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Renormalization group approach to spinor Bose-Fermi mixtures in a shallow optical lattice
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1Theoretical Physics Department, Indian Association for the Cultivation of Science, Kolkata 700032, India
2Department of Physics and Astronomy, University of California, Riverside, California 92521, USA

(Received 22 July 2011; published 10 October 2011)

We study a mixture of ultracold spin-half fermionic and spin-one bosonic atoms in a shallow optical lattice
where the bosons are coupled to the fermions via both density-density and spin-spin interactions. We consider the
parameter regime where the bosons are in a superfluid ground state, integrate them out, and obtain an effective
action for the fermions. We carry out a renormalization group analysis of this effective fermionic action at low
temperatures, show that the presence of the spinor bosons may lead to a separation of Fermi surfaces of the
spin-up and spin-down fermions, and investigate the parameter range where this phenomenon occurs. We also
calculate the susceptibilities corresponding to the possible superfluid instabilities of the fermions and obtain their
possible broken-symmetry ground states at low temperatures and weak interactions.
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I. INTRODUCTION

The remarkable experimental achievements in the field of
ultracold atom physics have made it possible to generate mix-
tures of fermionic atoms with different spin populations,1 as
well as mixtures of fermionic and bosonic atoms in a trap2 that
can also be loaded on optical lattices.3 Multispecies fermions
with unequal densities have also been extensively studied not
only in cold atom systems, but also in electronic materials,
such as the magnetic-field-induced organic superconductors4

and other correlated fermion systems,5 as well as in the
context of color superconductivity in dense quark matter.6

Bose-Fermi mixtures present a rich phase diagram and have
also been the subject of intense research.7–17 Several studies on
such mixtures have been restricted to either one-dimensional
systems8 or to cases where the coupling between the bosons
and the fermions are weak.14–16 The existence of a supersolid
phase in these system in such a weak coupling regime has
been predicted.11 Phase separation9 and phases with staggered
currents10 have also been investigated. Some of the other
studies,7 which have looked at the strong coupling regime,
have restricted themselves to integer filling factors of bosons
and fermions or considered a description of these systems at
half filling either by using analytical slave-boson mean-field
technique12 or numerical dynamical mean-field theory.13

An interesting aspect of the study of quantum mixtures is
that one species of atoms may mediate interactions among
atoms of the other species. In a Bose-Fermi mixture where
the bosons form a Bose-Einstein condensate (BEC), quantum
fluctuation of the BEC can mediate long-range attractive
interaction between the fermions.14–16 Conversely, in another
regime, fermions can be viewed as mediating an effective long-
range interaction between the bosonic atoms.9 In this work
we investigate the problem of partially polarized fermions
(unequal spin populations) in the presence of mediated
interaction due to quantum fluctuations of a BEC of bosonic
atoms. Starting from fermions with equal spin populations, we
show that the spin asymmetry of the fermion filling factors
can arise due to coupling to a spinor BEC. Spinor boson
BEC systems have been studied both experimentally18 and
theoretically.19,20 In particular, the phases and low-energy
excitations of such a system are well known. Here we consider

the effect of coupling of these excitations to the fermionic
atoms in the mixture.

An important tool for understanding the phases of interact-
ing fermions is the renormalization group (RG) technique.21 It
has been applied to study the phase diagram of a Bose-Fermi
mixture with fermion interactions mediated by fluctuations of
the boson BEC, on square and triangular lattices.15 The RG
for fermions has also been extended to frequency-dependent
interactions,22 where retardation effects are important.16,23 In
this work, we use the RG technique to study a mixture of
ultracold spin-half fermionic and spin-one bosonic atoms in a
shallow optical lattice in two dimensions where the bosons are
coupled to the fermions via both density-density and spin-spin
interactions. The main aim of our study is to understand the
effect of an interspecies on-site SU(2) invariant spin-spin
interaction on the phases of this system. We consider the
parameter regime where the interaction between the bosons
and the fermions is weak and the bosons are in a superfluid
state. We then start with a mean-field treatment of the bosons
and include quantum fluctuations to first order within a 1/N

approximation. After a suitable Bogoliubov transformation,
the bosonic modes are integrated out, and an effective action
for the fermions is obtained. We find that, when the bosons
are in a spinor superfluid state, the spin-spin interaction leads
to an effective fermionic action with shifted Fermi surfaces
for the up- and down-spin fermions. We then carry out a RG
analysis of this effective fermionic action at low temperature
and chart out the fate of such a shift under RG flow for different
parameter regimes. We also calculate the susceptibilities
corresponding to the superfluid instabilities of the fermions
and obtain the possible broken-symmetry fermionic ground
states at low temperature and weak interactions. In particular,
we show that the leading instability for the fermions with
attractive interaction and circular Fermi surface occurs in the
triplet superfluid channel.

The organization of the rest of the paper is as follows.
In Sec. II, we introduce the model Hamiltonian for the
Bose-Fermi mixture and derive the effective fermionic action.
In Sec. III, we obtain the RG equations for the fermionic
self-energy and interactions from this action. Next, in Sec. IV,
we analyze the RG flow of different susceptibilities. Finally,
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we present a discussion of our main results and conclude
in Sec. V.

II. EFFECTIVE FERMIONIC HAMILTONIAN

The Hamiltonian of a ultracold Bose-Fermi mixture in a
shallow square optical lattice is given by H = HF + HB +
HBF . The fermionic part of the Hamiltonian HF is given by

HF =
∑
kσ

(εk − μF )f̃ †
kσ f̃kσ

+
∑

q,k,k′,σ

U 1
q f̃

†
k′−q,σ f̃k′,σ f̃

†
k+q,σ f̃k,σ

+
∑

q,k,k′,σ

U 2
q f̃

†
k′−q,σ f̃k′,σ f̃

†
k+q,σ̄ f̃k,σ̄ , (1)

where f̃kσ (f̃ †
kσ ) is the annihilation (creation) operator for the

fermions, μF denotes their bare chemical potential (taken to
be independent of the spin of the fermions), U

1(2)
q denotes

the bare interaction between the fermions on the same
(separate) Fermi surfaces, εk = −2tF [cos(kxa) + cos(kya)]
is the fermion dispersion, tF is the hopping amplitude of
the fermions between the neighboring sites, σ̄ =↓ (↑) for
σ =↑ (↓), and a is the lattice spacing. For later use, we define
the two-component fermionic field φi = (f̃i↑,f̃i↓)T and use
it to represent the fermionic spin density SF

iγ = φ
†
i σγ φi and

number density nF
i = φ

†
i φi , where �σ = (σx,σy,σz) denotes the

Pauli matrices.
The Hamiltonian HB for the spinor bosons is given by20

HB = −tb
∑

〈i,j〉,α
b̃

†
iαb̃jα + Ub0

2

∑
i,α

nB
iα

(
nB

iα − 1
)

+ Ub2

2

∑
i,α

[(
SB

i

)2 − 2nB
iα

] − μB

∑
i,α

nB
iα, (2)

where α = −1,0,1 denotes the azimuthal spin quantum num-
ber of the bosons, b̃iα (nB

iα = b̃
†
iαb̃iα) is the bosonic annihilation

(density) operator, tb is the boson hopping amplitude between
neighboring sites, Ub0 and Ub2 denote the on-site boson inter-
action strengths in the spin-0 and spin-2 channels, respectively,
and μB is the chemical potential for the bosons. The spin
density of these bosons can be expressed in terms of the
generators of spin-one matrices: SB

i = b̃
†
iαλαβ b̃iβ . The detailed

expression for the generators λ is given in the Appendix .
The most general SU(2) invariant on-site interaction be-

tween the bosons and the fermions is represented by HBF .
Note that since the fermions carry spin half, conservation of
azimuthal quantum number ms does not preclude an on-site
spin-spin interaction between the bosons and the fermions.
Thus, we consider the Hamiltonian HBF to be of the form

HBF = Uss

∑
i

SF
i · SB

i + Udd

∑
i

nF
i nB

i . (3)

In what follows, we are going to consider the parameter regime
Uss � Udd 	= 0. We note that the presence of a nonzero Uss

is a key feature of the subsequent analysis carried out in this
work.

The analysis of the coupled Bose-Fermi system is most
easily done in terms of coherent state path integrals. Following

a standard prescription, we write the partition function of the
system as

Z =
∫

D[b]D[b∗]D[f ]D[f ∗]e−S[f,f ∗,b,b∗],

S = SB + SF + SBF ,

SB = − 1

β

∑
	n

[∑
k

[b∗(k,	n)i	nb(k,	n)] − HB[b∗,b]

]
,

SF = − 1

β

∑
ωn

[∑
k

[f ∗(k,ωn)iωnf (k,ωn)] − HF [f ∗,f ]

]
,

SBF = 1

β

∑
ωn,	n

HBF , (4)

where b = (b1,b0,b−1) [f = (f↑,f↓)] denotes bosonic
[fermionic] fields, 	n (ωn) denotes bosonic (fermionic)
Matsubara frequencies, and β = 1/kBT , with T being the
temperature and kB the Boltzmann constant.

We begin with the analysis of SB . We transform the
Hamiltonian written in Eq. (2) into x,y,z basis by using the
following relations:

b∗
x = 1√

2
(b∗

−1 − b∗
1),

b∗
y = i√

2
(b∗

−1 + b∗
1), (5)

b∗
z = b∗

0 .

We assume that the bosonic spinor system is deep in the
BEC state. The standard procedure for analyzing such a BEC
involves expressing the bosonic field b as

bα(q,i	n) = �0αδq,0 + aα(q,i	n), (6)

where �0α = 〈bα(q = 0,	n = 0)〉, and expanding SB to order
O(a2

α). The mean-field equation for the condensate is then
obtained by imposing the coefficient of a0 and a

†
0 to be zero.

This analysis yields

�∗
0α

[
−4tb +

(
n0 − 1

2

)
Ub0 + (n0 − 1)Ub2 − μb

]
− Ub2

N

∑
β 	=α

(�∗
0β)2�0α = 0, (7)

where we have introduced the condensate density n0 = Nb/N ,
with Nb being the total number of bosons in the system and N

the total number of lattice sites. As shown in a previous study,
Eq. (7) supports two solutions.20 The first is a ferromagnetic
phase with

�ferro =
√

n0N/2(1, ± i,0)T , (8)

while the other is a polar phase with �polar = √
n0N (1,0,0)T .

The ferromagnetic state becomes energetically favorable for
Ub2 < 0 and in the rest of the paper we concentrate on this
regime and work with the solution �ferro = √

n0N/2(1,i,0)T ,
which corresponds to 〈b1〉 	= 0. The choice of one of the
these two solutions can be easily seen to be the effect of
any stray magnetic field that might be present in a realistic
experimental system. We note that for the polar phase, the
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FIG. 1. Schematic representation of the separation between the
up- and the down-spin Fermi surface. δKF = (KF↓ − KF↑) is the
difference between the magnitudes of the up- and the down-spin
Fermi momenta.

low-energy physics of the Bose-Fermi mixture is identical to
its counterpart with spinless bosons.15,16

A detailed analysis of SB when the bosons are in the
ferromagnetic phase is carried out in the Appendix and leads
to the expression for SB [Eq. (A1)], which is quadratic in
the fluctuation fields aα(q,i	n). Thus, using Eq. (A1) and
Eq. (3), one can integrate out the boson degrees of freedom
and obtain, after a straightforward but tedious calculation, an
effective action for the fermions,

Seff = − 1

β

∑
iωn

[ ∑
k

f ∗
k,σ [iωn − εk + μFσ ]fk,σ

−
∑

k,k′,q,σ

Ũq,σσ f ∗
k+q,σ fk,σ f ∗

k′−q,σ fk′,σ

−
∑

k,k′,q

Ũq,↑↓f ∗
k+q,↑fk,↓f ∗

k′−q,↓fk′,↑

]
, (9)

where μFσ = μF − [n0Uss(sgnσ ) + Uddn0], and sgnσ =
1(−1) for σ =↑ (↓). Thus, the spin-spin interaction between
the bosons and the fermions leads to an effective shift between
the spin-up and spin-down Fermi surfaces, as shown in Fig. 1,
at the mean-field level. The sign of the shift depends on the
choice of one of the two solutions given by Eq. (8); for
our choice �ferro = √

n0N/2(1,i,0)T , the down-spin Fermi
surface is enhanced compared to the up-spin one, as shown
in Fig. 1. The effective interactions Ũq,σσ and Ũq,↑↓ are given
by

Ũq,σσ = U 1
q − n0

2
[Udd + (sgnσ )Uss]

2χq,σσ , (10)

Ũq,↑↓ = U 2
q + n0

2

(
U 2

dd − U 2
ss

)
χq,↑↓, (11)

where

χq,σσ ′ = ξq,σσ ′ − 2Ub2n0

(ξq,σσ ′ − 2Ub2n0)2 + 	2
n

, (12)

and ξq,σσ ′ = −2tb[cos(qxσσ ′) + cos(qyσσ ′) − 2] is the boson
dispersion at the wave vector qx[y]σσ = KFσ cos(θ )[sin(θ )],
qx[y]σ σ̄ = (KFσ + KFσ̄ ) cos(θ )[sin(θ )]/2. Here we have set
the lattice spacing a = 1, KFσ is the magnitude of the Fermi
wave vector for electrons with spin σ , and we have restricted
ourselves to the regime where |KF↑ − KF↓| � KF↑,KF↓.
This restricts the validity of our analysis to the parameter
regime μF � Uss . Note that Ũq,↑↓ represents the amplitude of
scattering between fermions on separate Fermi surfaces, while

scattering processes represented by Ũq,σσ involve fermions on
the same Fermi surface. For the rest of the paper, we ignore the
retardation effects of the effective interaction and shall thus set
	n = 0 and restrict ourselves to circular Fermi surfaces with
small effective shifts between them (as shown in Fig. 1).

Next, following standard procedure outlined in Ref. 21, we
antisymmetrize Ũq,σσ with respect to the interchange k1 ↔
k2 and k3 ↔ k4 (where, k1 = k′, k2 = k, k3 = k′ − q, k4 =
k + q). Further, following Ref. 21 and using the circular
nature of the Fermi surface, we consider fermion scattering
only in the forward (k1 = k4 and k2 = k3) and BCS (k2 =
−k1 and k4 = −k3) channels. The contribution of Ũq,σσ to
these channels can be computed from Eqs. (11) and (12).
Denoting interaction couplings in these channels by F̃σσ (θ12)
and Ṽσσ (θ13), respectively, we find that

F̃σσ (θ12) =
[
U0 − n0

(
Udd + (sgnσ )Uss

2n0Ub2

)2

K2
Fσ

]
×[1 − cos(θ12)], (13)

Ṽσσ (θ13) =
[
U0 − n0

(
Udd + (sgnσ )Uss

2n0Ub2

)2

K2
Fσ

]
× cos(θ13), (14)

where, θ12(θ13) is the angle between k1 and k2(k3) and U0(1 −
cos(θ12))[U0 cos(θ13)] denote the value of U 1

q for the forward
[BCS] channels. Note that in obtaining Eq. (13) and (14), we
have explicitly antisymmetrized the contribution of χq,σσ in
Eq. (10).

The contributions of Ũq,↑↓ in the forward and the BCS
channels can also be computed in a similar manner and are
given by

F̃↑↓(θ12) = n0
(
U 2

dd − U 2
ss

)
4K2

F,↑↓[1 − cos(θ12)] − 4n0Ub2
,

(15)

Ṽ↑↓(θ13) = n0
(
U 2

dd − U 2
ss

)
4K2

F,↑↓ cos(θ13) − 4n0Ub2
,

where, KF,↑↓ = (KF↑ + KF↓)/2 and we have set the contri-
bution of U 2

q to the forward and BCS channels to zero. We
have checked explicitly that the finite value of U 2

q does not
alter the qualitative conclusions of the work.

III. RG EQUATIONS FOR SELF-ENERGY
AND COUPLINGS

In this section, we carry out a RG analysis of Seff adapting
one-loop Wilsonian RG using a path integral approach. The
details of this approach are outlined in several past works.21–23

The key idea behind such a procedure is to consider Seff as
the starting fermionic action at a high-energy cutoff scale
�, perform Wilson RG on this action, and derive the flow
equations for the effective interactions and fermionic self-
energy. It is well known21 that for a circular Fermi surface as
considered here, only the interaction in the BCS channels (V )
flow under RG and that the key contribution to the fermionic
self-energy within one-loop RG comes from the forward
channels (F ). As we shall see, such a RG procedure allows us
not only to infer the possible instabilities of the system at low
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FIG. 2. (a) Schematic representation of the effective fermionic
interaction Ũ (left) as sum of the bare interaction U0 and the
contribution from the bosons. (b) Diagrammatic representation of
the RG flow equation for the self-energy (�σ ) correction which
receives contribution from the interaction in the forward channel
F . (c) Diagrammatic representation for the RG flow equations for V .
We use the simplified notation 1 = k′, 2 = k, 3 = k′ − q, 4 = k + q,
and σ and σ ′ take values of ↑ and ↓.

energies (which can also be done, for example, by starting from
an effective low-energy Hamiltonian with separated Fermi
surface and using a Thouless criterion calculation24) but also
to keep track of the fate of the shift of the opposite spin Fermi
surface as the RG flow takes us to lower energy scales.

Using these facts, the relevant diagrams for the contribution
to the self-energy and the effective interactions in the present
model [Eq. (9)] can be easily found. These are shown in Fig. 2.
The RG equations for the interactions and the fermionic self-
energy, as obtained from these diagram in Fig. 2, are given
by

d�σ (θ )

d�
= − 1

2π

∫
θ ′ωn

(KFσ F̃σσ (θ ′ − θ )Gσ (ωn,θ
′)

+KFσ̄ F̃↑↓(θ ′ − θ )Gσ̄ (ωn,θ
′)), (16)

dṼσσ (θ1 − θ3)

d�
= −KFσ

2π

∫
θωn

Ṽσσ (θ1 − θ )Ṽσσ (θ − θ3)

×Gσ (ωn,θ )Gσ (−ωn,θ + π ), (17)

dṼ↑↓(θ1 − θ3)

d�
= −KF↑↓

2π

∫
θωn

Ṽ↑↓(θ1 − θ )Ṽ↑↓(θ − θ3)

×G↓(ωn,θ )G↑(−ωn,θ + π ), (18)

where we have carried out the integrals over the radial momen-
tum perpendicular to the circular Fermi surface, � = �0e

−� is
the RG cutoff, �0 < EF is the cutoff in the beginning of the RG
flow, � is the RG time,

∫
θ ′ωn

= 1/β
∑

iωn

∫
dθ ′/(2π ) denotes

frequency sum and integral over transverse momenta over the
Fermi surface, �σ (θ ) denotes the self-energy for fermions
with spin σ and momentum k = [KFσ cos(θ ),KFσ sin(θ )],
KF,σσ = (KF↑ + KF↓)/2, εσ (θ ′) is the fermion dispersion
on the Fermi surface with spin σ , and the fermion Green’s
function, evaluated on the Fermi surface for spin σ electrons,
is given by

Gσ (ωn,θ ) = {iωn − [εσ (θ ) − μσ ] − �σ (θ )}−1 . (19)

Before solving Eqs. (16)–(18) numerically, we note that
εσ (θ ) = −2t{cos[KFσ cos(θ )] + cos[KFσ sin(θ )]} have a very
weak θ dependence. Further, the integration F̃σσ ′(θ ′ − θ )
over θ ′ for a complete cycle renders it independent of θ as
well. Consequently, �σ becomes independent of θ . Thus,
at low temperature,

∑
ωn

Gσ (ωn,θ )Gσ ′(−ωn,θ + π ) becomes
practically independent of θ . Using this fact, it is possible
to express Eqs. (16)–(18) in the angular momentum channels
denoted by l to obtain

d�l
σ

d�
= − 1

2π

(
KFσ F̃ l

σσGl
σ + KFσ̄ F̃ l

↑↓Gl
σ̄

)
, (20)

dṼ l
σσ

d�
� −KFσ Jσσ

2π

(
Ṽ l

σσ

)2
, (21)

dṼ l
↑↓

d�
� −KF↑↓J↑↓

2π
(Ṽ l

↑↓)2, (22)

where Ṽ l
σσ ′[F̃ l

σσ ′] and Gl
σ are given by

Ṽ l
σσ ′[F̃ l

σσ ′] =
∫ 2π

0

dθ

2π
eilθ Ṽσσ ′(θ )[F̃ l

σσ ′(θ )], (23)

Gl
σ =

∫ 2π

0

dθ

2π
eilθ

⎛⎝1/β
∑
iωn

Gσ (ωn,θ )

⎞⎠ ,

Jσσ = 1

β

∑
iωn

Gσ (ωn,θ )Gσ (−ωn,θ + π ),

J↑↓ = 1

β

∑
iωn

G↑(ωn,θ )G↓(−ωn,θ + π ). (24)

Next we solve the RG equations for self-energy and couplings
numerically for a temperature βtF = 10. We have carried out
the numerical solution of both Eqs. (16)–(18) and Eqs. (20)–
(22) and checked that these yield identical results confirming
our observation on the absence of θ dependence of Jσσ and
J↑↓. For the numerical solution of these equations, we have
scaled all the energy parameters in units of 2tF . We note
that at the one-loop level, the effect of �σ is to renormal-
ize the chemical potential μFσ and hence their difference:
δμ = |μF↑ − μF↓ + �l

↑ − �l
↓| = |δμint + �l

↑ − �l
↓|, where

δμint = μF↑ − μF↓ = −2n0Uss . In Figs. 3 and 4, we show the
variation of δμ as a function of the RG time � for U0 = ±0.3,
n0 = 0.9, Ub2 = −0.08, and three different representative
values of δμint. We find that the RG flow is essentially
controlled by the induced interaction part of Fσσ ′ and displays
little dependence on U0. The separation between the Fermi
surfaces is always amplified and the spin-up and spin-down
Fermi surfaces flow away from each other. This signifies a
possibility of either a ferromagnetic or triplet superfluid (with
equal-spin pairing) instabilities of the system. Note that such
instabilities, in case they occur, have their root in the initial
separation of the opposite spin Fermi surfaces and hence can
be attributed to the spin-spin coupling between the fermions
and the spinor bosons.

Next we plot the variation of the couplings with the
RG cutoff � in Figs. 5 and 6 for δμint = −0.05, n0 = 0.9,
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FIG. 3. (Color online) Plot of δμ versus �, for l = 0, n0 = 0.9,
Ub2 = −0.08, U0 = −0.3 for several values of δμint = −0.05 (green
line with triangles), δμint = −0.03 (red line with circles), and
δμint = −0.01 (black line with squares).

Ub2 = −0.08, and U0 = −0.3. We find that Ṽ↑↓ does not flow
appreciably under RG, which is a consequence of lack of
scattering between Fermi surfaces with opposite spins. The
flow of Ṽσσ shows an increase of their magnitude, indicating a
flow toward strong coupling regime which cannot be accessed
by our perturbative RG analysis. We note here that all our
qualitative results remain unchanged for Udd � Uss . We have
restricted Uss/Udd to be small in the present work since this
parameter regime is most likely to be realized in experimental
systems. However, we point out that the separation of the
opposite spin Fermi surface requires the presence of nonzero
Uss ; it remains finite for Udd/Uss = 0 but vanishes for
Uss/Udd = 0.

FIG. 4. (Color online) Same as in Fig. 3 but with U0 = 0.3.

FIG. 5. (Color online) RG flow of the couplings Ṽ↑↑ (black line
with squares) and Ṽ↓↓ (red line with circles) for l = ±1, U0 = −0.3,
Ub2 = −0.08, δμint = −0.05, and n0 = 0.9.

IV. RG FLOW OF THE SUSCEPTIBILITIES

In this section, we consider the RG flow for the possible
instabilities of the fermionic models. In particular, we consider
the singlet and equal-spin paired triplet superfluid (SSF and
TSF) instabilities25 of the metallic phase of the fermions due
to the induced interaction. This choice is motivated by the
fact that for circular Fermi surfaces considered here we do
not have nesting and hence do not expect to have instabilities
in the 2kF spin- or charge-density wave channels. It is well
known that the onset of such instabilities are signaled by the
divergence of the corresponding static susceptibilities under
RG flow.26

The flow equations for the static susceptibilities can be
derived using standard techniques as elaborated in Refs. 26, 23,

FIG. 6. (Color online) RG flow of the coupling Ṽ↑↓ (black line
with squares for l = 0) and Ṽ↑↓ (red line with circles for l = ±1) for
U0 = −0.3, Ub2 = −0.08, δμint = −0.05, and n0 = 0.9.
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FIG. 7. Diagrammatic representation of the renormalization of
vertices and the susceptibilities in the BCS channel.

and 16. As outlined in these works, the response function can
be calculated by introducing a source term in the action

Sh = −
∑

q

hδ�δ, (25)

where δ takes values SSF or TSF corresponding to the singlet
or equal-spin triplet pairings:

�SSF =
∑
σ,k

(sgnσ )fσ (k)fσ̄ (−k) and

(26)
�TSF = fσ (k)fσ (−k),

are the order parameters for singlet and triplet superfluidity,
respectively, and hδ is the external field of type δ. The
corresponding response function is given by

χδ = 〈�δ∗
�δ〉 = δ(2)lnZ[h]

δhδ∗
δhδ

∣∣∣∣
h=0

, (27)

where Z[h] denotes the partition function in presence of the
source term. The RG process generates correction to the source
field h along with the higher-order terms in the source field.
At any RG time �, the total action S� can be written as

S� = S0
� −

∫
dt [zδhδ�δ − hδ∗

h(q)χδ], (28)

where S0
� is the action at RG time � without the external field

h and the coefficient zδ is the effective vertex of type δ.
The relevant one-loop diagrams representing the RG

equations for the vertices zδ and the susceptibilities χδ are
schematically shown in Fig. 7. The corresponding one-loop
flow equations for zδ and χδ are given by

dzTSF
l,σσ

d�
= −KFσ

2π
Jσσ Ṽ l

σσ zTSF
l,σσ ,

dχTSF
l,σσ

d�
= KFσ

2π
Jσσ

(
zTSF
l,σσ

)2
,

(29)
dzSSF

l

d�
= −zSSF

l

∑
σ

KF,σ σ̄

2π
(sgnσ )Jσσ̄ Ṽ l

σ σ̄ ,

dχSSF
l

d�
= (

zSSF
l

)2 ∑
σ

KF,σ σ̄

2π
Jσσ̄ ,

where we have used the θ independence of Jσσ and J↑↓.
We solve these equations numerically for βtF = 10. The
results are shown in Fig. 8 for U0 = −0.3 for SSF and

FIG. 8. (Color online) RG flow for the static susceptibilities for
U0 = −0.3. The blue line with triangles and the black line with
squares indicate RG flow of the susceptibilities for the triplet BCS
channels χTSF

l,↓↓(l = ±1) and χTSF
l,↑↑(l = ±1), respectively. The red line

with circles indicates RG flow of the susceptibility for the singlet
BCS channel χSSF

l (l = 0).

TSF instabilities. We find that the χTSF
l,↓↓ instability shows

a divergence around � � 80, indicating an instability of
the metallic ground states against triplet down-spin pairing
superfluid ground state. This is an expected consequence of
the growing separation of the Fermi surfaces which prevents
opposite spin SSF pairing and hence favors down-spin TSF
state. Thus, we conclude that the most dominant instability of
the Fermi superfluid with an attractive interaction is TSF with
down-spin pairing. We note that our RG analysis cannot predict
the subsequent fate of the system once the superfluid instability
has set in. The system may either end up with a spin-up
metallic Fermi surface coexisting with a triplet superfluid
of spin-down fermions or the superfluidity in the spin-down
channel may induce a superfluid instability for the spin-up
fermions via a momentum-space proximity effect. The latter
effect is somewhat similar to that seen for multiband ruthenate
superconductors.27 We leave a more thorough analysis of these
possibilities as a subject of future study.

V. CONCLUSION

In conclusion, we have studied a mixture of spinor boson
and fermion in a shallow 2D optical lattice using RG and have
shown that the presence of an on-site spin-spin interaction
between the bosons and the fermions leads to a separation
of Fermi surface of the spin-up and spin-down fermions
irrespective of the nature of the bare interaction between
the fermions provided that the bosons are in the spinor
condensate state. Such a separation, depending on the density
of the fermions, may give rise to a net spin polarization for the
Fermi superfluid. Further, for attractive interaction between
these fermions, we have shown that the leading instability of
the metallic state of the fermions lies in the TSF channel with
down spin pairing. In particular, we predict that for fermions
coupled to a spinor bosonic condensate in its ferromagnetic
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phase via a spin-spin interactions, attractive interactions will
induce a down-spin triplet pairing superfluid instability over
the otherwise more common singlet pairing instability. We
note that this phenomenon is in contrast to the fermions
coupled to either a spinless boson condensate or a spinor boson
condensate in its polar phase.
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APPENDIX: EFFECTIVE QUADRATIC HAMILTONIAN
FOR SPINOR BOSON

The generators λ+, λ− for spin-one bosons can be obtained
from the spin-rotation matrices in x,y and z basis. In this basis
we have

Sx = 1√
2

⎛⎜⎝0 1 0

1 0 1

0 1 0

⎞⎟⎠, Sy = 1√
2

⎛⎜⎝0 −i 0

i 0 −i

0 i 0

⎞⎟⎠,

and Sz =

⎛⎜⎝1 0 0

0 0 0

0 0 −1

⎞⎟⎠.

This yields, using λ± = Sx ± iSy ,

λ+ =

⎛⎜⎝0
√

2 0

0 0
√

2

0 0 0

⎞⎟⎠, λ− =

⎛⎜⎝ 0 0 0√
2 0 0

0
√

2 0

⎞⎟⎠ ,

and λz = Sz.
The action SB when the bosons are in the ferromagnetic

phase can be written using Refs. (2) and (4) as

SB = − 1

β

∑
	n

{∑
k

[a∗
α(k,	n)i	naα(k,	n) − H ′

B[a∗,a]

}
.

(A1)

H ′
B is the quadratic Hamiltonian for spinor boson in ferromag-

netic phase and given by

H ′
B =−n2

0

2
(Ub0+Ub2)N +

∑
k,α

[
ξk+n0

2
(1−δαz)(Ub0 − Ub2)

]
× a

†
kαakα − n0

2
(Ub0 + 3Ub2)

∑
k

i(a†
kxaky − a

†
kyakx)

+ n0

4
(Ub0 + Ub2)

∑
k

(akxa−kx + a
†
kxa

†
−kx − akya−ky

− a
†
kya

†
−ky) + n0

2
(Ub0 + Ub2)

∑
k

i(a†
kxa

†
−ky − akxa−ky),

(A2)

where, ξk = εk + 4tb = −2tb[cos(kxa) + cos(kya) − 2]. We
then decouple the boson fields using Eq. (7) and expand
about the ferromagnetic condensate saddle point to obtain the
quadratic effective action for the bosons. This action has the
form

Seff
B = − 1

β

∑
	n

∑
k

A∗(k,	n)G−1
B A(k,	n), (A3)

where A(k,	n) denotes the fluctuating boson fields given
by

A∗(k,	n) = [a∗
x (k,	n),ax(−k,	n),a∗

y (k,	n),
(A4)

ay(−k,	n),a∗
z (k,	n),az(−k,	n)],

and G−1
B denotes the boson Green’s function given by

G−1
B = −

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

Pk− A −iB iA 0 0

A Pk+ −iA iB 0 0

iB iA Pk− −A 0 0

−iA −iB −A Pk+ 0 0

0 0 0 0 ξk− 0

0 0 0 0 0 ξk+

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
, (A5)

where, Pk± = ξk + n0
2 (Ub0 − Ub2) ± i	n, ξk± = ξk ± i	n,

A = n0
2 (Ub0 + Ub2), and B = n0

2 (Ub0 + 3Ub2). Using
Eqs. (A1) and (3), we integrate out the bosons by following
standard technique and obtain effective fermionic action as
written in Eq. (9).
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