-8 cm, and most seeds had crown roots 

1-3 cm long. 

Two-phase partitioning was adapted from Marmagne et al., 2006 (SI Fig. 1-6). 

Two-phase partitioning systems were prepared, mixed well, and allowed to equilibrate 

overnight. Systems contained 6.3% dextran, 6.3% PEG 3350, 300 mM Sucrose, 5 mM 

Potassium Phosphate buffer pH 7.8, 4 mM KCl, 1 mM DTT and 50 µM EDTA. 140 g of 

germinated seedlings (including seeds) and 200 ml of ice cold buffer H (100mM Hepes-

KOH pH 7.5, 0.2% N-Z amine B, 300mM sucrose, 10% (w/v) glycerol, 5mM EDTA free 

acid, 15mM EGTA, 0.6% PVP K-25, 5 mM Ascorbic Acid [Fisher Scientific]) 

supplemented with freshly added 1mM DTT, a protease inhibitor cocktail (20mM NaF 
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(Fisher), 0.5% Protease Inhibitor Cocktail (Sigma), 1 mM PMSF(EMD), 10 µM leupeptin 

(EMD)) and a phosphatase/HDAC inhibitor cocktail (5 mM β-glycerophosphate 

(CalBiochem), 1 nM calyculin A (Cell Signaling Technology), 1 µM Trichostatin A 

(Sigma) and 10 mM Nicotinomide (Sigma)) were homogenized in a Blender (Waring) in 

two pulses of 5 sec and 5 pulses of 10 sec. The homogenate was filtered through 

Miracloth (Millipore) and then centrifuged at 10 000xg for 10 minutes.  The pellet was 

discarded. The resulting supernatant is the whole seedling extract. The remaining 

supernatant was filtered through a 250 micron polypropylene mesh (Small Parts, Inc.) 

and centrifuged at 100 000xg in a Ti60 rotor (Beckman). The supernatant was kept as 

the soluble fraction. The pellet (microsomal fraction) was thoroughly resuspended in 

buffer R (5 mM Potassium Phosphate buffer, pH 7.8, 300 mM sucrose, 0.1 mM EDTA, 4 

mM KCl, 5 mM Ascorbic Acid – all chemicals from Fisher) with DTT, protease and 

inhibitor cocktails as above using a homogenizer (Omni TH).   Two-phase portioning 

was performed using the two-phase partitioning systems as outlined in Figure S1. After 

phase separation, the upper phase (PM) was diluted ~4X and the lower phase 

(endomembranes) was diluted ~6X in buffer R (containing DTT and phosphatase/HDAC 

inhibitors but not protease inhibitors) and pelleted in a Ti60 rotor at 200 000xg for 60 

min. The pellets were snap frozen in liquid nitrogen and stored at -80°C. Within one 

week, the pellets were thawed on ice, resuspended in ~2 ml (plasma membranes) or 

~10 ml (endomembranes) ice cold buffer R with phosphatase inhibitors, and pelleted at 

100 000xg in a SW50.1 rotor (Beckman) for 45 minutes. The resulting pellets were snap 

frozen in liquid nitrogen and stored at -80 °C. 
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1.4.2 Intact Glyoxysome Isolation 

Maize (Zea mays, B73 hybrid line) kernels were sown onto moist vermiculite and 

incubated at 25°C for 3 days in the dark.  The seedlings were rinsed in water and the 

scutellum tissue was excised using a razor blade.  The tissue was then finely minced 

and ground with an ice-cold mortar and pestle in 3 mL/g tissue grinding buffer (400mM 

sucrose; 170mM tricine; 2mM EDTA; 0.1mM BSA; 10mM KCl; 1mM MgCl2; 5mM DTT; 

100µM PMSF; 31 µg/mL benzamidine; 26 µg/mL ε-aminocaproic acid; pH 7.5).  The 

homogenate was filtered through miracloth and the filtrate was collected in an ice-cold 

tube.  The crude extract was centrifuged at 480xg (2000 rpm, SS34 rotor) for 10 min at 

4°C and the supernatant was transferred to a fresh tube and then centrifuged at 

10800xg (9500 rpm, SS34 rotor) for 10 min at 4 °C.  The supernatant was decanted and 

the pellet was resuspended in 2 mL 36% sucrose.  The resuspension was then loaded 

onto a sucrose gradient (1.0 mL 85% sucrose; 1.0 mL 60% sucrose; 0.5 mL 55.2% 

sucrose; 0.5 mL 50.5% sucrose; 2.0 mL 48.5% sucrose; 1.0 mL 46.0% sucrose; 1.0 mL 

43.7% sucrose; 1.0 mL 41.2% sucrose) and centrifuged for 40 min at 25000 rpm (WX80 

ultracentrifuge).  Eleven fractions from the top (F1) to the bottom (F11) of the sucrose 

gradient were collected.  Protease inhibitors were added to each fraction (1mM PMSF; 

1 µg/ml pepstatin A; 310 µg/ml benzamidine; 260 µg/ml ε-animocaproic acid; 1 µg/ml 

aprotinin; 1 µg/ml leupeptin).  The samples were subjected to SDS-PAGE, 

electroblotted onto PVDF membranes and probed with separate antibodies raised 

against catalase and porin (SI Fig. 1-15).  For maximum purity and yield, fraction 8 (F8) 

was routinely harvested as the glyoxysome fraction to be used for proteomics analysis. 
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A total of six glyoxysome isolations were performed and five samples were sent for 

further proteomic analysis.  

To determine the relative purity of the six glyoxysome preparations, each sample 

was first assayed for protein concentration using the BCA™ Protein Assay Kit (Thermo 

Scientific).  Then an equal amount (60 µg) of glyoxysomal proteins was concentrated 

using methanol/chloroform precipitation, resuspended in SDS-PAGE sample buffer, 

separated by SDS-PAGE, and transferred onto PVDF membranes. The blots were 

probed with antibodies raised against catalase (for presence of glyoxysomal proteins) 

and porin (for presence of mitochondrial proteins).  Exposure times of 1 and 30 minutes 

were used to allow comparisons between the relative abundance of catalase and porin. 

The preparations were ranked from 1 to 5 with 1 being the most pure and 5 being the 

least (SI Fig. 1-16). The samples ranked 1-3 and 5 were sent for further proteomic 

analysis. 

1.4.3 Intact Mitochondria Isolation 

Mitochondria were isolated as described previously (Hochholdinger et al., 2004). 

In brief, for mitochondrial isolation, 100 g unpollinated maize B73 ears were 

homogenized in buffer A (30 mM MOPS, 1 mM EDTA, 400 mM sucrose, 4 mM cysteine; 

pH 7.5). Vlieseline filtered extract was spun at 3500 rpm for 10 min, the supernatant 

was then spun again at 8500 rpm for 20 min. The subsequent pellet was resuspended 

in 10 ml buffer B (400 mM sucrose, 30 mM MOPS pH 7.5) and spun again for 15 min at 

9000 rpm. The crude mitochondria pellet was resuspended in 2 ml of buffer C (300 mM 

mannitol, 30 mM MOPS pH 7.5) and layered on top of a 13.5%:21%:45% percoll 
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gradient in 1 mM sucrose and 10 mM MOPS pH 7.5. Mitochondria were spun through 

the percoll gradient at 7200 rpm for 30 min and the mitochondria were collected from 

the 21%:45% percoll interphase. Mitochondria were washed with buffer (300 mM 

mannitol, 1 mM EDTA, 30 mM MOPS pH 7.2) and collected by spinning at full speed for 

15 min.  

1.4.4 Intact Chloroplast Isolation 

For maize chloroplast isolation, B73 seedlings were grown in soil in a 

greenhouse (with an average daytime temperature of 28 °C and an average nighttime 

temperature of 16 °C) with a 16-hr-light (supplemented to 500 µmol m-2 sec-1) and 8-

hr-dark cycle. Etiolated seedlings were grown in the dark for 14 days at 28 °C. After 

removal from the dark, the etiolated seedlings were placed in the green house under 

continuous light for 2, 4, 12 and 24 hours before isolation of etioplast samples at various 

time points.  

For chloroplast isolation from 1-month-old plants, plants were grown in a 

greenhouse to the 8-leaf stage (1 month). The partially emerged eighth leaf was 

dissected from the plant into top, middle and bottom sections (SI Fig. 1-7A)(Cahoon et 

al., 2008). The leaf tissue (~25g) from the 3 sections was homogenized in 1x Grinding 

Buffer (0.33 M sorbitol, 50 mm HEPES (pH 8.0), 2mM EDTA, 1mM MgCl2, 1mM MnCl2, 

5mM sodium ascorbate and 1% BSA). The homogenate was filtered through two layers 

of Miracloth (Calbiochem, La Jolla, CA), and the filtrate was centrifuged at 4000 rpm for 

8 min. The pellet was resuspended in 5 ml of 1x Grinding buffer and was loaded onto a 

continuous percoll gradient. The gradient was centrifuged at 6000 rpm for 15 min using 
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a swinging bucket rotor. Intact chloroplasts sink to the bottom of the gradient and the 

broken cell debris can be found on top. The bottom band containing intact chloroplasts 

was washed twice in 15 ml of re-suspension buffer (0.33 M sorbitol, 50 mM HEPES (pH 

8.0)), and finally resuspended in 1 ml of re-suspension buffer, following which the 

samples were flash frozen in liquid nitrogen for further analysis. For etioplast samples, 

14-day-old etiolated maize seedlings were harvested at 0, 2, 4, 12, and 24 hours after 

exposure to light. The etioplasts were isolated using the same procedure used for intact 

chloroplast isolation. 

1.4.5 Proteomics of subcellular organelle enriched fractions 

Proteins were extracted from source tissue and glyoxysome, mitochondria, and 

chloroplast fractions, trypsin digested, and prepared for mass spectrometry as 

described previously (Walley et al., 2013). Plasma membrane mass spectrometry 

samples underwent alternative sample preparation (Supplemental materials and 

methods). In brief, plasma membrane proteins were extracted in 8M urea/tris buffer and 

trypsin digested. Plasma membrane phosphopeptides were enriched as described 

previously (Walley et al., 2013). Plasma membrane mass spectra were acquired using 

Q-exactive HF mass spectrometer. All mass spectra were searched against B73 

RefGen_v4 Working Gene Set. Global peptide false discovery rate compared to 

forward:reverse decoy database was constrained at 0.1% and the protein FDR 

constrained at 1%. Proteomes of mature leaf and ear used as source tissue for 

chloroplast and mitochondria samples are previously published, with mass spectra 

searched against working gene set from B73 RefGen_V2 (Walley et al., 2016) 
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1.4.6 Identification of subcellular localized proteins 

The proteins identified in each organelle were analyzed separately against the 

proteins from the source tissue of the organelle prep. The proportion of raw spectral 

counts from each unique protein group (Walley et al., 2013) was compared between 

source and organelle samples using one-tailed Fishers Exact Test to identify over-

enriched proteins. The converse process was then applied, using the opposite tail, to 

identify under-enriched proteins. The resultant p-values were adjusted for multiple 

comparisons using Benjamini-Hochberg p-value adjustment using the base R functions 

fisher.test() and p.adjust(). The fold difference of protein normalized spectral counts of 

the organelle enriched fraction versus source tissue was also calculated. The thresholds 

for organelle enrichment and depletion were >2 fold difference in spectral counts 

between organelle and source tissue with fishers exact test p-value of less than 0.05. 

1.4.7 Gene ontology categorical enrichment analysis of organelle over-enriched 

proteins 

GO enrichment analysis of organelle over-enriched (p-value<0.05) proteins was 

executed using previously published annotation of GO “cellular compartment”, 

“biological process”, and “molecular function” categories for maize genes from the 

maize GAMER database (Wimalanathan et al., 2018). Terms for the GO annotations 

were accessed using the GO.db R package (Carlson, 2017). Enrichment analysis was 

performed using a custom R Script, as described previously, with basic modifications to 

utilize GO annotations instead of MapMan annotations (Walley et al., 2016). In brief, 

each list of organelle-enriched proteins was compared to each GO category present in 

the dataset. A hypergeometric test using phyper() function from the stats package was 
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implemented, comparing number of organelle localized proteins annotated in the GO 

category to all detected proteins annotated in the GO category. The resultant p-values 

for each category were adjusted using the Benjamini & Hochberg correction. 

1.4.8 Additional data analysis 

Venn diagrams were created using Vennerable R Package (Swinton, 2009). 

Other plots were created using R Packages reshape2 and ggplot2 unless otherwise 

mentioned (Wickham, 2007, 2009). For comparison to previously published proteomes 

which used NCBI genbank “gi” accessions, organelle protein amino acid sequences 

were retrieved from the NCBI website and used as queries for a local blast search 

against maize Ref.Gen.v4 accessions. Heatmap of subset of previously published 

maize classical genes (Schnable and Freeling, 2011) was created using R package 

ggplot2. Enrichment p-values were negative log transformed. Outlier log-transformed p-

values of greater than 300 were fixed at a value of 300.  
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1.7 Supplemental Information 

Figure 1-6: 

 

Figure 1-6: Purification schema for two phase partitioning of plasma membranes 
and endomembranes. Four systems were initially prepared. Prior to the first spin, the 
dextran layer (D) is on the bottom, with PEG layered (P) on top. The microsomal extract 
is applied to system 1 and Buffer R is applied to systems 2, 3, and 4. The systems are 
mixed thoroughly by shaking and spun at 2500 RPM in a JS4.3 rotor with no brake at 4 
degrees celcius for 5 minutes. This results in a top PEG phase containing enriched 
plasma membranes and a bottom dextran layer containing enriched endomembranes. 
The top and bottom layers are exchanged as outlined, and then finally all peg layers 
and dextran layers are pooled for subsequent dilution and ultracentrifugation as outlined 
in the materials and methods. See materials and methods for buffer composition. 
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Figure 1-7: Chloroplast and Etioplast isolation 
 

 
 
Figure 1-7: Chloroplast and Etioplast isolation. A: Chloroplast isolation via density-
based centrifugation through percoll gradient. Chloroplasts were isolated from leaf eight 
of eight-leaf-stage plants. Leaf eight was divided into three zones as shown (top, 
middle, and bottom) and chloroplasts were isolated from each zone. B: Chloroplast 
isolation percoll gradients from leaf zones depicted in S2A showing layer of intact 
chloroplasts. C: Etioplast isolation percoll gradients from etioplasts at five stages of 
greening, from five durations of light exposure: 0 hr, 2 hr, 4 hr, 12 hr, and 24 hr. Bottom 
panel shows etiolated seedlings after each stage of light exposure. 
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Figure 1-8: Volcano plots of enrichment scores of proteins detected in organelle 
datasets: Volcano plots of proteins detected in combined organelle dataset. Fold 
enrichment represents proportion of normalized spectral counts for each protein 
observed in the organelle sample versus the source tissue. P-values derived from one-
tailed fishers exact test comparing spectral counts observed in organelle versus source 
tissue for individual protein compare to spectral counts observed for all proteins. For 
proteins with negative fold-enrichment, depletion p-values were used; for proteins with 
positive fold-enrichment, enrichment p-values were used. Points colored based on gold 
standard true or false positives for target organelle. A-F: Volcano plots of all detected 
proteins in the organelle datasets from the plasma membrane (A), glyoxysome (B), 
mitochondria (C), and chloroplasts from leaf bottom (D), leaf middle (E), and leaf top 
(F). G-L: Volcano plots of detected proteins from organelle datasets with log-
transformed p-values between 0 and 5 from the plasma membrane (G), glyoxysome 
(H), mitochondria (I), and chloroplasts from leaf bottom (J), leaf middle (K), and leaf top 
(L). 
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Figure 1-8: Volcano plots of enrichment scores of proteins detected in organelle 
datasets 
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Figure 1-9: Organelle set size and true and false positive rates across fold-
enrichment and p-value thresholds 

 

Figure 1-9: Organelle set size and true and false positive rates across fold-
enrichment and p-value thresholds. A: True and false positive rates of organelle 
protein sets in comparison to gold standards across p-value thresholds. B: Organelle 
protein set size across p-value thresholds. C: True and false positive rates of organelle 
protein sets in comparison to gold standards across fold enrichment thresholds. D: 
Organelle protein set size across fold enrichment thresholds. 
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Figure 1-10: Overlap of GO CC annotated and previous organelle proteome 
protein sets 

 

Figure 1-10: Overlap of GO CC annotated and previous organelle proteome 
protein sets. A: Venn diagram of overlap between previously published organelle 
protein sets. B: Venn diagram overlap between previously published mitochondrial and 
chloroplast protein sets and chloroplast and mitochondria enriched protein sets from this 
work. C: Venn diagram of overlap of GO CC annotated protein sets. D: Venn diagram of 
overlap of GO CC annotated mitochondria and chloroplast proteins and chloroplast and 
mitochondria enriched protein sets from this work. 
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Figure 1-11: Volcano plots of enrichment scores of previously published 
organelle proteome proteins. Volcano plots of proteins detected in combined 
organelle dataset. Fold enrichment represents proportion of normalized spectral counts 
for each protein observed in the organelle sample versus the source tissue. P-values 
derived from one-tailed fishers exact test comparing spectral counts observed in 
organelle versus source tissue for individual protein compare to spectral counts 
observed for all proteins. For proteins with negative fold-enrichment, depletion p-values 
were used; for proteins with positive fold-enrichment, enrichment p-values were used. 
Points colored based on presence or absence from previously published proteome. A-
B: Volcano plots of all detected proteins in the organelle datasets from chloroplasts 
from the leaf bottom (A), and leaf top (B). C-G: Volcano plots of detected proteins with 
log-transformed p-values between 0 and 5 from the plasma membrane (C), 
mitochondria (D), and chloroplasts derived from the leaf bottom (E), leaf middle (F), and 
leaf top (G).  



 47 

Figure 1-11: Volcano plots of enrichment scores of previously published 
organelle proteome proteins 
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Figure 1-12: Volcano plots of enrichment scores of proteins annotated in GO CC 
target and contaminating organelle. Volcano plots of proteins detected in combined 
organelle dataset. Fold enrichment represents proportion of normalized spectral counts 
for each protein observed in the organelle sample versus the source tissue. P-values 
derived from one-tailed fishers exact test comparing spectral counts observed in 
organelle versus source tissue for individual protein compare to spectral counts 
observed for all proteins. For proteins with negative fold-enrichment, depletion p-values 
were used; for proteins with positive fold-enrichment, enrichment p-values were used. 
Points colored based annotation in GO CC compartments. A-B: Volcano plots of all 
detected proteins in the organelle datasets from chloroplasts from the leaf bottom (A), 
and leaf top (B). C-H: Volcano plots of detected proteins with log-transformed p-values 
between 0 and 5 from the plasma membrane (C), glyoxysome (D), mitochondria (E), 
and chloroplasts derived from the leaf bottom (F), leaf middle (G), and leaf top (E).  
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Figure 1-12: Volcano plots of enrichment scores of proteins annotated in GO CC 
target and contaminating organelle  
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Figure 1-13: Localization of classical genes in this work, maizeGDB annotations, 
or literature 

 

Figure 1-13: Localization of classical genes in this work, maizeGDB annotations, 
or literature. Venn diagram showing overlap of detected classical genes with 
localization information from this work, maizeGDB annotations, or the literature. 
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Figure 1-14: Percent of organelle enriched proteins in ARAMEMNON database of 
predicted membrane proteins 

 
Figure 1-14: Percent of organelle enriched proteins in ARAMEMNON database of 
predicted membrane proteins. 
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Figure 1-15: Immunoblot detection of Catalase and Porin in glyoxysome isolation 
step samples 

 

Figure 1-15: Immunoblot detection of Catalase and Porin in glyoxysome isolation 
step samples. Immunoblot detection of Catalase and Porin distribution in isolation step 
samples and samples from fractions of the sucrose gradient collected during a 
representative B73 maize glyoxysome preparation. BCA protein determinations using 
Bovine Serum Albumin as a standard were performed to facilitate methanol/chloroform 
precipitations of equal amounts of total protein from samples of crude extract (CE), 
supernatants 1 and 2 (S1 and S2, respectively) and pellets 1 and 2 (P1 and P2, 
respectively), taken during the glyoxysome isolation protocol, as well as fractions 1-11 
(F1-F11) collected from the top (F1) to the bottom (F11) of the sucrose gradient. 
Precipitated proteins (25 µg per lane) were resuspended in sample buffer, separated on 
acrylamide gels,and electroblotted onto PVDF. Anti-Catalase immunoblotting confirmed 
the presence of glyoxysomes in the second pellet (P2) and between fractions 5-9 of the 
sucrose gradient. The sucrose concentration of equivalent fractions collected from a 
blank, balance gradient were determined by refractometer and are noted above. Anti-
Porin immunoblotting verified that mitochondria co-purify with glyoxysomes in the 
second pellet and were distributed among fractions 1-7 of the sucrose gradient. 
Pumpkin glyoxysomes (P Glyox) served as a positive control for both immunoblots. 
Exposure times of 30s and 10 min were used to demonstrate the relative abundance of 
Catalase as compared to Porin in the glyoxysome-enriched fractions. To maximize 
purity and yield, fraction 8 was routinely harvested as the glyoxysome fraction. 
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Figure 1-16: Purity analysis of B73 maize glyoxysome preparations 

 
Figure 1-16:   Purity analysis of B73 maize glyoxysome preparations. Glyoxysome 
proteins (24 µg per lane for immunoblots, 5 µg per lane for silver staining) were 
concentrated by methanol/chloroform precipitation, resuspended in sample buffer, and 
separated on acrylamide gels. Anti-Catalase immunoblotting (A) and silver staining 
verified the total amount of loaded proteins and confirmed the presence of 
glyoxysomes. Anti-Porin immunoblotting (A) and silver staining (B) were used to 
determine the relative amounts of mitochondrial Porin and P-protein, respectively. 
Exposure times of 1 and 30 minutes were used to demonstrate the relative abundance 
of Catalase as compared to Porin. Using the relative amounts of Porin, the preparations 
were ranked from 1-5 (C), with 1 being the most pure and 5 the least. Pumpkin 
glyoxysomes (P Glyox) and crude extract of B73 maize (B73 CE) served as positive 
controls for Catalase and Porin immunoblots and the presence of the 105 kD 
mitochondrial P-protein. 
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1.7.1 Supplemental Figure Legends 

Table S1: Nonmodified proteomes of organelles and source tissues. Abundance 
values are spectral counts.  

Table S2: Phosphopeptides from plasma membrane enriched samples. 
Abundance values are spectral counts 

Table S3: Over-enrichment and depletion scores for detected proteins across 
target organelles. P-values and fold enrichment for protein over-enrichment and 
depletion in organelle fraction. P-values calculated using one-tailed fisher’s exact test 
comparing protein spectral counts in organelle fraction versus intact organelle source 
tissue. Fold enrichment calculated as proportion of normalized spectral counts from 
organelle to source tissue. 

Table S4: Gold standard organelle proteins with experimental evidence of 
localization in the literature. List of “gold standard” proteins with high confidence 
localization annotation in various organelles. 

Table S5: Localization of detected maize classical genes. Subset of maize classical 
genes detected in this work with localization annotation from the literature and/or 
maizeGDB, if applicable. 

Table S6: Protein isoform specific localization. Subset of Table S3 showing 
examples of isoform specific localization. 

Table S7-S14: Gene ontology Cellular Compartment (GO CC) enrichment analysis 
for organelle over-enriched proteins 

Table S7: GO CC Plasma membrane enriched proteins 

Table S8: GO CC Glyoxysome enriched proteins 

Table S9: GO CC Mitochondria enriched proteins 

Table S10: GO CC Chloroplast (leaf bottom) enriched proteins 

Table S11: GO CC Chloroplast (leaf middle) enriched proteins 

Table S12: GO CC Chloroplast (leaf top) enriched proteins 

Table S13: GO CC Chloroplast and mitochondria shared enriched proteins 

Table S14: GO CC Plasma membrane and glyoxysome shared enriched proteins 

Table S15:S20: Gene ontology cellular compartment (GO CC) enrichment analysis 

for organelle depleted proteins 
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Table S15: GO CC Plasma membrane depleted proteins 

Table S16: GO CC Glyoxysome depleted proteins 

Table S17: GO CC Mitochondria depleted proteins 

Table S18: GO CC Chloroplast (leaf bottom) depleted proteins 

Table S19: GO CC Chloroplast (leaf middle) depleted proteins 

Table S20: GO CC Chloroplast (leaf top) depleted proteins 

Table S21-S30: Gene ontology biological process (GO BP) enrichment analysis of 

organelle enriched proteins 

Table S21: GO BP Plasma membrane enriched proteins 

Table S22: GO BP Glyoxysome enriched proteins 

Table S23: GO BP Mitochondria enriched proteins 

Table S24: GO BP Chloroplast (leaf bottom) enriched proteins 

Table S25: GO BP Chloroplast (leaf middle) enriched proteins 

Table S26: GO BP Chloroplast (leaf top) enriched proteins 

Table S27: GO BP Chloroplast (leaf bottom unique) enriched proteins 

Table S28: GO BP Chloroplast (leaf top unique) enriched proteins 

Table S29: GO BP Chloroplast and mitochondria shared proteins 

Table S30: GO BP Plasma membrane and glyoxysome shared proteins 

1.7.2 Supplemental Materials and Methods 

Plasma Membrane Protein purification and separation: Plasma protein pellets are 

suspended in extraction buffer (8M Urea/Tris/phosphatase inhibitors, pH 7). After 

cysteine reduction and alkylation with Tris(2- carboxyethyl)phosphine (TCEP) and 
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iodoacetamide, proteins are quantified using a Bradford assay. Protein solution is 

diluted 8 times to 1M urea and twice digested with Lys-C and trypsin. Digested peptides 

are purified on a Waters Sep-Pak C18 cartridges, eluted with 60% acetonitrile. An 

Agilent 1100 HPLC system is used to deliver a flow rate of 600 nL min-1 to a custom 3-

phase capillary chromatography column through a splitter. Column phases are a 30 cm 

long reverse phase (RP1, 5 μm Zorbax SB-C18, Agilent), 8 cm long strong cation 

exchange (SCX, 3 μm PolySulfoethyl, PolyLC), and 40 cm long reverse phase 2 (RP2, 

3.5 μm BEH C18, Waters), with the electrospray tip of the fused silica tubing pulled to a 

sharp tip (inner diameter <1 μm).  Peptides are loaded onto RP1, and the 3 sections are 

joined and mounted on a custom electrospray adapter for on-line nested elutions, with a 

new set of columns is used for each LC-MS/MS analysis. Peptides are eluted from RP1 

section to SCX section using a 0 to 80% acetonitrile gradient for 120 min, and then are 

fractionated by the SCX column section using a series of 19 step salt gradients of 

ammonium acetate over 20 min, followed by high-resolution reverse phase separation 

on the RP2 section of the column using an acetonitrile gradient of 0 to 80% for 210 min.  

Data acquisition: Spectra are acquired on a Q-exactive-HF mass spectrometer 

(Thermo Electron Corporation, San Jose, CA) operated in positive ion mode with a 

source temperature of 275 °C and spray voltage of 3kV.  Automated data-dependent 

acquisition was employed of the top 20 ions. The mass resolution is set at 60,000 for 

MS and 30,000 for MS/MS scans, respectively.  Dynamic exclusion is used to improve 

the duty cycle.  

Data analysis: The raw data are extracted and searched using Spectrum Mill vB.06 

(Agilent Technologies). MS/MS spectra with a sequence tag length of 1 or less are 
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considered to be poor spectra and were discarded. The remaining MS/MS spectra are 

searched against maize B73 v4 gene set. Search parameters are set to Spectrum Mill’s 

default settings with the enzyme parameter limited to full tryptic peptides with a 

maximum mis-cleavage of 1. A 1:1 concatenated forward-reverse database will be 

constructed to calculate the false discovery rate (FDR). Cutoff scores are dynamically 

assigned to each dataset to obtain the false discovery rates (FDR) of 0.1% for peptides, 

and 1% for proteins.  Proteins that share common peptides are grouped using principles 

of parsimony to address protein database redundancy.  
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CHAPTER 2 
 

Discovery of species-specific expressible genes via machine learning with omics 

data 

 

2.1 Introduction 
 

Determining which predicted gene models produce functional products is an 

exciting challenge in genome-wide biology. While the number of predicted gene models 

from plant genomes can exceed 60,000, the plant research community has detected 

transcript products from only a subset of these genes, and an even smaller subset have 

detected protein products. Gathering direct experimental evidence of proteins from all 

expressible genes is challenging, due to technical difficulties with detection of low 

abundance or low solubility proteins and the infeasibility of profiling all cell types under 

all environmental conditions or combination of conditions. There is a crucial need to 

annotate which portions of plant genomes are likely to produce functional products and 

what genomic features determine the ability of a gene to be expressed at the transcript 

or protein level. Gene homology and expression evidence is often used to curate a high 

confidence group of genes from full predicted gene model sets, e.g. the filtered gene set 

of maize, or the high confidence gene set of sorghum. An open question is whether 

genes outside of these curated high confidence sets are expressible at the protein level. 

It is also unknown what portion of the high confidence gene models without previously 

detected protein products are expressible. The gene model set of a species serves as 

the search space for genome-wide technologies such as proteomics. Inclusion of 
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extraneous gene models increases the false discovery rate, while exclusion of true gene 

models prevents discovery of products of those genes.  

The lineages that gave rise to maize (Zea mays) and sorghum (Sorghum bicolor) 

diverged approximately twelve million years ago, after which the maize lineage 

underwent an additional whole genome duplication event (Swigoňová et al., 2004). This 

whole genome duplication event resulted in two subgenomes of maize, which can be 

defined in relation to sorghum. One of these two subgenomes is more highly expressed 

at the RNA level and has retained more genes (Schnable et al., 2011). It is unknown 

whether expression at the protein level is also biased towards one of the two 

subgenomes. Genes which have both sequence and colinear context conservation 

between two species are known as syntenic genes. Nonsyntenic genes emerged after 

the split between sorghum and maize lineages and are likely not represented in the 

ancestral genome. While the most of maize “working gene set” genes are nonsyntenic, 

maize genes which were identified by mutant phenotype and genes which are 

overrepresented in the maize literature (“Classical” genes) are enriched for syntenic 

genes (Schnable and Freeling, 2011). Previous work provided potential molecular 

explanations for this phenomenon: the majority of maize genes with detected protein 

products are syntenic, and the gene bodies of maize syntenic genes are 

hypomethylated, compared to nonsyntenic genes (Eichten et al., 2011; Walley et al., 

2016). The relationship between gene methylation and synteny, and between synteny 

and express-ability, suggests a possible relationship between methylation and express-

ability. Due to the close evolutionary relationship between the sorghum and maize 

lineages, the gene contents between these two species are similar, with most sorghum 
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genes homologous to two or more genes of maize. Defining differences in the 

expressible sets may define the underlying proteomic differences leading to species 

specific traits. 

Prediction of high confidence gene models has been previously performed in 

sorghum using a combination of transcript expression data, synteny information, and 

DNA methylation data to train a J48 decision tree classifier (Olson et al., 2014). This 

classifier required all three data types for accurate gene classification. Previously, it has 

been shown that accurate classification of maize gene express-ability is possible using 

only DNA methylation data (Sartor et al., 2018 [under review]). 41,056 and 32,979 

maize genes are predicted to be expressible at the RNA and the protein level, 

respectively. As the total number genes and the proportion of syntenic genes differs 

significantly between sorghum and maize, it is unknown if the proportion or regulation of 

express-ability differs for this closely related grass species. We report here accurate 

gene express-ability classification using only DNA methylation data for the sorghum 

genome. Leveraging both the previously defined expressible gene sets of maize and the 

syntenic orthologs between grass species allowed for comparison not just of the gene 

contents of sorghum and maize, but of the protein expressible subsets of both 

genomes.  

2.2 Results 

2.2.1 Identification of protein expressible genes of sorghum stems under fungal 

elicitation 

Protein was extracted from slit sorghum stems treated with heat-killed Fusarium 

venenatum or water-soaked cloth. Protein was extracted from flash frozen stem 
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samples after 44 hours of treatment. Tryptic digested peptides were labeled with 

Tandem Mass Tags (TMT) isobaric tags for relative quantitation (Thompson et al., 

2003). Labeled peptides were separated and analyzed by HPLC MS/MS as described in 

the supplemental methods. Mass spectra were searched against a forward:reverse 

decoy database and the false discovery rate was constrained at 0.1% and 1% at the 

peptide and protein levels, respectively (Table S31). Positively identified proteins served 

as the positive class for protein express-ability classifier training.  

2.2.2 Creation of sorghum gene express-ability classifiers 

Sorghum gene models from version 1.4 of the sorghum genome (Paterson et al., 

2009) were annotated into groups based on expression at both transcript and protein 

levels. For the first classifier, which sought to classify genes as express-able or silent at 

the RNA level (ERC), genes were classified as highly expressed (average RPKM>=1; 

positive case), or non-detected (no reported RNA; negative case) using previously 

published RNAseq data (Dugas et al., 2011). For the second classifier, for classification 

of genes as expressible or silent at the protein level (EPC), genes were grouped into the 

non-expressed (negative case) category if they had no detectable protein or RNA, and 

the expressed (positive case) category if they had both detected protein and high RNA 

expression. Thus we had distinct gene groupings for two models, each involving 

different positive (expressible) and negative (non-expressible) cases. 

Each annotated sorghum gene model was divided into five equally sized “bins”. 

Previously published bisulfite sequencing data from both sorghum shoots and roots 

were mapped to these bins (Turco et al., 2017). Each sequence context, CG, CHG, or 

CHH, and bisulfite sequencing sample tissue were mapped separately to each gene  
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Figure 2-1: Creation of gene express-ability classifier 

 
Figure 2-1: Creation of gene express-ability classifier. A: Definition of genomic 
regions used for calculation of methylation features for gene express-ability classifier. 
Full gene length was divided into five equal bins. Methylation levels were calculated for 
entire bins and for each genomic feature within each bin. B: Workflow for building, 
testing, and applying express-ability classifiers.  
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bin. The methylation level, as the proportion of methylated cytosines to unmethylated 

cytosines, was calculated for each feature. The average methylation level was also 

calculated for introns and exons within these bins (Fig. 2-1). This resulted in ninety DNA 

methylation features for each gene model (Table S32). For each classifier, these DNA 

methylation features, along with the positive and negative expression classifications 

described above, were used to train a random forest classification algorithm (Fig. 2-1) 

(Breiman, 2001).  

Model performance was measured using the random out-of-bag cross-validation 

prediction of express-ability, compared to genes with known class labels. The proportion 

of positive votes to negative votes was compared to the known class labels to calculate 

the number of false positive and false negatives for our models. These results were 

plotted in receiver operating characteristic (“ROC”) and precision-recall (“PR”) curves 

(Fig. 2-2A-B). For models with perfect performance, we expect an area under the curve 

of one for both the ROC and PR curves, whereas a model which performs no better 

than random will have a ROC area under the curve (AUC) of 0.5. The AUC for both the 

ROC and PR curves for the ERC and EPC exceeded 0.95. 

2.2.3 Model feature importance 

ERC and EPC model feature importance was calculated from the average 

decrease in accuracy upon random permutation of each individual variable as 

implemented in the random forest R package (Breiman, 2001). The normalized sum of 

this value for a given set of methylation features was used to calculate the unsigned 

feature importance of each feature type used for model building (Fig. 2-3A). Across both 

models, features derived from methylation data from the root and shoot had similar  
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Figure 2-2: Classifier testing: Receiver Operating Characteristic (ROC) and 
precision recall (PR) curves for classifier models. 

 
Figure 2-2: Classifier testing: Receiver Operating Characteristic (ROC) and 
precision recall (PR) curves for classifier models. ROC (A) and PR (B) curves were 
plotted using successful and unsuccessful classifications from random forest model out-
of-bag cross-validation votes compared to known classifications. EPC curves shown in 
gold, ERC curves shown in blue. 
 
importance, with the shoot-derived methylation data slightly outperforming the root. EPC 

and ERC had extremely similar importance across features, with CG and CHG 

methylation having higher feature importance than CHH methylation, and the 5’ and 3’ 

gene ends having higher feature importance than the middle of the gene. For the ERC, 

methylation of the 5’ end of the gene was more important to model performance than 

methylation of the 3’ end, the converse was true for the EPC. Overall, methylation level 

of the equal sized bins was more important than methylation of either the exon or intron 

features. 

Since the model feature importance is by nature unsigned, to discover whether 

high or low methylation of a given feature is associated with expression, the sign of the 

feature importance was assigned by calculating a t-statistic between the positive and 
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Figure 2-3: Classifier feature importance. A: Sum of the unsigned feature importance 
of EPC and ERC models. Feature importance was taken from the mean decrease in 
model accuracy upon random permutation of each feature variable, summed across 
each feature type. EPC feature importance shown in gold, ERC in blue. B: Relative 
signed feature importance of across EPC features. The sign of the feature importance 
was assigned by taking the sign of the t-statistic between each feature and the positive 
and negative expression classes. 
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Figure 2-3: Classifier feature importance: 
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negative class and each feature. The sign of the t-statistic was used to assign a 

direction to each feature importance value. Again, the feature importance between EPC 

(Fig. 2-2B) and ERC (SI Fig. 2-7) was similar. For both models, CG methylation at the 

first and last bin was negatively associated with expression, whereas methylation in the 

middle of the gene was positively associated with expression. For CHG methylation, 

methylation of all bins was negatively associated with expression. CHH methylation had 

minimal feature importance and therefore is minimally associated with expression. 

While overall, intron methylation features were less important to model accuracy than 

exon or bin features, for CHG methylation, methylation of gene interior introns had 

higher feature importance than interior exons.  

2.2.4 Prediction of sorghum expressible gene sets 

Our trained models were then used to categorize all sorghum annotated genes 

with methylation data, 34,496 genes total, as expressible or non-expressible at the 

protein and transcript levels. This resulted in a set of 21,132 genes predicted to be 

expressed at the protein level, with an additional 6929 predicted to be expressed at the 

transcript level. 6,435 genes were predicted to be silent. All genes predicted to be 

expressed at the protein level were also predicted to be expressed at the transcript level 

(Fig 2-4). The EPC expressible gene set was significantly different from both the 

previously predicted high confidence gene set (Olson et al., 2014) and the expert 

curated high confidence gene set of sorghum (Fig. 2-4).  
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Figure 2-4: Comparison of predicted expressed gene sets to previously annotated 
high confidence gene sets. 

 
Figure 2-4: Comparison of predicted expressed gene sets to previously annotated 
high confidence gene sets. Venn diagram of overlap between sorghum genes 
predicted as expressible by the EPC and ERC and previously annotated high 
confidence gene sets. “Olson 2014” from high confidence set from Olson et al., 2014. 
 

2.2.5 Comparison of sorghum expressible genes to syntenic gene sets identifies 

uniquely expressible genes of sorghum and maize 

Given the enrichment of syntenic genes within protein detectable and classical 

gene sets (Schnable and Freeling, 2011; Walley et al., 2016), we then compared the 

sorghum expressible gene sets, previously published maize expressible gene sets 

(Sartor et al., 2018 [Under Review]) and the syntenic gene sets between sorghum, 

maize, rice, setaria, and brachypodium (Table S34-35; Fig. 2-5). Across all genes, a 

higher percentage of sorghum genes were syntenic than maize. Correspondingly, at all 

levels of express-ability, including silent genes, sorghum shows a higher percentage of 
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syntenic genes than maize (Fig. 2-5A). Overall, a higher percent of sorghum genes are 

expressible than maize genes. However, a lower percentage of sorghum syntenic genes 

are expressible than maize syntenic genes, and more sorghum nonsyntenic genes are 

expressible (Fig. 2-5B). The two maize subgenomes show nearly identical express-

ability (fig. 2-5B). To identify potential genes responsible for species-specific traits, the 

unique expressible genes between sorghum and maize were identified, using previously 

published predictions of maize protein expressible genes (Sartor et al., 2018 [Under 

Review]). These unique genes included EPC or ERC expressible syntenic orthologs 

which were expressible in only one of the two species (Fig. 2-5C-D). The majority of 

syntenic expressible genes were shared between sorghum and maize. RNA expressible 

gene sets showed fewer species-specific expressible genes, compared to protein 

expressible gene sets (Fig. 2-5C-D). Functional enrichment analysis based on MapMan 

gene ontology annotations was performed on the unique protein expressible genes plus 

protein expressible nonsyntenic genes (Thimm et al., 2004). For sorghum, there were 

4,512 protein expressible genes nonsyntenic to maize, and for maize there were 11,353 

protein expressible genes nonsyntenic to sorghum. The most over-enriched category for 

both sorghum and maize species-specific expressible gene sets was 

“unknown.unassigned” (Table S36-S37).  Both sorghum and maize uniquely expressible 

genes were under-enriched for MapMan categories of RNA, regulation of transcription, 

redox, homeobox transcription factors and protein post-translational modification (Table 

2-1; Table S36-37). Over-enriched categories from both species included terpenoid 

secondary metabolism and jacalin myrosinases. Interestingly, while sorghum unique 

protein expressible genes are highly over-enriched from NAC-family transcription 
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factors, maize unique expressible genes are significantly under-enriched for the same 

category (Table 2-1). Maize unique expressible genes were also under-enriched for 

several other transcription factor families (Table S37). Maize unique expressible genes 

were additionally over-enriched for biotic stress, receptor-like kinases, AP2/EREB 

transcription factors, and phenylpropanoid and flavonoid secondary metabolism (Table 

S37). 

Figure 2-5: Comparison of maize and sorghum expressible gene sets 

 

Figure 2-5: Comparison of maize and sorghum expressible gene sets. A: Percent 
of sorghum and maize expressible genes which are syntenic to grass species rice, 
brachypodium, setaria, maize, and sorghum. B: Percent of syntenic, nonsyntenic, and 
maize subgenome 1 and 2 genes which are expressible at the protein or RNA level. 
Silent genes are genes which are not predicted to be expressible at the RNA or protein 
level. C: Venn diagram of overlap of maize and sorghum syntenic EPC expressible 
genes. D: Venn diagram of overlap of maize and sorghum syntenic ERC expressible 
genes. 
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Table 2-1: Species-specific over- or under-enriched mapman categories: Mapman 
annotated transcription factor families over or under enriched in sorghum or maize 
species-specific protein expressible gene sets. Categories are in vertical order of 
statistical significance. Species-specific expressible genes include expressible 
nonsyntenic genes and expressible syntenic genes for which the corresponding 
syntelog is silent. 

Sorghum Over Sorghum Under Maize Over Maize Under 

NAC domain Homeobox AP2/EREB bZIP 
B3   ARF 

   NAC domain 
   Squamosa 
   WRKY 
   Homeobox 

 
2.2.6 Express-ability of sorghum syntenic genes across grass species 

Given that the majority of protein and RNA sorghum expressible genes are 

syntenic, we then separately compared the express-ability of sorghum genes which are 

syntenic to maize, rice, Brachypodium, or Setaria. When looking at all syntenic gene 

pairs, species of comparison creates no sizable effect in the percentage of sorghum 

syntenic genes which are expressible (fig. 2-6A). However, when looking at the species-

unique syntenic pairs, e.g. pairs which are unique between sorghum and Brachypodium 

only, sorghum genes which are uniquely syntenic to rice or Setaria are less expressible 

than all sorghum syntenic genes or sorghum genes uniquely syntenic to maize. 

Sorghum genes uniquely syntenic to Brachypodium had intermediate express-ability 

(fig. 2-6B).  
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Figure 2-6: Effect of species of comparison on express-ability of syntenic genes 

 
Figure 2-6: Effect of species of comparison on express-ability of syntenic genes. 
A: Percent express-ability of sorghum genes syntenic to various grass species. All 
genes syntenic to a given species are used. B: Percent express-ability of sorghum 
genes uniquely syntenic to specific grass species. 
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2.3 Discussion 

As their lineages diverged only recently, maize and sorghum plants show very 

similar morphology and development prior to the reproductive stages. Similar 

phenotypes suggest substantial similarities between the proteomes of these two 

species. Approximately two thirds of sorghum genes are predicted to be expressible at 

the protein level, resulting in just over 21,000 protein coding genes. Despite having 

nearly three times as many annotated genes in the working gene set, only 32,979 maize 

genes are predicted to be protein coding. This suggests that while the total predicted 

gene contents of the maize genome dwarf that of sorghum, the expressible gene sets 

are of comparable size. Additionally, a large proportion of maize and sorghum syntenic 

genes are shared in their express-ability. This is especially pronounced at the RNA 

level, where there are very few species-specific syntenic expressible genes (Fig. 2-5D). 

Many of these RNA expressible genes are not predicted to be expressible at the protein 

level, but the total number of species-specific protein expressible syntenic genes is 

larger at the protein level than at the RNA level.  

While the two species are similar in appearance, the origin of their domestication, 

with sorghum from North Africa and maize from Mesoamerica, indicates exposure to 

different stresses during evolution and domestication. Maize and sorghum show 

differential tolerance to abiotic and biotic stresses. The over-enrichment of multiple 

stress associated gene ontology categories in the species-specific expressible genes 

indicates that some of this differential stress tolerance may be controlled at the 

epigenetic level. The NAC family of transcription factors is a large plant transcription 

factor family with diverse roles in development and mediation of biotic and abiotic stress 
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response (Olsen et al., 2005). Genes annotated in this family of transcription factors 

was over-enriched in the sorghum unique expressible gene set and under-enriched in 

the maize unique expressible gene set. For both species, the most over-enriched 

category among species-specific expressible genes was “unknown.unassigned”, 

representing nearly half of the unique genes in both sorghum and maize. As species-

specific genes are less likely to have functional annotation, further characterization of 

these genes is necessary for a holistic understanding of phenotypic differences between 

sorghum and maize. In contrast, maize genes without a syntenic ortholog in sorghum 

were not over-enriched for stress associated categories (Table S38). Thus, looking at 

the gene presence/absence variants and gene express-ability variants of sorghum and 

maize provides different information about potential species-specific phenotypes.  

While the proportion of maize syntenic genes which are EPC expressible 

exceeds 90%, the proportion of sorghum syntenic EPC expressible genes is 

substantially smaller. Conversely, while few maize nonsyntenic genes are EPC 

expressible, a much larger percentage of sorghum nonsyntenic genes, nearly 30%, are 

EPC expressible. This indicates a less strong association between synteny and 

expressibility in sorghum, compared to maize. This difference may result from variation 

in gene expression regulation, which may have arisen as a response to the relatively 

large number of nonsyntenic genes and transposable elements which have proliferated 

in the maize lineage. The maize lineage specific autopolyploidy event resulted in two 

subgenomes of maize, of which one has undergone nearly two times as much gene 

loss as the other (Schnable et al., 2012). Despite the more extensive gene loss of maize 

subgenome 2, the two maize subgenomes show nearly identical express-ability. Similar 
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proportions of genes from each maize subgenome were detectable at the protein level 

in maize roots, consistent with classifier predictions (SI Fig. 2-8).  

 Comparisons between sorghum syntenic genes syntelogous to single grass 

species showed lower express-ability of sorghum genes uniquely syntenic to rice or 

Setaria, versus those uniquely syntenic to maize. The lineage that gave rise to rice and 

Brachypodium diverged from the lineage that gave rise to sorghum approximately 70 

million years ago, more than 50 million years prior to the divergence of maize and 

sorghum lineages (Swigoňová et al., 2004; Wang et al., 2015). The Setaria lineage 

diverged from the sorghum and maize lineage fifty million years ago. Further 

comparison to maize expressible gene sets could illuminate whether loss of express-

ability of sorghum genes uniquely syntenic to rice occurred prior to divergence of the 

sorghum and maize lineages. Sorghum genes uniquely syntenic to Brachypodium had 

intermediate express-ability. However, the number of sorghum genes uniquely syntenic 

to Brachypodium (83) or to rice (135) was low compared to Setaria (904) or maize 

(1431). This may be too few unique pairs to compare proportional expressibility. 

 

2.4 Materials and Methods 

2.4.1 Data sources 

Gene models were taken from version 1.4 of the Sorghum bicolor reference 

genome (Paterson et al., 2009), accessed from the Joint Genome Institute on 

04/04/2018. Total cytosines within different genomic contexts (CG, CHG, and CHH) 

were counted within feature bins from Sorghum bicolor reference genome version 1.4 

accessed from phytozome on 04/15/2018.  
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2.4.2 Sorghum slit-stem fungal elicitation assay 

Sorghum plants were grown in a greenhouse at the University of California, San Diego, 

under 12 hour light:dark cycles with minimum of 300 μmol m−2 s−1 of 

photosynthetically active radiation supplied by supplemental lighting, 70% relative 

humidity, and temperature cycle of 24 °C at night and 28 °C during the day (Schmelz et 

al., 2009). Plants were treated at the 8-9 leaf stage. For fungus elicited plants, 

commercially available heat-killed Fusarium venenatum (strain PTA-2684, Monde 

Nissin Corporation Co.) mixed in water. Fusarium-soaked, or water-only cloths were 

inserted into the stem by a three-inch incision at the first internode. Stems were 

wrapped in tape to prevent drying. Samples were harvested at 40 hours post treatment 

and fungus adjacent tissue was removed with a clean razor blade before freezing in 

liquid nitrogen for storage at -80°C. 

2.4.3 Proteomics of sorghum fungal and non-fungal treated tissue 

Proteins were extracted from Sorghum stems and peptides were prepared for 

mass spectrometry as described previously (Walley et al., 2016). Mass spectra were 

searched against the protein database from Sorghum bicolor V3.1.1 (McCormick et al., 

2018). False discovery rate was constrained as 1% at the protein level, as described 

previously (Walley et al., 2016). The proteomics results are in Table S31. The detected 

V3 gene models with V1 gene model equivalents were used as the positive case for 

protein express-ability classifier, resulting in identification of 6478 V1 proteins with 

binned gene models.  

2.4.4 Methylation Feature Construction 
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For current model construction, gene models were binned into five equal sized 

fragments for bins 1 through 5. The regions of exons and introns contained within each 

whole gene length bin were used. Due to low numbers of gene models with annotated 

untranslated regions, gaps between the annotated exons were used for intron features. 

This produced a total of 15 genomic intervals for each gene model. 

Methylated cytosines within each sequence context were separately mapped to the 

intervals described above. Published methylation data from both tissues (root and 

shoot) were handled separately (Turco et al., 2017). All cytosines with each sequence 

context were counted within the same intervals. The proportion of methylated to 

unmethylated cytosines was calculated for each context, each bin, and each bisulfite 

sequencing sample to produce 90 distinct features for each gene. For any features 

without annotation within the gene model (E.g. gene models without exons in an 

individual bin, or gene models without introns) a methylation level of 0.5 was 

substituted, representing neither hypo- nor hyper-methylation. Methylation features are 

in Table S32.  

2.4.5 Classification of training data 

Published RNA-seq data was taken from Dugas et al., 2011. Transcript 

abundance in RPKMs for each gene was averaged across all 24 samples. Gene models 

from which no RPKMs are reported were defined as “not detected”. Gene models with 

average RPKM of greater than or equal to one were defined as high abundance, 

whereas gene models with reported average RPKMs of less than one were defined as 

low abundance. Proteins with positive identification from the sorghum slit-stem assay  

2.4.6 Construction of Classification Models 
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Classification models were built as described previously (Sartor et al., 2018 

[under revision]) using random forest machine learning algorithm (Breiman, 2001). In 

brief, random forest models were built using methylation matrices described above as 

the training data features and gene expression classification at the RNA level (ERC) or 

protein level (EPC) as the classification factors. For the ERC, the expressed gene set 

consisted of gene models with high gene expression (RPKM=>1) and unexpressed 

gene set consisted of gene models with undetected RNA. For the EPC, the expressed 

gene set consisted of gene models with high RNA as well as detected protein, and the 

unexpressed gene set consisted of gene models with high RNA without detected 

protein. 

2.4.7 Discovery of expressible gene sets 

Genes were defined as expressible or silent based on the proportion of votes of 

each classifer (Table S33). Genes with a proportion of votes >0.5 were defined as 

expressible. Genes expressible at the RNA and protein level were separately defined 

using the proportion of votes from the ERC and EPC classifiers, respectively.  

2.4.8 Data analysis 

Syntenic gene sets were created as described previously (Schnable and 

Freeling, 2011).Venn diagrams were created using the R packages “VennDiagram” and 

“Vennerable” (Chen, 2018; Swinton, 2009). Data tables were read and processed using 

R packages “Readr” and “reshape2” (Wickham, 2007; Wickham et al., 2017). Barplots 

for figures 5-6 were created using R package “ggplot2” (Wickham, 2009). ROC and PR 

curves were plotted and AUC were calculated using R packages “ROCR” and “stringr” 

(Sing et al., 2005; Wickham, 2018). 
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2.7 Supplemental Material 

Figure 2-7: Relative signed feature importance of ERC classifier 

 
Figure 2-7: Relative signed feature importance of ERC classifier. Relative signed 
feature importance of across EPC features. The sign of the feature importance was 
assigned by taking the sign of the t-statistic between each feature and the positive and 
negative expression classes. 
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Figure 2-8: Percent of maize subgenome 1 and 2 genes detectable as protein 

 
Figure 2-8: Percent of maize subgenome 1 and 2 genes detectable as protein. 
Percent of maize subgenome 1 and subgenome 2 genes which were detected at protein 
level in maize root from Walley et al., 2016 
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CHAPTER 3 
 

Comparison of expressible gene sets across maize genome annotation 

versions 

3.1 Introduction 

Accurate annotation of the true set of protein coding genes is crucial for drawing 

accurate biological conclusions from analyses. The annotated set of protein coding 

genes serves as the search space for proteomics, therefore any bias that exists in the 

annotation can be propagated to bias in the identification of peptides via database 

search of mass spectra. The total set of protein coding genes also often serves as the 

“background” for gene ontological functional enrichment or similar analyses. Successful 

genome-wide association and quantitative trait locus (QTL) studies lead to the 

identification of a genetic interval associated with a particular phenotype or phenotypes. 

Further identification of the true casual gene or genes requires accurate annotation of 

the gene contents of that region. Both inclusion of extraneous genes and exclusion of 

true protein coding genes can lead to false conclusions from these studies. 

The predicted number of protein coding genes in genomes varies significantly 

based on method of annotation and the amount of evidence supporting individual gene 

models. As more evidence is gathered, the gene model set is refined. For example, 

prior to sequencing of the human genome, some estimates of the number of protein 

coding genes exceeded 100,000. Following the release of the first draft of the human 

genome, the estimates dropped significantly to 35,000. The set of human protein coding 

genes continues to be refined as more evidence is gathered, supporting a subset of 

these genes. The number of predicted protein coding genes can also increase with 
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additional evidence, as recently occurred for the human genome, with the predicted 

number of genes increasing from the lower estimate of 19,000 to 20,000. The continual 

change in the number of genes in, arguably, one of the best studied higher organisms 

highlights the challenge of accurate gene annotation. While evidence of transcript or 

protein products has been identified for a subset of genes from model organisms, it 

remains difficult to rule out protein coding genes based on lack of expression evidence. 

This is due in part to inducible expression of a subset of genes, which may only be 

expressed in a small number of cell types or under a narrow range of conditions. 

In the maize reference inbred B73, the current number of predicted protein 

coding gene models is 39,324. These gene models were derived from the most recent 

release of the maize reference genome, taking advantage of long-read sequencing 

(Jiao et al., 2017). Prior to this recent revision, the maize community maintained two 

sets of gene models, utilizing sanger sequencing data from the first version of the maize 

reference genome (Schnable et al., 2009). The largest of the two gene sets from 

genome annotation version 2 (v2) is a comprehensive collection of more than 110,000 

possible protein coding gene models known as the “working gene set” (WGS). An 

unbiased proteogenomics approach, using a splice graph and six-frame translation 

database of maize, detected few protein products from genes outside the WGS 

(Castellana et al., 2014). A higher confidence subset of the WGS, known as the “filtered 

gene set” (FGS), contains 39,695 gene models. Gene model annotation reference 

version 3 represents an incremental improvement on the v2 gene model set, without the 

addition of new genome sequencing data. There is no large WGS equivalent for v4. 
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Many v2 WGS annotated genes have no annotated v4 equivalent. It is unknown what 

portion of the v4 annotated gene set is expressible.  

Recently, the expressible gene sets of maize were accurately predicted using 

only gene body methylation levels (Sartor et al., 2019 [in review]). The express-ability of 

all maize v2 WGS genes with methylation data was predicted at both the transcript and 

protein level using random forests machine learning algorithm (Breiman, 2001). This 

resulted in the identification of 32,979 and 41,056 protein and RNA expressible genes, 

respectively. These expressible gene sets differed from the FGS, with classification of 

some FGS genes as silent and some genes absent from the FGS as expressible. The 

expressible gene set for the most recent annotation of the maize genome, v4, has not 

been defined. However, comparison of the v4 filtered gene set genes with v2 

equivalents to the predicted expressible sets of v2 WGS revealed more than 7,900 

genes predicted to be protein expressible in v2 but without an annotated v4 equivalent.  

We present here accurate classification of genes from a collective database of 

B73 v2 and v4 annotated gene models as expressible at the protein and RNA level. 

These classifications were created via a machine learning approach using only DNA 

methylation data. Previous successful classification of maize express-ability used 23 

tissues of maize proteomics data and single nucleotide resolution whole genome 

bisulfite sequencing (WGBS) data for classifier training (Sartor et al., 2019 [in review]). 

The classifiers reported here show comparable performance using only a single tissue 

of proteomics data and 100 base-pair (BP) tiling resolution for WGBS data.  
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3.2 Results 

3.2.1 Detectable protein products observed from v2 gene models without 

annotated v4 equivalents 

To discover if any maize B73 v2 gene models absent from the new v4 annotation 

had detectible protein products, we created a collective database of all v2 WGS and all 

v4 annotated gene model predicted peptides. This served as the database for peptide 

identification of mass spectra via database search, using peptides extracted from B73 

roots. This resulted in the identification of 11,158 proteins (Table S39). For predicted 

peptides which are shared between v2 and v4, identified peptides from both v2 and v4 

are in the same protein group. We defined the v2 protein detected genes as any genes 

for which only v2-unique peptides were discovered, or for which both v2 and v4 

peptides are present and the v2 database hit peptide identification score is at least 90% 

of the v4 hit. The same process was applied to identify the v4 protein detected genes. 

This resulted in the identification of 10,668 protein detected from v2 genes and 10,991 

protein detected from v4 genes. This included detection of 866 proteins for which a v2 

gene model had a better peptide match score than a v4 gene model, and 1,481 v2 gene 

models for which there is no annotated v4 equivalent. 

3.2.2 Discovery of expressible gene sets for v2 and v4 

Given the detection of proteins from v2 gene models without annotated v4 

equivalent, and due to previously discovered express-ability of v2 gene models without 

v4 equivalents (Sartor et al., 2019 [In Review]), we then created a protein express-

ability classifier for both v2 WGS and v4 annotated gene models collectively. Previously 

published 100 bp-tiling WGBS data from maize reference inbred B73 leaf was used to 
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create methylation features for training and application of v2/v4 express-ability 

classifiers (Li et al., 2015). All v2 WGS and all v4 gene models were divided into five 

Figure 3-1: Creation of v2/v4 express-ability classifier 

 
Figure 3-1: Creation of a v2/v4 express-ability classifier. A: Definition of gene 
regions used for quantification of methylation level for classifier features. B: Workflow 
used for creation of v2/v4 express-ability classifier. The set union of all v2 WGS and v4 
gene models served as a database for peptide identification of mass spectra. 
Methylation features were created for all v2 and v4 gene models with WGBS data. 
These methylation features were used, in combination with observation of gene 
products at protein and RNA level, to train random forest machine learning classifier.    
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equally sized bins. DNA methylation levels of the individual bins and of gene features 

within each bin were separately quantified (Fig. 3-1A) (Table S40). Two express-ability 

classifiers were separately created, to classify express-ability of maize v2/v4 genes at 

the protein (EPC) and RNA (ERC) level Previously published RNA-seq data for v2 and 

v4 were used to define the negative case (average RPKM = 0) and positive case 

(average RPKM > 1) for the EPC and ERC. For the EPC, the v2 and v4 protein 

detectable genes described above were additionally used to define the positive case. 

The positive and negative cases as defined above, as well as the collective DNA 

methylation features of both v2 and v4 gene models were used to train two random 

forest machine learning classifiers (Breiman, 2001) (Fig. 3-1B).  

Classifier performance was tested using random out-of-bag cross-validation. The 

random out-of-bag cross-validated results were compared to the true observed positive 

and negative cases to identify true and false classifications. These true and false 

classifications were used for creation of Receiver Operating Characteristic (ROC) and 

Precision-recall curves (PR) (Fig. 3-2A-B). For perfect classification, we anticipate an 

area under the curve of one, for both the ROC and PR curves. For random 

classification, we anticipate an area under the ROC curve of 0.5. The area under the 

ROC curves for the v2/v4 ERC and EPC was 0.951 and 0.994 respectively (Fig. 3-2A). 

The area under the PR curves for the v2/v4 ERC and EPC was 0.965 and 0.987 

respectively (Fig. 3-2B). Taken together, the high value of the area under the curves 

indicates highly accurate v2/v4 express-ability classifier performance. 
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Figure 3-2: v2/v4 classifier testing: Receiver Operating Characteristic (ROC) and 
Precision Recall (PR) curves for classifier models 

 
Figure 3-2: v2/v4 classifier testing: Receiver Operating Characteristic (ROC) and 
Precision Recall (PR) curves for classifier models. ROC (A) and PR (B) curves were 
plotted using rates of successful and unsuccessful classifications from random forest 
model out-of-bag cross-validation votes compared to known classifications. EPC curves 
shown in gold, ERC curves shown in blue. 
 
3.2.3 Comparison of protein express-ability of maize annotated gene sets from v2 
and v4 
The classifiers created as described above were then used to expand express-ability 

classification to the genes beyond the training and testing set. This resulted in the 

identification of 27,302 protein expressible and 30,346 RNA expressible genes from v4, 

and 30,779 protein expressible and 40,993 RNA expressible genes from v2 WGS. We 

then compared the protein expressible gene set of v2/v4 to the v4 gene set and v2 FGS 

(Fig 3-3). Interestingly, we discovered 3,223 protein expressible genes which are absent 

from either v4 or v2 FGS. We also identified 14,059 genes which are in the v2 FGS 

which are not protein expressible, and 12,057 genes present in v4 which are not protein 

expressible. The majority of protein expressible genes are shared between all gene sets 

(Fig. 3-3). 
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Figure 3-3: Comparison of v2/v4 expressible gene set to previously annotated 
high confidence sets of maize 

 
 
Figure 3-3: Comparison of v2/v4 expressible gene set to previously annotated 
high confidence sets of maize. Venn diagram showing overlap of v2/v4 protein 
expressible genes (EPC) and the expert curated v4 and v2 FGS. Equivalent genes 
determined based on maizeGDB annotated equivalents. 
 

3.2.4 Filtering by protein express-ability reduces number of candidate genes in 

QTL studies 

Given the significant differences between the v2/v4 protein expressible gene set 

and the v4 and v2 FGS, we then wanted to investigate if our novel annotation of the 

protein coding gene set changes the biological conclusions drawn from 

experimentation. Previously published high throughput phenotyping of 106 traits in a 

maize recombinant inbred population identifies two QTL hotspots significantly 

associated with maize growth and biomass associated traits (Zhang et al., 2017). There 

are 28 and 53 genes within the QTL hotspots located on maize chromosomes 7 and 10. 

However, comparison of the QTL hotspot genes with the protein expressible gene set 
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further narrowed down the number of candidate genes in these regions to 22 and 31 

genes respectively. This is a significant reduction, 21% and 41%, in the number of 

candidate genes.  

3.3 Discussion 

For many v2 WGS gene models, there is no annotated v4 equivalent gene. To 

investigate if any potential protein coding gene models were excluded from v4, we used 

an unbiased proteomics approach using a collective database of v2 and v4 gene 

models as the database for peptide identification. This led to the detection of thousands 

of proteins for which the v2 gene model peptide had a better match to the spectra 

observed or for which there is no equivalent v4 gene model.  

To further identify potential differences between the true protein coding genes of 

maize and both v2 and v4 annotations, we then used the detected proteins to form the 

positive case to train a maize protein express-ability classifier. This classifier, and its 

RNA equivalent, was able identify protein and RNA expressible genes with high 

accuracy using only gene body methylation levels as model features (Fig. 3-2). Previous 

maize express-ability classifiers used single nucleotide resolution WGBS data and 23 

tissues of proteomics and RNA-seq data spanning development for model training. The 

classifiers reported here used only a single tissue of proteomics data and 100-bp tiling 

quantitation of WGBS, while the same number RNA-seq tissues was used. This 

suggests that only a single proteomics experiment may be sufficient for creation of the 

positive case for EPC classifier training, drastically reducing the cost and effort 

associated with performing classification with other species or inbreds. 
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The predicted protein expressible gene set differs from the v4 and v2 filtered 

gene sets (Fig 3-3). Both v2 and v4 gene sets include gene models which are not 

predicted to be protein expressible, and lack 3,223 gene models which are predicted to 

be expressed. The presence of expressible genes outside of the expert curated sets 

suggests that some genes which have the potential to affect traits are absent from the 

newest annotation of the maize genome. These 3,223 models include v2 WGS genes 

for which there is no annotated v4 equivalent. We propose addition of these models to 

the current filtered gene set of maize, or, where appropriate, annotation of the missing 

v4 equivalent. Thousands of genes present in the filtered gene sets were not predicted 

to be expressible at the protein level. Accurate annotation of the protein coding gene set 

is critical for defining the search space for omics methods and population-based 

studies. Peptides from missing gene models will be unidentified in proteomics 

experiments, and peptides which are shared between missing and present gene models 

may be misidentified as unique. Our EPC can also be used to reduce the number of 

candidate genes in GWAS or QTL studies. Genes which are not protein expressible are 

less likely to affect phenotype. Assessment of the potential contribution towards a trait 

of each gene candidate within a genetic interval is costly. We were able to reduce the 

number of gene candidates of a published QTL study by 21% and 41%. This included 

gene candidates from a QTL hotspot which was also identified as a QTL controlling 

maize primary metabolism (Wen et al., 2015; Zhang et al., 2017). Accurate definition of 

the gene pool used as the search space can reduce both type I and type II errors in 

experimentation. 
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3.4 Materials and Methods 

3.4.1 Plant materials 

B73 plants were grown and roots were sampled from field grown plants, 0 days 

after pollination, as described previously (Zhou et al., 2018). Protein extraction was 

performed on the same root tissue as used for previously published RNA-seq analysis 

(Zhou et al., 2018). 

3.4.2 Proteomics 

Tissue powders were suspended in extraction buffer (8M Urea/100mM Tris/5mM 

Tris(2- carboxyethyl)phosphine (TCEP)/phosphatase inhibitors, pH 7). Proteins were 

precipitated by adding 4 volumes of cold acetone and incubated at 4o C for 2 hours. 

Samples were centrifuged at 4,000xg, 4o C for 5 minutes. Supernatant was removed 

and discarded. Proteins were re-suspended in urea extraction buffer and precipitated by 

cold acetone one more time. Protein pellets were washed by cold methanol with 0.2mM 

Na3VO4 to further remove non-protein contaminants and re-suspended in the original 

extraction buffer. Proteins were then digested with Lys-C (Wako Chemicals, 125-05061) 

at 37o C for 15 minutes then diluted 8-fold with 1M urea containing 100mM Tris and 

secondarily digested with trypsin (Roche, 03 708 969 001) for 4 hours. Digested 

peptides were purified on Waters Sep-Pak C18 cartridges and eluted with 60% 

acetonitrile. TMT-10 labelling was performed in 50% acetonitrile/150mM Tris, pH 7 and 

checked by LC-MS/MS to confirm > 99% efficiency. Labelled peptides from each time 

point sample were pooled together for 2D-nanoLC-MS/MS analysis. An Agilent 1100 

HPLC system was used to deliver a flow rate of 600 nL min-1 to a custom 3-phase 

capillary chromatography column through a splitter. Column phases employed 
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consisted of a 30 cm long reverse phase (RP1: 5 µm Zorbax SB-C18, Agilent), 8 cm 

long strong cation exchange (SCX: 3 µm PolySulfoethyl, PolyLC), and 40 cm long 

reverse phase 2 (RP2: 3.5 µm BEH C18, Waters) coupled with an electrospray tip of 

fused silica tubing pulled to a sharp point (inner diameter <1 um). Peptide mixtures were 

loaded onto RP1, the 3 column sections were joined and mounted on a custom 

electrospray adapter for on-line nested elution. Peptides were eluted from the RP1 

section to SCX section using a 0 to 80% acetonitrile gradient for 60 minutes, and then 

are fractionated by the SCX column section using a series of 20 step salt gradients of 

ammonium acetate over 20 min, followed by high-resolution reverse phase separation 

on the RP2 section of the column using an acetonitrile gradient of 0 to 80% for 150 

minutes. Spectra were acquired on a Q-exactive-HF mass spectrometer (Thermo 

Electron Corporation, San Jose, CA) operated in positive ion mode with a source 

temperature of 275 °C and spray voltage of 3kV. Automated data-dependent acquisition 

was employed of the top 20 ions with an isolation window of 1.0 Da and collision energy 

of 30. The mass resolution was set at 60,000 for MS and 30,000 for MS/MS scans, 

respectively. Dynamic exclusion was used to improve the duty cycle. The raw data was 

extracted and searched using Spectrum Mill vB.06 (Agilent Technologies). MS/MS 

spectra with a sequence tag length of 1 or less were considered to be poor spectra and 

were discarded. The remaining MS/MS spectra were searched against maize a 

collective database of all B73 v2 WGS genes and all v4 genes. Search parameters 

were set to Spectrum Mill’s default settings with the enzyme parameter limited to full 

tryptic peptides with a maximum miscleavage of 1. A 1:1 concatenated forward-reverse 

database was constructed to calculate the false discovery rate (FDR). Proteins that 
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share common peptides were grouped using principles of parsimony to address protein 

database redundancy. Proteins observed are in Table S39. 

3.4.3 Quantitation of gene body methylation level and creation of model 

methylation features 

Whole genome bisulfite sequencing data generated from maize inbred B73 leaf 

was previously published (Li et al., 2015). B73 leaf-derived WGBS sequencing data 

previously published mapped to maize reference genome v2, was then remapped to 

maize reference genome version v4. Data mapped to different genome versions was 

handled separately. Gene body methylation level was calculated as described 

previously with slight modifications (Sartor et al., 2019 [In Review]). In brief, the 

proportion of methylated cytosines to unmethylated cytosines was calculated in 100 bp 

non-overlapping tiles across the maize B73 and Mo17 genomes. Genes with 

methylation coverage across less than 60% of the gene body length were discarded. 

Gene models were taken from maize B73 5a WGS (RefGen_v2) and B73 AGPv4.36 

(RefGen_v4; accessed ensemblPlants 10/4/18) annotations. For B73 v4, both 

annotated genes and long noncoding RNAs were used as gene models. Gene models 

were binned into non-overlapping fifths (“bins”). Methylation level of 100 bp tiles 

overlapping with gene model bins was averaged to calculate methylation level of 

individual bins. Methylation levels of annotated exons and introns within each bin were 

separately calculated by the same process. Gene models with missing genomic 

features (e.g. no introns in a given bin) or no methylation data within single features 

were assigned a methylation level of 0.5 for the missing features, representing neither 

hypo- nor hyper-methylation. The methylation level across gene model genomic 
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features served as the observed features for random forest model creation. Model 

features for B73 v2 and v4 were collectively joined to create a feature set encompassing 

both v2 and v4 gene models. The quantified methylation features for v2/v4 express-

ability classifiers are found in Table S40.  

3.4.4 Identification of class variables for model training and testing 

For each inbred, two classifiers were created, the expressible protein classifier 

(“EPC”) and the expressible RNA classifier (“ERC”). For the B73 EPC, the positive class 

consisted of genes with proteins identified from proteomics data from the primary root, 

searched against a collective database containing both B73 v2 and v4 gene models, 

and for which mRNA abundance was high (RPKM>=1) (Figure 1, Table S39). The 

negative case of the v2/v4 B73 EPC consisted of genes without detectable protein nor 

detectable mRNA (v2 RNA: Walley et al., 2016; V4 RNA: Zhou et al., 2018).  

3.4.5 Creation of classifiers 

Classification models were built as described previously (Sartor et al., 2019 

[under revision]) using random forest machine learning algorithm (Breiman, 2001). In 

brief, random forest models were built using methylation matrices described above as 

the training data features and gene expression classification at the RNA level (ERC) or 

protein level (EPC) as the classification factors. For the ERC, the expressed gene set 

consisted of gene models with high gene expression (RPKM=>1) and unexpressed 

gene set consisted of gene models with undetected RNA. For the EPC, the expressed 

gene set consisted of gene models with high RNA as well as detected protein, and the 

unexpressed gene set consisted of gene models with high RNA without detected 

protein. Classifier performance was determined by using random out-of-bag cross-



 104 

validation, to determine true and false classifications, as implemented in the random 

forest R package (Breiman, 2001). 

3.4.6 Classification of expressibility of maize v2/v4 genes 

Genes were defined as expressible or silent based on the proportion of votes of 

each classifier (Table S41). Genes with a proportion of votes >0.5 were defined as 

expressible. Genes expressible at the RNA and protein level were separately defined 

using the proportion of votes from the ERC and EPC classifiers, respectively.  

3.4.7 Additional data analysis 

Maize v2/v4 “equivalent” genes were determined based on maizeGDB.com 

conversion table between for v2 accessions (accessed 12/14/18). Venn diagrams were 

created using the “Vennerable” R Package (Swinton, 2009). ROC and PR curves were 

plotted and the areas under the curve were calculated using R packages “Stringr” and 

“ROCR” (Sing et al., 2005; Wickham, 2018) 
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