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Standard models of the visual object recognition pathway hold that a largely feedforward
process from the retina through inferotemporal cortex leads to object identification.
A subsequent feedback process originating in frontoparietal areas through reciprocal
connections to striate cortex provides attentional support to salient or behaviorally-relevant
features. Here, we review mounting evidence that feedback signals also originate within
extrastriate regions and begin during the initial feedforward process. This feedback
process is temporally dissociable from attention and provides important functions such
as grouping, associational reinforcement, and filling-in of features. Local feedback signals
operating concurrently with feedforward processing are important for object identification
in noisy real-world situations, particularly when objects are partially occluded, unclear, or
otherwise ambiguous. Altogether, the dissociation of early and late feedback processes
presented here expands on current models of object identification, and suggests a dual
role for descending feedback projections.
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INTRODUCTION
Visual object recognition has traditionally been described as a
largely feedforward process that operates independently of and
prior to top–down signals that reflect strategic processing or
attentional effects. This standard model of object recognition
is supported by research that spans multiple levels of analy-
sis, including single- and multi-unit recording, computational
modeling, and behavioral experiments, all of which have been dis-
cussed in detail in recent reviews (e.g., Serre et al., 2007; DiCarlo
et al., 2012). Feedback projections, nearly equal in density to feed-
forward neurons throughout the ventral visual stream (Felleman
and Van Essen, 1991; Sporns and Zwi, 2004), are commonly
thought to subserve slower, attention-mediated processing that
happens after recognition processes are complete, but not the
core object recognition processing itself (Hochstein and Ahissar,
2002).

The proposal advanced in this paper is that these local,
recurrent feedback connections also provide an avenue for
rapid top–down signals that influence object recognition-related
processing as it is being carried out—well before the slower
attention-mediated processes. The theory is inspired by the
pioneering work of Dehaene et al. (2006) and Lamme (2003,
2006) in identifying the neural correlates of consciousness.
Both of these researchers’ theories dissociate between local
recurrent processing and top–down signals from frontopari-
etal areas in terms of the effects that they have on awareness.
The present work draws a similar distinction between top–
down, attention-mediated processing, and local recurrent pro-
cessing between hierarchically adjacent areas within the ventral
stream.

We support this distinction by first providing evidence that
there are two temporally dissociable processes operating on these
feedback projections; and second by presenting results show-
ing an important functional role for the earlier, local recurrent
processing.

EVIDENCE FOR A TEMPORAL DISSOCIATION OF LOCAL
RECURRENT AND TOP–DOWN PROCESSING
Top–down attention is known to be a consciously generated, exec-
utive signal originating in frontal and parietal areas (Thompson
et al., 2005; Bressler et al., 2008). Signals reflecting these strategic
processes do not manifest in early visual areas until 150–170 ms
after stimulus onset at the earliest, with most reported effects
occurring within the range of 200–300 ms (Mehta et al., 2000a,b;
Martinez et al., 2001; Noesselt et al., 2002). The relatively long
latency of attentional effects in early visual areas is thought to
arise from top–down signals that target late stages of the ven-
tral stream and then progress backward toward V1 (Buffalo et al.,
2010). Local recurrent processing can also be thought of as a
top–down process, except that the signal originates from within
the ventral stream itself, as opposed to frontal or parietal areas.
Local recurrent processing is completely involuntary and does
not require conscious execution, evidenced by its observation
in recordings from anesthetized animals (Roland et al., 2006;
Roland, 2010) and is simply a consequence of signal propaga-
tion through recurrent corticocortical connectivity. Specifically,
as soon as a given area responds, signals are routed both to
higher-level and lower-level connected areas. Feedback to imme-
diately lower levels occurs with very short latencies—as quickly
as 10 ms after the initial feedforward responses (Hupé et al.,
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2001; Pascual-Leone and Walsh, 2001)—and thus could plau-
sibly be underway after initial feedforward IT neural responses
(ca. 80–100 ms) but before the completion of the categorization
process (ca. 150 ms).

Recent research using methods that temporarily interfere with
cortical processing have revealed strong evidence that recurrent
feedback circuits are engaged during the first 80–150 ms of visual
processing. One line of evidence comes from experiments that
use transcranial magnetic stimulation (TMS) to temporarily pre-
vent a targeted brain area from responding. In a recent study,
Koivisto et al. (2011) used fMRI-localized TMS to selectively
inactivate V1/V2 while subjects categorized images according to
whether they contained an animal. The authors found that apply-
ing TMS to V1/V2 with stimulus onset asynchronies (SOAs) of
90–210 ms impaired categorization performance and subjective
perception of stimuli. Camprodon et al. (2010) observed simi-
lar results with TMS applied over V1 only, but found that there
were actually two windows of impairment with SOAs of 100 and
220 ms. Earlier work from Corthout et al. also found an early
window of activity with an SOA of around 100 ms during which
applying TMS over V1 impairs letter recognition (Corthout et al.,
1999a,b). Collectively, these experiments show that disruption
of processing in early visual areas around 100 ms after stim-
ulus presentation impairs visual recognition. Importantly, this
time window occurs after the earliest contributions of IT neu-
rons, opening up the possibility that the impairment is due to
the disruption of feedback to lower-level areas in influencing
the quality of object representations. Furthermore, several of
these studies found a second, later time window around 200 ms
during which TMS also impaired recognition. This later time
window coincides with the latency of spatial attention-mediated
processing (Mehta et al., 2000a,b; Martinez et al., 2001; Noesselt
et al., 2002; Buffalo et al., 2010), providing a temporal disso-
ciation from the rapid recurrent processing effects that are of
interest here.

Visual backward masking experiments have also identified a
similar time window for recurrent processing around 100 ms after
stimulus onset (Fahrenfort et al., 2007, 2008; Boehler et al., 2008).
In backward masking experiments, a first stimulus (the target) is
followed by a second stimulus (the mask) at a particular latency.
At very short latencies, backward masking can impair recogni-
tion of the target and in some cases, prevent it from reaching
awareness (Macknik and Livingstone, 1998). While the effect of
backward masking was initially accounted for with a feedfor-
ward explanation (Breitmeyer and Ganz, 1976), modern theories
of backward masking emphasize recurrent processing between
higher-level and lower-level areas (Enns and Di Lollo, 2000;
Lamme and Roelfsema, 2000; Wyatte et al., 2012a). Specifically,
if information about a target stimulus being processed in higher-
level areas is fed back down to lower areas, but a masking stimulus
is simultaneously being processed at that lower level, there will be
a fundamental mismatch in the information being processed at
each level (Lamme and Roelfsema, 2000). This mismatch causes
a decoupling in the functional connectivity (i.e., co-activation)
between the visual areas involved in processing the stimulus,
which has the psychological effect of greatly reduced perceptual
visibility (Dehaene et al., 2001; Haynes et al., 2005).

Boehler et al. (2008) combined a backward masking paradigm
with magnetoencephalography (MEG) recording to determine
the time course of recurrent feedback to V1 during a recogni-
tion task. On trials where subjects correctly recognized the target
stimulus (i.e., no impairment from the mask), there was modula-
tion of the V1 MEG signal from 100 to 120 ms. This modulation
occurred soon after (ca. 27 ms) the initial V1 signals and almost
immediately after (ca. 11 ms) extrastriate generated signals, in
strong accordance with being driven by rapid recurrent feed-
back from extrastriate areas to V1. Again, these rapid recurrent
processing effects were dissociable from slower attentional modu-
lation, which manifested 250–300 ms after stimulus presentation
and only when subjects attended to the same region of the dis-
play that the target appeared in. In contrast, modulation from
rapid recurrent processing occurred regardless of where sub-
jects directed attention. Similar results have been demonstrated
when combining backward masking with electroencephalography
(EEG) recording with both rapid recurrent and slower attentional
modulation, but with less emphasis on the specific neural gener-
ators of effects given the relatively poor spatial resolution of EEG
(Fahrenfort et al., 2007, 2008).

Together, TMS and backward masking experiments provide
strong support for the idea that recurrent visual processing
engages striate and extrastriate areas around 100 ms after stimulus
onset during visual recognition tasks. This local rapid recurrent
processing is dissociable from attention-mediated or strategic
processing both in terms of where the signals originate (within
the ventral stream vs. frontal and parietal areas) and in terms
of their relative time courses (ca. 100 ms vs. 150–170 ms at the
earliest). Attention has long been known to modulate early EEG
responses such as the P1 (first positive deflection, ca. 100 ms) and
N1 (first negative deflection, ca. 150–200 ms) (Luck et al., 1990a;
Hillyard and Anllo-Vento, 1998). Given the data reviewed here, it
seems plausible that the P1 indexes recurrent feedback generated
within the ventral stream while the N1 reflects the first influences
of frontal and parietal attentional signals that progress backwards
through visual areas toward V1 (Buffalo et al., 2010; see also Luck
et al., 1990b).

While TMS impairment around 100 ms is consistent with
the disruption of recurrent processing, it cannot rule out the
possibility that the TMS is actually disrupting delayed feed-
forward responses. Specifically, low-level image properties such
as local contrast can affect the temporal order of feedforward
spikes, with lower contrast image regions exhibiting delay rela-
tive to more salient image regions (VanRullen and Thorpe, 2001,
2002). However, the information content of these regions is much
lower than the salient regions that exhibit fast responses and
thus it is unlikely that disrupting their contribution to object
recognition processing will negatively impact recognition ability
for relatively unambiguous images. More importantly, backward
masking experiments that target impairment of recurrent pro-
cessing provide additional constraints in interpreting TMS effects.
Finally, 90–110 ms post stimulus onset is hypothesized to be the
time at which peak feedback signals arrive at V1 from extrastriate
areas (Roland et al., 2006; Roland, 2010).

Overall, it seems clear that recurrent processing operates
within the established time course of object recognition, which

Frontiers in Psychology | Perception Science July 2014 | Volume 5 | Article 674 | 2

http://www.frontiersin.org/Perception_Science
http://www.frontiersin.org/Perception_Science
http://www.frontiersin.org/Perception_Science/archive


Wyatte et al. Early feedback facilitates object recognition

spans the first 150 ms of visual processing. The data reviewed
in this section are summarized in Table 1 with a rough sketch
of overall feedforward and feedback events shown in Figure 1.
Having established support for the idea that recurrent feedback
occurs rapidly beginning around 100 after stimulus presentation,
this paper now turns to discussion of its function.

EVIDENCE FOR A DISTINCT FUNCTIONAL ROLE FOR LOCAL
RECURRENT SIGNALS
There is considerable evidence that local recurrent processing
is important when stimuli are degraded, partial, or otherwise
ambiguous, and we hypothesize that this is one important func-
tional role for the dissociated process described in the previous
section. The basic logic behind this proposal is that degrad-
ing a stimulus has been shown to weaken the initial responses

in object-selective areas (Sclar et al., 1990; Kovacs et al., 1995;
Nielsen et al., 2006; Williford and Maunsell, 2006), but recur-
rent processing over time can strengthen responses back to near
undegraded levels and preserve selectivity via top–down rein-
forcement. Consistent with this idea, object-selective responses in
IT cortex remain intact when stimuli are occluded, but take signif-
icantly more time to manifest than when stimuli are unoccluded
(around an extra 50 ms on average, Kovacs et al., 1995; Nielsen
et al., 2006).

Single-unit recordings that use reversible cooling to tem-
porarily inactivate a particular brain area provide further sup-
port for our hypothesis. Hupé et al. (1998) applied cooling to
area V5/MT, a visual area in the superior temporal sulcus of
the monkey brain that sends feedback projections to areas V1,
V2, and V3. Recordings from V1 through V3 indicated that

Table 1 | Summary of data that suggest a temporal dissociation of local recurrent and top–down attentional processing.

Reference Milliseconds after Stimulus Onset Comments

10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180 190 200 210 220 230 240 250 260 270 280 290 300

Koivisto et al., 2011
TMS over human V1. Scene categorization
impairment at indicated times

Corthout et al., 1999a
TMS over human V1. Letter recognition
impairment at indicated times

Corthout et al., 1999b
TMS over human V1. Letter recognition
impairment at indicated times

Camprodon et al., 2010
TMS over human V1. Scene categorization
impairment at indicated times

Boehler et al., 2008
MEG in human subjects. Effects of masking
over V1 at indicated times

Fahrenfort et al., 2007
EEG in human subjects. Effect of masking
over occipital channels at indicated times

Fahrenfort et al., 2008
EEG in human subjects. Effect of masking
over occipital channels at indicated times

Martinez et al., 2001
EEG/fMRI in human subjects. V1 modulation
with attention at indicated times

Noesselt et al., 2002
EEG/MEG/fMRI in human subjects. V1
modulation with attention at indicated times

Mehta et al., 2000a, 2000b
LFP in awake behaving monkey. V1
modulation with attention at indicated times

Putative feedforward Proposed local recurrent Putative attentional

FIGURE 1 | Proposed time course of feedforward and feedback events

during early visual processing. Top row: Feedforward-dominant latencies,
which are well-documented in the literature (e.g., Nowak and Bullier, 1997).
Light pink shading refers to earliest reported latencies, likely corresponding to
the depicted areas’ first spikes, while darker pink shading corresponds
ongoing feedforward responses. Bottom row: Areas are shaded orange
when they are known to be receiving recurrent feedback. Most reports of

recurrent feedback to V1 center around an absolute latency of 100 ms after
stimulus presentation, with some reports being slightly faster. Common
methods used to detect feedback (coarse application of TMS, MEG, EEG) do
not have the spatial resolution to distinguish between feedback to V1 and
extrastriate areas, but the view taken here is that feedback originates in
immediately adjacent areas, and thus those areas that fire earliest during the
feedforward dominant phase will also be the first to receive feedback.
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responses to moving bar stimuli were vastly weakened (fewer
spikes observed per second) when V5/MT was inactive compared
to control experiments in which it was active. This attenua-
tion of lower-level responses was most dramatic in low salience
conditions, such as when the bar had a very low contrast, a
point that will be discussed in further detail later in this section.
These results suggest that when higher-level visual areas are
active, they provide additional excitatory input to lower levels.
Similar effects have been shown for other recurrent circuits in
other mammalian species such as those involving middle supra-
sylvian (MS) cortex and V1 (Galuske et al., 2002) as well as
V2 and V1 (Sandell and Schiller, 1982; Mignard and Malpeli,
1991), suggesting that top–down amplification is a highly generic
mechanism that occurs between any two recurrently connected
areas.

Top–down amplification promotes visual awareness (Lamme,
2003, 2006; Dehaene et al., 2006), and some data indicate that
amplification is a simple contrast gain operation, as some have
suggested is implemented by attention (e.g., Reynolds et al., 2000;
Reynolds and Heeger, 2009). However, there is mounting evi-
dence that recurrent amplification also plays an important func-
tional role in visual object recognition when stimuli are degraded
or ambiguous, by promoting a complex grouping and “filling-in”
process.

Wyatte et al. (2012a) degraded visual object stimuli using
visual occlusion and contrast degradation and used backward
masking to control whether recurrent processing mechanisms
were available (Enns and Di Lollo, 2000; Lamme and Roelfsema,
2000). When relatively clear stimuli were masked using a rel-
atively long latency 100 ms SOA pattern mask, there was little
impairment in recognition performance. However, when heav-
ily occluded or low contrast stimuli were masked, the mask
had a much larger effect, suggesting that recurrent process-
ing was crucial in resolving object identity in these conditions.
Simulations using a computational model of object recognition
that included recurrent feedback between hierarchically adja-
cent layers (O’Reilly et al., 2013) showed that responses in both
lower layers (corresponding to striate/extrastriate regions) and
upper layers (corresponding to IT cortex) strengthened over time
when objects were occluded. Backward masking selectively inter-
fered with this strengthening process, which was crucial when
stimulus signals were weak due to degradation. Furthermore,
the strengthening dynamic was found to be specifically due to
recurrent feedback—purely feedforward versions of the model
exhibited asymptotic response levels across areas.

One possibility for the mechanism underlying these recogni-
tion performance differences is a grouping and “filling-in” process
similar to what is observed in the figure-ground literature in V1
(Figure 2A), but repeated between higher levels of the visual hier-
archy. As an illustration, consider a population of IT neurons that
respond to bicycle stimuli (Figures 2B,C). If a bicycle stimulus is
occluded and only the wheels are visible, some members of this
population will become active (specifically, those corresponding
to wheel-like features), but the selective response across the full
population will be unavailable. The partial responses, however,
will be propagated back to earlier visual areas, which will drive
neurons that are sensitive to visual features that are known to

co-occur with bicycle wheels, such as a bicycle’s frame, handle-
bars, and saddle. Importantly these responses occur in the absence
of these features in the actual stimulus. These “illusory” responses
in turn provide new driving potential to IT neurons, ultimately
evoking the selective response corresponding to the unoccluded
stimulus across the full IT population responsive to bicycles. The
IT response is “object complete,” meaning that there is little-
to-no difference between the response to the partially occluded
object and the complete object—the brain has filled in the missing
information.

Computationally, recurrent processing’s amplification effect
is capable of supporting a grouping or surface-based encoding.
The most convincing demonstrations of these computations are
found in the figure-ground processing literature, where the term
“contextual modulation” is used to describe them (Zipser et al.,
1996; Lamme et al., 1998). In contextual modulation, neurons
with non-overlapping receptive fields such as those found in V1
are capable of modulating and reinforcing each other by virtue
shared connections through higher levels in the visual hierarchy
where receptive fields do tend to overlap. This extra modulation
has the effect of grouping together figural elements of a dis-
play and enhancing their activity relative to background elements
effectively spreading activation throughout the figure interior
and “filling” it in as a perceptually salient surface (Figure 2A).
The models suggest that contextual modulation is driven by
recurrent feedback, because lesions of feedback from extrastri-
ate and dorsal structures to V1 obliterate the surface filling effect.
They further illustrate that the timing of contextual modulation
to area V1 would be on the order of 80–100 ms after stim-
ulus presentation, coinciding with the known time course of
feedback to striate areas during visual processing. Finally, contex-
tual modulation is dissociable from slower top–down attentional
effects, not just with respect to time course but also because
its surface filling computations are retained even when atten-
tion is deployed away from the target stimulus (Poort et al.,
2012).

There are two phenomena in the experimental literature that
support the grouping and filling-in roles of recurrent processing
during object recognition. The first is the perception of illu-
sory contours, such as in displays containing Kanizsa shapes
(Figure 3). V1 neurons have been shown to respond to the illu-
sory contours that compose Kanizsa shapes, such as the edges of
the illusory square in Figure 3. Multi-unit recordings have indi-
cated that these responses occur beginning around 100 ms after
stimulus presentation, which is shortly after the V1 responses to a
physical contour with the same orientation and location, suggest-
ing a role for feedback in their encoding (Lee and Nguyen, 2001;
Seghier and Vuilleumier, 2006). Specifically, recurrent feedback
from extrastriate areas could support the perception of illusory
contours in the Kanizsa illusion by grouping similarly oriented
contours at the V1 level that fall within the shape’s receptive
field; this would cause the shape to be perceived as perceptually
salient surface similar to the way texture-defined shapes are per-
ceived (Figure 3B). As such, a recent experiment has indicated
that global contour information emerges in V1 responses shortly
after the first V4 responses, implicating recurrent feedback in this
grouping process (Chen et al., 2014).
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FIGURE 2 | Illustration of recurrent processing’s filling-in computations

during figure-ground processing and object recognition. (A) Processing
of an orientation-defined square stimulus results in enhancement of the
figural elements compared to the background elements. This enhancement
comes in the form of recurrent feedback that groups together common
image elements and spreads activation throughout the interior of the square,
effectively “filling” it in as a perceptually salient surface. FGM, Figure Ground
Modulation, i.e., difference between figure and background responses.
Adapted from Lamme et al. (1998) and Poort et al. (2012). (B,C) The same

feedback-based “filling-in” principle can be applied to object recognition
processing when stimuli are occluded. When object features are occluded,
only a partial representation is elicited by the first feedforward responses.
However, recurrent feedback (e.g., between IT and extrastriate areas)
propagates these partial responses back to early visual areas, driving neurons
that respond to co-occurring features that might be occluded in the physical
stimulus. This recurrent processing between hierarchically adjacent visual
areas can effectively “fill in” the occluded features in the object
representation.

FIGURE 3 | Illusory contour perception in Kanizsa shapes

(Kanizsa, 1979). (A) Traditional and more complex Kanizsa shapes
that evoke strong illusory contour percepts. Complex shapes
courtesy of Steven Lehar (http://cns-alumni.bu.edu/∼slehar/Lehar.html).
(B) Perception of illusory contours has been suggested to arise

by virtue of recurrent feedback from extrastriate areas to V1.
Specifically, feedback from an extrastriate neuron drives neurons
that code similarly oriented contours that fall within its receptive
field, spreading activation across the gap in the Kanizsa shape.
Adapted from Lee (2003).

The second supportive phenomenon is an actual object com-
pletion effect, which has gained support from fMRI studies that
show little-to-no difference in the activation levels of occluded
and unoccluded stimuli in object-selective regions of cortex

(Lerner et al., 2002). Intact activation, however, could simply
reflect increased gain of the encoded object fragments without
a more complex completion process. To differentiate between
these two possibilities, one can use an fMRI adaptation paradigm,
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which depends on neural mechanisms that decrease response
levels for repeated stimuli that are perceived as the same. This
method gives an experimenter an index of how perceptually sim-
ilar two experimental conditions are. For example, Kourtzi and
Kanwisher (2001) presented observers with images that contained
occluding bars either in front of or behind target objects (in
which case, the targets were effectively unoccluded). The experi-
ment measured the hemodynamic response in the lateral occipital
cortex (LOC), which has been strongly suggested as the human
homolog of IT cortex in monkey (Grill-Spector et al., 2001; Orban
et al., 2004). The results indicated that there was no significant
change in hemodynamic response when subjects were presented
with two identical objects in sequence, as well as when sub-
jects were presented with occluded and unoccluded versions of
an object in sequence. Thus, at the level of LOC, there is little
difference in the way that unoccluded and occluded versions of
the same object are represented. More recent techniques such as
representational similarity (Kriegeskorte et al., 2008a,b) or decod-
ing analyses (Tang et al., in press) might further illuminate how
occluded objects are represented in various regions of cortex.

While the perception of illusory contours has been linked to
recurrent feedback (Lee, 2003), this explanation has not been
has explored as extensively in the object completion litera-
ture, likely due to most studies using relatively coarse measures
like fMRI (e.g., the aforementioned studies that rely on fMRI
adaptation). Computationally, illusory contour perception and
object completion could be implemented by the same mecha-
nism, whereby higher-level neurons with overlapping receptive
fields feed responses back to lower-level neurons in the absence
of the visual information itself and produce the perception of
illusory object features. According to this view, when operat-
ing between extrastriate levels and V1, the mechanism produces
illusory contours; when operating between IT cortex and extras-
triate areas, it produces more complex illusory object features.
There is some support for this idea in the literature. For example,
Rauschenberger et al. (2006) demonstrated object completion
effects in LOC as well as in extrastriate areas when stimuli were
presented for longer durations, suggesting that there is a “tem-
poral unfolding” of object completion from higher levels of the
ventral stream to lower-level areas.

However, illusory contour stimuli evoke a perceptually salient
completion phenomenon, whereas the filling-in of objects does
not. These processes have been distinguished in the literature as
“modal” and “amodal” completion, respectively (Johnson and
Olshausen, 2005; Seghier and Vuilleumier, 2006). Modal com-
pletion has been shown to elicit illusory responses in V1 (Lee
and Nguyen, 2001), supporting the idea that whatever represen-
tation is present in V1 is what we “perceive” (Bullier, 2001). It
is unclear whether amodal completion processing also reaches
back to the level of V1. Some studies indicate that V1 repre-
sents completed shapes (Rauschenberger et al., 2006), whereas
others show that the complete representation is only present in
extrastriate and higher-level areas (Weigelt et al., 2007). More
recently, Emmanouil and Ro (2014) showed that object com-
pletion can occur rapidly and without visual awareness, further
supporting the dissociation of object completion from top–down
attention.

If our proposal is correct, the time course of object completion
effects should agree with the time course of recurrent processing
as described above. Some studies show object completion effects
beginning to manifest over temporal and parietal sites (as indexed
by EEG scalp recordings) around 130 ms at the earliest and con-
tinuing to evolve until around 200 ms into processing (Johnson
and Olshausen, 2005; Chen et al., 2009). These data are consis-
tent with the explanation of object completion rapidly engaging
recurrent processing with striate and extrastriate areas, assuming
the 50 ms delay typically observed when the brain is processing
occluded object stimuli (Kovacs et al., 1995; Nielsen et al., 2006).

However, other studies have suggested a much later time
course for object completion effects, beginning around 200 ms
and completing around 400 ms (Doniger et al., 2000; Sehatpour
et al., 2006, 2008). One consistent characteristic of these lat-
ter studies is that they use fragmented line drawings of objects,
whereas studies that associate an early time course with object
completion have used photorealistic images of objects. It is
unclear whether this late temporal correlate of object comple-
tion is due to relatively slow, attention-mediated processing, or
due to a fundamentally different type of processing. For example,
photorealistic occlusion might recruit the surface-coded compu-
tations associated with recurrent processing since there are explic-
itly depicted depth planes (an occluder and an object) whereas
resolving contour fragmentation might rely on a completely dif-
ferent computation since depth planes are less well-defined in line
drawings. Furthermore, the studies that associate the later time
course with object completion have not used a paradigm such as
response adaptation that crucially allows inference about whether
an unoccluded and occluded object are represented similarly.

In summary, it seems clear that recurrent processing pro-
motes signal amplification between reciprocally connected brain
regions. There is substantial evidence that this is not a simple
multiplicative gain operation, but a considerably more complex
grouping or surface-based computation that spreads activation
between related object features. This idea has been well-studied
in the literature on illusory contour perception and the data sup-
port the explanation that illusory contour perception is due to V1
neurons receiving recurrent feedback from extrastriate regions.
The same idea can be applied to object completion effects in IT
cortex, predicting that they are due to feedback-rectified signals
from extrastriate regions. This recurrent processing-based expla-
nation has received little attention in the literature, but is generally
supported by the timing of object completion effects.

SUMMARY AND FUTURE RESEARCH
Over the last 5–10 years, evidence has accumulated that local
recurrent signals are an integral part of early visual processing.
TMS studies have indicated that recurrent processing engages
striate and extrastriate areas during visual recognition tasks in as
little as 100 ms (Camprodon et al., 2010; Koivisto et al., 2011) and
theories of backward masking have provided additional accor-
dant timing data as well as suggested a general theory of how
corticocortical interactions support visual perception (Fahrenfort
et al., 2007, 2008; Boehler et al., 2008). Surprisingly though, rel-
atively little work has focused on synthesizing these ideas with
theories of visual object recognition, which is commonly held
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to be primarily a feedforward process (DiCarlo et al., 2012).
Instead, theories of recurrent processing have focused on the role
of interactions between brain areas in promoting visual awareness
(Lamme, 2003, 2006; Dehaene et al., 2006). Object perception has
long been known to benefit from top–down signals that reflect
attention or strategic processing, but its time course has been con-
sidered to be too slow to support the initial rapid recognition
processes (Hochstein and Ahissar, 2002; VanRullen, 2007).

This paper has attempted to map out the time course of
feedforward- and feedback-based events during the first 150 ms
of visual processing and establish the function that rapid recur-
rent processing between brain areas plays within this time
frame. Specifically, we propose the following overall process:
A feedforward-dominant wave of activation flows up to IT in
the first 80–100 ms after stimulus presentation, quickly evok-
ing object-selective responses, while, simultaneously, activation
is also feeding backward through this pathway. In the following
20 ms (an absolute latency of 100–120 ms), prefrontal areas that
support the actual object categorization decision receive their first
feedforward responses from IT neurons, while simultaneously,
recurrent feedback from extrastriate areas has had sufficient time
to more fully engage V1 populations. Recurrent feedback to V1
amplifies neurons’ initial responses by grouping the responses
to similar object features and enhancing them relative to other
responses (Zipser et al., 1996; Lamme et al., 1998; Poort et al.,
2012). In some cases, these grouping computations can cause the
perception of illusory contours and surfaces (Lee and Nguyen,
2001; Seghier and Vuilleumier, 2006), but they also seem to be
important when objects are degraded in order to rectify signals
(Hupé et al., 1998). At an absolute latency of 120–140 ms after the
initial stimulus presentation, the now extensive recurrent process-
ing between IT and extrastriate areas can cause the representation
of more complex illusory features that support object completion,
by propagating these illusory responses back toward IT popula-
tions. We have recently developed a biologically-based compu-
tational model that exhibits just these dynamics (O’Reilly et al.,
2013), and can provide a platform for integrating the various data
cited here, while generating further testable predictions.

It is unlikely that object completion in IT cortex is a sole
function of rectified responses from extrastriate areas being
propagated forward in the range of 120–140 ms (or 170–190 ms,
assuming the 50 ms delay observed when the brain processes
occluded object stimuli; see Kovacs et al., 1995; Nielsen et al.,
2006). Object completion likely also benefits from the first
recurrent responses from prefrontal areas that arrive shortly
after this time frame. This feedback from prefrontal areas could
reflect top–down predictions that constrain the space of potential
object representations in IT cortex (Bar et al., 2006; Kveraga
et al., 2007), which might also have the effect of filling in visual
information when it is missing from the physical stimulus. It is
also plausible that lateral interactions within IT cortex itself could
support object completion by enforcing statistical co-occurrences
and mutual exclusions between object features (Akrami et al.,
2009; Daelli and Treves, 2010). It would not be surprising if a
combination of rectified feedforward responses, feedback from
prefrontal areas, and lateral interactions within IT cortex itself
support object completion by bringing the brain as a whole into

an attractor that combines bottom–up sensory information with
top–down task demands and appropriate local constraints (e.g.,
Spivey, 2008). Future research that uses sophisticated techniques
to rapidly and systematically disable feedforward, recurrent and
lateral connectivity (e.g., optogenetics, Deisseroth, 2011) might
be necessary to disentangle the relative contributions of each
of these influences. Nevertheless, any contribution to object
completion from local recurrent processes is supportive of the
distinct functional role in resolving degraded or ambiguous
stimuli proposed here.

One remaining question concerns whether recurrent process-
ing is necessary for recognizing relatively unambiguous stimuli.
“Core object recognition” (DiCarlo et al., 2012) of stimuli that
vary in terms of their spatial position, scale, pose, and illumina-
tion can be rapidly decoded from the first IT responses (Hung
et al., 2005). Early IT responses are also known to exhibit invari-
ance to limited clutter (Missal et al., 1997; Zoccolan et al., 2005),
suggesting that the bulk of object recognition is solved by a largely
feedforward process. Importantly, these data are not fundamen-
tally incompatible with the theory proposed here. Feedback acts
on immediately lower areas with latencies as short as 10 ms
(Hupé et al., 2001; Pascual-Leone and Walsh, 2001) and might
be important for the Winner-Take-All (WTA) or “max” com-
putations (Riesenhuber and Poggio, 1999; Wyatte et al., 2012b;
O’Reilly et al., 2013) that have been suggested to contribute to
core object recognition. Our theory has focused on recurrent
processing under challenging object recognition conditions such
as when stimuli are occluded or otherwise degraded. However,
more substantial variability in the spatial properties of inputs
might also benefit from recurrent processing. A variant of the
“animal/no animal” recognition task used in many studies has
shown that increasing target viewing distance in the stimulus
causes backward masking to have a greater effect (Serre et al.,
2007, supporting information), implicating recurrent process-
ing for robust recognition under these conditions (Wyatte et al.,
2012a). Further research with stimuli whose spatial properties can
be manipulated parametrically (DiCarlo et al., 2012; Cadieu et al.,
2013) combined with methods like TMS and backward masking
will be necessary to determine the exact conditions under which
recurrent processing is necessary.

If the theory proposed here is true, the standard description
of object recognition as a feedforward process is somewhat mis-
leading. Simply put, there is always ongoing brain activity that
must be combined with new incoming sensory information, so
that the notion of a strictly “feedforward sweep” is fundamentally
ill-conceived (Arieli et al., 1996; Tsodyks et al., 1999). Ongoing
activity could be used to establish moment-to-moment con-
straints that effectively guide coherent perception via recurrent
processing mechanisms. While the seminal research on object
recognition often focused on simple spike counts of anesthetized
animals to map out the receptive field characteristics of neu-
rons throughout the ventral stream in a well-controlled manner,
future research should emphasize more complex corticocorti-
cal interactions in the awake, behaving brain to determine how
neural interactions involving feedforward, lateral, and recurrent
processing mechanisms combine to give rise to the visual system’s
robust perceptual abilities even in difficult stimulus conditions.
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