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Abstract

The linearization of General Relativity leads to various formulations of gravity often referred to as gravito-

electromagnetism due to its resemblance to electromagnetism. Three methods are compared: (i) the harmonic

gauge approach; (ii) the Parameterized Post-Newtonian (PPN) approach; and (iii) the Helmholtz Decompo-

sition (HD) approach. New relationships are developed that are not generally found in the literature. These

include the use of the linearized Bianchi identity, the Landau-Lifshitz pseudotensor, the Isaacson power for-

mula, the geodesic equation of motion, and the geodesic deviation equation. The formalism is applied to

examples such as a mass-solenoid and a gravitational mutual inductance system.

The HD approach is shown to be the most favorable of the three methods due to being gauge-invariant

(to linear order in the metric), and because it shows explicitly that the transverse-traceless part of the metric

contains the only radiative degrees of freedom. This is similar to the transverse-traceless (TT) gauge except

that the HD formulation is fully valid in matter. Therefore, unlike the TT gauge, the HD formulation can be

used to describe how gravitational waves interact with various types of material. Traditionally, it is believed

that all known materials are essentially transparent to gravitational waves. However, this conclusion relies

on a classical treatment which describes how gravitational waves (originating from astrophysical sources)

are passively detected with no affect on the wave itself. As an alternative, we consider how gravitational

waves could be coupled to quantum systems which may be used for detection as well as reflection and even

generation of gravitational waves.

To investigate this possibility, a classical Hamiltonians is developed which describes the kinematics of

charged, relativistic, massive particles in curved space-time. The coupling of quantum matter to gravitational

fields is then described by quantizing the Hamiltonian. This leads to various gravitational quantum effects

such gravitational Aharonov-Bohm effects, gravitational Casimir effects, and various time-holonomies. Fur-

thermore, developing a quantized stress tensor and taking the expectation value allows the Einstein field

equation to predict how quantum matter can produce classical gravitational fields. This semi-classical ap-

proach is used to describe how superconductors interact with gravitational waves. A London-like constitutive

equation describes the response of the superconductor in terms of a “gravitational shear modulus” analogous

to the standard shear modulus of elastic mechanics. Also using a “gravitational permeativity” (analogous to

the magnetic permeability) leads to a gravitational plasma frequency, index of refraction, penetration depth,

and impedance. The same analysis also done for a normal conductor using a gravitational Ohm-like constitu-

tive equation, however, it is shown that a superconductor exhibits a gravitational Meissner-like effect, while

a normal conductor does not.

For the case of a superconductor, the Cooper pairs are described by the Ginzburg-Landau free energy

density embedded in curved spacetime. This leads to a new gravito-London gauge condition and a predicted

graviton mass within the superconductor. Next, the ionic lattice is modeled by an ensemble of quantum

harmonic oscillators coupled to gravitational waves and characterized by quasi-energy eigenvalues for the

phonon modes. This formulation predicts a gravitationally-induced dynamical Casimir effect within the ionic

lattice since the zero-point energy of the phonon modes is modulated by the gravitational wave. Applying

periodic thermodynamics and the Debye model in the low-temperature limit leads to a free energy density

for the ionic lattice. From these results it is shown that the response to a gravitational wave is far less for

the Cooper pair density than for the ionic lattice. This predicts a charge separation effect which can be

used to detect the passage of a gravitational wave, and the possibility of reflection of gravitational waves

by a superconductor. Lastly, a long-range communication system is proposed based on the coupling of

gravitational and electromagnetic waves via ellipsoidal superconducting cavities.
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Introduction

The work in this dissertation utilizes several different areas of physics including General Relativity (GR1),

electrodynamics, fluid mechanics, quantum mechanics, and some basic aspects of statistical mechanics and

superconductivity. It is assumed that the reader has a general familiarity with these subjects. Several refer-

ences are given throughout the discussion to provide the reader with supplemental resources which supply

background information. Also, much of the mathematical detail is formulated “step-by-step” to enable the

reader to easily follow the derivations.

Numerous appendices are included to provide what might be considered standard text book derivations

(ranging from topics such as linearized GR, the ideal fluid stress tensor, the geodesic equation of motion,

Lagrangians for relativistic particles in curved space-time, derivation of the London equation and penetration

depth, electrodynamics in a superconductor, and other miscellaneous topics that are related to the work done

in the body of this dissertation). Although many of these topics can be found in text books or published

papers, some of the appendices include calculations that are unique to this dissertation and therefore are not

found in text books (such as the Bianchi identity applied to the linearized Riemann tensor and the linearized

transverse-traceless Landau-Lifshitz pseudotensor). These calculations are relegated to appendices simply

because placement within the main body of the dissertation would distract from the flow of thought leading

to the primary points being developed.

The general goal of this dissertation is to examine how gravitation (as described by GR) couples to quan-

tum mechanical systems in ways that may yield experimentally testable predictions. In particular, the primary

focus is to describe how gravitational waves interact with superconductors. However, a wide range of other re-

lated topics will also be covered which could lead to other experimental investigations of gravitational effects

on quantum systems. Some of these other topics include gravitational Aharonov-Bohm effects, gravitational

Casimir effects, and various models for coupling ultra-cold quantum systems to gravity.

Concerning the interaction of gravitational waves with superconductors, some of the most important

results of this dissertation were published in [1] as well as [2]. These papers contain a condensed version of

much of the material found in this dissertation.2 Further developments concerning this topic are also currently

in progress in [3]. The content pertaining to the gravitational vector and scalar Aharonov-Bohm effects has

been published in [4] and [5], respectively. Lastly, an examination of the parallels between neutrino induced

quantum decoherence and gravitational induced quantum decoherence has been published in [6].

One major goal of this dissertation is to develop a comprehensive framework which describes the inter-

action of gravity with superconductors and determines if there is a viable mechanism for gravitational wave

reflection and generation in the lab. Much of the content associated with this topic is motivated by [7], [8],

and [9] which claim that superconductors can be mirrors for gravitational waves. The formulation in these

references begins with gravitational Maxwell-like equations which can be obtained using linearized GR in

the harmonic gauge for non-relativistic sources. For this reason, Chapter 1 of this dissertation begins with a

formal derivation of these gravitational Maxwell-like equations. It is found that for non-relativistic sources,

the equations are not identical to Maxwell’s equations, contrary to what is found in many papers on this topic.

In fact, the absence of a gravitational Faraday’s law leads to the conclusion that gravitational waves do not

occur in this restricted framework. It may be referred to as a gravitational magneto-static formulation.

1The acronym “GR” is commonly used to refer to “General Relativity.” However, in some sections of

this dissertation, “GR” will be used to represent “gravitation” just as “EM” is commonly used to represent

“electromagnetism.”

2Note that [2] is an essay that was awarded Honorable Mention in the 2017 Essay Competition of the

Gravity Research Foundation before being pubslied in the International Journal of Modern Physics.
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In contrast to this, using linearized GR in the harmonic gauge for relativistic sources leads to gravitational

Maxwell-like equations that contain a gravitational analog to Faraday’s law. Therefore, it is possible to

arrive at a formulation of gravitational waves involving vector fields similar to the case in electromagnetism.

However, it can be shown that these “waves” do not actually propagate out with a 1/r dependence since the

sources are the conserved mass and the conserved linear momentum. As a result, the formulation predicts

that gravitational waves are necessarily tensor fields. However, since this approach is gauge-dependent, it

leads to gravitational effects which can be made to vanish by an appropriate coordinate transformation.

In Chapter 2, it is found that the Parametrized Post-Newtonian (PPN) approach also leads to gravitational

Maxwell-like equations that contain a gravitational analog to Faraday’s law. However, attempting to derive

a wave equation leads to the erroneous result that vector gravitational waves propagate with a speed c/2

in vacuum. As a result of these problems, a new approach was sought to describe gravitational waves in a

gauge-invariant formulation that correctly predicts the known properties of gravitational waves, namely, that

they are tensor waves that propagate with speed c in vacuum.

In Chapter 3, the Helmholtz Decomposition (HD) approach is introduced which provides a way to de-

scribe gravitational waves as a tensor field which is gauge-invariant (to linear order in the metric). The only

requirement of the formulation is that space-time is asymptotically flat at infinity (in other words, the metric

perturbation vanishes infinitely far away from all gravitational sources). This approach leads to a new set of

gravito-electromagnetic Maxwell-like equations which are used throughout the remainder of the dissertation

to describe how gravitational waves interact with superconductors, normal conductors, and other quantum

mechanical systems.

Chapters 4 and 5 introduce equations of motion in terms of the HD metric. These include the geodesic

equation, the geodesic deviation equation, and the Lorentz force in curved space-time. The results are ob-

tained for the purpose of using them later in the dissertation to describe how gravitational waves interact

with matter in general. Furthermore, chapters 6 and 7 introduce Hamiltonians which can be used to describe

relativistic, charged, massive particles in the presence of curved space-time. A comparison is made between

a “four-velocity invariant” Hamiltonian and a “four-momentum invariant” Hamiltonian which are each found

in the literature by other authors who have disputed the correct approach to this topic. In this dissertation, it

is shown in that by developing particular relations involving the metric, these Hamiltonians can all be shown

to be equivalent, and therefore the discrepancies emphasized by other authors is resolved. The investigation

concerning these Hamiltonians is ultimately guided by the motivation to formulate a classical Hamiltonian

that includes the coupling of gravitational waves to matter, so that the Hamiltonian can then be quantized in

order to describe the interaction of gravitational fields with quantum matter.

Chapter 8 is the first formal introduction of quantum mechanics into the dissertation. The Hamiltonians

developed in previous chapters are quantized and thereby used to describe how quantum matter responds to

classical gravitational fields. A quantized stress tensor for an ideal fluid is also developed in anticipation of

describing how quantum matter may also generate classical gravitational fields via Einstein’s field equations

of General Relativity. Some of the implications of this semi-classical approach are also discussed, such as the

inherent difficulties of using a classical field theory (GR) in conjunction with quantum sources of gravitation.

Chapter 9 further explores some interesting Special Relativistic and General Relativistic phenomena such

as a time-dilation holonomy (due to a relativistic rotating frame) and a gravitational time-holonomy (due to a

rotating mass cylinder). These phenomena are studied in order to consider their connection to related quantum

phenomena such as the Aharonov-Bohm (AB) effects introduced in Chapter 10. In fact, a quantum phase in

curved space-time is developed in Chapter 10 in order to describe the possibility of AB effects involving

scalar, vector, and tensor gravitational fields. In this context, the role of gauge-freedom is examined, and the

possibility of a gauge-invariant phase in terms of the linearized Riemann tensor is considered.

Chapter 11 introduces the topic of gravito-electromagnetic fields interacting with superconductors. In

this chapter, it is shown that contrary to the work by previous authors, there is no gravitational Meissner-like

xxiii



effect for the gravito-magnetic field. However, there is a small correction to the electromagnetic London

penetration depth due to the presence of gravito-magnetic fields in a superconductor.

Chapter 12 is arguably one of the most important chapters of the dissertation. First, the electromagnetic

London equation and London penetration depth are shown to be modified by the presence of gravitational

waves. Then, a gravito-London constitutive equation is used to derive a gravitational plasma frequency, in-

dex of refraction, and penetration depth. The result is that a gravitational Meissner-like effect is predicted to

occur in the DC limit. By contrast, in Chapter 13 a gravito-Ohm constitutive equation is found for gravita-

tional waves interacting with a normal conductor. A corresponding gravitational plasma frequency, index of

refraction, and skin depth is determined for normal conductors. However, it is found that there is an absence

of a gravitational Meissner-like effect in the DC limit.

Chapters 14, 15, and 16 deal with the interaction of gravitational waves with the Cooper pair density,

ionic lattice, and electromagnetic fields of a superconductor, respectively. In each chapter, there is a formal

derivation of the gravito-London constitutive equation. Chapter 13 deals specifically with the Cooper pairs

by developing the Ginzburg-Landau free energy density embedded in curved space-time. The formulation

leads to a gravitational shear modulus for the Cooper density which characterizes the response of the Cooper

pair density to gravitational waves. The formulation also predicts a gravito-London gauge condition in a

superconductor, as well as an effective graviton mass within a superconductor.

Chapter 14 deals specifically with the ionic lattice by using the Debye model in the low-temperature

limit in order to obtain a free energy density embedded in curved space-time. The formulation leads to

a gravitational shear modulus for the ionic lattice which characterizes the response of the ionic lattice to

gravitational waves. The formulation also predicts a gravitationally induced dynamical Casimir effect where

the ground state energy of the phonon modes of the ionic lattice of a superconductor is modulated by the

presence of a gravitational wave. The result of the Cooper pair density and the ionic lattice responding

differently to the gravitational wave leads to a charge-separation effect in the superconductor. Consequently,

Chapter 15 deals specifically with the resulting electromagnetic fields arising from the charge-separation

effect, and describes how these electromagnetic fields also interact with the incident gravitational wave. The

Maxwell stress tensor is developed in curved space-time to describe this interaction.

Chapter 17 continues to investigate the charge separation effect as a possible mechanism for supercon-

ductors to act as “mirrors” for gravitational waves as claimed in [7], [8], and [9]. In particular, the claim

is examined that superluminal supercurrents are predicted to occur in the superconductor in response to a

gravitational wave. Also, a possible reformulation of the approach used in these references is suggested.

In Chapter 18, the topic of reflection and expulsion of gravitational waves is treated in further detail. A

gravitational shear modulus value is determined for the reflection of microwave frequency gravitational waves

to be expelled from a superconductor. Also, a complete model is formulated for the stress tensor induced in a

superconductor in response to a gravitational wave. This stress tensor is then used to predict the relationship

between the gravitational and electromagnetic penetration depths. Furthermore, a gravitational reflectivity

and transmissivity is found by following the approach commonly used for electromagnetism for the case

of linear media and the case of a gravitational conductor. Lastly, a summary is provided which lists all of

the quantities and relationships commonly found in electromagnetism, and their corresponding gravitational

analogs which have been developed throughout the dissertation.

In Chapter 19, boundary conditions are given for a gravitational wave field at the surface of a gravitational

conductor. Next, the ratio of output to input gravitational wave power (scattering cross-section) is found

for time-varying mass-quadrupole moments. Similarly, the transduction of gravitational to electromagnetic

power is found by calculating the ratio of output electromagnetic to input gravitational wave power for a

modified Lorentz oscillator.
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Chapter 20 takes a less quantitative and more heuristic approach to considering possibilities for coupling

gravity to quantum mechanical systems. The Compton wavelength and the Schwarzschild radius are dis-

cussed in terms of their relevance to systems exhibiting both quantum mechanical and strong gravitational

effects. This leads to considerations of various Planck quantities (such as the Planck mass and the Planck

length) as a means to describe the physical scales at which Quantum Mechanics and General Relativity are

both relevant. Since the Planck length is so miniscule, it is generally believed that such investigations are

completely beyond what can be explored experimentally. However, it is shown that for ultra-cold quantum

systems, it is possible for quantum effects and gravitational effects to be exhibited simultaneously without

the need for remaining at Planck length and mass scales.

Chapters 21 and 22 investigate the possibility of constructing a gravitational wave transmitter-receiver

system consisting of small charged superconducting spheres levitated at the foci of superconducting ellip-

soidal cavities. Numerical results are calculated for the power that can be transmitted and detected by such a

system. Also, gravitational-electromagnetic transduction efficiency factor are determined.

Finally, Chapter 23 investigates the possibility of electromagnetic and gravitational Casimir effects using

a parallel-plate waveguide configuration. The electromagnetic energy and gravitational energy are quantized

and the resulting force of attraction between the plates is compared to the standard Casimir force. The

Isaacson power flux formula is also used to determine the gravitational wave strain field for the quantum

ground state of a cavity with a high quality factor for gravitational wave reflection. This quantum result is

compared to the corresponding classical velocity and number density of Cooper pairs that would be needed

within the penetration of a superconductor in order to generate the same gravitational wave energy.

The conclusion section summarizes some of the key discoveries and important achievements made in this

dissertation. There is also a discussion of further research that is yet to be pursued as a natural extension of

this work. As with most research, the process of answering questions often leads to even more questions that

have yet to be explored!
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1 Gravito-electromagnetism

via the harmonic gauge

(for non-relativistic sources)

1



2

1.1 Overview of the harmonic gauge for non-relativistic sources

In the following sections, we derive the gravito-electromagnetic equations for the first-order post-Newtonian

fields in the harmonic gauge. (A similar treatment of this approach can also be found in [10], pp. 39-45, 51-

56, as well as other references on gravito-electromagnetism.) First we describe the Einstein field equations

in the trace-reversed harmonic gauge and solve them via a Green’s function. We then use the stress tensor for

non-relativistic dust (a pressureless ideal fluid with the highest order relativistic terms neglected). By defin-

ing a gravitational four-potential (analogous to the electromagnetic four-potential) we find that the Einstein

equations in the trace-reversed harmonic gauge take the same form as the Maxwell equations in the Lorenz

gauge. This enables us to define a “gravito-strength tensor” analogous to the electromagnetic strength tensor

and write the field equations in covariant form. From there, we produce Maxwell-like vector field equations

for the associated gravito-electric and gravito-magnetic fields. We also discuss some important features and

limitations of this formulation as well as the example of a uniformly rotating mass solenoid cylinder.
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1.2 The linearized Einstein equation in the harmonic gauge

We begin with a first-order perturbation to the flat space-time metric written as3

gµν = ηµν +hµν where
∣∣hµν

∣∣<< 1 (1)

Next, we employ the usual process for evaluating the Einstein tensor as shown in Appendix A. This involves

finding the linearized Christoffel symbols (2367), Riemann tensor (2370), Ricci tenor (2372), and Ricci

scalar (2375) which are obtained, respectively, as

Γ
µ

νγ = 1
2
η

µρ
(
∂γ hρν +∂ν hγρ −∂ρ hνγ

)
(2)

R
µ

νγδ
= 1

2
η

µρ
(
∂γ ∂ν hδρ −∂γ ∂ρ hνδ −∂δ ∂ν hγρ +∂δ ∂ρ hνγ

)
(3)

Rνδ = 1
2

(
∂

ρ
∂ν hδρ −�hνδ −∂δ ∂ν h+∂δ ∂

γ hνγ

)
(4)

R = −�h+∂
ν
∂

γ hνγ (5)

where h is the trace of hµν and

�= ∂µ ∂
µ = ∇

2− 1

c2

∂ 2

∂ t2
(6)

The linearized Einstein tensor can then be constructed as the trace-reversed Ricci tensor:

Gµν = Rµν − 1
2
Rηµν (7)

The result is found in (2379) as

Gµν = 1
2

(
∂

γ
∂µ hγν +∂

γ
∂ν hγµ +ηµν�h−�hµν −∂µ ∂ν h−ηµν ∂

ρ
∂

γ hργ

)
(8)

We can also define the trace-reversed metric perturbation as

h̄µν ≡ hµν − 1
2
ηµν h where h= η

µν hµν = h
µ

µ (9)

Then the Einstein tensor becomes

Gµν = 1
2
(∂µ ∂

ρ h̄ρν +∂ν ∂
ρ h̄ρµ −ηµν ∂

ρ
∂

σ h̄ρσ −∂
ρ

∂ρ h̄µν) (10)

As shown in Appendix A, the gauge freedom in linearized GR is found in (2418) to be

h′µν = hµν +∂µ ξ ν +∂ν ξ µ (11)

We also show that ξ µ can be selected so as to yield the trace-reversed harmonic gauge given in (2444) as

∂
ν h̄µν = 0 (12)

3This dissertation will follow the sign conventions and notation of MTW [11]. The signature of the

Minkowski metric is diag(−1,+1,+1,+1). Greek space-time indices α,β , ... run from 0 to 3. Latin spatial

indices i, j, ... run from 1 to 3. Repeated indices imply a summation according to Einstein notation.
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This gauge involves four constraint equations (one for each value of the index µ). Therefore it reduces the 10

components of the metric to 6 independent degrees of freedom. This gauge also simplifies the Einstein tensor

(10) so that it becomes

Gµν = − 1
2
�h̄µν (13)

Then using the Einstein field equation, Gµν = κTµν , in the trace-reversed harmonic gauge gives

�h̄µν =−2κTµν (14)

where κ = 8πG/c4. So we can also write this as

�h̄µν =−
16πG

c4
Tµν (15)

The solution to this equation is given by the following Green’s function

h̄µν (t,~x) = − 1

4π

(
−16πG

c4

)∫
Tµν (tr,~x

′)

|~x−~x′| d3x′ (16)

Simplifying the prefactor leads to

h̄µν (t,~x) =
4G

c4

∫
Tµν (tr,~x

′)

|~x−~x′| d3x′
Green’s function solution for the metric

perturbation in the trace-reversed harmonic gauge
(17)

Here~x′ is the spatial coordinate of each infinitesimal element of Tµν occupying a differential volume element

d3x. Also, Tµν (tr,~x
′) is the stress-energy-momentum contribution at ~x′ evaluated at a retarded time tr and

located at a distance |~x−~x′| from the field point where h̄µν is measured. We can therefore express the retarded

time as tr = t−|~x−~x′|/c. From this expression we find that each component of Tµν is directly related to the

corresponding component of hµν .
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1.3 The linearized field equation for non-relativistic dust

The stress-energy-momentum tensor for a perfect fluid is given by

T µν = (ρ+P/c2)uµ uν +Pgµν (18)

where µ is the mass density (as measured by an observer at rest with respect to the fluid) and P is the pressure.

To develop the GEM framework, we impose a non-relativistic (slow moving) approximation for the sources

of gravitation. For slow moving particles, the energy density due to the rest mass is much greater than any

pressures: ρc2 >> P. So the pressures can be neglected and we just have

T µν ≈ ρuµ uν (19)

Since uµ = γ
(
c,vi
)
, then we have

T 00 ≈ ρc2, T 0i ≈ ρcui, T i j ≈ ρuiu j (20)

Comparing these, we can see that T 00 >> T 0i >> T i j which means T i j is the smallest contribution. For

slow moving sources we have v/c<< 1 and v2/c2 ≈ 0. This means that we can consider T i j ≈ 0 which only

leaves

T 0µ ≈ ρc
(
c,ui

)
(21)

Since T i j ≈ 0, then (15) gives �h̄i j ≈ 0 over all space. Assuming that h̄i j = ∂t h̄
i j = 0 at infinity, then such

boundary conditions require that h̄i j = 0 is the unique solution. This means that the only non-zero components

of h̄µν are h̄0µ and h̄µ0 (by symmetry). To lower the indices of h̄0µ we can apply the metric twice:

h̄0µ = g0ρ gσ µ h̄ρσ (22)

Since gµν ≈ ηµν to first order, then h0µ = η0ρ ησ µ h̄ρσ . But ηµν is diagonalized so we have

h0µ ≈ η00ηµµ h̄0µ (23)

This gives

h00 ≈ h00 and h0i ≈−h0i (24)

Therefore (15) is only non-trivial for one index being zero. Setting ν = 0 and writing the equation with upper

indices gives

�h̄0µ =−16πG

c4
T 0µ Linearized field equation

for non-relativistic dust
(25)



6

1.4 The gravitational four-potential and four-current density

To obtain field equations similar to electromagnetism, we first define a gravitational four-potential as

A
µ

G ≡
(

ϕ̃G

c
,~h

)
(26)

where the subscript “g” is to indicate that this is a gravitational four-potential in terms of ϕ̃G, the gravito-

scalar potential and~h, the gravito-vector potential. We can also define the mass four-current density as

Jµ
m ≡

(
J0, ~Jm

)
(27)

where the subscript “m” is to indicate that this is a mass four-current. Using ~Jm = ρui for the mass current

density vector and associating J0 with the mass density, J0 = cρ , means we can write (27) as

Jµ
m = (cρ,ρui) (28)

In order to make use of (25), we can express A
µ

G and J
µ
m from (26) and (28) in terms of h̄0µ and T 0µ ,

respectively. Since we know that T 00 = ρc2 and T 0i = ρcui, then we can write

T 0µ ≈
(
ρc2,ρcui

)
(29)

Relating J
µ
m from (28) to T 0µ in (29) means we have

Jµ
m = T 0µ/c (30)

We also can choose appropriate prefactors when relating A
µ

G and h̄0µ . We will find that to obtain Maxwell-like

equations, we must choose to define4

A
µ

G ≡−
c

4
h̄0µ (31)

Matching this to (26), we can define the (gauge-dependent) gravito-scalar potential and gravito-vector poten-

tial each in terms of the trace-reversed metric perturbation as, respectively,

ϕ̃G ≡ −c2

4
h̄00 and ~h≡ c

4

(
h̄01, h̄02, h̄03

)
(32)

Solving for T 0µ and h̄0µ from (30) and (31), respectively, gives

T 0µ = cJµ
m and h̄0µ =−4

c
A

µ

G (33)

We can now express the field equation of (25) in terms of the gravitational four-potential and the mass four-

current density in a manner analogous to the usual treatment in electromagnetism.

4Alternatively, it is also possible to define A
µ
g ≡−ch̄0µ and use εG ≡

1

16πG
and µG ≡ 16πG/c2 in (35).

This will still lead to Maxwell-like equations, however, there will no longer be a parallel between ε0 =
1

4πK

and εG =
1

4πG
.
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1.5 The gravito-electromagnetic potential field equations

Inserting the relations in (33) into the field equation of (25) and simplifying gives

�A
µ

G =
4πG

c2
Jµ

m (34)

We can define the gravito-electric permittivity and gravito-magnetic permeability of free space as, respec-

tively,

εG ≡ 1

4πG
and µG ≡

4πG

c2
where εGµG = 1/c2 (35)

These are the gravitational analogs of the electric permittivity and magnetic permeability of free space. (These

quantities are discussed in much greater detail in Section 23.) Therefore, we can write (34) as

�A
µ

G = µGJµ
m (36)

Recall that to arrive at (34) we used the field equation in (15) which is valid only in the trace-reversed

harmonic gauge given by (12) as ∂ν h̄µν = 0. For µ = 0, we can use A
µ

G = −
c
4
h̄0µ from (31). Then the

trace-reversed harmonic gauge for µ = 0 can be written as

∂ν Aν
G = 0 (37)

Summing over ν gives ∂0A0+∂iA
i = 0. Then using A

µ

G =
(

1
c
ϕ̃G,
~h
)

from (26) gives

1

c2

·
ϕ̃G+∇ ·~h= 0 (38)

This has the exact same form as the Lorenz gauge in electromagnetism. Then the field equation (36) and the

gauge condition (37), together make up the gravito-electromagnetic framework for non-relativistic sources.

�A
µ

G = µGJ
µ
m , ∂ν Aν

G = 0
Gravito-electromagnetic four-potential

field equations
(39)

This clearly has the same form as the covariant Maxwell’s equations in electromagnetism when using the

Lorenz gauge. This implies that we can define gravito-electromagnetic vector fields in terms of the gravito-

potentials and then formulate vector field equations which are similar to the electromagnetic Maxwell equa-

tions. This process is carried out in the next section.

However, as a final remark, it is important to recognize that ∂ν Aν
G= 0 in (39) does not completely describe

the gauge conditions required to arrive at the field equation �A
µ

G = µGJ
µ
m . The complete gauge condition is

given by the trace-reversed harmonic gauge, ∂ν h̄µν = 0, in (12). This gives essentially four gauge equations,

one for each value of µ . We obtained ∂ν Aν
G = 0 by setting µ = 0. However, using µ = i gives the additional

condition

∂0h̄i0+∂ jh̄
i j = 0 (40)

By using non-relativistic sources, we set T i j ≈ 0 and therefore from (17) we have hi j ≈ 0. Then (40) means

∂0h̄i0 ≈ 0 and therefore h̄i0 is static. Since~h is defined in terms of h̄0i in (32), then~h must be a static vector

field in this approximation. Therefore, if we write (39) with µ = 0 and µ = i separately, we must recognize

that the equation with µ = i should really be a Poisson equation, not a wave equation. Furthermore, using

∂ν h̄µν = 0 with µ = 0 leads to

∂0h̄00+∂ jh̄
0 j = 0 (41)
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Taking ∂0 of this expression gives

∂
2
0 h00+∂ j∂0h̄0 j = 0 (42)

Since ∂0h̄i0 ≈ 0 then ∂ 2
0 h00 ≈ 0 as well. This means that the scalar potential field equation also cannot be

written with a box operator. Therefore, we have

∇
2
A0

G = µGJ0
m and ∇

2
Ai

G = µGJi
m (43)

We can use A
µ

G=
(

1
c
ϕ̃G,
~h
)

from (26) as well as J
µ
m =

(
cρ, ~Jm

)
from (27) and (28). Also, since µGc2= 1/εG

from (35) then we have

∇
2
ϕ̃G = ρ/εG, ∇

2~h= µG
~Jm

Gravito-electromagnetic potential

field equations
(44)

Note that in electromagnetism, we have

�ϕ =−ρ/ε0, �~A=−µ0
~J (45)

which is often mistakenly assumed to be true for gravitation (in the non-relativistic limit) as well. This error

is easily made since it follows naturally from (39) if one does not carefully consider the additional gauge

condition in (40) combined with the non-relativistic approximation hi j ≈ 0. This error is found to occur in

equation 3.11 and table 3.1 of [10].
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1.6 The gravito-electromagnetic Maxwell-like field equations

We can define ~̃EG as the gravito-electric field (the standard Newtonian gravitational field) and ~̃BG as the

gravito-magnetic field (also known as the Lense-Thirring field).5 Describing ~̃EG and ~̃BG in terms of ϕ̃G and
~h gives6

~̃EG ≡−∇ϕ̃G and ~̃BG ≡ ∇×~h (46)

We can also define a “gravito-electromagnetic strength” tensor as

F
µν

G ≡ ∂
µ Aν

G−∂
ν A

µ

G (47)

where the superscript “g” again indicates that these are gravitational quantities. Since this is an anti-symmetric

tensor, then F
µν

G =−F
νµ

G . The components are given by

F0i
G =

1

c
Ẽ i

G, F
i j

G = ε
i jkB̃k

G, F
µµ

G = 0 (48)

We can also define the dual of F
µν

G as G
µν

G obtained by the usual transformation: ~̃EG/c→ ~̃BG and ~̃BG →
−~̃EG/c. Therefore the components of G

µν

G are

G0i
G = B̃i

G, G
i j

G =−
1

c
ε

i jkẼk
G, G

µµ

G = 0 (49)

Then we can write the field equations as

∂ν F
µν

G =−µGJ
µ
m , ∂ν G

µν

G = 0
Gravito-electromagnetic strength tensor

field equations
(50)

Notice that unlike electromagnetism, the sign in the first field equation is negative in order to recover the

correct gravito-Gauss law which leads to the correct Newtonian gravitational force. Similar to the usual

process in electromagnetism, we can obtain “Maxwell-like” field equations by evaluating the field equations

in (50) for spatial and temporal indices, and then substituting in terms of the gravito-electromagnetic vector

fields in (46). For µ = 0, we have

∂0F00
G +∂iF

0i
G = −µGJ0

m, ∂0G00
G +∂iG

0i
G = 0 (51)

∂iẼ
i
G/c = −µGρc, ∂iB̃

i
G = 0 (52)

∇ · ~̃EG = −ρ/εG, ∇ · ~̃BG = 0 (53)

Here we obtain Gauss’s law for the gravito-electric field and gravito-magnetic fields.

5We use a tilda on the gauge-dependent gravito-electric and gravito-magnetic fields in order to distinguish

them from the gauge-invariant gravito-electric and gravito-magnetic fields which are defined later in (352)
of Part IV.

6Ordinarily we would define the gravito-electric field as ~̃Eg ≡ −∇ϕ̃g− ∂t
~h in analogy with electromag-

netism. However, as shown in the previous section, in this approximation we have ∂t
~h≈ 0. As a result, (47)

should really be written as F0i
g =−∂ iA0, F

i j
g = ∂ iA j−∂ jAi. Otherwise, evaluating (47) for µ = 0, ν = i, and

inserting Ai
g ≡~h and F0i

g = 1
c
Ẽ i

g will give Ẽ i
g =−∂th

i−∂ iφ .
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For µ = i, (50) gives

∂0F i0
G +∂ jF

i j

G = −µGJi
m, ∂0Gi0

G+∂ jG
i j

G = 0 (54)

1

c
∂t

(
−Ẽ i

G/c
)
+∂ j

(
ε

i jkB̃k
G

)
= −µGJi

m,
1

c
∂t

(
−B̃i

G

)
+∂ j

(
−ε

i jkẼk
G/c
)
= 0 (55)

We can write ε i jk∂ j as the curl of a vector to obtain the following vector equations.

− 1

c2
∂t
~̃EG+∇× ~̃BG = −µG

~Jm, ∂t
~̃BG+∇× ~̃EG = 0 (56)

∇× ~̃BG = −µG
~Jm+

1

c2
∂t
~̃EG, ∇× ~̃EG =−∂t

~̃BG (57)

Here we obtain a gravito-Ampere law and a gravito-Faraday law. However, in (46) we defined ~EG ≡−∇ϕ̃G,

so taking the curl leads to ∇×~EG ≈ 0. Hence there is no gravito-Faraday law in this approximation. Then

we find that (47) yields the following results.

∇ · ~̃EG =−ρ/εG ∇ · ~̃BG = 0

∇× ~̃EG = 0 ∇× ~̃BG = µG

(
−~Jm+ εG∂t

~̃EG

)
Gravito-electromagnetic field equations

in the trace-reversed harmonic gauge (v/c sources)

(58)

These are the gravito-electromagnetic “Maxwell-like” equations in the trace-reversed harmonic gauge. They

are only valid for what may be referred to as gravitational “magneto-statics.” In other words, they are only

valid for non-time varying gravito-magnetic fields and hence we see the absence of a gravito-Faraday law.

As a result, we do not obtain field equations that have the exact same form as the Maxwell equations. This

conclusion is also obtained by Clark and Tucker [12] where the curl of the gravito-electric field is zero in

their in equation (4.44b), and the time rate of change of the gravitational vector potential is zero in equation

(4.44b).7 On the other hand, the error of including a gravito-Faraday law is found to occur in equation (40b)

of [7], equation (14.2) in [4], and table 3.2 of [10], as well as several other papers in the literature where the

“Maxwell-like” equations (for non-relativistic sources) show the gravito-Faraday law appearing.

In the case of [10], Thorsrud states8 that “to formulate the equation of motion in terms of Eg and Bg one

must assume that the magnetic field is stationary, ie. ∂ Â
∂ t
= 0. . . . I will show in a detailed manner that this

is not due to our choice of definitions for φ̂ , Â, Eg and Bg. It is not possible to define these variable such

that both the field equations and the equation of motion can be formulated in terms of Eg and Bg without

assuming a stationary Â field.”

7Alternatively, Clark and Tucker show in [12], section 7, pp. 17-19 that there is a different gauge choice

in equation (7.2) that will lead to field equations identical to Maxwell in equation (7.13). However, they point

out that in the “gravito-electromagnetic limit,” the gravito-Faraday law still vaishes in equation (7.15).

8Thorsrud uses φ̂ , Â, Eg and Bg instead of our corresponding ϕ̃g,~h, ~̃Eg, and ~̃Bg.
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In actuality, the inconsistency pointed out by Thorsrud is not due to a discrepancy between the field

equations and the equation of motion. It is due to the additional gauge condition in (40) combined with

the non-relativistic approximation hi j ≈ 0. This requires that the gravito-electric field would be defined

as Eg ≡ −∇φ̂ for both the equation of motion and the field equations. Thorsrud discovered the condition

that ∂t
~h = 0 while deriving the equation of motion but not while deriving the field equations and therefore

interpreted the result as a discrepancy between the equation of motion and the field equations.

Recognizing that Eg ≡−∇φ̂ for all the equations also eliminates the need for the entire analysis in section

3.2 of [10]. There Thorsrud shows that one cannot obtain consistent prefactors for the definition of φ̂ , Â, Eg

and Bg in terms of the metric if one includes ∂ Â
∂ t

in the definition of Eg from equation (3.24) as well as using

the gravitational Lorentz gauge condition from equation (3.24), and field equations that include a gravito-

Faraday law in equation (3.26). In particular, he begins by defining

h̄00 =−l
4φ̂

c2
, h̄0i =

κÂi

c2
, Eg =−∇φ̂ −λ

∂ Â

∂ t
, Bg = ∇× Â (59)

where he sets l = 1 to ensure φ̂ =−GM/r outside a spherically symmetric mass distribution, and κ = 4c to

ensure the harmonic gauge condition corresponds to the Lorenz gauge in electromagnetism: 1
c2 ∂t φ̂−∇ ·Â= 0.

He also indicates that λ = 1 ensures that Eg corresponds to the same definition in electromagnetism. However,

he finds that the field equations and gauge condition lead to λ = κ

4lc
in his equation (3.29), while the equation

of motion (3.37) leads to λ = κ

lc
. We would argue here that the appropriate value for λ in this context is simply

λ = 0. This gives the correct definition of the field, Eg = −∇φ̂ , and completely removes the inconsistency

described above.

Finally, we note that in order to have a gravito-Faraday law, we must allow sources with velocities of

order (v/c)2 so that hi j 6= 0 and therefore ∂~h/∂ t 6= 0. However, this will result in a change in the gravitational

Gauss’s law and Ampere-Maxwell law. This can be seen from the other sets of gravito-electromagnetic field

equations derived in other sections, such as the field equations for relativistic sources in the harmonic gauge,

the PPN formalism, or the gauge-invariant Helmholtz Decomposition formulation.
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1.7 Mass-current conservation and the gravito-displacement current

We also note that the equations in (58) are only valid for non-time varying (or “steady-state”) mass

currents. This can be observed by considering the linearized conservation of energy-momentum found in

(2394) of Appendix A as ∂ν T µν = 0. For µ = i, we have

∂0T i0+∂ jT
i j = 0 (60)

Since we are working with non-relativistic sources, then T i j ≈ 0 and therefore we have ∂0T i0 = 0. Using

(33) to express this in terms of the four-current gives

·
~Jm = 0. Therefore, we see that in this approximation,

the current can not be time-varying. We also point out that writing the linearized conservation of energy-

momentum, ∂ν T µν = 0, with µ = 0 gives

∂0T 00+∂iT
0i = 0 (61)

Using (28) and (33), we can express this in terms of the mass density and mass-current density as

−1

c
∂t

(
ρc2
)
+∂i

(
−Ji

mc
)
= 0 (62)

ρ̇+∇ · ~Jm = 0 (63)

So we find that the linearized conservation of energy-momentum leads to a continuity equation for mass-

current. This can also be written as conservation of the mass-four-current: ∂ν J
µ
m = 0 where J

µ
m =

(
cρ, ~Jm

)
.

We can easily show that this requires that there is a gravitational displacement current as given in Ampere’s

law in (353). If we solve the gravito-Gauss law in (58) for the charge density and take the time-derivative,

then we have ρ̇ =−εG∇ ·∂t
~̃EG. Inserting this into the continuity equation (63) gives(

−εG∇ ·∂t
~̃EG

)
+∇ · ~Jm = 0 (64)

∇ ·
(
~Jm− ε0∂t

~̃EG

)
= 0 (65)

We can therefore define the “gravito-displacement current density” as

~Jm (D) =−εG∂t
~̃EG Gravito-displacement current density to order v/c (66)

The full mass current density can be written as ~Jm ( f ull) = ~Jm+ ~Jm (D). Then the gravito-Ampere law gives

∇× ~̃BG = −µG
~Jm ( f ull) (67)

∇× ~̃BG = −µG
~Jm+ εGµG∂t

~̃EG (68)

This result agrees with the gravito-Ampere law found in (58).
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1.8 Gauge freedom in the gravito-electromagnetic fields

The gravito-electromagnetic fields, ~EG =−∇ϕG and ~BG =∇×~h in (46) are essentially ad hoc definitions

since these quantities cannot be constructed as gauge-invariant quantities in the context of linearized GR. This

is contrast to ~E and ~B in electromagnetism. Recall that in electromagnetism,the gauge freedom is given by

A′µ = Aµ +∂ µ χ where χ is a scalar gauge function. Using Aµ =
(
ϕ/c,Ai

)
gives

ϕ
′ = ϕ+ χ̇ and A′i = Ai+∂

i
χ (69)

The gauge freedom can be removed from the second equation by simply taking the curl so that ∇×~A′=∇×~A.

Then ~B = ∇×~A can be identified as a gauge-invariant quantity. A second gauge-invariant quantity can also

be constructed by applying ∂ i to the first equation and applying ∂t to the second equation, then adding

them. Canceling terms involving ∂ iχ lead to ∂ iϕ ′+ Ȧ′i = ∂ iϕ+ Ȧi. Then E i = −∂ iϕ+ Ȧi can be identified

as another gauge-invariant quantity (where the negative sign is introduced so that ~E points in the opposite

direction of the gradient ϕ). Therefore, we find that ~E and ~B are not ad hoc definitions but rather arise

naturally in electromagnetism as gauge-invariant quantities.

The gauge freedom of the gravito-electromagnetic fields can be shown by starting with the gauge freedom

in linearized GR as shown in (2418) of Appendix A.

h′µν = hµν +∂
µ

ξ
ν +∂

ν
ξ

µ
(70)

Using ∂ 0 =− 1
c
∂t (to linear order in the metric) gives the following three relations.

h′00 = h00− 2
c
ξ̇

0
h′0i = h0i− 1

c
ξ̇

i
+∂

i
ξ

0
h′i j = hi j+∂

i
ξ

j+∂
j
ξ

i
(71)

In (2435), the metric perturbation is written in terms of the trace-reversed metric perturbation as

hµν = h̄µν − 1

2
ηµν h̄ ,where the trace is h= ηµν hµν =−h̄00+η i jh̄

i j. This leads to

hµν = h̄µν +
1

2
η

µν
(
h̄00−η i jh̄

i j
)

(72)

From (32), we also have h̄00 = − 4
c2 ϕG and h0i = 4

c
hi. Also using h̄i j = 0 (for non-relativistic sources in the

unprimed frame) leads to the following three relations.

h00 =− 2

c2
ϕG h0i =

4

c
hi hi j =− 2

c2
ϕGη

i j (73)

Using these in (71) leads to

ϕ
′
G = ϕG− cξ̇

0
, h′i = hi− 1

4
ξ̇

i
+ c

4
∂

i
ξ

0, ϕ
′
Gη

i j = ϕGη
i j+ c2

2

(
∂

j
ξ

i−∂
i
ξ

j
)

(74)

Taking ∂ iof the first equation above, and ∂t of the second equation above gives

∂
i
ϕ
′
G = ∂

i
ϕG− c∂

i
ξ̇

0
and ḣ′i = ḣi− 1

4
ξ̈

i
+∂

i
ξ̇

0
(75)

Multiplying the second equation in (75) by 4 and adding it to the first equation in (75) gives

∂
i
ϕ
′
G+4ḣ′i = ∂

i
ϕG+4ḣi− ξ̈

i
(76)

Defining the gravito-electric field as ~EG =−∇ϕG−4∂t
~h leads to9

~E ′G = ~EG+∂ 2
t
~ξ

i
Gauge freedom in the gravito-electric field (77)

9As shown earlier, for non-relativistic sources, ∂t
~h= 0 which means that ~EG =−∇ϕG. Therefore, taking

the gradient of the first equation in (75) would lead to ~E ′G = ~EG+ c∇ξ̇
0
. However, taking a time derivative

of the second equation in (75) and using ∂t
~h= 0 would lead to c∂ iξ̇

0
= ξ̈

i
. Therefore, the gauge freedom for

~EG would still remain the same.
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The last term above demonstrates the gauge freedom in the gravito-electric field. The gauge freedom can

be interpreted as a manifestation of the Equivalence Principle. If one were to boost into a frame with an

acceleration ai
boost =−ξ̈

i
then ~E ′G = 0 in the primed frame.

Next, taking the curl of the second relation in (74) and using ~BG = ∇×~h gives

~B′G = ~BG− 1
4
∇×

·
~ξ Gauge freedom in the gravito-magnetic field (78)

The last term above demonstrates the gauge freedom in the gravito-magnetic field. The gauge freedom can

be interpreted as a type of rotational Equivalence Principle. If one were to boost into a frame with a velocity

vi
boost = ξ̇

i
such that ∇×~v = 4~BG, then ~B′G = 0 in the primed frame. This can be better understood by

considering the equation of motion involving ~BG. The geodesic equation (to lowest order in the metric and

in particle velocity) gives m~a = m~v× ~BG. For circular motion, the acceleration is centripetal which gives

ac = vBG. One could boost to a primed frame which introduces a new centripetal force that is equal and

opposite to the gravito-magnetic force. Then the net force experienced would be zero. This corresponds to

choosing vi
boost = ξ̇

i
such that ∇×~v= 4~BG.
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1.9 The geodesic equation of motion for relativistic test masses

To find an equation of motion, we will need hµν (the non-trace-reversed metric perturbation). We can use

(2435) from Appendix B to express hµν in terms of h̄µν .

hµν = h̄µν − 1
2
η

µν h̄ (79)

For h̄µν , we can use (32) rewritten as

h̄00 =− 4

c2
ϕ̃G and h̄0i =

4

c

(
~h
)i

(80)

For h̄, we can take the trace of h̄µν . To first order in the metric, we have h̄ = ηµν h̄µν . Summing the indices

gives h̄= η00h̄00+η iih̄
ii. Since η00 =−1 and h̄ii = 0, then the trace is h̄=−h̄00. Using (80), we have

h̄=−h̄00 =
4

c2
ϕ̃G (81)

Inserting (80) and (81) into (79) gives

hµν = h̄µν − 2
c2 ϕ̃Gη

µν (82)

Writing the equation above in matrix form gives

hµν =


− 4

c2 ϕ̃G
4
c
h̄1

4
c
h̄2

4
c
h̄3

4
c
h1 0 0 0

4
c
h2 0 0 0

4
c
h3 0 0 0

−
2

c2
ϕ̃G



−1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1


(83)

hµν =



− 2
c2 ϕ̃G

4
c
h̄1

4
c
h̄2

4
c
h̄3

4
c
h1 − 2

c2 ϕ̃G 0 0

4
c
h2 0 − 2

c2 ϕ̃G 0

4
c
h3 0 0 − 2

c2 ϕ̃G

 (84)

This result is consistent with the fact that in the Newtonian limit, the metric perturbation simply contains

− 2
c2 ϕ̃G for each term on the diagonal, where ϕ̃G is the Newtonian potential which satisfies the Newtonian

Poisson equation. Now we can use the components of hµν to determine the equation of motion. The geodesic

equation of motion is given by

d2xµ

dτ2
+Γ

µ

ρσ

dxρ

dτ

dxσ

dτ
= 0 (85)

It is shown in (2729) of Appendix J that by reparameterizing in terms of t instead of τ , we obtain

aµ =−Γ
µ

ρσ vρ vσ − γ
−1

γ̇vµ (86)

where γ = dt/dτ , vµ = (c, ẋ) =
(
c,vi
)

and aµ =
(
0, v̇i

)
. It is also shown in (2738) of Appendix J that the

“Lorentz factor” in terms of the metric perturbation is

γ =

(
1−h00−2h0i

vi

c
− v2

c2
−hi j

viv j

c2

)−1/2

(87)
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Note that (86) requires the time derivative of γ . It also requires summing the Christoffel symbol over ρ and σ .

Again, from Appendix J, we found in (2764) that to first order in hµν and second order in vi/c, the geodesic

equation of motion becomes10

ai = c2

2
∂ih00− cḣ0i+ cv j

(
∂ih0 j−∂ jh0i

)
− 1

2
ḣ00vi−

1

c
ḣ0 jv

jvi

−ḣi jv
j+ v jvk

(
1
2
∂ih jk−∂khi j

)
(88)

In a previous section it was shown that ∂t h̄0i ≈ 0 due to the trace-reversed harmonic gauge and the condition

that h̄i j ≈ 0. We can also easily verify from (79) that h0i = h̄0i since η0i = 0. Therefore ḣ0i ≈ 0 and we can

immediately eliminate the two terms involving ḣ0i in (88). However, although h̄i j ≈ 0, we found in (84) that

hi j 6= 0 for i= j, therefore we do not eliminate these terms. We can see in (88) that they involve summations

of the velocity over the diagonal components of (84). First, we can simplify the term involving v jvk∂ih jk

since (84) shows that h j j =− 2
c2 ϕ̃G. We have

v jvk
(
∂ih jk

)
= v1v1 (∂ih11)+ v2v2 (∂ih22)+ v3v3 (∂ih33) =− 2

c2 v2 (∂iϕ̃G) (89)

This term can be combined with the first term in (88) since h00 =− 2
c2 ϕ̃G. We can use (84) to substitute for

h00 and h0i in the other terms of the first line as well. After some rearranging we have

ai = −∂iϕ̃G

(
1+

v2

c2

)
+4v j (∂ih j−∂ jhi)+

vi

c2

·
ϕ̃G− ḣi jv

j− v jvk
∂khi j (90)

We can also write this equation in vector form. In the first line we can simply make the following replacements

∂ =⇒ ∇ vi =⇒ ~v v j (∂ih j−∂ jhi) =⇒ ~v×
(

∇×~h
)

(91)

This last relation follows from writing the curl in terms of a Levi-Civita.11 For the last two terms in (90), we

can sum over the repeated indices to obtain

ḣi jv
j = ḣi1v1+ ḣi2v2+ ḣi3v3 (92)

v jvk
∂khi j = v1 (~v ·∇)hi1+ v2 (~v ·∇)hi2+ v3 (~v ·∇)hi3 (93)

We can evaluate (92) for i= 1,2,3, multiply each result by the appropriate unit vector and add them to build

the vector. Note that hi j = 0 for i 6= j, therefore each value of i will only contribute one term. Also, using

10Since we are working to first order in the metric, then spatial indices can be freely raised and lowered.

Therefore, we choose to write the equation of motion with a lower index i.

11Since
(

∇×~h
)

k
= εklm∂lhm then

(
~v×∇×~h

)
i
= ε i jkv j (εklm∂lhm) = ε i jkεklmv j∂lhm. We can permute

the first Levi-Civita twice to make k the first index in order to use the relation εki jεklm = δ ilδ jm− δ imδ jl .

Then we have

εki jεklmv j∂lhm =
(
δ ilδ jm−δ imδ jl

)
v j∂lhm = v j∂ih j− v j∂ jhi = v j (∂ih j−∂ jhi)

Hence we have shown that
(
~v×∇×~h

)
i
= v j (∂ih j−∂ jhi) which is what appears in (90).



17

h j j =− 2
c2 ϕ̃G gives

ḣi jv
j =⇒ ḣ11v1x̂1+ ḣ22v2x̂2+ ḣ33v3x̂3 =− 2

c2

·
ϕ̃G~v (94)

Carrying out the same process for (93) gives

v jvk
∂khi j =⇒ v1 (~v ·∇)h11x̂1+ v2 (~v ·∇)h22x̂2+ v3 (~v ·∇)h33x̂3 =− 2

c2 (~v ·∇ϕG)~v (95)

We can now use (91), (94), and (95) to write (90) as a vector equation of motion.

~a = −∇ϕ̃G

(
1+

v2

c2

)
+4~v×∇×~h+

·
ϕ̃G

c2
~v+

2

c2

·
ϕ̃G~v+

2

c2
(~v ·∇ϕG)~v (96)

Combining similar terms and rearranging gives

~a = −∇ϕ̃G

(
1+

v2

c2

)
+4~v×∇×~h+

(
3

2

·
ϕ̃G+2~v ·∇ϕ̃G

)
~v

c2
(97)

We can also express this in terms of the gravito-electric and gravito-magnetic fields. These were defined in

(46) as ~̃EG =−∇ϕ̃G and ~̃BG = ∇×~h, respectively. This gives

~a= ~̃EG

(
1+

v2

c2

)
+4~v× ~̃BG+

3

2

·
ϕ̃G

c2
−2

~v

c2
· ~̃EG

~v Geodesic equation

in the harmonic gauge

(v/c sources, v2/c2 test masses)

(98)

This expression gives the acceleration of a test mass to first order in the metric perturbation
(
hµν

)
with

sources to order vs/c (which means h̄i j ≈ 0) and test masses with velocity
(
v2/c2

)
. This equation of motion

does not describe the motion of test particles in the presence of gravitational waves since the approximation

h̄i j ≈ 0 has effectively removed the radiation degrees of freedom from the fields. A similar expression is

obtained in [10], p. 43, 54-55.

The term with~v× ~̃BG does not contain an explicit division by c2 and therefore appears to be a lower order

term when compared to the terms with v2/c2. However, from the field equations in (58), we find that the

quasi-static gravitational Ampere law is

∇× ~̃BG = µG
~Jm (99)

where ~Jm = ρvs with vs being the speed of the source and µG = 4πG/c2 according to (35). Therefore, we

find that B̃G ∼ vs/c
2. This means that

~v× ~̃BG ∼ vtvs/c2 (100)

where vt is the speed of the test mass. From this we recognize that if both vt and vs are non-relativistic, then

~v× ~̃BG is negligible.12

12For a more concrete example, consider the gravito-magnetic field found in (125) for the mass solenoid.

We have B̃g =
1
2

µgR2ρω . Using vs = Rω and µg = 4πG/c2 gives B̃g = 2πGRρvs/c
2. Then the equation of

motion for a test mass with speed vt will give~vt × ~̃Bg ∼ (2πGRρ)vsvt/c2.
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In our case here, we must have that vs is non-relativistic (so that h̄i j ≈ 0), but vt can be relativistic which

would keep (98) from being totally negligible. However, it would likely be much smaller than the other terms

in (98).

Notice that there are two terms in (98)which involve relativistic corrections to the acceleration associated

with ~̃EG. The first terms has a relativistic correction of
(
1+ v2/c2

)
which enhances the effective acceleration

experienced by the test mass. The velocity appears as a scalar which is independent of the direction of the

acceleration. For example, for a test mass that is orbiting the earth13 (and hence moving perpendicular to

the direction of the gravito-electric field), the test mass will experience an enhancement in the gravitational

acceleration toward the earth due to this factor. For this particular case, if we neglect~v× ~̃BG and consider ϕ̃G

to be essentially static (so that
·
ϕ̃G ≈ 0) we find that (98) reduces to just14

~a = ~̃EG

(
1+

v2

c2

)
(101)

By contrast, the last term of (98) contains a relativistic correction involving ~̃EG, however, it appears as

~v · ~̃EG which means it is only associated with motion of the test mass in the direction of ~̃EG. Therefore, this

correction would not affect the acceleration of a test mass that is orbiting the earth. However, it would affect

the acceleration of a test mass that has any component of its motion directed toward the center of the earth.

Since this term appears with a negative sign, it acts to retard rather than enhance the net acceleration of the

test mass.

For the particular case of a test mass falling toward the center of the earth, we would have~v · ~̃EG = vt ẼG.

Neglecting ~v× ~̃BG and considering ϕ̃G to be essentially static (so that
·
ϕ̃G ≈ 0) we find that (98) reduces to

just

~a = ~̃EG

(
1− v2

c2

)
(102)

Therefore, we find that a particle that is moving toward the center of the earth would have an overall rela-

tivistic correction that decreases the acceleration by v2/c2 compared to the acceleration for non-relativistic

velocities. This result is consistent with that obtained in [?].

Lastly, we point out that the factor of 4 in the gravito-magnetic force can be traced back to the definition of

the gravito-vector potential in (31) where we chose the prefactor in order to make the gravitational Maxwell-

like equations in (58) appear almost identical in form to the electromagnetic Maxwell equations. The factor of

4 in the gravito-magnetic force is obviously a distinguishing feature which makes the gravito-Lorentz force

unlike the electromagnetic Lorentz force. We could certainly choose to redefine the prefactors used when

defining the potentials and/or the fields to remove the factor of 4, but we would find that the field equations are

correspondingly altered in the process which would make them less similar to the electromagnetic Maxwell

equations. Regardless of what choice is made with these prefactors, the physics will fundamentally remain

the same and it is evident that we cannot obtain a perfect match between gravitation and electromagnetism.

13Here we are treating the earth as perfectly spherical and considering circular orbits concentric with the

equator.

14This does not seem to match the result obtained from the Schwarzschild metric in (2811) of Appendix

K. The expression there can be written as ~a = ~EG

(
1+3

v2

c2

)
r̂ where ~EG = −

GM

r2
r̂, and v = l/r .where

l = L/m.
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1.10 The gravitational Lorentz-like force for non-relativistic test masses

Next we consider the limit as (v/c)2 becomes negligible. Notice that taking this limit properly requires

specifying the strength of
·
ϕ̃G compared to the strength of ∇ϕ̃G. For example, in principle there could be a

time-varying scalar potential that varies extremely rapidly (such as at microwave frequencies) and the test

mass could be moving through a region where the scalar potential has very small spatial variance. In that

case, it is possible that

·
ϕ̃G~v > ∇ϕ~v2 (103)

However, for the case of a scalar potential that is slowly varying in time (or static), and also has a significant

spatial variation, then it may be possible that15

·
ϕ̃G~v < ∇ϕ~v2 (104)

Therefore, it may not be immediately obvious what is the appropriate approach when taking the non-relativistic

limit of the test mass since the velocity of the test mass is not the only relevant quantity. However, assuming

that both
·
ϕ̃G~v and ∇ϕ~v2 are negligible compared to the other remaining terms, then (98) would reduce to

Geodesic equation of motion

~a= ~̃EG+4~v× ~̃BG in trace-reversed harmonic gauge

(sources and test masses with v<< c)

(105)

This is the gravitational “Lorentz-like” force law which often appears in the literature. It is important to

recognize from the discussion above that this force law involves several assumptions and approximations

concerning both the source of gravitation as well as the test masses experiencing them. It was obtained

from linearized GR in the trace-reversed harmonic gauge for slow moving sources (vs << c), slow moving

test masses, (vt << c), and fields that do not vary greatly in space or time (low frequency, nearly uniform

gravitational fields). If any of these assumptions are violated, then a more general equation of motion is given

by (98). In fact, depending on the properties of the physical system, it may be necessary to go back to (88)
which also includes the effects of gravitational waves. In the case that non-linear gravitational interactions

become relevant, it would be necessary to return all the way to the geodesic equation of motion given in (85)
where the Christoffel symbols are completely general (not evaluated to first order in the metric).

Lastly, we point out that formally speaking, the term with~v× ~̃BG should also be dropped in (105). This

follows from (100) where we found~v× ~̃BG ∼ vtvs/c
2. Since the entire formulation here assumes that vs << c

(so that h̄i j ≈ 0) and we are now taking the non-relativistic limit for test masses, vt << c, then~v×~̃BG∼ vtvs/c
2

is of the same order as the other terms with v2/c2 in (98) that we dropped. Therefore, we should simply have

~a= ~̃EG. The only way to have other terms appear (while still having non-relativistic test masses), is to have

relativistic sources or extremely dense mass sources. This would allow more terms in (88) to remain even for

a slow-moving test mass. Therefore, we conclude that (105) is not a valid expression since it is obtained by

an inconsistent use of approximations.

15We are assuming that in either case, the field is still sufficiently weak so that the approximations of

linearized GR are not violated. We still require hµν << ηµν .
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1.11 The gravito-electromagnetic fields of a “mass solenoid”

Here we consider a very long rotating cylindrical “mass solenoid” of length L and radius R (where L>>
R) with the axis along the z-axis from z=−L/2 to z= L/2. This system provides an interesting application of

the gravito-electromagnetic field equations derived from the trace-reversed harmonic gauge (58). We assume

that the cylinder rotates at a constant angular velocity and hence has a non-time varying mass current as

required for the equations in (58) to apply.16

Figure 1: A “mass solenoid” with a mass current, ~Jm, creating a gravito-vector potential,~h, and corresponding

gravito-magnetic field, ~BG.

We can use the gravito-Gauss law from (58) to obtain the gravito-electric field, ~̃EG.

∇ ·~EG (r) =−ρ/εG (106)

Taking the volume integral of both sides and applying the Divergence theorem gives∫∫∫
V

(
∇ ·~EG

)
dV = − 1

εG

∫
V

ρ (r)dV (107)

∮
Surface

of V

~EG ·d~A = − 1

εG

∫
V

ρ (r)dV (108)

16Note that in the diagram,~h points in the opposite direction of ~Jm as a result of the negative sign in

∇×
(

∇×~h
)
=−µG

~Jm.
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If we assume a uniform mass distribution17, then ρ (r) = ρ0. We can use a cylindrical Gaussian surface with

radius r surrounding the mass solenoid concentrically. This gives

EG,r2πrL=−ρ0

(
πR2L

)
/εG (109)

~EG =−
R2ρ0

2πεGr
r̂ (110)

We can also use a line integral of ~EG to find the change in the gravito-scalar potential, ϕG, when going from

r′ = r0 to r′ = r, where r0 is an arbitrary distance away from the mass solenoid such that ϕG (r0) = 0.

∆ϕG (r) =−
∫ r

r0

~EG ·d~r =−
∫ r

r0

(
− R2ρ0

2πεGr′
r̂

)
·d~r′ = R2ρ0

2πεG

∫ r

r0

1

r′
dr′ =

R2ρ0

2πεG

[
ln
(
r′
)]r

r0
(111)

ϕG (r) =
R2ρ0

2πεG

ln

(
r

r0

)
(112)

Next we can calculate the gravito-vector potential,~h, outside the mass solenoid. Since the z-axis is the

axis of symmetry as well as the axis of rotation, then~h= hφ (~r) φ̂ . To find an expression for~h, we take a line

integral of~h along a closed path around the solenoid, use ~BG = ∇×~h from (46) and apply Stokes’ theorem.∮
Around
solenoid

~h ·d~r =
∫

Cross section
of solenoid

(
∇×~h

)
·d~S=

∫
Cross section
of solenoid

~BG ·d~S=Φ~BG
(113)

where Φgm is the total gravito-magnetic flux of ~BG through a cross-section of the solenoid. If we use a circular

path along the φ̂ direction (with z in the upward direction), then we also have∮
Around
solenoid

~h ·d~r = hφ 2πr (114)

So equating (113) and (114) gives

~h =
Φgm

2πr
φ̂ (115)

We can also develop an expression for Φgm (and hence for~h) by taking a surface integral of both sides of

Ampere’s law from (58) and applying Stokes’ theorem to change the surface integral into a line integral.∫∫ (
∇×~BG

)
·d~S=−µG

∫∫
~Jm ·d~S (116)

17If the mass distrubution is not uniform then we can not explicitely evaluate the integral. However, if a

function is known for the mass density, then because the integral is over the entire cylinder, we would simply

use M =
∫

ρ (~r)dV where M is the total mass.
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Using Stoke’s theorem gives ∮
~BG ·d~l = −µGIm (117)

where Im is the mass-current. We can use a line integral along a rectangular loop with one edge inside the

solenoid parallel to the axis (where ~BG 6= 0) and the opposite edge outside the solenoid (where ~BG = 0). If

the length of the edge is L, then we obtain

BGL = −µGIm (118)

The total current in a solenoid is Im =Nim where im is the current in each loop. If the solenoid is a continuous

mass shell, then it is effectively a “perfect” solenoid where the current is distributed continuously over the

surface. Then we can use Jm = σω where σ is the effective surface mass density of the cylinder spinning

with angular velocity ω . So the total current would be Im = JmA⊥ where A⊥ = RL is the area normal to the

current and R is the radius of the solenoid. Then we have

BGL = −µG (σω)(RL) (119)

BG = −µGRσω (120)

We can now determine the magnitude of the gravito-magnetic flux Φgm through a cross-sectional area of the

solenoid, Acs = πR2. When we determined the gravito-magnetic field, we already treated the cylinder as a

“perfect” solenoid which means it is effectively one “loop” so N = 1. Then we have

Φgm = NBGAcs = (µGRσω)
(
πR2

)
= µGπR3

σω (121)

We can also express this in terms of a volume mass density since

σA= ρV =⇒ σ (2πRL) = ρ
(
πR2L

)
=⇒ σ = Rρ/2 (122)

Then the gravito-magnetic flux in (121) becomes

Φgm =
1
2

µGπR4
ρω (123)

We can substitute this back into (115) and (120) to express the gravito-vector potential and the gravito-

magnetic field in terms of the physical parameters of the mass solenoid. This gives

~h=
µGR4ρω

4r
φ̂ (124)

and

~BG =− 1
2

µGR2ρω ẑ (125)
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2.1 The PPN equations to second order with GR parameters

The Parameterized Post-Newtonian formalism does not begin with General Relativity but from a broader

approach of simply assuming a metric theory of gravity and then relating derivatives of the metric to compo-

nents of the energy-momentum-stress tensor. In the paper titled, “Laboratory experiments to test relativistic

gravity” by Braginsky, Caves, and Thorne (BCT) [41], the following “Maxwell-like equations” (3.8a-3.8d)

for the “electric-type” and “magnetic-type” gravitational fields are given.

∇ ·~g = −4πGρ0

(
1+2β 1

~v2

c2
+β 3

Π

c2
+3β 4

P

ρ0c2

)
+

(
7

2
∆1−

1

2
∆2

)
1

c2

∂ 2

∂ t2
Φ (126)

∇×~g = −1

c

∂ ~H

∂ t
(127)

∇ · ~H = 0 (128)

∇× ~H =

(
7

2
∆1+

1

2
∆2

)(
−4πG

ρ0~v

c
+

1

c

∂

∂ t
~g

)
(129)

Throughout these equations β 1, β 3, β 4, ∆1, and ∆2 are parameterized-post-Newtonian (PPN) parameters.

Also, ρ0 is the density of rest mass in the local frame of the matter, ~v is the ordinary (coordinate) velocity

of the rest mass relative to the PPN coordinate frame, and Π is the specific internal energy. The scalar and

vector potentials (3.3) are also defined, respectively, as

Φ≡−(U+2Ψ) and ~A≡−7

2
∆1
~V − 1

2
∆2
~W (130)

where U,Ψ,~V , and ~W are gravitational potentials as shown in Chapter 39 of MTW [11]. The “electric-type”

gravitational field~g and “magnetic-type” gravitational field ~H are then given, respectively, in (3.4) by

~g=−∇Φ− 1

c

∂~A

∂ t
and ~H = ∇×~A (131)

In the Maxwell-type equations (126)-(129), we can consider the case when we have the PPN parameters of

General Relativity which are simply β 1 = β 3 = β 4 = ∆1 = ∆2 = 1. Then the equations become

∇ ·~g = −4πGρ0

(
1+2

~v2

c2
+

Π

c2
+3

P

ρ0c2

)
+3

1

c2

∂ 2

∂ t2
Φ (132)

∇×~g = −1

c

∂ ~H

∂ t
(133)

∇ · ~H = 0 (134)

∇× ~H = 4

(
−4πG

ρ0~v

c
+

1

c

∂

∂ t
~g

)
(135)

These equations can be compared to the gravito-electromagnetic “Maxwell-like” equations in the trace-

reversed harmonic gauge shown in (58). First, we can consider the case when the specific internal energy

and pressure are negligible so that
Π

c2
≈ P

ρ0c2
≈ 0 (136)

We can also change notation so that ~g = ~̃EG and ~H = ~̃BG. Furthermore, we will use Φ = ϕ̃G in the gravito-

Gauss law and ~Jm = ρ~v in the gravito-Ampere law. Lastly, we recognize that the factor of 1/c2 that multiplies
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the displacement current in (58) is “split” in the BCT equations between a factor of 1/c in the gravito-Faraday

law and a factor of 1/c in the time-dependent part of the gravito-Ampere law. This is simply a result of using

cgs units so we can simply revert to SI units as used in (58). Then we can substitute εG and µG as defined in

(35) and write (132)-(135) as

∇ · ~̃EG =−
ρ

εG

(
1+2

~v2

c2

)
+3

1

c2
∂ 2

t ϕ̃G ∇ · ~̃BG = 0

∇× ~̃EG =−∂t
~̃BG ∇× ~̃BG = µG

(
−~Jm+ εG∂t

~̃EG

)
Gravito-electromagnetic field equations from the PPN formalism

(137)

Comparing these equations to (58), we see that the gravito-Faraday law is preserved and the gravito-Ampere

law takes the same form. However, since the sources are relativistic to order v2/c2 (as required for the gravito-

Faraday law), then the gravito-Gauss law contains additional terms, namely, a term involving ρv2/c2 and a

term involving ∂ 2
t ϕG.

We also note that unlike the gravito-electromagnetic equations in (58), the equations in (137) are valid for

time-varying mass currents. To see this, we can consider the linearized conservation of energy-momentum,

∂ µ T0µ = 0, with µ = i which gives

∂
0T0i+∂

jTi j = 0 (138)

Since Ti j = ρuiu j and we are keeping source terms to order ρv2/c2 in (137), then T i j can be non-zero in this

approximation. Therefore, ∂ 0T0i can be non-zero and using (33) to express this in terms of the four-current

density means
·
~Jm = 0 can be non-zero. Therefore, we see that in this approximation, the current can be

time-varying.
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2.2 The displacement current to second order in the velocity of sources

We can observe that the BCT equations in (132)-(135) are first-order in spatial derivatives of the vector

fields. Therefore only a single curl or divergence of ~̃EG or ~̃BG appears to highest order. Also notice that the

equations are second-order in time-derivatives of the potentials. Therefore, we find ∂ 2
t ϕG in the gravito-Gauss

law, we find ∂t
~̃BG = ∇× ∂t

~h in the gravito-Faraday law, and we find ∂t
~̃EG = −∂ 2

t
~h in the gravito-Ampere

law.

In considering an expression for the displacement current, we must respect these approximation limits.

Beginning from the BCT equations in (137), we can take a time-derivative to obtain

ρ̇

εG

(
1+2~v2/c2

)
+

ρ

εG

(
4~v ·

·
~v/c2

)
=−∇ ·∂t

~̃EG+3
1

c2
∂

3
t ϕG (139)

Since we are only keeping second-order time-derivatives of the potentials, then we must neglect ∂ 3
t ϕG. Also,

because the sources in (137) are v2/c2 to highest order, we can consider~v ·
·
~v/c2 to be negligible18. Solving

for ρ̇ gives

ρ̇ =
−εG∇ ·∂t

~̃EG

(1+2~v2/c2)
(140)

We can apply a binomial approximation and keep terms only to order v2/c2. Then we simply have

ρ̇ =−εG∇ ·∂t
~̃EG

(
1−2~v2/c2

)
Substituting this into the mass-current continuity equation in (63) and factoring out a common divergence

gives

∇ ·
[
−εG∂t

~̃EG

(
1−2~v2/c2

)
+ ~Jm

]
= 0

Therefore, we can define a “mass displacement current” to order v2/c2 as

~Jm (D) =−εG∂t
~̃EG

(
1−2~v2/c2

)
Mass displacement current to order v2/c2 (141)

Then the full mass current density is ~Jm ( f ull) = ~Jm+ ~Jm (D) and the gravito-Ampere law gives

∇× ~̃BG = −µG
~Jm ( f ull) (142)

∇× ~̃BG = −µG
~Jm+ εGµG∂t

~̃EG

(
1−2~v2/c2

)
(143)

Matching this to the gravito-Ampere law found in (137) which comes from the equations by BCT, we find

that in their approximation scheme they must have neglected terms of order 2∂t
~̃EG~v

2/c2. This could be

justified by the fact that the sources are limited to second order in velocity
(
v2/c2

)
and the time-derivatives

of the potentials are limited to second order
(

∂t
~̃EG =−∂ 2

t
~h
)

so the product of these two terms would be

negligible.

18We can write~v ·
·
~v/c2 as ωv2/c2 where ω represents the rate of change of~v. For low velocities, v2/c2 is

extremely small which means that ω would not be able to compensate even with a high acceleration. On the

other hand, for high velocities approaching c, the acceleration must be small since the velocity must approach

c asymptotically. Therefore, we conclude that~v ·
·
~v/c2 must be negligible compared to v2/c2.
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2.3 The incompatibility of the PPN formalism with gravitational waves

From the BCT equations in (137), we consider a stationary scalar potential so that ∂ 2
t ϕG = 0. To calculate

the propagation speed of the field in vacuum, we also set ρ = 0 and ~Jm = 0 for the mass density and mass

current density. This makes the BCT equations in (137) become

∇ · ~̃EG = 0 (144)

∇× ~̃EG = −∂t
~̃BG (145)

∇ · ~̃BG = 0 (146)

∇× ~̃BG =
4

c2
∂t
~̃EG (147)

Taking the curl of (145) and (147) gives

∇×
(

∇× ~̃EG

)
= −∂t

(
∇× ~̃BG

)
and ∇×

(
∇× ~̃BG

)
=

4

c2
∂t

(
∇× ~̃EG

)
(148)

We can apply the vector calculus identity ∇×
(

∇×~F
)
= ∇

(
∇ ·~F

)
−∇

2~F and note that ∇ · ~̃EG = 0 and

∇ · ~̃BG = 0 from (144) and (146). So we have

−∇
2~̃EG = −1

c

∂

∂ t

(
∇× ~̃BG

)
and −∇

2~̃BG =
4

c

∂

∂ t

(
∇× ~̃EG

)
(149)

Substituting (145) and (147) into the expressions in (149) and returning to using gives

∇
2~̃EG =

4

c2

∂ 2

∂ t2
~̃EG and ∇

2~̃BG =
4

c2

∂ 2

∂ t2
~̃BG (150)

In general, a wave equation of the form ∇
2~F =

1

v2

∂ 2

∂ t2
~F has a wave speed v. Therefore we find from (150)

that the wave speed of the gravitational wave would be v = c/2. However, note that here we have obtained

vector wave equations, not tensor wave equations. This would imply that GR permits vector wave equations

similar to that of EM waves. However, that is not the case. In fact, in [11], p. 1075, the author state concerning

the PPN formalism, “Changes with time of all quantities at fixed x j are due primarily to the motion of the

matter. As a result, time derivatives are small by O (ε) compared to space derivatives∣∣∣∣ ∂A/∂ t

∂A/∂x j

∣∣∣∣∼ ∣∣v j

∣∣. ε for any quantity A, (151)

although not in the radiation zone, where outgoing gravitational waves flow . . . . Consequently, the radiation

zone must be excluded from the analysis when one makes a post-Newtonian expansion. To treat it requires

different techniques . . .” Therefore, we cannot consider the formalism above as relevant to gravitational

waves.
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Furthermore, there is an approximation error in the calculation above which can be traced back to taking

the second derivative in (148). The equations derived by [41] in (132)− (135) are already approximations

that have truncated second derivatives in the fields. Therefore, when taking second derivatives in (148),
formally they would need to be set to zero to maintain consistency with (132)− (135). Otherwise, we are

throwing out such terms to obtain (132)− (135) and then claiming that these equations permit higher order

derivatives. This is obviously inconsistent.

Lastly, we point out that the wave equations shown in (150) implies there can be vector gravitational

waves similar to EM waves. However, there are a number of properties of gravitation that are violated by

having vector wave equations. This can be seen by comparing the following intrinsic properties of a tensor

field theory, a vector field theory and a scalar field theory.

Tensor field theory properties (gravitation)

• Source is a rank-2 tensor (stress-energy-momentum tensor)

• Conservation of source obeys two fundamental laws (conservation of mass and momentum)

• “Field” is a symmetric rank-4 tensor (Riemann tensor)

• “Potential” is a symmetric rank-2 tensor (metric tensor)

• “Field” is related to “potential” by second-order, anti-symmetric derivatives

• Force is only attractive (corresponding to one sign for “charges”)

• Polarization states are 45-degrees apart (“plus” and “cross” polarizations)

• Waves are transverse, traceless tensor fields (degrees of freedom isolated by TT gauge)

• Lowest order radiation is quadrupolar

• Force carrier is a spin-2 particle (graviton)

Vector field theory properties (electromagnetism)

• Source is a rank-1 tensor (four-current density)

• Conservation of source obeys one fundamental law (conservation of charge)

• Field is an anti-symmetric rank-2 tensor (EM field tensor)

• Potential is a rank-1 tensor (four-potential)

• Field is related to potential by a single order, anti-symmetric derivative

• Force can be attractive or repulsive (corresponding to two oppositely signed charges)

• Polarization states are 90-degrees apart (vertical and horizontal polarizations)

• Waves are transverse vector fields (degrees of freedom isolated by Coulomb gauge)

• Lowest order radiation is dipolar

• Force carrier is a spin-1 particle (photon)

Scalar field theory properties (sound)

• No “source” exists (no “sound charge”)

• No conservation law of source since there is no source

• “Field” is a rank-0 tensor which is a scalar (pressure)

• No polarization states

• Waves are longitudinal scalar fields

• Lowest order radiation is monopolar

• Force carrier is a spin-0 particle (phonon)
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2.4 Gravito-electromagnetic resistance and mutual inductance

The treatment of the mass solenoid in Section 9 can be extended to consider the characteristics of a

gravito-electromagnetic “inductance” and “resistance.” This can be done using the field equations derived

from the PPN formalism in (137) since they permit time-varying mass currents. This is in contrast to the field

equations derived in Part I from the trace-reversed metric perturbation.

Since electrons carry both mass and charge, we will compare the electromagnetic properties to the gravito-

electromagnetic properties. We begin with a “particle current” which can then be easily related to a charge

current as well as a mass current. The particle current is

In =
dn

dt
(152)

where n represents the number of particles. Since the particles in an electrical current are electrons then we

can write the charge and mass currents as, respectively,

Iq = eIn and Im = meIn (153)

If the current is sinusoidal, then the charge and mass currents in (153) become, respectively,

Iq = eIo sin(ωt) and Im = meIo sin(ωt) (154)

where Io is the maximum current. If this charge/mass current exists in a solenoid, then the associated magnetic

field and gravito-magnetic field would be, respectively,19

B= µ0Iqnloop and BG =−µGImnloop (155)

where nloop = N/L is the number of loops N per unit length L of the solenoid. We are using µ0 and µG

to represent the magnetic and gravito-magnetic permeability within the solenoid, respectively, assuming the

inside of the solenoid is just vacuum. The magnetic flux and gravito-magnetic flux through the N loops of

the solenoid would be, respectively,

Φm =
µ0N2AIq

L
and Φgm =−

µGN2AIq

L
(156)

where A is the cross-sectional area of the solenoid. (The field is assumed to be relatively uniform over the

cross-sectional area and along the length of the solenoid.) Substituting the currents shown in (154) into (156)
gives

Φm =
N2Aµ0e

L
Io sin(ωt) and Φgm =−

N2AµGme

L
Io sin(ωt) (157)

Faraday’s law for electromagnetism and gravito-electromagnetism is given by, respectively,

∆ϕe =−∂tΦm and ∆ϕG =−∂tΦgm (158)

where ϕe is the electric scalar potential and ϕG is the gravitational scalar potential. Substituting (157) into

(158) and taking the time derivatives gives

∆ϕe = −N2Aµ0e

L
Ioω cos(ωt) and ∆ϕG =

N2AµGme

L
Ioω cos(ωt) (159)

19The negative sign appears for the gravito-magnetic field due to the fact that the gravito-Ampere law in

(137) has a negative sign.
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Now consider a ring that is placed coaxially above the solenoid as shown in the diagram below.

Figure 2: Metal ring placed concentircally above a cylindrical solenoid.

To determine the electric and gravito-electric current induced in the ring, we must consider how to compare

electric resistance with “gravitational resistance.” Electrical resistance can be written in terms of Ohm’s law

as

Re =
ϕe

Iq

(160)

Since electric potential is defined as energy per unit time, ϕe ≡ Ue/q, then volts are joules per coulomb.

Therefore, the units of electrical resistance can be found accordingly.

[Ωe] =
[J/C]

[C]/ [s]
=
[J] [s]

[C]2
(161)

Here we use Ωe for electrical resistance to distinguish it from gravitational resistance. If we define an analo-

gous gravitational “Ohm’s law,” we would have

RG =
ϕG

Im

(162)

Since gravitational potential is defined as energy per unit mass, ϕG ≡UG/m, then “gravitational volts” are

joules per kilogram. Therefore, the units of gravitational resistance can be found accordingly.20

[ΩG] =
[J/kg]

[kg]/ [s]
=
[J] [s]

[kg]2
(163)

20Note that writing [Ωg] in the basic MKS units gives [Ωg] =
[m]2

[kg] [s]
. This is consistent with defining the

gravito-electromagnetic impedance as Zg =

√
µg

εg

=
4πG

c
in (363) which also has units [Ωg] =

[m]2

[kg] [s]
.
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Hence we find on dimensional grounds that the unit of gravitational resistance is related to the unit of electrical

resistance according to

[ΩG] =

(
[C]

[kg]

)2

[Ωe] (164)

Formally, the total resistance that would be experienced by a current would therefore be Re+RG. How-

ever, it is known that in actuality the resistance upon a current of charged particles is generally due to elec-

tromagnetic interactions and not gravitational interactions. In other words, if a collection of charged particles

(such as electrons) is accelerated by a gravito-electric field, the resistance that would determine the cur-

rent would still be the electrical resistance, not the gravitational resistance. Therefore, we can simply use

RG = αRG where α = 1C2/kg2 is set to unity and is simply providing dimensional consistency.

Now the total current that would be induced in the metal ring above the solenoid will have a contribution

due to both the electric and gravito-electric fields induced in the ring. So we have

ITotal = Iq,induced+ Im,induced (165)

where

Iq,induced =
ϕe

Re

and Im,induced =
ϕG

RG

(166)

Using RG = αRe and substituting (159) into (166) gives

Iq,induced = −N2AIoω cos(ωt)

LRe

µ0e and Im,induced =−
N2AIoω cos(ωt)

LReα
µGme

(167)

We do not mean to imply that there are literally two currents. Rather, there is only a single current since

the electrons are providing both the charge and mass. The two expressions are simply decomposing the

contributions from the electric field and the gravitational field to produce a single current. If we take a ratio

of the gravitational and electrical contributions, we obtain

Im,induced

Iq,induced

=
µGme

αµ0e
(168)

Since we know that µG = 4πG/c2 and 1/µ0 = ε0c2, then we can write the ratio above as21

Im,induced

Iq,induced

= (4πε0G)
(

me

αe

)
(169)

Using α = 1 and expressing the constants in SI units gives

Im,induced

Iq,induced

≈
4π
(
8.85×10−12

)(
6.67×10−11

)(
9.11×10−31

)
1.60×10−19

≈ 4.22×10−32 (170)

21The factor 4πε0G is related to the “criticality condition” described in [91], pp. 3-7, where the Coulomb

electrostatic force and Newtonian gravitational force are set equal in magnitude, FC = FN . This means that

q2

4πε0r2
=

Gm2

r2
. Solving for the charge-to-mass ratio gives (q/m)2 = 4πε0G.
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Hence we find that even if there is a way to completely shield the metal ring from the magnetic flux while

allowing the gravito-magnetic flux to still penetrate, the resulting current would be 32 orders of magnitude

weaker than the electric current had been. If we consider the case of a superconducting solenoid with a

superconducting ring above it, then the only change to the treatment above would be with regard to Re and

RG. Specifically, the relevant factor would be α where α = RG/Re. If the value of α can be made extremely

small, then this could help to offset the extremely small ratio in (170).

Let us consider some numeric values for the parameters appearing in the expression for Im,induced in (167)
to determine if it could actually be detectable. We can let the number of loops in the solenoid be N = 103

while the cross-sectional area is A= π (1cm)2 = π×102m, and the length is L= 50cm= .5m. The frequency

of oscillation can be microwaves, ω = 2π × 109Hz. The current can be considered to be Iq = 10A which

means from (153) that for the case of electron pairs we have Io = Iq/2e= 5A/
(
1.602×10−9C

)
. With these

values, we have (in SI units)

Im,induced = −
2
(
103
)2 (

π×102
)

5
(
2π×109

)
cos(ωt)

(1.602×10−9)(.5)RG

(
8.48×10−57

)
≈ 2.1×10−28

RG

(171)

Solving for RG gives

RG ≈ 2.1×10−28

Im,induced

(SI units) (172)

If the smallest detectable current is on the order of picoAmps, then we have

RG ≈ 10−16 (SI units) (173)

This is the maximum gravitational resistance that would still potentially allow for measurable effects of

gravitational induction due to the oscillating current in the solenoid.
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3.1 Overview of the HD theorem formulation

The use of cosmological perturbation theory for the purpose of decomposing the metric has been treated

by a large assortment of authors including Lifshitz, Bardeen, Bertschinger, Carroll and others as shown in

[13]-[27]. However, the treatment given here will closely follow that of Flanagan and Hughes [28] who

essentially employ the Helmholtz Decomposition (HD) theorem in describing the metric perturbation tensor

as well as the stress-energy-momentum tensor. Much of the notation and convention used by [28] will be

retained although there will be a few important changes which are noted when appearing. Also, unlike [28]

and most other treatments, we will retain all factors of G and c explicitly.22

First we develop the full framework of the gauge-invariant formulation of linearized GR via the Helmholtz

Decomposition (HD) theorem. The HD theorem is never explicitly referenced in [28], however we recognize

it as the premise upon which the entire formulation is built. We describe the HD metric, the associated

HD boundary conditions (requiring the metric to be flat at infinity), and the relevance of the HD theorem.

Specifically, this allows vectors to be uniquely defined in terms of a rotational component and an irrotational

component.23 As an extension of the HD theorem, a symmetric rank-2 tensor can also be uniquely defined

in terms of longitudinal, rotational, and transverse degrees of freedom. This is discussed at some length by

Bertschinger in [20], section 4.2 (pp. 40-43) as well as [21], sections 3 through 7 (pp. 4-14).

Next we apply the transformations given by the gauge freedom in linearized GR and construct four gauge-

invariant quantities by enforcing the HD boundary conditions on the metric. These gauge-invariant quantities

consist of two scalar potentials, a vector potential, and a tensor potential (Φ, Θ, Ξi, hττ
i j ). The scalar and vec-

tor potentials are all described by Poisson equations and are associated with non-radiative fields. The tensor

potential satisfies a wave equation and gives the only metric degrees of freedom associated with gravitational

radiation.

Next we formulate the linearized Einstein tensor components in terms of the gauge-invariant potentials.

Then we consider a stress-energy-momentum tensor that is constructed in a manner similar to the HD metric

and therefore also satisfies the HD theorem. We refer to this as the “HD stress tensor.” Linearized conser-

vation of stress-energy-momentum is used to formulate conservation laws relating the various stress tensor

quantities to one another. The linearized Einstein tensor and the stress tensor are then used to write the

Einstein field equations. Using the conservation laws leads to three Poisson equations, one for each of the

non-radiative invariant potentials, and a wave equation for the radiative field. Up to this point, we have pri-

marily just provided the mathematical details and elaborated on the conceptual framework that has already

been summarized in the paper by Flanagan and Hughes [28].

After this we begin to expand on the results given in [28]. First we define gauge-invariant vector fields (the

gravito-electric field and gravito-magnetic field) in terms of the gauge-invariant potentials. These vector fields

are essentially a new form of gravito-electromagnetism (GEM). They are used to write vector field equations

similar to the Maxwell equations of electromagnetism (EM). By appropriately defining the GEM vector fields

in terms of the potentials, the four Poisson equations for the potentials can be turned into two divergence

equations and two curl equations for the vector fields. These are referred to as gauge-invariant GEM field

equations. To enhance the similarity with electromagnetism, we define a gravito-electric permittivity and

22Although this is often viewed as cumbersome, it will be shown that keeping factors of c proves highly

instructive in revealing the relative strengths of fields and sources which would otherwise not be evident by

omitting factors of c.

23Such a treatment is directly analogous to electromagnetism, although it is often not emphasized that the

HD theorem is responsible for allowing the electric and magnetic fields to be uniquely defined in terms of

just a scalar potential and a vector potential. For a discussion of this topic see Appendix B of Griffiths’

Introduction to Electrodynamics [29].
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gravito-magnetic permeability and discuss the properties of these quantities. It is also found that in this

formulation there is no gravitational displacement current.

Next we relate the physical quantities of an ideal fluid tensor (mass density, velocity, and pressure) to the

quantities of the HD stress tensor. This allows for the GEM field equations to be written in terms of physical

sources such as mass density, mass current density, pressure and stress. Next we examine the Newtonian

limit and first-order post-Newtonian limits to recover the familiar gravitational relations such as the New-

tonian field and the traditional Lense-Thirring field. We find that in those limits, gauge-invariance is not be

preserved. Lastly, we compare the gauge-invariant Lense-Thirring field with the traditional gauge-dependent

Lense-Thirring field.
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3.2 The HD metric perturbation

In the following sections, the Helmholtz Decomposition (HD) theorem is applied to the metric perturba-

tion which will later be utilized in the formulation of linearized General Relativity (as developed in Appendix

A). In the weak-field limit, the metric can be written in terms of a small perturbation about the flat Minkowski

space-time metric to first order.

gµν = ηµν +hµν where
∣∣hµν

∣∣<< 1 (174)

The HD theorem (which is commonly applied to the vector formulation of electromagnetism) can be extended

to the tensor formulation of General Relativity. Applying the approach of Flanagan and Hughes [28], the

components of the metric perturbation can be decomposed as follows.

h00 = −2φ/c2 (175)

h0i = (β i+∂iα)/c (176)

hi j = hττ
i j +

1
3
δ i jH+∂ (iε j)+

(
∂i∂ j− 1

3
δ i j∇

2
)

λ (177)

This formulation is identical to that found in [28] except for a few minor differences.24 The factor of 2 in

(175) will be shown later to simplify the transformation of h00 in (203) and consequently the definition of the

gauge-invariant quantity Φ found in (246). Also, the notation ∂ (iε j) found in (177) is a symmetric derivative

given by25

∂ (iε j) = ∂iε j+∂ jε i (178)

Similar to [28], the following constraints are imposed on the components of the metric perturbation.

∂iβ i = 0 (179)

∂iε i = 0 (180)

∂ih
ττ
i j = 0 (181)

δ
i j

hττ
i j = 0 (182)

We also assume boundary conditions such that the metric (174) becomes the flat Minkowski space-time

metric at infinity. That is

hµν → 0 as r→ ∞ (183)

Specifically, the following components of hµn are assumed to vanish independently.

α → 0, ε i→ 0, λ → 0, ∇
2
λ → 0 as r→ ∞ (184)

The constraints in (179)− (182) and the boundary conditions in (183) and (184) insure that the Helmholtz

decomposition of the perturbation metric given in (175)− (177) satisfy the conditions necessary for the vec-

tor h0i to be separated into a rotational and irrotational component, and for the tensor hi j to be separated

24Note that [28] define h00 with a positive φ versus a negative. We use a negative to maintain consistency

with the Newtonian limit where g00 ≈−1+h00 with h00 =−2φ/c2 and φ playing the role of a gravitational

potential. Also, [28] uses γ instead of α in (176). We reserve γ for the Lorentz factor in Special Relativ-

ity which will appear later in this treatment. Lastly, [28] use hT T
i j instead of hττ

i j . We reserve hT T
i j for the

transverse-traceless gauge which is not to be confused with hττ
i j which is the transverse-traceless part of the

tensor in this gauge-invariant formulation.

25Note that [28] and others typically include a factor of 1
2

in the symmetrization. Using this convention

here would require introducing a factor of 2 in front of ∂ (iε j) in (177) to compensate for the factor of 1
2

in

the symmertrization. Instead, to simplify the formulation, the symmertrization is redefined without the factor

of 1
2
.
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into longitudinal, rotational, and transverse components. Specifically, the constraint in (179) requires that

β i is a purely rotational vector component of h0i. It is evident from (176) that ∂iα is a purely irrotational

vector component of h0i.
26 The HD theorem states that the vector h0i can be completely defined by a rota-

tional component and irrotational component, provided the boundary conditions given in (183) and (184) are

satisfied.

Likewise, the constraint in (180) requires that ε i is a purely rotational vector so that ∂ (iε j) can be thought

of as the rotational part of the hi j tensor. Also, the constraint in (181) requires that hττ
i j is a transverse tensor

while (182) requires that hττ
i j is traceless. Hence the superscript “ττ” represents the “transverse-traceless”

part of the entire hi j tensor.27

It is shown in Section 16 that the metric in (175)− (177) along with all the constraints given by (179)−
(184) lead to unique solutions for all of the scalar, vector and tensor quantities given by φ ,β i,α,H,ε i,H,λ
and hττ

i j . However, the solutions require knowledge of hµν over all space.

We can also note that the dimensions of the various metric quantities each differ. Since the metric is

dimensionless, then from (175) we can see that φ has the dimensions of velocity squared. From (176) we

see that β i has the dimensions of velocity while α has the units of velocity/distance. From (177) we see that

hττ
i j and H are dimensionless while ε i has the dimensions of distance and λ has the dimensions of distance

squared.

Lastly, (175)− (177) can be used to write the metric in terms of the relativistic space-time invariant,

ds2 = gµν dxµ dxν . This gives

ds2 = g00c2dt2+2g0icdtdxi+gi jdxidx j (185)

= (−1+h00)c
2dt2+2h0icdtdxi+(1+hi j)dxidx j (186)

=
(
−c2−2φ

)
dt2+2(β i+∂iα)dtdxi

+
[
1+hττ

i j +
1
3
δ i jH+∂ (iε j)+

(
∂i∂ j− 1

3
δ i j∇

2
)

λ

]
dxidx j (187)

The metric perturbation takes the following form as an explicit matrix.

(188)

26This follows from the fact that the curl of a gradient is always zero. Taking the curl of~h= (h01,h02,h03)

gives ∇×~h= ∇×
(
~β +∇α

)
= ∇×~β . This means that the contribution by α vanishes when taking the curl

of~h and it is therefore purely irrotational.

27Note that hT T
i j (in the TT gauge) also satisfies the criteria of being transverse and traceless, however,

it eliminates all other components of the metric as shown in Appendix F. Also, hT T
i j can only be applied to

vacuum solutions whereas hττ
i j will be shown to satisfy a field equations with sources (the transverse-traceless

part of the stress tensor.)
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3.3 Uniqueness of solutions for the Helmholtz decomposition metric

Here we show that given the constraints in (179)− (182) and the boundary conditions in (184), then the

scalars and vectors that make of the metric the components (φ , α, β i, H, ε i, λ ) as described in(175)−(177)
can be uniquely determined assuming one knows h00, h0i, and hi j over all space. First, we take the divergence

of (176) and note that ∂iβ i = 0 according to (179).

∂ih0i = ∂i (β i+∂iα)/c=
1
c
∂i∂iα (189)

∇
2
α = c∂ih0i (190)

The solution to this equation will be in terms of h0i and some added function f (r, t) that satisfies

∇
2

f (r, t) = 0 (191)

Since (183) requires that α → 0 as r→ ∞, then we must also have f (r, t)→ 0 as r→ ∞. So the unique

solution to (191) is f (r, t) = 0 and therefore the unique solution to (190) is only in terms of h0i. Provided we

have a function describing h0i over all space, then we can use (176) to also determine β i.

Next, we consider the components that make up hi j in (177). Note that if we have hi j then we immediately

have H as well since it is the spatial trace of hi j. This can be easily seen by taking a spatial trace of (177) and

noting that ∂iε i = 0 and δ
i j

hττ
i j = 0 according to (180) and (182), respectively.

δ
i j

hi j = δ
i j

hττ
i j +

1
3
Hδ

i j
δ i j+δ

i j
∂ (iε j)+

(
δ

i j
∂i∂ j− 1

3
δ

i j
δ i j∇

2
)

λ (192)

= 1
3
H (3)+δ

i j
∂iε j+δ

i j
∂ jε i+

(
∇

2− 1
3
(3)∇2

)
λ (193)

= H (194)

Next, we take a derivative of (177) and note that ∂iε i = 0 and ∂ih
ττ
i j = 0 according to (180) and (181),

respectively.

∂ihi j = ∂ih
ττ
i j +∂i∂ (iε j)+

1
3
∂ jH+

(
∇

2
∂ j− 1

3
∂ j∇

2
)

λ (195)

= ∇
2
ε j+

1
3
∂ jH+

2
3
∇

2
∂ jλ (196)

3∇
2
ε j = 3∂ihi j−∂ jH−2∇

2
∂ jλ (197)

We can take another derivative of (195) and again note that ∂ jε j = 0.

∂i∂ jhi j = 1
3
∇

2
H+ 2

3
∇

2
∇

2
λ (198)

2∇
2
λ = 3∂i∂ jhi j−∇

2
H (199)

Since (184) requires that ∇
2
λ → 0 as r→ ∞, then the differential equation above has a unique solution for

∇
2
λ in terms of hi j and H. This solution can be substituted into (197) to obtain a differential equation for ε j

in terms of hi j and H. This differential equation will also have a unique solution for ε j since (183) requires

that ε j → 0 as r→ ∞. Hence if we have a function for hi j, then we can determine H, ε j, and λ from (194),
(197) and (199), respectively. Then the solutions for ε j, λ , and H can be used with hi j in (177) to determine

hττ
i j . Therefore, we conclude that provided we have functions describing h00, h0i and hi j over all space, we

can uniquely determine all the scalars and vectors which make up the metric perturbation in (175)− (177).
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3.4 Gauge transformation of the HD metric perturbation components

In (2418) of Appendix A, we found that the coordinate transformation (gauge freedom) of the metric

perturbation in linearized GR is given by

h′µν = hµν +∂µ ξ ν +∂ν ξ µ (200)

where ξ µ = (ξ 0,ξ i) is an arbitrary 4-displacement vector which acts as a gauge function. If we decompose

ξ i into a purely rotational component and a purely irrotational component, then we can write

ξ µ = (cA, Bi+∂iC) (201)

where A is a time-like four-vector component, Bi is a purely rotational vector (∂iBi = 0), and ∂iC is a purely

irrotational vector. Also, by requiring that ξ µ → 0 as r→ ∞, then we preserve the condition that the trans-

formed metric still goes to the flat Minkowski metric infinitely far away. Lastly, by requiring C→ 0 as r→∞,

then by the HD theorem we know ξ µ is completely described in terms of A, B, and C.

Applying the transformation in (200) to the h00 component gives28 h′00 = h00+ 2∂0ξ 0. Then using h00

from (175) and the gauge vector in (201) gives

−2φ
′/c2 = −2φ/c2+2

(
1
c
∂t

)
cA (202)

φ
′ = φ − c2Ȧ (203)

Next, applying the transformation in (200) to the h0i component gives h′0i = h0i+∂0ξ i+∂iξ 0. Then using

h0i from (176) and the gauge vector in (201) gives(
β
′
i+∂iα

′)/c = (β i+∂iα)/c+ 1
c
∂t (Bi+∂iC)+∂icA (204)

β
′
i+∂iα

′ = β i+∂iα+ Ḃi+∂i

(
Ċ+ c2A

)
(205)

Taking a divergence of (205) and noting that ∂iβ i = 0 and ∂iBi = 0 gives

∇
2
α
′ = ∇

2
α+∇

2
(
Ċ+ c2A

)
(206)

∇
2
(
α
′−α−Ċ− c2A

)
= 0 (207)

Since α,α ′,A, and C all go to zero as r→ ∞, then the only unique solution29 to the differential equation

above is α ′−α−Ċ+ c2A= 0. Therefore we have

α ′ = α+ c2A+Ċ (208)

28We have shown in (2424) of Appendix A that to linear order, the four-derivative does not change under

a coordinate transformation so ∂µ ′ ≈ ∂µ . Therefore, we simply drop the prime notation on the derivative.

29For a discussion of the uniqueness of solutions with Dirichlet and Neumann boundary conditions, see-

Jackson [40], Section 1.9, p. 37-38. In this context, we are applying Dirichlet boundary conditions since

(183) and (184) require that all components of the metric vanish at the boundary r→ ∞.
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If we write (205) as a vector equation and take the curl, then we obtain

∇×
(
~β
′
+∇α

′
)

= ∇×
(
~β +∇α+

·
~B+∇

(
Ċ+ c2A

))
(209)

∇×
(
~β
′
−~β −

·
~B

)
= 0 (210)

The solution to this differential equation is

~β
′
−~β −

·
~B+∇ f (r, t) = 0 (211)

Since ∇ ·~β = ∇ ·~B = 0, then taking the divergence of the equation above requires that ∇
2

f (r, t) = 0. Also,

since ~β and ~B go to zero as r→ ∞, then we must also have that ∇ f (r, t)→ 0 as r→ ∞ which means that

f (r, t)→ constant as r→ ∞. Then the unique solution of ∇
2

f (r, t) = 0 is f (r, t) = constant everywhere and

therefore ∇ f (r, t) = 0 everywhere.30 Then (211) gives

β
′ = β + Ḃi (212)

Lastly, applying the transformation in (200) to the hi j component gives h′i j = hi j + ∂iξ j + ∂ jξ i. Then

using hi j from (177) and the gauge vector in (201) gives

h′ττ
i j +

1
3
δ i jH

′+∂
(

iε
′
j

)
+
(

∂i∂ j− 1
3
δ i j∇

2
)

λ
′

= hττ
i j +

1
3
δ i jH+∂ (iε j)+

(
∂i∂ j− 1

3
δ i j∇

2
)

λ +∂i (B j+∂ jC)+∂ j (Bi+∂iC) (213)

We can take the spatial trace of (213) and note that δ
i j

hττ
i j = 0. Also, since δ

i j
δ i j = 3, then upon taking the

trace, the terms involving λ become(
δ

i j
∂i∂ j− 1

3
δ

i j
δ i j∇

2
)

λ =
(

∇
2−∇

2
)

λ = 0 (214)

We also find that taking the trace of ∂

(
iε
′
j

)
and using (178) with ∂iε i = 0 will give

δ
i j

∂ (iε j) = δ
i j

∂iε j+δ
i j

∂ jε i = ∂ jε j+∂iε i = 0 (215)

So the trace of (213) will simply become

H ′ = H+δ
i j

∂i (B j+∂ jC)+δ
i j

∂ j (Bi+∂iC) (216)

H ′ = H+∂ jB j+2∇
2
C+∂iBi (217)

Since ∂iBi = 0, then we are left with

H ′ = H+2∇
2
C (218)

30We will use this argument repeatedly when solving a differential equation where the curl of a vector is

zero and the vector is known to be purely rotational and vanishes at infinity. Hence we will not repeat the

argument throughout the rest of this treatment.
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Next we take two derivatives of (213) using ∂i∂ j and note that ∂iε i = 0 and ∂ih
ττ
i j = 0.

1
3
∂i∂ jδ i jH

′+∂i∂ j

(
∂i∂ j− 1

3
δ i j∇

2
)

λ
′ = 1

3
∂i∂ jδ i jH+∂i∂ j

(
∂i∂ j− 1

3
δ i j∇

2
)

λ

+∂i∂ j∂i (Bi+∂iC)+∂i∂ j∂ j (Bi+∂iC) (219)

Since ∂iBi = 0, then we have

1
3
∇

2
H ′+ 2

3
∇

2
∇

2
λ
′ = 1

3
∇

2
H+ 2

3
∇

2
∇

2
λ +2∇

2
∇

2
C (220)

Substituting (218) gives

1
3
∇

2
(

H+2∇
2
C

)
+ 2

3
∇

2
∇

2
λ
′ = 1

3
∇

2
H+ 2

3
∇

2
∇

2
λ +2∇

2
∇

2
C (221)

2∇
2
∇

2
C+2∇

2
∇

2
λ
′ = 2∇

2
∇

2
λ +6∇

2
∇

2
C (222)

∇
2
[
∇

2
(
λ
′−λ −2C

)]
= 0 (223)

We know that ∇
2
λ and C both go to zero as r→ ∞ (and hence we can infer that ∇

2
C must also go to zero),

so the unique solution to the outermost differential equation above is

∇
2
(
λ
′−λ −2C

)
= 0 (224)

Since λ and C both go to zero as r→∞, then the solution to the differential equation above is λ
′−λ−2C= 0

and therefore we have

λ
′ = λ +2C (225)

Next we take a single derivative of (213) using ∂ j and note again that ∂ih
ττ
i j = 0.

1
3
∂ jδ i jH

′+∂ j∂
(

iε
′
j

)
+∂ j

(
∂i∂ j− 1

3
δ i j∇

2
)

λ
′

= 1
3
∂ jδ i jH+∂∂ j (iε j)+∂ j

(
∂i∂ j− 1

3
δ i j∇

2
)

λ +∂ j∂i (B j+∂ jC)+∂ j∂ j (Bi+∂iC) (226)

Using (178) and noting that ∂iε i = 0 will cause the terms involving ∂

(
iε
′
j

)
to become

∂ j∂ (iε j) = ∂ j (∂iε j+∂ jε i) = ∇
2
ε i (227)

So (226) gives

1
3
∂iH

′+∇
2
ε
′
i+
(

∂i∇
2− 1

3
∂i∇

2
)

λ
′

= 1
3
∂iH+∇

2
ε i+

(
∂i∇

2− 1
3
∂i∇

2
)

λ +∂ j∂iB j+∇
2
Bi+2∇

2
∂iC (228)

Using ∂iBi = 0 and substituting in (218) and (225) gives

1
3
∂i

(
H+2∇

2
C

)
+∇

2
ε
′
i+

2
3
∂i∇

2 (λ +2C) = 1
3
∂iH+∇

2
ε i+

2
3
∂i∇

2
λ +∇

2
Bi+2∇

2
∂iC (229)

2
3
∂i∇

2
C+∇

2
ε
′
i+

4
3
∂i∇

2
C = ∇

2
ε i+∇

2
Bi+2∇

2
∂iC (230)

∇
2
ε
′
i = ∇

2
ε i+∇

2
Bi (231)

∇
2
(
ε
′
i− ε i−Bi

)
= 0 (232)
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Since β i and ε i both go to zero as r → ∞, then the unique solution to the differential equation above is

ε ′i− ε i−Bi = 0 and therefore we have

ε ′i = ε i+Bi (233)

Lastly, we can substitute (218), (225) and (233) into (213) to obtain

h′ττ
i j +

1
3
δ i j

(
H+2∇

2
C

)
+∂ (i (ε j+B j))+

(
∂i∂ j− 1

3
δ i j∇

2
)
(λ +2C)

= hττ
i j +

1
3
δ i jH+∂ (iε j)+

(
∂i∂ j− 1

3
δ i j∇

2
)

λ +∂i (B j+∂ jC)+∂ j (Bi+∂iC) (234)

Canceling like terms gives

h′ττ
i j +

2
3
δ i j∇

2
C+∂ (iB j)+

(
∂i∂ j− 1

3
δ i j∇

2
)

2C = hττ
i j +∂i (B j+∂ jC)+∂ j (Bi+∂iC) (235)

Expanding ∂ (iB j) and canceling more terms gives

h′ττ
i j +∂iB j+∂ jBi+(∂i∂ j)2C = hττ

i j +∂iB j+∂i∂ jC+∂ jBi+∂ j∂iC (236)

h′ττ
i j = hττ

i j (237)

Therefore we find that hττ
i j is gauge-invariant. We now list all the transformation results from this section

below.

φ
′ = φ − c2Ȧ (238)

α
′ = α+ c2A+Ċ (239)

β
′
i = β i+ Ḃi (240)

H ′ = H+2∇
2
C (241)

λ
′ = λ +2C (242)

ε
′
i = ε i+Bi (243)
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3.5 Gauge invariant potentials

We now use the gauge transformations in (238)− (243) to construct gauge-invariant quantities. Solving

(242) for C gives C=
(
λ
′−λ

)
/2. Substituting this into (241) and rearranging leads to H ′−∇

2
λ
′=H−∇

2
λ .

Therefore, we can define the following gauge-invariant quantity.31

Θ≡ 1
3

(
H−∇

2
λ

)
(244)

Next, taking a time-derivative of (243) and solving for Ḃi gives Ḃi = ε̇
′
i− ε̇ i. Substituting this into (240)

and rearranging gives β
′
i− ε̇

′
i = β i− ε̇ i. Therefore, we can also define the following gauge-invariant quantity.

Ξi ≡ β i− ε̇ i (245)

Lastly, taking a time-derivative of (239) and two time-derivatives of (242) gives, respectively,

α̇
′ = α̇+ c2Ȧ+C̈ and λ̈

′
= λ̈ +2C̈

Combining these two equations by eliminating C̈ gives α̇
′= α̇+c2Ȧ+

(
λ̈
′− λ̈

)
/2. Solving this for c2Ȧ gives

c2Ȧ= α̇
′−α̇−

(
λ̈
′− λ̈

)
/2. Substituting this into (238) and rearranging gives φ

′+α̇
′− λ̈

′
/2= φ+α̇− λ̈/2.

Therefore, we can define another gauge-invariant quantity as

Φ≡ φ + α̇− λ̈/2 (246)

Since we found in (237) that hττ
i j is also gauge-invariant, then we conclude that there are a total of four gauge-

invariant quantities: Θ,Φ,Ξ, and hττ
i j . The following are some observations concerning these gauge-invariant

quantities.

• The metric component hi j contains two gauge-invariant quantities: hττ
i j and Θ = 1

3
(H−∇λ ). There-

fore, we could simply write hi j in (177) as hi j = hττ
i j +δ i jΘ+∂i∂ jλ . However, later when we express

the Einstein tensor components in terms of the four gauge-invariant quantities, we will find that it is

critical to have hi j expressed using 1
3
(H−∇λ ) rather than Θ in order to be able to separate H and ∇

2
λ .

This can be seen specifically in going from (262) to (266) where separating 1
3
(H−∇λ ) is necessary.

This is due to the fact that λ appears in both Φ and Θ.

• Notice that Φ = φ + α̇ − λ̈/2 consists of one scalar from each of h00, h0i, and hi j. Also, the order of

time derivatives of these scalars matches the order of the metric components they came from, that is,

the scalar from h00 has no time-derivative, the scalar from h0i has one time derivative and the scalar

from hi j has two time-derivatives.

• Notice that Ξi = β i + ε i consists of one vector from each of h0i and hi j. Also, the order of time

derivatives of these vectors matches the order of the metric components they came from, that is, the

vector from h0i has no time-derivative and the vector from hi j has one time derivative.

• The dimensions of the invariant quantities in (244)− (246) each differ. In Section 15 we identified

the dimensions of each of the metric quantities. The quantity H is dimensionless while λ has units of

distance squared. Therefore, Θ is dimensionless. We also know that β i has the dimensions of velocity

31The factor of 1
3

is inserted to simplify the Einstein tensor components found later.
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and ε i has the dimensions of distance. Therefore, Ξi has the dimensions of velocity. Lastly, we also

know that φ has the units of velocity squared and α has the units of velocity/distance. Therefore, Φ

has the units of velocity squared. The last invariant, hττ
i j , is of course dimensionless since it is simply a

metric component with no derivatives or prefactors involved.

• Since the rotational vector component of h0i (given by β i) is combined with the rotational vector in

hi j (given by ε i) to produce Ξi ≡ β i− ε̇ i, then this gauge-invariant potential is also purely rotational:

∂iΞi = 0. This implies that if Ξi plays the role of a “gravito-vector potential” analogous to the magnetic

vector potential, ~A, in electromagnetism (EM), then the condition ∂iΞi = 0 means that our formulation

is analogous to the Coulomb gauge in EM where ∇ ·~A = 0. However, the important difference is that

here we always have ∂iΞi = 0. It is not the result of a gauge choice like it is in EM.

• Notice that the transformations of some of the metric quantities required substituting the transforma-

tion from other metric quantities. For example, the transformation for λ in (225) required using the

transformation of H. Likewise, the transformation of ε i in (233) required the transformation of H and

λ . Lastly, the transformation of hττ
i j in (237) required the transformation of H,λ and ε i. This implies

that if any of these metric quantities (H, λand ε i) are absent (perhaps do to a particular space-time

geometry), then the transformations of the quantities that depend on them will be affected. All of this

interdependence is encapsulated in the single transformation expression shown in (226) which is the

transformation for hi j. The transformations for λ , ε i and hττ
i j all follow from this expression.

In fact, for the case of hττ
i j , which is found to be a gauge-invariant quantity, we must recognize

that its gauge-invariance is heavily dependent on the presence and behavior of H, λ and ε i. If any

of these quantities are missing, then the gauge-invariance of hττ
i j would fail. For example, consider a

space-time geometry where ε i = 0 in all frames. Then we could not substitute the transformation of

ε ′i into the expression in (213). As a result, the gauge term ∂iB j could not be canceled. This means

that hττ
i j would have remaining gauge freedom and could not be classified among the gauge-invariant

quantities. This is just a single example of the delicate connection between all the metric quantities and

the gauge vector which conspire together to form gauge-invariant quantities.

• Lastly, as a general observation, we note an important difference between gauge invariance in electro-

magnetism (EM) and gauge invariance in linearized General Relativity (GR). In EM, it is not possible

to have gauge-invariant potentials because the gauge freedom itself is defined in terms of the potentials.

The fields are then constructed from the potentials so that the fields are gauge-invariant. However, here

we find that in linearized GR it is indeed possible to have gauge-invariant potentials because the gauge

freedom is not defined in terms of the potentials but rather it is defined in terms of the coordinates.

Then using the gauge-invariant potentials, it is possible to construct vector fields that are also gauge-

invariant by simply defining the vector fields in terms of the derivatives of the potentials. (Note that

taking the Laplacian, curl, or time-derivative of the potentials involves using ∂µ . However, it is shown

in (2424) of Appendix A that a coordinate transformation satisfying the conditions for linearized GR

leads to ∂ ′µ ≈ ∂µ . Therefore, to first order, the derivatives of gauge-invariant potentials will give gauge-

invariant vector fields.)

We are careful here to refer to linearized GR where gauge invariant potentials can be constructed

directly from the metric. From these we can then identify gauge invariant vector fields that satisfy

vector field equations found later in (353). In that sense, we are able to partly reduce GR from a tensor

theory to a vector theory. (It is only partly because the field equation given by (333) is still necessarily

a tensor equation.) This vector formulation of linearized GR allows for a direct comparison between

EM and gravity. However, a treatment that is second order or higher in the metric will obviously

introduce non-linearities which would not allow for constructing gauge invariant potentials directly

from the metric. Similarly, it would not be possible to identify gauge invariant vector fields. The

only guaranteed gauge invariant quantity is the Einstein tensor since it is constructed from the gauge

invariant Riemann tensor. In that case, we find that gravity is fundamentally a tensor theory which can

not be even partly reduced to a vector theory.
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3.6 The Einstein tensor components in terms of gauge-invariant potentials

Here we evaluate the Einstein tensor components in terms of the gauge-invariant potentials. To determine

G00 we can use (2385) from Appendix A.

G00 =
1
2

(
∂i∂ jhi j−∇

2
H

)
(247)

Inserting the metric components from (177) gives

G00 =
1
2
∂i∂ j

[
hττ

i j +
1
3
δ i jH+∂ (iε j)+

(
∂i∂ j− 1

3
δ i j∇

2
)

λ

]
− 1

2
∇

2
H (248)

Since ∂ih
ττ
i j = ∂iε i = 0, then we have

G00 = 1
6
∇

2
H+ 1

2

(
∇

2
∇

2− 1
3
∇

2
∇

2
)

λ − 1
2
∇

2
H (249)

= − 1
3
∇

2
H+ 1

3
∇

2
∇

2
λ (250)

Using Θ= 1
3

(
H−∇

2
λ

)
gives

G00 =−∇
2
Θ (251)

Next, to determine G0i we can use (2387) from Appendix A.

G0i = 1
2

(
∂kḣki/c−∂iḢ/c+∂i∂khk0−∇

2
h0i

)
(252)

Substituting in the metric components from (176) and (177) gives

G0i = 1
2

{
∂k

[
ḣT T

ki +
1
3
δ kiḢ+∂ (kε̇ i)+

(
∂k∂i− 1

3
δ ki∇

2
)

λ̇

]
/c

−∂iḢ/c+∂i∂k (β k+∂kα)/c−∇
2 (β i+∂iα)/c

}
(253)

Since ∂khT T
ki = ∂kβ k = 0, then we have

G0i = 1
2

{[
1
3
∂iḢ+∇

2
ε̇ i+

(
∇

2
∂i− 1

3
∂i∇

2
)

λ̇

]
/c

−∂iḢ/c+∂i∇
2
α/c−∇

2
β i/c−∇

2
∂iα/c

}
(254)

= 1
2c

(
− 2

3
∂iḢ+∇

2
ε̇ i+

2
3
∇

2
∂iλ̇ −∇

2
β i

)
(255)

= − 1
c

(
1
3
∂iḢ− 1

2
∇

2
ε̇ i− 1

3
∇

2
∂iλ̇ +

1
2
∇

2
β i

)
(256)

Using Θ= 1
3

(
H−∇

2
λ

)
and Ξi = β i− ε̇ i gives

G0i =−
1

c

(
∂iΘ̇+

1
2
∇

2
Ξi

)
(257)
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Lastly, to determine Gi j, we can use (2389) from Appendix A.

Gi j = 1
2

[
−�hi j−

(
∂iḣ0 j+∂ jḣ0i

)
/c+∂k∂ihk j+∂k∂ jhki+∂i∂ j (h00−H)

+2δ i j∂kḣ0k/c−δ i j∂k∂lhkl−δ i j∇
2
h00+δ i j∇

2
H−δ i jḦ/c

2
]

(258)

Substituting in the metric components from (175)− (177) gives

Gi j = − 1
2
�
[
hττ

i j +
1
3
δ i jH+∂ (iε j)+

(
∂i∂ j− 1

3
δ i j∇

2
)

λ

]
− 1

2

[
∂i

(
β̇ j+∂ jα̇

)
+∂ j

(
β̇ i+∂iα̇

)]
/c2

+ 1
2
∂k∂i

[
hT T

k j +
1
3
δ k jH+∂ (kε j)+

(
∂k∂ j− 1

3
δ k j∇

2
)

λ

]
+ 1

2
∂k∂ j

[
hT T

ki +
1
3
δ kiH+∂ (kε i)+

(
∂k∂i− 1

3
δ ki∇

2
)

λ

]
+ 1

2
∂i∂ j

(
−2φ/c2−H

)
+η i j∂k

(
β̇ k+∂kα̇

)
/c2

− 1
2
δ i j∂k∂l

[
hT T

kl +
1
3
δ klH+∂ (kε l)+

(
∂k∂l− 1

3
δ kl∇

2
)

λ

]
+δ i j∇

2
φ/c2+ 1

2
δ i j∇

2
H− 1

2
δ i jḦ/c

2 (259)

Since ∂ih
ττ
i j = ∂iβ i = ∂iε i = 0, then we have

Gi j = − 1
2
�hττ

i j − 1
6
�δ i jH− 1

2
�∂iε j− 1

2
�∂ jε i− 1

2
�∂i∂ jλ +

1
6
�δ i j∇

2
λ

− 1
2

(
∂iβ̇ j+2∂i∂ jα̇+∂ jβ̇ i

)
/c2

+ 1
6
∂i∂ jH+

1
2
∂i∇

2
ε j+

1
2

(
∇

2
∂i∂ j− 1

3
∂i∂ j∇

2
)

λ

+ 1
6
∂i∂ jH+

1
2
∂ j∇

2
ε i+

1
2

(
∇

2
∂i∂ j− 1

3
∂i∂ j∇

2
)

λ

−∂i∂ jφ/c
2− 1

2
∂i∂ jH+δ i j∇

2
α̇/c2

− 1
6
δ i j∇

2
H− 1

2
δ i j

(
∇

2
∇

2− 1
3
∇

2
∇

2
)

λ

+δ i j∇
2
φ/c2+ 1

2
δ i j∇

2
H− 1

2
δ i jḦ/c

2 (260)
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We can combine three common terms involving ∂i∂ jH, two terms involving λ , and two terms involving

δ i j∇
2
H.

Gi j = − 1
2
�hττ

i j − 1
6
�δ i jH− 1

2
�∂iε j− 1

2
�∂ jε i− 1

2
�∂i∂ jλ +

1
6
�δ i j∇

2
λ

− 1
2
∂iβ̇ j/c

2−∂i∂ jα̇/c
2− 1

2
∂ jβ̇ i/c

2

− 1
6
∂i∂ jH+

1
2
∂i∇

2
ε j+

1
2
∂ j∇

2
ε i+

2
3
∇

2
∂i∂ jλ

−∂i∂ jφ/c
2+δ i j∇

2
α̇/c2+ 1

3
δ i j∇

2
H

− 1
3
δ i j∇

2
∇

2
λ +δ i j∇

2
φ/c2− 1

2
δ i jḦ/c

2 (261)

Next we expand the box operator as �= ∇
2−∂ 2

t /c
2.

Gi j = − 1
2
�hττ

i j − 1
6
∇

2
δ i jH+

1
6
δ i jḦ/c

2− 1
2
∇

2
∂iε j+

1
2c2 ∂iε̈ j− 1

2
∇

2
∂ jε i+

1
2c2 ∂ j ε̈ i

− 1
2
∇

2
∂i∂ jλ +

1
2c2 ∂i∂ jλ̈ +

1
6
δ i j∇

2
∇

2
λ − 1

6
δ i j∇

2
λ̈/c2

− 1
2
∂iβ̇ j/c

2−∂i∂ jα̇/c2− 1
2
∂ jβ̇ i/c2

− 1
6
∂i∂ jH+

1
2
∂i∇

2
ε j+

1
2
∂ j∇

2
ε i+

2
3
∇

2
∂i∂ jλ

−∂i∂ jφ/c2+δ i j∇
2
α̇/c2+ 1

3
δ i j∇

2
H

− 1
3
δ i j∇

2
∇

2
λ +δ i j∇

2
φ/c2− 1

2
δ i jḦ/c

2 (262)

We can combine two common terms involving ∇
2
δ i jH, two terms involving δ i jḦ, two terms involving

∇
2
∂i∂ jλ , and two terms involving δ i j∇

2
∇

2
λ . We also cancel two terms involving ∇

2
∂ jε i and two terms

involving ∇
2
∂iε j.

Gi j = − 1
2
�hττ

i j +
1
6
∇

2
δ i jH− 1

3
δ i jḦ/c2+ 1

2c2 ∂iε̈ j+
1

2c2 ∂ j ε̈ i

+ 1
6
∇

2
∂i∂ jλ +

1
2c2 ∂i∂ jλ̈ − 1

6
δ i j∇

2
∇

2
λ − 1

6
δ i j∇

2
λ̈/c2

− 1
2
∂iβ̇ j/c

2−∂i∂ jα̇/c
2− 1

2
∂ jβ̇ i/c

2

− 1
6
∂i∂ jH−∂i∂ jφ/c

2+δ i j∇
2
α̇/c2+δ i j∇

2
φ/c2 (263)
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Next we write the coefficient of 1
6
δ i j∇

2
λ̈ as

(
1
2
− 1

3

)
δ i j∇

2
λ̈ . We also group together terms with β̇ i and ε̈ i to

produce the invariant Ξ̇i = β̇ i− ε̈ i.

Gi j = − 1
2
�hττ

i j +
1
6
∇

2
δ i jH− 1

3
δ i jḦ/c

2+ 1
6
∇

2
∂i∂ jλ

+ 1
2c2 ∂i∂ jλ̈ − 1

6
δ i j∇

2
∇

2
λ −

(
1
2
− 1

3

)
δ i j∇

2
λ̈/c2 (264)

− 1
2c2 ∂i

(
β̇ j− ε̈ j

)
− 1

2c2 ∂ j

(
β̇ i− ε̈ i

)
−∂i∂ jα̇/c2− 1

6
∂i∂ jH

−∂i∂ jφ/c2+δ i j∇
2
α̇/c2+δ i j∇

2
φ/c2 (265)

Now we substitute ∂i

(
β̇ j− ε̈ j

)
+∂ j

(
β̇ i− ε̈ i

)
= ∂i

(
Ξ̇ j

)
. We also rearrange terms in preparation to substitute

the invariants Φ= φ + α̇− λ̈/2 and Θ= 1
3

(
H−∇

2
λ

)
.

Gi j = − 1
2
�hττ

i j +
1
6
∇

2
δ i j

(
H−∇

2
λ

)
− 1

3c2 δ i j

(
Ḧ−∇

2
λ̈

)
− 1

2c2 ∂i

(
Ξ̇ j

)
− 1

6
∂i∂ j

(
H−∇

2
λ

)
−∂i∂ j

(
φ + α̇− 1

2
λ̈

)
/c2+δ i j∇

2
(

φ + α̇− 1
2
λ̈

)
/c2 (266)

Lastly we substitute in the invariant quantities and group similar terms.

Gi j = − 1
2
�hττ

i j +
1
2
δ i j∇

2
Θ− 1

c2 δ i jΘ̈

− 1
2c2 ∂i

(
Ξ̇ j

)
− 1

2
∂i∂ jΘ−∂i∂ jΦ/c

2+δ i j∇
2
Φ/c2 (267)

Gi j =−
1

2
�hττ

i j −
1

c2
δ i jΘ̈−

1

2c2
∂i

(
Ξ̇ j

)
+δ i j∇

2
(

1
2
Θ+Φ/c2

)
−∂i∂ j

(
1
2
Θ+Φ/c2

)
(268)

The following are some observations concerning the Einstein tensor components.

• The gauge-invariant quantity obey an interesting pattern We find that Θ,Θ̇,Θ̈ appear in G00,G0i and

Gi j, respectively, while Ξi and Ξ̈i appear in G0i and Gi j, respectively, and lastly, Φ appears only in Gi j.

• Gi j has a very similar form to hi j in (177). In fact, if we define a quantity Λ = − 1
c2

(
Φ+ c2

2
Θ

)
, then

we can write Gi j =− 1
2
�hττ

i j − 1
c2 δ i jΘ̈− 1

2c2 ∂i

(
Ξ̇ j

)
+ 1

c2

(
∂i∂ j−δ i j∇

2
)

Λ which further resembles hi j

in (177). This indicates that Λ contains all the longitudinal degrees of freedom of Gi j. It is therefore

clearly related to the generalized gravito-scalar potential defined in (345) as ϕG ≡ 1
2

(
Φ− c2

2
Θ

)
.

• The transverse-traceless part of Gi j is Gττ
i j = − 1

2
�hττ

i j . This matches the linearized Einstein tensor in

the trace-reversed harmonic gauge32 which was found in (2454) of Appendix B as G
(HG)
µν =− 1

2
�h̄µν .

32The notation G
(HG)
µν and G

(HD)
µν is used here to distinguish between the Einstein tensor in the trace-reversed

harmonic gauge and the Einstein tensor in terms of the Helmholtz Decomposition metric in (175)− (177).
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Note that G
(HG)
i j is not transverse-traceless, therefore it gives the impression that gravitational waves

could have longitudinal as well as transverse components. Furthermore, G
(HG)
µν = − 1

2
�h̄µν gives the

impression that all the components of h̄µν could be propagating degrees of freedom since they all

satisfy wave equations. In actuality, the Helmholtz Decomposition approaches shows that the only

(gauge-invariant) propagating degrees of freedom which satisfy a wave equation are hττ
i j . In fact, G

(HD)
00

does not contain any time derivatives, G
(HD)
0i only contains first-order time derivatives, and G

(HD)
i j

contains second-order time derivatives but only a wave operator on hττ
i j .



50

3.7 The HD stress tensor components and conservation laws

Next we define a Helmholtz decomposition of the stress-energy-momentum tensor as follows.

T00 = ρc2 (269)

T0i = c(Ri+∂iI) (270)

Ti j = T ττ
i j +Pδ i j+∂ (ir j)+

(
∂i∂ j− 1

3
δ i j∇

2
)

L (271)

This formulation of the stress tensor follows [28] except for some notational differences.33 Similar to [28],

we also impose the following constraints

∂iRi = 0 (272)

∂iri = 0 (273)

∂iT
ττ

i j = 0 (274)

δ
i j

T ττ
i j = 0 (275)

These constraints obviously match the constraints we had on the metric in (179)− (182). We also assume

boundary conditions such that the stress tensor vanishes at infinity. That is

Tµν → 0 as r→ ∞ (276)

Specifically, the following components of Tµn are assumed to vanish independently.

I→ 0, ri→ 0, L→ 0, ∇
2
L→ 0 as r→ ∞ (277)

The constraints in (272)− (275) and the boundary conditions in (276) and (277) insure that the Helmholtz

decomposition of the stress tensor given in (269)− (271) satisfy the conditions necessary for the vector

T0i to be separated into a rotational and irrotational component, and for the tensor Ti j to be separated into

longitudinal, rotational, and transverse components.

Specifically, the constraint in (272) requires that Ri is a purely rotational vector component of T0i. It is

evident from (270) that ∂iI is a purely irrotational vector component of T0i. The Helmholtz decomposition

theorem states that T0i can be completely defined by a rotational component and irrotational component,

provided the boundary conditions given in (276) and (277) are satisfied.

Likewise, the constraint in (273) requires that ri is a purely rotational vector so that ∂ (ir j) can be thought

of as the rotational part of the Ti j tensor. Also, the constraint in (274) requires that T ττ
i j is a transverse tensor

while (275) requires that T ττ
i j is traceless. Hence the superscript T T represents the “transverse-traceless”

stress given by T ττ
i j . The stress tensor takes the following form as an explicit matrix.

33The notation in [28] uses Si and S instead of Ri and I, respectively, in (270). They also use σ i j, σ i and σ

instead of T ττ
i j , ri and L, respectively, in (271). We use a different symbol for each quantity in (271) to avoid

confusion that may come from using the same Greek letter for multiple quantities.

We also use P instead of P which we reserve to represent the pressure of an ideal fluid as found in (2681).
The quantity P is a “pressure-like” quantity since it is a scalar which appears only on the diagonal of the

stress tensor. However, it is not truly the pressure since we are describing Tµν , not T µν . An importatnt

distinction between P and P is that for an ideal fluid, we find that the pressure, P, appears in T0i as well as in

the off-diagonal elements of Ti j as seen in (376) and (377). This is not consistent with Tµν described here in

(269)− (271) where P does not appear in T0i or in the off-diagonal elements of Ti j. Later we find in (395)
that the expression relating P and P actually involves ρ and vi for an ideal fluid.
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(278)

In (2394) of Appendix A, it is shown that the linearized Einstein equation also leads to a linearized

conservation law for the stress-energy-momentum tensor given by

∂
ν Tµν = 0 (279)

Summing over ν gives

∂
0Tµ0+∂

iTµi = 0 (280)

For µ = 0 we have the following mass-momentum continuity equation.

∂
0T00+∂

iT0i = 0 (281)

Inserting (269) and (270) gives

− 1
c
∂t

(
ρc2
)
+∂i (Ri+∂iI)c= 0 (282)

Since ∂iRi = 0, then the mass-momentum continuity equation becomes

ρ̇ = ∇
2
I (283)

If we let µ = i in (280), then we have the following momentum-stress conservation equation.

∂
0Ti0+∂

jTi j = 0 (284)

Inserting (270) and (271) gives

− 1
c
∂t (Ri+∂iI)c+∂i

[
T ττ

i j +δ i jP+∂ (ir j)+
(

∂i∂ j− 1
3
δ i j∇

2
)

L

]
= 0 (285)

Since ∂iT
ττ

i j = ∂iri = 0, then we have

−Ṙi−∂iİ+∂iP+∇
2
ri+

2
3
∂i∇

2
L= 0 (286)

We can obtain the irrotational components of this conservation law by taking a divergence using ∂i.

−∂iṘi−∇
2
İ+∇

2P+∂i∇
2
ri+

2
3
∇

2
∇

2
L= 0 (287)

Since ∂iRi = ∂iri = 0, then we have

∇
2
(
−İ+P+ 2

3
∇

2
L

)
= 0 (288)

Since I, P, and ∇
2
L go to zero as r→ ∞, then İ+P+ 2

3
∇

2
L = 0 is the unique solution to the differential

equation above. Therefore we have the following irrotational momentum-stress continuity equation.

2
3
∇

2
L= İ−P (289)
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We can also obtain the rotational components of the conservation law in (286) by expressing the equation as

a vector equation taking the curl.

∇×
(
−
·
~R−∇İ+∇P+∇

2~r+ 2
3
∇∇

2
L

)
= 0 (290)

∇×
(

∇
2~r−

·
~R

)
= 0 (291)

Since ∇ ·~r = ∇ ·~R = 0 and ~r and ~R both go to zero as r→ ∞, then the unique solution to the differential

equation above is ∇
2~r−

·
~R= 0. So we have the following rotational momentum-stress continuity equation

∇
2
ri = Ṙi (292)

The following are some observations concerning the conservation of stress-energy-momentum.

• We find that T ττ
i j does not participate in any conservation law. This is associated with the fact that it

contains the only degrees of freedom of the mass-energy source that produce gravitational radiation as

shown later in (330)− (333). In a sense, what we find here is that all the other degrees of freedom

of the stress tensor have a conservation law and therefore do not need to radiate. Any change in one

stress tensor quantity produces a change in another quantity so that the over all energy-momentum of

the system is conserved without the system radiating. However, because the T ττ
i j degrees of freedom

do not have a conservation law that links them to other stress tensor quantities, then they have no other

internal channel to transfer energy-momentum to within the mass-energy distribution. Consequently,

they must radiate energy and momentum instead.

• The fact that T ττ
i j does not participate in any conservation law implies that mathematically it is possible

to have a situation where there is no other source in the stress tensor besides T ττ
i j and therefore it is

possible to have a mass-energy distribution that only produces an hττ
i j field and nothing else. This is

disturbing since it implies that a physical system could have ρ = P= L= 0 and Ri = ∂iI = ri = 0 and

yet still produce radiation as long as T ττ
i j 6= 0. However, it is clearly nonphysical to have a system which

produces gravitational waves and yet has T00 = 0 which means no rest mass-energy, electromagnetic

fields, or any other static source of Newtonian gravity.
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3.8 Gauge invariant field equations

We now construct the Einstein field equations using the Einstein tensor components developed in Section

19 and the stress tensor components defined in Section 20. The Einstein field equations are given by Gµν =
κTµν where κ = 8πG/c4. Using G00 from (251) and T00 from (269), we immediately identify the following

field equation.

∇
2
Θ=−8πG

c2
ρ (293)

Next, we use G0i from (257) and T0i from (270) to write G0i = κT0i as

− 1
c

(
∂iΘ̇+

1
2
∇

2
Ξi

)
= κc(Ri+∂iI) (294)

We can obtain an irrotational field equation by taking a divergence using ∂i.

∇
2
Θ̇+ 1

2
∇

2
∂iΞi = −κc2

(
∂iRi+∇

2
I

)
(295)

Since ∂iΞi = ∂iRi = 0, then we have

∇
2
Θ̇=−c2

κ∇
2
I (296)

From (283) we know ρ̇ = ∇
2
I so we can write the field equation above as

∇
2
Θ̇=−8πG

c2
ρ̇ (297)

We can integrate with respect to time and recognize from (293) that any integration constant must be zero.

Therefore we simply recover the same field equation as (293) again. We can also obtain a rotational field

equation from (294) by writing the equation as a vector equation and taking a curl.

∇×
(

∇Θ̇+ 1
2
∇

2~Ξ
)

= −κc2
∇×

(
~R+∇I

)
(298)

∇×
(

1
2
∇

2~Ξ+κc2~R
)

= 0 (299)

The solution to this differential equation is

1
2
∇

2~Ξ+κc2~R+∇ f (r, t) = 0 (300)

Since ∇ ·~Ξ= ∇ ·~R= 0 and both~Ξ and ~R go to zero as r→ ∞, then (300) gives the following field equation

∇
2
Ξi =−

16πG

c2
Ri (301)

Next, we use Gi j from (268) and Ti j from (271) to write Gi j = κTi j as

− 1
2
�hττ

i j − 1
c2 δ i jΘ̈− 1

2c2 ∂i

(
Ξ̇ j

)
+δ i j∇

2
(

1
2
Θ+Φ/c2

)
−∂i∂ j

(
1
2
Θ+Φ/c2

)
= κ

[
T ττ

i j +δ i jP+∂ (ir j)+
(

∂i∂ j− 1
3
δ i j∇

2
)

L

]
(302)
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Taking two derivatives using ∂i∂ j and noting that ∂ jh
ττ
i j = ∂ jT

ττ
i j = 0 gives

− 1
c2 ∇

2
Θ̈+∇

2
∇

2
(

1
2
Θ+Φ/c2

)
−∇

2
∇

2
(

1
2
Θ+Φ/c2

)
= κ

(
∇

2P+ 2
3
∇

2
∇

2
L

)
(303)

− 1
c2 ∇

2
Θ̈ = κ

(
∇

2P+ 2
3
∇

2
∇

2
L

)
(304)

From (289) we know 2
3
∇

2
L= İ−P so we can write the field equation above as

− 1
c2 ∇

2
Θ̈ = κ

[
∇

2P+∇
2
(
İ−P

)]
(305)

∇
2
Θ̈ = −c2

κ∇
2
İ (306)

From (289) we know ρ̈ = ∇
2
İ so we can write the field equation above as

∇
2
Θ̈=−8πG

c2
ρ̈ (307)

We can integrate with respect to time twice and recognize from (293) that any integration constant must be

zero. Therefore we simply recover the same field equation as (293) again. Next we take a single derivative

of (302) using ∂ j and note that ∂ jh
ττ
i j = ∂ jT

ττ
i j = ∂iΞ̇i = 0.

− 1
c2 ∂iΘ̈− 1

2c2 ∇
2
Ξ̇i+∂i∇

2
(

1
2
Θ+Φ/c2

)
−∂i∇

2
(

1
2
Θ+Φ/c2

)
= κ

(
∂iP+∇

2
ri+

2
3
∂i∇

2
L

)
(308)

− 1
c2 ∂iΘ̈− 1

2c2 ∇
2
Ξ̇i = κ

(
∂iP+∇

2
ri+

2
3
∂i∇

2
L

)
(309)

From (289) we know 2
3
∇

2
L= İ−P so we can write the field equation above as

− 1
c2 ∂iΘ̈− 1

2c2 ∇
2
Ξ̇i = κ

(
∂iP+∇

2~r+ 2
3
∂i

(
İ−P

))
(310)

Gathering terms with common derivatives on each side gives

∇
2
(
− 1

2c2 Ξ̇i−κ
·
~r
)

= ∇

(
κP+ 2

3
κ
(
İ−P

)
+ 1

c2 Θ̈

)
(311)

Writing the equation as a vector equation and taking the curl gives

∇×
[

∇
2

(
− 1

2c2

·
~Ξ−κ~r

)]
= ∇×∇

(
κP+ 2

3
κ
(
İ−P

)
+ 1

c2 Θ̈

)
(312)

∇×
[

∇
2

( ·
~Ξ+2c2

κ~r

)]
= 0 (313)

Since ∇ ·~Ξ= ∇ ·~r = 0 and both~Ξ and ~R go to zero as r→ ∞, then we have the following field equation

∇
2
Ξ̇i =−

16πG

c2
∇

2
ri (314)

From (292) we know ∇
2
ri = Ṙi so we obtain

∇
2
Ξ̇i =−

16πG

c2
Ṙi (315)
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We can integrate with respect to time and recognize from (293) that any integration constant must be zero.

Therefore we simply recover the same field equation as (301) again. Next we can take the trace of (302) and

note that δ
i j

hττ
i j = δ

i j
∂i

(
Ξ̇ j

)
= δ

i j
T ττ

i j = δ
i j

∂ (ir j) = 0. This gives

− 1
c2 3Θ̈+3∇

2
(

1
2
Θ+Φ/c2

)
−∇

2
(

1
2
Θ+Φ/c2

)
= 3κP (316)

− 1
c2 3Θ̈+∇

2
Θ+2∇

2
Φ/c2 = 3κP (317)

Substituting ∇
2
Θ=−c2κρ from (293) gives

− 1
c2 3Θ̈− c2

κρ+2∇
2
Φ/c2 = 3κP (318)

Applying ∇
2 to each term gives

− 1
c2 3∇

2
Θ̈− c2

κ∇
2
ρ+2∇

2
∇

2
Φ/c2 = 3κ∇

2P (319)

Combining ∇
2
Θ̈ = −c2κρ̈ from (293) with ρ̈ = ∇

2
İ from (289) gives ∇

2
Θ̈ = −c2κ∇

2
İ. Substituting this

into (319) gives

3κ∇
2
İ− c2

κ∇
2
ρ+2∇

2
∇

2
Φ/c2 = 3κ∇

2P (320)

∇
2
(

3κ İ− c2
κρ+2∇

2
Φ/c2−3κP

)
= 0 (321)

Since I, ρ, P, and Φ all go to zero as r→ ∞, then the only unique solution to the differential equation above

is 3κ İ− c2κρ+2∇
2
Φ/c2−3P= 0. Therefore we have

∇
2
Φ= c2

2

(
c2

κρ+3κP−3κ İ
)

(322)

∇
2
Φ= 4πG

(
ρ+

3

c2

(
P− İ

))
(323)

Lastly, we again use (302) and take ∇
2 of each term.

− 1
2
∇

2�hττ
i j − 1

c2 δ i j∇
2
Θ̈− 1

2c2 ∂i

(
∇

2
Ξ̇ j

)
+δ i j∇

2
(

1
2
∇

2
Θ+∇

2
Φ/c2

)
−∂i∂ j

(
1
2
∇

2
Θ+∇

2
Φ/c2

)
= κ

[
∇

2
T ττ

i j +∇
2
δ i jP+∂

(
i∇

2
r j

)
+
(

∂i∂ j− 1
3
δ i j∇

2
)

∇
2
L

]
(324)

Next we substitute ∇
2
Θ = −c2κρ from (293) and ∇

2
Φ = c4κ

2

(
ρ+ 3

c2

(
P− İ

))
from (323). We can also

use (301) to substitute ∂

(
i∇

2
Ξ j

)
=−2κ∂ (iR j). Lastly, we use the conservation laws ∇

2
L = 3

2

(
İ−P

)
and

∇
2
ri = Ṙi from (289) and (292), respectively.

− 1
2
∇

2�hττ
i j +κδ i jρ̈+

1
c2 κ∂ (iR j)

+δ i j∇
2

[
− 1

2
c2κρ+

c2κ

2

(
ρ+

3

c2

(
P− İ

))]

−∂i∂ j

[
− 1

2
c2κρ+

c2κ

2

(
ρ+

3

c2

(
P− İ

))]

= κ

[
∇

2
T ττ

i j +∇
2
δ i jP+∂

(
iṘ j

)
+
(

∂i∂ j− 1
3
δ i j∇

2
)

3
2
İ−
(

∂i∂ j− 1
3
δ i j∇

2
)

3
2
P
]

(325)
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Now we substitute ρ̈ = ∇
2
Í from (280) and also cancel terms involving ∂ (iR j) and ρ . We can consolidate

the middle two lines and distribute to obtain

− 1
2
∇

2�hττ
i j +κδ i j∇

2
İ

+
3κ

2
δ i j∇

2P− 3κ

2
δ i j∇

2
İ− 3κ

2
∂i∂ jP+

3κ

2
∂i∂ j İ

= κ

[
∇

2
T ττ

i j +∇
2
δ i jP+ 3

2
∂i∂ j İ− 1

2
δ i j∇

2
İ− 3

2
∂i∂ jP+ 1

2
δ i j∇

2P
] (326)

We can cancel three terms involving δ i j∇
2P, three terms involving δ i j∇

2
İ, two terms involving ∂i∂ j İ, and

two terms involving ∂i∂ jP.

− 1
2
∇

2�hττ
i j = κ∇

2
T ττ

i j (327)

∇
2
(
�hττ

i j +2κT ττ
i j

)
= 0 (328)

Since hττ
i j and T ττ

i j go to zero as r→ ∞ (which implies that �hττ
i j and T ττ

i j also go to zero as r→ ∞), then the

unique solution to the differential equation above is �hττ
i j +2κT ττ

i j = 0. Thus we have

�hττ
i j =−

16πG

c4
T ττ

i j (329)

We now list the field equations resulting from (293), (301), (323), and (329).

∇
2
Φ = 4πG

(
ρ+

3

c2

(
P− İ

))
(330)

∇
2
Θ = −8πG

c2
ρ (331)

∇
2
Ξi = −16πG

c2
Ri (332)

�hττ
i j = −16πG

c4
T ττ

i j (333)
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The following are some observations concerning the gauge-invariant field equations.

• There are redundant field equations found in the Einstein equations.

We find that G00 = κT00 produces the field equation for Θ. We also find that G0i = κT0i produces the

field equation for Ξi as well as a time-derivative of the field equation for Θ as seen in (297). Lastly,

we find that Gi j = κTi j contains all the field equations above. Specifically, it contains a second time-

derivative of the field equation for Θ as seen in (307) and also the first time-derivative of the field

equation for Ξi as seen in (315). Then (330) and (333) are obtained exclusively from Gi j = κTi j.

In this sense, it appears that all the field equations can simply be obtained from Gi j = κTi j, although

the other equations uniquely determine that the time-independent integration constants are zero for the

equations obtained for Θ and Ξi.

This redundancy found in the Einstein equations is discussed by Bertschinger in [20] (pp. 50-51,

60). He states that it is due to the twice-contracted Bianchi identity written as ∇µ G
µ

ν = 0, which causes

the Einstein equations to enforce energy-momentum , ∇µ T
µ

ν = 0. This can also be described in terms

of Noether’s theorem which relates gauge symmetries to conservation laws. In this case, it is coordinate

invariance (a continuous symmetry) that leads to a conservation of energy-momentum (a conservation

law). The role of the redundant scalar and vector equations is to enforce these conservation laws.

• Not all the stress tensor quantities appear in the field equations.

The HD stress tensor quantities that appear in the Poisson equations are ρ, I, Ri and P, while ri and

L are absent. Recall from (271) that ri is a rotational vector (∂iri = 0) such that the antisymmetric

derivative, ∂ (ir j), is found in Ti j. Also recall that L is a scalar which forms the traceless part of Ti j

given by
(

∂i∂ j− 1
3
δ i j∇

2
)

L. Therefore, the absence of these quantities in the field equations imply

that they do no contribute to the fields. However, this does not mean that these quantities can simply

be omitted from the HD stress tensor in (271). On the contrary, these quantities are required in order

to obtain the conservation relations in (286), (289), and (292) which were critical for deriving the

gauge-invariant field equations in (330)− (333). This is directly analogous to the requirement that all

of the quantities in the metric given in (175)− (177) are non-zero in order to construct gauge-invariant

fields as shown in Section 18.

• Some field equations apply only for highly relativistic sources

Matching (330) and (331) shows that the invariant potentials Φ and Θ are related dimensionally by a

factor of c2. This is consistent with the observation in Section 18 (where the gauge-invariant potentials

are derived) that Θ is dimensionless while Φ has dimensions of velocity squared. In fact, we observe

that (331) is only relevant in the case of extremely high mass densities such that ρ/c2 is not negligible.

• The Poisson equations appear to violate causality.

The fact that Φ, Θ, and Ξi satisfy Poisson equations in (293), (301), and (323) implies that there is

no retardation in the signal for these fields at a given field point when the sources of those fields (at an

arbitrary distance away) changes with time. In other words, there is an instantaneous action at a distance

which would seem to violate causality. Flanagan and Hughes [28] argue that this is a consequence of

the fact that the metric must be known over all space to construct the invariant potentials and therefore

the invariant potentials are essentially non-local quantities. However, it should be noted that although

the metric must be determined over all space, it does not need to be known over all time. Knowing

the metric over all space is necessary because the differential equations have all been spatial and the

boundary conditions required specifying the metric all the way to r→ ∞. However, since the metric

does not need to be specified for all times, then it does not seem that the violation of causality is a

consequence of “non-local” fields which are defined by a metric known over all space.
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Furthermore, it will be shown in a later section that the linearized Bianchi identities predict a time-

dependent relationship between all four fields (Φ, Θ, Ξi, and hττ
i j ). Since hττ

i j satisfies a wave equation,

and hence is a propagating field, it can be understood as essentially carrying the signal that relates

changes in the source distribution to changes in the fields at a given point away from the distribution.

This is analogous to the case in electromagnetism where ϕ also satisfies a Poisson equation but changes

in the source distribution leads to changes in ϕ at an arbitrary distance away from the sources because

the signal is carried by ~E which propagates as a wave into the far-field region.

This issue of causality being seemingly violated is similar to the case of the Coulomb gauge in

electromagnetism where the fully time-dependent scalar potential satisfies a Poisson equation (rather

than a wave equation) in terms of the charge density. This implies that changes in the charge density

instantly determine changes in the scalar potential even at space-like distances. However, in electro-

magnetism, this issue is less troubling since it has been shown in [30] that the gauge-invariant quantity

(the electric field) is still causal. In fact, because ~E =−∇ϕ−∂t
~A, where ~A still satisfies a wave equa-

tion even in the Coulomb gauge, then the causality of ~E can be thought of as being built into the vector

potential despite causality being absent from the scalar potential. For the case we have here, we find

that the time-dependent quantities Φ, Θ, and Ξi which satisfy Poisson equations, are already gauge-

invariant. The causality that is preserved in the wave equation for hττ
i j does not “rescue” the violation

of causality for Φ, Θ, and Ξi.

Bertschinger also discusses similar issues of instantaneous Poisson equations for gravitation in

[20] section 4.7 (pp. 55-60). There he describes the “Poisson gauge” for the metric which is analo-

gous to the Coulomb gauge in electromagnetism since both produce field equations where the fields

are determined by the instantaneous source with no time integration required. Bertschinger also dis-

cusses this topic in [21], section 4 (pp. 7-8) where once again he draws a connection to the case in

electromagnetism.

• Conservation of energy-momentum removes the time-dependence of the field equations.

As a further related observation, it is evident that many of the field equations do in fact have a time

dependence as seen in (307) and (315). However, in each case that a time-dependence appears, it is

removed by the use of a conservation law. This results in a time-dependence of the same order on both

sides of the equation (the field side and the source side) and therefore integrating allows for all time-

dependence to vanish. Therefore, although time-dependence does naturally come out of the Einstein

field equations, we find that conservation of stress-energy-momentum effectively removes it. We also

do not find that any of the scalar or vector potential equations involve a wave operator, and therefore,

they do not lend themselves to a Green’s function solution and thereby to a retarded time in the solution.

We also point out that the stress-energy-momentum conservation laws were derived using ∂ ν Tµν =
0 for linearized GR. It is well known that linearized GR produces various inconsistency problems, in-

cluding the linearized conservation law predicting that particles move on straight lines.34 This may also

be related to the apparent violation of causality due to the Poisson equations. It could be an artifact

of linearized theory and not the choice of using a Helmholtz Decomposition method which requires

the metric to be known over all space. In fact, it is an interesting contrast with the harmonic gauge

approach which predicts that all the metric components are propagating degrees of freedom (satisfying

wave equations) which preserves causality explicitly, but contradicts the fact that gravitational waves

must be arise only from quadrupole sources (Ti j), not monopole or dipole sources (T00 and T0i) due to

conservation of mass and conservation of momentum.

34For example, see the discussion in Carroll’s text [22] (p. 307) or in Thorsrud’s thesis [10] (pp. 49-50).
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• Only the components of hττ
i j propagate to the far-field zone.

Since (333) is the only wave equation among the field equations in (330)− (333), then it is expected

that only hττ
i j is a radiative field while the other gauge-invariant fields (Φ, Θ, Ξi) are non-radiative

fields. To show this explicitly, it is possible to expand all the gauge-invariant fields in powers of 1/r.

At sufficiently large distances, the leading order O (1/r) will dominate. However, for Φ, Θ, and Ξi, it

can be shown that the coefficients of 1/r are the conserved mass or the conserved linear momentum.

Therefore, by conservation of mass and conservation of linear momentum, the time-derivative of these

quantities must vanish and therefore Φ,Θ,Ξi ≈ 0 in the far field. On the other hand, a time-varying T ττ
i j

need not vanish and therefore hττ
i j gives the only remaining degrees of freedom in the far-field zone.

Hence, one can conclude that

Φ, Θ, Ξi ≈ 0 in the far-field zone (334)

Recall that the definitions of Φ, Θ, and Ξi are given in (244)− (246) in terms of the components of the

HD metric perturbation as

Θ≡ 1
3

(
H−∇

2
λ

)
, Ξi ≡ β i− ε̇ i, Φ≡ φ + α̇− λ̈/2 (335)

Therefore, (334) is satisfied if

φ ,β i,α,H,ε i,λ ≈ 0 (336)

The HD metric perturbation is defined in (175)− (177) as

h00 = −2φ/c2 (337)

h0i = (β i+∂iα)/c (338)

hi j = hττ
i j +

1
3
δ i jH+∂ (iε j)+

(
∂i∂ j− 1

3
δ i j∇

2
)

λ (339)

Then (336) is satisfied if35

h00, h0i ≈ 0 and hi j ≈ hττ
i j in the far-field zone (340)

35Note that the gauge-invariant potentials in (335) can also be made zero by choosing

H = ∇
2
λ , β i = ε̇ i, φ = λ̈/2− α̇

In that case, we do not have h00, h0i ≈ 0. Rather, the metric perturbation becomes

h00 =−2
(

λ̈/2− α̇

)
/c2, h0i = (ε̇ i+∂iα)/c, hi j = hττ

i j +∂ (iε j)+∂i∂ jλ

However, α , ε i, and λ are gauge-dependent quantities with gauge freedom shown in (208), (225) and (233)
as

α
′ = α+ c2A+Ċ, λ

′ = λ +2C, ε
′
i = ε i+Bi

Therefore, a gauge vector, ξ µ = (cA, Bi+∂iC), can be chosen so as to make these quantities vanish. This

leads back to h00, h0i ≈ 0.
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• There are six components but only two radiative degrees of freedom for waves.

It is shown in Appendix F that if we specialize to the TT gauge, then hT T
µν has only four components

with two independent degrees of freedom: h⊕ for plus-polarization and h⊗ for cross-polarization.

Here we are working with gauge-invariant quantities, therefore we cannot use the TT gauge in

order to identify plus-polarization and cross-polarization fields. Rather, there are six components in

hττ
i j which are all associated with gravitational radiation. However, within the six components there are

really only two physical degrees of freedom due to the four constraint equations given by ∂ih
ττ
i j = 0

(for transversality) and δ
i j

hττ
i j = 0 (for tracelessness).

For example, consider a plane-fronted gravitational wave propagating in the z-direction given by

hττ
i j = Ai j cos(kz−ωt) where Ai j is a constant amplitude and~k= (0,0,k). Since the wave is transverse,

then ∂ ihττ
i j = kiAττ

i j = 0. This requires A3 j = 0. Since hττ
i j is traceless, then δ

i j
hττ

i j = 0. This requires

A11 = −A22. We can use the notation A11 = h⊕ and A12 = h⊗ to write hττ
i j in a form that completely

matches the transverse-traceless gauge.

hττ
i j =

 h⊕ h⊗ 0

h⊗ −h⊕ 0

0 0 0

cos(kz−ωt) (341)

Therefore we find that choosing an axis of wave propagation and applying the transverse and traceless

conditions on hττ
i j reduces the six components to just the two polarization states of a gravitational wave.
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3.9 Gravito-electromagnetic Maxwell-like field equations

We begin by observing that the field equation in (330) reduces to Newtonian gravity in the static, non-

relativistic limit. In Section 26 we show that in the Newtonian limit, T 0i = T i j = 0 which means 3
c2

(
P− İ

)
can be neglected so that the only source remaining is ρ . We also show that h̄0i = h̄i j = 0 which requires that

the potential given by Φ= φ + α̇− λ̈ reduces to just Φ≈ φ . Therefore (330) becomes

∇
2
φ = 4πGρ (342)

The Newtonian gravitational field can be defined as~g=−∇φ so that (342) can be written as ∇ ·~g=−4πGρ ,

consistent with Newton’s law of gravitation. We may extend the definition of the vector field to include

relativistic gravitational effects as well. The natural choice would be to define the gravito-vector field as
~EG =−∇Φ so that the divergence of ~EG satisfies (330)

∇ ·~EG =−4πG

(
ρ+

3

c2

(
P− İ

))
(343)

However, we observe that (293) also contains ρ as a source and therefore would be expected to contribute

to the gravito-electric field as well. The prefactor in (293) shows that the field is suppressed by a factor of c2

and hence it is clearly a field that is relevant only for cases with extremely large ρ . Nevertheless, in order to

define a completely general gravito-electric field, we can write (293) as − c2

2
∇

2
Θ= 4πGρ and then add it to

(330) which gives36

∇
2

(
Φ− c2

2
Θ

)
= 4πG

(
2ρ+

3

c2

(
P− İ

))
(344)

In the non-relativistic limit, to keep the form of (342) for Newtonian gravity, we can divide both sides of

(344) by 2 and define a new scalar potential as37

ϕG ≡
1

2

(
Φ− c2

2
Θ

)
Generalized gravito-scalar potential (345)

so that we have

∇
2
ϕG = 4πG

(
ρ+

3

2c2

(
P− İ

))
(346)

Therefore, we define the static gravito-electric field as ~Eg, static ≡−∇ϕG so that the fully relativistic gravito-

Gauss law becomes

∇ ·~EG = 4πG

(
ρ+

3

2c2

(
P− İ

))
(347)

Hence, from the equation above we find that ρ is the source of Newtonian gravity as expected while 3
2c2

(
P− İ

)
is the relativistic contribution to the post-Newtonian gravito-electric field.

Next we consider the field equation given by (332). Since this field equation involves a vector potential

that is purely rotational (∇ ·Ξi = 0) and because the source of this field equation comes from the T0i compo-

nent of the stress tensor (which is related to a “mass current density” in the case of an ideal fluid), then it is

36Note that because Φ has units of velocity squared and Θ is dimensionless, then we cannot simply add

them together. We must multiply Θ by c2 before adding it to Φ to maintain dimensional consistency.

37We use a tilda on the gauge-invariant gravito-scalar potential in order to distinguish it from the gauge-

dependent gravito-scalar potential defined in (26) of Part I.
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natural to consider this equation to be similar to Ampere’s law in electromagnetism. Therefore, we may con-

sider a gravito-magnetic field defined as ~BG ≡ ∇×~Ξ which satisfies the condition ∇ ·~BG = ∇ ·
(

∇×~Ξ
)
= 0

similar to EM. Also, because ∇ ·~Ξ = 0, then the vector calculus identity ∇×∇×~Ξ = ∇

(
∇ ·~Ξ

)
−∇

2~Ξ

becomes

∇×∇×~Ξ=−∇
2~Ξ (348)

Therefore we could write (332) as

∇×∇×~Ξ= 16πG

c2
~R (349)

Using ~BG = ∇×~Ξ means that we have the following Ampere-like equation38

∇×~BG =
16πG

c2
~R (350)

Next we consider the relationship between ~EG and ~BG. Similar to EM, we can define the dynamic gravito-

electric field as ~EG ≡−∇ϕG−
·
~Ξ so that ∇×~EG = ∇×

(
−∇ϕG+

·
~Ξ

)
= ∇×

·
~Ξ=−

·
~BG. Therefore, we have

a gravito-Faraday law given by

∇×~EG =−∂t
~BG (351)

To summarize, we define the gravito-electromagnetic fields in terms of the invariant potentials as

~EG ≡−
1

2
∇

(
Φ+

c2

2
Θ

)
−

·
~Ξ and ~BG ≡ ∇×~Ξ (352)

Then the gravito-electromagnetic field equations (including the wave equation) are

∇ ·~EG =−4πG

(
ρ+

3

2c2

(
P− İ

))
∇ ·~BG = 0

∇×~EG =−∂t
~BG ∇×~BG =

16πG

c2
~R

�hττ
i j =−

16πG

c4
T ττ

i j

(353)

The tensor wave equation for hττ
i j in (333) can be written in a form that also resembles Ampere’s law.

Recall that in electromagnetism, the propagating degrees of freedom are ~E =−∂t
~A and ~B= ∇×~A which are

the temporal and spatial derivatives of the vector potential. By analogy, the propagating degrees of freedom

for gravitational waves can be written in terms of an electric-like tensor field and a propagating magnetic-like

tensor defined as, respectively,

Ei j = −∂th
ττ
i j and Bi jk = ∂khττ

i j (354)

Using the wave equation in, �hττ
i j =−2κT ττ

i j , and expanding the box operator gives

− 1

c2
∂t

(
∂th

ττ
i j

)
+∂k

(
∂khττ

i j

)
= −2κT ττ

i j (355)

38The gravito-Ampere law that appears in gravito-electromagnetism ordinarily has a negative source as

seen in (58) or (137). It will be shown later that when a particular stress tensor is chosen, such as a perfect

fluid in (429) or relativistic dust in (454), then the source term given by T0i = Ri will in fact be negative so

as to be consistent with the gravito-Ampere law shown here.
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Using (354) and rearranging gives

∂kBi jk = −
(

2κT ττ
i j +

1

c2
∂tEi j

)
(356)

This is essentially an Ampere-like law in the sense that a spatial derivative of a magnetic-like field is pro-

portional to a source term plus a time-derivative of the electric-like field. In vacuum, T ττ
i j = 0, which simply

gives

∂kBi jk = − 1

c2
∂tEi j (357)

In contrast to electromagnetism where ~E and ~B are related by complimentary field equations (Faraday’s law

and Ampere’s law), it is found here that Ei j and Bi jk are only related by an Ampere-like law but not a

Faraday-like law. In other words, it is not found that the spatial derivative of the electric-like tensor field can

be related to the time-derivative of the magnetic-like tensor.39 In the next section, Faraday-like relationships

involving Ei j and Bi jk will be found, but they will be more complicated then simply the time-derivatives of

Bi jk related to a spatial derivative of Ei j.

The following are some observations concerning the gravito-electromagnetic field equations in (353).

• The strength of the source terms varies by powers of c in the denominator.

It is immediately evident that in the fully non-relativistic limit, the only source term which remains

is ρ which produces a gravito-electric field, ~EG. The next higher order sources are
(
P− İ

)
and Ri

which are all divided by c2. These introduce corrections to the gravito-electric field and also provide

a gravito-magnetic field. Lastly, the highest order sources are T ττ
i j since they are divided by c4. These

sources are responsible for gravitational waves.

• The gravito-electric field contains the Newtonian field plus post-Newtonian corrections.

The definition of the static gravito-electric field can be written using (345) as

~Eg, static ≡−∇ϕG ≡−
1

2
∇

(
Φ− c2

2
Θ

)
(358)

In Section 26 we show that in the Newtonian limit, Φ = ΦN and ΘN = − 2
c2 ΦN where ΦN is the

Newtonian potential. This means that the term in parentheses becomes 2ΦN and ~Eg, static reduces to
~EN = −∇ΦN as we expect. Therefore, we cannot interpret either Θ or Φ alone as responsible for

the Newtonian field or as responsible for post-Newtonian corrections. They both play a role in the

Newtonian field and post-Newtonian corrections. In fact, in the Newtonian limit, we find that the field

equations (331) and (330) given for Φ and for Θ, respectively, both reduce to the Newtonian field

equation. Although, the contribution by Θ is multiplied by c2 in the expression for ~Eg, static in (358),

39Recall that in electromagnetism, the 4-potential plays an analogous role to hττ
i j in that it also satisfies a

wave equation, �Aµ =−2µJµ . In that case, Ampere’s law is obtained by using µ = i and the magnetic field,
~B = ∇×~A. However, Faraday’s law is not obtained from the wave equation. It is obtained from the Lorenz

gauge condition, ∂ν Aν = 0, with the electric field, ~E =−∇ϕ−∂t
~A and the magnetic field, ~B= ∇×~A. Since

there is no analogous gauge condition on hττ
i j , then there is no corresponding Faraday-like law involving

spatial and temporal derivatives of hττ
i j . (Note that the transverality condition, ∂ih

ττ
i j = 0, is not a gauge

condition and does not involve any time-derivatives of hττ
i j , therefore, it still does not lead to a Faraday-like

law.)
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we must also recognize that the source of Θ is suppressed by c2 in the field equation for Θ in (331).
This means that it is impossible for the effect of Θ to exceed the effect of Φ and consequently reverse

the sign of the Newtonian field. (In other words, this does not predict any kind of “anti-gravity.”)

Furthermore, because Θ and Φ have the same source, ρ , then there is no source that could ever make

the strength of Θ comparable to the strength of Φ.

• The gravito-electric fields are only valid to first-order derivatives

We cannot take derivatives of the field equations in (353) while maintaining consistency with the lin-

earized GR approximation. In Appendix A, where the linearized Riemann tensor was developed, we

showed that only terms that are third order in the metric perturbation (that is, terms involving second

derivatives, ∂σ ∂ρ hµν ) were kept while all higher order terms were neglected. The field equations in

(353) already involve the second derivative of the metric perturbation. Therefore, no further deriv-

atives can be legitimately taken. For example, the curl of the Ampere law or Faraday law must be

approximated to zero.

∇×∇×~BG = 2µG∇×~R≈ 0 and ∇×∇×~EG 6=−∂t∇×~BG ≈ 0 (359)

If we wish to take such derivatives, then we must return to the Riemann tensor and keep terms involving

the third derivative of the metric and all other terms of similar order.

• The prefactor of 2 implies a spin-2 graviton

Many authors claim that the factor of 2 in the gravito-Ampere law, ∇×~BG = 2µG
~R, is indicative of

gravity being a spin-2 tensor field. However, it may be a more valid argument to refer to the factor of

2 in the wave equation, �hττ
i j =−2κT ττ

i j , since this equation pertains to gravitational waves and hence

to a spin-2 graviton in quantum theory (analogous to electromagnetic waves pertaining to a spin-1

photon).
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3.10 The gravito-electric permittivity and gravito-magnetic permeability

To enhance the similarity with electromagnetism, we may also define a gravito-electric permittivity as

well as a gravito-magnetic permeability given, respectively, as

εG ≡
1

4πG
and µG ≡

4πG

c2
(360)

where εGµG = 1/c2. These are the gravitational analogs of the electric permittivity and magnetic permeabil-

ity in electromagnetism. Then the field equations in (353) may be written as

∇ ·~EG =−
1

εG

(
ρ+

3

2c2

(
P− İ

))
∇ ·~BG = 0

∇×~EG =−∂t
~BG ∇×~BG = 2µG

~R

�hττ
i j =−2κT ττ

i j

(361)

The following are some observations concerning the gravito-electric permittivity and gravito-magnetic per-

meability.

• The gravito-electric permittivity and gravito-magnetic permeability each depend on G.

In the case of electromagnetism (EM), ε0 and µ0 cannot be independently expressed in terms of another

fundamental constant of nature. They can only be expressed together in terms of c. However, εG and

µG are each expressed independently in terms of another fundamental constant of nature which is

Newton’s gravitational constant, G. This means that if εG has a different value in a material than it

does in vacuum, then the effective value of G in that medium would be different than in vacuum. For

instance, if εG has a larger value in a given material, then this would imply a decrease of G . In other

words, Ge f f < G in that material. It would also imply a decrease of µG by the same factor.

Note that if a material has a Ge f f which differs from G, then the expressions in (360) would

imply that the gravito-electric polarizability is linked to the gravito-magnetic polarizability. This is

rather strange since we do not find in EM that the electric polarizability and the magnetic polarizability

of a material must always be related by the same factor. On the other hand, if we assume that G is the

same in vacuum as well as in materials, then εG and µG are effectively just constants of nature as well

and do not change depending on the material where the fields are present.

• The relation εGµG = 1/c2 is satisfied in all mediums.

In the case of EM, we know that the relationship between ε and µ is derived by combining EM field

equations to produce EM wave equations. The result is that the speed of EM waves is given by v2 =
1/εµ . For vacuum, we find that ε0 and µ0 lead to a speed of v= c and in other mediums we find that

ε and µ lead to other speeds that we can express as v= n/c with n being the index of refraction.

However, in the case of gravitation, the origin of εG and µG is very different. We do not find the

relationship between εG and µG by combining gravitational field equations to produce gravitational

wave equations. Therefore, we do not have a general relationship given by v2 = 1/εGµG where v is

the speed of the gravitational wave. Rather, εG and µG are each intentionally defined to satisfy the

relation c2 = 1/εGµG without any regard to a medium for the fields. In other words, c2 = 1/εGµG is

established as an absolute relationship, not the special case of v= c in vacuum.

In fact, obtaining a relation other than c2 = 1/εGµG would require not only an effective value

for G in a medium, but the effective value of G would have to be different for the permittivity and the
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permeability. In other words, we would need Ge f f for εG to be different from Ge f f for µG. Otherwise,

if they are the same then we still have εGµG = 1/c2 and there is still no dispersion relation involving

εG and µG. As a result, this would imply that gravitational fields are not impaired at all by matter.

• The relation εGµG = 1/c2 may apply to gravito-electromagnetic oscillations but not waves.40

It is important to recognize that the field equations in (361) describe gravito-electromagnetic (GEM)

fields, ~EG and ~BG, independently of gravitational wave fields, hττ
i j . The GEM fields were derived from

potentials that satisfy Poisson equations as shown in (331)− (330). Therefore, we know that the GEM

fields are bound (or non-radiative) fields which fall off as 1/r2. On the other hand, hττ
i j are the only

radiative fields which satisfy a wave equation and fall off as 1/r in the far-field. This is an important

distinction from EM where ~E and ~B are the only fields and they both contribute to bound fields as

well as radiative fields. In fact, the distinction between waves and oscillations is not necessary in EM

because “waves” and “electromagnetic oscillations” are effectively the same.

Now from the field equations in (361) we find that εG appears in the gravito-Gauss law (for the

bound field ~EG) while µG appears in the gravito-Ampere law (for the bound field ~BG). However, we do

not find that the combination of εG and µG appearing in the wave equation. Rather, the prefactor can

only be expressed in terms of either εG or µG. For example, it may be expressed as either κ = 2/εGc4

or κ = 2µG/c
2. This indicates that the product εGµG = 1/c2 can only be describing the behavior

of bound fields, not gravitational waves. If we interpret εGµG = 1/c2 as describing the speed of

propagation of fields at the speed c, then it must be the propagation of ~EG and/or ~BG.

However, the field equations given in (361) do not predict a mutual inductance between ~EG and
~BG. There is a gravito-Faraday law but there is no gravito-displacement current which is also required

to have mutual inductance. There are other post-Newtonian gravitational field equations41 which do

contain a gravito-displacement current and therefore predict a mutual inductance between ~EG and ~BG.

However, in those cases we still cannot formally derive the relation εGµG = 1/c2 in order to justify

the interpretation of c being the speed of propagation. Even if we insist that εGµG = 1/c2 predicts the

speed of propagation is c, we still must recognize that it is speed of propagation for bound fields, not

gravitational waves.

• An impedance expression for gravitational waves cannot be obtained from the fields.

It is not clear what would constitute a gravitational “impedance” for waves such as the impedance

that exists in EM. The EM wave impedance is given by Z =
√

µ/ε which in vacuum becomes Z0 =√
µ0/ε0. However, this quantity is generally obtained by taking a ratio of ~E and ~H, where ~H = ~B/µ

and ~B= ~E/c in vacuum. Therefore, the ratio of ~E and ~H gives

~E

~H
=

~E

~B/µ
=

~E

~E/cµ
= cµ =

√
1

εµ
µ =

√
µ

ε
= Z (362)

In the case of gravitation, we can not find a gravitational wave “impedance” by using an analogous

procedure of taking the ratio of ~EG and ~HG, where ~HG = ~BG/µG and ~BG = ~EG/c. First, we do not have

40We are careful to distinguish between “gravito-electromagnetic oscillations” which are oscillations of ~Eg

and ~Bg and “gravitational waves” which are described by hττ
i j in the far-field.

41For example, a gravito-displacement current appears in the field equations (58) which are derived in

linearized GR by applying the harmonic gauge to the trace-reversed metric perturbation
(
∂ν h̄µν = 0

)
and

assuming non-relativistic sources. A gravito-displacement current also found in the field equations using the

PPN formalism as shown in (137).
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the relation ~BG = ~EG/c for gravitation.42 The analogous relationship in electromagnetism, ~B = ~E/c,

occurs as a result of considering plane wave solutions to the wave equations involving ~E and ~B which

do not exist for gravitation for ~EG and ~BG.

Second, the ratio of ~EG and ~HG would not give a gravitational wave impedance because ~EG and
~HG are not associated with gravitational waves. Instead, the appropriate field is hττ

i j as shown in the

wave equation in (361). For example, a gravitational wave with plus-polarization (in the far-field) only

has strain fields given by hττ
xx and hττ

yy . Taking the ratio of the fields does not produce any constant since

the two fields are identical. (In fact, each of them is dimensionless.) This is in contrast to the case in

EM where ~E and ~H have different dimensions and therefore the ratio leads to the physical quantity of

impedance. If we disregard this fact and simply use the last equality in (362) expressed in terms of µG

and εG, then we have

ZG =

√
µG

εG

=
4πG

c
(363)

This result has units that match the expected result for “gravitational resistance” as discussed in Section

13. Unfortunately it is not clear how to interpret the physical meaning and relevance of this quantity

since it was not derived from field equations such as (361).

42Although we can not derive the relation ~Bg= ~Eg/c, it is interesting to point out that it is certainly possible

dimensionally. This can be seen most easily from the gravito-Lorentz force obtained from the geodesic

equation in (508). There we see that ~Eg and ~v×~Bg are both accelerations. Therefore ~Eg and ~Bg could be

related by a velocity.
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3.11 The absence of a gravitational displacement current

In the gravito-electromagnetic field equations shown in (361), we find that there is no displacement

current as there is in electromagnetism (EM). Recall that in EM, the displacement current is required to

maintain consistency between Ampere’s law, Gauss’s law and the continuity equation. Specifically, if we

solve Gauss’s law for the charge density, ρ = ε0∇ ·~E, and insert this into the continuity equation, ρ̇+∇ ·~J= 0,

then we obtain (
ε0∇ ·

·
~E

)
+∇ · ~J = 0 (364)

∇ ·
(
~J+ ε0

·
~E

)
= 0 (365)

We can therefore define the displacement current density as ~JD = ε0

·
~E and the charge current density as ~J so

that the full current is ~J f ull = ~J+ ~JD. Then Ampere’s law can be written as

∇×~B = µ0
~J f ull = µ0

(
~J+ ε0

·
~E

)
(366)

Taking the divergence of Ampere’s law in (366) gives zero on both sides. The left side is zero since the

divergence of a curl is always zero. The right side is also zero by (365). Therefore, as stated above, we find

that the displacement current is necessary to maintain consistency between Ampere’s law, Gauss’s law and

the continuity equation.

Now we consider an analogous calculation for the case of the gravito-electromagnetic equations in (361).
If we solve the gravito-Gauss law for the mass density, we obtain

ρ = −
(

εG∇ ·~EG+
3

2c2

(
P− İ

))
(367)

Inserting this into the mass-momentum continuity equation from (283), ρ̇−∇
2
I = 0, gives

εG∇ ·
·
~EG+

3

2c2

(
Ṗ− Ï

)
+∇

2
I = 0 (368)

We can immediately observe that this expression is completely independent of the gravito-Ampere law given

in (361) as

∇×~BG = 2µG
~R (369)

Taking the divergence of this equation gives zero on both sides. The left side is zero since the divergence of

a curl is always zero. The right side is zero due to the fact that Ri is a purely rotational vector and therefore

∂iRi = 0 as stated in (272). Therefore, we find that there is no need for a displacement current to maintain

consistency between the gravito-Ampere law, gravito-Gauss law and the mass-momentum continuity equa-

tion. Ampere’s law is completely independent because it does not involve any of the source terms that appear

(368). In fact, if we wish, we could choose to define a gravito-displacement current density as ~JD = εG

·
~EG

and from (368) this would have to satisfy

∇ · ~JD = − 3

2c2

(
Ṗ−Ï

)
−∇

2
I (370)
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However, this gravito-displacement current density would not play any role in the field equations shown in

(361). The absence of a displacement current is also found by Bertschinger in [20] (equ 4.62 on p. 61). It

also found in [21] (equ. 33 and 39) and discussed on p. 14. There are two reasons for the absence of a

gravitational displacement current:

1. It is not needed to enforce energy-momentum conservation, ∂ν T µν = 0. This is because mass conser-

vation is enforced by the scalar potential, momentum conservation is enforced by the vector potential,

and therefore the only remaining radiating degrees of freedom is the tensor potential.

2. The displacement current would lead to wave equations for the gravito-electromagnetic vector fields,
~EG and ~BG. However, these are not propagating wave fields like they are in electromagnetism. Gravi-

tational waves are purely tensor waves.
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3.12 Gravito-electromagnetic field equations for an ideal fluid

The gravito-electromagnetic field equations in (361) are expressed in terms of quantities found in the

Helmholtz Decomposition (HD) stress tensor, T
(HD)
µν , as given by (269)− (271). To express the field equa-

tions in terms of an ideal fluid, T
(ideal f luid)
µν , we will need to relate the quantities found in the Helmholtz

Decomposition (HD) stress tensor43 (ρ̃, Ri, I, T ττ
i j , ri, P and L) to the quantities found in an ideal fluid (ρ, P

and vi). The linearized stress tensor for an ideal fluid is given in (2685) of Appendix I as

T
(ideal f luid)
µν =

(
ρ+P/c2

)(
ηµσ ηνρ vσ vρ +ηµσ hνρ vσ vρ +hµσ ηνρ vσ vρ

)
γ

2+P
(
ηµν +hµν

)
(371)

Formally, this expression for the stress tensor does not violate the approximations used in this treatment since

we only required two conditions so far:

1. Terms that are second order in hµν are neglected so that Christoffel symbols take the form of (2367).

2. Terms involving the product of Christoffel symbols and the stress tensor (such as Γν
νσ T σ µ ) are ne-

glected. This was required so that conservation of the stress-energy-momentum tensor

∇ν T µν = ∂ν T µν +Γ
ν
νσ T σ µ +Γ

µ

νσ T νσ = 0 (372)

becomes simply

∂ν T µν = 0 (373)

From (2367), we know that to first order, the Christoffel symbols involve terms with ∂γ hµν . Therefore,

using ∂ ν Tµν = 0 as the linear conservation of stress-energy-momentum only requires neglecting terms

of order
(
∂γ hµν

)
T ρσ . This does not require neglecting terms of order hµν T ρσ .

However, using (371) to describe the sources in the field equations of (361) will lead to a non-linear self-

coupling of the field to the sources due to the appearance of hµν in the source terms. Therefore, as a further

approximation, we can choose to neglect the self-coupling of gravity (that is, the notion of the gravitational

field acting back on the sources and hence altering the gravitational field through an iterative process). In that

case, we are choosing a stricter approximation which neglects all terms of order hµν T ρσ . This means that

(371) becomes

T
(ideal f luid)
µν =

(
ρ+P/c2

)
γ

2vµ vν +Pηµν (374)

As shown in (2692)− (2694) from Appendix I, the stress tensor components become

T
(ideal f luid)

00 =
(
ρc2+P

)
γ

2−P (375)

T
(ideal f luid)

0i = −(ρc+P/c)γ2vi (376)

T
(ideal f luid)

i j =
(
ρ+P/c2

)
γ

2viv j+Pη i j (377)

43Here we use the notation ρ̃ to distinguish the scalar component of the HD stress tensor, T
(HD)

00 = ρ̃c2,

from the rest mass energy density, ρc2, of an ideal fluid. Nowhere in this treatment was it required that T
(HD)

00

would be the rest mass energy density. In fact, it was misleading to use T
(HD)

00 = ρc2 for the HD stress tensor

since this scalar quantity is not the rest mass density. This notation was simply used for consistency with the

treatment in [28].
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Relating the HD stress tensor quantities to the ideal fluid stress tensor quantities

We now relate the ideal fluid stress tensor components in (375)− (377) to the HD stress tensor compo-

nents given in (269)− (271). Equating (375) and (269) gives

T
(HD)

00 = T
(ideal f luid)

00 (378)

ρ̃c2 =
(
ρc2+P

)
γ2−P (379)

Next, equating (270) and (376) gives

T
(HD)

0i = T
(ideal f luid)

0i (380)

c(Ri+∂iI) = −(ρc+P/c)γ2vi (381)

Taking the divergence of both sides44 and noting that ∂iRi = 0 gives

∇
2
I = −∇

[(
ρ+P/c2

)
γ

2
]
·~v−

(
ρ+P/c2

)
γ

2 (∇ · vi) (382)

For a fluid with incompressible flow, we have ∇ ·~v= 0. Also, if the mass density remains uniform and there

are no pressure gradients in the material, then ∇
(
ρ+P/c2

)
= 0 and we have

∇
2
I = −

(
ρ+P/c2

)(
∇γ

2
)
·~v (383)

Here we need to evaluate ∇γ2 where γ2 =
(
1− v2/c2

)−1
. This gives

∇γ
2 = −

(
1− v2/c2

)−2
∇
(
1− v2/c2

)
(384)

= −
(
1− v2/c2

)−2 (−2v/c2
)

∇v (385)

For a fluid with incompressible flow, ∂ivi = 0. Also, if there is no spatial variation in the particle velocities (in

other words, each streamline has the same velocity over a cross-sectional area of the flow) then ∂iv j (i 6= j) = 0.

Therefore ∇v= 0 and we have

∇γ
2 = 0 (386)

Then (383) becomes

∇
2
I = 0 (387)

Since I goes to zero as r→ ∞, then the only unique solution is

I = 0 (388)

44The divergence of a scalar S times a vector ~V is ∇ ·
(

S~V
)
= S∇ ·~V +~V ·∇S.
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Returning to (381), we can write the equation as a vector equation and take the curl.45

∇×~R = −
(
ρ+P/c2

)
γ

2 (∇×~v)−∇
[(

ρ+P/c2
)

γ
2
]
× vi (389)

Again, we assume
(
ρ+P/c2

)
is uniform so that ∇

(
ρ+P/c2

)
= 0. We also use (386) to obtain46

∇×
[
~R+

(
ρ+P/c2

)
γ

2~v⊥
]
= 0 (390)

Since ~R and
(
ρ+P/c2

)
~v⊥ must go to zero as r→∞, then the only unique solution to the differential equation

above is ~R+
(
ρ+P/c2

)
γ2~v⊥ = 0. Therefore we have

~R=−
(
ρ+P/c2

)
γ2~v⊥ (391)

Next, equating (271) and (377) gives

T
(HD)

i j = T
(ideal f luid)

i j (392)

T ττ
i j +δ i jP+∂ (ir j)+

(
∂i∂ j− 1

3
δ i j∇

2
)

L =
(
ρ+P/c2

)
γ

2viv j+Pη i j (393)

Taking the spatial trace of both sides using δ
i j

gives

3P =
(
ρ+P/c2

)
γ

2v2+3P (394)

P= 1
3

(
ρ+P/c2

)
γ2v2+P (395)

Now we take two derivatives of (393) using ∂i∂ j and note that ∂iT
ττ

i j = 0 and ∂iri = 0.

∂i∂ jδ i jP+∂i∂ j

(
∂i∂ j− 1

3
δ i j∇

2
)

L = ∂i∂ j

[(
ρ+P/c2

)
γ

2viv j

]
+∂i∂ jδ i jP (396)

Inserting (395) gives

∂i∂ jδ i j

[
1
3

(
ρ+P/c2

)
γ

2v2+P
]
+ 2

3
∇

2
∇

2
L = ∂i∂ j

[(
ρ+P/c2

)
γ

2viv j

]
+∂i∂ jδ i jP (397)

∇
2
[

1
3

(
ρ+P/c2

)
γ

2v2
]
+ 2

3
∇

2
∇

2
L = ∂i∂ j

[(
ρ+P/c2

)
γ

2viv j

]
(398)

45The curl of a scalar S times a vector ~V is ∇×
(

S~V
)
= S∇×~V +∇S×~V .

46We do not assume that the fluid has no vorticies which would imply ∇×~v = 0. Instead, we choose to

permit the possibility of vortices so that later we can relate these results to a superfluid which has quantized

vortices. We also use the notation~v ⊥ for the “transverse” component of~v as a reminder that we have required

∇ ·~v for an incompressible fluid flow.
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Applying a tensor product rule47 to the right side gives

∇
2
[

1
3

(
ρ+P/c2

)
γ

2v2
]
+ 2

3
∇

2
∇

2
L =

[
∂i∂ j

(
ρ+P/c2

)
γ

2
]

viv j+
(
ρ+P/c2

)
γ

2
∂i∂ j (viv j) (399)

Note that ∂i∂ j (viv j) becomes

∂i∂ j (viv j) = ∂i [(∂ jvi)v j+(∂ jv j)vi] (400)

= (∂i∂ jvi)v j+(∂ jvi)(∂iv j)+(∂i∂ jv j)vi+(∂ jv j)(∂ivi) (401)

Once again, we let ∂iv j = 0 and ∂i

[(
ρ+P/c2

)
γ2
]
= 0. Then (399) reduces to ∇

2
∇

2
L = 0. Since ∇

2
L goes

to zero as r→ ∞, then the only unique solution is ∇
2
L= 0. If L goes to zero as r→ ∞, then we have

L= 0 (402)

Next, taking a single derivative, ∂i, of both sides of (393) gives

∂iδ i jP+∂i∂ (ir j)+∂i

(
∂i∂ j− 1

3
δ i j∇

2
)

L= ∂i

[(
ρ+P/c2

)
γ

2viv j

]
+∂iδ i jP (403)

∂ jP+∇
2
r j+

2
3
∂ j∇

2
L = ∂i

[(
ρ+P/c2

)
γ

2
]

viv j+
(
ρ+P/c2

)
γ

2
∂i (viv j)+∂ jP (404)

Inserting (395) and (402) gives

∂ j

[
1
3

(
ρ+P/c2

)
γ

2v2+P
]
+∇

2
r j

= ∂i

[(
ρ+P/c2

)
γ

2
]

viv j+
(
ρ+P/c2

)
γ

2 [(∂ivi)v j+ vi (∂iv j)]+∂ jP (405)

Canceling common terms gives

1
3
∂ j

[(
ρ+P/c2

)
γ

2v2
]
+∇

2
r j = ∂ j

[(
ρ+P/c2

)
γ

2
]

viv j+
(
ρ+P/c2

)
γ

2 [(∂ivi)v j+(∂iv j)vi]

(406)

Again we can use ∂ivi = 0 and ∇
[(

ρ+P/c2
)

γ2
]
= 0. Then the equation above simply becomes ∇

2
r j = 0.

Since r j goes to zero as r→ ∞, then the only unique solution is

ri = 0 (407)

Lastly, we can substitute (395) ,(402) and (407) into (393) to obtain

T ττ
i j +δ i j

[
1
3

(
ρ+P/c2

)
γ

2v2+P
]
=

(
ρ+P/c2

)
γ

2viv j+Pδ i j (408)

47Just as ∇ ·
(

S~V
)
= S∇ ·~V +~V ·∇S, so also ∂i∂ j (Sviv j) = S∂i∂ jviv j+ viv j∂i∂ jS.
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T ττ
i j = γ2

(
ρ+P/c2

)(
viv j− 1

3
δ i jv

2
)

(409)

As expected, we find that T ττ
i j is transverse and traceless. It is transverse since ∂iT

ττ
i j = 0 due to the require-

ments that ∂ivi = 0 and ∂i

[(
ρ+P/c2

)
γ2
]
= 0. It is traceless since taking the spatial trace of (409) will cause

the two terms in the last parentheses to cancel.

In summary, we find that an ideal fluid with an incompressible flow and a uniform mass density and

pressure requires that L = I = ri = 0. This is consistent with the absence of these quantities in the field

equations found in (361). Note that although we find that L = I = ri = 0, this does not mean that these

quantities can simply be omitted from the HD stress tensor in (269)− (271). These quantities are required

in order to obtain the conservation relations in (286), (289), and (292) which were critical for deriving the

gauge-invariant field equations in (330)− (333). These ultimately lead to the field equations in (361). This

is directly analogous to the requirement that all of the quantities in the metric given in (175)− (177) are

non-zero in order to construct gauge-invariant fields.

Now inserting the expressions for ρ̃ , ~R, P and T ττ
i j from (379), (391), (395) and (409), respectively, into

(269)− (271) allows us to express T
(HD)
µν completely in terms of ρ,P and vi. In doing so, we recover the

correct results for T
(ideal f luid)
µν as given by (375)− (377).

T
(HD)

00 = ρ̃c2 = γ
2
(
ρc2+P

)
−P (410)

T
(HD)

0i = Ri =−γ
2
(
ρ+P/c2

)
vi, ⊥ (411)

T
(HD)

i j = T ττ
i j +δ i jP= γ

2
(
ρ+P/c2

)
viv j+Pδ i j (412)

Note that the trace is T = T
µ

µ = T00+T i
i which gives

T = γ
2
(
ρc2+P

)
−P+ γ

2
(
ρ+P/c2

)
v2+3P (413)

= γ
2
(
ρc2+P

)(
1+ v2/c2

)
+2P (414)

In the non-relativistic limit
(
v2/c2 ≈ 0 and γ ≈ 1

)
, this gives T = ρc2+3P.

Conservation relations for the ideal fluid stress tensor quantities

Next, we can consider how the conservation laws in (283) ,(289) and (292) apply to these results. Starting

with (283), we have
·
ρ̃ = ∇

2
I. Using ρ̃c2 =

(
ρc2+P

)
γ2−P from (379) and I = 0 from (388) gives

∂t

[(
ρc2+P

)
γ

2−P
]
= 0 (415)

γ
2
∂t

(
ρc2+P

)
+
(
ρc2+P

)
∂tγ

2−∂tP = 0 (416)

γ
2c2

ρ̇+
(
γ

2−1
)

Ṗ+
(
ρc2+P

)
∂tγ

2 = 0 (417)
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Evaluating ∂tγ
2 where γ2 =

(
1− v2/c2

)−1
gives

∂tγ
2 = −

(
1− v2/c2

)−2
∂t

(
1− v2/c2

)
(418)

= −
(
1− v2/c2

)−2 (−2v/c2
)

∂tv (419)

=
2va

c2 (1− v2/c2)2
(420)

= 2vaγ
4/c2 (421)

Then (417) becomes

γ
2c4

ρ̇+
(
γ

2−1
)

c2Ṗ+2γ
4
(
ρc2+P

)
va = 0 (422)

If the mass density and pressure of the ideal fluid do not change with time, then ρ̇ = Ṗ = 0 and we simply

have (
ρc2+P

)
va = 0 (423)

This expression is effectively an equation of motion for a volume element of the fluid. Using48 (288) we also

have ∇
2
(

2
3
∇

2
L− İ+P

)
= 0. Since (388) and (402) show that I = 0 and ∇

2
L= 0, respectively, then we have

∇
2P = 0 (424)

This means that ∂iP is a constant. This is consistent with (395) where P = 1
3

(
ρ+P/c2

)
γ2v2+P. Since

we required a uniform mass density, no pressure gradients and a fluid with incompressible flow, then the

derivative of P must vanish.

Lastly, from (292) we have ∇
2
ri = Ṙi. Since ri = 0 according to (407), then Ṙi = 0. From (391) we have

∂t

[(
ρ+P/c2

)
γ2vi, ⊥

]
= 0. We can apply the product rule to obtain

γ
2vi, ⊥∂t

(
ρ+P/c2

)
+
(
ρ+P/c2

)
vi, ⊥∂tγ

2+ γ
2
(
ρ+P/c2

)
∂tvi, ⊥ = 0 (425)

We can use the result of (421) to write

γ
2vi, ⊥

(
ρ̇+ Ṗ/c2

)
+
(
ρ+P/c2

)
vi, ⊥2vaγ

4/c2+ γ
2
(
ρ+P/c2

)
ai, ⊥ = 0 (426)

Multiplying by c2/γ2 and grouping terms gives[(
ρ̇c2+ Ṗ

)
+2
(
ρc2+P

)
γ

2va/c2
]

vi, ⊥+
(
ρc2+P

)
ai, ⊥ = 0 (427)

48Note that for the conservation law we do not use (289) which gives 2
3
∇

2
L = İ−P. This would lead to

the erroneous result P= 0 which would contradict (395) where P is clearly not zero. Rather, it is ∇
2P that is

zero which is satisfied by the fact that P = 1
3

(
ρ+P/c2

)
v2+P has a vanishing derivative for uniform mass

density, no pressure gradients and a fluid with incompressible flow.
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If the mass density and pressure of the ideal fluid do not change with time, then ρ̇ = Ṗ= 0 and we have

(
ρc2+P

)(2γ2va

c2
vi, ⊥+ai, ⊥

)
= 0 (428)

This expression is effectively an equation of motion for the transverse motion of a volume element of the

fluid.

Gravito-electromagnetic field equations for an ideal fluid

We are now able to express the gravito-electromagnetic (GEM) field equations in (361) in terms of an

ideal fluid. Inserting L = I = ri = 0 and the expressions for ρ̃ , ~R, P and T ττ
i j from (379), (391), (395) and

(409), respectively, gives

∇ ·~EG =−
1

εG

[(
ρ+

P

c2

)
γ2

(
1+

v2

2c2

)
+

P

2c2

]
∇ ·~BG = 0

∇×~EG =−∂t
~BG ∇×~BG =−2µG

(
ρ+

P

c2

)
γ2~v⊥

�hττ
i j =−2κ

(
ρ+

P

c2

)
γ2
(
viv j− 1

3
δ i jv

2
)

Gauge-invariant gravito-electromagnetic field equations for an ideal fluid

(429)

If we keep velocity terms only to order v2/c2, then γ2 =
(
1− v2/c2

)−1 ≈ 1+v2/c2. Inserting this into (429)

and keeping only terms to order v2/c2 gives49

∇ ·~EG =−
1

εG

[(
ρ+

P

c2

)(
1+

3v2

2c2

)
+

P

2c2

]
∇ ·~BG = 0

∇×~EG =−∂t
~BG ∇×~BG =−2µG

(
ρ+

P

c2

)
~v⊥

�hττ
i j =−2κ

(
ρ+

P

c2

)(
viv j− 1

3
δ i jv

2
)

Gauge-invariant gravito-electromagnetic field equations

for an ideal fluid (to order v2/c2)

(430)

For the case of relativistic dust, we can neglect terms with pressure so the field equations (still to order v2/c2)

49Since µg = 4πG/c2, then µg~v is of the order v/c2 and therefore µg

(
1+ v2/c2

)
~v reduces to just µg~v.

Likewise, since κ = 16πG/c4, then κv2 is of the order v2/c4 and therefore κ
(
1+ v2/c2

)
v2 reduces to just

κv2.
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become50

∇ ·~EG =−
1

εG

ρ

(
1+

3v2

2c2

)
∇ ·~BG = 0

∇×~EG =−∂t
~BG ∇×~BG =−2µG

~Jm⊥

�hττ
i j =−2κρ

(
viv j− 1

3
δ i jv

2
)

Gauge-invariant gravito-electromagnetic field equations

for relativistic dust (to order v2/c2)

(431)

The following are some observations concerning the ideal fluid GEM field equations.

• The source in the gravito-Ampere law is ~Jm⊥ which is only the transverse component of the mass

current density. This is similar to the results found by Bertschinger in [20] (equ 4.62 on p. 61). It also

found in [21] (equ. 33 and 39). It is a consequence of ~BG being a purely transverse field, ~BG = ∇×~Ξ
with ∇ ·~Ξ= 0. This is similar to the Coulomb gauge in electromagnetism which leads to�~A=−µ0

~J⊥.

However, here we have ∇
2~Ξ=−c2κRi where Ri is also a purely transverse current source.

• It is evident from the wave equation for gravitational waves why gravitational waves are so weak

compared to other gravitational fields. First, the coupling constant in the wave equation is 2κ =
8πG/c4 ≈ 2× 10−43 (SI units). (This is far weaker than the Lense-Thirring field which has a pref-

actor µG = 8πG/c2 ≈ 2× 10−26 appearing in the gravito-Ampere law.) Second, gravitational waves

are generated by sources of order v2 rather than order v. This means that for non-relativistic sources,

the gravitational wave field will be significantly weaker than the Lense-Thirring field.

• From (429) we find that the quantities in the ideal fluid stress tensor (ρ , ~v and P) appear in the wave

equation for gravitational waves as well as the other field equations. This means that gravitational

waves, hττ
i j , are generated from the same sources as ~EG and ~BG. This provides a clarification concern-

ing the observation described in Section 20 where it was noted that T ττ
i j does not participate in any

conservation law and therefore does not seem to be linked to any other sources. This gave the impres-

sion that it is possible to have all the other quantities in the stress tensor be zero (including the rest mass

energy) and yet have T ττ
i j be non-zero. Clearly this doesn’t match any physical system we observe in

nature. Therefore, although the HD stress tensor and the conservation laws give the impression that

this is possible, we find here that using an actual physical stress tensor (such as an ideal fluid or dust)

shows it does not occur that T ττ
i j can be non-zero while all the other quantities are zero.

50We define a “relativistic transverse mass current density” as ~Jm⊥ = ρ~u⊥ = ργ~v⊥. (However, in the

approximation γ ≈ 1, then we just have ~Jm⊥ = ρ~v⊥.) This is similar to ~Jm introduced in Section 3 except that

here we have ∇ ·~Jm⊥ = 0 due to requiring the ideal fluid to have an incompressible flow. This is analogous to

the charge current density in electromagnetism which is given by ~J = ρc~u, with ρc being the charge density.

Notice also that ~Jm⊥ is essentially just the transverse component of the relativistic momentum, ~p=~u= γm~v.
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3.13 Newtonian and first-order post-Newtonian limits

We begin by defining the Newtonian and first-order post-Newtonian limit in terms of the velocity of

gravitational sources and the corresponding components of the metric. In (2468) of Appendix B, it is shown

that in the harmonic gauge, the linearized Einstein equation expressed in terms of the trace-reversed metric

perturbation is

�h̄µν =−2κTµν (432)

where h̄µν is the trace-reversed metric perturbation given by

h̄µν = hµν − 1
2
ηµν h (433)

The Green’s function solution to (432) is then given by

h̄µν (t,~x) =
4G

c4

∫
Tµν (tr,~x

′)

|~x−~x′| d3x′ (434)

For simplicity, we can consider an ideal fluid with no pressure (relativistic dust). Then the stress tensor is

Tµν = ρuµ uν = ρgµρ gνσ uρ uσ . If we neglect self-coupling of the stress tensor to the field, then gµν ≈ ηµν

and we have

T00 = ργ
2c2, T0i =−ργ

2cvi
s, Ti j = ργ

2vi
sv

j
s (435)

where vi
s is the velocity of the gravitational sources. It is evident that T00 << T0i << Ti j. Therefore, from

(434) it also follows that h̄00 << h̄0i << h̄i j. In particular, the components of the stress tensor are related by

T0i ∼ T00

(
vs

c

)
and Ti j ∼ T00

(
vs

c

)2

(436)

Therefore it follows from (434) that the components of the trace-reversed metric perturbation are related by51

h̄0i ∼ h̄00

(
vs

c

)
and h̄i j ∼ h̄00

(
vs

c

)2

(437)

These relations are helpful for an order of magnitude approximation when considering Newtonian and first-

order post-Newtonian limits. Therefore, in this context, we will consider “Newtonian order” to only involve

non-moving matter
(
T 00
)

and therefore only involves the Newtonian potential h̄00. We will consider “first-

order post-Newtonian” to include mass currents
(
T 0i
)

and therefore also includes h̄0i, the gravito-vector

potential responsible for the Lense-Thirring field. Lastly, we will consider “second-order post-Newtonian”

to include the stress
(
T i j
)

and therefore also includes h̄i j, the remaining part of the metric perturbation

which includes GR waves and other strains. Conversely, we could summarize by saying “first-order post-

Newtonian” simply sets h̄i j ≈ 0 while “Newtonian order” simply sets h̄i j ≈ h̄0i ≈ 0.

Next we consider the potentials, the vector fields, and the field equations that result in each of these limits.

In (2431) from Appendix B, we have the trace-reversed metric perturbation components given as

h̄00 = 1
2
(h00+H) , h̄0i = h0i, h̄i j = hi j+

1
2
δ i j (h00−H) (438)

51These relations were motivated based on the field equation for linearized GR in the trace-reversed har-

monic gauge, ∂ ν h̄µν = 0. However, the same relations can be motivated for the non-trace-reversed metric

perturbation and without the use of GR. We simply use the harmonic gauge, ∂ ν hµν = 0, and consider a metric

perturbation given by hµν = Aµν e(
~k·~x−ωt). The details are shown in Section 40.
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Inserting the HD metric components from (175)− (177) gives

h̄00 = −φ/c2+ 1
2
H (439)

h̄0i = (β i+∂iα)/c (440)

h̄i j = hττ
i j − 1

6
δ i jH+∂ (iε j)+

(
∂i∂ j− 1

3
δ i j∇

2
)

λ −δ i jφ/c
2 (441)

The off-diagonal elements of h̄i j are

h̄i j

(i6= j)

= hττ
i j +∂ (iε j)+

(
∂i∂ j− 1

3
δ i j∇

2
)

λ (442)

Since we set h̄i j ≈ 0 in the first-order post-Newtonian limit, then we must have the off-diagonal elements

above vanish. This means hττ
i j ≈ ε i ≈ λ ≈ 0. In the case, (441) reduces to 0=− 1

6
δ i jH−δ i jφ/c2 which gives

H =−6φ/c2. This condition holds in the Newtonian limit as well since we still require h̄i j ≈ 0. However, for

Newtonian order we also require h̄0i ≈ 0 which means we have the added condition that β i ≈ α ≈ 0. We can

summarize with the following set of conditions.

Newtonian order: β i ≈ α ≈ hττ
i j ≈ ε i ≈ λ ≈ 0 and H =−6φ/c2

First post-Newtonian order: hττ
i j ≈ ε i ≈ λ ≈ 0 and H =−6φ/c2

Second post-Newtonian order: no components are necessarily zero

(443)

Defining Newtonian and first-order post-Newtonian potentials and vector fields

The gauge-invariant quantities given in (244)− (246) are

Φ = φ + α̇− λ̈/2, Θ= 1
3

(
H−∇

2
λ

)
, Ξi = β i− ε̇ i (444)

In the first-order post-Newtonian limit, these are reduced to

ΦPN ≡ φ + α̇, ΘPN ≡ 1
3
H, Ξi, PN ≡ β i

First-order post-Newtonian potentials

(445)

where the subscript “PN” is used to denote “post-Newtonian.” These are the post-Newtonian scalar and

vector potentials. Because λ and ε i were eliminated in the first post-Newtonian limit, the potentials in (445)
are no longer gauge-invariant. This can be seen by considering the transformations given in (238), (239),
(240) and (241). We can no longer carry out the process of Section 18 to construct gauge-invariant quantities.

Specifically, without λ we can no longer eliminate the gauge freedom C from the metric perturbation quantity

H in (241). Also, without ε i we can no longer eliminate the gauge freedom Ḃi from β i in (240). Lastly,
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without λ we can no longer eliminate the gauge freedom Ċ from α in (239) and the gauge freedom Ȧ from

the φ in (238). As a result, the gauge-invariance of Φ, Θ, and Ξi is broken.

Since the gauge-invariant GEM fields are defined according to (352) as

~EG ≡−
1

2
∇

(
Φ− c2

2
Θ

)
−
·
~Ξ and ~BG ≡ ∇×~Ξ (446)

then we can define the first-order post-Newtonian GEM fields as

~Eg(PN) ≡−
1

2
∇

(
ΦPN−

c2

2
ΘPN

)
−
·
~ΞPN and ~Bg(PN) ≡ ∇×~ΞPN

First-order post-Newtonian GEM fields

(447)

These fields are gauge-dependent since they are defined in terms of the gauge-dependent first-order post-

Newtonian potentials. In the Newtonian limit, the potentials in (445) are reduced further to

ΦN ≡ φ , ΘN ≡ 1
3
H, Ξi, N = 0 Newtonian potentials (448)

where the subscript “N” is used to denote “Newtonian.” Since (443) also shows that H = −6φ/c2, then

dividing both sides by 3 and substituting ΘN and ΦN from (448) gives

ΘN =−
2

c2
ΦN in the Newtonian limit (449)

Inserting this into (447) shows that in the Newtonian limit, the GEM fields are simply

~Eg(N) ≡−∇ΦN and ~Bg(N) = 0 Newtonian GEM fields (450)

As expected, in the Newtonian limit, the gravito-magnetic (Lense-Thirring) field vanishes and the only re-

maining field is the Newtonian acceleration field expressed in terms of the gradient of the gravito-scalar

potential. From these results, we can now decompose the gravito-electric field into a Newtonian field plus a

post-Newtonian correction. Taking just the static part of the gravito-electric field in (446) we have

~Eg, static = −1

2
∇

(
Φ− c2

2
Θ

)
(451)

In the Newtonian limit, we found that inserting ΘN =− 2
c2 ΦN made the quantity in parentheses become 2ΦN

and therefore ~Eg, static reduced to the Newtonian field in (450). Therefore, we could say that in the Newtonian

limit, Φ and Θ combine together so as to produce the Newtonian field. Neither of them can be identified alone

as responsible for the Newtonian gravitational field.

To illustrate this point further, we can express ~Eg, static in terms of metric quantities using (444).

~Eg, static =−
1

2
∇

[
φ + α̇− λ̈/2− c2

6

(
H−∇

2
λ

)]
(452)

Rearranging gives

~Eg, static = −1

2
∇

(
φ − c2

6
H

)
+∇

(
α̇/2− λ̈/4+ c2

6
∇

2
λ

)
(453)
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Since H = −6φ/c2 in the Newtonian limit, then the first term above is clearly the Newtonian field. This

means that the remaining quantities in the second term are responsible for all post-Newtonian corrections to

the gravito-electric field (in the linearized GR approximation). These post-Newtonian corrections cannot be

expressed purely in terms of the gauge-invariant potentials in (444). Rather, it is only when the Newtonian

field in the first term is decomposed into φ and H (with appropriate prefactors) that gauge-invariant quantities

can be formulated.

Furthermore, it is interesting to observe that the first-order post-Newtonian correction comes from α̇

which is a first-order time derivative of the longitudinal part of h0i. Similarly, the second-order post-Newtonian

correction comes from a second-order time derivative and second-order spatial derivative of λ which is the

longitudinal part of hi j. Therefore, as expected, all contributions post-Newtonian contributions to ~Eg, static

come from longitudinal parts of the metric perturbation, with the order of derivatives (first and second) match-

ing the order of the of the metric perturbation (h0i and hi j). In a similar manner, we find that the rotational

part of h0i (given by β i) is the first-order contribution to Ξi while the time derivative of the rotational part of

hi j (given by ε̇ i) is the second-order contribution to Ξi.

Newtonian and first-order post-Newtonian field equations

In (429) and (431) we found field equations for an ideal fluid and for relativistic dust, respectively. The

associated stress tensors involve fully relativistic gravitational sources of order v2/c2 and therefore, the field

equations are properly categorized as second-order post-Newtonian equations. If we consider the case of

non-relativistic dust, we can neglect terms with v2/c2. Then the field equations in (431) (written with the

appropriate notation for the fields) become52

∇ ·~Eg(PN) =−ρ/εG ∇ ·~Bg(PN) = 0

∇×~Eg(PN) =−∂t
~Bg(PN) ∇×~Bg(PN) =−2µG

~Jm⊥
(for low frequency ~Bg(PN))

�hT T
i j = 0

Gauge-dependent gravito-electromagnetic

field equations for non-relativistic dust

(454)

These field equations can be considered first-order post-Newtonian equations. They are not gauge-invariant

since the fields are not gauge-invariant. The following are some additional observations concerning these

field equations.

• The gravito-Faraday law is only valid for a low frequency ~Bg(PN) in order to maintain consistency with

neglecting sources of order v2/c2. This can be observed by taking a time derivative of the gravito-

52Since µg = 4πG/c2, then the wave equation in (431) becomes �hT T
i j =−2

µg

c2

(
ρviv j− 1

3
δ i jρv2

)
which

contains sources that are all of order v2/c2. Therefore the equation reduces to �hT T
i j = 0 which indicates

that only waves in vacuum are permitted. (Non-relativistic sources cannot generate gravitational waves.)

However, the gravito-Ampere law is given by ∇×~Bg=−2µg
~Jm and contains sources that are v/c2. Therefore

it is not neglected.
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Ampere law which involves ~Bg(PN).
53 Since ~Jm⊥ = ρ~v⊥, then we have

∇×
·
~BG =−2µG (ρ̇~v⊥+ρ~a⊥) (455)

where~a⊥ is the transverse acceleration. For an oscillating source where amax = vmaxω , then µGamax ∼
vmaxω/c2. Therefore if ω/c is comparable to vmax/c, then we would have a source on the order of

v2/c2 which violates the approximation required for those equations to hold.54

Recall that in Part I, we derived field equations (454) for relativistic dust in the trace-reversed

harmonic gauge. In that case, we found that the gravito-Faraday law was completely absent. This

was due to the fact that for non-relativistic dust
(
T i j ≈ 0

)
, we had h̄i j ≈ 0 and as a result, the gauge

condition explicitly required that ∂t
~h = 0. This eliminated the gravito-Faraday law. However, here

we find that the gravito-Faraday law is only limited to low frequencies (with respect to v/c) in the

non-relativistic approximation.

• There is no displacement current. This is unlike the harmonic gauge formulation in (454). The reason

is because ∇ ·~Jm⊥ = 0 since ~Jm⊥ = ρ~v⊥ is transverse for an incompressible fluid.55 Therefore ρ and ~Jm⊥
cannot be related by a continuity equation which would be required to lead to a displacement current.

• In the Newtonian limit, we find that Newtonian gravitation is encoded in both the field equations for Θ

or Φ as given by (331) and (330), respectively. This can be seen by inserting H =−6φ/c2 from (443)

into ΘN =
1
3
H from (450) which gives ΘN =−2φ/c2. Then inserting this into ∇

2
ΘN =−

8πG

c2
ρ from

(331) gives

−∇
22φ/c2 = −8πG

c2
ρ (456)

∇
2
φ = 4πGρ (457)

This is the form expected for Newtonian gravitation as pointed out in (342). Likewise, in the Newtonian

limit, we can neglect 3
(
P− İ

)
/c2 in (330) so that the field equation becomes ∇

2
Φ = 4πGρ . In the

Newtonian limit, we have ΦN = φ and therefore we again recover Newtonian gravitation. Hence we

concluded that the field equations for both Θ or Φ reduce to the appropriate expression for Newtonian

gravity in the Newtonian limit.

Gauge freedom in Newtonian and first-order post-Newtonian limits

In (2406) of Appendix A, we show that the full gauge freedom of non-linearized GR given as

g′µν =
(
δ

µ

σ −∂σ ξ
µ
)(

δ
ν

ρ −∂ρ ξ
ν
)
(ησρ −hσρ) (458)

53We still consider that ρ̇ = 0 from (417) so that it does not contribute to the time derivative.

54Likewise, we could argue that for an oscillating source where ρ̇~v⊥ = ρmaxω~v⊥, then µgρ̇~v⊥ ∼
ρmaxω~v⊥/c2. Therefore if ω/c is comparable to vmax/c then we would have a source on the order of v2/c2

which violates the approximation required for those equations to hold.

55This was an added restriction placed on the stress tensor while deriving the field equations in Section

25, however, without this added condition, the second-order, post-Newtonian equations in (429) and (454)
would have been much more complicated.
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It is evident that the gauge freedom is described completely in terms of the quantity ∂ µ ξ
ν

which introduces

four different derivatives (one for each value of µ) of four different components of ξ
ν

(one for each value of

ν). Although we use a linearized version of this gauge freedom given by

h′µν = hµν +∂µ ξ ν +∂ν ξ µ (459)

we find that the degrees of gauge freedom still remain the same since we still have all four derivatives

of all four components of ξ
ν
. The linearization process simply removes terms that are small, such as(

∂ ρ ξ
µ
)(

∂ρ ξ
ν
)

and
(
∂σ ξ

µ
)
(hσν) but this does not remove any of the gauge degrees of freedom. However,

we can show that because the first-order post-Newtonian limit sets h̄i j = 0, it effectively removes degrees of

freedom from the gauge freedom in (459). Specifically, we showed in (442) that the off-diagonal elements

of h̄i j vanish. We can write (459) in terms of matching spatial indices and differing spatial indices.

h′ii = hii+2∂iξ i and h′i j

(i6= j)

= hi j

(i 6= j)

+∂iξ j+∂ jξ i (460)

If the off-diagonal elements of hi j vanish in all frame, then the second equation above is really

0 = ∂iξ j+∂ jξ i (461)

∂iξ j = −∂ jξ i (462)

Since we know that ∂µ ξ ν must be symmetrical (to keep the metric perturbation symmetric), then the anti-

symmetric condition shown in (462) requires that ∂iξ j = 0 for i 6= j. This means that 3 degrees of freedom

are removed. (They are the off-diagonal elements of the spatial part of the tensor matrix, ∂µ ξ ν .) In that case,

the only gauge freedom remaining is given by

h′0i = h0i+∂0ξ i+∂iξ 0 (463)

As a result, any formulation applying such an approximation cannot be gauge-invariant since we have effec-

tively chosen the gauge given by ∂iξ j = 0 for i 6= 0. Gauge-invariance is only preserved in the second-order

post-Newtonian formulation involving the entire metric.

In terms of the HD metric, we can recognize that in going to the first-order post-Newtonian limit we have

set λ = ε i = hττ
i j = 0 which means that the transformations given by (242) and (243) are eliminated. This

will prevent constructing all four of the invariant quantities, Φ, Θ, Ξi, hττ
i j .

In the Newtonian limit, we also set h̄0i = 0. Since h0i = h̄0i, then writing (459) with a spatial index and

temporal index gives

0 = ∂0ξ i+∂iξ 0 (464)

∂0ξ i = −∂iξ 0 (465)

Once again, we know that ∂µ ξ ν must be symmetrical therefore this anti-symmetric condition requires that

∂0ξ i = 0. This means that 3 more degrees of gauge freedom are removed. (They are the time-space elements

in the top row of the tensor matrix, ∂µ ξ ν .)
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3.14 The gauge-dependent versus gauge-invariant Lense-Thirring fields

It is common in the literature to find that authors define the gauge-dependent gravito-magnetic field (or

Lense-Thirring field)56 as

~̃BG ≡ ∇×~h where ~h= c(h01,h02,h03) (466)

This formulation is adopted since it is directly analogous to the magnetic field, ~B= ∇×~A. In fact, based on

the expression found later in (854), it is predicted that the magnetic field, ~B, and the gravito-magnetic field,

~̃BG, are both expelled from a superconductor.57 This is famously claimed by by DeWitt in [42]. However,

such a formulation of the gravito-magnetic field is not gauge-invariant since it is possible to choose a gauge

which makes h0i vanish. Namely, one could choose ξ µ in (459) so that h0i = −∂0ξ i− ∂iξ 0 which means

h′0i = h0i+∂0ξ i+∂iξ 0 gives h′0i = 0.

On the other hand, in developing the gauge-invariant field equations in (361) we find that the gauge-

invariant gravito-magnetic field is given by

~BG = ∇×~Ξ where ~Ξ=~β −
·
~ε (467)

This gravito-magnetic field must be gauge-invariant (in terms of the gauge freedom given in (459) for lin-

earized GR) simply because ~BG is defined only in terms of Ξi which is a gauge-invariant potential. Notice

that the gauge freedom in linearized GR given by h′µν = hµν +∂µ ξ ν +∂ν ξ µ in (200) contains four degrees

of freedom while the gauge freedom in EM given by A′µ = Aµ + ∂µ χ , where χ is a scalar gauge function,

contains only 1 degree of freedom. Therefore, it is evident that we must make the gauge choice ξ 0 = χ and

ξ i = 0 in order for the gauge freedom in linearized GR to be reduced to match the gauge freedom in EM.

Also notice that the gauge-invariant gravito-magnetic field is expressed in terms of all the “rotational”

degrees of freedom from the metric, namely,~β from h0i as well as
·
~ε from hi j. In contrast, the gauge-dependent

gravito-magnetic field is expressed only in terms of~β and ∇α (which is actually an irrotational component).

In addition, the gauge-invariant gravito-magnetic field, ~BG, is valid for fully relativistic sources and

dynamic fields, whereas ~̃BG = ∇×~h is not. This is because ~̃BG is typically derived by applying the harmonic

gauge to the trace-reversed perturbation in linearized GR
(
∂ν h̄µν = 0

)
with non-relativistic sources so that

T i j ≈ 0 and consequently h̄i j ≈ 0. In that context, the harmonic gauge leads to ∂t h̄0i = 0 and therefore the

formulation is only valid for steady-state (or gravitational “magneto-static”) cases, not for fully dynamic

cases where ~BG is a time-varying field.

Lastly, we find that it is ~BG, not ~̃BG, that appears in an Ampere-like law in the field equations given in

(361). Likewise, it is ~BG, not ~̃BG, that appears in a cross product with the velocity in the geodesic equation

of motion found later in (501). Therefore, the field equations and the equation of motion clearly imply that
~BG is the appropriate gravito-magnetic field.

However, it should be noted in the first-order post-Newtonian limit, we find that ~̃BG = ~Bg(PN). This is

because h0i = β i+∂iα so taking the curl of h0i gives

~̃BG = ∇×~h= ∇×
(
~β +∇α

)
= ∇×~β (468)

56We use a tilda on the gauge-dependent gravito-magnetic field, ~̃Bg ≡∇×~h, in order to distinguish it from

the gauge-invariant gravito-magnetic field, Bg = ∇×~Ξ.

57However, it is shown in (1201) that because the gravito-Ampere law has a negative sign, the resulting dif-

ferential equation for Bg(PN) does not permit exponential decay solutions and therefore there is no expulsion

of the gravito-magnetic field.
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The term with ∇α vanishes since the curl of a gradient is zero which means that we could just as well define

the gauge-dependent gravito-magnetic field as ~̃BG = ∇×~β . We can compare this to the gauge-invariant

gravito-magnetic field, ~BG = ∇×~Ξ where ~Ξ = ~β −~ε . In the first-order post-Newtonian limit where~ε ≈ 0,

then~ΞPN ≈~β and therefore

~Bg(PN) = ∇×~ΞPN ≈ ∇×~β (469)

Therefore, in the first-order post-Newtonian limit, we find ~Bg(PN) ≈ ~̃BG which means that the gauge-invariant

gravito-magnetic field effectively reduces to the gauge-dependent gravito-magnetic field.



4 Equations of motion in terms of the

Helmholtz Decomposition (HD)

metric

86



87

4.1 Overview of the equations of motion in terms of HD metric

Here we formulate the associated linearized geodesic equation of motion We find that the equation of

motion contains gauge-invariant contributions identified as a “gravito-Lorentz” force in terms of GEM fields,

as well as forces produced by gravitational waves. We also identify the remaining gauge-dependent terms

that demonstrate the gauge freedom in the equations of motion which is expected for consistency with the

Equivalence Principle. We develop the Newtonian and first-order post-Newtonian limits for the equation of

motion and show that gauge freedom persists in those limits as well.



88

4.2 The linearized Christoffel symbols in terms of the HD metric

In preparation for evaluating the geodesic equation of motion, we first begin by evaluating the linearized

Christoffel symbols in terms of the HD metric. The linearized Christoffel symbols were found in (2762) of

Appendix J as

Γ0
00 =− 1

2c
ḣ00 Γi

00 =
1
c
ḣ0i− 1

2
∂ih00

Γ0
0i = Γ0

i0 =− 1
2
∂ih00 Γi

0 j = Γi
j0 =

1
2

(
∂ jh0i+

1
c
ḣi j−∂ih0 j

)
Γ0

i j =− 1
2

(
∂ jh0i+∂ih j0− 1

c
ḣi j

)
Γi

jk =
1
2

(
∂khi j+∂ jhki−∂ih jk

)
(470)

Next we insert the metric components from (175)− (177) into each of the Christoffel symbols above. For

Γ0
00 we have

Γ
0
00 = − 1

2c
ḣ00 (471)

= − 1

2c

(
−2φ̇

c2

)
(472)

Γ0
00 = φ̇/c3 (473)

For Γ0
0i = Γ0

i0 we have

Γ
0
0i = −1

2
∂ih00 (474)

= −1

2
∂i

(
−2φ/c2

)
(475)

Γ0
0i = Γ0

i0 = ∇φ/c2 (476)

For Γ0
i j we have

Γ
0
i j = −1

2

(
∂ jh0i+∂ih j0−

1

c
ḣi j

)
= − 1

2c

[
∂ j (β i+∂iα)+∂i

(
β j+∂ jα

)
−ḣττ

i j − 1
3
δ i jḢ−∂ (iε̇ j)−

(
∂i∂ j− 1

3
δ i j∇

2
)

λ̇

]
(477)

Γ0
i j =−

1

2c

[
∂ jβ i+∂iβ j+2∂i∂ jα− ḣττ

i j − 1
3
δ i jḢ−∂ (iε̇ j)−

(
∂i∂ j− 1

3
δ i j∇

2
)

λ̇

]
(478)
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For Γi
00 we have

Γ
i
00 =

1

c
ḣ0i−

1

2
∂ih00 (479)

=
1

c2

(
β̇ i+∂iα̇

)
− 1

2
∂i

(
−2φ/c2

)
(480)

Γi
00 =

1

c2

(
β̇ i+∂iα̇+∂iφ

)
(481)

For Γi
0 j we have

Γ
i
0 j = Γ

i
j0 =

1

2

(
∂ jh0i+

1

c
ḣi j−∂ih0 j

)
(482)

=
1

2c

[
∂ j (β i+∂iα)+ ḣττ

i j +
1
3
δ i jḢ+∂ (iε̇ j)

+
(

∂i∂ j− 1
3
δ i j∇

2
)

λ̇ −∂i

(
β j+∂ jα

)]
(483)

Γi
0 j =

1

2c

[
∂ jβ i−∂iβ j+ ḣττ

i j +
1
3
δ i jḢ+∂ (iε̇ j)+

(
∂i∂ j− 1

3
δ i j∇

2
)

λ̇

]
(484)

For Γi
jk we have

Γ
i
jk = 1

2

(
∂khi j+∂ jhki−∂ih jk

)
(485)

= 1
2
∂k

[
hττ

i j +
1
3
δ i jH+∂ (iε j)+

(
∂i∂ j− 1

3
δ i j∇

2
)

λ

]
+ 1

2
∂ j

[
hττ

ki +
1
3
δ kiH+∂ (kε i)+

(
∂k∂i− 1

3
δ ki∇

2
)

λ

]
− 1

2
∂i

[
hττ

jk +
1
3
δ jkH+∂ ( jεk)+

(
∂ j∂k− 1

3
δ jk∇

2
)

λ

]
(486)

Grouping terms involving hττ
i j , H, ε i and λ separately gives

Γ
i
jk = 1

2

(
∂khττ

i j +∂ jh
ττ
ki −∂ih

ττ
jk

)
+ 1

2

(
1
3
∂kδ i jH+

1
3
∂ jδ kiH− 1

3
∂iδ jkH

)
+ 1

2
[∂k∂iε j+∂k∂ jε i+∂ j∂kε i+∂ j∂iεk−∂i∂ jεk−∂i∂kε j]

+ 1
2
∂i∂ j∂kλ + 1

2

(
− 1

3
δ i j∂k∇

2− 1
3
δ ki∂ j∇

2+ 1
3
δ jk∂i∇

2
)

λ (487)



90

Next we cancel four terms and combine two terms involving ε i, as well as group together terms involving

H−∇
2
λ .

Γ
i
jk = 1

2

(
∂khττ

i j +∂ jh
ττ
ki −∂ih

ττ
jk

)
+∂ j∂kε i+

1
2
∂i∂ j∂kλ

+ 1
2

[
1
3
∂kδ i j

(
H−∇

2
λ

)
+ 1

3
∂ jδ ki

(
H−∇

2
λ

)
− 1

3
∂iδ jk

(
H+∇

2
λ

)]
(488)

Lastly, substituting Θ= 1
3

(
H−∇

2
λ

)
gives

Γi
jk =

1
2

(
∂khττ

i j +∂ jh
ττ
ki
−∂ih

ττ
jk

)
+∂ j∂kε i+

1
2
∂i∂ j∂kλ + 1

2

(
∂kδ i j+∂ jδ ki−∂iδ jk

)
Θ (489)
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4.3 The linearized geodesic equation in terms of the HD metric

The geodesic equation of motion is given by

d2xµ

dτ2
+Γ

µ

ρσ

dxρ

dτ

dxσ

dτ
= 0 (490)

It is shown in (2744) of Appendix J that by reparameterizing in terms of t instead of τ , we obtain

aµ +Γ
µ

ρσ vρ vσ − γ̇vµ = 0 (491)

where γ = dt/dτ , vµ = (c, ẋ) =
(
c,vi
)

and aµ =
(
0, v̇i

)
. It is also shown in (2738) of Appendix J that the

“Lorentz factor” in terms of the metric perturbation is

γ =

(
1−h00−2h0i

vi

c
− v2

c2
−hi j

viv j

c2

)−1/2

(492)

We can insert the metric components from (175)− (177) to obtain

γ =

[
1+2φ/c2−2(β i+∂iα)

vi

c2
− v2

c2

−
(

hττ
i j +

1
3
δ i jH+∂ (iε j)+∂i∂ jλ − 1

3
δ i j∇

2
λ

)
viv j

c2

]−1/2

(493)

Note that (491) requires the time derivative of γ . It also requires that we expand the term involving the

Christoffel symbol by summing over ρ and σ . Again, from Appendix J, we found in (2764) that to first order

in hµν and second order in vi/c, the geodesic equation of motion becomes

ai =
c2

2
∂ih00− cḣ0i+ cv j

(
∂ih0 j−∂ jh0i

)
− ḣi jv

j

+ 1
2

(
∂ih jk−∂khi j−∂ jhki

)
v jvk− 1

2
ḣ00vi− 1

c
ḣ0 jv

jvi (494)

Inserting the HD metric from (175)− (177) gives58

ai = −∂iφ −
(

β̇ i+∂iα̇

)
+ v j

[
∂i

(
β j+∂ jα

)
−∂ j (β i+∂iα)

]
−
[
ḣττ

i j +
1
3
δ i jḢ+∂iε̇ j+∂ j ε̇ i+

(
∂i∂ j− 1

3
δ i j∇

2
)

λ̇

]
v j

+ 1
2

(
∂ih jk−∂khi j−∂ jhki

)
v jvk+ φ̇vi/c2−

(
β̇ j+∂ jα̇

)
v jvi/c2 (495)

58For brevity, we only insert the expression from (177) for ḣi j but not for other appearances of hi j.
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In the first line, we cancel terms involving ∂i∂ jα and insert canceling terms involving λ̈ in order to construct

Φ= φ + α̇− λ̈/2. In the second line we group terms in preparation to substitute Θ̇= 1
3

(
Ḣ−∇

2
λ̇

)
. We also

move terms involving ε̇ i to the first line and insert canceling terms involving ε̇ i to construct Ξi = (β i− ε̇ i).

ai = −∂i

(
φ + α̇− 1

2
λ̈

)
− 1

2
∂iλ̈ − β̇ i+ v j

(
∂iβ j−∂iε̇ j−∂ jβ i+∂ j ε̇ i

)
−2v j

∂ j ε̇ i

−v jḣττ
i j − v j

∂i∂ jλ̇ − 1
3
vi
(

Ḣ− 1
3
∇

2
λ̇

)
+ 1

2

(
∂ih jk−∂khi j−∂ jhki

)
v jvk+

(
φ̇ − v j

β̇ j− v j
∂ jα̇

)
vi/c2 (496)

Substituting Φ, Ξi, and Θ gives

ai = −∂iΦ− 1
2
∂iλ̈ − β̇ i+ v j (∂iΞ j−∂ jΞi)−2v j

∂ j ε̇ i

−v jḣττ
i j − v j

∂i∂ jλ̇ − vi
Θ̇

+ 1
2

(
∂ih jk−∂khi j−∂ jhki

)
v jvk+

(
φ̇ − v j

β̇ j− v j
∂ jα̇

)
vi/c2 (497)

We can write v j (∂iΞ j−∂ jΞi) as the i-component of~v×∇×~Ξ. We can also insert canceling terms involving

ε̈ i in order to construct Ξ̇i in the first line. We then move all terms involving gauge-invariant quantities to the

first line.

ai = −∂iΦ−
(

β̇ i− ε̈ i

)
− ε̈ i+

(
~v×∇×~Ξ

)
i
− vi

Θ̇− v jḣττ
i j

− 1
2
∂iλ̈ − v j

(
∂i∂ jλ̇ +2∂ j ε̇ i

)
+ 1

2

(
∂ih jk−∂khi j−∂ jhki

)
v jvk+

(
φ̇ − v j

β̇ j− v j
∂ jα̇

)
vi/c2 (498)

We now substitute Ξ̇ and move the remaining ε̈ to the second line. In the last line, we use the calculation

shown in going from (485) to (489) to substitute for
(
∂ih jk−∂khi j−∂ jhki

)
.

ai = −∂iΦ− Ξ̇i+
(
~v×∇×~Ξ

)
i
− vi

Θ̇− v jḣττ
i j

−
(

1
2
∂iλ̈ + ε̈ i

)
− v j

(
∂i∂ jλ̇ +2∂ j ε̇ i

)
−
[

1
2

(
∂khττ

i j +∂ jh
ττ
ki −∂ih

ττ
jk

)
+∂ j∂kε i+

1
2
∂i∂ j∂kλ + 1

2

(
∂kδ i j+∂ jδ ki−∂iδ jk

)
Θ

]
v jvk

+
(

φ̇ − v j
β̇ j− v j

∂ jα̇

)
vi/c2 (499)
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Next we distribute in the last line and move the terms involving Θ to the first line. We also move all the terms

involving hττ
i j to the second line so that the first two lines contain only gauge-invariant quantities.

ai = −∂iΦ− Ξ̇i+
(
~v×∇×~Ξ

)
i
− vi

Θ̇− 1
2

(
2viv

j
∂ jΘ− v2

∂iΘ
)

−v jḣττ
i j − 1

2
v jvk

(
∂khττ

i j +∂ jh
ττ
ki −∂ih

ττ
jk

)
−
(

1
2
∂iλ̈ + ε̈ i

)
− v j

(
∂i∂ jλ̇ +2∂ j ε̇ i

)
− v jvk

∂ j∂kε i− 1
2
v jvk

∂i∂ j∂kλ

+
(

φ̇ − v j
β̇ j− v j

∂ jα̇

)
vi/c2 (500)

We can substitute ~BG = ∇×~Ξ in the first line. We also observe that the combination 1
2
∂iλ + ε i appears

repeatedly. Therefore we can define a “gauge” vector59 given by χ i =
1
2
∂iλ + ε i so that we have

ai =−∂iΦ− Ξ̇i+
(
~v×~BG

)
i
+
(

1
2
v2∂i− vi∂t − viv

j∂ j

)
Θ

−v jḣττ
i j − 1

2
v jvk

(
∂khττ

i j +∂ jh
ττ
ki
−∂ih

ττ
jk

)
−
(
v jvk∂ j∂k−2v j∂ j∂t −∂ 2

t

)
χ i+

(
φ̇ − v jβ̇ j− v j∂ jα̇

)
vi/c2

(501)

It is evident that we can no longer combine terms to formulate gauge-invariant quantities in the expression

above. The first two terms comprise a gauge-invariant “gravito-Lorentz force” while the remaining terms in

the first line are also gauge-invariant but do not have an analog in electromagnetism. The second line is

also gauge-invariant and gives the force that would be caused by a gravitational wave. The last line contains

quantities that are all gauge-dependent. It is not surprising that the geodesic equation cannot be written purely

in terms of gauge-invariant quantities since Christoffel symbols are necessarily gauge-dependent.

We also find that (501) can not be easily expressed in terms of the gravito-electric field defined in (352)

as ~EG =− 1
2
∇

(
Φ− c2

2
Θ

)
−
·
~Ξ. The reason is that there is no factor of 1

2
in front of −∇Φ and there is no term

with c2

4
∇Θ. Therefore ,we conclude that although defining ~EG =− 1

2
∇

(
Φ− c2

2
Θ

)
−
·
~Ξ offers the advantage

of combining the two field equations involving Φ and Θ into a single equation involving ~EG, the disadvantage

is that ~EG does not appear in the equation of motion.

59It is interesting to note that χ has the form of a “Helmholtz vector” in the sence that it contains a purely

rotational part, ε i, and a purely irrotational part, ∂iλ .
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4.4 Low velocity and weak-field limits of the linearized geodesic equation

For slow-moving test particles, we neglect terms involving v2 and v/c2 in (501) which gives

ai
(low-velocity)

=−∂iΦ− Ξ̇i+
(
~v×~BG

)
i
− viΘ̇− v jḣττ

i j +2v j∂ j χ̇ i+ χ̈ i (502)

Although the expression in (501) is greatly simplified, we can still observe that it contains the same features.

There is a gauge-invariant gravito-Lorentz force, another gauge-invariant contribution with no analog in elec-

tromagnetism, a gauge-invariant force caused by gravitational waves, and gauge freedom remaining in the

last term. In the case of stationary test masses, we have

ai(PN)
(static)

=−∂iΦ− Ξ̇i+ χ̈ i (503)

This is analogous to the electric force in electromagnetism expressed as ~F = q

(
−∇ϕ−∂t

~A
)

. Notice

that in both (502) and (503) above, there is still gauge freedom due to the presence of χ i =
1
2
∂iλ + ε i which

was defined as a “gauge” vector. Of course, we could choose to set χ i = 0 (by setting 1
2
∂iλ =−ε i) however,

this would effectively be a gauge choice. In fact, it removes three degrees of freedom from the metric (one

for each index value in 1
2
∂iλ = −ε i). In that case, it is questionable whether it is still valid to construct

gauge-invariant quantities such as Φ, Θ, and Ξi if we have already chosen a gauge. This means that the

results in (502) and (503) would still become gauge-dependent because Φ, Θ, and Ξi would no longer be

gauge-invariant.

Returning to (501), we can consider the first-order post-Newtonian limit. In Section 26, it is shown that in

the first-order post-Newtonian limit, the off-diagonal components of hi j are neglected so that λ = ε i= hττ
i j = 0

which also means χ i = 0. The potentials become

ΦPN ≈ φ + α̇, ΘPN =
1
3
H, ~ΞPN =~β (504)

while the vector fields become

~Eg(PN) ≡ −1

2
∇

(
ΦPN−

c2

2
ΘPN

)
−
·
~ΞPN and ~Bg(PN) ≡ ∇×~ΞPN (505)

The equation of motion in (501) then becomes

ai(PN) =−∂iΦPN− Ξ̇i(PN)+
(
~v×~Bg(PN)

)
i
+
(

1
2
v2∂i− vi∂t − viv

j∂ j

)
ΘPN

+
(

φ̇ − v jβ̇ j− v j∂ jα̇

)
vi/c2

(506)

Once again, we can consider slow-moving test particles and neglect terms involving v2 and v/c2 which

gives

ai(PN)
(low-velocity)

=−∂iΦPN− Ξ̇i(PN)+
(
~v×~Bg(PN)

)
i
− viΘ̇PN (507)

The equation of motion in (507) is often described as the gravitational “Lorentz force.” It is obviously very

similar to the electromagnetic Lorentz force. However, the extra term involving Θ̇PN usually does not appear.
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The reason it appears here is due to the fact that we decomposed the metric component h0i into a rotational

component and an irrotational component, h0i = β i+∂iα . If we require it to be purely rotational, then α = 0.

In that case, ΦPN ≈ φ + α̇ becomes ΦN ≈ φ and in Section 26 we found that this leads to ΘN = − 2
c2 ΦN .

Therefore, the last term in (507) becomes 2viΦ̇N/c2 which must be neglected since we have neglected all

terms involving v/c2. Also, since Ξi = hi when α = ε = 0, then we can replace Ξi with hi.Therefore, in vector

notation (507) becomes60

~a(PN)
(low-velocity)

=−∇ΦN−
·
~h+

(
~v×~Bg(PN)

)
, for ∇ ·~h= 0 (508)

This result is now extremely similar to the Lorentz force. Note that it differs slightly from the expression

commonly obtained using the harmonic gauge applied to linearized GR for the case of weak-fields and slow-

moving test particles. In that formulation, there is commonly a factor of 4 that appears in front of the gravito-

magnetic force. However, the factor of 4 appears because the harmonic gauge is typically applied to the

trace-reversed metric perturbation. When returning to the non-trace-reversed metric perturbation, the factor

of 4 appears.

Lastly, we return again to (501) and consider the Newtonian limit. In Section 26, it is shown that in the

Newtonian limit, we have β i = α = λ = ε i = hττ
i j ≈ 0 so that only φ and H remain. The potentials become

ΦN ≈ φ , ΘN =
1
3
H, ~ΞN = 0 (509)

We also found ΘN =− 2
c2 ΦN so that vector fields become

~Eg(N) ≡−∇ΦN and ~Bg(N) ≡ 0 (510)

The equation of motion in (501) then becomes

ai(N) =−∂iΦN− 2
c2

(
1
2
v2

∂i− vi∂t − viv
j
∂ j

)
ΦN+ Φ̇Nvi/c2 (511)

ai(N) =−∂iΦN− v2

c2 ∂iΦN− 2
c2 viv

j∂ jΦN− Φ̇Nvi/c2 (512)

For slow-moving test particles, we neglect terms involving v2 and v/c2 which gives

ai(N)
(low-velocity)

=−∂iΦN (513)

This is effectively just Newton’s second law equated with Newton’s universal law of gravitation. Notice that it

is technically valid even for v 6= 0 since the gravito-magnetic force (and any other velocity dependent forces)

are removed by the Newtonian limit. Therefore, the slow-moving limit and the static limit are the same for

Newtonian gravity.

We emphasize once again that all of the expressions found above for the equation of motion were gauge-

dependent. In some cases the gauge-dependence is manifest due to an obvious gauge term in the equation,

such as in (502) and (503). In other cases, the gauge-dependence was implicit in the fact that in Newtonian

and first-order post-Newtonian limits, the previously gauge-invariant potentials are no longer gauge invariant.

60Here we are using~h = c(h01,h02,h03) which omits the prefactor of 1/4 found in the definition of~h in

(32) of Section 3. Also, note that writing the condition ∇ ·~h= 0 is equivalent to requiring α = 0. This follows

from the fact that ∂ih0i = ∇
2
α = 0. Since (184) requires that α → 0 as r→ ∞, then ∇

2
α = 0 can only be

satisfied if α = 0.
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We also emphasize that the entire treatment concerning the geodesic equation of motion required that

we go beyond the strict condition of linearized GR which requires ∂ν T µν = 0. Since the full covariant

conservation of energy-momentum is

∇ν T µν = ∂ν T µν +Γ
ν
νσ T σ µ +Γ

µ

νσ T νσ = 0 (514)

then linearized GR requires that we omit terms of order Γν
νσ T σ µ . This means that we must also omit Γ

µ

ρσ uρ uσ

from the geodesic equation of motion in (490) which reduces it to ẍµ = 0. This implies that matter does not

respond to the gravitational field at all. In order to avoid this trivial result, we have kept Γ
µ

ρσ uρ uσ in (490)
which means we have essentially kept Γν

νσ T σ µ in the conservation relation in (514). Therefore, we are no

longer justified in using the linearized Einstein equation since we found in Appendix A that the linearized

Einstein equation necessarily leads to ∂ν T µν = 0. In other words, the key point being made is that none of

the results for the geodesic equation of motion in this treatment can be put back into the linearized Einstein

equation to calculate fields. Doing so would be a contradiction in approximations.

On a related note, we should also emphasize that the designations of “first-order” and “second-order”

in these sections was specifically with regard to post-Newtonian order as defined in Section 26. In other

words, it is concerning fields which arise from sources involving v/c or (v/c)2 and hence produce fields

involving h0i and hi j, respectively. These terms are all still completely within the framework of linearized

GR. They are not to be confused with “second-order” in the full metric which describes the self-coupling of

gravity. In that case, “second-order ” refers to terms such as hρσ hρσ ηµν , “third order” refers to terms such

as hρα hρµ hσν , etc. These considerations of “first-order” and “second-order” will always be referred to as

higher order “coupling” terms rather than higher order “Post-Newtonian” terms.
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4.5 The geodesic deviation equation in terms of gauge-invariant potentials

In (2834) of Appendix L, the linearized geodesic deviation equation was given as

L̈µ =−R
µ

ργσ Lγ uρ uσ (515)

where Lµ = x̃µ −xµ is the coordinate separation between two particles which follow two neighboring world-

lines given by xµ and x̃µ . Then L̈µ gives the relative acceleration between the two particles. In (2473) of

Appendix C, we also found that the linearized Riemann tensor (with lowered indices) is given by

Rβργσ = 1
2

(
∂γ ∂ρ hσβ −∂γ ∂β hρσ −∂σ ∂ρ hγβ +∂σ ∂β hργ

)
(516)

In the local proper Lorentz frame of xµ , we have uµ = (c,0)which means that (515)will only be non-zero for

ρ = σ = 0 which means R
µ

ργσ = R
µ

0γ0 and uρ uσ = u0u0 = c2. Also, if Lγ is initially only a spatial separation

given by Lγ =
(
0,L j

)
, then (515) will only be non-zero for γ = j. Lastly, if we are interested in the spatial

acceleration, then we are looking for L̈i and therefore we choose µ = i. Then (515) becomes

L̈i = −Ri
0 j0L jc2 (517)

This means that the Riemann tensor component of interest will be R
µ

ργσ = Ri
0 j0. If we lower indices (to

first order in the metric) we have

Ri
0 j0 = η

µiRµ0 j0 = η
0iR00 j0+η

kiRk0 j0 = η
kiRk j00 (518)

This is non-zero only for k = i which gives Ri
0 j0 = Ri0 j0. Therefore, (517) can be written as

L̈i =−Ri0 j0L jc2 (519)

Using (516) gives

Ri0 j0 = 1
2

(
∂ j∂0h0i−∂ j∂ih00−∂0∂0h ji+∂0∂ih0 j

)
(520)

=
1

2

(
1

c
∂ jḣ0i−∂ j∂ih00−

1

c2
ḧ ji+

1

c
∂iḣ0 j

)
(521)

Inserting the metric components from (175)− (177) gives

Ri0 j0 =
1

2

{
1

c2
∂ j

(
β̇ i+∂iα̇

)
+

2

c2
∂ j∂iφ

− 1

c2

[
ḧττ

i j +
1
3
δ i jḦ+∂ (iε̈ j)+

(
∂i∂ j− 1

3
δ i j∇

2
)

λ̈

]
+

1

c2
∂i

(
β̇ j+∂ jα̇

)}
(522)

Factoring out 1/c2 and distributing gives

Ri0 j0 =
1

2c2

[
∂ jβ̇ i+∂ j∂iα̇+2∂ j∂iφ

−ḧττ
i j − 1

3
δ i jḦ−∂ (iε̈ j)−∂i∂ jλ̈ +

1
3
δ i j∇

2
λ̈ +∂iβ̇ j+∂i∂ jα̇

]
(523)
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Next we regroup terms in preparation to insert the gauge-invariant quantities given in (244)− (246) as Φ=

φ + α̇− λ̈/2, Θ= 1
3

(
H−∇

2
λ

)
and Ξi = β i− ε̇ i. We can write (523) as

Ri0 j0 =
1

c2

[
1

2

(
∂iβ̇ j+∂ jβ̇ i−∂ (iε̈ j)

)
+∂ j∂i

(
φ +∂ j∂iα̇−

1

2
λ̈

)
− 1

2
ḧττ

i j −
1

6
δ i j

(
Ḧ−∇

2
λ̈

)]
(524)

In the first parentheses we have ∂iβ̇ j+∂ jβ̇ i−∂ (iε̈ j) = ∂

[
j

(
β̇ j− ε̈ j

)]
= ∂
(

iΞ̈ j

)
. Then writing the expres-

sion above completely in terms of the gauge-invariant quantities Φ, Θ, Ξi and hττ
i j gives

Ri0 j0 =
1

2c2

[
2∂ j∂iΦ−δ i jΘ̈+∂

(
iΞ̈ j

)
− ḧττ

i j

]
(525)

Arriving at an expression that is completely in terms of gauge-invariant quantities is consistent with the fact

that the Riemann tensor is always gauge-invariant. As pointed out in [28], we find that the Riemann tensor

component associated with measuring gravitational waves (such as at LIGO) can be expressed completely in

terms of the gauge-invariant potentials. Therefore, unlike the geodesic equation of motion which is gauge-

dependent, the geodesic deviation equation is gauge-invariant and provides a way to predict the relative

motion of particles which does not depend on the coordinate frame of the observer.

We can now substitute this result into the linearized geodesic deviation equation in (519).

L̈i =−
1

2

[
2∂ j∂iΦ−δ i jΘ̈+∂

(
iΞ̈ j

)
− ḧττ

i j

]
L j (526)

This is the linearized geodesic deviation equation expressed using the local proper Lorentz frame of xµ and

evaluated in terms of the spatial separation, L j, for two particles along neighboring worldlines, xµ and xµ ,

which are separated by Lµ = x̃µ −xµ . It is shown in (334) that Φ,Θ,Ξi ≈ 0 in the far-field zone. In that case,

we can write the geodesic deviation equation in (526) as simply

L̈i =
1

2
ḧττ

i j L j (527)
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5.1 Overview of the equations of motion in the presence of GR waves

Here we examine the topic of gravitational waves incident on a planar boundary. We make use of the

fact that the HD formulation of linearized GR allows us to isolate the radiative degrees of freedom given

by hττ
i j and neglect all other components in the far-field. We also follow the usual approach of specializing

to the transverse-traceless (TT) gauge in order to describe gravitational waves moving in the z-direction in

terms of plus-polarization and cross-polarization waves. Then we return to the geodesic equation of motion

to develop expressions for the acceleration and velocity of particles in the presence of gravitational waves.

We also return to the geodesic deviation equation to develop expressions for the relative acceleration, velocity

and position of particles in the presence of gravitational waves.
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5.2 The Lorentz force in curved space-time for GR waves

To describe the net force on a lattice ion, we can use the Lorentz force in curved space-time written as

m
d2xµ

dτ2
+mΓ

µ

αβ

dxα

dτ

dxβ

dτ
= q

dxν

dτ
Fµν (528)

where Fµν is the electromagnetic field strength tensor with components given by

F0i =
1

c
E i, F i j = ε

i jkBk, Fµµ = 0 (529)

For the left side of (528) we can use (2729) from Appendix J with vµ =
(
c,vi
)

and aµ =
(
0,ai

)
. On the right

side, we can raise the index by using the metric and use uµ = γvµ . Also dividing through by m gives

γ
2aµ + γγ̇vµ + γ

2
Γ

µ

αβ
vα vβ =

q

m
gρν γvρ Fµν (530)

Following the approach of Appendix J, we can evaluate (528) for µ = 0 and for µ = i, and use aµ =
(
0, v̇i

)
and vµ =

(
c,vi
)
. This gives

cγγ̇+ γ
2
Γ

0
ρσ vρ vσ =

qγ

m
gρν vρ F0ν and γ

2ai+ γγ̇vi+ γ
2
Γ

i
ρσ vρ vσ =

qγ

m
gρν vρ F iν (531)

Multiplying the first equation by vi/c, subtracting it from the second, and dividing through by γ2 gives

ai+Γ
i
ρσ vρ vσ −Γ

0
ρσ vρ vσ vi =

q

mγ
gρν vρ

(
F iν −F0ν vi

)
(532)

We can write the metric as a perturbation to flat space-time, gρν = ηρν +hρν , and solve for ai to obtain

ai = −Γ
i
ρσ vρ vσ +Γ

0
ρσ vρ vσ vi+

q

mγ

(
ηρν +hρν

)
vρ
(
F iν −F0ν vi

)
(533)

The first two terms on the right side is the acceleration due to gravity. The last term is the acceleration due to

the electromagnetic (EM) field, including the coupling of the EM field to gravity: hρν vρ
(
F iν −F0ν vi

)
. If we

consider a gravitational wave produced by a distant source, then h00, h0i ≈ 0 and hi j ≈ hττ
i j . Then to linear

order in the metric, we can use (2765) from Appendix J to substitute for the first two terms of (533). Also

summing over ρ and ν , and using η00 =−1 and η i0,F
00 = 0, gives

ai = −v jḣττ
i j +

(
1

2
∂ih

ττ
jk −∂ jh

ττ
ik

)
v jvk− 1

2c2
ḣττ

jk v jvkvi

− q

mγ

[
cF i0+

(
η jk+hττ

jk

)
v j
(

F ik−F0kvi
)]

(534)

Next we can use (2738) from Appendix J to write γ in terms of hττ
i j (with h00 = h0i = 0 and hi j = hττ

i j ).

γ
−1 =

(
1− v2

c2
− v jvk

c2
hττ

jk

)1/2

(535)
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In the weak-field limit, we can consider that 1−v2/c2 >>

∣∣∣∣v jvk

c2
hττ

jk

∣∣∣∣ and use a binomial approximation. This

leads to

γ
−1 ≈

(
1− v2

c2
− vlvm

2c2
hττ

lm

)
(536)

Inserting this into (534) and using (529) gives

ai = −v jḣττ
i j +

(
1

2
∂ih

ττ
jk −∂ jh

ττ
ik

)
v jvk− 1

2c2
ḣττ

jk v jvkvi

− q

m

(
1− v2

c2
− vlvm

2c2
hττ

lm

)[
E i+

(
η jk+hττ

jk

)
v j
(

ε
iknBn−Ekvi/c

)]
(537)

Approximating to second order in velocity and rearranging gives

ai =−v jḣττ
i j +

(
1

2
∂ih

ττ
jk
−∂ jh

ττ
ik

)
v jvk+

q

m

(
1− v2

c2

)
E i− q

m
ε i jkv jBk

− q

2mc2
hττ

jk
v jvkE i− q

m
hττ

jk
v jε iklBl

Lorentz force in the presence of gravitational waves

(first order in the metric and second order in particle velocity)

(538)

Note that the first two terms on the right are the acceleration terms due purely to the gravitational wave.

The second two terms make up a relativistic Lorentz force which describes the acceleration due purely to

the electromagnetic fields. The last two terms describe the acceleration terms due to the associated with the

electromagnetic fields coupled to the gravitational wave field. Approximating to first order in velocity and

rearranging gives

mai = qE i−qε
i jkv jBk− v jḣττ

i j −qv j
ε

iklhττ
jk Bl (539)

Now it is even more apparent that the total force on a charged test particle is simply the Lorentz force (the

first two terms), the gravitational wave force (the third term), and an additional magnetic force that is also

coupled to the gravitational wave (the fourth term).
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5.3 The geodesic deviation of spatial distance due to a GR wave

For the geodesic deviation in the far-field, we again neglect Φ,Θ, and Ξi. Then (526) gives

L̈i =
1
2
ḧττ

i j L j (540)

We can sum over j to obtain

L̈i = 1
2
ḧττ

ix Lx+
1
2
ḧττ

iy Ly+
1
2
ḧττ

iz Lz (541)

For L̈x and L̈y we have, respectively,

L̈x = 1
2
ḧττ

xx Lx+
1
2
ḧττ

xy Ly+
1
2
ḧττ

xz Lz and L̈y =
1
2
ḧττ

yx Lx+
1
2
ḧττ

yy Ly+
1
2
ḧττ

yz Lz (542)

For waves propagating in the z-direction, (341) gives

hττ
xx = −hττ

yy = A⊕ cos(kz−ωt) and hττ
xy = hττ

yx = A⊗ cos(kz−ωt) (543)

where hττ
i j = 0 for all other components and A⊕ and A⊗ are dimensionless, constant amplitudes for “plus”

and “cross” polarization, respectively. The time derivatives of hττ
i j are

ḣττ
xx = −ḣττ

yy = A⊕ω sin(kz−ωt) and ḣττ
xy = ḣττ

yx = A⊗ω sin(kz−ωt) (544)

Taking second time derivatives gives

ḧττ
xx = −ḧττ

yy =−A⊕ω
2 cos(kz−ωt) and ḧττ

xy = ḧττ
yx =−A⊗ω

2 cos(kz−ωt) (545)

for “plus” and “cross” polarization, respectively. We still consider a planar surface at a fixed value of z.

Inserting the appropriate expressions from (545) into (542) gives

L̈x =− 1
2
(A⊕Lx+A⊗Ly)ω

2 cos(kz−ωt) (546)

and

L̈y = − 1
2
(A⊗Lx−A⊕Ly)ω

2 cos(kz−ωt) (547)

Combining L̈x and L̈y into a single vector gives

··
~L=− 1

2
[(A⊕Lx+A⊗Ly) x̂+(A⊗Lx−A⊕Ly) ŷ]ω

2 cos(kz−ωt)

Geodesic deviation acceleration due to gravitational waves

(548)

We can also write the expressions for plus-polarization and cross-polarization separately as

··
~L⊕ =− 1

2
(Lxx̂−Lyŷ)A⊕ω

2 cos(kz−ωt) (549)

and

··
~L⊗ = − 1

2
(Lyx̂+Lxŷ)A⊕ω

2 cos(kz−ωt) (550)
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To visualize the solutions to the differential equations in (549) and (550), we can plot the trajectories

on an x-y plane. Below is a diagram of the tidal wave acceleration fields for plus polarization and cross

polarization (when ḧ> 0) as shown in [11].

Figure 3: Plus-polarized and cross-polarized gravitational wave acceleration fields.

The solutions to the differential equations in (549) and (550) can be expressed in terms of Mathieu

functions. For example, the solution for Lx for plus-polarization (549) has a solution given by

Lx,⊕ (t) = c1MathieuC
[
0,−A⊕,

1
2
(kz−ωt)

]
+ c2MathieuC

[
0,−A⊕,

1
2
(kz−ωt)

]
(551)

where c1 and c2 are constants determined by boundary conditions. For an approximate solution to (540), we

can write Li as a Taylor expansion to second order about t = 0.

Li (t) ≈ Li (0)+ L̇i (0) t+
1
2
L̈i (0) t

2 (552)

From (540), we can also use L̈i (0) =
1
2
ḧττ

i j (0)L
j (0). Then the expression above becomes

Li (t) ≈ Li (0)+ L̇i (0) t+
1
4
ḧττ

i j (0)L
j (0) t2 (553)

We can also Taylor expand hττ
i j (t) with respect to time to second order about t = 0.

hττ
i j (t) ≈ hττ

i j (0)+ ḣττ
i j (0) t+

1
2
ḧττ

i j (0) t
2 (554)

Solving this for 1
2
ḧττ

i j (0) t
2 and inserting into (553) gives

Li (t)≈ Li (0)+ L̇i (0) t+
1
2
L j (0)

[
hττ

i j (t)−hττ
i j (0)− ḣττ

i j (0) t
]

Lowest order solution to the geodesic deviation

equation due to a gravitational wave

(555)
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First we can confirm that this solution is a valid solution to (540). Since L j (0), L̇i (0), hττ
i j (0), and ḣττ

i j (0) are

constants, then taking two time-derivatives of Li (t) gives

L̈i (t)≈ 1
2
L j (0) ḧττ

i j (t) (556)

Inserting this into (540) gives
1
2
ḧττ

i j (t)L
j (0) = 1

2
ḧττ

i j (t)L
j (t) (557)

This implies that L j (0) ≈ L j (t) which is consistent with solving Li (t) to lowest order. If we choose initial

conditions such that neighboring particles are initially at rest at t = 0, then we can set L̇i (0) = 0 in (555).
Evaluating Lx and Ly, and using the notation L0,x = Lx (0) and L0,y = Ly (0), gives

Lx (t) ≈ L0,x+
1
2
L0,x

[
hττ

xx (t)−hττ
xx (0)− ḣττ

xx (0) t
]

+ 1
2
L0,y

[
hττ

xy (t)−hττ
xy (0)− ḣττ

xy (0) t
]

(558)

and

Ly (t) ≈ L0,y+
1
2
L0,x

[
hττ

yx (t)−hττ
yx (0)− ḣττ

yx (0) t
]

+ 1
2
L0,y

[
hττ

yy (t)−hττ
yy (0)− ḣττ

yy (0) t
]

(559)

Then using (543) and (544) in the two expressions above gives

Lx (t)≈ L0,x+
1
2
[L0,xA⊕+L0,yA⊗] [cos(kz−ωt)− cos(kz)−ωt sin(kz)] (560)

and

Ly (t) ≈ L0,y+
1
2
[L0,xA⊗−L0,yA⊕] [cos(kz−ωt)− cos(kz)−ωt sin(kz)] (561)

We can combine Lx (t) and Ly (t) into a single vector. We can also use the notation ~L = L0,xx̂+L0,yŷ. This

gives

~L(z, t)≈~L0+
1
2
[(L0,xA⊕+L0,yA⊗) x̂+(L0,xA⊗−L0,yA⊕) ŷ]

· [cos(kz−ωt)− cos(kz)−ωt sin(kz)]

Lowest order solution to the geodesic deviation equation

for a gravitational wave propagating in the z-direction

(562)

We can also write the expressions for plus-polarization and cross-polarization separately as

~L(z, t)≈~L0+
1
2
(L0,xx̂−L0,yŷ)A⊕ [cos(kz−ωt)− cos(kz)−ωt sin(kz)] (563)

and

~L(z, t) ≈ ~L0+
1
2
(L0,yx̂+L0,xŷ)A⊗ [cos(kz−ωt)− cos(kz)−ωt sin(kz)] (564)

Notice that for any value of z besides kz = nπ , we find that the last term in both results above will increase

indefinitely with time. This is a strange result since it implies that the distance between two neighboring
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particles would continue to increase linearly without bound, even though the gravitational wave is purely

sinusoidal. If we choose to set z= 0, then we simply have

~L(0, t)≈~L0+
1
2
(L0,xx̂−L0,yŷ)A⊕ [cos(ωt)−1] (565)

and

~L(0, t) ≈ ~L0+
1
2
(L0,yx̂+L0,xŷ)A⊗ [cos(ωt)−1] (566)

We can check that our results are valid solutions to (540). To do this, we can take a double time-derivative of

(560) and (561), and then insert the result into (546) and (547), respectively. The double time-derivative of

(560) and (561) are

L̈x (t)≈−
1

2
[L0,xA⊕+L0,yA⊗]ω

2 cos(kz−ωt) (567)

and

L̈y (t) ≈ − 1
2
[L0,xA⊗−L0,yA⊕]ω

2 cos(kz−ωt) (568)

Inserting these into (546) and (547), respectively, and canceling common terms gives

L0,xA⊕+L0,yA⊗ ≈ LxA⊕+LyA⊗ (569)

and

L0,xA⊗−L0,yA⊕ ≈ LxA⊗−LyA⊕ (570)

Again we find that Li is nearly constant to first order. We can also consider the case of standing waves in the

z-direction. Then we have

hττ
xx = −hττ

yy = A⊕ cos(kz)cos(ωt) and hττ
xy = hττ

yx = A⊗ cos(kz)cos(ωt) (571)

The time derivatives are

ḣττ
xx = −ḣττ

yy =−A⊕ω cos(kz)sin(ωt) and ḣττ
xy = ḣττ

yx =−A⊗ω cos(kz)sin(ωt) (572)

Taking second time derivatives gives

ḧττ
xx = −ḧττ

yy =−A⊕ω
2 cos(kz)cos(ωt) and ḧττ

xy = ḧττ
yx =−A⊗ω

2 cos(kz)cos(ωt) (573)

Now returning to (558) and (559), and making use of the expressions above gives

Lx (t)≈ L0,x+
1
2
(L0,xA⊕+L0,yA⊗)cos(kz) [cos(ωt)−1] (574)

and

Ly (t) ≈ L0,y+
1
2
(L0,xA⊗+L0,yA⊕)cos(kz) [cos(ωt)−1] (575)
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We can combine Lx (t) and Ly (t) into a single vector. We can also use the notation ~L = L0,xx̂+L0,yŷ. This

gives

~L(z, t)≈~L0+
1
2
[(L0,xA⊕+L0,yA⊗) x̂+(L0,xA⊗−L0,yA⊕) ŷ]

·cos(kz) [cos(ωt)−1]

Lowest order solution to the geodesic deviation equation

for a gravitational standing wave in the z-direction

(576)

We can also write the expressions for plus-polarization and cross-polarization separately as

~L(z, t)≈~L0+
1
2
(L0,xx̂−L0,yŷ)A⊕ cos(kz) [cos(ωt)−1] (577)

and

~L(z, t) ≈ ~L0+
1
2
(L0,yx̂+L0,xŷ)A⊗ cos(kz) [cos(ωt)−1] (578)

Notice that we no longer have a term that increases indefinitely with time. This only seems to occur for the

case of traveling waves.
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5.4 The geodesic deviation of time due to a GR wave

In (2834) of Appendix L we found that the linearized geodesic deviation equation is given by

L̈µ =−R
µ

ργσ Lγ uρ uσ (579)

where Lµ = x̃µ −xµ is the coordinate separation between two particles which follow two neighboring world-

lines given by xµ and x̃µ . Then L̈µ gives the relative acceleration between the two particles. In (2473) of

Appendix C, we also found that the linearized Riemann tensor (with lowered indices) is given by

Rβργσ =
1
2

(
∂γ ∂ρ hσβ −∂γ ∂β hρσ −∂σ ∂ρ hγβ +∂σ ∂β hργ

)
(580)

In the local proper Lorentz frame of xµ , we have uµ = γ (c,0). Then (579)will only be non-zero for ρ =σ = 0

which means R
µ

ργσ = R
µ

0γ0 and uρ uσ = u0u0 = c2. Also, if Lγ is initially just a spatial separation given by

Lγ =
(
0,L j

)
, then (579) will only be non-zero for γ = j. Lastly, if we are interested in the effect on clocks,

then we are looking for L̈0 and therefore we choose µ = 0. Then (579) becomes

L̈0 =−R0
0 j0L jc2 (581)

This means that the Riemann tensor component of interest will be R
µ

ργσ = R0
0 j0. If we lower indices (to

first order in the metric) we have

R0
0 j0 = η

µ0Rµ0 j0 = η
00R00 j0+η

k0Rk0 j0 =−R0 j00 (582)

Therefore, (581) can be written as

L̈0 = R00 j0L jc2 (583)

Using (580) gives

R00 j0 =
1
2

(
∂ j∂0h00−∂ j∂0h00−∂0∂0h j0+∂0∂0h0 j

)
= 0 (584)

This means that two observers separated only by a space-like vector (that is, two observers with synchronized

clocks who are separated spatially by L j) will not experience any deviation in their clocks (to first order in

the metric).

Next we consider two observers initially separated by only a time-like vector (that is, two observers who

are at the same position in space but at different times.) Again we can use the local proper Lorentz frame of

xµ so that uµ = (c,0). As before, this means that (579) will only be non-zero for ρ = σ = 0 and therefore we

have R
µ

ργσ = R
µ

0γ0 and uρ uσ = u0u0 = c2. We will also let Lγ be a time-like separation so that Lγ =
(
L0,0

)
.

Then (579) will only be non-zero for γ = 0. Lastly, if we are interested in the effect on clocks, then we are

looking for L̈0 and therefore we choose µ = 0. Then (579) becomes

L̈0 =−R0
000L0c2 (585)

If we lower indices (to first order in the metric) we have

R0
000 = η

µ0Rµ000 = η
00R0000+η

k0Rk000 =−R0000 (586)

Therefore, (585) can be written as

L̈0 = R0000L0c2 (587)

Using (580) gives

R0000 =
1
2
(∂0∂0h00−∂0∂0h00−∂0∂0h00+∂0∂0h00) = 0 (588)

This means that two observers separated only by a time-like vector will not experience any deviation in their

clocks (to first order in the metric).
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5.5 The geodesic deviation equation in an electromagnetic field

Here we apply the procedure used in Appendix L to derive a geodesic deviation equation that includes

electromagnetic coupling as well gravitational coupling. Using the Lorentz force in curved space-time (528),
we can consider a point particle with worldline xµ (τ) following an effective geodesic

Duµ =
d

dτ
uµ +Γ

µ

σρ (x)u
σ uρ − q̄(x)uν Fµν (x) = 0 (589)

where q̄(x) = q/m is the charge-to-mass ratio of the particle.61 Here D can be thought of as a covariant

derivative which incorporates the coupling to the electromagnetic field as well as the curvature of space-time.

Notice that Duµ = 0 in (589) implies that this is an effective geodesic where a particle is “freely falling”

in both gravitational and electromagnetic fields, with no other forces acting on it. In that sense, it follows a

“curved path” where the “curvature” is determined by both gravitation and electromagnetism. We can also

describe a second particle with worldline x̃µ (t) following a neighboring effective geodesic

Dũµ =
d

dτ
ũµ +Γ

µ

σρ (x̃) ũ
σ ũρ − q̄(x̃) ũσ Fµσ (x̃) = 0 (590)

where q̄(x̃) is the charge-to-mass ratio of the particle on the worldline x̃µ . The two particles are separated by

a coordinate distance Lµ = x̃µ − xµ . From this relation we can find the proper acceleration62 of Lµ which is

the relative acceleration between xµ and x̃µ . Inserting (589) and (590) into L′′µ = ũ′µ −u′µ gives

L′′µ = −Γ
µ

σρ (x̃) ũ
σ ũρ + q̄(x̃) ũσ Fµσ (x̃)+Γ

µ

σρ (x)u
σ uρ − q̄(x)uσ Fµσ (x) (591)

Since Lµ = x̃µ − xµ , then ũµ = uµ +L′µ . Inserting this above gives

L′′µ = −Γ
µ

σρ (x̃)
(
uσ +L′σ

)(
uρ +L′ρ

)
+Γ

µ

σρ (x)u
σ uρ

+q̄(x̃)
(
uσ +L′σ

)
Fµσ (x̃)− q̄(x)uσ Fµσ (x) (592)

Multiplying out terms and staying to first order in L′σ gives

L′′µ = −Γ
µ

σρ (x̃)
(
uσ uρ +L′σ uρ +uσ L′ρ

)
+Γ

µ

σρ (x)u
σ uρ

+q̄(x̃)
(
uσ +L′σ

)
Fµσ (x̃)− q̄(x)uσ Fµσ (x) (593)

Expanding Γ
µ

σρ (x̃) to first order about xµ gives

Γ
µ

σρ (x̃) ≈ Γ
µ

σρ (x)+
(
∂γ Γ

µ

σρ (x)
)
(x̃γ − xγ) (594)

≈ Γ
µ

σρ (x)+
(
∂γ Γ

µ

σρ (x)
)

Lγ (595)

61The worldline xµ can be pictured as essentially a single space-time trajectory selected out of a contin-

uum of space-time trajectories that make up a continuous medium. In that sense, rather than considering a

charged massive particle on the worldline xµ , we may think instead of an infinitesimal volume element of the

continuous medium, where the volume element has a charge-to-mass ratio q̄(x). The entirety of the medium

could have a non-uniform charge density mass density. However, we assume that q̄(x) is uniform along the

xµ worldline, and q̄(x̃) is uniform along the x̃µ worldline. Any non-uniformity only exists when comparing

two worldlines, q̄(x) and q̄(x̃), in the bulk of the continuous medium.

62In this section we use the notation x′µ = dxµ/dτ as the derivative with respect to proper time in order

distinguish from ẋµ = dxµ/dt which is the derivative with respect to coordinate time.
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Likewise, expanding Fµσ (x̃) to first order about xµ gives

Fµσ (x̃) ≈ Fµσ (x)+
(
∂γ Fµσ (x)

)
(x̃γ − xγ) (596)

≈ Fµσ (x)+
(
∂γ Fµσ (x)

)
Lγ (597)

Lastly, expanding the charge-to-mass distribution q̄(x̃) to first order about xµ gives

q̄(x̃) ≈ q̄(x)+
(
∂γ q̄(x)

)
(x̃γ − xγ) (598)

≈ q̄(x)+
(
∂γ q̄(x)

)
Lγ (599)

We can insert (595), (597), and (599) into (593). We also drop the function notation since all quantities are

now functions of x.

L′′µ = −
[
Γ

µ

σρ +
(
∂γ Γ

µ

σρ

)
Lγ
](

uσ uρ +L′σ uρ +uσ L′ρ
)
+Γ

µ

σρ uσ uρ

+
[
q̄+
(
∂ρ q̄
)

Lρ
](

uσ +L′σ
)[

Fµσ +
(
∂γ Fµσ

)
Lγ
]
− q̄uσ Fµσ (600)

Canceling common terms and eliminating the higher order terms containing Lγ L′ρ gives

L′′µ = −Γ
µ

σρ L′σ uρ −Γ
µ

σρ uσ L′ρ −Lγ
(
∂γ Γ

µ

σρ

)
uσ uρ

+q̄L′σ Fµσ + q̄uσ Lγ
(
∂γ Fµσ

)
+Lρ

∂ρ q̄uσ Fµσ (601)

Since Γ
µ

σρ is symmetric in σ and ρ , then we can combine the first two terms to express the geodesic deviation

equation in an electromagnetic field as

L′′µ =−2Γ
µ

σρ L′σ uρ −
(
∂γ Γ

µ

σρ

)
uσ uρ Lγ

+q̄ L′σ Fµσ + q̄ uσ Lγ
(
∂γ Fµσ

)
+
(
∂ρ q̄

)
Lρ uσ Fµσ

Coordinate dependent geodesic

deviation equation with

electromagnetic fields

(602)

If we wish to express the geodesic deviation equation in terms of the Riemann tensor, we can start with

the covariant derivative acting on Lµ .

DLµ =
d

dτ
Lµ +Γ

µ

γρ Lγ uρ − q̄ Lρ Fµρ (603)

= L′µ +Γ
µ

γρ Lγ uρ − q̄ gγρ Lγ Fµρ (604)
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Then applying the covariant derivative to Lµ twice gives

D2Lµ =
d

dτ

(
L′µ +Γ

µ

γρ Lγ uρ − q̄ Lρ Fµρ
)

+Γ
µ

αβ

(
L′α +Γ

α
γρ Lγ uρ − q̄ Lρ Fαρ

)
uβ

−q̄ gασ

(
L′α +Γ

α
γρ Lγ uρ − q̄ gγρ Lγ Fαρ

)
Fµσ (605)

Using the product rule to evaluate the derivative and distributing gives

D2Lµ = L′′µ +Γ
′µ
γρ Lγ uρ +Γ

µ

γρ L′γ uρ +Γ
µ

γρ Lγ u′ρ − q̄ L′ρ Fµρ − q̄ Lρ F ′µρ − q̄ ′ Lρ Fµρ

+Γ
µ

αβ
L′α uβ +Γ

µ

αβ
Γ

α
γρ Lγ uρ uβ − q̄ Γ

µ

αβ
Lρ Fαρ uβ

−q̄ gασ L′α Fµσ − q̄ gασ Γ
α
γρ Lγ uρ Fµσ + q̄ 2gασ gγρ Lγ Fαρ Fµσ (606)

Using the chain rule, we can write Γ
′µ
γρ (x

µ) as

Γ
′µ
γρ (x

µ) =
d

dτ
Γ

µ

γρ (x
µ) =

dxσ

dτ

d

dxσ
Γ

µ

γρ = uσ
(
∂σ Γ

µ

γρ

)
(607)

Likewise, using the chain rule, we can write F ′µρ (xµ) as

F ′µρ (xµ) =
d

dτ
Fµρ (xµ) =

dxσ

dτ

d

dxσ
Fµρ = uσ (∂σ Fµρ) (608)

Finally, using the chain rule, we can write q̄ ′ (xµ) as

q̄ ′ (xµ) =
d

dτ
q̄(xµ) =

dxσ

dτ

d

dxσ
q̄= uσ (∂σ q̄ ) (609)

We can now substitute (607), (608), and (609) into (606). We can also substitute (602) in the first term and

(589) in the fourth term to obtain

D2Lµ = −2Γ
µ

σρ L′σ uρ −
(
∂γ Γ

µ

σρ

)
uσ uρ Lγ + q̄ L′σ Fµσ + q̄ uσ Lγ

(
∂γ Fµσ

)
+
(
∂ρ q̄

)
Lρ uσ Fµσ

+uσ
(
∂σ Γ

µ

γρ

)
Lγ uρ +Γ

µ

γρ L′γ uρ +Γ
µ

γρ Lγ
(
−Γ

ρ

σν uσ uν + q̄ uν Fρν
)

−q̄ L′ρ Fµρ − q̄ Lρ uσ (∂σ Fµρ)−uσ (∂σ q̄ )Lρ Fµρ

+Γ
µ

αβ
L′α uβ +Γ

µ

αβ
Γ

α
γρ Lγ uρ uβ − q̄ Γ

µ

αβ
Lρ Fαρ uβ

−q̄ gασ L′α Fµσ − q̄ gασ Γ
α
γρ Lγ uρ Fµσ + q̄ 2gασ gγρ Lγ Fαρ Fµσ (610)
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The three terms involving Γ
µ

σρ L′σ uρ cancel and two terms involving q̄ L′σ Fµσ cancel to give

D2Lµ = −
(
∂γ Γ

µ

σρ

)
uσ uρ Lγ uν + q̄ uσ

(
∂γ Fµσ

)
Lγ +

(
∂ρ q̄

)
Lρ uσ Fµσ +uσ

(
∂σ Γ

µ

γρ

)
Lγ uρ

−Γ
µ

γρ Γ
ρ

σν Lγ uσ Lγ + q̄ Γ
µ

γρ Lγ uν Fρν − q̄ Lρ uσ (∂σ Fµρ)−uσ (∂σ q̄ )Lρ Fµρ

+Γ
µ

αβ
Γ

α
γρ Lγ uρ uβ − q̄ Γ

µ

αβ
Lρ Fαρ uβ

−q̄ L′σ Fµσ − q̄ gασ Γ
α
γρ Lγ uρ Fµσ + q̄ 2gασ Lρ Fαρ Fµσ (611)

We can rearrange terms so that only terms with
(
∂γ Γ

µ

σρ

)
or Γ

µ

γρ Γ
ρ

σν appear on the first line. Then we can

change repeated indices to make the indices of uµ match in each term of the first line. We can also make

other repeated indices similar and collect common terms involving Fµσ .

D2Lµ = −
(
∂γ Γ

µ

σρ

)
uσ uρ Lγ +

(
∂σ Γ

µ

γρ

)
uσ uρ Lγ −Γ

µ

γα Γ
α
σρ uσ uρ Lγ +Γ

µ

ασ Γ
α
γρ uσ uρ Lγ

+q̄ Γ
µ

γρ Lγ uσ Fρσ − q̄ Γ
µ

σρ Lγ Fσγ uρ − q̄ gασ Γ
α
γρ Lγ uρ Fµσ

+q̄ Lγ uσ

(
∂γ Fµσ

)
− q̄ Lγ uσ (∂σ Fµγ)+

(
∂γ q̄

)
Lγ uσ Fµσ − (∂σ q̄ )uσ Lγ Fµγ

−q̄ L′γ Fµγ + q̄ 2gρσ Lγ Fργ Fµσ (612)

We can factor out Lγ uρ uσ from the top line and use the Riemann tensor given in (2368) as

R
µ

ργσ = ∂γ Γ
µ

σρ −∂σ Γ
µ

γρ +Γ
µ

γα Γ
α
ρσ −Γ

µ

σα Γ
α
ργ (613)

We can also rearrange and group terms in (612) to obtain

D2Lµ = −R
µ

ργσ Lγ uρ uσ − q̄ L′γ Fµγ + q̄ 2gρσ Lγ Fργ Fµσ

+q̄ Γ
µ

γρ Lγ uσ Fρσ − q̄ Γ
µ

σρ Lγ Fσγ uρ − q̄ gασ Γ
α
γρ Lγ uρ Fµσ

+q̄ Lγ uσ

(
∂γ Fµσ

)
− q̄ Lγ uσ (∂σ Fµγ)+

(
∂γ q̄

)
Lγ uσ Fµσ − (∂σ q̄ )uσ Lγ Fµγ (614)

All of the purely gravitational effects are now encoded in the Riemann tensor in the first term. The other

two terms in the first line describe the first order coupling to the electromagnetic field. The second line

describes the coupling to the electromagnetic field due to the curved space-time manifold. The last line

describes the higher order coupling to variations in the electromagnetic field and variations in the charge-to-
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mass distribution. We can also factor out Lγ by introducing the metric into various terms. This gives

D2Lµ = −R
µ

ργσ Lγ uρ uσ − q̄ L′γ Fµγ

+Lγ

[
q̄ 2Fσγ Fµσ + q̄ Γ

µ

γρ uσ Fρσ − q̄ Γ
µ

σρ gασ Fαγ uρ − q̄ gασ Γ
α
γρ uρ Fµσ

+q̄ uσ

(
∂γ Fµσ

)
− q̄ uσ gµα

(
∂σ Fαγ

)
+
(
∂γ q̄

)
uσ Fµσ − (∂σ q̄ )uσ gµα Fαγ

]
(615)

We can define the entire quantity in the bracket as an “electromagnetic curvature tensor.”

G
µ

γ ≡ q̄ 2Fσγ Fµσ + q̄ Γ
µ

γρ uσ Fρσ − q̄ Γ
µ

σρ gασ Fαγ uρ − q̄ gασ Γ
α
γρ uρ Fµσ

+q̄ uσ

(
∂γ Fµσ

)
− q̄ uσ gµρ

(
∂σ Fργ

)
+
(
∂γ q̄

)
uσ Fµσ − (∂σ q̄ )uσ gµρ Fργ (616)

For the special case of a uniform electromagnetic field and a uniform charge-to-mass distribution, we have

∂γ Fµσ = 0 and ∂γ q̄= 0. Then the entire last line vanishes in the expression above and we have

G
µ

γ (uniform)
= q̄

(
q̄ Fσγ Fµσ +Γ

µ

γρ uσ Fρσ −Γ
µ

σρ gασ Fαγ uρ −gασ Γ
α
γρ uρ Fµσ

)
(617)

For the general case of non-uniform fields and non-uniform charge-to-mass distributions, we can use (616)
to write (615) as simply

D2Lµ =−R
µ

ργσ Lγ uρ uσ − q̄ L′γ Fµγ +Lγ G
µ

γ

Coordinate-free geodesic deviation

equation with electromagnetic fields
(618)

We can choose to consider the local Lorentz frame of xµ so that Γ
µ

σρ (x
µ) = 0. Then using (606) with

Γ
µ

σρ = 0 gives

D2Lµ =
(

L′′µ − q̄ L′ρ Fµρ − q̄ Lρ F ′µρ

)
−
(
q̄ L′σ Fµσ − q̄ 2 Lγ Fσγ Fµσ

)
(619)

We can combine terms involving q̄ L′σ Fµσ . Also, if we are in the proper (rest) frame of xµ , then L′′µ = L̈µ .

This gives

D2Lµ = L̈µ − q̄ Lρ Ḟµρ −2q̄ L̇σ Fµσ + q̄ 2 Lγ Fσγ Fµσ (620)

We can also observe that setting Γ
µ

σρ (x
µ) = 0 in (616) gives

G
µ

γ (Lorentz frame)
= q̄ 2Fσγ Fµσ + q̄ uσ

(
∂γ Fµσ

)
− q̄ uσ gµρ

(
∂σ Fργ

)
+
(
∂γ q̄

)
uσ Fµσ − (∂σ q̄ )uσ gµρ Fργ (621)

Then inserting (620) and (621) into (618) and solving for L̈µ gives

L̈µ = −R
µ

ργσ Lγ uρ uσ + q̄ Lρ Ḟµρ +2q̄ L̇σ Fµσ − q̄ 2 Lγ Fσγ Fµσ +Lγ G
µ

γ (Lorentz frame)
(622)
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We can insert (621) and cancel terms involving q̄ 2 Lγ Fσγ Fµσ to obtain

L̈µ = −R
µ

ργσ Lγ uρ uσ + q̄ Lρ Ḟµρ +2q̄ L̇σ Fµσ

+Lγ
[
q̄ uσ

(
∂γ Fµσ

)
− q̄ uσ gµρ

(
∂σ Fργ

)
+
(
∂γ q̄

)
uσ Fµσ − (∂σ q̄ )uσ gµρ Fργ

]
(623)

We can also factor out uσ from the bracket by raising the index of some of the derivatives.

L̈µ = −R
µ

ργσ Lγ uρ uσ + q̄ Lρ Ḟµρ +2q̄ L̇σ Fµσ

+Lγ uσ

[
q̄
(
∂γ Fµσ

)
− q̄ gµρ

(
∂

σ Fργ

)
+
(
∂γ q̄

)
Fµσ − (∂ σ q̄ )gµρ Fργ

]
(624)

We can lower the index of Lγ and raise γ in the bracket. We can also define an “electromagnetic coupling

tensor” in the Lorentz frame as

Pγµσ ≡ q̄ (∂ γ Fµσ )− q̄ (∂ σ Fµγ)+(∂ γ q̄ )Fµσ − (∂ σ q̄ )Fµγ (625)

Using this in (624) and changing some of the repeated indices gives

L̈µ =−R
µ

ργσ Lγ uρ uσ + q̄ Lγ Ḟµγ +2q̄ L̇γ Fµγ +Lγ uσ Pγµσ

Geodesic deviation equation with electromagnetic fields

in the proper Lorentz frame

(626)



6 The “four-velocity invariant”

Hamiltonian for relativistic

electron pairs
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6.1 The vanishing covariant Hamiltonian

The Lagrangian for relativistic electron-pairs coupled to an electromagnetic field, Aµ , in curved space-

time can be written as63

L1 = −mc
√
−gµν uµ uν + eAµ uµ (627)

It is effectively the same Lagrangian as used by DeWitt in equation (1) of [42]. It is derived in Appendix M

and is referred to as the “four-velocity invariant Lagrangian” since it can be seen to be associated with the

invariance of the four-velocity: √
−gµν uµ uν = c (628)

The Hamiltonian that follows from the Lagrangian in (627) can be shown to vanish identically. To obtain the

Hamiltonian, we use a Legendre transformation in terms of four-vectors written as H1 = pµ uµ −L1, where

the canonical momentum is given by pσ =
∂L1

∂uσ
. Using the Lagrangian from (627) we have

pσ =
∂

∂uσ

(
mc
√
−gµν uµ uν + eAµ ẋµ

)
(629)

the metric and four-potential are not functions of velocity so the derivatives pass through them. Also, the

components of the velocity are independent so
∂uµ

∂uσ
= δ

µ

σ .

pσ =
mc

2
√
−gµν uµ uν

(
−gµν δ

µ

σ uν −gµν uµ
δ

ν

σ

)
+ eAµ δ

µ

σ (630)

Using (628) we can write this as

pσ =
m

2

(
−gσν uν −gµσ uµ

)
+ eAσ (631)

=
m

2
(−uσ −uσ )+ eAσ (632)

= −muσ + eAσ (633)

Applying an inverse metric gσν to each term gives

gσν pσ = −mgσν uσ + egσν Aσ (634)

pν = −muν + eAν (635)

Solving for uν gives

uν = − 1

m
(pν − eAν) (636)

63This Lagrangian is also found in Jackson [40] (eq. 12.31).
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Substituting uν from (636) into the Lagrangian from (627) gives

L1 = mc

√
−gµν

1

m2
(pµ − eAµ)(pν − eAν)+ eAµ

[
− 1

m
(pµ − eAµ)

]
(637)

= c

√
−(pµ − eAµ)

(
pµ − eAµ

)
− e

m
Aµ (p

µ − eAµ) (638)

Notice that this is just the Lagrangian in (627) but with Pµ =⇒ Pµ − eAµ which is standard for minimal

coupling. The Hamiltonian can now be found from

H1 = pµ uµ −L1 (639)

Putting the four-velocity (636) and Lagrangian (627) into the Hamiltonian (639) gives

H1 = pµ

[
− 1

m
(pµ − eAµ)

]
−
[

c

√
−(pµ − eAµ)

(
pµ − eAµ

)
− e

m
Aµ (p

µ − eAµ)

]
(640)

= − 1

m

(
pµ pµ − epµ Aµ

)
+

1

m

(
eAµ pµ − e2Aµ Aµ

)
− c

√
−(pµ − eAµ)

(
pµ − eAµ

)
(641)

= − 1

m

(
pµ pµ − epµ Aµ − eAµ pµ + e2Aµ Aµ

)
− c

√
−(pµ − eAµ)

(
pµ − eAµ

)
(642)

H1 =−
1

m

(
pµ − eAµ

)
(pµ − eAµ)− c

√
−(pµ − eAµ)

(
pµ − eAµ

)
(643)

This result matches that of Jackson in equation (12.35) of [40] except for a negative in the front and inside the

root, both owing to the fact that we are using a metric with signature diag(−1,1,1,1) rather than Jackson’s

diag(1,−1,−1,−1). We can show that his Hamiltonian vanishes identically by substituting the canonical

momentum from (635) into the Hamiltonian in (643).

H1 = − 1

m

(
−muµ + eAµ − eAµ

)
(−muµ + eAµ − eAµ)

−c

√
−(−muµ + eAµ − eAµ)

(
−muµ + eAµ − eAµ

)
(644)

= −muµ uµ −mc
√
−uµ uµ (645)

From (628) we know that uµ uµ = gµν uµ uν =−c2 so we have

H1 = −m
(
−c2

)
−mc

√
c2 (646)

H1 = 0 (647)

Hence we find the Hamiltonian vanishes identically and cannot represent the energy of the system. It is

therefore questionable if this Hamiltonian is the appropriate quantity to promote to an operator for describing

a quantum mechanical system in curved space-time.
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6.2 The space+time Hamiltonian

We begin with the Lagrangian given by (2864) as

L = −mc
√
−gµν ẋµ ẋν + eAµ ẋµ (648)

This is precisely64 the Lagrangian used by DeWitt in equation (1) of [42]. The “dot derivative” is a derivative

with respect to t = x0/c which matches the convention of DeWitt.65 By expanding the summations in the

Lagrangian we have

L = −mc
(
−g00ẋ0ẋ0−g0 j ẋ

0ẋ j−gi0ẋiẋ0−gi j ẋ
iẋ j
)1/2

+ eA0ẋ0+ eAiẋ
i (649)

Using ẋµ =
(
c,vi
)

and recognizing that the two middle terms inside the root are identical gives

L = −mc
(
−g00c2−2g0 jcv j−gi jv

iv j
)1/2

+ ceA0+ eAiv
i (650)

We can find the Hamiltonian using a Legendre transformation in terms of 3-vectors.

H = vk pk−L (651)

where the canonical momentum can be found from pk =
∂ L̃

∂vk
. Using the Lagrangian in (650) and recognizing

that
∂vi

∂vk
= δ

i
k gives

pk = −mc

2

(
−c2g00−2cg0 jv

j−gi jv
iv j
)−1/2

·
(
−2cg0 jδ

j

k
−gi jδ

i
kv j−gi jv

i
δ

j

k

)
+ eAiδ

i
k (652)

pk =
mc

2

2cg0k+gk jv
j+gikvi(

−c2g00−2cg0 jv
j−gi jv

iv j
)1/2

+ eAk (653)

pk− eAk =
mc

2

2cg0k+gk jv
j+gikvi

c
(
−g00−2g0 jv

j/c−gi jv
iv j/c2

)1/2
(654)

Once again we can observe that the last two terms in the numerator are essentially the same so we can

combine them and factor out a 2. Then writing the kinetic momentum as πk = pk− eAk gives

πk = m

(
−g00−2g0 j

v j

c
−gi j

viv j

c2

)−1/2 (
cg0k+gk jv

j
)

(655)

64There is only a difference in units since DeWitt sets c = 1, however, this calculaton will retain the

constant c.

65Note that because xµ =
(
ct,xi

)
then

d

dt
xµ =

d

dt

(
ct,xi

)
=
(
c,vi
)
. So we define ẋµ =

(
c,vi
)
. This is not

to be confused with the four-velocity, uµ =
dxµ

dτ
. By the chain rule, uµ and ẋµ are related: uµ =

dxµ

dτ
=

dt

dτ

dxµ

dt
=

dt

dτ
ẋµ .



119

In (2738) of Appendix J, we defined a “Lorentz factor” in GR as66

γ ≡
(
−g00−

2

c
g0 jv

j− 1

c2
gi jv

iv j

)−1/2

(656)

Therefore we can write the kinetic momentum in (655) more compactly as

πk = γm
(
cg0k+gikvi

)
(657)

In order to find the Hamiltonian in (651), we must find the velocity in terms of the canonical momentum. Note

that gik cannot lower the index of vi because the indices are only spatial indices, not space-time indices67.

Also note that vi is summed with gik in (657) therefore we cannot simply solve for vi algebraically68. First

we must construct the inverse of gik which we will refer to as the “spatial inverse metric.” From (2875) in

Appendix N, we have

g̃ik = gik−g0ig0k/g00 (658)

where g̃ jkgik = δ
j
i. Applying g̃ jk to both sides of (657) and solving for the velocity gives

g̃ jk
πk = γm

(
cg̃ jkg0k+ g̃ jkgikvi

)
(659)

g̃ jkπk

γm
= cg̃ jkg0k+δ

j
iv

i (660)

v j =
g̃ jkπk

γm
− cg̃ jkg0k (661)

We can also write the Lagrangian in (650) using γ as defined in (656)

L = −mc2

γ
+ ceA0+ eAiv

i (662)

Now we can find the Hamiltonian, H = p jv
j−L, using the Lagrangian in (662).

H = p jv
j+

mc2

γ
− ceA0− eA jv

j (663)

= (p j− eA j)v
j+

mc2

γ
− ceA0 (664)

66In the case of a flat Minkowski space-time, we have η00 =−1, η0i = 0, and η i j = δ i j. Then the Lorentz

factor reduces to the familiar form in Special Relativity: γ =
(
1− v2/c2

)−1/2
.

67To ellaborate on this point, note that vν = gµν vµ = gν0v0+gν jv
j where v0 = c. If we choose ν = i then

this gives vi = cg0i+gi jv
j. Therefore, we see that vi 6= gi jv

j. Rather, there is an additional term, cg0i.

68Because vi is summed with gik, then what we have in the equation is vigik = v1g1k + v2g2k + v3g3k.

Therefore, it is obvious that we cannot solve for~v=
(
v1,v2,v3

)
while it is summed with gik.
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Substituting π j for (p j− eA j) and using the velocity in (661) gives

H = π j

(
g̃ jkπk

γm
− cg̃ jkg0k

)
+

mc2

γ
− ceA0 (665)

=
g̃ jkπ jπk

γm
− cπ jg̃

jkg0k+
mc2

γ
− ceA0 (666)

Factoring 1/γm from the first and third terms gives

H =
1

γm

(
m2c2+ g̃ jk

π jπk

)
− cπ jg̃

jkg0k− ceA0 (667)

We must now find an expression for γ in terms of the kinetic momentum, π j. Squaring and taking the

reciprocal of (656) and substituting (661) for the velocity gives

γ
−2 = −g00−

2

c
g0 j

(
g̃ jkπk

γm
− cg̃ jkg0k

)
− 1

c2
gi j

(
g̃ikπk

γm
− cg̃ikg0k

)(
g̃ jlπ l

γm
− cg̃ jlg0l

)
(668)

Multiplying out these terms gives

γ
−2 = −g00−

2g0 jg̃
jkπk

γmc
+2g0 jg̃

jkg0k

− 1

c2
gi j

(
g̃ikg̃ jlπ lπk

γ2m2
− cg̃ jlg0l g̃

ikπk

γm
− cg̃ikg0kg̃ jlπ l

γm
+ c2g̃ikg0kg̃ jlg0l

)
(669)

The middle two terms in the second parentheses can be combined. Also, by distributing gi j through the

parentheses, we can use gi jg̃
il = δ

l
j to simplify each term. We will also multiply the entire expression by γ2

to obtain

1 = −g00γ
2− γ

2g̃ jkg0 jπk

mc
+2γ

2g̃ jkg0 jg0k−
g̃ikπ jπk

m2c2
+ γ

2g0ig̃
ikπk

mc
− γ

2g0 jg̃
jlg0l (670)

The second and fifth terms on the right side cancel. Also, the third and sixth terms can be combined.

1 = −g00γ
2+ γ

2g̃ jkg0 jg0k−
g̃ikπ jπk

m2c2
(671)

Now we solve for γ2.

1+
g̃ikπ jπk

m2c2
= γ

2
(

g̃ jkg0 jg0k−g00

)
(672)

γ
2 =

m2c2+ g̃ikπ jπk

m2c2
(
g̃ jkg0 jg0k−g00

) (673)

γ =
1

mc

√
m2c2+ g̃ikπ jπk

g̃ jkg0 jg0k−g00

(674)
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Substituting this result into the Hamiltonian found in (667) gives

H = c

√
g̃ jkg0 jg0k−g00

m2c2+ g̃ikπ jπk

(
m2c2+ g̃ jk

π jπk

)
− cπ jg̃

jkg0k− ceA0 (675)

H = c

(
g̃ jkg0 jg0k−g00

)1/2(
m2c2+ g̃ jk

π jπk

)1/2
− cg̃ jkg0kπ j− ceA0 (676)

Lastly, we can use π j = p j−eA j to express the Hamiltonian in terms of the canonical momentum and obtain

H = c
(
g̃ jkg0 jg0k−g00

)1/2 [
m2c2+ g̃ jk (p j− eA j)(pk− eAk)

]1/2

−cg̃ jkg0k (p j− eA j)− ceA0

(677)

This matches DeWitt’s Hamiltonian in equation (3) of [42], except that DeWitt has g jk rather than g̃ jk. It is

shown in (2877) of Appendix N, that g̃ jk ≈ g jk is only true to first order in the metric. We also develop two

relations in Appendix N given by (2880) and (2886) as

g̃ikg0k = − g0i

g00
and g̃ jkg0 jg0k−g00 =−

1

g00
(678)

Inserting these into (676) gives

H = c

[
m2c2+ g̃ jkπ jπk

−g00

]1/2

+ c
g0i

g00
π j− ceA0

(679)

This result matches that of Cognola, et al. [45] and Bertschinger [48].
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6.3 The weak field, low velocity Hamiltonian to second order

We now write the metric as a perturbation of flat space-time: gµν = ηµν +hµν . In the weak field approx-

imation we require
∣∣hµν

∣∣<< 1. The Hamiltonian in (676) can be expanded as

H = c

[
g̃ jk
(
η0 j+h0 j

)
(η0k+h0k)− (η00+h00)

]1/2 [
m2c2+ g̃ jk

πkπ j

]1/2

−cg̃ jk (η0k+h0k)π j− ceA0 (680)

Since η jk = δ
k
j, η0 j = 0 and η00 =−1, then we have

H = c

[
g̃ jkh0 jh0k+1−h00

]1/2 [
m2c2+ g̃ jk

πkπ j

]1/2
− cg̃ jkh0kπ j− ceA0 (681)

To expand this Hamiltonian to second order in the metric, we will need to express g̃ jk (the “spatial inverse

metric”) in terms of hµν to second order as

g̃ jk ≈ δ
j

k
−h jk+hi jhk

i (682)

Substituting this into the Hamiltonian in (681) gives

H = c

[(
δ

j

k
−h jk+hi jhk

i

)
h0 jh0k+1−h00

]1/2

·
[
m2c2+

(
δ

j

k
−h jk+hi jhk

i

)
πkπ j

]1/2

−c

(
δ

j

k
−h jk+hi jhk

i

)
h0kπ j− ceA0 (683)

Distributing terms and omitting results that are third order in hµν gives

H = c

[
(h0k)

2+1−h00

]1/2 [
m2c2+π

2
k+
(
−h jk+hi jhk

i

)
πkπ j

]1/2

−ch0kπ
k+ ch jkh0kπ j− ceA0 (684)

In the first square root above, the weak field limit requires

∣∣∣(h0k)
2−h00

∣∣∣ << 1. Since expanding a square

root to second order gives (1+ x)1/2 ≈ 1+ 1
2
x− 1

8
x2 when |x|<< 1, then we can write

[
1+(h0k)

2−h00

]1/2

≈ 1+ 1
2

[
(h0k)

2−h00

]
− 1

8

[
(h0k)

2−h00

]2

(685)

≈ 1+ 1
2
(h0k)

2− 1
2
h00−

1

8
(h00)

2+O
(
ε

3
)

(686)
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Eliminating third order terms and using this expression to replace the first square root in the Hamiltonian

gives

H ≈ c

{
1+ 1

2
(h0k)

2− 1
2
h00−

1

8
(h00)

2

}

·
[
m2c2+π

2
k+
(

hi jhk
i −h jk

)
πkπ j

]1/2

−ch0kπ
k+ ch jkh0kπ j− ceA0 (687)

Next, factoring out m2c2 from the second root makes it become

mc

[
1+

π2
k

m2c2
+

hi jhk
i −h jk

m2c2
πkπ j

]1/2

(688)

In the low velocity limit, we have ∣∣∣∣ π2
k

m2c2
+

hi jhk
i −h jk

m2c2
πkπ j

∣∣∣∣ < < 1 (689)

If we only keep terms out to (v/c)2 for the speed of the electrons, then expanding the root to first order gives

mc

(
1+

π2
k

2m2c2
+

hi jhk
i −h jk

2m2c2
πkπ j

)
(690)

This result now replaces the second square root in the Hamiltonian so that the Hamiltonian becomes

H
(weak f ield,

low velocity)

≈ c

{
1+ 1

2
(h0k)

2− 1
2
h00−

1

8
(h00)

2

}

·mc

(
1+

π2
k

2m2c2
+

hi jhk
i −h jk

2m2c2
πkπ j

)
−ch0kπ

k+ ch jkh0kπ j− ceA0 (691)

Multiplying out all terms and omitting any terms that are third order or higher in hµν gives

H
(2nd-order)

≈ mc2+
π2

k

2m
− ch0kπ

k+ 1
2
mc2 (h0k)

2− 1
2
mc2h00− ceA0

− 1
8
mc2 (h00)

2− h00π2
k

4m
− h jkπkπ j

2m
− (h00)

2
π2

k

16m

+ch jkh0kπ j+

(
h0 j

)2
π2

k

4m
+

hi jhk
i πkπ j

2m
+

h00h jkπkπ j

4m
(692)
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Writing the second, third, and fourth terms each as a perfect square gives

H
(2nd-order)

≈ mc2+
1

2m
(πk−mch0k)

2− 1
2
mc2h00− ceA0

− 1
8
mc2 (h00)

2− h00π2
k

4m
− h jkπkπ j

2m
− (h00)

2
π2

k

16m
+ ch jkh0kπ j

+

(
h0 j

)2
π2

k

4m
+

hi jhikπkπ j

2m
+

h00h jkπkπ j

4m

(693)

This is the weak field, low velocity Hamiltonian that is second order in hµν , second order in (v/c), and

also second order in products of hµν and (v/c). It can be seen that the top line is DeWitt’s “first-order”

Hamiltonian. In reality, we have shown here that one must go to second order to obtain the term with
1
2
mc2 (h0k)

2
which is required to write the perfect square.

We may consider further approximations that would remove more terms while preserving the terms in the

perfect square in the first line. We cannot employ a stricter low velocity approximation since this would mean

only keeping terms that are first order in (v/c) and hence removing the kinetic energy term. This would break

the perfect square in the first line. We also cannot employ a stricter weak field approximation since keeping

terms that are only first order in hµν would mean removing (h0k)
2
. Again, this would break the perfect square

in the first line. Therefore, the only other approximations we could make that would preserve the conditions

for the perfect square would involve removing products of (hµν) and (v/c).

However, since there is no physical relationship between the value of (v/c) (the speed of the electrons)

and the value of hµν (the strength of the gravitational field), then we must impose an additional condition

which relates these values in order to justify omitting more terms. For example, if we consider that hµν and

(v/c) are of the same order, then terms like (hµν)2 (v/c) or hµν (v/c)2 would be considered third order and

could therefore be omitted.

To approach this process more formally, we know in general that for approximation purposes we can

consider that

h0i ∼
(

vs

c

)
h00 and hi j ∼

(
vs

c

)2

h00 (694)

where vs is the speed of the gravitational sources (not the speed of the electrons which we are just calling v).

These relations can be motivated by considering the harmonic gauge: ∂ ν hµν = 0. Summing over ν gives

∂
0hµ0+∂

ihµi = 0 (695)

For µ = 0 we have

1

c
ḣ00 = ∂

ih0i (696)

We can consider a metric perturbation given by hµν = Aµν e(
~k·~x−ωt) where Aµν is a constant amplitude and

k = ω/vs with vs being the speed of the sources. Then the expression above becomes

−ω

c
h00 = kh0i =⇒ h0i ∼ h00

(
vs

c

)
(697)

This matches the first relation in (694). Next, using µ = i in (695) gives

1

c
ḣi0 = ∂

ihi j (698)
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Again using hµν = Aµν e(
~k·~x−ωt) in the expression above gives

−ω

c
hi0 = khi j =⇒ hi j ∼ h0i

(
vs

c

)
∼ h00

(
vs

c

)2

(699)

This matches the second relation in (694). Therefore, we find that the relations in (694) can be obtained by

simply examining the harmonic gauge with hµν expressed as a wave solution.69 Since the harmonic gauge

is perfectly applicable in non-linear GR, then we find that the relations in (437) are valid in the higher order

Hamiltonian we have in (693).

Now using the relations in (694), we can observe that the squared parentheses in (693) implies that we

are keeping terms of order

π jπ j

2m
∼ mv2, ch0kπ

k ∼ vsh00mv, 1
2
mc2 (h0k)

2 ∼ mv2
s (h00)

2
(700)

This implies that the following quantities are comparable

mv2 ∼ mvsvh00 ∼ mv2
s h2

00 =⇒ v∼ vsh00 (701)

Clearly the first term in the second line of the Hamiltonian in (693) must remain since it is of order

mc2 (h00)
2� mv2

s h2
00 (702)

However, substituting v∼ vsh00 into the second term in the second line of the Hamiltonian shows that it is of

order
h00π2

k

4m
∼ mv2h00 =⇒ mv2

s h3
00 (703)

This is a higher order term that can be neglected. Likewise, continuing this process with the remaining terms

in the Hamiltonian will show that all the rest can be neglected as well. Then the Hamiltonian would become

H
(2nd-order)

≈ mc2+
1

2m
(πk+mch0k)

2− 1
2
mc2h00− ceA0−

1

8
mc2 (h00)

2
(704)

This is the Hamiltonian to second order in hµν and (v/c) but first order in any products of hµν and (v/c).

Notice that this result still matches DeWitt’s result except for an additional term involving (h00)
2

which

DeWitt neglected. This term must be included for consistency as was shown above.

69This approach is in contrast to the one used in Section 26 based on the field equation for linearized GR

in the trace-reversed harmonic gauge, ∂ ν h̄µν = −2κTµν . Since we are not dealing with the field equations

here, then this approach is not appropriate. Also, since we are working with a Hamiltonian that is in terms

of hµν , not h̄µν , and because it contains terms that are higher than first order in hµν , then using the approach

from Section 26 would not be suitable. Rather, the approach here with the harmonic gauge, ∂ ν hµν = 0, and

a wave solution, hµν = Aµν e(
~k·~x−ωt), is ideal.
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6.4 The weak field, low velocity Hamiltonian to first order

If we are only interested in a minimal (post-Newtonian) coupling between the electron-pair and the grav-

itational field, then we can see that we only need ch0kπk which is the lowest order coupling term. However,

to maintain consistency in our approximation we must continue to check for other comparable terms before

eliminating them. Note that in general, h0k ∼ (vs/c)h00 where vs is the velocity of the gravitational source.

Then using π̃ = m~ve− e~A, we see that ch0kπk is of order

ch0kπ
k ∼ vsh00mve, vsh00eA (705)

where ve is the velocity of the electron-pair. Since h00 << 1, then keeping this term naturally requires

keeping the first and fourth terms of (693) as well. This is obviously expected since these terms are the rest

mass energy and Newtonian gravitational coupling energy, respectively. The kinetic energy of an electron-

pair in the absence of a gravitational field (but still coupled to an electromagnetic field) is given by the fifth

term in (693). It is of order

π jπ j

2m
∼ mv2

e , eveA,
e2A2

m
(706)

The first term of (706) is comparable to the first term of (705) when

ve ∼ vsh00 (707)

This means that the (post-Newtonian) gravitational coupling energy would be comparable to the kinetic en-

ergy of the electron-pair.70 Typically, this will not be the case but rather ve >> vsh00 since h00 << 1. In other

words, even when vs = ve, then still the gravitational coupling energy will be weaker than the kinetic energy

by a factor of ∼ h00.

The third term of (706) is comparable to the second term of (705) if e2A2/m∼ vsh00eA. This means we

would have71

A∼ mvsh00

e
(708)

Since h00 << 1 and the charge-to-mass ratio of an electron-pair is very small, then the vector potential can

be very weak and still have a coupling energy comparable to gravitation. The only other term in (693) that is

of lowest order is the second term which is of order

1
2
mc2 (h0k)

2 ∼ mv2
s (h00)

2
(709)

For (709) to be comparable to the first term of (705), again we find ve ∼ vsh00. This means that the second-

order gravitational coupling with the mass in (709) will be weaker by a factor of ∼ h00 compared to the

first-order coupling with the momentum in (705). Likewise, for (709) to be comparable to the second term

of (705), again we find mvsh00/e. Hence we see that the term in (709) is comparable to the other terms

discussed above and must be preserved in the Hamiltonian. All other terms involving hµν and π j in (693) are

of higher order and therefore the two conditions given by (707) and (708) will not be adequate to preserve

them. Therefore, we neglect the following terms:

1
2
mc2h jkh0 jh0k,

h jkπ jπk

2m
,

hk0h0kπ jπ j

4m
,

(h0k)
2

h jkπ jπk

2m
,

(710)

h jkh jkh0 jh0kπ jπk

4m
,

h00π jπ j

4m
,

h00h jkπ jπk

4m
, ch jkh0 j

π
k

70The same relation emerges from comparing the second term of (706) with the second term of (705).

71The same relation emerges from comparing the second term of (706) with the first term of (705).
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So the Hamiltonian in (693) for first-order coupling becomes

H̃1
( f irst order)

= mc2+ 1
2
mc2 (h0k)

2− 1
2
mc2h00+

π jπ j

2m
− ch0kπ

k− ceA0 (711)

Since k and j are both repeated indices, then we can just use a single index i. Grouping together the second,

fourth and fifth terms gives

H̃1
( f irst order)

= mc2+
1

2m

(
π

i
π i−2mch0iπ

i+m2c2 (h0i)
2
)
− 1

2
mc2h00− ceA0 (712)

Writing the terms in the parenthesis as a perfect square gives

H̃1
( f irst order)

= mc2+
1

2m
(π i−mch0i)

2− 1
2
mc2h00− ceA0 (713)

Substituting π i = pi− eAi gives

H̃1
( f irst order)

= mc2+
1

2m
(pi− eAi−mch0i)

2− 1
2
mc2h00− ceA0 (714)

Therefore, we find that the canonical momentum under minimal (post-Newtonian) coupling for a non-relativistic

charged particle in electromagnetic and weak gravitational fields is

~pcan→ ~pcan−q~A−m~h (715)

where~h= c(h01,h02,h03) is the gravitational vector potential or “gravito-vector potential.” Note that (714) is

precisely the Hamiltonian that DeWitt obtained in his equation (3). However, he states “after removal of the

rest mass” and writes the Hamiltonian (using c= 1) as

H =
1

2m

(
~p−~B

)2

+V (716)

where

V = −eA0− 1
2
mh00, ~B= e~A+m~h0, ~h= (h01,h02,h03) (717)

The coupling rule in (715) gives a prescription for expressing the canonical momentum, ~p, in the presence

of a magnetic vector potential, ~A, and a gravito-vector potential, ~h. It is used by DeWitt [42] to argue

that there should be a gravitational Meissner effect directly analogous to the magnetic Meissner effect for

superconductors. Hence the DeWitt minimal coupling rule would provide a means by which to consider the

coupling of gravity to quantum matter. In the last two sections we have shown the full derivation beginning

with the Lagrangian used by DeWitt in (648). However, we also show in Section 44 that this coupling

rule can be derived via the gravito-electromagnetic framework which is valid as a weak field, low velocity

approximation for gravity.
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Hamiltonian for relativistic

electron pairs
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7.1 The non-vanishing covariant Hamiltonian

It was previously shown that the “four-velocity invariant” Lagrangian, L1, in (627) leads to a Hamiltonian,

H1, that vanishes identically and therefore does not properly represent energy. Here we will show that the

“four-momentum invariant Hamiltonian,” H2, does not identically vanish. In (2857) of Appendix M, we

show that the “four-momentum invariant Lagrangian” is

L2 =
1

2m
gµν pµ pν + eAµ uµ (718)

It is apparent that this Lagrangian is associated with the invariance of the four-momentum:

gµν pµ pν =−m2c2 (719)

Using pµ = muµ we can write this as

L2 =
m

2
gµν uµ uν + eAµ uµ (720)

To obtain a Hamiltonian, we use a Legendre transformation in terms of four-vectors given by H2 = pµ uµ−L2

where the canonical momentum is pσ =
∂L2

∂uσ
. Using the Lagrangian from (720) gives

pσ =
∂

∂uσ

(
m

2
gµν uµ uν + eAµ uµ

)
(721)

The metric and four-potential are not functions of velocity so the derivatives pass through them. Also, the

components of the velocity are independent so
∂uµ

∂uσ
= δ

µ

σ . Then we have

pσ =
m

2

(
gµν δ

µ

σ uν +gµν uµ
δ

ν

σ

)
+ eAµ δ

µ

σ (722)

=
m

2

(
gσν uν +gµσ uµ

)
+ eAσ (723)

=
m

2
(uσ +uσ )+ eAσ (724)

= muσ + eAσ (725)

Applying an inverse metric gσν to each side gives

gσν pσ = mgσν uσ + egσν Aσ (726)

pν = muν + eAν (727)

Solving for uν gives

uν =
1

m
(pν − eAν) (728)
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Substituting uν from (728) into the Lagrangian from (720) gives

L2 =
1

2m
gµν (p

µ − eAµ)(pν − eAν)+ eAµ (p
µ − eAµ) (729)

Notice that this is just the Lagrangian in (718) but with pµ =⇒ pµ − eAµ which is standard for minimal

coupling. Thus introducing an electromagnetic four-potential can be summarized as

L2 =⇒ L2+ eAµ uµ and pµ =⇒ pµ − eAµ (730)

The Hamiltonian can now be found from a Legendre transformation using

H2 = pµ uµ −L2 (731)

Putting the four-velocity (728) and Lagrangian (720) into the Hamiltonian (731) gives

H2 = pµ

[
1

m
(pµ − eAµ)

]
−
[

1

2m
gµν (p

µ − eAµ)(pν − eAν)+
e

m
Aµ (p

µ − eAµ)

]
(732)

=
1

m
pµ pµ − e

m
pµ Aµ −

[
1

2m
(pν − eAν)(p

ν − eAν)+
e

m
Aµ pµ − e2

m
Aµ Aµ

]
(733)

=
1

m
pµ pµ − e

m
pµ Aµ − 1

2m
pν pν +

e

2m
Aν pν

+
e

2m
pν Aν − e2

2m
Aν Aν − e

m
Aµ pµ +

e2

m
Aµ Aµ (734)

=
1

2m
pµ pµ − e

m
Aµ pµ +

e2

2m
Aµ Aµ (735)

Here we find a term involving the free particle energy
(

pµ pµ/2m
)
, followed by a coupling of the particle

with the electromagnetic four-potential
(
eAµ pµ/m

)
, and finally a term showing an effective diamagnetism(

e2Aµ Aµ/2m
)
. Since the terms in (735) make up a perfect square, then we can write the Hamiltonian as

H2 =
1

2m
(pµ − eAµ)2 (736)

Hence we find that the Hamiltonian does not vanish but rather takes the same form as the non-relativistic

Hamiltonian for a charged particle in an electromagnetic field. Notice that if Aµ = 0, then the Lagrangian in

(718) becomes

L2 =
1

2m
gµν pµ pν =

1

2m
pµ pµ =

1

2m

(
−m2c2

)
=−1

2
mc2 (737)

Similarly, if Aµ = 0, then the Hamiltonian in (736) becomes

H2 =
1

2m
(pµ)2 =

1

2m
pµ pµ =−

1

2
mc2 (738)
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So we conclude that for a free particle, we have

L2 = H2 =
1

2m
gµν pµ pν =−1

2
mc2 for a free particle (Aµ = 0) (739)

We can now go back and see that finding H2 for a particle in an electromagnetic field (Aµ 6= 0) can be done

very easily. From the minimal coupling rule in (730), we know that introducing an electromagnetic field

just causes pµ =⇒ pµ − eAµ in the Hamiltonian. Then the Hamiltonian for the free particle in (739) simply

becomes

H2 =
1

2m
gµν (p

µ − eAµ)(pν − eAν) (740)

which is precisely the result we obtained in (736). We can write the kinetic four-momentum as πµ = pµ−eAµ

and summarize the results of (730), (736), and (739) as follows.

For a free particle (Aµ = 0) : L2 = H2 =
1

2m
gµν pµ pν =−1

2
mc2, πµ = pµ

For a particle in an EM field (Aµ 6= 0) : L2 =
1

2m
gµν pµ pν + eAµ uµ , πµ = pµ − eAµ

H2 =
1

2m
(pµ − eAµ)2

Invariance of kinetic four-momentum: gµν πµ πν =−m2c2

(741)
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7.2 The “space + time” Hamiltonian

The Lagrangian in (718) is a function of four-vectors, (xµ ,uµ), which are parameterized by τ . However,

we can also write the Lagrangian as a function of 3-vectors,
(
xi, ẋi

)
, which are parameterized by x0. The

process for reparameterizing the Lagrangian is described in Appendix M. It was found in (2865) that the

Lagrangian becomes

L̃2 = ẋµ pµ + eAµ ẋµ (742)

= cp0+ vi pi+ eAµ ẋµ (743)

The “dot derivative” is a derivative with respect to t = x0/c so we can use ẋµ = vµ = (v0,vi). Applying a

Legendre transformation in terms of 3-vectors, H̃2 = vi pi− L̃2, gives

H̃2 = vi pi−
(
cp0+ vi pi+ eAµ vµ

)
(744)

H̃2 = −cp0− eAµ vµ (745)

We will use this relation later in the calculation. For now we may simply notice that if there is no electro-

magnetic field, then Aµ = 0 and we are left with H̃2 = −cp0 where p0 is the time-like component of the

four-momentum.72 In local flat space-time coordinates we have p0 =−p0 =−E/c so H̃2 = E. Therefore we

find that the Hamiltonian represents the energy of the particle in a given inertial reference frame. Although

this Hamiltonian can be made to vanish in a particular frame (by an appropriate Lorentz boost), it does not

vanish identically in all frames.

Returning to the Hamiltonian found in (735) and writing it in terms of the metric gives

H2 =
1

2m
pµ pµ − e

m
Aµ pµ +

e2

2m
Aµ Aµ (746)

=
1

2m
gµν pµ pν −

e

m
gµν pµ Aν +

e2

2m
Aµ Aµ (747)

We are choosing to use covariant components of the four-vectors since the Hamiltonian in (745) is also in

terms of covariant components. By expanding the summations in terms of the metric components we have

H2 =
1

2m

(
g00 p0 p0+gi0 pi p0+g0 j p0 p j+gi j pi p j

)
− e

m

(
g00 p0A0+gi0 piA0+g0 j p0A j+gi j piA j

)
+

e2

2m
Aµ Aµ (748)

72Note that we use a standard four-velocity, uµ = dxµ/dτ , which in flat space-time becomes uµ = γ
(
c,vi
)
,

and we also use a “space+time” velocity, ẋµ = vµ =
(
c,vi
)
. However, for the momentum, we are only using

a standard four-momentum, pµ = muµ , which in flat space-time becomes pµ = mγ
(
c,vi
)
=
(
γmc,γvi

)
=(

E/c,γvi
)
. Notice we do not have a “space+time” momentum which could be written in terms of the

“space+time” velocity as mvµ =
(
mc,mvi

)
. Therefore, p0 should not be misunderstood as mc but rather

it is the time-like component of the standard four-momentum and therefore p0 = E/c where E is the full

energy.
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Notice from (745) that in order to determine H̃2, we can simply solve the equation above for H̃2 = −cp0−
eAµ ẋµ . However, we will need to substitute for H2 on the left side. To do so, we can notice that substituting

the canonical momentum from (727) back into the Hamiltonian in (736) gives

H2 =
1

2m
(muµ + eAµ − eAµ)2 =

1

2m
(muµ)2 =

m

2
uµ uµ =−

1

2
mc2 (749)

We can substitute this into the left side of (748) and also combine the middle two terms inside the first

parenthesis which are essentially identical.

−1

2
mc2 =

1

2m

(
g00 p0 p0+2g0i pi p0+gi j pi p j

)
− e

m

(
g00 p0A0+g0 j p0A j+gi0 piA0+gi j piA j

)
+

e2

2m
Aµ Aµ (750)

What we have done is effectively use the constraint
(
gµν pµ pν =− 1

2
mc2

)
applied to H2 (the covariant Hamil-

tonian), in order to solve for H̃2 (the “space + time” Hamiltonian). Note that this was not possible in the case

of H1 because applying the corresponding constraint
(
gµν uµ uν =−c2

)
led to H1 vanishing as was shown in

Section 35.

Next we rearrange the terms in (750) to write a quadratic in p0.

−m2c2 = g00 (p0)
2+2g0i pi p0+gi j pi p j

−2eg00 p0A0−2eg0 j p0A j−2egi0 piA0−2egi j piA j+ e2Aµ Aµ (751)

0 = g00 (p0)
2+
(
2g0i pi−2eg00A0−2eg0 jA j

)
p0

+gi j pi p j−2egi0 piA0−2egi j piA j+ e2Aµ Aµ +m2c2 (752)

In the first parenthesis, we can use i for the repeated index for the first and last term and factor out a common

2gi0. In the second parenthesis we can expand Aµ Aµ in terms of the metric as Aµ Aµ = g00 (A0)
2+2g0iA0Ai+

gi jAiA j. Then we have

0 = g00 (p0)
2+
[
2g0i (pi− eAi)−2eg00A0

]
p0

+gi j pi p j−2egi0 piA0−2egi j piA j+ e2g00 (A0)
2+2e2g0iA0Ai+ e2gi jAiA j+m2c2

(753)

In the second parenthesis we can group the second and fifth terms to factor out 2egi0A0 and also group the

first, third, and sixth terms to factor out gi j.

0 = g00 (p0)
2+
[
2g0i (pi− eAi)−2eg00A0

]
p0

+gi j
(

pi p j−2epiA j+ e2AiA j

)
−2egi0A0 (pi− eAi)+ e2g00 (A0)

2+m2c2 (754)



134

Notice in the second parenthesis that
(

pi p j−2epiA j+ e2AiA j

)
= (pi− eAi)(p j− eA j). If we write the ki-

netic momentum as π i = pi− eAi, then we have

0 = g00 (p0)
2+
[
2g0i

π i−2eg00A0

]
p0+

[
gi j

π iπ j−2egi0A0π i+ e2g00 (A0)
2+m2c2

]
(755)

Using the quadratic formula to solve for p0 gives

p0 =
−2g0iπ i+2eg00A0

2g00

± 1

2g00

√
(2gi0π i−2eg00A0)

2−4g00
(

gi jπ iπ j−2egi0A0π i+ e2g00 (A0)
2+m2c2

)
(756)

Simplifying the fraction in the front of the expression, pulling a 4 out of the root, and multiplying out the

squared parenthesis in the root gives

p0 =
−g0iπ i

g00
+ eA0

± 1

g00

√
(gi0π i)

2−2eg00A0gi0π i+(eg00A0)
2−g00

(
gi jπ iπ j−2egi0A0π i+ e2g00 (A0)

2+m2c2
)

(757)

Canceling common terms inside the root and bringing 1/g00 inside the root gives

p0 = −g0iπ i

g00
+ eA0±

√(
gi0π i

g00

)2

− gi jπ iπ j+m2c2

g00
(758)

Now we use H̃2 = −cp0− eAµ vµ from (745) to obtain H̃2. Solving for p0 gives p0 =
(
−eAµ vµ − H̃2

)
/c.

Substituting this into the equation above gives

(
−eAµ vµ − H̃2

)
/c = −g0iπ i

g00
+ eA0±

√(
gi0π i

g00

)2

− gi jπ iπ j+m2c2

g00
(759)

Solving for H̃2 and using the positive root73 gives

H̃2 =
cg0iπ i

g00
+ c

√
m2c2+gi jπ iπ j

−g00
+

(
gi0π i

g00

)2

− eAµ vµ − ceA0 (760)

Finally, we use π i = pi− eAi to expression the Hamiltonian in terms of the canonical momentum.

H̃2 =
cg0i (pi− eAi)

g00
+ c

√
m2c2+gi j (pi− eAi)(p j− eA j)

−g00
+

(
gi0 pi− egi0Ai

g00

)2

− eAµ vµ − ceA0

(761)

73We have taken the positive root so that for zero momentum, we recover a positive rest energy, mc2.
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A similar Hamiltonian has been found by Cognola, et al. [45] and by Bertschinger [48]. In the case of

Bertschinger, it appears that he uses the same method as used here expect he does not include an electromag-

netic field. His equation (14) has

HBertschinger =
g0i pi

g00
+

[(
gi j pi p j+m2

)
−g00

+

(
gi0 pi

g00

)2
]1/2

(762)

with c = 1. This matches (761) for the case of a free particle where Aµ = 0 (no electromagnetic field) and

π i = pi (since the kinetic and canonical momenta become identical). A similar Hamiltonian is also obtained

by Cognola, et al. in equation (2.5) of [45] which they give as

HCV Z =

(
m2− g̃i jπ iπ j

g00

)1/2

− g0iπ i

g00
+ eA0 (763)

where π i = pi−eAi and g̃i j = gi j−g0ig0 j/g00 is the inverse of gi j. Substituting g̃i j into (763) and rearranging

gives

HCognola = −g0iπ i

g00
+

[
m2−gi jπ iπ j

g00
+

g0ig0 jπ iπ j

(g00)2

]1/2

+ eA0 (764)

Now we can compare HCognola in (764) with H̃2 in (761). It is evident that there are several signs that are

opposite but this is simply because Cognola, et al. use a metric with diag(1,−1,−1,−1) rather than our

diag(−1,1,1,1). However, it is not a trivial discrepancy that HCognola does not have the additional term

−eAµ vµ which is in H̃2. Notice that this term was introduced in going from (758) to (759) where we used

H̃2 = −cp0− eAµ vµ from (745) to substitute for p0. Obtaining the expression for HCognola, requires using

H̃2 =−cp0 which would only be valid if Aµ = 0. However, this is obviously not the case if πµ = pµ − eAµ .

Therefore this appears to be an inconsistency in HCognola.

It is important to note that Cognola, et al. started from the same Lagrangian that DeWitt started from.

First they write a Lagrangian in equation (2.1) of [45] as

L0 = −m
(
−gµν ẋµ ẋν

)1/2− eAµ ẋµ (765)

which they acknowledge is singular. However, they simply separate the Lagrangian into space+time compo-

nents to write the Lagrangian in equation (2.2) of [45] as

L = −m
(
g00+2goiv

i+gi jv
iv j
)1/2− eAiv

i− eA0 (766)

This Lagrangian is essentially identical to DeWitt’s Lagrangian in (650) except for a different sign being used

inside the root. They also obtain a canonical momentum that is identical to (655) when (656) is inserted.

However, the velocity they obtain in their equation (2.4) is

vi =
g̃i jπ j

[g00 (m2− g̃rsπrπs)]
1/2
+g0i/g00 (767)

where g̃i j = gi j− g0ig0 j/g00 just as we had for the “spatial inverse metric” in (658). The velocity obtained

here in (769) is

v j =
g̃ jkπk

γm
− cg̃ jkg0k (768)
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If we substitute (656) into (661), then we obtain

v j = c

√
g̃ jkg0 jg0k−g00

m2c2+ g̃ikπ jπk

g̃ jk
πk− cg̃ jkg0k (769)

From (2886) and (2872) in Appendix N, we also have

g̃ jkg0 jg0k−g00 = − 1

g00
and g̃ jkg0k =−

g0i

g00
(770)

Substituting the first expression above into the first term of (769) and the second expression above into the

second term of (769) gives

v j =
cg̃ jkπk√

−g00 (m2c2+ g̃ikπ jπk)
+ c

g0i

g00
(771)

This result matches that of Cognola, et al. in equation (2.4) of [45]. Similarly, substituting (770) into the

Hamiltonian in (676) gives

H = c

(
m2c2+ g̃ jkπ jπk

−g00

)1/2

+ c
g0i

g00
π j− ceA0 (772)

This also matches HCognola as shown in (763) except for some sign differences which are due to a difference

in metric signature. As pointed out by Cognola, et al. in [45], this result only matches DeWitt’s result in

(677) only when g0i is zero. Otherwise, DeWitt’s result is in error.
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7.3 The weak field, low velocity Hamiltonian

We now express the metric as a perturbation of flat Minkowski space-time: gµν = ηµν +hµν . Then the

Hamiltonian in (760) can be expanded as

H̃2 =
c
(
η0 j+h0 j

)
π j

η00+h00
+ c

√√√√m2c2+
(
η i j+hi j

)
π iπ j

−(η00+h00)
+

[(
η0 j+h0 j

)
π j

η00+h00

]2

−eAµ vµ − ceA0 (773)

Since η jk = δ
k
j, η0 j = 0 and η00 =−1, then we have

H̃2 =
ch0 jπ j

−1+h00
+ c

√
m2c2+π jπ j+hi jπ iπ j

−(−1+h00)
+

(
h0 jπ j

−1+h00

)2

−eAµ vµ − ceA0 (774)

We will need to isolate m2c2 inside the square root since it will be the dominant term in a weak field approx-

imation.

H̃2 =
ch0 jπ j

−1+h00
+ c

√√√√ m2c2

−(−1+h00)
+

(
π jπ j+hi jπ iπ j

)(
−1+h00

)
+
(
h0 jπ j

)2

−(−1+h00)2

−eAµ vµ − ceA0 (775)

Factoring m2c2 out of the square root gives

H̃2 =
ch0 jπ j

−1+h00
+mc2

√√√√ 1

−(−1+h00)
+

(
π jπ j+hi jπ iπ j

)(
−1+h00

)
+
(
h0 jπ j

)2

−(−1+h00)2 m2c2

−eAµ vµ − ceA0 (776)

For weak fields and low velocities, the contents of the square root will satisfy

(
π jπ j+hi jπ iπ j

)(
−1+h00

)
+
(
h0 jπ j

)2

−(−1+h00)2 m2c2
<<

1

−(−1+h00)
(777)

or simplifying, (
π jπ j+hi jπ iπ j

)(
−1+h00

)
+
(
h0 jπ j

)2

(−1+h00)m2c2
<< 1 (778)
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A binomial approximation to first order can be applied since any second order terms will involve π4 which

is beyond the non-relativistic limit considered here. The binomial approximation74 leads to the Hamiltonian

becoming

H̃2
(weak f ield,

low velocity)

=
ch0 jπ j

−1+h00
− eAµ vµ − ceA0

+mc2

[
1

−(−1+h00)
+

1

2

((
π jπ j+hi jπ iπ j

)(
−1−h00

)
+
(
h0 jπ j

)2

−(−1+h00)2 m2c2

)]
(779)

Multiplying out terms gives

H̃2
(weak f ield,

low velocity)

=
ch0 jπ j

−1+h00
− mc2

−1+h00
+

π jπ j+hi jπ iπ j+π jπ jh
00+hi jπ iπ jh

00+
(
h0 jπ j

)2

2m(−1+h00)2

−eAµ vµ − ceA0 (780)

We can use a series expansion to eliminate the denominators involving −1+ h00. Note that in using the

binomial approximation in (778) we only kept terms up to order (hµν)2 hence we can only keep terms of

order
(
h00
)2

in the series expansion.

1

−1−h00
≈−1+h00+

(
h00
)2

(781)

We also need 1/
(
−1+h00

)2
which becomes

1

(−1−h00)2
≈

[
−1+h00+

(
h00
)2
]2

≈ 1−h00−
(
h00
)2−h00+

(
h00
)2
+
(
h00
)3−

(
h00
)2
+
(
h00
)3
+
(
h00
)4

≈ 1−2h00−
(
h00
)2
+O

((
h00
)3
)

(782)

Using (781) and (782) makes the Hamiltonian in (780) become

H̃2
(weak f ield,

low velocity)

= ch0 j
π j

[
−1+h00+

(
h00
)2
]
−mc2

[
−1+h00+

(
h00
)2
]

+
1

2m

[
π

j
π j+hi j

π iπ j+π
j
π jh

00+hi j
π iπ jh

00+
(
h0 j

π j

)2
][

1−h00−
(
h00
)2
]

−eAµ vµ − ceA0 (783)

74Here we are using (a+b)1/2≈ a+ 1
2
b for b/a<< 1 where according to (777)we have a=

1

−(−1+h00)

and b=

[(
π jπ j+hi jπ iπ j

)(
−1+h00

)
+
(
h0 jπ j

)2

−(−1+h00)2 m2c2

]
.



139

Again, we may only keep terms of order (hµν)2 for consistency. Then distributing, canceling terms and

removing terms of order (hµν)3 and above gives

H̃2
(second-order)

= −ch0 j
π j+ ch00h0 j

π j+mc2−mc2h00−mc2
(
h00
)2

+
1

2m

[
π

j
π j+hi j

π iπ j+
(
h0 j

π j

)2−2
(
h00
)2

π
j
π j

]
−eAµ vµ − ceA0

To lower the metric perturbation indices, we can apply the metric. Since gµν = ηµν + hµν , then staying to

first order in the metric means we can use gµν ≈ ηµν to lower the indices. This leads to

h00 = h00, h0i =−h0i, hi j = hi j (784)

Then the Hamiltonian becomes

H̃2
(second-order)

= ch0iπ
i− ch00h0iπ

i+mc2−mc2h00−mc2 (h00)
2− eAµ vµ − ceA0

+
1

2m

[
π

j
π j+hi jπ

i
π

j+
(
h0iπ

i
)2−2

(
h00
)2

π
j
π j

]
(785)

Rearranging terms with rest-energy and kinetic energy first, and higher order terms last gives

H̃2
(second-order)

= mc2+
π jπ j

2m
+ ch0iπ

i−mc2h00−mc2 (h00)
2− ch00h0iπ

i− eAµ vµ − ceA0

−
(
h00
)2

π jπ j

m
+

(
h0iπ

i
)2

2m
+

hi jπ
iπ j

2m

Higher order “four-momentum invariant” Hamiltonian for a relativistic

electron-pair coupled to electromagnetic and gravitational fields

(786)

We can compare H̃2 in (786) with H(2nd-order) from (693) which was found to be

H
(2nd-order)

≈ mc2+
1

2m
(πk−mch0k)

2− 1
2
mc2h00− ceA0

− 1
8
mc2 (h00)

2− h00π2
k

4m
− h jkπkπ j

2m
− (h00)

2
π2

k

16m
+ ch jkh0kπ j

+

(
h0 j

)2
π2

k

4m
+

hi jhikπkπ j

2m
− xσ ∂σ h jkπkπ j

2m
+

h00h jkπkπ j

4m

(787)

We may immediately observe that H̃2 has a factor of 2 in front of −mc2h00 while H(2nd-order) has a factor of

1/2. Therefore, H̃2 does not correctly recover the Newtonian gravitational potential energy. For example, a

spherical mass M has h00 ≈−2U/c2 where U =−GM/r in the Newtonian limit. This gives h00 ≈−
2GM

c2r
.

Therefore, the Newtonian potential energy term in the Hamiltonian must be − 1
2
mc2h00 in order to obtain

− 1
2
mc2h00 =− 1

2
mc2

(
−2GM

c2r

)
=

GmM

r
(788)

as we expect. So we find that the factor of 2 rather than 1/2 in (786) violates the Newtonian limit for the

Hamiltonian.
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7.4 The Hamiltonian for particles in the presence of gravitational waves

For the purpose of describing the coupling of relativistic particles to gravitational waves, we may consider

the far-field where h00 = h0i = 0, and hi j = hττ
i j . We can see from (693) that the Hamiltonian (to first order in

hi j) becomes

Hττ = mc2+
π jπ j

2m
−

hττ
i j π iπ j

2m
− ceA0 (789)

Since π j = p j−eA j, then neglecting the electromagnetic field means Aµ = 0 and π j = p j. So the Hamiltonian

becomes

Hττ = mc2+
p j p j

2m
−

hττ
i j pi p j

2m
(790)

If we separate the free particle Hamiltonian and the interaction Hamiltonian, then H = H f ree+HT T
int where

Hττ
int =−

hττ
i j pi p j

2m
(791)

This result is similar to the interaction Hamiltonian obtained by Rothman and Boughn (RB) in equation (5.6)

of [54] and on page 8 of [55], which is a related paper by the same authors. However, there is a crucial

difference between the result in (790) and that of (RB). Here we obtained a negative sign for the interaction

Hamiltonian while RB obtained a positive sign. Below we will demonstrate that the positive sign is an error

due to the use of an approximation that was applied prematurely in the calculation. First, we provide the

detailed process that was used by RB to obtain their result. We start with the Lagrangian in (650) given as

L=−mc
(
−g00c2−2g0 jcv j−gi jv

iv j
)1/2

+ ceA0+ eAiv
i (792)

Eliminating the electromagnetic field and substituting in g00 =−1+h00 and g0i = h0i gives

L=−mc
[
−(−1+h00)c

2−2h0icv j−gi jv
iv j
]1/2

(793)

Again we consider the far-field where h00 = h0i = 0 and hi j = hττ
i j so that we have75

Lττ = −mc
(
c2−gi jv

iv j
)1/2

(794)

= −mc2
(
1−gi jv

iv j/c2
)1/2

(795)

Using a first-order binomial approximation gives(
1−gi jv

iv j/c2
)1/2 ≈ 1−gi jv

iv j/2c2 (796)

Then the Lagrangian becomes

Lττ =−mc2
(
1−gi jv

iv j/2c2
)

(797)

We can find the Hamiltonian using a Legendre transformation in terms of 3-vectors.

Hττ = pkvk−Lττ (798)

75RB refer to using the TT gauge in order to set h00 = h0i = 0 and hi j = hT T
i j , however, it is effectively the

same exact thing that we have done here. In our case, we do not need to refer to the TT gauge since we find

that in the HD formulation, hττ
i j is the only radiative field. Therefore, instead of resorting to a gauge choice,

we can simply make reference to the far-field.
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where the canonical momentum can be found from pk =
∂Lττ

∂vk
. Making us of the Lagrangian in (797) and

recognizing that
∂vi

∂vk
= δ

i
k gives

pk = −mc2
(
−gi jδ

i
kvi/2c2−gi jv

i
δ

j

k
/2c2

)
(799)

=
m

2

(
gk jv

j+gikvi
)

(800)

= mvigik (801)

Now we substitute the canonical momentum from (801) and the Lagrangian from (797) into the Hamiltonian

in (798) to obtain

Hττ = mvivkgik+mc2
(
1−gi jv

iv j/2c2
)

(802)

= mvivkgik+mc2−mgi jv
iv j/2 (803)

= mc2+mgi jv
iv j/2 (804)

Then substituting gi j = η i j+hττ
i j gives

HT T = mc2+m
(
η i j+hττ

i j

)
viv j/2 (805)

= mc2+
m

2
η i jv

iv j+
m

2
hττ

i j viv j (806)

Since η i j = 0 for i 6= j and η i j = 1 for i= j, then the second term becomes mv2/2. So we have

Hττ = mc2+ 1
2
mv2+ 1

2
mhττ

i j viv j (807)

Since the kinetic momentum and canonical momentum are the same when Ai and h0i are absent, then the

canonical momentum is just p= mv and we can write the result above as

Hττ = mc2+
p2

2m
+

hττ
i j pi p j

2m
(invalid result) (808)

This is the invalid result obtained in [54] and [55].

As stated earlier, if we compare the result in (808) with the expression in (790), we find that there is

a different sign for the coupling term. To identify the cause of this sign difference, we can return to the

derivation of the Hamiltonian provided in Section 36. There we began with the same Lagrangian given by

(650) however, we did not use the first-order binomial approximation given in (796). This approximation

effectively removes the square root in the Lagrangian and therefore changes the results obtained when taking

the derivative of the Lagrangian to find the canonical momentum.

Rather than applying such an approximation, we use the exact expression for the Lagrangian to obtain the

canonical momentum. The result obtained in (657) is πk = γm
(
cg0k+gikvi

)
. In the absence of electromag-

netic fields, π j = p j− eA j simply becomes π j = p j. Also, for the far-field limit (or equivalently, in the TT

gauge), we have g0k = 0, so we may write the canonical momentum as

pk = γmgikvi (809)

This expression is in contrast to the result obtained using the approximated approach which was found in

(801) to be

pk = mvigik (810)
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The obvious difference is the presence of γ which is defined in (656) as

γ ≡
(
−g00−

2

c
g0 jv

j− 1

c2
gi jv

iv j

)−1/2

(811)

This factor is a result of keeping the square root in the Lagrangian before taking the derivative to obtain the

canonical momentum. Again applying the TT gauge, we have g00 = −1, g0i = 0 and gi j = η ι j+ hi j. Then

the expression for γ becomes

γ =

[
1− 1

c2

(
η i j+hi j

)
viv j

]−1/2

=

(
1− v2

c2
− hi jv

iv j

c2

)−1/2

(812)

Applying a first-order binomial approximation to γ−1 gives

γ
−1 ≈ 1− v2

2c2
− hi jv

iv j

2c2
(813)

Using the canonical momentum in (809), the Hamiltonian was found in (667) to be

H =
1

γm

(
m2c2+ g̃ jk p j pk

)
− cp jg̃

jkg0k− ceA0 (814)

where g̃ik = gik−g0ig0k/g00 is the “spatial inverse metric.” Again applying the TT gauge (where g0k = 0) and

omitting electromagnetic fields makes the Hamiltonian become

Hττ =
1

γm

(
m2c2+ g̃ jk p j pk

)
(815)

In the TT gauge, we simply have g̃ jk = g jk where g jk = η jk− h jk to first order in the metric (as found in

(2415) of Appendix A). So the second term in the Hamiltonian above will become

g̃ jk p j pk =
(

η
jk−h jk

)
p j pk = p2−h jk p j pk (816)

Substituting (813) and (816) into the Hamiltonian in (815) gives

Hττ =
1

m

(
1− v2

2c2
− hi jv

iv j

2c2

)(
m2c2+ p2−h jk p j pk

)
(817)

Multiplying terms and only keeping p2 or v2 to highest order gives

Hττ =
1

m

(
m2c2+ p2−h jk p j pk−

m2v2

2
− m2hi jv

iv j

2

)
(818)

= mc2+
p2

m
− h jk p j pk

m
− mv2

2
− mhi jv

iv j

2
(819)

Lastly, substituting p= mv and combining terms gives

Hττ = mc2+
p2

2m
− hi j p

i p j

2m
(820)

This obviously matches the result stated in (790). We emphasize that this result was obtained starting

from the general Hamiltonian found in (639) which was obtained immediately after applying a Legendre

transformation. It was obtained well before the elaborate calculations and approximations of Section 37
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which were required to obtain the second-order Hamiltonian in (693). In fact, (639) was obtained even prior

to the calculation required to determine an expression for γ in (674) or the process required to reach the

general Hamiltonian in (677).

We have provided the detailed analysis here to show explicitly the point at which the calculation by

BR is in error. Specifically, we find that using the approximation in (796) to simplify the Lagrangian before

applying the Legendre transformation leads to a sign error in the coupling term of the Hamiltonian. In general,

one should only introduce approximations after applying the Legendre transformation, particularly because

the derivative of the Lagrangian could be altered by an approximation applied to the Lagrangian beforehand.

As a final observation, we note that there is a much faster way of showing how to arrive at the correct

result for the Hamiltonian in the TT gauge (or far field). We start with the general Hamiltonian obtained in

(676). Omitting electromagnetic fields and using πk = pk gives

H = c

(
g̃ jkg0 jg0k−g00

)1/2(
m2c2+ g̃ jk p j pk

)1/2

− cg̃ jkg0k p j (821)

In the TT gauge, we have g00 = −1 and g0 j = 0 so the first square root simply becomes 1 and the last term

vanishes. Applying a first-order binomial approximation to the remaining square root gives

(
m2c2+ g̃ jk p j pk

)1/2

= mc

(
1+

g̃ jk p j pk

m2c2

)1/2

≈ mc

(
1+

g̃ jk p j pk

2m2c2

)
= mc+

g̃ jk p j pk

2mc
(822)

We can substitute this into the Hamiltonian and recall that in the TT gauge, g̃ jk = g jk = η jk−h jk.

Hττ = c

[
mc+

(
η jk−h jk

)
p j pk

2mc

]
= mc2+

p2

2m
− h jk p j pk

2m
(823)

Once again, we arrive at a result that is consistent with (790).
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7.5 Summary of relativistic Hamiltonians and their quantization

The Lagrangian used by DeWitt [42] is referred to here as the “four-momentum invariant Lagrangian” L1

which is given in (627) as

L1 =−mc
√
−gµν uµ uν + eAµ uµ (824)

In Section 35, it was shown that this Lagrangian leads to a Hamiltonian, H1, that vanishes identically and

therefore does not properly represent energy. This was pointed out by Jackson in [40] (p. 585) where he

refers to Barut [44] for a discussion of some alternative formulations. This issue was also discussed by

Cognola, et al. in [45] who recognize that the Lagrangian in (627) is singular and argue that the results of

DeWitt [42] and Papini [46][47] are not valid. They begin with the same Lagrangian as DeWitt but they

arrive at a very different Hamiltonian. Then they consider the same physical system considered by DeWitt

(an axially symmetric, uniformly rotating superconductor) and show that their Hamiltonian makes different

predictions.

There is also a treatment by Bertschinger [48] who begins with L2, the “four-momentum invariant La-

grangian” found in (2857) of Appendix M. Bertschinger derives a Hamiltonian H2 in terms of four-vectors

as well as a Hamiltonian H̃2 in terms of 3-vectors. This will be examined in detail in the following sections.

However, it can be seen that Cognola, et al. also arrive at the same Hamiltonian as Bertschinger and there-

fore we may refer to H̃2 as the “Cognola-Bertschinger Hamiltonian.” It is important to note that although

Bertschinger begins with L2 in order to obtain H2 and H̃2, it can be seen that Cognola, et al. begin with

L1 (the same Lagrangian as DeWitt) and yet they still obtain the same H̃2 that Bertschinger obtains by use

of a different method. This indicates that the critical issue is not the Lagrangian that one begins with, but

rather the method one uses to obtain the Hamiltonian. This fact seems to be further supported by a paper

by Cisneros-Parra [49] which discusses the broad issue of singular Lagrangians and shows in general how to

still obtain a valid Hamiltonian using methods such as the Dirac method [50]-[52]. Specifically, in Section

5 of [49], which is titled, “5. Relativistic Lagrangians,” we find that Cisneros-Parra begins with the same

Lagrangian as L1 from (627), and then shows the reason why it is singular from the equations of motion as

well as from the determinant of the Hessian matrix of the Lagrangian:

det

∣∣∣∣∂ pi

∂ q̇i

∣∣∣∣= det

∣∣∣∣ ∂ 2L

∂qi∂q j

∣∣∣∣= 0 (825)

He then shows that it is ideal use L2 which is not singular and therefore can lead to the Hamiltonian H̃2 by

the standard Legendre transform method.

Lastly, it is stated by Bertschinger [48] that all of the Lagrangians and Hamiltonians discussed here will

to lead to the same equations of motion. This is shown in detail in Appendix M. Therefore, they are all

adequate for describing the classical dynamics of relativistic electron-pairs in electromagnetic and gravita-

tional fields. However, the reason we scrutinize the distinctions between the various Lagrangians, and more

importantly the various Hamiltonians, is because we are interested in promoting the Hamiltonian and canon-

ical momentum to quantum operators in order to describe the quantum dynamics of electron-pairs interacting

with electromagnetic and gravitational fields.

In order to promote canonical quantities to quantum operators, we must insure that they possess the

necessary characteristics that warrant this procedure. This is issue is discussed in another important paper by

Castellani, et al. [53] which investigates the canonical quantization rule proposed by Dirac,

{ }∗qp =⇒
1

i}
[ ] (826)

where the classical Poisson brackets of q, p (the canonical conjugate quantities) become quantum commuta-

tors. We therefore conclude that either Lagrangian L1 or L2 can be used to describe the physical system of a

charged, spinless particle in the presence of an electromagnetic field in curved space-time. However, if L1 is
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used, then it is critical to recognize that it is singular and hence great care must be taken when determining

the Hamiltonian. Using the standard Legendre transformation leads to “DeWitt’s general Hamiltonian,” H̃1,

which has been found to be flawed. (Although, in the weak field, low velocity limit, it is found to be valid

since it matches the correct result.)

However, it is clear that using L2 is simpler choice since it is non-singular and leads to a non-vanishing,

fully covariant Hamiltonian, H2, which exhibits the invariance of the rest-mass energy, mc2. It is also ideal to

use L2, which when reparameterized into a function of 3-vectors, L̃2, leads to the correct expression for the

Hamiltonian given by H̃2. This Hamiltonian is then found to be the time-like component of the momentum

four-vector (the frame-dependent energy) which is an appropriate physical interpretation for the Hamiltonian

as a function of 3-vectors. The expression found for H̃2 is in fact the correct Hamiltonian for the purpose of

promoting the Hamiltonian and canonical momentum to quantum operators in order to describe the quantum

dynamics of Cooper pairs interacting with electromagnetic and gravitational fields.



8 The quantized Hamiltonian,

stress tensor, and

coupling rules
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8.1 Overview of the quantized Hamiltonian and stress tensor

In the sections that follow, the framework of gravito-electromagnetism is applied to various quantum

mechanical systems. First is the development of a Lagrangian a non-relativistic charged particles in electro-

magnetic and gravito-electromagnetic fields (to first post-Newtonian order). The canonical momentum and

associated coupling rule is found from the Lagrangian. The classical Hamiltonian is also developed and then

quantized to obtain a modified Schrödinger equation.

Next we consider the Hamiltonian for a fully relativistic charged particle and develop a similar expression

for the canonical momentum and the associated coupling rule. Extending the discussion of coupling rules, we

then identify the lowest order scalar, vector, and tensor coupling rules and show that they are manifestations

of the four-momentum invariance. We also consider the case of quantum particles in a zero-momentum state

(where the canonical momentum is zero).

We also consider a quantized ideal fluid stress tensor developed by promoting all the momenta using the

usual momentum operator while keeping the mass density and pressure as macroscopic quantities rather than

eigen-valued operators. We briefly discuss an interpretation of the resulting stress tensor components and

then develop quantum wave equations using the linearized conservation law for the stress-energy-momentum

tensor. These quantum wave equations are found to be Schrödinger-like equations which have corresponding

dispersion relations. We examine the limit of an ideal gas as well as a quantum system of completely non-

interacting particles in a zero-momentum state. We find that a Cooper-pair superfluid can still exert a pressure

while remaining in a superconductive state. Using these results, we develop field equations describing the

response of a superconductor to external gravitational fields consisting of the gravito-electric field, gravito-

magnetic field, and gravitational wave strain fields.
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8.2 The quantized Hamiltonian for non-relativistic charged particles

Here we develop the non-relativistic Lagrangian for a charged particle in an electromagnetic field as well

as a gravito-electromagnetic field. The Euler-Lagrange equation of motion can be written as

∇L− d

dt
(∇~vL) = 0 (827)

where ∇~v is the gradient with respect to ~v. To determine the Lagrangian, we must match this result to the

equation of motion obtained from Newton’s Second law applied to the sum of the electromagnetic Lorentz

force and gravitational Lorentz force.76

q

(
~E+~v×~B

)
+m(~Eg(PN)+~v×~Bg(PN)) = m~a (828)

We can write the electromagnetic fields in terms of potentials,

~E =−∇ϕ−∂t
~A and ~B= ∇×~A (829)

as well as the gravito-electromagnetic fields in terms of their potentials,

~Eg(PN) = −∇ΦN−∂t
~h and ~Bg(PN) = ∇×~h (830)

Substituting the fields from (829) and (830) into (828) gives

q

[
−∇ϕ−∂t

~A+~v×
(

∇×~A
)]
+m

[
−∇ΦN−∂t

~h+~v×
(

∇×~h
)]

= m
d~v

dt
(831)

Applying the identity~a×
(
~b×~c

)
=~b(~a ·~c)−

(
~a ·~b

)
~c in both brackets gives

q

[
−∇ϕ−∂t

~A+∇

(
~v ·~A

)
− (~v ·∇)~A

]
+m

[
−∇ΦN−∂t

~h+∇

(
~v ·~h

)
− (~v ·∇)~h

]
= m

d~v

dt
(832)

Rearranging terms gives

q

{
−∇ϕ+∇

(
~v ·~A

)
−
[
(~v ·∇)~A+∂t

~A
]}

+m

{
−∇ΦN+∇

(
~v ·~h

)
−
[
(~v ·∇)~h+∂t

~h
]}

= m
d~v

dt
(833)

It is helpful to recognize that the full time derivative of ~A can be written using the chain rule as

d~A

dt
=

∂~A

∂x

∂x

∂ t
+

∂~A

∂y

∂y

∂ t
+

∂~A

∂x

∂ z

∂ t
+

∂~A

∂ t
(834)

d~A

dt
= (~v ·∇)~A+∂t

~A (835)

76For the gravitational part of this force equation, we are essentially using the geodesic equation of motion

given by (508) for the first-order post-Newtonian limit with a non-relativistic test mass. As discussed in

Section 26, the equation of motion in this limit is gauge-dependent and requires that ∇ ·~h = 0 where ~h =
c(h01,h02,h03). We are also using ~Eg(PN) =−∇ΦN−∂t

~h and ~Bg(PN) = ∇×~h as stated in (830).



149

Likewise, for the full time derivative of~h we have

d~h

dt
= (~v ·∇)~h+∂t

~h (836)

Substituting (835) into the first bracket of (833) and substituting (836) into the second bracket of (833) gives

q

[
−∇ϕ+∇

(
~v ·~A

)
− d~A

dt

]
+m

[
−∇ΦN+∇

(
~v ·~h

)
− d~h

dt

]
= m

d~v

dt
(837)

Now we distribute the q and m, then collect terms that have ∇ and terms that have
d

dt
.

∇

[
−qϕ+q

(
~v ·~A

)
−mΦN+

(
~v ·~h

)]
− d

dt

(
q~A−m~h−m~v

)
= 0 (838)

Lastly, we can make use of the following expressions.

m~v = ∇~v

(
1

2
m~v2

)
, ~A= ∇~v

(
~v ·~A

)
, ~h= ∇~v

(
~v ·~h

)
(839)

Substituting these into (838) gives

∇

[
−qϕ+q

(
~v ·~A

)
−mΦN+

(
~v ·~h

)]
− d

dt
∇~v

[
q

(
~v ·~A

)
+m

(
~v ·~h

)
− 1

2
m~v2

]
= 0 (840)

Matching this equation of motion with the equation of motion in (827) requires that the Lagrangian is given

by

L= 1
2
m~v2−qϕ+q

(
~v ·~A

)
−mΦN+m

(
~v ·~h

)
(841)

This is the Lagrangian for a non-relativistic charged particle in electromagnetic and gravito-electromagnetic

fields. In general, L = T −V so we see here that the kinetic energy is 1
2
mv2, the electromagnetic potential

energy is q

[
ϕ−

(
~v ·~A

)]
, and the gravitational potential energy is m

[
ΦN−

(
~v ·~h

)]
.

Next, the canonical momentum can be found using ~pcan =
∂L

∂v
which gives

~pcan = m~v+q~A+m~h (842)

This means that m~v= ~pcan−q~A+m~h so the potentials ~A and~h cause the canonical momentum to transform

as

~pcan =⇒ ~pcan−q~A−m~h (843)

This is the coupling rule for the momentum of a non-relativistic charged particle in a magnetic and gravito-

magnetic field (to first post-Newtonian order). Note that because the coupling rule involves ~h = ~β , not

~Ξ = ~β −
·
~ε , then the coupling rule is gauge-dependent. We can apply a Legendre transformation to find the

Hamiltonian, H =~v ·~pcan−L. Using (842) for ~pcan gives

H = ~v ·
(

m~v+q~A+m~h
)
−
[

1

2
m~v2−qϕ+q

(
~v ·~A

)
−mΦN+m

(
~v ·~h

)]
(844)

=
1

2
m~v2+qϕ+mΦN (845)
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From (842) we also have m~v= ~pcan−q~A−m~h. Substituting this into the Hamiltonian gives77

H = 1
2m

(
~pcan−q~A−m~h

)2

+qϕ+mΦN (846)

We can promote the Hamiltonian and canonical momentum to operators using p̂can = −i}∇ and Ĥ = i}∂t .

Then acting the Hamiltonian on a wavefunction, Ψ(~r, t), gives

i}∂tΨ(~r, t) =

[
1

2m

(
−i}∇−q~A−m~h

)2

+qϕ+mΦN

]
Ψ(~r, t) (847)

This is the Schrödinger equation for a non-relativistic charged particle in an electromagnetic and gravito-

electromagnetic (first-order post-Newtonian) fields.

77We could also arrive at this result by assuming the Hamiltonian is the total energy, H = T +V with

T = m~v2/2 and V = qϕ +mΦPN . Then substituting (842) would lead to the same Hamiltonian we have in

(846).
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8.3 The Hamiltonian for relativistic charged particles

In (2863) of Appendix M, it is shown that the Lagrangian for relativistic electron-pairs coupled to an

electromagnetic field, Aµ , in curved space-time is78

L=−mc
√
−gµν ẋµ ẋν + eAµ ẋµ (848)

where xµ is parameterized in terms of the coordinate time t, rather than proper time τ . This leads to the

Hamiltonian found in (677) as

H = c

(
g̃ jkg0 jg0k−g00

)1/2 [
m2c2+ g̃ jk (p j− eA j)(pk− eAk)

]1/2
− cg̃ jkg0k (p j− eA j)− ceA0 (849)

with the “spatial inverse metric” given by

g̃ik = gik− g0ig0k

g00
where g̃ikg jk = δ

i
j and g̃ikg0k = δ

k
i g0k = g0i (850)

The weak-field, low-velocity Hamiltonian that is second order in hµν , in (v/c), and also in products of

hµν and (v/c) is found in (194) to be

H
(2nd-order)

≈ mc2+
1

2m
(πk−mch0k)

2− 1
2
mc2h00− ceA0− 1

8
mc2 (h00)

2− h00π2
k

4m
− h jkπkπ j

2m

− (h00)
2

π2
k

16m
+ ch jkh0kπ j+

(
h0 j

)2
π2

k

4m
+

hi jhikπkπ j

2m
− xσ ∂σ h jkπkπ j

2m
+

h00h jkπkπ j

4m

(851)

We also show that a Hamiltonian that is second order in hµν and (v/c) but first order in any products of hµν

and (v/c) gives

H
(2nd-order)

≈ mc2+
1

2m
(πk−mch0k)

2− 1

2
mc2h00− ceA0−

1

8
mc2 (h00)

2
(852)

We can substitute the gauge-dependent vector potential,~h= c(h01,h02,h03), the kinetic momentum in terms

of the canonical momentum,~π = ~p− e~A, and the metric component h00 =−2φ/c2 to obtain

H
(2nd-order)

≈ mc2+
1

2m

(
~p− e~A−m~h

)2

+mφ − ceA0−
1

2c2
mφ

2 (853)

From this we see that the potentials ~A and~h cause the canonical momentum to transform as

~p =⇒ ~p− e~A−m~h (854)

This is the first-order coupling rule for a non-relativistic charged particle in an electromagnetic and gravito-

electromagnetic field. As expected, this matches the result obtained in (843) which was derived using a

completely non-relativistic approach.

78We are using e as a positive quantity in this expression.
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8.4 Coupling rules and the “canonical velocity”

Here we consider the minimal coupling rules in terms of electromagnetic fields so that the kinetic mo-

mentum, π i = pi− eAi just becomes the canonical momentum, π i = pi. From (851), we see that to lowest

order in h00, we have

H ∼ mc2− 1

2
mc2h00 (855)

This implies that introducing the scalar potential, h00, leads to the following scalar minimal coupling rule.

mc2 =⇒ mc2− 1
2
mc2h00 (856)

Again from (851), we find that to lowest order in h0i and pi, we have

H ∼ 1

2m
(pi−mch0i)

2
(857)

This implies that introducing the vector potential, h0i, leads to the following vector minimal coupling rule.

pi =⇒ pi−mch0i (858)

Lastly, from (851), we find that to lowest order in hi j and pi we have79

HT T ∼ p2

2m
− hi j p

i p j

2m
(859)

This implies that introducing the tensor potential, hi j, leads to the following tensor minimal coupling rule.

p2 =⇒ p2− pi p jhi j (860)

In (801), we found that in the far-field80, where h00 = 0, h0i = 0, and hi j = hττ
i j , the canonical momentum is

shown to be p j = mvigi j. If we substitute gi j = η i j+hττ
i j , then we have

p j = mv j+mvihττ
i j (861)

This expression implies that we could have a tensor coupling given by p j =⇒ p j− pihi j. However, notice

that there is no term in the Hamiltonian in (851) that involves pihi j. In fact, because the Hamiltonian is a

scalar, then expressions like (861) could only appear squared in the Hamiltonian, such as we have for (858).
However, we also do not find terms associated with the square of (861) in the Hamiltonian. Therefore, since

we only find pi p jhi j in the Hamiltonian, then we conclude that the tensor coupling rule can only be in terms

of p2 and is not expressed as

p j ; p j+ pihi j (862)

79In Appendix G we point out that some papers such as [54] and [55] obtain a Hamiltonian that has a

positive sign in front of the coupling term. However, in Section 39 we show in detail that this positive sign is

an approximation error and the sign should in fact be negative as used here.

80As shown in (361), we find that Φ,Θ, and Ξi satisfy Poisson equations while hT T
i j satisfies a wave

equation. Therefore we know that in the far-field, all the metric components producing non-radiative fields

will fall off as 1/r2 while hT T
i j , which is a radiative field, will fall off as 1/r.
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In summary, we conclude that to lowest order in hµν and pµ , we have the following coupling rules (or

canonical transformations) for the scalar, vector, and tensor potentials.

Scalar transformation mc2 =⇒ mc2− 1
2
mc2h00 (863)

Vector transformation pi =⇒ pi−mch0i (864)

Tensor transformation p2 =⇒ p2− pi p jhi j (865)

Notice here that that h00 couples to the mass and transforms the rest energy, mc2, while h0i couples to the

mass but transforms the momentum, pi, and lastly hi j couples to the momentum but transforms the kinetic

energy, p2. This result is consistent with the mass-energy-momentum invariant, E2 = m2c4+ p2c2, where

m is transformed by h00, while ~p is transformed by h0i, and lastly p2 is transformed by hi j. We can also

argue these relationships by considering the four-momentum invariant quantity given by pµ pµ = gµν pµ pν .

Expanding the metric gives

pµ pµ = g00

(
p0
)2
+2g0i p

0 pi+gi j p
i p j (866)

Expressing the metric as a perturbation to flat Minkowski space-time gives

pµ pµ = (−1+h00)E
2/c2+2h0i

E

c
pi+

(
η i j+hi j

)
pi p j (867)

On the right we substitute E2/c2 = p2+m2c2.

pµ pµ = (−1+h00)
(

p2+m2c2
)
+2h0i p

i
√

p2+m2c2+
(
η i j+hi j

)
pi p j (868)

= −p2−m2c2+h00 p2+h00m2c2+2h0i p
i
√

p2+m2c2+ p2+hi j p
i p j (869)

= −m2c2+h00 p2+h00m2c2+2h0i p
i
√

p2+m2c2+hi j p
i p j (870)

Expanding the square root to first order gives

√
p2+m2c2 = mc

√
1+ p2/m2c2 ≈ mc

(
1+

1

2

p2

m2c2

)
= mc+ 1

2
p2/mc (871)

Substituting this into (870) and dropping the rest energy term gives

pµ pµ = h00 p2+h00m2c2+2h0i p
i
(
mc+ 1

2
p2/mc

)
+hi j p

i p j (872)

Keeping only the lowest order of pµ for each metric component h00, h0i, hi j and dividing through by −2m

gives

−
pµ pµ

2m
=

1

2
mc2− 1

2
h00mc2−h0i p

ic− hi j p
i p j

2m
(873)

The three interaction terms are the exact three couplings that we find in (863)− (865). Specifically, we find

that to lowest order in hµν and pµ , we have the scalar potential coupling to the mass, the vector potential

coupling to the momentum, and the tensor potential coupling to the kinetic energy.

The following are some observations concerning the coupling rules found here.

• We can define a “canonical velocity” using ~pcan = m~v
can

. Writing the vector coupling in terms of the

“canonical velocity” gives m~vcan = m~v−m~h. Then the “canonical velocity” is simply

~vcan =~v−~h (874)
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For a quantum particle in a zero-momentum state (where the canonical momentum is zero), then~vcan =
0 and we simply have

~v=~h for pcan = 0 (875)

In the case of the tensor coupling, using the “canonical velocity” we would write the coupling rule as

m2v2
can = m2v2−m2viv jhi j. Then the “canonical velocity” is

v2
can = v2− viv jhi j (876)

For a quantum particle in a zero-momentum state (where the canonical momentum is zero), then~vcan =
0 and we have

v2 = viv jhi j for pcan = 0 (877)

• We can also quantize the couplings found in (863)− (865) by using Ê = i}∂t and p̂ = −i}∇. Doing

this gives

Scalar transformation Ê = i}∂t =⇒ i}∂t − 1
2
mc2h00 (878)

Vector transformation p̂ = −i}∇ =⇒ −i}∇−mh0i (879)

Tensor transformation p̂2 = −}2
∇

2 =⇒ −}2
∇

2− pi p jhi j (880)

Notice that there is an ambiguity when substituting these relations into E2 = m2c4+ p2c2. We may

wonder whether to use (879) or (880). If we use (879), then we obtain(
i}∂t −mc2h00

)2
= m2c4+ c2 (−i}∇−mh0i)

2
(881)

On the other hand, if we use (880), then we obtain(
i}∂t −mc2h00

)2
= m2c4− c2}2

∇
2− c2 pi p jhi j (882)

For this reason, it is clear that the best approach is to begin with the four-momentum invariant quantity

given by pµ pµ = gµν pµ pν and then expand the metric to obtain the result found in (866). In that

result, we find that both h0i and hi j appear.

• The difference between (864) and (865) implies that there is an important difference between a Meiss-

ner effect for the vector potential and a Meissner effect for the tensor potential (associated with gravi-

tational waves). In formulating a Meissner effect for the tensor potential, we can not use the standard

magnetic Meissner effect formulation (where pi =⇒ pi−eAi) as a model because the magnetic effect

involves a vector transformation. Therefore, unlike DeWitt [42], we don’t have the luxury of simply

saying, “All of the apparatus of the BCS theory may be applied to this Hamiltonian, with the result that

the Meissner effect implies the vanishing of the vector

~G=
(

e∇×~A
)
+
(

m∇×~h
)

(883)

inside the superconductor.” Notice that DeWitt does not go into the details of why we can simply

treat the Lense-Thirring field like we do the magnetic field for a superconductor, although the logic is

certainly reasonable. It relies on the strong similarity between the magnetic field and the Lense-Thirring

field due to both of them being rotational vector fields. This similarity is especially compelling since
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the Cooper pairs carry charge and mass and therefore the Cooper-pair current must generate both a

magnetic field and a gravito-magnetic (Lense-Thirring) field.81

Since the magnetic field and the gravito-magnetic field are vector fields, it is reasonable to com-

pare them in an effort to determine the behavior of the gravito-magnetic field inside a superconductor.

In fact, because the magnetic case has been studied and modeled extensively (by use of the London

equations, the Ginzburg-Landau formulation, and ultimately the BCS theory), it is possible for us to

have some intuition concerning the response of the superconductor to a gravito-magnetic field. At

the very least, we know that there must be either a diamagnetic effect (which is taken to the extreme

limit with the Meissner effect) or there must be a paramagnetic effect (which would be essentially the

opposite of a Meissner-like effect).

However, for the case of gravitational waves which have a tensor nature, we do not have an

electromagnetic analog that can be used as a starting place for understanding the response of the su-

perconductor. As a result, we must attempt to formulate an analog to the London equations (as shown

in Part XII. of this paper) or we must even directly employ the BCS theory to demonstrate that tensor

fields are expelled from superconductors. Specifically, we must determine how the coupling rule given

for hi j in (865) would apply.

• We have derived coupling rules using a Hamiltonian formulation for massive, scalar particles in curved

space-time. It is also possible to derive coupling rules using other formulations such as those shown by

Speliotopoulos and Chiao in [60]− [62].

81It should be noted that there is a subtle but very important difference between the magnetic field and the

gravito-magnetic (or Lense-Thirring). The gravitational Ampere law in (361) contains a negative sign that

does not appear for the electromagnetic Ampere law. It is shown in a later section that this negative sign

changes the associated gravitational London equations and consequently does not lead to a penetration depth

or Meissner-like effect.



156

8.5 The quantized ideal fluid stress tensor

The ideal fluid stress tensor is given by

T
µν

(ideal f luid)
=
(
ρ+P/c2

)
uµ uν +Pgµν (884)

where uµ is the four-velocity and P is the pressure. Terms of order hµν T σρ can be neglected so that there

is no self-coupling of the source (T µν) with its own gravitational field (hµν). Then the components of the

stress tensor can be written as82

T 00 = ρc2 (885)

T 0i =
(
ρ+P/c2

)
cvi (886)

T i j =
(
ρ+P/c2

)
viv j+Pη i j (887)

For simplicity, the case of a uniform mass density can be considered so that ρ =M/V , where M is the total

mass, and V is the total volume of the material described by the stress tensor. If the material is composed of

N quantum particles, each of mass m0, then M = Nm0 and therefore

ρ =
Nm0

V
(888)

Substituting this mass density into the stress tensor components above gives

T 00 =
Nm0c2

V
(889)

T 0i =

(
N

V
+

P

m0c2

)
cm0vi (890)

T i j =

(
N

m0V
+

P

m2
0c2

)
m2

0viv j+Pη i j (891)

The usual quantization method can be applied in order to promote the stress tensor to a quantum mechan-

ical operator. Since there is no minimal coupling involved here, then the kinetic momentum and canonical

momentum are the same, m0~v = ~pcan. Then quantizing the canonical momentum gives the usual gradient

operator, p̂i = −i}∂i. In this context, the mass density and pressure can be simply considered numerical

parameters. (This choice will be discussed further in a later section.) The quantized stress tensor components

are therefore

T̂ 00 =
Nm0c2

V
(892)

T̂ 0i = −i}c

(
N

V
+

P

m0c2

)
∂i (893)

T̂ i j = − }
2

m0

(
N

V
+

P

m0c2

)
∂i∂ j+Pη i j (894)

To simplify these expressions, the following constant can be defined

n ≡ N

V
+

P

m0c2
(895)

82To first order in the metric, upper and lower spatial indices are effectively the same.
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Inserting (888) and (895) into the stress tensor components gives the following “semi-classical” stress tensor

components.

T̂ 00 = ρc2, T̂ 0i =−icn}∂i, T̂ i j =−n}2

m0

∂i∂ j+Pη i j (896)

Below are some observations concerning these quantized stress tensor components.

• Each component of the stress tensor has a different mathematical classification. T̂ 00 is simply a numer-

ical parameter, T̂ 0i is a vector quantum operator, and T̂ 0i is a tensor quantum operator. The physical

significance of these mathematical properties will be discussed in a later section.

• T̂ 00 is just a numerical parameter since it consists of only the mass density of the system which is con-

sidered here to be a classical value, not subject to the quantum state of the system. It is not considered

an “observable” in the quantum mechanical sense because it does not have an operator and eigenvalues

associated with it. As an alternative, one may choose to treat the mass density as well as the pressure

as linear operators with corresponding eigenvalues such that

ρ̂Ψ= ρΨ and P̂Ψ= PΨ (897)

This choice increases the complexity of the information that must be provided by the state of the

system and opens the possibility of superposition states for the mass density, the pressure, and the

momentum. However, in this treatment, the simpler choice was made to consider the pressure to be

effectively a classical, macroscopic quantity (perhaps given by classical electromagnetic interactions of

the particles). The mass density is also considered to be a classical, macroscopic quantity given simply

in terms of the volume of the material, the number of particles making up the material, and the mass

of each particle, as shown in (888). This means that the wave function only needs to give information

concerning the momentum-state of the particles.

• The T̂ 0i component plays a similar role to the standard momentum operator in standard quantum me-

chanics. However, the factor of n has the units of number volume density (the number of particles per

unit volume). It is interesting to note from (895) that n is also directly affected by the pressure. This

might be physically interpreted as the pressure being an effective increase (or decrease) in the density

of quantum particles in the system. In other words, when the pressure is increased (or decreased) due

to an external field or internal particle interactions, it is equivalent to having a number of quantum

particles added (or removed) from the volume of the system. However, since P is divided by m0c2,

then this pressure only becomes significant when it is on the order of the rest mass energy of a quantum

particle.

• The T̂ i j component plays a similar role to a kinetic energy operator. However, its tensor nature is

obviously unique. Specifically, the two derivatives with differing indices form a quantum operator not

normally found in quantum mechanics. Note that along the diagonal, (where i= j), the stress becomes

T̂ ii =−n}2

m0

∇
2+P (898)

This expression bears a further resemblance to the kinetic energy operator. However, the factor of n

in front and the additional term involving the pressure indicates that the operator is again affected by

the particle number density as well as the pressure in the system. In this case we find that the pressure

plays a more critical role since it doesn’t appear only in n (where it suppressed by a factor of c2) but

it also appears as an additional scalar term. This result in contrast to the off -diagonal elements of T̂ i j

which are given by

T̂
i j

(i 6= j)
=−n}2

m0

∂i∂ j (899)

In this case, the additional scalar pressure term does not appear and the kinetic energy is due to stresses

(the product of orthogonal momenta).This is an aspect of continuum mechanics which does not nor-

mally appear in a quantum mechanical context.
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• To enforce symmetry of the stress tensor, the only allowable wavefunction solutions are those for which

the operators ∂i and ∂ j commute. If these operators do not commute (that is, switching the order of

differentiation gives a different result), then the stress tensor will no longer be symmetric. Fortunately,

the vast majority of functions satisfy this condition regardless.

• An expression similar to T̂ i j appears in equation (4.4) of [55] where they write an interaction Hamil-

tonian in terms of the metric perturbation and stress tensor as83

HI =
1

2
hµν T µν (900)

They proceed to quantize the stress tensor and apply it to the case of gravitational waves where they

obtain a result which is effectively a simple harmonic oscillator. Also, in equation (5.6) of [54], which

is a similar paper by the same authors, the interaction Hamiltonian is written more explicitly as an

operator with the following form

HI =
}2

2m
h jk

∂

∂x j

∂

∂xk

(901)

This serves as an example of another case where the classical stress can be formulated into a quantum

mechanical tensor operator similar to T̂ i j given in (896).

• To describe the gravitational fields of the system, it will be necessary to apply a semi-classical equation

for gravity such as

Gµν = κ 〈Ψ| T̂µν |Ψ〉 (902)

This introduces difficulties since the Einstein tensor is a non-linear function of the metric while the

wave function and all operators obey standard linear quantum mechanical commutation relations. If

one uses a semi-classical version of linearized General Relativity, such as

�h̄µν =−2κ 〈Ψ| T̂µν |Ψ〉 (903)

(which is in terms of the trace-reversed metric perturbation in the harmonic gauge), or a semi-classical

equation for gravity in the Newtonian limit, such as

∇
2
ΦN = 4πG〈Ψ| T̂00 |Ψ〉 (904)

there is still a problem with interpreting the meaning of a quantum measurement. In the common

Copenhagen viewpoint, the effectively instantaneous “collapse” of the wave function upon making a

quantum measurement will introduce a discontinuity in the gravitational field as it correspondingly

“collapses” from a superposition state to a measured state.84

This indicates that the mathematical and conceptual roadblocks of formulating field equations

using the quantized fluid stress tensor could make the quantized stress tensor unpractical. Nevertheless,

for the purpose of describing a Cooper pair superfluid, it will be shown in the next section that the

quantized stress tensor can be used to formulate quantum dispersion relations. These relations reveal

what conditions must be imposed on the stress tensor to satisfy the fact that the Cooper pairs are in a

zero-momentum eigenstate. It is found that this requires the pressure terms in the stress tensor to vanish.

Also, in a later section it is shown that setting the expectation value of the canonical momentum to zero

for a superconductor makes it possible to couple the gravitational field to the kinetic momentum and

hence express the stress tensor as a classical stress tensor. Then it is possible to return to describing

the superfluid using General Relativity and hence to describe the resulting gravitational fields.

83Note that for the case of non-interacting particles, the stress tensor is T µν = ρuµ uν and the Lagrangian

is found to be identical to the Hamiltonian as given in (900). To show this, the Lagragian, L = 1
2
hµν ρuµ uν ,

can be used to find the canonical momentum, p
µ
can = ∂L/∂uµ = hµν ρuµ uν . Then the Hamiltonian is H =

uµ pµ −L= 1
2
hµν ρuµ uν which is identical to the Lagrangian.

84For more discussion of these topics, see Wald [57], (pp. 382-383, 410-411).
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8.6 Matter wave equations for the quantized ideal fluid stress tensor

The linearized conservation law for the stress-energy-momentum tensor is given by

∂
ν Tµν = 0 (905)

Summing over ν gives

∂
0Tµ0+∂

iTµi = 0 (906)

For µ = 0 we have the following mass-momentum continuity equation.

∂
0T00+∂

iT0i = 0 (907)

Inserting T 00 and T 0i from (896) gives85

− 1
c
∂t

(
ρc2
)
+∂i (icn}∂i) = 0 (908)

−ρ∂t + in}∇
2 = 0 (909)

Multiplying through by −i}/ρ and acting on a wavefunction, Ψ(~x, t), gives

i}∂tΨ(~x, t) =−
n

ρ
}2∇

2
Ψ(~x, t) First wave equation (910)

This is effectively a time-dependent “Schrödinger-like equation” for a quantum fluid. Notice that the only

difference between (910) and the Schrödinger equation is a factor of n/ρ replacing the usual factor of 1/2m.

Therefore, it is expected that the dispersion relation from the Schrödinger equation86
(
ω = }k2/2m

)
will

likewise have 1/2m replaced with n/ρ . To show this explicitly, a plane wave solution can be used which is

given by Ψ(~x, t) = Aei(~k·~x−ωt). This leads to(
ω}− n

ρ
}2k2

)
Ψ(~x, t) = 0 (911)

This equation is satisfied when Ψ(~x, t) = 0 or when

(
ω}− n

ρ
}2k2

)
= 0. Solving for ω leads to the following

dispersion relation.

ω =
n}
ρ

k2 First dispersion equation (912)

Returning to (906) and letting µ = i gives a momentum-stress conservation equation.

∂
0Ti0+∂

jTi j = 0 (913)

85Recall from Section 25 that if we neglect the self-coupling of the gravitational field back on the sources,

then we neglect hµν T ρσ and therefore we raise and lower indices using gµν ≈ ηµν . This means that T 00 =

T00, T 0i =−T0i, and T i j = Ti j.

86The dispersion relation for the Schrödinger equation is easily found by simply inserting E = }ω and

p= }k into E = p2/2m which gives ω = }k2/2m.
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Inserting T 0i and T i j from (896) gives

−1

c
∂t (icn}∂i)+∂ j

(
−n}2

m0

∂i∂ j+Pη i j

)
= 0 (914)

−in}∂i∂t −
n}2

m0

∇
2
∂i+

(
η i j∂ jP+P∂i

)
= 0 (915)

If the pressure within the material remains uniform, then ∂ jP= 0 which gives

−in}∂i∂t =

(
n}2

m0

∇
2−P

)
∂i (916)

Allowing this expression to act on a wavefunction, Ψ(~x, t), gives

−in}∂i∂tΨ(~x, t) =

(
n}2

m0

∇
2−P

)
∂iΨ(~x, t) Second wave equation (917)

This is an additional time-evolution wave equation which also describes the quantum ideal fluid. Note that

for a given quantum state of the quantum ideal fluid, the wave function describing the state, Ψ(~x, t), must

simultaneously satisfy the wave equation in (910) as well as the wave equation in (917). Once again, a plane

wave solution given by Ψ(~x, t) = Aei(~k·~x−ωt) leads to

−in}(ik)(−iω)Ψ(~x, t) =

(
n}2

m0

(ik)2−P

)
(ik)Ψ(~x, t) (918)

−n}kωΨ(~x, t) =

(
−n}2

m0

k2−P

)
kΨ(~x, t) (919)

(
n}kω− n}2

m0

k3−Pk

)
Ψ(~x, t) = 0 (920)

This equation is satisfied when Ψ(~x, t) = 0 or when

(
n}kω− n}2

m0

k3−Pk

)
= 0 which gives

kω− }
m0

k3− P

n}
k = 0 Second dispersion equation (921)

Note that k = 0 is a solution to (921). For k 6= 0, it is possible to divide through by k which gives

ω =
}

m0

k2+
P

n}
for k 6= 0 (922)

It is also possible to substitute (912) into (921) to obtain

n}
ρ

k3− }
m0

k3− P

n}
k = 0 (923)

(
m0n−ρ

ρm0

)
n}2k3−Pk = 0 (924)
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Again, k = 0 is a solution. For k 6= 0, it is possible to divide through by k to obtain

k2 =
Pρm0

n}2 (m0n−ρ)
for k 6= 0 (925)

Now substituting this result into (922) gives

ω =
Pρ

n}(m0n−ρ)
+

P

n}
(926)

ω =
Pρ+P(m0n−ρ)

n}(m0n−ρ)
(927)

ω =
Pm0

}(m0n−ρ)
for k 6= 0 (928)

From (925) and (928), it is found that k and ω can each be expressed independently in terms of the

macroscopic bulk properties ρ,P,V and the microscopic quantity m0. (Recall that n is given in (895) in

terms of ρ,V,m0 and P.) This means that the quantum wave dispersion relationship in (922) is really

a relationship between the macroscopic bulk properties of the material. From (910) it was found that

∂tΨ(~x, t) =
in}
ρ

∇
2
Ψ(~x, t). Inserting this into (917) results in a single, combined time-evolution equation.

n2}2

ρ
∂i∇

2
Ψ(~x, t) =

(
n}2

m0

∇
2−P

)
∂iΨ(~x, t) (929)

[
n}2

(
n

ρ
− 1

m0

)
∇

2+P

]
∂iΨ(~x, t) = 0 (930)

[
n}2

(
m0n−ρ

ρm0

)
∇

2+P

]
∂iΨ(~x, t) = 0 Combined time-evolution equation (931)

This single equation combines the results from both (910) and (917). Unlike the “Schrödinger-like equations”

in (910) and (917), the equation in (931) is no longer a wave equation since it contains only spatial derivatives

and no time derivatives. It also does not contain any imaginary terms and therefore is not a complex equation.

Inserting a plane wave solution given by Ψ(~x, t) = Aei(~k·~x−ωt) into (931) gives[
n}2

(
m0n−ρ

ρm0

)(
−ik3

)
+P(ik)

]
Ψ(~x, t) = 0 (932)

This equation is satisfied when Ψ(~x, t) = 0 or when(
m0n−ρ

ρm0

)
n}2k3−Pk = 0 (933)
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This matches the result obtained in (924) and is therefore consistent with all the other results obtained for k

and ω . However, it is interesting to note that because the single, combined time-evolution equation in (931)
does not contain any time derivatives, it therefore cannot yield a dispersion equation involving ω and k. Such

a relationship requires making use of a wave equation from either (910) or (917).

The ideal gas limit

Using (895), n can be written as

n=
Nm0c2+PV

V m0c2
(934)

where N is the number of quantum particles in the material, m0 is the mass of each particle, V is the total

volume of the material, and P is the pressure in the material (assumed to be uniform). In the limit of an

ideal gas (non-interacting particles), it is expected that Nm0c2 >> PV since the total rest mass energy of

the particles (Nm0c2) will be far greater than the thermal energy due to collisions (PV ). In that case, the

expression for n reduces to just

nideal gas ≈ N/V (935)

Then dividing by ρ and using M = Nm0 gives

nideal gas

ρ
≈ N/V

M/V
=

N

Nm0

=
1

m0

(936)

Therefore nideal gas = ρ/m0. Substituting this into (933) eliminates the first term and leaves Pk = 0. This

implies that either the pressure is zero or the particles have zero momentum.87 Here the case of zero pressure

is considered. (Later, the case of zero momentum is considered.) For zero pressure, (922) gives the following

dispersion relation

ω ideal gas =
}k2

ideal gas

mo

(937)

which is essentially the Schrödinger dispersion relation (aside from a factor of 2 absent in the denominator).88

Note that attempting to insert this result into (921) to obtain an expression for k will cause the equation to

vanish. Likewise, it not possible to express ω independently of k. This indicates that in the ideal gas limit

with vanishing pressure, k and ω can no longer be expressed independently in terms of the macroscopic bulk

properties ρ,V . Rather, the wave dispersion relationship in (937) uniquely determines k and ω only with

respect to one another.89

Using P= 0 and n= ρ/m0 from (936)makes the quantum wave equations from (910) and (917) become,

respectively,

i}∂tΨ(~x, t) = − }
2

m0

∇
2
Ψ(~x, t) and − i}∂i∂tΨ(~x, t) =

}2

m0

∇
2
∂iΨ(~x, t) (938)

87Note that it would be an error to substitute nideal gas = ρ/m0 into (925) or into (928) since this would

lead to the conclusion that k and ω diverge. It should be recognized that (m0n−ρ) was originally in the

numerator of the left side of (933).

88Notice that multiplying both sides of (937) by } gives }ω ideal gas = }2k2
ideal gas/m0. Using E = }ω and

p= }k makes this become E = p2/m0 which is similar to the kinetic energy of a free particle. In that sense,

removing the pressure term from the fluid makes the fluid become a “free fluid” analogous to a free particle

that has no coupling to any external force (pressure).

89This is analogous to the dispersion equation for light which reduces to just ω = kc in vacuum and

therefore no longer has any dependence on the properties of the medium it propagates through (such as the

index of refraction, n= v/c).
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It can be observed immediately that these two equations are effectively identical except for a derivative, ∂i, on

each term in the second equation. This means that in the quantum coherent limit, the dynamics are completely

governed by a single Schrödinger-like equation. This is expected since the Schrödinger equation describes the

dynamics of a scalar quantum particle (in the non-relativistic limit). Although the Schrödinger-like equation

found here is extremely similar to the Schrödinger equation in its mathematical form, there are important

physical and conceptual differences that will be described in a later section.

The quantum coherent limit and the possibility of non-thermal pressure on a superfluid

In the limit of quantum coherence, such as when electrons form Cooper pairs in a superconductor, the

particles fall into the same quantum state and therefore become completely non-interacting. They behave as

effectively a single particle in what may be referred to as a “zero-momentum eigenstate.” Observe from (921)
that k = 0 is in fact a valid solution and hence the momentum, p= }k, is zero. Likewise, inserting k = 0 into

(912) requires that ω = 0 and therefore the energy, E = }ω , is also zero. Provided the temperature of the

superconductor is kept below the critical temperature (so that thermal energy does not exceed the BCS energy

gap), then the Cooper pairs remain in this fermionic superfluid state.

Note that it was not necessary to set the pressure to zero in this limit. This can be observed from (933)
where it is evident that setting k = 0 still allows P 6= 0 as an allowable condition. However, this pressure

cannot be interpreted as an internal thermal pressure associated with particle collisions. Rather, the pressure

can only be due to a response to an external force. For example, since the Cooper pairs are composed of

electrons which are negatively charged, then it is possible that an electromagnetic pressure could be produced

in the superfluid by introducing an appropriate electromagnetic field.

To further illustrate this possibility, consider the case of a superconductor in the shape of a hollow spher-

ical shell. If a charge was placed at the center of the hollow shell, the response of the Cooper pairs would

be repulsion from (or attraction to) the charge. As a result there would be a radial pressure on the superfluid

(inward or outward depending on the sign of the charge placed at the center). Therefore, the superfluid would

experience a net pressure, not due to any internal thermal degrees of freedom, but due to an external electro-

static Coulomb force. Similarly, because the Cooper pairs possess mass as well as charge, one could consider

the same situation of a hollow spherical superconductor but now with a mass placed at the center. Again, the

response of the Cooper pairs would be an attraction toward the center and hence there would be an inward

directed pressure due to the Newtonian gravitational force.

Comparison of the Schrödinger equation and Schrödinger-like equation

In (910), a Schrödinger-like equation was obtained which is given by

i}∂tΨ(~x, t) =−
n

ρ
}2

∇
2
Ψ(~x, t) (939)

This result obviously bears a striking resemblance to the Schrödinger equation. It was also found in (938)
that in the limit with no pressure (relativistic dust), the Schrödinger-like equation became

i}∂tΨ(~x, t) =−
}2

m0

∇
2
Ψ(~x, t) (940)

This result is now almost identical to the Schrödinger equation except for a factor of 2 missing in the de-

nominator of the right side. However, it is important to recognize that although the mathematical form of

the equation is extremely similar to the Schrödinger equation, the physical interpretation is significantly dif-

ferent. First recall that (910) was obtained using the mass-momentum continuity equation in (907) which is

essentially

∂tρ+∇ · ~Jm = 0 (941)
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where ~Jm = ρ~v = M
V
~v is the momentum density of an element of the fluid with mass M and volume V . If

there is no minimal coupling, then the kinetic momentum and canonical momentum are the same, M~v= ~pcan.

Promoting the canonical momentum to a quantum operator gives M~v = −i}∇. Therefore ~Jm = − 1
V

i}∇ and

(941) becomes

∂tρ−
1

V
i}∇

2 = 0 (942)

Multiplying through by i}/ρ and acting on a wavefunction, Ψ(~r, t) gives

i}∂tΨ(~x, t) =−
1

ρV
}2

∇
2
Ψ(~x, t) (943)

If the mass density of the element of fluid is uniform, then ρ =M/V which leads to

i}∂tΨ(~x, t) =−
}2

M
∇

2
Ψ(~x, t) (944)

Again, this is extremely similar to the Schrödinger equation except that the Schrödinger equation has a factor

of 2 in the denominator on the right side. The factor of 2 is easily observed to be the result of quantizing the

non-relativistic kinetic energy of a particle, E = p2/2m, so that quantizing gives

i}∂tΨ(~x, t) =−
}2

2m
∇

2
Ψ(~x, t) (945)

Therefore it is evident that the Schrödinger equation is a quantization of the non-relativistic energy of a

free particle in the context of discrete particle mechanics. It is effectively the equation of motion of a test

mass. On the other hand, the Schrödinger-like equation is a quantization of the mass continuity, ρ̇ =−∇ ·~Jm,

for a volume element of a quantum fluid in the context of continuous fluid mechanics. It is effectively a

constraint on the time-evolution of quantum matter in order to preserve local mass conservation. In fact,

once can observe that the mass m in the Schrödinger equation (945) is the discrete, point mass of a moving

quantum particle while the mass M in the Schrödinger-like equation (944) is representing the entire mass of

a continuous quantum fluid volume element where there are internal mass-current fluxes that obey (941).

Elaborating further on this distinction, it can also be pointed out that the wavefunction in the Schrödinger

equation is the wavefunction of a single particle with mass m. However, in the case of the Schrödinger-

like equation in (944), the wavefunction is describing the entire quantum superfluid as an extended quantum

object consisting of an ensemble of particles that are effectively all in a single particle state. For the case of the

Schrödinger-like equation in (940), the equation is expressed in terms of m0 (for a single quantum particle),

however, the wavefunction still necessarily involves the entire ensemble of particles that are together in a

single coherent state. The only reason that the equation is expressed in terms of m0 (a discrete parameter) is

because of the special case of no pressure and uniform mass density which makes it possible to express n/ρ ,

a continuous parameter in (939), in terms of m0, as shown in (936). However, this change in the parameter

from n/ρ to m0 does not change the physical representation of the wavefunction as describing the entire

superfluid, not just a single quantum particle.

Furthermore, the Schrödinger equation is applicable only in the non-relativistic limit of slow-moving test

particles so that the kinetic energy is p2/2m. (In fact, this is obviously the reason for the factor of 2 in

the Schrödinger equation which does not appear in the Schrödinger-like equation.) In contrast to this, the

Schrödinger-like equation is not limited to any non-relativistic limit since the mass-momentum continuity

equation does not involve such a limit. Rather, it comes from the stress tensor conservation law (when self-

coupling of the stress tensor to the gravitational field is neglected). This means that the limit imposed is not

v2/c2 << 1 but rather
∣∣hµν

∣∣<< 1 so that
(
∂γ hµν

)
T ρσ is negligible. In this approximation, the conservation

law given by the full covariant derivative,

∇ν T µν = ∂ν T µν +Γ
ν
νσ T σ µ +Γ

µ

νσ T νσ = 0 (946)
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becomes simply

∂ν T µν = 0 (947)

Lastly, to further highlight this difference, one can consider the stark contrast between the Schrödinger

equation and the Schrödinger-like equation when the particular approximations associated with each equation

are removed. For the case of the Schrödinger equation, this means removing the non-relativistic limit and

generalizing to a fully relativistic equation of motion which would be the Klein-Gordon equation. This can

be derived by quantizing E2 = m2c4+ p2c2 which leads to

−}2
∂

2
t Ψ(~x, t) =

(
m2c4−}2c2

∇
2
)

Ψ(~x, t) (948)

In contrast to this, for the case of the stress tensor conservation law, removing the weak-field approximation

and generalizing to the full covariant derivative in (946) gives(
∂ν T̂ µν +Γ

ν
νσ T̂ σ µ +Γ

µ

νσ T̂ νσ
)

Ψ(~x, t) = 0 (949)

It is obvious that quantizing the conservation law (in terms of the full covariant derivative) does not produce

anything remotely close to the fully relativistic quantum wave equation given by the Klein-Gordon equa-

tion. It is only when comparing the non-relativistic limit of the Klein-Gordon equation (which gives the

Schrödinger equation) and also quantizing the weak-field limit of the stress tensor conservation law, then it is

found that the two results share a surprising similarity.

Summary

In summary, one can observe that before taking the ideal gas limit with vanishing pressure, there are two

time-evolution equations of state that come out of the conservation of the quantized stress tensor, ∂ν T̂ µν = 0.

This was a consequence of the semi-classical approach of quantizing the momentum (and Hamiltonian) while

preserving the pressure as a classical, bulk property. The reason for two equations, (910) and (917), was due

to the fact that ∂ν T µν = 0 is a tensor relationship which can be decomposed into two equations: a mass-

momentum continuity equation and a momentum-stress continuity equation. However, it was found is that

in the quantum coherent limit, the zero-momentum state of the Cooper pairs requires a vanishing of the

pressure and therefore the tensor conservation law (which gave two time-evolution equations) reduces to a

single scalar conservation law, namely, a Schrödinger-like equation. Nonetheless, although the Schrödinger

equation and the Schrödinger-like equation have a very similar mathematical form, they actually describe

completely different physical systems.
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8.7 The Klein-Gordon equation in curved space-time

Lastly, we consider the Klein-Gordon equation in curved space-time as another example of the coupling

of gravity to a scalar quantum field. The Klein-Gordon equation can be found from the relativistic energy

E2 = p2c2+m2c4 (950)

by promoting the energy to a quantum mechanical Hamiltonian operator and promoting the momentum to a

canonical momentum operator,

E =⇒ Ĥ =−i}∂t ~p =⇒ p̂=−i}∇ (951)

Substituting these into (950) and acting the equation on a state ϕ gives

(−i}∂t)
2

ϕ = (−i}∇)2 c2
ϕ+m2c4

ϕ (952)

−}2
∂

2
t ϕ+}2c2

∇
2
ϕ−m2c4

ϕ = 0 (953)

Dividing by c2}2, using kc=mc/} as the Compton wave vector, and combining the space and time derivatives

into a 4-derivative, ∂µ =
(

1
c
∂t ,∇

)
, gives

∂
µ

∂µ ϕ− k2
cϕ = 0 (954)

The Klein-Gordon equation can be embedded in curved space-time by promoting the partial derivative to

covariant derivative. When acting on an arbitrary vector Vν , we have

∂µVν =⇒ ∇µVν = ∂µVν +Γ
σ
µνVσ (955)

Then (954) becomes ∇µ ∇
µ

ϕ− k2
cϕ = 0. We can pull out the metric explicitly by writing this as

gµν
∇µ ∇ν ϕ− k2

cϕ = 0 (956)

Since ϕ is a scalar, then the first covariant derivative of ϕ is just a partial derivative: ∇ν ϕ = ∂ν ϕ . However,

since ∂ν ϕ is a vector, then acting the second covariant derivative brings in the Christoffel symbol.

∇µ ∇ν ϕ = ∇µ (∂ν ϕ) (957)

= ∂µ (∂ν ϕ)+Γ
σ
µν (∂σ ϕ) (958)

Substituting this into (956) gives

gµν
∂µ ∂ν ϕ+gµν

Γ
σ
µν (∂σ ϕ)− k2

cϕ = 0 (959)

We can write the Christoffel symbols as Γσ
µν =

1
2
gσρ

(
∂ν gρµ +∂µ gνρ −∂ρ gµν

)
so that gµν Γσ

µν becomes

gµν
Γ

σ
µν = 1

2
gµν gσρ

(
∂ν gρµ +∂µ gνρ −∂ρ gµν

)
(960)
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Since the metric can be written as gµν = ηµν + hµν , then the derivatives of the metric become ∂γ gδβ =

∂γ

(
ηδβ +hδβ

)
= ∂γ hδβ . Also, if we choose a lowest order approximation, we can use gµδ ≈ ηµδ so that we

only keep terms of order ∂γ hδβ . Then (960) becomes

gµν
Γ

σ
µν ≈ 1

2
η

µν
η

σρ
(
∂ν hρµ +∂µ hνρ −∂ρ hµν

)
(961)

We can use gµν ≈ ηµν to contract indices (to remain first order in the metric) so that we have

gµν
Γ

σ
µν ≈ 1

2
η

σρ
(
∂

µ hρµ +∂
ν hνρ −∂ρ h

)
(962)

where h is the trace of hµν . We can simplify this expression further by immediately fixing the gauge. To main-

tain consistency with the formulation in Part I, we can choose the trace-reversed harmonic gauge, ∂ ν h̄µν = 0.

First, we must write (962) in terms of the trace-reversed harmonic gauge. From (2434) and (2435) in Ap-

pendix B, we have h=−h̄ and hµν = h̄µν − 1
2
ηµν h̄. Using these in (962) gives

gµν
Γ

σ
µν ≈ 1

2
η

σρ
[
∂

µ
(
h̄ρµ − 1

2
ηρµ h̄

)
+∂

ν
(
h̄νρ − 1

2
ηνρ h̄

)
+∂ρ h̄

]
(963)

Distributing the derivatives, contracting indices and combining terms gives

gµν
Γ

σ
µν ≈ 1

2
η

σρ
(
∂

µ h̄ρµ − 1
2
∂ρ h̄+∂

ν h̄νρ +
1
2
∂ρ h̄
)

(964)

≈ 1
2
η

σρ
(
∂

µ h̄ρµ +∂
ν h̄νρ

)
(965)

Now applying ∂ ν h̄µν = 0 gives gµν Γσ
µν ≈ 0. Therefore, we find that in the trace-reversed harmonic gauge

(to first order in the metric), the second term in (959) vanishes. Using gµν = ηµν +hµν in the first term and

distributing gives

∂µ ∂ µ ϕ+hµν ∂µ ∂ν ϕ− k2
cϕ = 0

Klein-Gordon equation in curved space-time

(linearized trace-reversed harmonic gauge) (966)

Summing over µ and ν in (966) gives

− 1

c2
ϕ̈+∇

2
ϕ+

1

c2
h00

ϕ̈+
2

c
~h ·∇ϕ̇+hi j

∂i∂ jϕ− k2
cϕ = 0 (967)
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9.1 The metric and inverse metric for a rotating frame

In cylindrical space-time coordinates (ct,r,φ ,z), the invariant for the rest frame is

ds2 =−c2dt2+dr2+ r2dφ
2+dz2 (968)

so the metric is

gµν =


−1 0 0 0

0 1 0 0

0 0 r2 0

0 0 0 1

 (969)

The transformed space-time coordinates of a rotating frame with respect to the rest frame are (ct ′,r′,φ ′,z′) .
For an instant when a clock in the moving frame is synchronized with a clock in the rest frame, the trans-

formed space-time coordinates must satisfy the following relations.

r′ = r, φ
′ = φ +ωt, z′ = z, t ′ = t (970)

where ω is the angular velocity of the rotating frame with the axis of rotation corresponding to the z= z′ axis.

From (970) we also have

dr′ = dr, dφ
′ = dφ +ωdt, dz′ = dz, dt ′ = dt (971)

Similar to (968), the invariant of the rotating frame with respect to the rest frame is

ds2 =−c2dt ′2+dr′2+ r′2dφ
′2+dz′2 (972)

Substituting (971) into (972) gives

ds2 = −c2dt2+dr2+ r2 (dφ +ωdt)2+dz2 (973)

= −c2dt2+dr2+ r2
(
dφ

2+ωdtdφ +ωdtdφ +ω
2dt2

)
+dz2 (974)

= −c2dt2+dr2+ r2dφ
2+
(
ωr2/c

)
cdtdφ +

(
ωr2/c

)
dφcdt+ r2

ω
2dt2+dz2 (975)

=
(
−1+ r2

ω
2/c2

)
c2dt2+dr2+

(
ωr2/c

)
cdtdφ +

(
ωr2/c

)
dφcdt+ r2dφ

2+dz2 (976)

The transformed metric is therefore

g′µν =


−1+ r2ω2/c2 0 ωr2/c 0

0 1 0 0

ωr2/c 0 r2 0

0 0 0 1

 (977)

Dropping the prime and writing the out the metric components gives

g00 =−1+ r2
ω

2/c2, g11 = g33 = 1, g22 = r2, g02 = g20 = ωr2/c (978)

The inverse of the metric can be found by using Gauss-Jordan elimination which requires transforming the

augmented matrix [A|I] into
[
I|A−1

]
. To do this we augment the metric with the identity matrix and perform

row operations to diagonalize the left side. Using α = rω/c gives

[
gµν |I

]
=


−1+α2 0 rα 0

0 1 0 0

rα 0 r2 0

0 0 0 1

∣∣∣∣∣∣∣∣
1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

 (979)
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We can use α/r times the third row and subtract it from the first row.

[
gµν |I

]
=


−1 0 0 0

0 1 0 0

rα 0 r2 0

0 0 0 1

∣∣∣∣∣∣∣∣
1 0 −α/r 0

0 1 0 0

0 0 1 0

0 0 0 1

 (980)

Now we multiply the first row by −1. We can also multiply the first two by rα and subtract it from the third

row.

[
gµν |I

]
=


1 0 0 0

0 1 0 0

0 0 r2 0

0 0 0 1

∣∣∣∣∣∣∣∣
−1 0 α/r 0

0 1 0 0

rα 0 1+α2 0

0 0 0 1

 (981)

Now we divide the third row by r2.

[
gµν |I

]
=


1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

∣∣∣∣∣∣∣∣
−1 0 α/r 0

0 1 0 0

α/r 0
(
1+α2

)
/r2 0

0 0 0 1

 (982)

The 4x4 matrix on the left has now become the identity matrix so we observe that the matrix on the right is

the inverse metric since for any matrix A we have [A|I] =
[
I|A−1

]
. Substituting α = rω/c back in gives

gµν =


−1 0 ω/c 0

0 1 0 0

ω/c 0
1+ r2ω2/c2

r2
0

0 0 0 1

 (983)

This result can be compared to equation (10) of Cabrera, et al. [58]. We can write the out the inverse metric

components as

g00 =−1, g11 = g33 = 1, g22 =
c2+ r2ω2

c2r2
, g02 = g20 = ω/c (984)
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9.2 The Hamiltonian for a rotating frame expressed as a gravitational field

The relativistic Hamiltonian for relativistic Cooper pairs in curved space-time was found in (677) as

H = c

(
γ

jkg0 jg0k−g00

)1/2(
m2c2+ γ

jk
π jπk

)1/2
− cγ

jkg0kπ j− ceA0 (985)

where the “spatial inverse metric” is

γ
jk = g jk− g0 jg0k

g00
so that γ

i jgik = δ
j

k
(986)

From the metric components in (978), we see that g00 = −1+ r2ω2/c2 and g0 j = 0 so the Hamiltonian

immediately simplifies to

H = c
(
1− r2

ω
2/c2

)1/2
(

m2c2+ γ
jk

π jπk

)1/2
− ceA0 (987)

From the inverse metric components in (984), we see that g00 = −1 so the “spatial inverse metric” in (986)
becomes γ jk = g jk+g0 jg0k. Substituting this into the Hamiltonian and distributing gives

H = c
(
1− r2

ω
2/c2

)1/2
[
m2c2+g jk

π jπk+g0 jg0k
π jπk

]1/2
− ceA0 (988)

We can expand the summations and recognize from (984) that g jk 6= 0 only for j = k and also g0 j 6= 0 only

for j = 2.

H = c
(
1− r2

ω
2/c2

)1/2[
m2c2+g11 (π1)

2+g22 (π2)
2+g33 (π3)

2+g02g0k
π2πk+g0 jg02

π jπ2

]1/2
− ceA0

(989)

Substituting the inverse metric components from (984) gives

H = c
(
1− r2

ω
2/c2

)1/2[
m2c2+(π1)

2+
c2+ r2ω2

c2r2
(π2)

2+(π3)
2+2

(
ω

c

)
(π2)

2

]1/2

− ceA0 (990)

= c
(
1− r2

ω
2/c2

)1/2
[
m2c2+π

2
r +π

2
z +π

2
φ/r

2+(ω/c)2 π
2
φ +2(ω/c)π2

φ

]1/2
− ceA0 (991)

H = c
(
1− r2ω2/c2

)1/2
[
m2c2+π2

r +π2
z +
(
1/r2+ω2/c2+2ω/c

)
π2

φ

]1/2
− ceA0 (992)

This Hamiltonian is exact for the electron motion and the metric (expressed in terms of the angular velocity).
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9.3 The Hamiltonian in the weak-field, low-velocity limit

In the first square root above, we can consider the low velocity limit (for the rotational speed) which is

effectively a weak field limit since the rotating frame of reference can be considered equivalent to a solenoidal

gravitational field (or Lense-Thirring field.) If we consider that r2ω2/c2 << 1, then we can approximate the

square root as (
1− r2

ω
2/c2

)1/2 ≈ 1− r2ω2

2c2
(993)

So the Hamiltonian becomes

H = c

(
1− r2ω2

2c2

)[
m2c2+π

2
r +π

2
z +
(
1/r2+ω

2/c2+2ω/c
)

π
2
φ

]1/2− ceA0 (994)

Factoring out m2c2 from the second root gives

mc

[
1+

π2
r +π2

z +
(
1/r2+ω2/c2+2ω/c

)
π2

φ

m2c2

]1/2

(995)

In the low velocity limit (for non-relativistic, slow moving electrons), we have∣∣∣∣∣π2
r +π2

z +π2
φ
/r2+

(
1/r2+ω2/c2+2ω/c

)
π2

φ

m2c2

∣∣∣∣∣ < < 1 (996)

So we can approximate the square root as[
1+

π2
r +π2

z +
(
1/r2+ω2/c2+2ω/c

)
π2

φ

m2c2

]1/2

≈ 1+
π2

r +π2
z +
(
1/r2+ω2/c2+2ω/c

)
π2

φ

2m2c2

(997)

Then the Hamiltonian becomes

H
(weak f ield,

low velocity)

= c

(
1− r2ω2

2c2

)
mc

[
1+

π2
r +π2

z +
(
1/r2+ω2/c2+2ω/c

)
π2

φ

2m2c2

]
− ceA0 (998)

=

(
1− r2ω2

2c2

)[
mc2+

π2
r +π2

z +
(
1/r2+ω2/c2+2ω/c

)
π2

φ

2m

]
− ceA0 (999)

Multiplying out terms and factoring out powers of ω/c leads to

H
(weak f ield,

low velocity)

= mc2− 1

2
m2rω

2+
1

2m

(
π

2
r +π

2
z +π

2
φ/r

2
)
+

π2
φ

m

(
ω

c

)

+
1

4m

(
3π

2
φ − r2

π
2
r + r2

π
2
z

)(ω

c

)2

+
r2π2

φ

2m

(
ω

c

)3

+
r2π2

φ

4m

(
ω

c

)4

− ceA0 (1000)
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In (993) we neglected terms that are fourth order in ω/c therefore we must also do so here for consistency.

If we also neglect third order terms and keep only second order in ω/c, then we have

H
(2nd order)

= mc2− 1

2
m2rω2+

1

2m

(
π2

r +π2
z +π2

φ
/r2
)
+

π2
φ

m

(
ω

c

)

+
1

4m

(
3π2

φ
− r2π2

r + r2π2
z

)(
ω

c

)2

− ceA0

(1001)
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9.4 A time-dilation holonomy due to a rotating frame

An interesting consequence of Relativity (General and Special) is the concept of a time holonomy.90

In Special Relativity, the invariant interval ds between events is given by ds2 = −c2dt2+ dr2. In General

Relativity, for any space-time gµν , the invariant interval ds between events with an incremental coordinate

separation dxµ is

ds2 = gµν dxµ dxν (1002)

If we write out the metric components from (1002) explicitly, we have

ds2 = c2g00dt2+2cg01dtdx+2cg02dtdy+2cg03dtdz

+g11dx2+g22dy2+g33dz2

+g12dxdy+g23dydz+g13dxdz+g21dydx+g32dzdy+g31dzdx (1003)

By defining x0 = ct, x1 = x, x2 = y, and x3 = z, then we can write this more concisely as

ds2 = g00

(
dx0
)2
+2g0idx0dxi+gi jdxidx j (1004)

If a light signal is sent between two events, say A and B, then the invariant interval is ds2 = 0 for a light-like

interval. Imposing this condition on (1004) gives a quadratic equation in dx0. We can solve for dx0 using the

quadratic formula with

A= g00, B= 2g0idxi, C = gi jdxidx j (1005)

This gives

dx0
± =

−g0idxi±
√
(g0idxi)2−g00gi jdxidx j

g00

(1006)

There are two solutions, dx0
+ and dx0

−, due to the± root. The physical significance of these two solutions can

be visualized in the following worldline diagram.Here it can be seen that if a signal is sent from A to B and

A B

x0

x0 + dx0
+

x0 + dx0
–

A B

x0

x0 + dx0
+

x0 + dx0
–

Figure 4: Worldline diagram of two points on rotating frame.

then back from B to A, then the overall time would be the sum of dx0
+ and dx0

−.

90We develop the details of the time holonomy following the treatment found in L. Landau and E. Lifshitz,

The Classical Theory of Fields, [59], pp. 226-227, 233-234, 236, 248, 253-254.
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Using (1006) gives

dx0
++dx0

− =−
2g0idxi

g00

(1007)

If we are attempting to synchronize events A and B, then it can be seen from the diagram that x0 occurs

half-way between x0+dx0
− and x0+dx0

+ thus we need ∆x0 to be half of the sum of dx0
+ and dx0

−. This gives

∆x0 = −g0idxi

g00

(1008)

If we add all of the time intervals associated with synchronizing clocks along a closed path we obtain a

closed-loop integral. Using ∆x0 = c∆t, we have

∆t =−1

c

∮
g0i

g00

dxi (1009)

This is effectively a time holonomy.91 We will find in the following treatment that there is a time holonomy

arising from both Special Relativity and General Relativity.

We now consider a particle moving with angular velocity ω in a circular path of radius r surrounding a

stationary cylindrical shell coaxially. Alternatively, we could also consider a stationary particle positioned on

the same circular contour which surrounds a cylindrical shell spinning about its axis.92 These two scenarios

are similar in the sense that they both exhibit the same time holonomy.93

In cylindrical spacetime coordinates (ct,r,φ ,z), the invariant for the rest frame is

ds2 =−c2dt2+dr2+ r2dφ
2+dz2 (1010)

so the metric is

gµν =


−1 0 0 0

0 1 0 0

0 0 r2 0

0 0 0 1

 (1011)

91“In differential geometry, the holonomy of a connection on a smooth manifold is a general geometrical

consequence of the curvature of the connection measuring the extent to which parallel transport around closed

loops fails to preserve the geometrical data being transported.”[63] In this case, the “geometrical data being

transported” is essentially the measurement of time. The fact that moving around the contour can result in a

larger or smaller time interval depending on the direction of motion, despite perfect contour symmetry of the

two directions and identical speed in each direction, can be considered a time holonomy.

92The cylindrical shell does not need to possess any mass for this time holonomy to exist. It is simply used

here as a way to describe a frame of reference separate from the circular contour surrounding the cylinder.

93This is not to imply that the two scenarios are completely equivalent since a rotating frame is not inertial

and therefore cannot be transformed into an inertial rest frame by a Galilean coordinate transformation. In

other words, an observer in either frame can experimentally determine whether the particle is rotating around

the cylinder or whether the particle is stationary and the cylinder is rotating about its axis. (This could be

related to the concept of Mach’s principle which states that the rotational inertia of a rotating frame can be

determined by the rotational motion of an otherwise "fixed background" such as the stars in the surrounding

universe.) The only similarity between the two scenarios (the particle rotating or the cylinder rotating) is that

the time holonomy calculation would yield the same result in either case.



176

The transformed spacetime coordinates of the rotating frame with respect to the rest frame are (ct ′,r′,φ ′,z′) .
For an instant when a clock in the moving frame is synchronized with a clock in the rest frame, the trans-

formed spacetime coordinates must satisfy the following relations.

r′ = r, φ
′ = φ +ωt, z′ = z, t ′ = t (1012)

where ω is the angular velocity of the rotating frame with the axis of rotation corresponding to the z= z′ axis.

From (1012) we also have

dr′ = dr, dφ
′ = dφ +ωdt, dz′ = dz, dt ′ = dt (1013)

Similar to (1010), the invariant of the rotating frame with respect to the rest frame is

ds2 =−c2dt ′2+dr′2+ r′2dφ
′2+dz′2 (1014)

Substituting (1013) into (1014) gives

ds2 = −c2dt2+dr2+ r2 (dφ +ωdt)2+dz2 (1015)

= −c2dt2+dr2+ r2
(
dφ

2+2ωdφdt+ω
2dt2

)
+dz2 (1016)

=
(
−c2+ r2

ω
2
)

dt2+2ωr2dφdt+dr2+ r2dφ
2+dz2 (1017)

Then the transformed metric g′µν is therefore

g′µν =


(
−c2+ω2r2

)
/c2 0 ωr2/c 0

0 1 0 0

ωr2/c 0 r2 0

0 0 0 1

 (1018)

We can also confirm this is the correct metric by a direct transformation of the metric gµν in (1011) using

g′µν =
∂xσ

∂x′µ
∂xρ

∂x′ν
gσρ (1019)

We can consider the clocks in the two frames to be synchronized at a given point such as point A in the mass

solenoid diagram on page 26. Then we can use the expression found in (1009),

∆t = −1

c

∮
g0i

g00

dxi (1020)

to find the time holonomy that results from traversing a closed path beginning at point A and returning back

to point A again94. Using the transformed metric in (1018) above, we note that

g01 = g03 = 0, g02 = ωr2/c, g00 =
(
−c2+ω

2r2
)
/c2 (1021)

94The diagram on page 26 could be considered as an infinitesimal segment of the circular path with world-

line A and worldline B representing the contour and the cylinder wall, respectively.
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Then in (1020) we have g0idxi = g02dx2 =
(
ωr2/c

)
dφ which means

∆t = −1

c

∮
ωr2/c

(−c2+ω2r2)/c2
dφ (1022)

∆t = − 1

c2

∮
ωr2

−1+
(

ωr
c

)2
dφ (1023)

If the rotational velocity of the mass solenoid is much less than the speed of light (that is, ωr << c), then

(1023) becomes

∆t ≈ ω

c2

∮
r2dφ (1024)

Integrating around a circular path of radius r gives

∆t =±2πωr2

c2
Time-dilation holonomy (1025)

The + and − signs are associated with integrating along a path that is in the opposite direction or in the same

direction as the rotation. In the mass solenoid diagram (page 21), the “−” sign would be associated with

taking Path 1 then Path 2, while the “+” sign would be associated with taking Path 2 then Path 1.

Therefore, in the context of Special Relativity, we obtain what might be described as a time-dilation

holonomy. Each infinitesimal element along the contour path is a local inertial frame moving uniformly

relative to the spinning frame. Therefore each infinitesimal element along the contour path demonstrates

a time-dilation (or alternatively, non-synchronous clock difference) relative to the non-rotating frame. The

integral is a sum of these infinitesimal time-dilation contributions around the contour path which results in a

global time holonomy around the entire contour.95

95Notice that changing the sign of ω will switch the + and - signs as we expect since this would effectively

switch the direction along the contour path that yields a shorter time and the direction along the contour path

that yields a longer time.
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9.5 A gravitational time holonomy due to a mass solenoid

We can now consider the gravitational time holonomy associated with an electron wave traveling around

a mass solenoid as described in the gravitational AB effect.[4]. The mass solenoid could be described as

essentially a cylindrical mass shell with mass current density Jm = σmω where σm is the surface mass density

of the cylinder spinning with constant angular velocity ω . (See the diagram in Section 9.)

In (32) of Section 4 we defined the (gauge-dependent) gravito-vector potential as96

~h=
c

4
(h01, h02, h03) (1026)

The gravitational field of an axially symmetric mass rotating uniformly about its axis (as in the case of the

mass solenoid) has components h0i that are nonzero and do not depend on x0. To find the time holonomy

associated with the path of the electron wave in the presence of this field, we again use the relation derived in

(1009) as

∆t = −1

c

∮
g0i

g00

dxi (1027)

Since hµν << 1 (for the weak-field approximation) and η00 =−1, then

g00 = η00+h00 ≈−1 (1028)

Also, since η0i = 0, then

g0i = η0i+h0i = h0i (1029)

Substituting (1028) and (1029) into (1027) gives

∆t =
1

c

∮
h0idxi (1030)

We already found in (113) that

∮
~h ·d~r = Φ̃gm so we can write the result here as

∆t =
Φ̃gm

c2
Gravitational time holonomy (1031)

Note that~h points in the opposite direction of ~Jm as shown in the diagram in Section 9. Therefore moving

around the mass solenoid in the same direction as the rotation of the mass means moving against ~h which

results in a negative value for ∆t. Moving against the direction of the rotation of the mass means moving with
~h which results in a positive value for ∆t. This is not reflected in final result, ∆t = Φ̃gm/c2, since the flux in

this expression does not indicate whether one has integrated in the same direction or opposite direction to~h.

Therefore, we find that in the context of General Relativity, we can think of the result in (1031) as a

gravitational time holonomy. It is a result of the metric which describes the curvature of spacetime around

the contour. This curvature can be interpreted as a result of the gravito-vector potential due to a spinning

cylindrical mass shell or “mass solenoid.”

96We know from (2431) of Appendix B that h̄0i = h0i so we can drop the “bar” notation.
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Note that this is not the same as a gravito-magnetic field (or “Lense-Thirring field”) causing “frame

dragging.” For the mass solenoid, the Lense-Thirring field is only present inside but is zero outside where the

particle is spinning (assuming a “perfect” mass solenoid which is infinitely long). However, in the case of

frame-dragging, it is the gravito-magnetic field, not gravito-vector potential, that is acting on the non-rotating

frame. The fact that it is purely the gravito-vector potential (not the field) that is affecting the particle makes

this arrangement very similar to the AB effect (which involves the potential, not the field). However, the

gravitational time holonomy is not necessarily quantum mechanical since the entire calculation was done

classically. It applies to any wave which may propagate in the region where~h 6= 0, provided the wave couples

to the potential field.

We can relate the gravitational time holonomy in(1031) to the time-dilation holonomy from (1025) to

compare their relative values. This is done in the next section. We can also relate this gravitational time

holonomy to the “phase holonomy,” ∆φ , from the gravitational AB effect by multiplying ∆t by the Compton

frequency of the electron, ωc = mec/}. This gives [39]

∆φ = ωc∆t =
meΦ~BG

}
(1032)

which is what we obtain later in (1138) for the gravito-vector AB effect. This implies that the quantum

mechanical phase shift associated with the gravitational AB effect can also be regarded as a classical time-

holonomy due to rotating reference frames.
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9.6 Relating the time-dilation and gravitational time holonomies

In the previous two section on time holonomies, we derived two separate expression for a time holonomy.

In (1025) the following expression for the time-dilation holonomy was obtained.

∆ttd =±
2πωr2

c2
(1033)

This was interpreted as the result of adding all of the time-dilation contributions around a circular contour due

to the motion of one rotating frame with respect to another frame positioned concentrically. Independently,

in (1031) we also obtained the following expression for the gravitational time holonomy

∆tG =
Φgm

c2
(1034)

This was interpreted as the result of the curvature of spacetime around the contour. The curvature can be

interpreted as a gravitational field, specifically, a uniform gravito-magnetic field pointing along the axis of

the cylinder. This field is due to the spinning of a cylindrical mass shell and is described by the static gravito-

Ampere law in (58) applied to a mass solenoid.

In order to relate the two time-holonomy results above, we can develop an expression for Φgm in (1034).
Taking a surface integral of both sides of the static gravito-Ampere law (58) and applying Stoke’s theorem

gives ∫∫ (
∇×~BG

)
·d~a = −µG

∫∫
~Jm ·d~a (1035)

∮
~BG ·d~l = −µGIm (1036)

The common treatment for a solenoid is to use a line integral along a rectangular loop with one edge inside

the solenoid parallel to the axis (where ~BG 6= 0) and the opposite edge outside the solenoid (where ~BG = 0).

If the length of the edge is L, then we obtain

BGL=−µGIm (1037)

The total current in a solenoid is I = Ni where i is the current in each loop. However, since the mass

solenoid is a continuous mass shell, then it is effectively a “perfect” solenoid where the current is distributed

continuously over the surface. Then we can use Jm = σmω where σm is the surface mass density of the

cylinder spinning with angular velocity ω . Then the total current would be Im = JmA⊥ where A⊥ = rL is the

area normal to the current. So we have

BGL = −µG (σmω)(rL) (1038)

A uniform surface mass density is the total mass per total surface area of the cylindrical wall, σm =
m

2πrL
.

We can also substitute µG =
4πG

c2 to obtain

BGL = −
(

4πG

c2

)(
m

2πrL

)
ω (rL) (1039)

BG = −2Gmω

Lc2
(1040)
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We can now determine the magnitude of the gravito-magnetic flux Φgm through a cross-sectional area of the

solenoid, Acs = πr2. When we determined the magnetic field we already treated the cylinder as a “perfect”

solenoid which means it is effectively one “loop” so N = 1. Then we have

Φgm = NBGAcs =
2Gmω

c2L
πr2 =

(
Gm

c2L

)
2πωr2 (1041)

Substituting this into (1034) gives

∆tG =

(
Gm

Lc2

)
2πωr2

c2
(1042)

Relating this gravitational time holonomy to the time-dilation holonomy (1033) we have

∆tG =

(
Gm

c2L

)
∆ttd (1043)

This can be written in various forms depending on the mass density used for the cylinder (linear density λ m,

surface density σm or volume density ρm). Since

m = λ mL= σm2πrL= ρmπr2L (1044)

then we can write (1043) as any of the following.

∆tG

∆ttd
=

(
G

c2

)
λ m =

(
G

c2

)
2πrσm =

(
G

c2

)
πr2

ρm (1045)

In any of these forms we see that the gravitational time-holonomy tG is less than the time-dilation holonomy

ttd by a factor of G/c2 ≈ 10−27 (SI units). As is often the case, this demonstrates that the effects of General

Relativity are much smaller than the effects of Special Relativity.
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10.1 Overview of gravitational AB effects and phase interference

Here we relate the scalar, vector and tensor coupling rules previously developed to the quantum phase of

a wavefunction. The phase is described in terms of the HD metric components. It is found that the only gauge

invariant phase is the phase given in terms of hττ
i j in the far-field where hττ

i j is the gauge-invariant, transverse-

traceless strain field of a gravitational wave. We also consider a comparison of the phase in electromagnetism

versus the phase in gravitation. In the case of electromagnetism, the phase can be expressed in terms of the

gauge-dependent four-potential, Aµ , or in terms of the gauge-invariant field strength tensor, Fµν . Likewise,

we expect that in the case of gravitation, the phase should be expressible in terms of the gauge-dependent

metric perturbation, hµν , or in terms of a gauge-invariant quantity such as the Riemann tensor.
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10.2 The quantum phase in curved space-time

In this section we consider the possibility of a quantum phase associated with quantum particles coupling

to the scalar, vector or tensor gravitational potentials. We begin with the approach given by Stodolsky in [64].

In general, the phase factor of a quantum particle can be written in terms of the action, S, as eiφ̃ = e
i
} S

so that

the phase is97

φ̃ =
1

}
S (1046)

From (2839) of Appendix M, we can parameterize the action for a relativistic particle in terms of proper time,

dτ , as

S=−
∫

τ2

τ1

mc2dτ (1047)

The relativistic invariant interval, ds, can be written in terms of the proper time as ds = −cdτ . Then the

action becomes

S=−mc

∫
ds (1048)

The relativistic invariant interval can also be written in terms of the metric as ds2 = gµν dxµ dxν . Then using

ds=−cdτ , we have

ds=
gµν dxµ dxν

ds
=

gµν dxµ dxν

−cdτ
(1049)

Since the four-momentum may be written as pµ = m
dxµ

dτ
, then the expression above becomes

ds=−
gµν pµ dxν

mc
(1050)

Substituting this into the action in (1048) gives

S=
∫

gµν pµ dxν (1051)

Alternatively, we could begin with the “four-momentum invariant” action given in (2855) as

S=
∫

gµν pµ pν

m
dτ =

∫
gµν pµ

m

(
m

dxν

dτ

)
dτ =

∫
gµν pµ dxν dτ (1052)

Then substituting for the phase in (1046) and writing the metric as gµν = ηµν +hµν gives

φ̃ =
1

}

∫
ηµν pµ dxν +

1

}

∫
hµν pµ dxν (1053)

We may consider these two contributions to the phase as the “free particle” contribution and the “coupling to

gravitation” contribution. Then φ̃ = φ̃ f ree+ φ̃ coupling. If we consider the case of a particle moving through a

closed space-time path, then we have

φ̃ coupling =
1

}

∮
hµν pµ dxν (1054)

This is consistent with the phase as obtained by Stodolsky in [64]. Note that by using the action in (1052)
we may recognize that this phase expression is essentially derived from four-momentum invariance which

involves the entire metric, not just the metric perturbation. We will return to this point when discussion

97We will use the notation φ̃ to distinguish the phase from the scalar potential found in h00 =−2φ/c2.
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gauge-dependence. Summing over the indices in (1054), we can write the following phase expressions98 for

each of the metric components. We state them along with the associated coupling rules from (863)− (865).

Scalar coupling: mc2 =⇒ mc2− 1
2
mc2h00 corresponds to φ̃ S =

E

}

∮
h00dt

Vector coupling: pi =⇒ pi−mh0i corresponds to φ̃V =
1

}

∮ (
E

c
h0idxi+ ch0i p

idt

)

Tensor coupling: p2 =⇒ p2− pi p jhττ
i j corresponds to φ̃ T =

1

}

∮
hττ

i j pidx j

(1055)

Notice that for the scalar coupling, we can use the rest frame of the particle so that E = mc2 and therefore

p0 = E/c = mc2/c = mc. However, for the vector coupling, if we use the rest frame of the particle, then

p0 = mc and pi = 0 which means that h0i p
idt does not contribute to the phase. Likewise for the tensor

coupling, if we use the rest frame of the particle, then pi = 0 and the contribution to the phase vanishes

completely.

Lastly, we also point out that for the phase to be gauge-invariant, it is not sufficient that some compo-

nent(s) of hµν be made gauge-invariant. Rather, it is necessary that the entire integrand be made gauge-

invariant, which includes pµ and dxν as well. Therefore, we must transform the entire integrand as a whole

to examine the gauge freedom. This is done in the next section where we determine the irreducible gauge

contribution to the coupling phase.

98The phase associated with the scalar, vector, and tensor couplings are each written separately as φ̃ S, φ̃V ,
and φ̃ T , respectively. However, the original expression given in (1054) is a sum over indices which means

that the separate phases should really be added.
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10.3 Gauge freedom in the coupling phase

In the case of electromagnetism, the phase can be expressed in terms of the four-potential, Aµ , or in terms

of the field strength tensor, Fµν where Aµ is gauge-dependent and Fµν is gauge-invariant, and the two are

related by Fµν = ∂µ Aν −∂ν Aµ . Specifically, we can use a higher dimensional version of Stokes’ theorem to

equate the four-dimensional closed-path integral of Aµ to a four-dimensional hyper-surface “flux” integral of

Fµν . Therefore, the phase can be written as99

φ̃ =
q

}

∮
∂A

Aµ dxµ =
q

}

∫∫
A

Fµν dxµ ∧dxν (1056)

Although Aµ is gauge-dependent, we find that the closed-path integral on the left side of (1056) is still

gauge-invariant. This can be shown by inserting the gauge freedom given by A′µ = Aµ +∂µ χ into (1056).∮
∂A

A′µ dxµ =
∮

∂A

Aµ dxµ +
∮

∂A

(
∂µ χ

)
dxµ (1057)

The differential of χ is dχ =
(
∂µ χ

)
dxµ which is exactly what we have in the last integral above. Therefore,

by the fundamental theorem of Calculus, we have

∫ x
µ

B

x
µ

A

(
∂µ χ

)
dxµ =

∫
dχ = χ(xµ

B)
−χ(xµ

A)
(1058)

However, for a closed-loop integral, χB = χA and the integral vanishes. Hence we find that the gauge freedom

vanishes. Now for the case of the gravitational phase given by (1054), we can write the phase for the

transformed metric perturbation as

φ̃
′
coupling =

1

}

∮
h′µν p′µ dx′ν (1059)

Notice that for consistency, the potential, the four-momentum and the differential must all be transformed.

The linearized gauge freedom for hµν found in (2418) of Appendix A is

h′µν = hµν +∂µ ξ ν +∂ν ξ µ (1060)

We must also transform p′µ using p′µ =
∂xµ ′

∂xσ
pσ . From (2402) we have

∂xµ ′

∂xσ
= δ

µ

σ − ∂σ ξ
µ

so the four-

momentum transforms as

p′µ =
(
δ

µ

σ −∂σ ξ
µ
)

pσ = pµ −
(
∂σ ξ

µ
)

pσ (1061)

Likewise, the differential dxν will transform as

dx′ν = dxν −
(
∂ρ ξ

ν
)

dxρ (1062)

99Note that we use the exterior product (or wedge product), ∧, between dxµ dxν . This is necessary since

dxµ dxν is a symmetric tensor while Fµν is anti-symmetric which means that the product of the two tensors

would vanish. In much of the literature this is neglected.
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Then using (1060), (1061) and (1062), we can write the integrand of (1059) as

h′µν p′µ dx′ν =
(

hµν +∂µ ξ ν +∂ν ξ µ

)[
pµ −

(
∂σ ξ

µ
)

pσ
][

dxν −
(
∂ρ ξ

ν
)

dxρ
]

(1063)

In Appendix A, it is shown that to remain first order in hµν , we must also remain first order in ∂µ ξ ν . This

means that we also neglect any terms involving the square of ∂µ ξ ν or the product of ∂µ ξ ν and hµν . Therefore,

the additional terms due to transforming pµ and dxν do not contribute to the transformation in the linearized

approximation. So we are are left with

h′µν p′µ dx′ν = hµν pµ dxν +
(
∂µ ξ ν

)
pµ dxν +

(
∂ν ξ µ

)
pµ dxν (1064)

Inserting this into the phase expression in (1059) gives

φ̃
′
coupling =

1

}

∮
hµν pµ dxν +

1

}

∮ (
∂µ ξ ν +∂ν ξ µ

)
pµ dxν (1065)

We can refer to the second integral as φ̃ gauge since it is the contribution to the phase coming purely from the

gauge freedom. In the eikonal approximation100, pµ is a constant and can come out of the integral so we have

φ̃
′
gauge =

pµ

}

∮ (
∂µ ξ ν +∂ν ξ µ

)
dxν (1066)

In general, the differential of a four-vector ξ α is

dξ α =
(
∂β ξ α

)
dxβ (1067)

For α = ν and β = ν , then we have dξ µ =
(

∂ν ξ µ

)
dxν which appears in the second term of the integral in

(1066). Therefore the closed loop integral of that term will vanish and we are left with

φ̃
′
gauge =

pµ

}

∮
∂µ ξ ν dxν (1068)

We cannot use the same approach again to remove this integral. For example, using α = µ and β = ν in

(1067) gives dξ ν =
(
∂µ ξ ν

)
dxµ however the integral above is in terms of dxν , not dxµ . If we sum over

indices in (1068), then we have

φ̃
′
gauge =

p0̃

}

(∮
(∂0̃ξ 0)dx0+

∮
∂0ξ idxi

)
+

pi

}

(∮
∂iξ 0dx0+

∮
∂iξ jdx j

)
(1069)

We can think of ∂0ξ i as essentially just a vector ai so that the closed path integral of aidxi must vanish

(assuming ai is a single-valued function of space). Likewise, we can think of ∂0ξ idxi as essentially just a

vector bi so that the closed path integral of bidx0 must vanish (assuming ∂iξ 0 is a single-valued function of

time). The closed-path integral of ∂iξ jdx j need not vanish since the values of ∂iξ j on a path parameterized

by x j from point A to B could be different than the values on a path from point B to A. (The reason would be

100In the eikonal approximation, we consider a wave expressed as ψ = Aeikx to be highly localized along

one dimension (essentially a ray) so that ∂ 2ψ = 0 and ∂ψ = constant. Since ∂ψ = kψ then this means k =
constant. For a quantum particle, p= }k so p= constant. Therefore, here we simply treat pµ as a constant.
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due to the derivative values of ξ j with respect to ∂i which are independent of the path parameterized by x j.)

Then the closed-path integral could be non-zero.

In (1068) we must be careful to recognize that the index of pµ was contracted with the index of ∂µ while

the index of ξ ν was contract with the index of dxν . This information is lost in the first integral of (1069)when

0 is simply substituted into both indices. Therefore we have used the labels µ = 0̃ and ν = 0 to emphasize

this distinction.

It is critical to pay attention to this issue since we can see that ∂µ and dxν do not have matching indices

and therefore, the closed-path integral does not necessarily vanish. The physical significance of µ = 0̃ is the

selection of the time-like component of pµ which is p0̃ = E/c and to select the temporal derivative of ξ ν

with respect to a coordinate time t̃. However, the physical significance of ν = 0 is to select the time-like

component of ξ ν which is ξ 0 and to integrate over a differential time element dt. Notice that there is no

reason why the derivative of ξ 0 with respect to the coordinate time t̃ should be related to the integration with

respect to the coordinate time dt. In other words, the rate at which some scalar ξ 0 is changing in time as

measured by a clock with time t̃, need not be match the rate at which the integration occurs with respect

to a clock measured by t. Therefore, even for a closed-path integral, we cannot expect that the integral of

(∂0̃ξ 0)dx0 necessarily vanishes. This only occurs in the special the case when µ = ν = 0 or in other words,

t = t̃.

Therefore, (1069) can be reduced to

φ̃
′
gauge =

E

}c

∮
(∂t̃ξ 0)dt+

pi

}

∮
∂iξ jdx j (1070)

This is the irreducible residual gauge freedom in the phase. It is very particular, with only two specific gauge

functions persisting: ∂t̃ξ 0 and ∂iξ j. We can examine how this gauge freedom will affect each of the phase

contributions for the scalar, vector, and tensor components of the metric perturbation. First we write the

gauge freedom for each component separately as

h′00 = h00+2∂t̃ξ 0/c, h′0i = h0i+ ξ̇ i/c+∂iξ 0, h′i j = hττ
i j +∂iξ j+∂ jξ i (1071)

The phase associated with the scalar, vector, and tensor components of the transformed metric perturbation

in (1059) can also be written separately as

φ̃
′
S =

E

}

∮
h′00dt, φ̃

′
V =

1

}

∮ (
E

c
h′0idxi+ ch′0i p

idt

)
, φ̃

′
T =

1

}

∮
h′i j p

idx j (1072)

Substituting each transformation from (1071) into the appropriate corresponding phase expression in (1072)
and eliminating gauge terms not found in (1070) gives

φ̃
′
S =

E

}

∮
(h00+2∂t̃ξ 0/c)dt (1073)

φ̃
′
V =

1

}

∮ (
E

c
h0idxi+ ch0i p

idt

)
(1074)

φ̃
′
T =

1

}

∮ (
hττ

i j +∂iξ j

)
pidx j (1075)
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Hence we conclude that strangely only φ̃V is found to be gauge-invariant while φ̃ S and φ̃ T are necessarily

gauge-dependent. However, in the rest frame of the particle, then pi = 0 and therefore φ̃ T vanishes as well as

the term with h0i p
i in φ̃V . Also, in the rest frame we have E = mc2. So adding up the phase expressions in

(1073)− (1075) gives

φ̃
′
coupling (rest f rame) =

mc2

}

∮ (
h00dt+ 1

c
h0idxi

)
+

2mc

}

∮
(∂t̃ξ 0)dt (1076)

Note that the first integral contains the phase commonly found in the literature with regard to the scalar and

vector gravitational AB effect. However, we find that even in the rest frame of the particle, the phase still

contains an irreducible gauge contribution given by a single degree of freedom, ξ 0. This gauge freedom is

commonly overlooked in the literature.

We might inquire if working in terms of this full gauge freedom would lead to the expression for the phase

to be gauge-invariant. If we work with the full non-linear theory, then the gauge freedom of the metric was

found in (2406) of Appendix A to be

g′µν = gµν −∂
ν
ξ

µ −∂
µ

ξ
ν +
(
∂σ ξ

µ
)(

∂
σ

ξ
ν
)

(1077)

It follows that the gauge transformation for h′µν will be

h′µν = hµν +∂
ν
ξ

µ +∂
µ

ξ
ν −
(
∂σ ξ

µ
)(

∂
σ

ξ
ν
)

(1078)

The contribution to the phase from the gauge freedom in (1066) will become

φ̃
′

gauge
(non−linear)

=
pµ

}

∮ [
∂

ν
ξ

µ +∂
µ

ξ
ν −
(
∂σ ξ

µ
)(

∂
σ

ξ
ν
)]

dxν (1079)

We have already demonstrated that the closed-loop integral of ∂ ν ξ
µ

dxν must vanish. Then the remaining

contribution to the phase due to the gauge freedom is

φ̃ gauge ( f ull) = −
pµ

}

∮ [
∂

µ
ξ

ν −
(
∂σ ξ

µ
)(

∂
σ

ξ
ν
)]

dxν (1080)

Since the integral is with respect to dxν , then
(
∂σ ξ

µ
)

in the second term can be treated as a constant. In that

case, the second term has the same problem as the first term, namely, we cannot justify that the closed-loop

integral of
(
∂ σ ξ

ν
)

dxν should necessarily be zero. Although we did not transform pµ and dxν along with

the metric, we showed earlier in (1063) that this will only introduce additional gauge terms which will not

cancel. Therefore, we conclude that even in the fully non-linear theory, the phase expression in terms of the

metric perturbation remains gauge-dependent.
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10.4 Gauge-invariance of the full phase

Returning to the case of electromagnetism in (1056), we can reparameterize the integrals so they are

expressed in terms of proper time, dτ , by using

qdxµ = q
dxµ

dτ
dτ = quµ dτ = Jµ dτ (1081)

where Jµ is the relativistic four-current density. Then (1056) becomes

φ̃ =
1

}

∮
Aµ Jµ dτ =

1

}

∫∫
Fµν Jµ ∧dxν dτ (1082)

This is could be considered a more natural way to express the phase for electromagnetism since it is written in

terms of purely electromagnetic quantities. However, it is still important to note that the integral for Aµ is still

a closed-path integral which is required to preserve gauge-invariance. In practice, this implies that one might

integrate dτ along half of a closed path (such as along half of a circle that surrounds a cylindrical solenoid),

and then continue the integration along the other half of the path with the interpretation that the integral is

essentially summing backwards in time. In that sense, although the integration with respect to time, it is still

essentially a closed path.

We may apply a similar process to reparameterize the gravitational phase in (1054) in terms of dτ by

using

dxµ =
dxµ

dτ
dτ = uµ dτ =

1

m
pµ dτ (1083)

Then the phase in (1054) becomes

φ̃ =
1

m}

∮
hµν pµ pν dτ (1084)

We know that pµ pµ = gµν pµ pν is a relativistic invariant quantity. Using gµν = ηµν +hµν gives

pµ pµ =
(
ηµν +hµν

)
pµ pν = η

µν pµ pν +hµν pµ pν (1085)

Therefore we see that the phase expressed in (1084) is only part of the relativistic invariant quantity in

(1085). In particular, it is the contribution to the phase which is due to coupling to gravitation. The full phase

includes the free particle contribution as well as the contribution due to the gravitational coupling. In fact, we

can write the full phase as

φ̃ f ull =
1

m}

∮
gµν pµ pν dτ (1086)

We can also return to writing the integral in terms of dxν (rather than dτ), as well as use the inverse metric

so that pµ pµ = gµν pµ pν . Then writing (1086) in terms of the transformed inverse metric, g′µν , gives

φ̃
′
f ull =

1

}

∮
g′µν pµ dxν (1087)

If we write (1077) using gµν = ηµν +hµν , then we have

φ̃
′
f ull =

1

}

∮ (
η
′µν +h′µν

)
pµ dxν (1088)

From (2417) we know that h′µν transforms as

h′µν = hµν +∂
µ

ξ
ν +∂

ν
ξ

µ
(1089)

Similarly, by replacing gµν with ηµν in (2405), we can observe that η ′µν transforms (to first order in ∂ ν ξ
µ

)

as

η
′µν = η

µν −
(
∂σ ξ

µ
)

η
σν −

(
∂ρ ξ

ν
)

η
µρ (1090)
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Substituting (1089) and (1090) into (1088) gives

φ̃
′
f ull =

1

}

∮ [
η

µν −
(
∂σ ξ

µ
)

η
σν −

(
∂ρ ξ

ν
)

η
µρ +hµν +∂

µ
ξ

ν +∂
ν
ξ

µ
]

pµ dxν

To lowest order in the metric, we can use gµν ≈ ηµν to raise/lower the indices of ∂σ ξ
µ

in order to avoid

terms involving the product of ∂σ ξ
µ

and hµν which are not consistent with a lowest order treatment. So we

have

φ̃
′
f ull =

1

}

∮ (
η

µν −∂
ν
ξ

µ −∂
µ

ξ
ν +hµν +∂

µ
ξ

ν +∂
ν
ξ

µ
)

pµ dxν (1091)

=
1

}

∮
(ηµν +hµν) pµ dxν (1092)

=
1

}

∮
gµν pµ dxν (1093)

= φ̃ f ull (1094)

Hence we find that the full phase (which involves the free particle motion as well as the coupling to gravita-

tion) is in fact gauge-invariant. However, this gauge-invariance is not unique to the phase. It is simply due to

the invariance of the four-momentum. The calculation above could have been done solely with the integrand

without the closed path integral playing any role in the cancellation of the gauge. This is in stark contrast to

the case in electromagnetism where it is specifically due to the closed path integration that the gauge freedom

vanishes.
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10.5 A generalized gauge-invariant phase

In the cause of electromagnetism, we find that the phase can be expressed in terms of the gauge-dependent

quantity Aµ or the gauge-invariant quantity, Fµν . Since the Maxwell field equations can be written as ∂ ν Fµν =
−µ0Jµ , then we see that Fµν is an appropriate quantity to relate to the phase.

A possible gauge-invariant phase in terms of the Einstein tensor

Likewise, for gravitation, the Einstein equation is Gµν = κTµν therefore, we might expect that Gµν is the

appropriate quantity to express the phase in terms of.

As shown in (1056), the phase in electromagnetism is gauge-invariant and can be formulated in terms

of the field strength tensor which is inherently a gauge-invariant quantity. Therefore we might expect that if

there is a gauge-invariant phase for gravitation, then it might be formulated in terms of an inherently gauge-

invariant quantity such as the Einstein tensor or the Riemann tensor. Therefore, the phase might be written

as

φ̃
?
=

A

}

∫∫
A

Gµν dxµ dxν (1095)

where A is an appropriate constant making φ̃ dimensionless.101 However, there are at least two problems we

can identify with this formulation.

1. There is no coupling of the field, Gµν , to the particle, pµ . Notice in (1056) that the physical quantity

which couples the charged particle to the fields is q. This constant appears in both the expression for

Aµ as well as the expression for Fµν . (Since it is a scalar, it simply comes out of the integral.) In the

gravitational case, the quantity which couples to the field is pµ . (In the case of p0 =mc, where we have

used E = mc2, it is again a constant which comes out of the integral while in the case of pi it remains

in the integral.) The key point is that this coupling quantity does not appear on both sides of (1095).
Attempting to include pµ would require contracting another index. However, both indices of Gµν have

already been contracted with dxµ dxν . We cannot omit one of these distance differentials otherwise

there would no longer be a proper Stokes’ theorem relationship that involves a line integral related to a

surface integral.

2. The integral of Gµν vanishes in vacuum even for nonvanishing fields. In the case of vacuum solu-

tions, the electromagnetic field equations involving sources, ∂ν Fµν = µ0Jµ , become ∂ν Fµν = 0 which

have non-trivial solutions for Fµν . This is obviously the case for electromagnetic waves in vacuum.

Therefore, because the derivative of Fµν is related to the sources, there is the possibility of setting the

sources to zero and still having non-vanishing electromagnetic fields. Consequently, the phase given

by (1056) can be non-zero even in vacuum.

However, in the case of gravity, the Einstein equation, Gµν = κTµν , involves a direct proportionality

between Gµν and the sources. As a result, vacuum solutions require Gµν = 0 and hence the phase in (1095)
must vanish, even though there may be non-zero gravitational fields in the vacuum. For example, for gravita-

tional waves in vacuum, (330) gives �hττ
i j = 0. In fact, as (2468) shows, the linearized Einstein equation in

the harmonic gauge for the case of vacuum
(
Tµν = 0

)
gives �h̄µν = 0. This means that all the components

of the metric perturbation (not just hττ
i j ) satisfy homogeneous wave equations which could have non-trivial

solutions.

101Since Gµν has dimensions of (distance)−2 then integrating over dxµ dxν makes the integral dimension-

less. However, } has dimensions of (momentum·distance) therefore A would need to have the same dimen-

sions to keep φ̃ dimensionless.



193

A possible gauge-invariant phase in terms of the Riemann tensor

Since the phase in terms of the metric perturbation was formulated in terms of a four-dimensional “closed-

loop” integral of hµν pµ , we might expect that applying a higher dimensional version of Stokes’ theorem

would allow us to formulate the phase in terms of a four-dimensional hyper-surface “flux” integral of Rµαβν .

This leads us to consider an expression for the phase that would be even more general than (1095). The

obvious remaining choice is to construct a phase expression in terms of the Riemann curvature tensor which

is non-zero even for vacuum solutions of the metric as long as there is a truly non-vanishing curvature of

space-time. The replacement of (1095) would be102

φ̃ =
1

}

∮
∂A

gµν pµ dxν ?
=

1

}

∫∫∫
Ã

Rµαβν pµ dxα dxβ ∧dxν (1096)

Notice that we have expressed the left side in terms of gµν , not hµν , since we know that it is gµν pµ dxν which

is invariant, not hµν pµ dxν . On the right side, notice we have resolved the requirement to have a coupling of

the field to the particle, pµ , and to have a Stokes’ theorem relationship between both sides. We also know

that the Riemann tensor does not vanish if there are is non-zero curvature, even if the sources are zero for

the case of vacuum solutions to the metric. Lastly, we find that the expression involving the integral of the

Riemann tensor is dimensionless as we would expect for the phase. This follows from the fact that Rµνγδ has

dimensions of (distance)−2 so integrating over pµ dxν dxγ dxδ makes the integral have dimensions of angular

momentum which cancels with the dimensions of }.

To further motivate this expression, we can consider the linearized Riemann tensor (with lowered indices)

in (2473) of Appendix C which we can write as103

Rµαβν = 1
2

(
∂ν ∂µ gβα −∂ν ∂α gµβ −∂β ∂µ gνα +∂β ∂α gµν

)
(1097)

Collecting common derivatives gives

Rµαβν =
1
2

[
∂β

(
∂α gµν −∂µ gνα

)
−∂ν

(
∂µ gβα −∂α gµβ

)]
(1098)

We can define the following rank-3 anti-symmetric tensor

Sαµν ≡ ∂α gµν −∂µ gνα (1099)

Then the linearized Riemann tensor can be written as

Rµαβν =
1
2

(
∂β Sαµν −∂ν Sµβα

)
(1100)

Therefore the linearized Riemann tensor is an anti-symmetric derivative of Sαµν , where Sαµν is also an

anti-symmetric derivative of gµν . In other words, the linearized Riemann tensor is essentially the second

anti-symmetric derivative of gµν . We can express these relationships using a higher dimensional Levi-Civita.

Then (1099) would be written as

Sαµν = εαµνλρσ ∂
λ hρσ (1101)

102Again we use the exterior product between dxβ dxν since dxµ dxν is a symmetric tensor while Rµαβν is

anti-symmetric in βν .

103It is irrelevant whether we express the linearized Riemann tensor in terms of gµν or hµν since gµν =
ηµν+hµν and the derivatives of ηµν are zero anyhow. We simply use gµν to make the discussion concerning

Stoke’s theorem easier to follow.
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and (1100) would be written as

Rµαβν =
1
2
εµαβνλρσδ ∂

λ Sρσδ (1102)

We can also use this notation to express the linearized Riemann tensor directly in terms of the metric pertur-

bation. Since (1101) could be written as Sρσδ = ερσδγκτ ∂γ gκτ , then (1102) could be written as

Rµαβν =
1
2
εµαβνλρσδ ∂

λ

(
ε

ρσδγκτ
∂γ gκτ

)
(1103)

Therefore, we would expect that a double application of Stokes’ theorem should make it possible to write

an integral relationship between gµν and Rµαβν . In general, we know that Stokes’ theorem can be used to

change the closed boundary integral of a function,

∮
fµ dxµ , into the surface integral of the anti-symmetric

derivative of the function,

∫ (
∂µ fν −∂ν fµ

)
dxµ dxν . Therefore, a repeated application of Stokes’ theorem

can be used to effectively keep increasing (or decreasing) the dimensions of integration while also decreasing

(or increasing) the derivatives of the integrand. For example, we can begin with the closed boundary integral

of a rank-2 tensor such as gµν and use Stokes’ theorem to change the integral into a surface integral in a

higher dimension. ∫∫
∂A

gµν dxµ dxν =
∫∫∫

A

(
∂α gµν −∂µ gνα

)
dxα dxµ dxν (1104)

We can substitute (1099) for the integrand under the surface integral.∫∫
∂A

gµν dxµ dxν =
∫∫∫

A

Sαµν dxα dxµ dxν (1105)

Stokes’ theorem requires that we use a closed integral on ∂A which forms the boundary of the surface de-

termined by A =
∫

dxα dxµ dxν . Therefore, if we wish to extend the relationship in (1105) to a higher di-

mension, then we can require that A is now the closed boundary of a higher dimensional surface104 given by

Ã=
∫

dxβ dxα dxµ dxν . In other words, we now consider that A= ∂ Ã. Then applying Stokes’ theorem again,

we have ∫∫∫
∂ Ã

Sαµν dxα dxµ dxν =
∫∫∫∫

Ã

(
∂β Sαµν −∂ν Sβαµ

)
dxβ dxα dxµ dxν (1106)

Because Sβαµ is a completely anti-symmetric tensor, then permuting the indices twice leaves the sign un-

changed. Then the integrand above becomes
(
∂β Sαµν −∂ν Sµβα

)
which matches the linearized Riemann

tensor as shown in (1100). Therefore writing (1106) in terms of the Riemann tensor and equating it to

(1105) gives ∫∫
∂A

gµν dxµ dxν =
∫∫∫∫

Ã

Rµαβν dxµ dxα dxβ dxν (1107)

Multiplying both sides by m/dτ and using pµ = m(dxµ/dτ) gives

m

∫
∂A

gµν pµ dxν = m

∫∫∫
Ã

Rµαβν pµ dxα dxβ dxν (1108)

104It has been argued that Stokes’ theorem cannot be applied repeatedly to reduce the dimension of the

region of integration over and over, because the boundary of the boundary of a set is empty. (The consequence

of this principle on fundamental theories of physics is discussed at length in [66].) This would mean that it

is not possible for an open surface A (in n dimensions) to be turned into a boundary ∂A which encloses a

higher dimensional open surface Ã (in n+1 dimensions). For example, a solid sphere is 3-dimensional and

has a unique boundary given by a spherical shell which is 2-dimensional. However, the spherical shell has no

1-dimensional enclosing “boundary.” Similarly, a circle is a 1-dimensional boundary of a 2-dimensional disc.

However, a disc cannot form a boundary that would enclose any 3-dimensional object.
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Notice that the integrals have been effectively reduced by one dimension and there is now a coupling between

the field (expressed as gµν or Rβαµν ) and a particle with four-momentum pµ . Lastly, dividing both sides by

m} allows us to write the phase as

φ̃ =
1

}

∮
∂A

gµν pµ dxν =
1

}

∫∫∫
Ã

Rµαβν pµ dxα dxβ dxν
(1109)

Note that this result applies only to the linearized Riemann tensor. We emphasize that we used the linearized

Riemann tensor in (1097) to develop the phase expression in (1109). This led to the anti-symmetric properties

that were exploited via Stokes’ theorem in this treatment. It is unknown to the author whether the fully non-

linear Riemann tensor could still lead to a relationship such as (1109). However, the primary objective was

to develop an expression that is gauge-invariant. Since the linearized Riemann tensor is still gauge-invariant,

then this purpose was fulfilled.
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10.6 The quantum phase in terms of the Helmholtz Decomposition metric

Here we consider the quantum phase expressed in terms of the HD metric components. We can use the

metric components from (175)− (177) and the gauge vector given in (201) as

ξ µ = (cA, Bi+∂iC) (1110)

Then the phase in (1073)− (1075) for each metric component becomes

Scalar coupling phase : −2E

}

∮ (
φ/c2+∂t̃A

)
dt (1111)

Vector coupling phase : φ̃V =
1

}

∮ [
E

c
(β i+∂iα)dxi+ c(β i+∂iα) pidt

]
(1112)

Tensor coupling phase : φ̃ T =
1

}

∮ [
hττ

i j +
1
3
δ i jH+∂iε j+∂ jε i

+
(

∂i∂ j− 1
3
δ i j∇

2
)

λ +∂iB j

]
pidx j (1113)

Due to the closed-loop integrals, the following terms will vanish: ∂iαdxi, ∂ jε idx j, and ∂ j (∂iλ )dx j. We can

also use Θ= 1
3

(
H−∇

2
λ

)
. Then the phases reduce to

φ̃ S = −2E

}

∮ (
φ/c2+∂t̃A

)
dt (1114)

φ̃V =
1

}

∮ [
E

c
β idxi+ c(β i+∂iα) pidt

]
(1115)

φ̃ T =
1

}

∮ [
hττ

i j +Θδ i j+∂iε j+∂iB j

]
pidx j (1116)

Recall that hττ
i j is a gauge-invariant potential as well as

Φ = φ + α̇− λ̈/2, Θ= 1
3

(
H−∇

2
λ

)
, Ξi = β i− ε̇ i (1117)

We can immediately identify the fact that the only gauge-invariant potential that can appear in the phase

expressions above is hττ
i j . Although, Θ= 1

3

(
H−∇

2
λ

)
also appears in the tensor coupling phase, the presence

of ∂i∂ jλ introduces gauge freedom that cannot be removed while still preserving Θ. Therefore, in the near-

field, we find that all the quantum phase contributions must be gauge-dependent and therefore can be removed

by transforming into an appropriate frame as given by the gauge transformations found in (238)− (243). In

the far-field, we know that hττ
i j is the only potential that remains since it is a radiative field. Therefore, in the

far-field, the quantum phase is given by

φ̃ T =
1

}

∮
hττ

i j pidx j (1118)
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Notice that if we choose to integrate along a path that is always parallel to the particle velocity, then vi and

dxi always have the same index values and therefore the only contribution to the phase comes from hT T
ii .

This means that only a plus-polarization wave will contribute to the phase since it involves hT T
xx and hT T

yy . On

the other hand, if we choose to integrate along a path that is always perpendicular to the particle velocity,

then vi and dx j always have a different index value and therefore the only contribution to the phase comes

from hττ

i j (i 6= j). This means that only a cross-polarization wave will contribute to the phase since it involves

hττ
xy and hττ

yx . Lastly, if we choose to integrate along a path neither perpendicular nor perpendicular to the

particle velocity, then vi and dx j can have both matching as well as differing index values and therefore both

plus-polarization and cross-polarization waves will contribute to the phase.

We also note that the strain field given by hττ
i j does not necessarily have to be associated with gravitational

waves. In a later section we will consider the case of a “mass solenoid” where it is possible to have a steady-

state “mass current” so that the transverse-traceless stress, T ττ
i j , given in (409) as

T ττ
i j = viv j

(
ρ+P/c2

)
− 1

3
δ i jv

2
(
ρ+P/c2

)
(1119)

does not vary with time. In that case, the wave equation given in (333) as �hττ
i j = −2κT ττ

i j reduces to a

Poisson equation, ∇
2
hττ

i j = −2κT ττ
i j . Then hττ

i j is no longer a radiative field and does not drop off as 1/r

in the far-field. Rather, it will drop off as 1/r2 like the other non-radiative fields. This means that even as

we let r→ ∞, we do not have a region of space where all the quantities in hi j become negligible except for

hττ
i j . Instead, all potentials are equally negligible (or non-negligible) in every region of space. As a result,

the tensor coupling phase in (1113) cannot be reduced to (1118) and therefore there is no gauge-invariant

phase expression. In fact, from this analysis we can simply state that there is no gauge-invariant phase for

any non-radiative gravitational fields in the Helmholtz Decomposition (HD) formulation of linearized GR.105

105We are careful to state our conclusion here as being a result of using the HD formulation of linearized

GR. This formulation required particular boundary conditions (such as hµν → 0 as r → ∞). There may

possibly be another formulation which would allow for a gauge-invariant phase expression for non-radiative

gravitational fields. In fact, if a phase were to be expressed in terms of the Einstein tensor or Riemann tensor,

as considered in a later section, then it would necessarily be gauge invariant.
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10.7 An AB effect for the gravito–vector and gravito–scalar potentials

Next we describe the Aharonov-Bohm (AB) effect by considering the potentials and vector fields of a

“mass solenoid.” We show that the GEM field equations imply that there is a gauge-invariant AB effect for

the gravito-vector and gravito-scalar potentials. However, because the geodesic equation of motion in terms

of the GEM fields is necessarily gauge-dependent, the associated AB effect must also be gauge–dependent.

The original AB effect introduced a quantum mechanical manifestation of the electromagnetic scalar and

vector potentials [67]. In a recent paper [4], we examined a gravitational vector AB effect in terms of the

gravito-vector potential defined as ~h = c(h01,h02,h03). However, as we have shown in previous sections,

the gravito-vector potential given by~h, and the associated gravito-magnetic field written as ~̃BG = ∇×~h, are

gauge-dependent quantities. Therefore the associated AB effect is not gauge-invariant.

We might therefore speculate that there is a gauge-invariant AB effect given in terms of ~Ξ since this is a

gauge-invariant potential. According to the usual procedure, we consider a configuration where the gravito-

magnetic field vanishes
(
~̃BG = 0

)
and yet ~Ξ 6= 0 so that only ~Ξ affects Ψ and ~̃BG does not. We can consider

a very long rotating cylindrical “mass solenoid”.of length L and radius R with the axis along the z-axis from

z=−L/2 to z= L/2.

Figure 5: A mass solenoid producing a gauge-invariant gravito-magnetic field

At a point far from either end (|z|<< L) and close to the solenoid wall (r ≈ R but with r > R), we effec-

tively have ~̃BG = 0 while~Ξ 6= 0. We can apply the same methods commonly used for the magnetic AB effect.

The details are identical to previous sections which were calculated in terms of the gauge-dependent potentials



199

and fields, ϕG, ~EG, ~h and ~BG. These are simply replaced here with the gauge-invariant potentials and fields,

ϕ̃G, ~̃EG, ~ΞG and ~̃BG, respectively. In this model, we neglect terms involving pressure and use the field equa-

tions for relativistic dust given in (431). We can also define an effective mass density, ρe f f ≈ ρ

(
1+

v2

2c2

)
.

Then following the procedure in Section 9, we would find the gauge-invariant gravito-scalar potential, ϕG, to

have the same form as (112) which gives

ϕG (r) =
R2ρe f f

2πεG

ln

(
r

r0

)
(1120)

Likewise, the gauge-invariant gravito-vector potential,~Ξ, would have the same form as (115) which gives

~Ξ =
Φ~BG

2πr
φ̂ (1121)

Also, like (124), this can be written in terms of the physical parameters of the mass solenoid as106

~Ξ =
µGR4ρω

4r
φ̂ (1122)

We now consider the phase which would result from the gravito-scalar potential and the gravito-vector po-

tential. From (1111) we know the gravito-scalar potential will introduce a phase generated by an integral

in time rather than a spatial integral. For simplicity we will neglect this additional interaction and write the

Schrödinger equation as

i}∂tΨ(~r, t) =
1

2m

(
i}∇+m~Ξ

)2

Ψ(~r, t) (1123)

If Ψ(~r, t) is a solution, then we can consider a wavefunction with a phase shift, φ̃ , so that

Ψ = eiφ̃
Ψ̃ (1124)

For a quantum particle in the vicinity of the solenoid, we may expect the vector coupling phase107 to be

expressed in terms of~Ξ as108

φ̃V =
m

}

∫ r

0

~Ξ
(
~r′
)
·d~r′ (1125)

If we apply to (1123) the method shown in Appendix O, we arrive at

i}
∂

∂ t
Ψ̃(~r, t) = − }

2m
∇

2
Ψ̃(~r, t) (1126)

106Following the calculation in going from (115)− (124) in Section 9, it can be seen that ρ , not ρe f f , is

what comes into the expression for~Ξ. It is only in the gravito-Gauss law that ρe f f is relevant.

107A similar vector coupling phase is also derived by Chiao and Speliotopoulos in [65].

108The coupling rule leading to the phase in (1125)was developed in a previous section using a Hamiltonian

for non-relativistic test particles. For the case of fully relativistic test particles, we must use the relativistic

Hamiltonian given by (693). However, in this Hamiltonian, ~Ξ does not appear in the minimal coupling.

Therefore, we would not have the phase given by (1125).
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Hence we see that Ψ̃(~r, t) is also a solution of Schrödinger’s equation but with the absence of~Ξ which means

that~Ξ just produces a phase factor. We conclude the following:

Introducing~Ξ causes Ψ =⇒ eiφ Ψ where φ̃ =
m

}
∫
~Ξ ·d~r (1127)

Now we consider a beam of electrons directed toward a superconducting mass solenoid which contains cir-

culating mass currents. The wavefunction of an electron splits at point A, takes paths 1 and 2 around the two

sides of the solenoid, and recombines at point B on the other side. An interference pattern emerges.We can

Figure 6: The Aharonov-Bohm effect occurs as an electron beam is split at point A and recombined at point

B, on the other side of a solenoid.

consider the wave function of the electron to be a plane wave along paths 1 and 2.

Ψ1 = Aei(~k·~r1−ωt) and Ψ2 = Aei(~k·~r2−ωt) where k =
2π

λ
=

p

}
(1128)

If points A and B are far from the solenoid, then we can use the double-slit model from classical optics to

describe the difference in optical path lengths as shown in the following diagram.
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2

1

Figure 7: Double-slit experiment for observing the Aharonov-Bohm effect

If the cylindrical mass shell is not spinning, then we have

~Jm = 0, ~̃BG = 0, Φ~BG
= 0, ~Ξ= 0 (1129)

Then the interference pattern depends only on the difference between traveled paths so we have

φ̃ = ~k ·~r1−~k ·~r2 = k (r1− r2) =
2π

λ
(r1− r2) =

2π

λ
a (1130)

If the interference pattern is detected far from the solenoid, then x<< L and a≈
(

x

L

)
d. So we have

φ̃ =
2πdx

λL
(1131)

where φ̃ = 2nπ at maxima and φ̃ =
(
n+ 1

2

)
π at minima. If the cylindrical mass shell is spinning, then we

have

~Jm 6= 0, ~BG 6= 0, Φgm 6= 0, ~Ξ 6= 0 (1132)

Since (1125) shows that φ̃V =
me

}

∫ r

0

~Ξ(~r′) ·d~r′, then each wavefunction picks up a phase.

Ψ1 = Aeiφ̃V,1ei(~k·~r1−ωt) and Ψ2 = Aeiφ̃V,2ei(~k·~r2−ωt) (1133)

where

φ̃V,1 =
me

}

∫
Path 1

~Ξ(~r) ·d~r and φ̃V,2 =
me

}

∫
Path 2

~Ξ(~r) ·d~r (1134)



202

Note that Ψ1 moves in a direction opposite of~Ξ on path 1, while Ψ2 moves in the same direction as~Ξ on path

2. Therefore, the two waves pick up opposite phases on their paths. The phase difference is

∆φ̃V = φ̃V,2− φ̃V,1 (1135)

∆φ̃V =
me

}

 ∫
Path 2

~Ξ(~r) ·d~r−
∫

Path 1

~Ξ(~r) ·d~r

 (1136)

Since both integrals have the same upper and lower bounds (from point A to point B in the earlier figure),

then integrating along paths 1 and 2 forms a closed loop around the solenoid. Therefore we have

∆φ̃V =
me

}

∮
Around
solenoid

~Ξ ·d~r (1137)

By applying Stokes’ theorem, as we did to obtain (1121), the integral becomes the gravito-magnetic flux.

∆φ̃V =
meΦ~BG

}
(1138)

Since φ̃ =
2πdx

λL
from (1131), then

∆φ̃ =
2πd∆x

λL
(1139)

Equating (1138) and (1139) and solving for ∆x gives

∆x=
λLmeΦ~BG

hd
(1140)

In (123) we found that the flux can also be expressed as Φ~BG
= µGπR4ρωsol/2 where ρ is the uniform mass

density of a solid mass solenoid, and ωsol is the angular frequency of its rotation. Substituting this into (1140)
gives a result completely in terms of the physical parameters of the system.

∆x=
λLmeµGπR4ρωsol

2hd
(1141)

From the result in (1140) we would expect that the effect of the gauge-invariant vector potential ~Ξ is to

produce a fringe shift in the interference pattern. Since ~Ξ is gauge-invariant, then we would anticipate that

this is a gauge-invariant gravitational Aharonov-Bohm effect.

In the electromagnetic case, the argument is often made that because the magnetic field is gauge-invariant

and the flux of the magnetic field is non-zero, then the line integral of the magnetic vector potential cannot be

removed by a choice of gauge. The argument is even stronger in the gravitational case considered here since

the gravito-magnetic field, ~BG, is gauge-invariant, and the vector potential,~Ξ, is also gauge-invariant. This is

further reason that the line integral in (1121) cannot be made to vanish by a gauge choice.109

109This is assuming the approximations for linearized GR used in Appendix A remain valid. Specifically,

any linear coordinate transformation given by x′µ = xµ −ξ
µ

must keep ξ
µ

sufficiently small so that ∂ µ ξ
ν

is

on the order of hµν which must satisfy |hµν |<< 1.
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However, we also point out that ~Ξ = β i −
·
~ε involves terms from both h0i and hi j. In the first-order

post-Newtonian limit for slow moving gravitational sources, we have hi j(i6= j) ≈ 0 and therefore~ε = 0. Then

~Ξ ≈ ~β which means ~Ξ is no longer gauge-invariant and consequently ~̃BG is also no longer gauge-invariant.

Therefore, the gauge-invariance of (1121) only holds in the case of fully relativistic gravitational sources for

which we cannot approximate hi j(i6= j) ≈ 0. This means that the field equations using an ideal fluid given by

(429) or (431) would lead to (1121) being gauge-invariant. However, the field equations given by (454) for

non-relativistic dust would not leave (1121) gauge-invariant.

The gauge-invariance described here was based on arguments concerning the potentials, fields, and field

equations. Specifically, the argument was based on the gauge-invariance of the gravito-scalar and vector po-

tentials, the gravito-electric and magnetic fields, and the gravito-Gauss and gravito-Ampere laws. However,

we must also consider the equation of motion. We found in Section 17 that the geodesic equation of motion

contains gauge-freedom regardless of whether one considers test particles that are non-relativistic or relativis-

tic to order v/c or v2/c2. Additionally, the geodesic equation of motion contains gauge-freedom regardless of

whether one considers the second post-Newtonian order, first post-Newtonian order, or the Newtonian limit.

In other words, it is not possible to write the geodesic equation of motion purely in terms of Φ,Θ and~Ξ which

are the gauge-invariant, near-field potentials that would be relevant in close proximity to a mass solenoid.

In fact, it was also shown in the previous two sections that there is no coupling rule for the canoni-

cal momentum that involves ~Ξ = ~β −
·
~ε which is the gauge-invariant gravito-vector potential. Rather, the

coupling rule only involves ~ΞPN = ~β which is a gauge-dependent gravito-vector potential in the first-order

post-Newtonian limit. This result is ultimately due to the fact that the Hamiltonian in (851) for second-order

post-Newtonian sources and fully relativistic test particles cannot be written in terms of the gauge-invariant

potentials, Φ,Θ and ~Ξ. This immediately indicates that there are no coupling rules in terms of these gauge-

invariant quantities. In other words, we have

mc2 ; mc2− 1
2
mc2

ϕG and ~pcan ; ~pcan−m~Ξ (1142)

where ϕG was found in (345) as ϕG ≡
1

2

(
Φ+

c2

2
∇

2
Θ

)
. Accordingly, we have

φ̃ S 6=
m

}

∮
ϕGdt and φ̃V 6=

m

}

∮
~Ξ ·d~r (1143)

and therefore we never obtain a Schrödinger equation of the form

i}∂tΨ(~r, t) 6=
[

1

2m

(
i}∇+m~Ξ

)2

+mϕG

]
Ψ(~r, t) (1144)

Consequently, although the procedure of demonstrating the local gauge invariance of the wavefunction (as

shown in Appendix O) could be mathematically applied to ~Ξ and ϕG, the resulting phase expression and

Schrödinger equation would not be valid since they would be consistent with the actual equation of motion

of the quantum particle as derived from the classical relativistic Hamiltonian or the geodesic equation of

motion. Therefore, we conclude that because the equation of motion of the quantum particle is necessarily

gauge-dependent, then the associated AB effect (for the scalar and vector potentials) are also necessarily

gauge-dependent.

However, as we will show in the following section, the AB effect associated with the tensor potential can

be gauge-invariant. This follows from the fact that the only gauge-invariant equation of motion is in the far-

field when there is a gravitational wave given by hττ
i j which is a gauge-invariant quantity. In the far-field, the

geodesic equation of motion only contains hττ
i j . Therefore, for the case of gravitational waves in the far-field,

it is possible to have a gauge-invariant AB effect.
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10.8 An AB effect for a spherically symmetric, time-varying scalar potential

A common approach to the gravitational scalar AB effect is to consider a quantum wave function which

bifurcates into two paths which have different gravitational potential energy differences due to the gravita-

tional potential of the earth. (An example is show in Appendix P.) However, here we consider a gravitational

scalar AB effect via hydrogen atom spectroscopy inside a time-varying spherical mass shell. A sine-wave

generator injects a charge Q(t) = Q0 cosωt onto the surface of a spherical Faraday cage (blue). Inside a cav-

ity (white) carved out of the cage is placed a hydrogen atom (red), which is at rest at the center of the cage.

The lowest two unperturbed energy levels of the atom are indicated by E1 and E2. A photon γ is emitted upon

a transition from E2 to E1Since the electrons deposited on the surface of the conductor carry both charge and

Figure 8: Two-level atom inside a spherical mass shell with a time-dependent mass, M (t), that arises from a

time-dependent charge, Q(t).

mass, then there must be a time-varying mass on the surface of the conductor given by

m(t) =
me

e
Q(t) (1145)

where me/e is the mass-to-charge ratio of the electron and Q(t) = Q0 cos(ωt) as we had before. The total

mass surrounding the atom in the center will therefore be given by M (t) = m(t)+M0 where M0 is the static

background mass such that M0 >>m(t) at all times. Then the total mass as a function of time can be written

as

M (t) =
meQ0

e
cos(ωt)+M0 (1146)

As a consequence of this sinusoidally time-varying mass, there must also be a sinusoidally time-varying

gravitational scalar potential given by

VG (t) =
4πGM (t)

a
=

M (t)

aεG

(1147)

at every point in the interior of the sphere.110 Note that in the gravitational case, the sphere does not act

like a Faraday cage in the sense of shielding the atom at the center from the gravitational field of the mass

deposited on the surface of the sphere. However, the field will still be zero everywhere inside the conductor

due to the particular geometry, namely, the spherical symmetry. This can be shown using Poisson’s equation

for Newtonian gravity

∇
2
VG = ρ/εG (1148)

110Note that we are considering a quasi-static limit where the propogation of the potential is much faster

than the frequency of oscillation of the mass distribution and therefore Newton’s law of gravity is valid to an

extremely good approximation even in this time-varying case.
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and applying the boundary conditions for the sphere. The field inside the conductor vanishes while the field

outside the conductor is simply that of a point mass with mass M (t). Finding the gravitational potential inside

the cavity is then just a matter of integrating the field from infinity to the surface of the sphere.

VG (t) =−
∫ a

∞

GM (t)

r′2
dr′ (1149)

The result is that shown in (1147). Since the field is zero but the potential is constant inside the sphere,

then the corresponding energy shifts of the atom are in fact a scalar gravitational AB effect. To describe

the gravitational scalar AB effect, we now use a treatment directly analogous to the treatment used for the

electric scalar AB effect. We may modify (3) so that the wavefunction of the atom will be phase modulated

by the time-varying gravitational scalar potential (1147) in accordance with the time-dependent Schrödinger

equation

i}
∂ψ

∂ t
= Hψ = (H0+U (t)+UG (t))ψ (1150)

Here we have H is the total Hamiltonian, H0 is the unperturbed Hamiltonian of the atom before the charge

Q(t) and corresponding mass M (t) is injected onto the exterior surface of the conductor, and U (t) is the

electric potential energy and UG (t) is the gravitational potential energy of the atom at rest in the trap. Similar

to (4) expressing the electric potential energy, likewise we can express the gravitational potential energy using

(1146) and (1147).

UG (t) = meVG (t) =
4πGmeM (t)

a
(1151)

=
4πGme

a

(
meQ0

e
cos(ωt)+M0

)
(1152)

Note that that the second term simply provides an overall “DC” shift in the energy levels while the first term

will introduce an “FM phase modulation.” We may modify (7) to write the phase shift of the wavefunction as

ϕ (t) =
e

}

∫ t

0
V (t)dt+

me

}

∫ t

0
VG (t)dt (1153)

=
1

}

∫ t

0
[eV (t)+meVG (t)]dt (1154)

Using (2) and (1152) to evaluate the integral gives

ϕ (t) =
1

}

[
eQ0

4πε0aω
sin(ωt)+

4πGme

a

(
meQ0

eω
sin(ωt)+M0t

)]
(1155)

=
eQ0

4πε0a}ω
sin(ωt)+

4πGm2
eQ0

ae}ω
sin(ωt)+

4πGmeM0

a}
t (1156)

We can define a gravitational “FM depth of modulation” parameter αG similar to (9) as

αG =
4πGm2

eQ0

ae}ω
(1157)

We can also define

β G =
4πGmeM0

a}
(1158)

so that the phase in (1156) can be written as

ϕ (t) = (α+αG)sinωt+β G t (1159)
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Then we find that the hydrogen atom wavefunction in the presence of the interior scalar potentials V (t) and

VG (t) caused by the exterior charge Q(t) and mass M (t), respectively, will have the form

ψ (t) = ψ (0)exp

(
− i

}
Et

)
exp [−i(α+αG)sinωt− iβ G t] (1160)

In principle, the gravitational potential introduces adjustments to the energy levels of the atom due to the grav-

itational potential. However, this gravitational scalar AB effect would be far weaker than the corresponding

electric scalar AB effect as demonstrated by considering the ratio of the FM depth modulation parameters

αG

α
=

16π2Gε0m2
e

e2
≈ 3×10−42 (1161)

We can also determine the effective wave function for a “gravitational atom.” The Hamiltonian of an atom in

the presence of a time-dependent potential is

Ĥ = Ĥ0 (~p,~x)+U (t) (1162)

where Ĥ0 (~p,~x) is the Hamiltonian of the ion before being exposed to the external potential, and U (t) =
mV (t) is the additional potential energy when the external time-dependent gravitational potential, V (t), is

introduced. For the case of a gravitational potential inside the sphere, we must have that V (t) is uniform

and therefore independent of position. In fact, for a potential that is produced by a sinusoidally time-varying

mass, M (t) =M0 cos(ωt), deposited on the surface of a conducting sphere with radius a surrounding the ion,

we have

U (t) = qV (t) =
meM0 cos(ωt)

4πεGa
(1163)

Then substituting (2345) into (194) gives

Ĥ = Ĥ0 (~p,~x)+
meM0 cos(ωt)

4πεGa
(1164)

The Hamiltonian for the hydrogenic atom without the presence of the external potential is

Ĥ0 (~p,~x) =
p̂2

2m
− memp

4πεGr
(1165)

which is simply the kinetic energy of the electron and its Newtonian interaction with the nucleus. We can

substitute (1165) into (693) and make use of the operators p̂=−i}∇ and Ĥ0 = i}∂t to act on a wavefunction,

Ψ(~x, t). This gives the following time-dependent Schrödinger wave equation.

i}∂tΨ(~x, t) =

[
− }

2

2m
∇

2− memp

4πεGr
+

meM0 cos(ωt)

4πεGa

]
Ψ(~x, t) (1166)

Given the separation of space and time dependence in the wave equation, we can apply separation of variables

to decompose the time-dependent wavefunction into a spatial function, ψ (~x), and a temporal function, T (t).
Then we have

Ψ(~x, t) = ψ (~x)T (t) (1167)

Substituting (1167) into (1166) and distributing gives

i}ψ (~x)∂tT (t) =−
}2

2m
T (t)∇2

ψ (~x)− memp

4πεGr
Ψ(~x, t)+

meM0 cos(ωt)

4πεGa
Ψ(~x, t) (1168)

Dividing each term in (1168) by the wavefunction in (1167) and rearranging gives

i}
T (t)

∂tT (t)−
mM0 cos(ωt)

4πεGa
=− }2

2meψ (~x)
∇

2
ψ (x)− memp

4πεGr
(1169)
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Since the left side of (1169) is only time-dependent and the right side of (1169) is only space-dependent, then

each side must be equal to a constant independently. Therefore we can write

i}
T (t)

∂tT (t)−
meM0 cos(ωt)

4πεGa
= E (1170)

and likewise

− }2

2mψ (~x)
∇

2
ψ (~x)− memp

4πεGr
= E (1171)

where we have used E for the separation constant. Notice that (1171) is simply the equation for a “grav-

itational hydrogen atom.” The solution to this differential equation is also commonly found by applying

separation of variables.111 Using spherical coordinates (r,φ ,θ), we can write ψ (x) = R(r)Y (φ ,θ). It is well

known that R(r) can be written in terms of Laguerre polynomials,

L
p
q−p (x)≡ (−1)p (∂x)

q
(
e−xxq

)
(1172)

It is also known that Y (φ ,θ) are the spherical harmonics,

Y m
l (θ ,φ) = ε

√
(2l+1)

4π

(l−|m|)!
(l+ |m|)!eimφ Pm

l (cosθ) (1173)

where ε = (−1)m for m≥ 0 and ε = 1 for m≤ 0. Note that Pm
l is the associated Legendre function given by

Pm
l (x)≡

(
1− x2

)|m|/2( d

dx

)|m|
Pl (x) (1174)

where Pl (x) is the lth Legendre polynomial. Then the time-independent, normalized wavefunction written in

terms of the principle quantum numbers (n, l,m) is found to be

ψnlm (x) =

√(
2

nr0

)3 (n− l−1)!

2n [(n+ l)!]3
e−r/na

(
2r

nr0

)l

L2l+1
n−l−1

(
2r

nr0

)
Y m

l (θ ,φ) (1175)

Here we would use

r0 ≡
4πεG}2

memp

(1176)

as a “gravitational Bohr radius.” To find a solution to T (t) in (1170), we first rearrange the equation as

T ′ (t)+
iE

}
T (t)+

imeM0

4πεGa}
cos(ωt)T (t) = 0 (1177)

where T ′ (t) = ∂tT (t). We can let

A=
iE

}
and B=

imeM0

4πεGa}
(1178)

so that (1177) can be written as

T ′ (t)+ [A+Bcos(ωt)]T (t) = 0 (1179)

This is a first-order, linear differential equation. We can use an integrating factor written as

e
∫
[A+Bcos(ωt)]dt = e

At+
B
ω

sin(ωt)
(1180)

111See [92] for a standard treatment of the hydrogen atom using separation of variables.
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Multiplying each term in (1179) by the integrating factor in (1180) gives

e
At+

B
ω

sin(ωt)
T ′ (t)+ e

At+
B
ω

sin(ωt) [A+Bcos(ωt)]T (t) = 0 (1181)

By the product rule this can be written as [
e

At+
B
ω

sin(ωt)
T (t)

]′
= 0 (1182)

Integrating both sides with respect to time from t ′ = 0 to t ′ = t gives

e
At+

B
ω

sin(ωt)
T (t)−T (0) =C (~x) (1183)

where C (~x) would be a function only of position, not time. However, our use of separation of variables in

(1167) required that T (t) is a function only of time, so we must have that C (~x) is just a constant which we

may simply call C. We can define another constant as D=C+T (0) and then solve (1183) for T (t). We can

also substitute back in for A and B from (1178). This gives

T (t) = Dexp

[
− iEt

}
− imeM0

4πεGa}ω
sin(ωt)

]
(1184)

Note that from (1184) we see that T (0) =D. We also know from (1167) that Ψ(~x,0) =ψnlm (~x)T (0) where

ψnlm (~x) is already normalized. Thus for Ψ(~x, t) to also be normalized, we must have that D= 1. Since D is

obviously not a function of time, then this normalization is maintained even as time evolves. Therefore, we

can now write the fully time-dependent wavefunction in (1167) as

Ψ(~x, t) = ψnlm (~x)exp

[
− iEt

}
− imeM0

4πεGa}ω
sin(ωt)

]
(1185)

where ψnlm (~x) is given by (1175).
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11.1 Overview of interaction of GEM fields with superconductors

Here we look at the interaction of gravitational fields with superconductors. First we develop London-

like equations for the gravito-electromagnetic fields. It is found that the resulting differential equations do

not allow for exponential decay solutions which would be associated with a Meissner-like effect. We find that

there is effectively a paramagnetism that occurs rather than the diamagnetic-like behavior of the Meissner

effect. We also consider the case when both electromagnetic and gravito-electromagnetic fields are present

and show that the gravito-magnetic field provides an extremely small enhancement to the standard Meissner

effect while the magnetic field provides a major enhancement to the paramagnetism of the gravito-magnetic

field.

For the case of gravitational waves, we propose a constitutive equation which relates the transverse-

traceless strain field of a gravitational wave to the transverse-traceless stress induced in matter by the wave.

This leads to a dispersion relation and corresponding gravitational plasma frequency and penetration depth.

Lastly, we consider a correction introduced by the Landau-Lifshitz pseudotensor which takes into account

the self-gravitation of the gravitational wave which is necessary to correctly determine the true back-action

of the matter on the wave.
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11.2 Gravito-London equations for the GEM fields

To obtain gravito-London equations for the gravito-magnetic field (or Lense-Thirring field), we adopt

the same process used in Appendix Q for the electromagnetic case. To do so, we begin by considering the

appropriate approximation which yields a form for the gravitational Lorentz force that most closely resembles

the Lorentz force from electromagnetism. In previous sections, we found numerous forms for the equation

of motion according to the order of approximation used for the gravitational sources and the velocity of the

test mass. The form which resembles the electromagnetic force most closely is given in (508) as

~a(PN)
(low-velocity)

=−∇ΦN−
·
~h+

(
~v×~Bg(PN)

)
, for ∇ ·~h= 0 (1186)

From the metric in (176), we have h0i = β i+ ∂iα , where h0i is decomposed into a rotational component β i

and an irrotational component ∂iα . However, as described in Section 30, (508) is obtained only when α = 0

so that h0i is purely rotational. This means that ∇ ·~h= 0.

In Section 5 we defined the traditional gauge-dependent gravito-magnetic field as ~̃BG = ∇×~h where
~h= c(h01,h02,h03). This means that

~̃BG = ∇×~h= ∇×~β (1187)

From (468) and (469) in Section 28, we also found that in the first-order post-Newtonian limit, the gauge-

invariant gravito-magnetic field, ~BG = ∇×~Ξ reduces to the gauge-dependent gravito-magnetic field, ~̃BG =

∇×~β . Therefore, ~Bg(PN) ≈ ~̃BG and we can simply write (1186) using the notation ~̃BG to emphasize that it is

gauge-dependent.

In a previous section, the Newtonian gravito-electric field given by ~Eg(N)=−∂iΦN is also gauge-dependent.

Again, we will simply use the notation ~̃EG to represent that it is gauge-dependent. Hence the entire formula-

tion below is necessarily gauge-dependent. However, if we are to follow a London-like process involving a

gravitational Lorentz force, then we cannot avoid gauge-dependence. This is because the geodesic equation

of motion is necessarily gauge-dependent (at all orders of approximation) as shown in Section 31.112

If we neglect the gravito-magnetic force and use~a= ∂~v/∂ t and ~̃EG =−∂iΦN−
·
~h, then (1186) becomes

∂t~v= ~̃EG (1188)

This implies that the electrons in a superconductor can be thought of as flowing with no resistance so that the

supercurrent is effectively dissipationless. The “mass supercurrent” can be written as

~Jm = nsme~v (1189)

where ns is the number density of superconducting carriers (electrons) and me is their mass. Then (1188)
becomes what could be referred to as the gravito-electric London equation

∂t
~Jm = nsme

~̃EG Gravito-electric London equation (1190)

112In some sense this issue of gauge-dependence is still analogous to the formulation of the London equa-

tions in electromagnetism. This can be observed by recognizing that in the limit of steady currents, the

continuity equation leads to ∇ · ~Jc = 0 and therefore the London equation given by (2931) necessarily “picks

out” the Coulomb (or London) gauge as the required gauge for a superconductor with a steady-state current.

However, in Section 25, we showed that the same condition is not required for gravitational field equations.

This is because ρ̇m = 0 can be satisfied in (367) without requiring ∇ · ~Jm = 0.
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We can take the curl of this equation and apply the gravitational Faraday law, ∇× ~̃EG =−∂t
~̃BG. This gives

∂t∇× ~Jm =−nsme∂t
~̃BG (1191)

Integrating both sides with respect to time and setting the integration constant to zero gives what could be

referred to as the gravito-magnetic London equation.

∇× ~Jm =−nsme
~̃BG Gravito-magnetic London equation (1192)

Then using ~̃BG = ∇×~h gives

∇×
(
~Jm+nsme

~h
)
= 0 (1193)

The solution to this differential equation is

~Jm+nsme
~h+∇ f (r, t) = 0 (1194)

In the electromagnetic case shown in Appendix Q, it is argued that for a steady state current, we have ρ̇m = 0

and therefore ∇ · ~Jm = 0 by the continuity equation. Also, in (1186) we have ∇ ·~h= 0. Therefore, taking the

divergence of (1194) as written with ~Jc and ~A for electromagnetism, requires that ∇
2

f (r, t) = 0.

However, these arguments are not required in the gravitational case. Rather, we find that the condition

∇ · ~Jm = 0 is satisfied by virtue of the fact that ~Jm = nsme~v and the superfluid is considered to have an “in-

compressible flow” so that ∇ ·~v= 0. This immediately requires ∇ · ~Jm = 0 without employing any continuity

equation. Also, because~h= c(h01,h02,h03) where h0i = β i+∂iα , then ∇ ·~h= 0 simply by virtue of β i being

a purely rotational vector (∂iβ i = 0) and because we set α = 0 in (1186).

Therefore, since ∇ ·
(
~Jm+nsme

~h
)
= 0 in (1194), and we assume that ~Jm and~h go to zero as r→ ∞, then

we must also have ∇ f (r, t)→ 0 as r→ ∞. This means f (r, t)→ constant as r→ ∞ and the unique solution

of ∇
2

f (r, t) = 0 is f (r, t) = constant everywhere. Therefore ∇ f (r, t) = 0 everywhere and we simply have

~Jm =−nsme
~h Gravito-London constitutive equation (1195)

The equation in (1195) can be thought of as a constitutive equation113 which describes how the supercurrent

in a superconductor responds to an external field~h. The equation in (1195) can also be thought of as a single

gravito-London equation which combines the previous two gravito-London equations into one relationship.

This can be observed from the fact that we if take the time derivative of (1195) and use ~̃EG =−∂t
~h then we

get the gravito-electric London equation in (1190) but if we take the curl of (1195) and use ~̃BG =∇×~h, then

we get the gravito-magnetic London equation in (1192).

We may also derive (1195) by use of the minimal coupling rule found in (842). Using q=−e, we have

~pcan = me~v− e~A+me
~h (1196)

For a particle coupled only to a gravito-magnetic field, we only have ~pcan = me~v+me
~h. Since the super-

conducting state of a system is a zero-momentum state, then the canonical momentum becomes zero and we

have~v=−~h. Substituting this into (1189) gives

~Jm =−nsme
~h (1197)

This result again matches what we obtained in (1195).

113This would be similar to a gravitatioinal Ohm’s law, ~Jm = σg
~̃Eg, where σg would be a “gravitational

conductivity” that characterizes the response of a “gravitational conductor” to the gravito-electric field.
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11.3 The absence of a gravito-Meissner effect for GEM fields

According to (431), the gravito-Ampere law is

∇× ~̃BG =−2µg(SC)
~Jm (1198)

where µg(SC) represents the gravitational permeability of the superconductor, versus µG in vacuum.114. Tak-

ing the curl of both sides of (1198) gives115

∇×∇× ~̃BG = −2µg(SC)∇× ~Jm (1199)

Since ∇ · ~̃BG = 0, then the vector calculus identity ∇×∇× ~̃BG = ∇

(
∇ · ~̃BG

)
−∇

2~̃BG simply becomes ∇×

∇× ~̃BG =−∇
2~̃BG. Then the equation above can be written as

∇
2~̃BG = 2µg(SC)∇× ~Jm (1200)

Inserting (1192) into the right side of the equation above gives116

∇
2~̃BG =−2µg(SC)nsme

~̃BG (1201)

We can define

α
−2 ≡ 2µg(SC)nsme (1202)

so that (1201) becomes

∇
2~̃BG+

1

α2
~̃BG = 0 (1203)

Notice that α2 can never be negative since µG, ns, and me are all necessarily positive. Therefore the differ-

ential equation above only allows real sinusoidal solutions, not real exponential solutions. Therefore we find

that there is no exponential decay of the field and hence no associated penetration depth. Physically speaking,

this implies that instead of a diamagnetic (Meissner) effect, there is essentially a paramagnetic effect.

114From (360) we have that µg = 4πG/c2 in vacuum. Since G and c are fundamental constants of nature,

then we expect that µg would have the same value in matter as it does in vacuum. However, if there is an

effective G in matter due to some kind of gravito-magnetic polarization in matter, then it is possible that

Ge f f 6= G and therefore µg (sc) = 4πGe f f /c2 in the superconductor would differ from µg and vacuum. (This

topic is discussed in further detail in Section 24.)

115Note that the curl of the gravito-Ampere law involves the third derivative of the metric and therefore it

may be questioned whether keeping such terms is consistent with the approximations of linearized GR where

we keep second derivatives of the metric. However, in Appendix A we show that taking higher derivatives is

completely within the linearized approximation for a metric that has a very small amplitude (such as 10−20)

but a rapid variation (such as microwave frequencies). We assume these conditions to be the case here.

116Formally speaking, this substitution is not valid in linearized GR since (1192) was derived from the

geodesic equation of motion and therefore cannot be substituted back into the field equation. See the end of

Section 26 for details concerning this issue. Also, since this would be a higher order treatment, then we would

need to introduce the Landau-Lifshitz pseudotensor to account for the higher order correction. A treatment

of this kind is done in Section 75 for gravitational waves.



214

We can return to the gravito-Ampere law in (1198), substitute ~̃BG = ∇×~h on the left side and substitute

(1195) on the right side to obtain

∇×∇×~h = 2µg(SC)nsme
~h (1204)

Since ∇ ·~h = 0 in (1186), then the vector calculus identity given by ∇×∇×~h = ∇

(
∇ ·~h

)
−∇

2~h becomes

∇×∇×~h=−∇
2~h. Then using (1202), the equation above becomes

∇
2~h+

1

α2
~h= 0 (1205)

Once again we observe that there is no exponential decay of the gravito-vector potential and hence no associ-

ated penetration depth. Next, we can find a wave equation for the mass supercurrent density. Taking the curl

of (1192) gives

∇×∇× ~Jm = −nsme∇× ~̃BG (1206)

Since ρ̇m = 0 for a steady state current, then by the continuity equation we have ∇ · ~Jm = 0. In that case, the

vector calculus identity ∇×∇× ~Jm = ∇

(
∇ · ~Jm

)
−∇

2~Jm becomes ∇×∇× ~Jm =−∇
2~Jm. Then the equation

above can be written as

∇
2~Js = nsme∇× ~̃BG (1207)

Substituting the gravito-Ampere law in (1198) and using k2 = 2µg(SC)nsme from (1202) gives

∇
2~Js+

1

α2
~Jm = 0 (1208)

Therefore we observe that there is no exponential decay of the mass supercurrent density and hence no

associated penetration depth. This is consistent with the fact that there is no gravito-London penetration

depth for the gravito-magnetic field which would drive the mass supercurrent. Taking the time derivative of

(1208) and using the gravito-electric London equation from (1190) gives

∇
2~̃EG+

1

α2
~̃EG = 0 (1209)

Therefore, there is no gravito-London penetration depth for the gravito-electric field. This result is consistent

with the expectation that there would be no possibility of “shielding” the gravito-electric field (or in other

words, “reflection” or “expulsion” of the Newtonian gravitational field by a superconductor). Otherwise, this

would imply an “anti-gravity” effect which is not consistent with Newton’s law of gravitation

~̃EG =−
Gm1m2

r2
r̃ (1210)

and the fact that negative gravitational mass has never been observed.
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For each of the differential equations found above
(

describing ~̃BG,~h, ~Jm,and ~̃EG

)
, we can use a sinusoidal

field Cei~k·~x, where C is constant associated with the particular field, to obtain

∇
2
Cei~k·~x+

1

α2
Cei~k·~x = 0 (1211)

−k2Cei~k·~x+
1

α2
Cei~k·~x = 0 (1212)

−k2+
1

α2
= 0

Using α from (1202) gives

k =
1

2µg(SC)nsme

(1213)

Using k = 2π/λ gives a wavelength of

λ =
µg(SC)nsme

π
(1214)

Examination of the reason for the absence of a penetration depth for gravito-electromagnetic fields

Here we compare the equations which describe electromagnetic and gravito-electromagnetic fields in

a superconductor in order to examine the reason that there is a penetration depth (and therefore expul-

sion) for electromagnetic fields, but there is no penetration depth (and therefore no expulsion) for gravito-

electromagnetic fields. The reason can be summarized by the fact that the electromagnetic and gravitational

Ampere laws have opposite signs

∇×~B = µ~Jc and ∇× ~̃BG =−2µg(SC)
~Jm (1215)

while the constitutive equations which relate the mass and charge supercurrent densities (~Jc and ~Jm) to the

their corresponding vector potentials (~A and~h) have the same sign

~Jc = −nse

me

~A and ~Jm =−nsme
~h (1216)

The combination of (1215) and (1216) is what leads to the discrepancy between the way a superconduc-

tor responds to electromagnetic fields versus gravitational fields. Specifically, from (1215) and (1216) we

ultimately arrive at

∇
2~B− 1

λ
2
L

~B = 0 and ∇
2~̃BG+ k2~̃BG = 0 (1217)

It is the positive sign in the electromagnetic Ampere law in (1215) which lead to a Yukawa-like differential

equation (or screened Poisson equation) for the magnetic field in (1217). On the other hand, it is the negative

sign in the gravitational Ampere law in (1215) which leads to the Helmholtz-like differential equation in

(1203). All the other London equations (for electromagnetic fields and for gravito-electromagnetic fields)

have the same sign. Therefore, it is the difference in signs for the Ampere laws in (1215) that also leads to

the discrepancy when comparing the vector potential versus the gravito-vector potential, the electric versus

gravito-electric field, and the charge current density versus the mass current density.
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Let us compare side-by-side how the expressions in (1217)were developed for electromagnetic fields and

gravito-electromagnetic fields to observe the difference. First, we note that the equations of motion for the

electromagnetic case and the gravitational case have opposite signs.

~a = − e

me

~E and ~a= ~̃EG (1218)

The opposite sign is due to q = −e for an electron. The charge and mass current densities are also given,

respectively, by

~Jc = −nse~v and ~Jm = nsme~v (1219)

Again, the opposite sign is due to q=−e for an electron. However, when combining (1218) and (1219), we

find that the resulting equations of motion in a superconductor have the same sign.

∂t
~Jc =

nse
2

me

~E and ∂t
~Jm = nsme

~̃EG (1220)

Then using ~E = −∂t
~A and ~̃EG = −∂t

~h, and integrating with time gives (1216). Therefore, we find that the

difference in sign in the equations of motion (1218) and the difference in sign in the current densities (1219),
together lead to the same sign in the supercurrents (1216). Likewise, the electromagnetic and gravitational

Faraday laws also have the same sign.

∇×E = −∂tBG and ∇× ~̃EG =−∂t
~̃BG (1221)

Therefore, taking the curl of (1220), inserting (1221) and integrating with time gives

∇× ~Jc = −nse
2

me

BG and ∇× ~Jm =−nsme
~̃BG (1222)

Up to this point, the electromagnetic and gravitational case continue to have matching signs. The discrep-

ancy in signs between the two cases is introduced by taking the curl of (1222) and combining with the the

electromagnetic and gravitational Ampere laws in (1215) which gives (1217). Therefore, it is fundamentally

the difference in signs in (1215) that leads to the electromagnetic fields having a London penetration depth

while the gravito-electromagnetic fields do not have a corresponding gravito-London penetration depth.

Alternatively, we can observe how this discrepancy emerges by use of the canonical momentum. If we

write (1196) for the electromagnetic and gravitational cases separately, we have

pcan = me~v− e~A and pcan = me~v+me
~h (1223)

Setting pcan = 0 in (1223) leads to~v= e~A/me for electromagnetism and~v=−~h for gravitation. Substituting

these into the corresponding current densities in (1219) again leads to

~Jc = −nse

m
~A and ~Jm =−nsme

~h (1224)

Therefore, we find that the difference in sign in the canonical momenta (1223) and the difference in sign

in the current densities (1219), together lead to the same sign in the supercurrents (1216). Once again, the
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discrepancy in signs between the two cases is introduced by taking the curl of (1224) and combining with the

the electromagnetic and gravitational Ampere laws in (1215) which gives (1217).

Comparison of these results with other authors

The result in (1203) is consistent with the results obtained by Ciubotariu and Agop in equation (32) of

[68], aside from a disagreement in the prefactor117 which they obtain as k2 = 64
3

πnm. Similar to our con-

clusion here, they observe that there is no gravitational penetration depth and thus no gravitational Meissner

effect.

On the other hand, our results contradict two papers by Lano [69, 70] which claim that there is a Meissner

effect for the gravito-magnetic field. Upon close examination of the treatment in [69], it appears there is

a sign error in going from equation (9) to (10) due to neglecting that the vector calculus identity given by

∇×∇×~B=∇

(
∇ ·~B

)
−∇

2~B introduces a negative sign when substituting ∇×∇×~B with−∇
2~B. This same

error also occurs in [70] in going from equations (24) to (25).

Our results also seem to contradict that of DeWitt in [42]. By assuming that we can treat the magnetic field

and the gravito-magnetic field as effectively a single field, in his equation (5) he defines the single field118 as
~S= e~A+m~h. Consequently, he concludes that the vector

~G= ∇×~S=
(

e∇×~A
)
+
(

m∇×~h
)

(1225)

must be expelled from the superconductor and the flux of ~G must be quantized in units of 1
2
}. It seems that this

result is stated purely based on the fact that pcan− e~A−m~h appears in the kinetic term of the Hamiltonian,

rather than the usual pcan − e~A. However, he does not mention anything about the Ampere and gravito-

Ampere laws, or the associated differential equations which may or may not lead to a penetration depth.

Instead, he proceeds into an example of a rotating superconducting ring. In this example, his equation (10)

reads

∇×~h= 16πκ∇
−2~∇× (ρ~v) (1226)

where he states that κ is the gravitation constant. (He also sets c = 1.) It appears that here he is implicitly

using the gravito-Ampere law with the correct sign. This can be recognized by using the gravito-Ampere law

from (58) to write

∇×∇×~h= ∇× ~̃BG =−8G~Jm (1227)

where ~Jm = ρ~v and we set c = 1. Using the vector Calculus identity, ∇×∇×~h = ∇

(
∇ ·~h

)
−∇

2~h, and the

fact that ∇ ·~h= 0, we can write

∇×∇×~h=−∇
2~h (1228)

Then equating (1227) and (1228) gives

∇
2~h= 16Gρ~V (1229)

It appears that DeWitt then took the inverse of ∇
2 and then the curl of both sides to obtain (1226). The key

point is that he used the correct sign for the gravito-Ampere law to obtain this result.

117Ciubotariu and Agop set G= c= 1 and therefore µg = 4π . They also include a factor of 2/3 due to the

statistical fact that only two thirds of the superelectrons are moving in a plane perpendicular to ~Bg.

118DeWitt uses ~B rather than ~S to define this single combined field, and he uses ~H for the magnetic field.

However, since we have already been using ~B for the magnetic field, then we will continue do so and use ~S
for the single combined field.
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However, it appears that DeWitt did not recognize there is no Meissner effect for~h because he did not

formulate the differential equation which describes the behavior of~h. As a result, it was overlooked that~h
does not have exponentially decaying solutions and hence does not have an associated penetration depth. It

therefore stands that the entire vector ~G in (1225) does not vanish inside a superconductor. Only
(

e∇×~A
)

vanishes but
(

m∇×~h
)

remains impervious to the superconductor.119

Perhaps the implied argument by DeWitt is that the charge and mass supercurrent densities in (1236) can

be expressed together as a particle supercurrent density, ~Jn, which describes the flow of the particle-density

per unit time. This can be done by dividing ~Jc by e, dividing ~Jm by me, and adding them. From (1236) this

gives

~Jn =−ns

(
~h+

e

me

~A

)
(1230)

Taking a curl and using ~B= ∇×~A and ~̃BG = ∇×~h gives

∇× ~Jn =−ns

(
~̃BG+

e

me

~B

)
(1231)

To relate this to the field equations, we can write the electromagnetic Ampere law using ~Jc = e~Jn and also

write the gravito-Ampere law using ~Jm = me
~Jn. This gives

∇×~B= µe~Jn and ∇× ~̃BG =−2µg(SC)me
~Jn (1232)

Now curling (1232) and using ∇×∇×~B=−∇
2~B and ∇×∇× ~̃BG =−∇

2~̃BG gives

−∇
2~B= µe∇× ~Jn and −∇

2~̃BG =−2µg(SC)me∇× ~Jn (1233)

Finally, inserting (1231) gives

∇
2~B= nsµe

(
~̃BG+

e

me

~B

)
and ∇

2~̃BG =−2nsµg(SC)me

(
~̃BG+

e

me

~B

)
(1234)

This leads to coupled differential equations for ~B and ~̃BG which must be decoupled and solved in order

to determine if there is a penetration depth for each field. We follow a similar process in the following

section and find that the magnetic field has a penetration depth which is slightly modified by the presence

of the gravito-magnetic field. However, the gravito-magnetic field still does not have a penetration depth.

Therefore, we conclude that the claim for a gravito-magnetic Meissner effect cannot be substantiated by the

analysis of DeWitt in [42].

119DeWitt’s example of the superconducting ring also does not seem to require the quantization of the flux

of the vector ~G in (1225). Although he refers to this verbally in the paper, there is no explicit need for the

quantization of the flux of ~G in the mathematical formulation of his example.
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11.4 Gravito-London equations for combined EM and GEM fields

Next we consider the case of a magnetic and a gravito-magnetic field incident on the superconductor. The

canonical momentum is given in (1196) as

~pcan = me~v+me
~h− e~A (1235)

Since the superconducting state of a system is a zero-momentum state, then the canonical momentum be-

comes zero and we have~v=
e

me

~A−~h. Substituting this into the charge and mass current densities in (1219)

gives, respectively,

~Jc = −nse

(
e

me

~A−~h
)
, ~Jm = nsme

(
e

me

~A−~h
)

(1236)

Taking the curl of these equations and using ~B= ∇×~A and ~̃BG = ∇×~h gives

∇× ~Jc = −nse

(
e

me

~B− ~̃BG

)
, ∇× ~Jm = nsme

(
e

me

~B− ~̃BG

)
(1237)

The static Ampere law and the static gravito-Ampere law are given, respectively, by

∇×~B= µ~Jc, ∇× ~̃BG =−2µg(SC)
~Jm (1238)

where µg(SC) is the effective gravito-permeability of the superfluid in the superconductor. Taking the curl of

both sides of these equations gives120

∇×∇×~B = µ∇× ~Jc, ∇×∇× ~̃BG =−2µg(SC)∇× ~Jm (1239)

Since ∇ ·~B = ∇ ·~BG = 0, then the vector calculus identity ∇×∇×~B = ∇

(
∇ ·~B

)
−∇

2~B simply becomes

∇×∇×~B = − ∇
2~B for both the magnetic and gravito-magnetic fields. Then the equations above can be

written as

∇
2~B=−µ∇× ~Jc, ∇

2~̃BG = 2µg(SC)∇× ~Jm (1240)

Inserting (1237) into these equations gives

∇
2~B = µnse

(
e

me

~B− ~̃BG

)
, ∇

2~̃BG = 2µg(SC)nsme

(
e

me

~B− ~̃BG

)
(1241)

To decouple these differential equations, we can start by solving the left equation for ~̃BG and the right equation

for ~B which gives

~̃BG = − 1

µnse
∇

2~B+
e

me

~B, ~B=
1

2µg(SC)nse
∇

2~̃BG+
me

e
~̃BG (1242)

120Note that the curl of the gravito-Ampere law involves the third derivative of the metric and therefore it

may be questioned whether keeping such terms is consistent with the approximations of linearized GR where

we keep second derivatives of the metric. However, in Appendix A we show that taking higher derivatives is

completely within the linearized approximation for a metric that has a very small amplitude (such as 10−20)

but a rapid variation (such as microwave frequencies). We assume these conditions to be the case here.
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Substituting ~̃BG from (1242) into the second differential equation in (1241) gives

∇
2

(
− 1

µnse
∇

2~B+
e

me

~B

)
= 2µg(SC)nsme

(
e

me

~B+
1

µnse
∇

2~B− e

me

~B

)
(1243)

∇
2

[
∇

2~B+

(
2µg(SC)nsme−

µnse
2

me

)
~B

]
= 0 (1244)

Assuming ∇
2~B and ~B go to zero as r→ 0, then the solution to the outside differential equation is

∇
2~B−

(
nsµe2

me

−2nsµg(SC)me

)
~B = 0 (1245)

We can define λ L (modi f ied) as the modified London penetration depth for the case where there is both a

magnetic and gravito-magnetic field present. This can be expressed as

1

λ
2
L(modi f ied)

=
nsµe2

me

−2nsµg(SC)me (1246)

so that we have

∇
2~B− 1

λ
2
L(modi f ied)

~B= 0 (1247)

The magnetic permeability of materials range, in general, from µ ∼ 10−7 (for vacuum) to µ ∼ 10−1 (for iron).

Therefore µe2/me ranges between approximately 10−15 to 10−9 (SI units). However, 2µGme ∼ 10−56 (SI

units) for vacuum. Therefore, it is obvious that λ L(mod) is always positive. Then the solution to the differential

equation is B(x) = B0e
−x/λ L(mod) and λ L(mod) is the modified penetration depth for the magnetic field which

also takes into account the effect of the superfluid coupling to the gravito-magnetic field. From (1246) we

can write this modified penetration depth as

λ L (modi f ied) =
√

me

nsµe2−2nsµg(SC)m
2
e

Modified London penetration depth

due to the presence of a

gravito-magnetic field

(1248)

Notice that setting µg(SC) ≈ 0 makes this expression reduce to the London penetration depth for the purely

magnetic case found in (2938) of Appendix Q. We can determine the correction introduced to the magnetic

penetration depth due to the presence of a gravito-magnetic field by taking a ratio.

λ L (modi f ied)

λ L

=

√
me

nsµe2−2nsµg(SC)m
2
e

·

√
nsµe2

me

=

√
µe2

nsµe2−2nsµg(SC)m
2
e

(1249)

=

(
1

1−2µg(SC)m
2
e/µe2

)1/2

(1250)

To first order, we can approximate this result as

λ L (modi f ied)

λ L

≈ 1+
µg(SC)m

2
e

µe2
(1251)
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Therefore the change in the magnetic London penetration depth due to the presence of a gravito-magnetic

field, ∆λ = λ L (modi f ied)−λ L, is given by

∆λ =
µg(SC)m

2
e

µe2
λ L (1252)

Returning to the coupled differential equations in (1241), we can also substitute ~B from (1242) into the

first differential equation in (1241) which gives

−∇
2

(
− 1

2µg(SC)nse
∇

2~̃BG−
me

e
~̃BG

)
= µnse~̃BG+

µnse
2

me

(
− 1

2µg(SC)nse
∇

2~̃BG−
me

e
~̃BG

)
(1253)

Simplifying this yields

∇
2

[
∇

2~̃BG+2µg(SC)nse

(
me

e
+

µe

2µg(SC)me

)
~̃BG

]
= 0 (1254)

Assuming ∇
2~̃BG and ~̃BG go to zero as r→ 0, then the solution to the outside differential equation is

∇
2~̃BG+

(
2µg(SC)nsme+

nsµe2

me

)
~̃BG = 0 (1255)

Just as in (1203), again we find that there is no exponential decay solution for the gravito-magnetic field and

hence no associated penetration depth. Instead, there is still a paramagnetic effect for the gravito-magnetic

field. It is even enhanced by the magnetic field when they’re both present.

The magnetic vector potential and gravito-vector potential

We can return to the static Ampere law and the static gravito-Ampere law given by (1238). On the left

side of each equation, we can insert ~B= ∇×~A and ~̃BG = ∇×~h, respectively. This gives

∇×∇×~A = µ~Jc, ∇×∇×~h=−2µg(SC)
~Jm (1256)

On the right side, we can insert the supercurrents from (1236) which gives

∇×∇×~A = −µnse

(
e

me

~A−~h
)
, ∇×∇×~h=−2µg(SC)nsme

(
e

me

~A−~h
)

(1257)

Using the Coulomb (or London) gauge, ∇ ·~A= 0, then the vector calculus identity that is given by ∇×∇×~A=
∇

(
∇ ·~A

)
−∇

2~A becomes ∇×∇×~A=−∇
2~A. Likewise, using ∇ ·~h= 0 from (1186), then the same vector

calculus identity gives ∇×∇×~h=−∇
2~h.

∇
2~A = µnse

(
e

me

~A−~h
)
, ∇

2~h= 2µg(SC)nsme

(
e

me

~A−~h
)

(1258)

To decouple these differential equations, we can start by solving the left equation for~h and the right equation

for ~A which gives

~h = − 1

µnse
∇

2~A+
e

me

~A, ~A=
1

2µg(SC)nse
∇

2~h+
me

e
~h (1259)
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Substituting~h from (1259) into the second differential equation in (1258) gives

∇
2

(
− 1

µnse
∇

2~A+
e

me

~A

)
= 2µg(SC)nsme

(
e

me

~A+
1

µnse
∇

2~A− e

me

~A

)
(1260)

∇
2

[
∇

2~A+

(
2µg(SC)nsme−

µnse
2

me

)
~A

]
= 0 (1261)

Assuming ∇
2~A and ~A go to zero as r→ 0, then the solution to the outside differential equation is

∇
2~A−

(
µnse

2

me

−2µg(SC)nsme

)
~A = 0 (1262)

Once again, we can use (1246) to write this result as

∇
2~A− 1

λ L (modi f ied)

~A= 0 (1263)

It was shown earlier that µnse
2/me >> 2nsµg(SC)me which means that λ L (modi f ied) is always positive. Then

the solution to the differential equation is A(x) = A0e
−x/λ L(mod) where λ L(mod) is the modified penetration

depth for the magnetic vector potential which also takes into account the effect of the superfluid coupling to

the gravito-magnetic field. Notice that setting µg(SC) ≈ 0 makes this expression reduce to the usual London

penetration depth for the purely magnetic case.

Returning to the coupled differential equations in (1258), we can also substitute ~A from (1259) into the

first differential equation in (1258) which gives

∇
2

(
1

2µg(SC)nse
∇

2~h+
me

e
~h

)
= µnse

[
e

me

(
1

2µg(SC)nse
∇

2~h+
me

e
~h

)
−~h
]

(1264)

∇
2

[
∇

2~h+

(
2µg(SC)nsme−

µnse
2

me

)
~h

]
= 0 (1265)

Assuming ∇
2~h and~h go to zero as r→ 0, then the solution to the outside differential equation is

∇
2~h−

(
µnse

2

me

−2µg(SC)nsme

)
~h = 0 (1266)

Once again, we can use (1246) to write this result as

∇
2~h− 1

λ L (modi f ied)

~h= 0 (1267)

Then the solution to the differential equation is h(x) = h0e
−x/λ L(mod) where λ L(mod) is the modified penetration

depth for the gravito-vector potential which also takes into account the effect of the superfluid coupling to

the magnetic field. This would seem contrary to the fact that the gravito-magnetic field, ~̃BG = ∇×~h, does
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not have an exponential decay solution in (1255). However, for a neutral superfluid, we can set e= 0 which

leads to ∇
2~h+

1

α2
~h= 0 where α−2 ≡ 2µg(SC)nsme. This predicts no exponential decay solution for~h and is

consistent with the result found in (1205).

The charge and mass supercurrents

Taking the curl of both equations in (1237) gives

∇×∇× ~Jc = −nse

[
∇×

(
e

me

~B− ~̃BG

)]
, ∇×∇× ~Jm = nsme

[
∇×

(
e

me

~B− ~̃BG

)]
(1268)

Since ρ̇c = ρ̇m = 0 for a steady state current, then by the continuity equation for charge and mass, we

have ∇ · ~Jc = ∇ · ~Jm = 0. In that case, the vector calculus identity ∇×∇× ~J = ∇

(
∇ · ~J

)
−∇

2~J becomes

∇×∇×~J =−∇
2~J for both the charge current and the mass current. Then the equations above can be written

as

∇
2~Jc = nse

[
∇×

(
e

me

~B− ~̃BG

)]
, −∇

2~Jm = nsme

[
∇×

(
e

me

~B− ~̃BG

)]
(1269)

Substituting the static Ampere law and the static gravito-Ampere law (1238) gives

∇
2~Jc = nse

(
eµ

me

~Jc+2µg(SC)
~Jm

)
, −∇

2~Jm = nsme

(
eµ

me

~Jc+2µg(SC)
~Jm

)
(1270)

To decouple these differential equations, we can start by solving the left equation for ~Jm and the right equation

for ~Jc which gives

~Jm =
1

nse2µg(SC)

∇
2~Jc−

eµ

2µg(SC)me

~Jc, ~Jc =−
1

µnse
∇

2~Jm−
2µg(SC)me

µe
~Jm (1271)

Substituting ~Jm from (1271) into the second differential equation in (1270) gives

−∇
2

(
1

2µg(SC)nse
∇

2~Jc−
eµ

2µg(SC)me

~Jc

)

= nsme

[
eµ

me

~Jc+2µg(SC)

(
1

2µg(SC)nse
∇

2~Jc−
eµ

2µg(SC)me

~Jc

)]
(1272)

∇
2

[
∇

2~Jc+

(
2µg(SC)nsme−

µnse
2

me

)
~Jc

]
= 0 (1273)

Assuming ∇
2~Jc and ~Jc go to zero as r→ 0, then the solution to the outside differential equation is

∇
2~Jc−

(
µnse

2

me

−2µg(SC)nsme

)
~Jc = 0 (1274)
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Once again, we can use (1246) to write this result as

∇
2~Jc−

1

λ L (modi f ied)

~Jc = 0 (1275)

Then the solution to the differential equation is Jc (x)= J0e
−x/λ L(mod) where λ L(mod) is the modified penetration

depth for the charge supercurrent. Notice that setting µg(SC) ≈ 0 makes this expression reduce to the London

penetration depth for the purely magnetic case as expected.

Returning to the coupled differential equations in (1270), we can also substitute ~A from (1271) into the

first differential equation in (1270) which gives

∇
2

(
− 1

µnse
∇

2~Jm−
2µg(SC)me

µe
~Jm

)

= nse

[
eµ

me

(
− 1

µnse
∇

2~Jm−
2µg(SC)me

µe
~Jm

)
+2µg(SC)

~Jm

]
(1276)

∇
2

[
∇

2~Jm+

(
2µg(SC)nsme−

µnse
2

me

)
~Jm

]
= 0 (1277)

Assuming ∇
2~Jm and ~Jm go to zero as r→ 0, then the solution to the outside differential equation is

∇
2~Jm−

(
µnse

2

me

−2µg(SC)nsme

)
~Jm = 0 (1278)

Once again, we can use (1246) to write this result as

∇
2~Jm−

1

λ L (modi f ied)

~Jm = 0 (1279)

Then the solution to the differential equation is Jm (x) = J0e
−x/λ L(mod) where λ L(mod) is the modified penetra-

tion depth for the mass supercurrent. This would seem contrary to the fact that the gravito-magnetic field,

~̃BG = ∇×~h, does not have an exponential decay solution in (1255). However, for a neutral superfluid, we

can set e= 0 which leads to ∇
2
Jm+

1
α2 Jm = 0 where α−2 ≡ 2µg(SC)nsme. This predicts no exponential decay

solution for Jm and is consistent with the result found in (1208). Also notice that the mass current, ~Jm, and

the charge current, ~Jc ,both decay exponentially with the same penetration depth, λ L (modi f ied).

The electric and gravito-electric fields

Taking the time derivative of the supercurrents in (1236) and using ~E =−∂t
~A and ˜̃EG =−∂t

~h gives121

∂t
~Jc = nse

(
e

me

~E− ˜̃EG

)
, ∂t

~Jm =−nsme

(
e

me

~E− ˜̃EG

)
(1280)

121In Sections 4 and 5, there is a detailed discussion showing that the approximation of slow-moving

sources requires hi j ≈ 0. Combining this with the harmonic gauge (which is required to obtain the gravito-

electromagnetic “Maxwell-like” equations) requires that ∂t
~h = 0. However, in this section, we will simply

assume that we have a fully relativistic formulation so that ∂t
~h 6= 0.
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Also taking the time derivative of (1275) and (1279) gives

∇
2
∂t
~Jc−

1

λ L (modi f ied)
∂t
~Jc = 0, ∇

2
∂t
~Jm−

1

λ L (modi f ied)
∂t
~Jm = 0 (1281)

Inserting (1280) into (1281) gives

nse∇
2

(
e

me

~E− ˜̃EG

)
− nse

λ L (modi f ied)

(
e

me

~E− ˜̃EG

)
= 0 (1282)

and

−nsme∇
2

(
e

me

~E− ˜̃EG

)
+

nsme

λ L (modi f ied)

(
e

me

~E− ˜̃EG

)
= 0 (1283)

The two equations above are redundant. For convenience, we can multiply through by me and use q = −e.

This gives

∇
2
(

q~E+me
˜̃EG

)
− 1

λ L (modi f ied)

(
q~E+me

˜̃EG

)
= 0 (1284)

The terms in parentheses are simply the Lorentz force, F . Therefore, we can write the equation as simply

∇
2
F− 1

λ L (modi f ied)
F = 0 (1285)

Then the solution to the differential equation is F (x) = F0e
−x/λ L(mod) where λ L(mod) is the modified penetra-

tion depth for the total Lorentz force. This implies that it is the combined field
(

q~E+me
˜̃EG

)
that decays

exponentially inside the superconductor with a penetration depth given by λ L (modi f ied).
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12.1 The London equation in the presence of GR waves

In this section, a constitutive equation is derived for the response of a superconductor to gravitational

waves via a minimal coupling rule. It is known in electromagnetism that the minimal coupling rule for a

charged particle in an electromagnetic field, ~pcan = me~v− e~A. As shown in (2933) of Appendix Q, setting

~pcan = 0 and solving for the velocity leads to ~v = e~A/me. Then substituting this into the current density,
~Js =−nee~v, leads to the London equation written as

~Js =−
nse

2

me

~A (1286)

A similar procedure can be used for the case of gravitational waves interacting with a superconductor. The

kinetic momentum in curves space-time for charged, revivalistic spinless massive particles (such as Cooper

pairs) in the presence of electromagnetic fields was found in (657) to be

π i = γm
(
cg0i+gi jv

j
)

(1287)

where the “Lorentz factor” in curved space-time is

γ =

(
−g00−

2

c
g0kvk− 1

c2
gklv

kvl

)−1/2

(1288)

and π i is expressed in terms of the canonical momentum and the vector potential as π i = pi − qAi. For

gravitational wave in the far-field, g0i = 0 and g jk = η jk+hττ
jk

. This gives

γ =

(
1− v2

c2
− 1

c2
hττ

kl vkvl

)−1/2

(1289)

A first order approximation gives

γ ≈ 1+
v2

2c2
− 1

2c2
hττ

kl vkvl (1290)

Inserting this into (1287), keeping to order v2/c2 in velocity, and using g0i = 0 and g jk = η jk+hττ
jk

gives

π i = m
(
vi+hττ

i j v j

)
(1291)

Inserting π i = pi− qAi and promoting this equation to a quantum mechanical operator acting on a state ψ

gives122 (
p̂i−qÂi

)
ψ = m

(
v̂i+hττ

i j v̂ j

)
ψ (1292)

Since the Cooper pairs are in the zero-momentum eigenstate, then p̂iψ = 0. Taking the expectation value of

the equation above gives 〈
Âi

〉
= −m

q
〈v̂i〉−

m

q
hττ

i j

〈
v̂ j

〉
(1293)

Applying Ehrenfest’s theorem allows this equation to return to a classical equation of motion once again.

Also, using m= 2me and q= 2e (for Cooper pairs) gives

Ai = −me

e
vi−

me

e
hττ

i j v j (1294)

122This can be considered a semiclassical approach where the gravitational wave field, hττ
i j , is still a classical

field while p̂, v̂, and Â are quantum operators that act on the Cooper pair state, ψ .
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Solving for vi in the first term gives vi = −
e

me

Ai + hττ
i j v j. Inserting this into the second term of the the

expression above gives

Ai = −me

e
vi−

me

e
hττ

i j

(
− e

me

A j+hττ
jk vk

)
(1295)

Staying to first order in the metric perturbation eliminates the last term above. Solving for vi gives

vi = − e

me

(
Ai+A jh

ττ
i j

)
(1296)

Lastly, writing the expression in term of the current density, Ji
s = nsevi, gives

Ji
s =−

nse
2

me

(
Ai+A jh

ττ
i j

)
Modified London constitutive equation

in the presence of a gravitational wave
(1297)

This result shows that the usual London constitutive equation in (1286) is modified by an additional term

involving hττ
i j A j due to the presence of a gravitational wave. However, if the vector potential is set to zero, the

supercurrent vanishes regardless of the presence of a gravitational wave. Therefore, this constitutive equation

does not describe the supercurrents generated in a superconductor due to a gravitational wave alone. Rather, it

involves a correction to the supercurrent which already exists in a superconductor. This correction is basically

taking account the curved space-time due to the presence of a gravitational wave. To see this more clearly,

note that (1297) could be obtained by writing the London constitutive equation in covariant form as

Jµ =−ΛLgµν Aν (1298)

Setting µ = i and summing over ν gives

Ji =−ΛL

(
gi0A0+gi jA

j
)

(1299)

Using Aµ =
(
ϕ/c,Ai

)
and gµν = ηµν +hµν gives

Ji =−ΛL

(
hi0ϕ/c+Ai+hi jA

j
)

(1300)

Lastly, setting h0i = 0 and hi j = hττ
i j , and using ΛL = nse

2/me leads directly to (1297). Therefore, it is

shown here that the metric simply introduces a correction to the usual London constitutive equation due to

the presence of curved space-time. However, the gravitational wave is not ultimately producing the current

in this constitutive equation.

In Appendix Q, it is shown that taking the time-derivative and the curl of the London equation, Ji =
−ΛLAi, leads to the electric and magnetic London equations, respectively. Using ~E = −∂t

~A and ~B = ∇×~A
gives

∂t
~J = ΛL

~E and ∇× ~J =−ΛL
~B (1301)

where ΛL = nse
2/me. The electric and magnetic London equations in the presence of a gravitational wave

can also be developed by taking the time-derivative and the curl of (1297), respectively. The time-derivative

gives

∂tJ
i = ΛL

(
E i+E jh

ττ
i j −A jḣ

ττ
i j

)
(1302)

The first term is just the standard electric London equation. The second term and third terms are corrections

associated the gravitational wave field. Similarly, taking the curl of (1297) and using Bi = ε i jk∂ jAk gives

ε i jk∂ jJ
k =−ΛL

(
Bi+ ε i jk∂ jAlh

ττ
kl

)
(1303)

Once again, the first term is the standard magnetic London equation. The second term term is a correction

associated the gravitational wave field.
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12.2 A modified penetration depth due to the presence of GR waves

To determine the modified electromagnetic penetration depth due to the presence of a gravitational wave,

we begin with the modified London constitutive equation (for a supercurrent in the presence of a gravitational

wave) found in (1297) as

Ji
s =−ΛL

(
Ai+A jhττ

i j

)
(1304)

where ΛL = nse
2/me. Inserting this into Maxwell’s field equations (in the Lorenz gauge) as shown in (1907)

and taking the DC limit gives

∇
2
Ai−µ0ΛL

(
Ai+A jhττ

i j

)
= 0 (1305)

A gravitational wave propagating in the z-direction has hττ
xx = −hττ

yy = h⊕ (z, t) for plus-polarization and

hττ
xy = hττ

yx = h⊗ (z, t) for cross-polarization, with hττ
i j = 0 for all other components. Therefore, summing

over repeated indices in the expression above and separating components of Ai gives

∇
2
Ax−µ0ΛL (Ax+Axh⊕+Ayh⊗) = 0 (1306)

∇
2
Ay−µ0ΛL (Ay+Axh⊗−Ayh⊕) = 0 (1307)

∇
2
Az−µ0ΛLAz = 0 (1308)

The London penetration depth for Az remain unaffected by the gravitational wave since the wave is a trans-

verse wave. For the other two components of Ai, consider a gravitational wave with plus-polarization. This

leads to

∇
2
Ax−µ0ΛL (1+h⊕)Ax = 0 and ∇

2
Ay−µ0ΛL (1−h⊕)Ay = 0 (1309)

The solutions are

Ax = Ax,0e−z/λ
(x)
L and Ay = Ay,0e−z/λ

(y)
L (1310)

where Ai,0 is the amplitude of the vector potential at the surface of the superconductor, and

λ
(x)
L =

1√
µ0ΛL (1+h⊕)

and λ
(y)
L =

1√
µ0ΛL (1−h⊕)

(1311)

are the modified London penetration depths for the x-component and y-component of the vector potential,

respectively. Using ΛL = nse
2/me gives

λ
(x)
L =

√
me

µ0nse
2 (1+h⊕)

and λ
(y)
L =

√
me

µ0nse
2 (1−h⊕)

Modified London penetration depths for the x- and y-components

of the magnetic field in the presence of a plus-polarized gravitational wave

(1312)

These results demonstrate that the presence of a plus-polarized gravitational wave will simply modify the

penetration depth by one part in 1±h⊕.
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12.3 A gravito-London constitutive equation for GR waves

In this section, a constitutive equation is given which does not come from the geodesic equation of motion

or the canonical momentum for gravitational waves coupled to a superconductor. Rather, it can be developed

using the free energy density in curved space-time. (The formal derivation will be shown in later sections.)

In this section, we simply motivate the form of the constitutive equation for gravitational waves interacting

with a superconductor by comparison to the form of the London constitutive equation for electromagnetism.

Then applying the linearized Einstein equation for the transverse-traceless strain field (which contains the

propagating degrees of freedom for gravitational waves), leads to a dispersion relationship, plasma frequency

and penetration depth for gravitational waves incident on a superconductor. The results match that of Press

in [73].

In (2931) of Appendix Q, the London equation is derived as

~Js =−ΛL
~A (1313)

where ΛL = nse
2/me. The negative sign is responsible for the fact that electromagnetic fields are expelled

from a superconductor rather than being admitted.123 Similar to (1313) which predicts a linear response

between ~J and ~A, we may also conjecture a linear response between hττ
i j (the transverse-traceless strain for

gravitational waves) and T ττ
i j (the transverse-traceless stress). We know that hττ

i j is a dimensionless quantity

since it is a metric component (and because it describes a change of length per unit length). We also know

that T ττ
i j has dimensions of ρv2 since it is a stress tensor quantity. Therefore, we can propose a constitutive

equation given by

T ττ
i j =−µG(SC)h

ττ
i j

Gravito-London constitutive equation

for a superconductor
(1314)

where µG(SC) is an undetermined positive constant with the dimensions of energy density. It is referred to in

this dissertation as the “gravitational shear modulus,” or simply “gravitational modulus.” Similar to the case

with electromagnetism, this relationship is expected to follow as a direct result of assuming that particles

within a superconductor (namely, Cooper pairs) undergo dissipationless acceleration due to the gravitational

wave field. The negative sign relating T ττ
i j and hττ

i j would be responsible for gravitational waves being expelled

from a superconductor rather than being admitted.

The following are some observations concerning these results.

• The constitutive equation in (1314) can not be written covariantly as Tµν = −µG(SC)hµν since this

would imply scalar relation given by T00 =−µG(SC)h00. Using T00 = ρc2 and the gravito-scalar poten-

tial defined as ϕG ≡ −c2h̄00/4 would lead to ρc2 = µG(SC)h00. Since hµν is the cause and Tµν is the

effect, then this would imply that ϕG could “cause” ρc2 which is clearly absurd since a gravito-scalar

potential cannot cause a rest energy density to exist.124

123The negative sign relating ~J and ~A is also a necessary characteristic of any material responding to an

external field according to a generalized Hook’s law. This is required in order for the material to remain

intact (via internal restoring forces), rather than diffuse more and more rapidly in a “run away” type of effect.

Note that Ohm’s law, ~J = σ c
~E, also has a negative sign when ~E = −∂t

~A is used to write it in terms of the

vector potential, ~J =−σ c∂t
~A.

124This is directly analogous to the fact London’s law can not be written in a covariant form as Jµ =−ΛLAµ .

Using J0 = cρcharge, where ρcharge is the charge density, and A0 = −ϕE/c, where ϕE is the electric scalar

potential, would lead to ρcharge =−ΛLϕE/c
2. Since ϕE is the cause and ρcharge is the effect, then this would

imply that the electric scalar potential could “cause” a charge energy which is clearly absurd.
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However, the constitutive equation can be applied to the vector relation T0i = −µG(SC)h0i. Re-

call that T0i = ρcvi = cJm,i, where Jm,i is the mass current density. Also, the gravito-vector potential

is typically defined as ~h ≡ c
4
(h01,h02,h03). These relations lead to ~Jm = −µG(SC)

~h/4 which is just

the gravito-London constitutive equation describing the mass current produced by a gravito-vector po-

tential. In (1195), this constitutive equation was written as ~Jm = −nsme
~h. However, the covariant

expression, Tµν = −µG(SC)hµν , would still be a problem since it would imply that µG(SC) = 4nsme

which is not consistent with the results found in the following sections. This is further indication that a

covariant equation of the form Tµν =−µG(SC)hµν is not valid.

• Unlike the spring constant, k, for a simple harmonic oscillator, the gravitational modulus, µG(SC), is

not necessarily a constant. In fact, in later sections it will be found that µG(SC) can be a function of

velocity, vector potential, and coherence length (as shown in (1530) for the case of the Cooper pairs),

or a function of frequency, temperature, and spatial dimensions (as shown in (1696) for the case of the

lattice ions). This should not be confused with the Equivalence Principle which predicts that all forms

of mass-energy should respond to gravitation the same way.
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12.4 A plasma frequency and penetration depth for GR waves

In this section, we develop a gravitational plasma frequency, index of refraction, penetration depth, and

other quantities pertaining to the interaction of gravitational waves with a superconductor. The analysis

is directly analogous to the electromagnetic case shown in Appendix R. Recall that the wave equation for

gravitational waves is given in (361) as�hττ
i j =−2κT ττ

i j . Inserting the gravito-London constitutive equation,

T ττ
i j =−µG(SC)h

ττ
i j , and expanding the box operator gives125

− 1
c2 ∂

2
t hττ

i j +∇
2
hττ

i j = 2κµGhττ
i j (1315)

A dispersion relation can be obtained by using a monochromatic, plane-fronted wave propagating in the

z-direction given by

hττ
i j (z, t) = hττ

i j,0ei(kz−ωt) (1316)

where hττ
i j,0 is a constant amplitude tensor. Then the wave equation above gives126

− (−iω)2

c2
hττ

i j,0+(ik)
2

hττ
i j,0 = 2κµGhττ

i j,0 (1317)

(
k2− ω2

c2
+2κµG

)
hττ

i j,0 = 0 (1318)

For a non-trivial solution, hττ
i j,0 6= 0, this gives

k2 =
ω2

c2
−2κµG (1319)

Factoring out ω2/c2 leads to the following dispersion relation for gravitational waves in a superconductor.127

k2 =
ω2

c2

(
1− 2c2κµG

ω2

)
Dispersion relation for gravitational waves

in a superconductor
(1320)

This matches the result found by Press [73] in his equation (2) where µG(SC) is identified as an elastic shear

modulus.128 However, here µG(SC) will be referred to as a “gravitational shear modulus” (or “gravitational

125Note that the full transverse-tracess stress tensor within the superconductor is T ττ
i j = −µGhττ

i j +
T ττ

i j (superrcrrents) where T ττ

i j (superrcurents) is given in (1923) and describes the stress produced in the superconduc-

tor as a result of electromagnetic fields driving supercurrents. The treatment in this section assumes there are

no electromagnetic fields driving supercurrents, or equivalently, that the supercurrent is essentially a neutral

superfluid.

126The frequency of the incoming gravitational wave (on the right) is assumed to have the same frequency

as the outgoing gravitational wave (on the left).

127Typically the value of κ is determined by κ = 8πG/c4. However, it is possible that a material (such as a

superconductor) may have a relative gravitational permeativity, κr, such that κ = κrκ0 where κ0 = 8πG/c4

in vacuum.

128Note that Press does not have a factor of c2 appearing in the numerator which implies that he may have

used Ti j = µc2hi j. Also note that Press makes explicit reference to the transverse-traceless gauge in his

formulation. However, this gauge is only valid in vacuum, not matter, as discussed in Appendix E. Therefore,

hT T
i j cannot be used in this formulation. Instead, we specifically work with the gauge-invariant transverse-

traceless part of the metric, hττ
i j , which satisfies a wave equation in matter as found using the Helmholtz

Decomposition formulation.
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modulus”) since later it is shown to have important differences when compared to the usual elastic shear

modulus from continuum mechanics. In [73], it is pointed out that (1320) resembles the electromagnetic

equations of a dense plasma. For the case of a superconductor, it is expected that the charge-separation effect

(which will be demonstrated later in the dissertation) will indeed cause the material to act as effectively a

very dense plasma. In fact, a gravitational plasma frequency can be defined as

ω2
G ≡ 2c2κµG

Gravitational wave plasma frequency

in a superconductor
(1321)

Then (1320) can also be written as

k2 =
ω2

c2

(
1− ω2

G

ω2

)
(1322)

It is clear from (1322) that reflection or absorption will occur when ω ≤ ωG which means k becomes imagi-

nary. We can also write (1322) as

k2 =
ω2

c2
n2

G (ω) (1323)

where we are using a “gravitational index of refraction” defined as

n2
G (ω)≡

(
1− ω2

G

ω2

)
Gravitational wave index of refraction

in a superconductor
(1324)

This characterizes the reflection and refraction of gravitational waves in a superconductor. Next, a gravita-

tional wave penetration depth will be determined. A complex wave number can be written as

k = K+ iα (1325)

where K and κ0 are real quantities. Inserting this into the plane wave of (1316) and separating the real and

imaginary parts of the phase gives

hττ
i j (z, t) = hττ

i j,0ei[(K+iα)z−ωt] (1326)

= hττ
i j,0e−αzei(Kz−ωt) (1327)

Here it is evident that the wave falls off exponentially with distance where α is the exponential decay factor.

The square of the wave number in (1325) is

k2 = K2−α
2+2iKα (1328)

Since k2 in (1319) is only real, then we must have either K = 0 or α = 0 to eliminate the last cross term

above. Setting α = 0 and using (1319) gives

K2 =
ω2

c2
−2c2

κµG (1329)
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Note that this condition is only valid for ω2/c2 ≥ 2κµG since K is real. Using the gravitational plasma

frequency in (1321), we can write this condition as ω ≥ ωG. Then the plane wave of (1327) becomes

hττ
i j (z, t) = hττ

i j,0ei(Kz−ωt) where K =±
√

ω2

c2 −2c2κµG

Propagating solution for a gravitational wave

in a superconductor (for ω ≥ ωG)

(1330)

This condition corresponds to a wave propagating through the material with no attenuation. On the other

hand, setting K = 0 and using (1319) and (1328) gives

α
2 = 2c2

κµG−
ω2

c2
(1331)

Note that this condition is only valid for ω2/c2 ≤ 2κµG since α is real. Using the gravitational plasma

frequency in (1321), we can write this condition as ω ≤ ωG. Then the plane wave of (1327) becomes129

hττ
i j (z, t) = hττ

i j,0e−αze−iωt where α =
√

2c2κµG− ω2

c2

Exponentially decaying solution for a gravitational wave

in a superconductor for (ω ≤ ωG)

(1332)

Therefore, we can identify a characteristic frequency-dependent penetration depth as δ G = 1/α . Using

(1331) gives

δ
2
G =

c2

2c2κµG−ω2

Gravitational wave penetration depth

in a superconductor
(1333)

We can also write this in terms of the gravitational plasma frequency in (1321) as

δ
2
G =

c2

ω2
G−ω2

(1334)

In this form, we see that as ω approaches ωG, we have δ G approaching infinity. This means that as the

frequency approaches the plasma frequency, the wave is no longer attenuated with depth. On the other hand,

for ω >> ωG, it is evident that δ G→ λ G = c/ωG. In fact, in the “DC” limit (ω → 0), the penetration depth

is no longer frequency-dependent and using (1321) gives130

λ G =
c

ωG

=
1√

2κµG

Gravitational wave penetration depth

for a superconductor in the DC limit
(1335)

129Formally, κ0 should have a positive and negative root. However, if we consider the case of z< 0 repre-

senting the vacuum and z > 0 representing the superconductor, then we can write κ0 with only the positive

root in order to obtain an exponential decay solution and avoid a diverging exponential growth solution.

130Another way of arguing this is to consider that the wave can only penetrate the skin of the superconductor

to a depth on the order of a wavelength. Then using k = c/ωG and ωG =
√

16πGµG/c leads to (1335).
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This matches the result obtained by Press in equation (3) of [73] for a gravitational wave mirror consisting of

an elastic solid.131 If we consider the DC limit of (1315), then we have a Yukawa-like equation given as

∇
2
hττ

i j −2κµGhττ
i j = 0 (1336)

The prefactor in (1336) can be written as 2κµG = 1/λ 2
G so the solution is hττ

i j (z) = Aττ
i j e−z/λ G where

λ G =
1√

2κµG

(1337)

This is the gravitational London penetration depth for a static gravitational strain field expelled from a super-

conductor. As expected, we find that λ G = c/ωG which is equivalent to the gravitational penetration depth

found in (1335) in the “DC” limit.

Lastly, because the gravitational London-like constitutive equation given by T ττ
i j = −µG(SC)h

ττ
i j is just a

proportionality between T ττ
i j and hττ

i j , then hττ
i j can be replaced with T ττ

i j all throughout the analysis above

to obtain the same exact results for the dispersion relation and penetration depth of the sources. Therefore,

the solutions in (1330) and (1332) can also be used to describe the stress tensor when the gravitational

London-like constitutive equation applies. This means that ω ≥ ωEM leads to

T ττ
i j (z, t) = T ττ

i j,0ei(Kz−ωt) where K =±
√

ω2

c2 −2c2κµG (1338)

and ω ≤ ωEM leads to

T ττ
i j (z, t) = T ττ

i j,0e−αze−iωt where α =

√
2c2κµG− ω2

c2 (1339)

Here T ττ

(0)i j
is a constant amplitude tensor. Also, the penetration depth for the exponentially decaying stress in

(1339) is given by (1333).

131Press also has c2 appearing in the numerator. However, his dispersion equation implies that he used a

plasma frequency defined as ω2
G ≡ 16πG, and a constituent equation defined as Ti j =−µhi j where µ would

have the units of mass density, not energy density. Thefore, dimensionally he should only have c in the

numerator of his skin depth.



236

12.5 A gravito-Meissner effect for GR waves in the DC limit

In Appendix Q, it is shown that starting from the London constitutive equation, ~J = −ΛL
~A and then

taking temporal and spatial derivatives leads to constitutive equations involving the electric and magnetic

fields within a superconductor given as

∂t
~J = ΛL

~E and ∇× ~J =−ΛL
~B (1340)

For a sinusoidal current density, ∂tJ ∝ ω~J. Therefore, in the DC limit (ω → 0), the first equation above

requires that ~E = 0. This implies that in the DC limit, the electric field vanishes completely throughout

the entire superconductor and only a magnetic field remains within the London penetration depth of the

superconductor. The magnetic field drives the supercurrents, not via the Lorentz force m~a = q~v×~B, but by

the second constitutive equation in (1340). Furthermore, it is also shown in Appendix R that the magnetic

field satisfies a Yukawa-like equation given as

∇
2~B− 1

λ
2
L

~B= 0 (1341)

The solution to this equation is B(z) = B0e−z/λ L where z is the distance into the surface of the superconductor

and λ L is the London penetration depth found to be λ
2
L =

me

µ0nse
2

. This result implies that the magnetic field

is expelled from the interior of the superconductor which is referred to as the Meissner effect.

In this section, an analogous approach is used to demonstrate a Meissner-like effect for the DC limit of

gravitational waves in a superconductor. Recall that electric-like and magnetic-like tensor fields for gravita-

tional waves are written in (354) as

Ei j =−∂th
ττ
i j , and Bi jk = ∂khττ

i j (1342)

Using these fields, the geodesic equation of motion was found to be

ai = viEi j+ vivk
(

1
2
B jki−Bik j

)
(1343)

which demonstrates that the electric-like and magnetic-like tensor fields describe the actual physical motion

of test particles in the presence of gravitational wave. These fields can be used to formulate a gravitational

Meissner-like effect for gravitational waves in the DC limit. Recall that in (1314), the gravito-London consti-

tutive equation for gravitational waves is given as T ττ
i j =−µG(SC)h

ττ
i j . Taking temporal and spatial derivatives

of this equation and using (1342) leads to the following constitutive equations.

∂tT
ττ

i j = µG(SC)Ei j and ∂kT ττ
i j =−µG(SC)Bi jk (1344)

These equations are directly analogous to the constitutive equations in (1340) for the electric and magnetic

fields. For a sinusoidal stress tensor, ∂tT
ττ

i j ∝ ωT ττ
i j . Therefore, in the DC limit (ω → 0), the first equation

above requires that Ei j = 0. This implies that in the DC limit, the electric-like tensor field vanishes com-

pletely throughout the entire superconductor and only the magnetic-like tensor field remains. (This is directly

analogous to the electric field vanishing throughout the entire superconductor and only the magnetic field

remaining.) The magnetic-like tensor field drives the supercurrents, not via the geodesic equation of motion

(1343) but by the second constitutive equation in (1344). In (356), it was shown that the wave equation,

�hττ
i j =−2κT ττ

i j , can be written in as

∂kBi jk =−
(

2κT ττ
i j +

1

c2
∂tEi j

)
(1345)

This is a gravito-Ampere law in the sense that a spatial derivative of a magnetic-like tensor field is proportional

to a source term plus a time-derivative of the electric-like tensor field. It was already stated that for sinusoidal
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fields and stresses, the DC limit requires Ei j = 0. Taking a derivative, ∂l , of (1345) and inserting the second

equation of (1344) leads to

∂l∂kBi jk = 2κµGBi jl (1346)

Using Bi jk = ∂khττ
i j and ∂k∂k = ∇

2 gives

∇
2
∂lh

ττ
i j = 2κµGBi jl (1347)

Then inserting Bi jl = ∂lh
ττ
i j , rearranging and changing “l” to “k” gives

∇
2Bi jk−2κµGBi jk = 0 (1348)

This is a Yukawa-like equation similar to (1341) which implies an exponential decay solution for Bi jk and

therefore an associated penetration depth. The solution to this equation is Bi jk (z) =Bi jk,0 (z)e
−z/λ G where

z is the distance into the surface of the superconductor, and λ G is the gravitational penetration depth in the

DC limit which is found to be

λ G =
1√

2κµG

(1349)

This is consistent with the gravitational penetration depth in (1335) for a static gravitational strain field

expelled from a superconductor. This result implies that the magnetic-like tensor field is expelled from the

interior of the superconductor in a gravitational Meissner-like effect. This expulsion of the gravitational wave

field is valid for all frequencies down to the DC limit. For an upper bound, it is expected that the BCS energy

gap frequency would limit the maximum frequency permitted for this gravitational Meissner-like effect to

occur since frequencies above this would break up the Cooper pairs and destroy the superconducting state.
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12.6 Phase and group velocities for GR waves in a superconductor

Here we consider the phase velocity
(
vphase = ω/k

)
and group velocity (vgroup = dω/dk) of the waves

found in the previous section. Starting with (1319), dividing by ω2 and getting a common denominator gives

k2

ω2
=

ω2c2−2c2κµG

c4ω2
(1350)

Taking the reciprocal and using the gravitational plasma frequency, ω2
G = 2κµG, gives

ω2

k2
=

c2

1−ω2
G/ω

2
(1351)

Then solving for vphase = ω/k gives

vphase =
c√

1−ω2
G/ω2

Phase velocity of gravitational waves in a superconductor (1352)

For frequencies much greater than the gravitational plasma frequency, ω2>>ω2
G, then we have ω2

G/ω
2<< 1

which means we can use a binomial expansion (to first order) to obtain

vphase ≈ c

(
1+

ω2
G

2ω2

)
(1353)

This implies that the phase velocity will be superluminal. In fact, (1352) can be written as v2
phase = c2+

v2
phaseω2

G/ω
2 which means that v2

phase always exceeds c2 by an amount v2
phaseω2

G/ω
2. We can also see this

from the gravitational index of refraction given in (1324) as nG (ω) =
√

1−ω2
G/ω2. For ω2 >> ω2

G, we

have nG . 1. Then v= c/nG implies that v& c. Therefore the phase velocity is superluminal.

For frequencies just above the gravitational plasma frequency, ω2 & ω2
G, we find that vphase in (1352)

becomes arbitrarily large. As ω approaches ωG, then vphase diverges to infinity This corresponds to nG going

to zero so that v= c/nG becomes infinite.

Lastly, when ω2 < ω2
G, then vphase and nG both become imaginary. This implies a complete expulsion

of the wave such that there is no phase velocity of the wave in the superconductor. Since the supercurrent is

completely dissipationless, then there can be no absorption of the wave at all. Rather, there must be perfect

external reflection of the wave.

Next we consider the group velocity of the wave. Returning to (1351) and expressing ω2 in terms of k2

gives

ω
2 = c2k2+ω

2
G (1354)

Taking the derivative with respect to k gives

2ω
dω

dk
= 2c2k (1355)
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Solving for vgroup =
dω

dk
gives

vgroup =
c2

ω
k (ω) (1356)

Solving (1354) for k (ω) yields k (ω) =
ω

c

√
1−ω2

G/ω
2. Inserting this above gives

vgroup = c

√
1−ω2

G/ω
2 Group velocity of gravitational waves in a superconductor (1357)

For frequencies much greater than the gravitational plasma frequency, ω2>>ω2
G, then we have ω2

G/ω
2<< 1

which means we can use a binomial expansion to first order to obtain

vgroup ≈ c

(
1− ω2

G

2ω2

)
(1358)

This implies that for an arbitrarily large ω , we can make vgroup arbitrarily close to c. This would describe

a wave that is almost completely unaffected by a medium and therefore propagates through it at almost the

same speed it has in vacuum.

Notice that vgroup is always subluminal. In fact, (1357) can be written as v2
group = c2− c2ω2

G/ω2 which

means that v2
phase always remains less than c2 by an amount c2ω2

G/ω
2. As ω decreases, vgroup in (1357) will

decrease until it vanishes when ω = ωG. For ω2 < ω2
G, then vgroup becomes imaginary. Once again, this

implies a complete expulsion of the wave at these frequencies such that there is no group velocity of the wave

in the superconductor. These results collectively show that vgroup is always subluminal which is expected

since vgroup is representative of the rate at which energy (and information) can be transported in the medium.
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12.7 Equilibration time-scales for charge density and stress

First we consider the equation of motion for charge density within a normal conductor. Inserting Ohm’s

law, ~J = σ c
~E into Gauss’s law, ∇ · ~E = ρ/ε , gives ∇ · ~J/σ c = ρ/ε where σ c is the electrical conductivity.

Then using the continuity equation, ∇ · ~J =−ρ̇ , gives

ρ̇+
σ c

ε
ρ = 0

We can define τ ≡ ε/σ c so the general solution to the differential equation is ρ = Ae−t/τ +Bet/τ . To avoid

having the charge density diverge with time, we set B= 0. Then letting A= ρ0 be the charge density at t = 0

gives

ρ = ρ0e−t/τ (1359)

It is clear that τ = ε/σ c gives the characteristic time scale that describes how rapidly and net charge in the

interior of the conductor will move to the surface. In other words, this time-scale determines how well a

material behaves as an electrical conductor.132 For a conductor like copper, this time scale is on the order

of 10−19s. It is evident that as σ c → ∞, then τ → 0 and the material approaches the case of a “perfect”

conductor.

For the case of a superconductor, we can use the electric London equation found in (2925) as

∂t
~Js =

nse
2

me

~E (1360)

Taking the divergence and using Gauss’s law, ∇ ·~E = ρ/ε , gives

∂t∇ · ~Js =
nse

2

me

ρ

ε
(1361)

Next, using the continuity equation, ∇ · ~J =−ρ̇ , gives

ρ̈+
nse

2

meε
ρ = 0 (1362)

We can use ω2
p =

nse
2

meε
and write the solution as

ρ̃ = ρ0eiω pt (1363)

where ρ = Re ρ̃ . Notice that the charge density no longer decays exponentially but rather oscillates sinu-

soidally at the plasma frequency, ω p.This is indicative of the dissipationless nature of the superconductor. It

stems from the fact that the constitutive equation is no longer Ohm’s law which is dissipative since it involves

the conductivity σ c derived from the Drude model.133. Rather, by using ~E = −∂t
~A in (1360), we obtain the

dissipationless London constitutive equation for a superconductor:

~Js =−
nse

2

me

~A (1364)

Nevertheless, we can find a time-scale using ns ≈ ρNiobium/(82mp) for Niobium and ε0 ≈ ε . Then finding

the period from the electromagnetic plasma frequency gives

T =
2π

ω p

=

√
meε

e2ns

≈
√

82mpmeε

e2ρNiobium

≈ 7.1×10−17s (1365)

132See Griffiths [29], p. 393.

133See Griffiths [29], pp. 289-290.
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Therefore, we can observe that a superconductor acts as essentially a “perfect” conductor. However, it is

not due due to a particular value of an electrical property (such as particular values for σ c or ε). Rather, it is

due to a fundamentally different constitutive equation, namely, London’s dissipationless constitutive equation

versus Ohm’s law which is a dissipative constitutive equation.

Now we carry over the same analysis for the case of gravitation. We can use our proposed constitutive

equation

T ττ
i j =−µhττ

i j (1366)

where µ is an undetermined positive constant with the dimensions of energy density. Similar to the case with

electromagnetism, this relationship is expected to follow as a direct result of assuming that particles within

a superconductor (namely, Cooper pairs) undergo dissipationless acceleration due to the gravitational wave

field. The wave equation for gravitational waves is given by (361) as �hττ
i j = −2κT ττ

i j . This time we will

solve (1366) for hττ
i j and insert it into the wave equation to obtain

�T ττ
i j −2κµGT ττ

i j = 0 (1367)

This is clearly the same wave equation we had in (1315) for hττ
i j . We can write the solution as a separable

function using

T ττ
i j (~x, t) = X (~x)T (t) (1368)

Then (1367) becomes

− 1

c2
X (~x)∂ 2

t T (t)+T (t)∇2
X (~x)−2κµX (~x)T (t) = 0 (1369)

Dividing through by T ττ
i j (~x, t) = X (~x)T (t) and rearranging gives

− 1

c2T (t)
∂

2
t T (t)+

1

X (~x)
∇

2
X (~x) = 2κµ (1370)

Since κ = 8πG/c4 and ω2
G = 16πGµG/c

2, then we can replace the right side with ω2
G/c

2. Then using

separation of variables gives

∂
2
t T (t) = −ω

2
GT (t) and ∇

2
X (~x) =

ω2
G

c2
X (~x) (1371)

The solutions to these differential equations are

T̃ (t) = T0eiωGt and X (~x) = X0e
ωG

c
~x

(1372)

where T (t) = Re T̃ (t). From the spatial solution, we can immediately identify a penetration depth given by

δ = c/ωG. From the temporal solution, we find that the stress oscillates at the gravitational plasma frequency

given by ω2
G = 16πGµG. We can find a time-scale using

T =
2π

ωG

=
2π√

16πGµG/c2
= c

√
π

8GµG

(1373)
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12.8 The Landau-Lifshitz pseudotensor correction

The wave equation for gravitational waves is given by (361) as

�hττ
i j =−2κT ττ

i j (1374)

where T ττ
i j is the transverse-traceless stress of the matter-energy distribution that is producing hττ

i j , the transverse-

traceless strain field which propagates as a gravitational wave. In the previous section, we proposed a con-

stitutive equation (1314) relating the transverse-traceless stress T ττ
i j which is induced in a matter distribution

due to the incoming gravitational wave hττ
i j . We can write this as

T ττ
i j =−µG(SC)h

ττ
i j (1375)

When determining the resulting outgoing gravitational wave, we must recognize that gravitation is a self-

coupling field. Therefore, the incoming gravitational wave is also essentially a “source” of gravitation in

addition to the stress tensor of the matter. To account for this, a common approach is to use the Landau-

Lifshitz pseudotensor, tL-L
µν , as a stress-energy pseudotensor for the gravitational field. As shown in (2668) of

Appendix H, the resulting Einstein field equation for gravitational waves is

�h
ττ (out)
i j = −2κ

(
T ττ

i j + tττ
i j L-L

)
(1376)

Here h
ττ (out)
i j is the outgoing gravitational wave134 and tττ

i j L-L is the linearized transverse-traceless Landau-

Lifshitz pseudotensor.135 In (2679) of Appendix H, we found that

tττ
i j L-L =

1

κ
�hττ

i j (1377)

Substituting (1375) and (1377) into (1376) gives

�h
ττ (out)
i j = 2κµGhττ

i j −2�hττ
i j (1378)

This is the linearized wave equation which relates an incoming gravitational wave hττ
i j to an outgoing grav-

itational wave h
ττ (out)
i j . The first term on the right side describes the linear response of the matter to the

incoming wave (governed by the gravitational modulus, µG(SC), of the material). The second term on the

right side takes into account the self-coupling of the gravitational field via the Landau-Lifshitz pseudotensor.

To obtain a dispersion relation, we can use a plane wave solution hττ
i j (~x, t) = h̃ττ

i j ei(~k·~x−ωt) where h̃ττ
i j is a

constant amplitude tensor. Then evaluating the derivatives in (1378) gives

− (−iω)2

c2
h̃

ττ (out)
i j +(ik)2 h̃

ττ (out)
i j = 2κµGh̃ττ

i j −2

[
− (−iω)2

c2
h̃ττ

i j +(ik)
2

h̃ττ
i j

]
(1379)

(
ω2

c2
− k2

)
h̃

ττ (out)
i j = 2κµGh̃ττ

i j −2

(
ω2

c2
− k2

)
h̃ττ

i j (1380)

134The Landau-Lifshitz pseudotensor in (2667) and the constituent equation in (1375) are both in terms of

the incoming wave, h
ττ (in)
i j . However, for brevity we drop the superscript “in” and use the convention that

hττ
i j with no superscript refers only to the incoming wave.

135Note that we are working with the transverse-traceless part of the metric perturbation, hττ
i j , not the

transverse-traceless gauge, hT T
i j , since the transverse-traceless gauge cannot be used in matter.
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If the amplitude of the incoming wave and outgoing wave are the same (for dissipationless reflection), then

we have

k2 =
ω2

c2
− 2

3
κµG (1381)

We can factor out ω2/c2 and use the gravitational plasma frequency defined in (1321) as ω2
G = 2c2κµG. This

gives

k2 =
ω2

c2

(
1− ω2

G

3ω2

)
(1382)

Comparing this to (1322), we find that the inclusion of the Landau-Lifshitz pseudotensor simply modifies

ω2
G by a factor of 1/3. We can define a modified gravitational plasma frequency as

ω2
G (modified) =

2c2κµG

3
(1383)

This modified gravitational plasma frequency takes into account the fact that the incoming gravitational wave

is also effectively a “source” of gravitation.



244

12.9 An equation of motion derived from the constitutive equation

The full stress tensor for gravitational waves within a superconductor is given by

T ττ
i j =−µG(SC)h

ττ
i j +T ττ

i j (supercurrents) (1384)

where the first term is a gravito-London constitutive equation describing the interaction of the gravitational

wave with the Cooper pairs and lattice ions, and T ττ

i j (supercurrents) is the stress tensor produced in the supercon-

ductor due to electromagnetic fields driving supercurrents. Using (1923) for T ττ

i j (supercurrents) gives

T ττ
i j =−µG(SC)h

ττ
i j +

e2
(
ρ+P/c2

)
m2

e

[
AiA j+AkA jh

ττ
ik +AlAih

ττ
jl − 1

3
δ i j

(
A2+2AkAlh

ττ
kl

)]
(1385)

To simplify this expression, consider the case when A2 >> AkA jh
ττ
ik

for electromagnetic fields that dominate

over the gravitational wave field. For convenience, a transverse-traceless “magnetic tensor potential” can be

defined as

Aττ
i j ≡ AiA j− 1

3
δ i jA

2 (1386)

Then (1917) becomes

T ττ
i j =−µG(SC)h

ττ
i j +

e2
(
ρ+P/c2

)
m2

e

Aττ
i j (1387)

Finding the equation of motion requires taking a time derivative. Assuming ρ̇ = Ṗ/c2 = 0 gives

Ṫ ττ
i j = −µ ḣττ

i j +
e2
(
ρ+P/c2

)
m2

e

Ȧττ
i j (1388)

Using (1386), the expression can be written as

Ṫ ττ
i j = −µ ḣττ

i j +
e2
(
ρ+P/c2

)
m2

e

[(
ȦiA j− 1

3
δ i jȦiA j

)
−
(
AiȦ j− 1

3
δ i jAiȦ j

)]
(1389)

= −µ ḣττ
i j +

e2
(
ρ+P/c2

)
m2

e

(
ȦiA j−AiȦ j

)
(1390)

Since Ei =−Ȧi and Ji =−
nse

2

me

Ai, then we can also write this as

Ṫ ττ
i j = −µ ḣττ

i j +

(
ρ+P/c2

)
nsme

(EiJ j− JiE j) (1391)

Now we can work on the left side. To obtain an expression for Ṫ ττ
i j , we can use

T ττ
i j = γ

2
(
ρm+P/c2

)(
viv j− 1

3
δ i jv

2
)

(1392)

Taking a time derivative of (1392) and recalling that ∂t

(
ρm+P/c2+

me

e
ρc

)
= 0 gives

Ṫ ττ
i j =

(
∂tγ

2
)(

ρm+P/c2
)(

viv j− 1
3
δ i jv

2
)

+γ
2
(
ρm+P/c2

)(
aiv j+ via j− 2

3
δ i jva

)
(1393)
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From (421) we found that ∂tγ
2 = 2vaγ4/c2.

Ṫ ττ
i j =

(
ρm+P/c2

)[2vaγ4

c2

(
viv j− 1

3
δ i jv

2
)
+ γ

2
(
aiv j+ via j− 2

3
δ i jva

)]
(1394)

Since γ2 =
(
1− v2/c2

)
, then γ4 =

(
1− v2/c2

)2 ≈
(
1−2v2/c2

)
to order v2/c2. This means that if we are

only keeping terms to order v2/c2 in the expression above, we can eliminate the first term in the bracket and

use γ2 ≈ 1 for the second term in the bracket. This gives

Ṫ ττ
i j =

(
ρm+P/c2

)(
aiv j+ via j− 2

3
δ i jva

)
(1395)

Now we can insert this into (1391) to obtain the equation of motion as

(
ρm+P/c2

)(
aiv j+ via j− 2

3
δ i jva

)
= −µ ḣττ

i j +

(
ρm+P/c2

)
nsme

(EiJ j− JiE j) (1396)

If we consider the case of no gravitational waves (hττ
i j = 0), no internal pressures (P= 0) and we write the

mass density as ρm =
me

e
ρc, where ρc is the charge density, then we obtain

me

e
ρc

(
aiv j+ via j− 2

3
δ i jva

)
= −µ ḣττ

i j +
ρm

nsme

(EiJ j− JiE j) (1397)

Using Ji = ρcvi and ρm = nsme gives

me

e

(
aiJ j+ Jia j− 2

3
δ i jJa

)
=−µ ḣττ

i j +EiJ j− JiE j (1398)

Rearranging gives

(
me

e
ai−Ei

)
J j+

(
me

e
a j+E j

)
Ji−

2me

3e
δ i jJa=−µ ḣττ

i j

Equation of motion for the supercurrent density

in the presence of a gravitational wave

(1399)

This is the equation of motion for the supercurrent density due to the presence of a gravitational wave and

electromagnetic fields within the superconductor. Notice that it is still transverse (since ∂iJi = ρc∂ivi = 0 and

∂iḣ
ττ
i j = 0) and it is still traceless since taking a spatial trace will yield zero. For the case of no gravitational

waves, ḣττ
i j = 0. Since the electromagnetic equation of motion (the Lorentz force) would give

me

e
ai−Ei = 0,

then (1399) would reduce to (
me

e
a j+E j

)
Ji−

2me

3e
δ i jJa= 0 (1400)

Taking the spatial trace using δ i j gives

−me

e
Ja+EJ = 0 (1401)

This expression is satisfied for the trivial case of no supercurrent, J = 0, or when

mea= eE (1402)

This is simply the equation of motion based on the Lorentz force which is also used in the London formula-

tion. Hence we recover the expected result from electromagnetism.
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13.1 Overview of interaction of GR waves with normal conductors

In the sections that follow, we motivate the form of an Ohm-like gravitational constitutive equation for

gravitational waves interacting with a normal conductor. We use the geodesic equation of motion and an

analogy with Ohm’s law from electromagnetism. Then applying the linearized Einstein equation for the

transverse-traceless strain field (which contains the propagating degrees of freedom for gravitational waves),

we develop a dispersion relationship, plasma frequency and penetration depth for gravitational waves incident

on a normal conductor. Next we find the phase and group velocities, then a modified gravitational plasma

frequency that takes into account the effect of the Landau-Lifshitz pseudotensor correction. Finally, we

develop an electromagnetic Ohm’s law with coupling to gravitational waves.
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13.2 A gravito-Ohm constitutive equation for GR waves

In this section, a gravito-Ohm constitutive equation is developed for gravitational waves by using an

analogy with electromagnetism. In equation (7.2) of [29], Griffiths states that the current density produced

by electromagnetic fields in a conductor can be written as ~J = σ

(
~E+~v×~B

)
where σ is the conductivity of

the material. If the velocity is sufficiently small, then the second term can

be neglected136 which simply gives
~J = σ~E (1403)

which is Ohm’s law. Since ~E = −∂t
~A, then ~J = −σ∂t

~A. For a sinusoidal vector potential, A = A0ei(kz−ωt),

we have ∂t
~A=−iω~A and Ohm’s law becomes

~J = iωσ~A (1404)

We can follow a similar procedure using (1821). Recall that electric-like and magnetic-like tensor fields for

gravitational waves are written in (354) as

Ei j =−∂th
ττ
i j and Bi jk = ∂khττ

i j (1405)

Using these fields, the geodesic equation of motion was found in () to be

ai = viEi j+ vivk
(

1
2
B jki−Bik j

)
(1406)

which demonstrates that the electric-like and magnetic-like tensor fields describe the actual physical motion

of test particles in the presence of gravitational wave. Again, for sufficiently small velocities, we can neglect

the second term so that ai = viEi j to first order in the velocity. This implies that the contribution of the term

involving the magnetic-like tensor field can be neglected in the constitutive equation. Therefore, a gravito-

Ohm constitutive equation involving the stress tensor would be of the form

T ττ
i j = ηGEi j (1407)

where ηG is a “gravitational conductivity” and T ττ
i j is the transverse-traceless stress. This expression is di-

rectly analogous to the electromagnetic Ohm’s law in (1403). Since Ei j =−∂th
ττ
i j , then the constitutive equa-

tion can also be written T ττ
i j =−ηGhττ

i j . For a sinusoidal gravitational wave field, we have hττ
i j = hττ

i j,0ei(kz−ωt)

where hττ
i j,0 is a constant amplitude tensor. Then ∂th

ττ
i j = −iωhττ

i j and the gravito-Ohm constitutive equation

becomes

T ττ
i j = iηGωhττ

i j

Gravito-Ohm constitutive equation

for a normal conductor
(1408)

Recall that hττ
i j is a dimensionless quantity since it is a metric component (and because it describes a change of

length per unit length). Also, since T ττ
i j has dimensions of energy density, then ηG has the dimensions of (en-

ergy density × time). Press [73] describes this quantity as “a shear viscosity” (versus µG(SC) which he refers

to as an “elastic shear modulus.”) He points out that “the constitutive relations required for a gravitational

conductor are either (i) a very large elastic shear modulus µ , in which case the equations resemble the elec-

tromagnetic equations of a dense plasma, or (ii) a very large shear viscosity η , in which case the equations

resemble those of a material of small resistivity.” In this dissertation, the interpretation of ηG is consistent

with Press in the sense of being a gravitational conductivity (which is the reciprocal of a resistivity).

136However, Griffiths points out that in plasmas, the magnetic contribution to the current density can be

significant.
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13.3 A plasma frequency and penetration depth for GR waves

In this section, we develop a gravitational plasma frequency, index of refraction, penetration depth, and

other quantities pertaining to the interaction of gravitational waves with a normal conductor. The analysis

is directly analogous to the electromagnetic case shown in Appendix R. Recall that he wave equation for

gravitational waves is given in (361) as �hττ
i j = −2κT ττ

i j . Inserting the gravito-Ohm constitutive equation,

T ττ
i j = iηGωhττ

i j , and expanding the box operator gives137

− 1
c2 ∂

2
t hττ

i j +∇
2
hττ

i j =−2iκηGωhττ
i j (1409)

A dispersion relation can be obtained by using a monochromatic, plane-fronted wave propagating in the

z-direction given by

hττ
i j (z, t) = hττ

i j,0ei(kz−ωt) (1410)

where hττ
i j,0 is a constant amplitude tensor. Then the wave equation above gives138

− (−iω)2

c2
hττ

i j,0+(ik)
2

hττ
i j,0 = −2iκηGωhττ

i j (1411)

(
k2− ω2

c2
−2iκηGωhττ

i j

)
hττ

i j,0 = 0 (1412)

For a non-trivial solution, hττ
i j,0 6= 0, this gives139

k2 =
ω2

c2
+2iκηGω (1413)

Factoring out ω2/c2 leads to the following dispersion relation for gravitational waves in a normal conduc-

tor.140

k2 =
ω2

c2

(
1+ i

2c2κηG

ω

)
Dispersion relation for gravitational waves

in a normal conductor
(1414)

This matches the result found by Press [73] in his equation (2) where ηG is identified as an elastic shear

modulus.141 However, here ηG will be referred to as a gravitational conductivity.

137Note that the full transverse-tracess stress tensor within the superconductor is T ττ
i j =−µGhττ

i j +T ττ

i j (curents)

where T ττ

i j (currents) describes the stress produced in the conductor as a result of electromagnetic fields driving

currents. The treatment in this section assumes there are no electromagnetic fields driving currents.

138The frequency of the incoming gravitational wave (on the right) is assumed to have the same frequency

as the outgoing gravitational wave (on the left).

139This has the same form as the wave number expression in electromagnetism using Ohm’s law. The

expression is k2 = µεω2+ iµσω as shown in equation (9.124) of [29].

140Typically the value of κ is determined by κ = 8πG/c4. However, it is possible that a material (such as

a conductor) may have a relative gravitational permeativity, κr, such that κ = κrκ0 where κ0 = 8πG/c4 in

vacuum.

141Note that Press does not have a factor of c2 appearing in the denominator which implies that he must have

used Ti j = iηGωc2hi j. Also, as mentioned before, Press makes explicit reference to the transverse-traceless

gauge in his formulation. However, this gauge is only valid in vacuum, not matter, as discussed in Appendix

E. Therefore, hT T
i j cannot be used in this formulation. Instead, we specifically work with the gauge-invariant

transverse-traceless part of the metric, hττ
i j , which satisfies a wave equation in matter as found using the

Helmholtz Decomposition formulation.
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From (1414), it is evident that a gravitational plasma frequency can be defined as

ωG ≡ 2c2κηG

Gravitational wave plasma frequency

in a normal conductor
(1415)

Then (1414) can also be written as

k2 =
ω2

c2

(
1+ i

ωG

ω

)
(1416)

It is clear from (1416) that reflection or absorption will occur when ω ≤ ωG which means k becomes imagi-

nary. This can also be written as

k2 =
ω2

c2
n2

G (ω) (1417)

where a “gravitational index of refraction” is defined as

n2
G (ω)≡

(
1+ i

ωG

ω

)
Gravitational wave index of refraction

in a normal conductor
(1418)

This characterizes the reflection and refraction of gravitational waves in a conductor. Next, a gravitational

wave skin depth will be determined. A complex wave number can be written as

k = K+ iα (1419)

where K and α are real quantities. Inserting this into the plane wave of (1410) and separating the real and

imaginary parts of the phase gives

hττ
i j (z, t) = hττ

i j,0ei[(K+iα)z−ωt] (1420)

= hττ
i j,0e−αzei(Kz−ωt) (1421)

Here it is evident that the wave falls off exponentially with distance where α is the exponential decay factor.

The square of the wave number in (1419) is

k2 = K2−α
2+2iKα (1422)

The real and imaginary parts of k2 can be identified by comparing the expression above to (1413). This gives

K2−α
2 =

ω2

c2
and Kα = κηGω (1423)

These expressions can be solved algebraically for K and α . Solving the second equation for α and substituting

into the first equation gives

K2−
(

κηGω

K

)2

=
ω2

c2
(1424)

Solving for K gives

K4− ω2

c2
K2− (κηGω)2 = 0 (1425)
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This expression is quadratic in K2 with the coefficients A = 1, B = −ω2/c2, and C = (κηGω)2. Using the

quadratic equation to solve for K2 gives

K2 =
ω2

2c2
± 1

2

√
ω4

c4
+4(κηGω)2 (1426)

Taking the positive root, rearranging, and solving for K gives

K =
ω√
2c

√1+

(
2κc2ηG

ω

)2

+1

1/2

(1427)

Now solving the first equation in (1423) for K and inserting into the second equation in (1423) gives

α

√
ω2

c2
+α2 = κηGω (1428)

Rearranging gives

α
4+

ω2

c2
α

2− (κηGω)2 = 0 (1429)

This expression is quadratic in α2 with the coefficients A = 1, B = ω2/c2, and C = −(κηGω)2. Using the

quadratic equation to solve for α2 gives

α
2 = − ω2

2c2
± 1

2

√
ω4

c4
+4(κηGω)2 (1430)

Taking the positive root, rearranging, and solving for α gives142

α =
ω√
2c

√1+

(
2κc2ηG

ω

)2

−1

1/2

(1431)

142The expressions for K and α in (1427) and (1431), respectively, match Griffiths’ results in equation

(9.126) of [29] for the case of Ohm’s law in electromagnetism. Griffiths uses k and κ , instead of K and α ,

respectively. His expressions are

k = ω

√
εµ

2

(√
1+
(

σ

εω

)2

+1

)1/2

and α = ω

√
εµ

2

(√
1+
(

σ

εω

)2

−1

)1/2

These expressions become exactly the same as (1427) and (1431) by making the replacements εµ → 1/c2

and
σ

ε
→ 2κc2ηG. In fact, the similarity becomes even more striking by recalling that the gravitational

permitivity and permeability are defined in (35) as εG ≡
1

4πG
and µG ≡ 4πG/c2, respectively. Also using

κ = 8πG/c4 makes the replacements become εµ → εµ and
σ

ε
→ 4

c2

ηG

εG

.
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The expressions for K and α can also be written in terms of the gravitational plasma frequency for a normal

conductor given in (1415) as ωG = 2c2κηG. This gives

K =
ω√
2c

(√
1+
(

ωG

ω

)2

+1

)1/2

and α =
ω√
2c

(√
1+
(

ωG

ω

)2

−1

)1/2

(1432)

A frequency-dependent skin depth can be identified as δ G = 1/α . Using α in the expression above gives

δ
2
G =

2c2

ω2

(√
1+
(

ωG

ω

)2

−1

) (1433)

Using ωG = 2c2κηG makes this expression become

δ
2
G =

2c2

ω2

√1+

(
2c2κηG

ω

)2

−1

 Gravitational wave skin depth

for a normal conductor

(1434)

Returning to (1433), notice that for ω >> ωG, we have ωG/ω << 1 and δ
2
G becomes extremely large.

This means that for frequencies well above the plasma frequency, the wave is no longer attenuated with depth.

On the other hand, for ω << ωG, we have ωG/ω >> 1 and δ
2
G becomes

δ
2
G =

2c2

ωGω
(1435)

We can use ωG = 2c2κηG and κ = κrκ0, where κ0 = 8πG/c4 in vacuum. Then the expression becomes

δ G =
c2√

8πκrGηGω
(1436)

This matches equation (3) of [73] for κr = 1. Notice that in the “DC” limit (ω → 0), we have δ G→ ∞. This

implies that there is gravitational wave skin depth. In other words, there is no gravito-Meissner effect for a

normal conductor. This will also be demonstrated in the next section using the magnetic-like tensor field of a

gravitational wave.
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13.4 The absence of a gravito-Meissner effect for GR waves in the DC limit

In this section, it is shown that a gravito-Meissner effect for gravitational waves in the DC limit does

not occurs for a normal conductor. In (356), it was shown that the wave equation, �hττ
i j = −2κT ττ

i j , can be

written in as

∂kBi jk = −
(

2κT ττ
i j +

1

c2
∂tEi j

)
(1437)

where Ei j and Bi jk are the electric-like and magnetic-like tensor fields, respectively. They are defined as

Ei j =−∂th
ττ
i j and Bi jk = ∂khττ

i j (1438)

For sinusoidal fields In the DC limit (ω → 0), we have Ei j = −∂th
ττ
i j = −ωhττ

i j = 0. Therefore, (1437)
reduces to just

∂kBi jk =−2κT ττ
i j (1439)

The gravito-Ohm constitutive equation, T ττ
i j = iηGωhττ

i j , also vanishes in the DC limit which makes the

expression above become ∂kBi jk = 0. Therefore, we do not arrive at a Yukawa-like equation as we did in

(1348) for a superconductor. However, we can use (1406) to write a modified gravito-Ohm constitutive

equation that includes the magnetic-like tensor field, Bi jk. Recall that the geodesic equation in (1406) was

given as

ai = viEi j+ vivk
(

1
2
B jki−Bik j

)
(1440)

From the second term above, we might expect the gravitational Ohm-like law to have the form

T ττ
i j = ηG

(
Ei j+ vkBi jk

)
(1441)

In the DC limit, we still have Ei j = −∂th
ττ
i j = −ωhττ

i j = 0. Therefore, the expression above reduces to

T ττ
i j = ηGvkBi jk. Inserting this into (1439) and rearranging gives

∂kBi jk+2κηGvkBi jk = 0 (1442)

Notice that we still do not obtain a Yukawa-like equation for the magnetic-like tensor Therefore, there is no

gravito-Meissner effect expelling the magnetic-like tensor field in the DC limit for a normal conductor.
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14.1 The Ginzburg-Landau free energy density in curved space-time

In this section, we will formulate the response of the Cooper pair density to a gravitational wave using the

Ginzburg-Landau (G-L) free energy density in curved space-time. First, we begin with the non-relativistic

G-L free energy density in flat space-time which is given in equation (4.2.11) of Zhou’s text [33] as143

F −Fn =
1

2m

∣∣∣(−i}∇−q~A
)

ψ

∣∣∣2+α |ψ|2+ β

2
|ψ|4+

~B2

2µ0

(1443)

where m = 2me and q = 2e. To embed this expression in curved space-time144, we may consider the G-L

Lagrangian density given in equation (4.1) of [38] written as145

L = −1

2

√
−g

[
gµν

(
Dµ φ

)∗
(Dν φ)−µ

2 |φ |2+ λ

2
|φ |4

]
− 1

4

√
−ggµκ gνλ Fµν Fκλ (1444)

where Fµν = ∂µ Aν − ∂ν Aµ is the electromagnetic field strength tensor and φ is a complex scalar field, φ =

φ 1+ iφ 2. Also, Dµ is the gauge covariant derivative given by Dµ ≡ ∇µ − iq

} Aµ . Using a similar approach,

we can generalize the G-L free energy density of (1443) to curved space-time. Since ψ is a scalar, then the

covariant derivative of ψ is just a partial derivative: ∇µ ψ = ∂µ ψ . Therefore the gauge covariant derivative

becomes

Dµ ≡ ∂µ −
iq

}
Aµ (1445)

Also, in order to use this gauge covariant derivative and still recover (1443) in the non-relativistic limit, we

need to introduce the appropriate prefactor. The kinetic term in (1443) can be written with index notation as∣∣∣(−i}∇−q~A
)

ψ

∣∣∣2 = [(−i}∂i−qAi)ψ]
∗ (−i}∂i−qAi)ψ (1446)

Factoring out (i})∗ (i}) = }2 and canceling negatives gives∣∣∣(−i}∇−q~A
)

ψ

∣∣∣2 = }2

[(
∂i−

iq

}
Ai

)
ψ

]∗(
∂i−

iq

}
Ai

)
ψ (1447)

Using (1445), we can write this as ∣∣∣(−i}∇−q~A
)

ψ

∣∣∣2 = }2 (Diψ)
∗ (Diψ) (1448)

Therefore, we find that a prefactor of }2 is needed to write (1443) in terms of Dµ . Using the notation

F −Fn =FG-L, we can write FG-L as146

FG-L =
√−g

[
}2

2m
gµν

(
Dµ ψ

)∗
(Dν ψ)+α |ψ|2+ β

2
|ψ|4− 1

4µ0

gµρ gνσ Fµν Fρσ

]
Ginzburg-Landau free energy density in curved space-time

(1449)

143A similar form is given in eq. 4.1 of Tinkham’s text [34] and eq. 6.15 of Timm’s notes [35].

144For a relativistic covariant form of the Ginzburg-Landau equation in flat space-time, refer to Section 2.1

of [37].

145Note that }= c= 1 in [38], however, these constants will be left explicit in this formulation.
146The Lagrangian density in (1444) contains the determinant of the metic,

√−g, to account for the fact

that the proper volume is dV =
√−gdV where V is the coordinate volume. Since the free energy density is

ordinarily expressed as dF/dV , then expressing it in terms of proper volume gives F =
√−g dF/dV .



256

This formulation is similar to that found in [36]. Using this formulation, we will now consider the special

case of gravitational waves interacting with a superconductor.

It should actually be

L =
√
−g

[∣∣π i
ψ
∣∣2+ 1

2m
hττ

i j

(
π

i
ψ
)∗ (

π
j
ψ
)
−α |ψ|2+ β

2
|ψ|4

]
(1450)

Try finding the Euler-Lagrange equations of motion from this.

The G-L free energy density in the presence of a gravitational wave

We can write the metric as a perturbation to flat space-time using gµν = ηµν +hµν . Then summing over

µ and ν in the kinetic term and summing over µ and ρ in the last term gives

FG-L =
√
−g

{
}2

2m

[
g00 (D0ψ)∗ (D0ψ)+g0i (D0ψ)∗ (Diψ)

]

+
}2

2m

[
gi0 (Diψ)

∗ (D0ψ)+gi j (Diψ)
∗ (D jψ)

]
+α |ψ|2+ β

2
|ψ|4

− 1

4µ0

(
g00gνσ F0ν F0σ +g0igνσ F0ν F iσ +gi0gνσ F iν F0σ +gi jgνσ F iν F jσ

)}
(1451)

We can also make use of the fact that the Helmholtz Decomposition formulation of linearized GR allows us

to isolate the radiative degrees of freedom as hττ
i j which is a transverse-traceless, gauge-invariant quantity.

Hence, for gravitational waves in the far-field, we can neglect all other components of the metric so that

h00 = h0i = 0 and hi j = hττ
i j . In that case, we have g00 =−1 and we also have g0i = 0 which eliminates several

terms. We also found in (2408) of Appendix A that the inverse metric (to first order) is gµν = ηµν − hµν .

Lastly, summing over ν and σ in the bottom line gives

FG-L =
√
−g

{
}2

2m

[
−(D0ψ)∗ (D0ψ)+

(
η

i j−h
i j
ττ

)
(Diψ)

∗ (D jψ)
]
+α |ψ|2+ β

2
|ψ|4

− 1

4µ0

[(
g00g00F00F00+g00gi jF

0iF0 j
)
+
(

gi jg00F i0F j0+gi jgklF
ikF jl

)]}
(1452)

Since Fµν is anti-symmetric, then using F0i = −F i0 allows us to combine terms in the second line. We can

also use F00 = 0 as well as g00 =−1 and gi j = η i j+hττ
i j to obtain147

FG-L =
√
−g

{
}2

2m

[
−(D0ψ)∗ (D0ψ)+(Diψ)

∗ (Diψ)−hττ
i j (Diψ)

∗ (D jψ)
]
+α |ψ|2+ β

2
|ψ|4

− 1

4µ0

[
−2
(
η i j+hττ

i j

)
F0iF0 j+

(
η i j+hττ

i j

)
(ηkl+hττ

kl )F
ikF jl

]}
(1453)

147The spatial indices of the metric perturbation can be freely raised and lowered to first order in the metric.
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Keeping only first order in hµν eliminates hττ
i j hττ

kl
in the last term. Also, using F ikF jl = FkiF l j allows two

terms to be combined. Then we have

FG-L =
√
−g

{
}2

2m

[
−(D0ψ)∗ (D0ψ)+(Diψ)

∗ (Diψ)−hττ
i j (Diψ)

∗ (D jψ)
]
+α |ψ|2+ β

2
|ψ|4

− 1

4µ

[
−2
(
η i jF

0iF0 j+hττ
i j F0iF0 j

)]
− 1

4µ0

[(
η i jηklF

ikF jl+η i jh
ττ
kl F ikF jl+hττ

i j ηklF
ikF jl

)]}
(1454)

For a gravitational wave propagating in the z-direction, hττ
i3 = 0 (since hττ

i j is transverse). Also hττ
11 =−hττ

22 =
h⊕ where h⊕ = A⊕ cos(kz−ωt) for plus polarization while hττ

12 = hττ
21 = h⊗ where h⊗ = A⊗ cos(kz−ωt) for

cross polarization.148 Then summing over repeated indices gives149

FG-L =
√
−gττ

{
}2

2m

[
−(D0ψ)∗ (D0ψ)+(Diψ)

∗ (Diψ)
]
+α |ψ|2+ β

2
|ψ|4

− }
2

2m

[
(D1ψ)∗ (D1ψ)− (D2ψ)∗ (D2ψ)

]
h⊕

− }
2

2m

[
(D1ψ)∗ (D2ψ)+(D2ψ)∗ (D1ψ)

]
h⊗

+
1

2µ0

[(
F0i
)2
+h⊕

(
F01
)2
+2h⊗F01F02−h⊕

(
F02
)2
]

+
1

2µ0

[
−1

2
F i jFi j−

1

2
h⊕
((

F21
)2
+
(
F31
)2
)]

+
1

2µ0

[
−h⊗

(
F31F32

)
+

1

2
h⊕
((

F12
)2
+
(
F32
)2
)]}

(1455)

Now we also use the components of the electromagnetic field strength tensor given by F0i= 1
c
E i, F i j = ε i jkBk,

148By eliminating h00 and h0i, we are effectively making the approximation that hµν of the superconductor

is very small comapred to hττ
i j of the gravitational wave. According to (2471), this approximation is valid as

long as T µν of the superconductor is small so that hµν is also small.

149Note that writing η i jηklF
ikF jl = F ilF il will lead to F ilF il = ~B2. This will lead to −1

2µ
~B2 which is the

wrong sign for the magnetic field energy density. Therefore, we treat η i j as a metric which lowers indices so

that η i jηklF
ikF jl = F ilFil which leads to the corret sign for the magnetic field energy density.
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and F ii = 0 to obtain

FG-L =
√
−gττ

{
}2

2m

[
−(D0ψ)∗ (D0ψ)+(Diψ)

∗ (Diψ)
]
+α |ψ|2+ β

2
|ψ|4

− }
2

2m

[
(D1ψ)∗ (D1ψ)− (D2ψ)∗ (D2ψ)

]
h⊕

− }
2

2m

[
(D1ψ)∗ (D2ψ)+(D2ψ)∗ (D1ψ)

]
h⊗

+
1

2µ0c2

(
~E2+h⊕E2

x +2h̃⊗ExEy−h⊕E2
y

)
+

1

2µ0

[
~B 2− 1

2
h⊕
(
B2

z +B2
y

)
+h⊗ (ByBx)+

1

2
h⊕
(
B2

z +B2
x

)]}
(1456)

Lastly, we can use (2661) for the determinant of the metric in the case of a gravitational wave propagating in

the z-direction. To first order in the metric we have gττ =−1− (h⊕+h⊗). Then using a binomial expansion

to first order gives
√
−gττ = 1+

1

2
h⊕+

1

2
h⊗. We can insert this into (1449) and eliminate terms that are

higher than linear order. Also using 1/c2 = µ0ε0 and rearranging gives

FG-L =

{
}2

2m

[
−(D0ψ)∗ (D0ψ)+(Diψ)

∗ (Diψ)
]
+α |ψ|2+ β

2
|ψ|4

}(
1+

1

2
h⊕+

1

2
h⊗

)

− }
2

2m

{[
(D1ψ)∗ (D1ψ)− (D2ψ)∗ (D2ψ)

]
h⊕+

[
(D1ψ)∗ (D2ψ)+(D2ψ)∗ (D1ψ)

]
h⊗
}

+
ε0

2
~E2+

1

2µ0

~B 2+
1

2

[
ε0

(
E2

x −E2
y

)
− 1

2µ0

(
B2

x−B2
y

)]
h⊕+

(
ε0ExEy+

1

2µ0

BxBy

)
h⊗

G-L free energy density in the presence of a gravitational wave

propagating in the z-direction (to linear order in the metric)

(1457)

The first line contains the G-L free energy density in flat space-time. (Note that it is still a relativistically

covariant form of the G-L equation with second order space and time derivatives. It is not the original G-

L free energy density from (1443) which contains only spatial derivatives.) The second line describes the

coupling of the gravitational wave to the quantum wave function (the G-L order parameter). The third line

contains the electromagnetic energy density in flat space-time plus the energy density due to the gravitational

wave coupling to the electromagnetic fields.

Utilizing the covariant derivative, canonical momentum and zero-momentum eigenstate

We now make use of the gauge covariant derivative given in (1445) as Dµ = ∂µ− iq

} Aµ . Since the Cooper

pairs are in a zero-momentum eigenstate (p0 = 0), then ψ =Ce

(
i
}~p0·~r

)
=C. In that case, all the derivatives

vanish and we can factor out ψ∗ψ =C∗C = |C|2. Also recall that |ψ|2 = ns which is the number density of
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Cooper pairs. Therefore |C|2 = ns and (1457) becomes

FG-L =

{
nsq

2

2m

[
−(A0)

2+(Ai)
2
]
+nsα+

n2
s β

2
+

ε0

2
~E2+

1

2µ0

~B 2

}(
1+

1

2
h⊕+

1

2
h⊗

)

−nsq
2

2m

[
(A1)

2
h⊕− (A2)

2
h⊕+2A1A2h⊗

]

+
1

2

[
ε0

(
E2

x −E2
y

)
− 1

2µ0

(
B2

x−B2
y

)]
h⊕+

(
ε0ExEy+

1

2µ0

BxBy

)
h⊗ (1458)

In (657), we found the kinetic momentum for a charged, massive spinless relativistic particle (such as a

relativistic Cooper pair) to be

π i = γm(cg0i+glivl) (1459)

where π i = pi− qAi and γ ≡
(
−g00−

2

c
g0 jv

j− 1

c2
g jkv jvk

)−1/2

. In our case here, we set g0i = 0, gli =

η li+hττ
li

, and pi = 0. Therefore, we have

γ =

(
1− v2

c2
− 1

c2
hττ

jk v jvk

)−1/2

(1460)

and (1459) becomes

−qAi =

(
1− v2

c2
− 1

c2
hττ

jk v jvk

)−1/2

m(η li+hττ
li )vl (1461)

Keeping to order v2/c2 in velocity and using k for the repeated index gives

Ai = −m

q
(vi+hττ

ki vk) (1462)

Since we will need (Ai)
2

in (1458), then to first order in the metric, (1462) gives

(Ai)
2 =

m2

q2

(
v2+2hττ

ki vivk

)
(1463)

Summing over indices and using hττ
11 =−hττ

22 = h⊕ and hττ
12 = hττ

21 = h⊗ gives

(Ai)
2 =

m2

q2

[
v2+2h⊕ (v1)

2−2h⊕ (v2)
2+4h⊗v1v2

]
(1464)

Since we will also need A1 and A2 in (1458), then using hττ
11 = −hττ

22 = h⊕ and hττ
12 = hττ

21 = h⊗ in (1462)
gives

A1 = −m

q
(v1+h⊕v1+h⊗v2) A2 =−

m

q
(v2+h⊗v1−h⊕v2) (1465)
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We also need A1A2 to first order in the metric which is

A1A2 =
m2

q2

[
v1v2+h⊗ (v1)

2+h⊗ (v2)
2
]

(1466)

Lastly, squaring A1 and A2 and remaining to first order in the metric gives

(A1)
2 =

m2

q2

[
(v1)

2+2h⊕ (v1)
2+2h⊗v1v2

]
(1467)

and

(A2)
2 =

m2

q2

[
(v2)

2−2h⊕ (v2)
2+2h⊗v1v2

]
(1468)

Now we can substitute (1464)− (1468) into (1458) and eliminate any terms higher than linear order.

FG-L = ns

[
− q2

2m
(A0)

2+
1

2
mv2

](
1+

1

2
h⊕+

1

2
h⊗

)

+
nsm

2

[
2h⊕ (v1)

2−2h⊕ (v2)
2+4h⊗v1v2

]

+

(
nsα+

n2
s β

2
+

ε0

2
~E2+

1

2µ0

~B 2

)(
1+

1

2
h⊕+

1

2
h⊗

)

−nsm

2

[
(v1)

2
h⊕− (v2)

2
h⊕+2v1v2h⊗

]

+
1

2

[
ε0

(
E2

x −E2
y

)
− 1

2µ0

(
B2

x−B2
y

)]
h⊕+

(
ε0ExEy+

1

2µ0

BxBy

)
h⊗ (1469)

Rearranging and combining terms gives

FG-L = ns

[
1

2
mv2− q2

2m
(A0)

2

](
1+

1

2
h⊕+

1

2
h⊗

)

+
nsm

2

(
v2

xh⊕− v2
yh⊕+2vxvyh⊗

)

+

(
nsα+

n2
s β

2
+

ε0

2
~E2+

1

2µ0

~B 2

)(
1+

1

2
h⊕+

1

2
h⊗

)

+
1

2

[
ε0

(
E2

x −E2
y

)
− 1

2µ0

(
B2

x−B2
y

)]
h⊕+

(
ε0ExEy+

1

2µ0

BxBy

)
h⊗ (1470)
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Pressures and stresses in a superconductor in the presence of a gravitational wave strain

Recall that the thermodynamic work done on a system is given by W =
∫

PdV which means P= dW/dV .

By the work-energy theorem, the work done by the system must reduce the internal energy so that U =−W .

Since the internal energy is described by the relation dU = T dS−PdV and the Helmholtz free energy is

F =U−T S, then it follows that the thermodynamic pressure can be expressed in terms of the the Helmholtz

free energy as

Pthermodynamic =−
(

∂Fn

∂V

)
T

(1471)

where Fn is the free energy of the normal (non-superconducting state) and the subscript “T ” denotes that the

derivative is for a fixed temperature. Also, since the total free energy is F = Fn+FG-L, where FG-L is the

Ginzburg-Landau free energy of the superconducting Cooper pair electrons, then a quantum pressure due to

the quantum rigidity of the wave function can be found using

Pquantum =−
(

∂FG-L

∂V

)
T

(1472)

Note that the free energy density is the free energy per unit volume, F = dF/dV , so we have

FG-L =
∫

FG-LdV (1473)

Then applying (1472) gives150

Pquantum = −
(

∂

∂V

∫ V

0
FG-LdV ′

)
T

(1474)

Now to consider the work done on a system due to a gravitational strain, hi j, causing a stress, Ti j, we can

use W =
∫

T i jdhi j where W is the work density (or work per unit volume). This means that T i j = dW /dhi j.

Once again, by the work-energy theorem, we can recognize that work done by the system must reduce the

internal energy density so that U = −W . Also, we can use the fact that the internal energy satisfies the

relation dU = T dS−PdV and the Helmholtz free energy is F =U −T S. However, now we recognize that

when stresses and strains are present, then the Helmholtz free energy also satisfies the relation

dF =−SdT +Si jdui j−T i jdhi j (1475)

where S is the entropy density (or entropy per unit volume) Then it follows that the stress produced by a

gravitational wave interacting with the Cooper pair density can be expressed in terms of the Ginzburg-Landau

free energy density as151

T i j =

(
∂FG-L

∂hi j

)
T

(1476)

150Note that in general, FG-L is a function of volume since the normalization of the Ginzburg-Landau order

parameter leads to |C|2 = 1/V .
151Here we are using a formulation similar to [79], eq. 3.3, which gives dF = −SdT +σ i jdui j, where σ i j

is the material stress and ui j is the material strain. It is also shown in eq. 3.6 that σ i j = (∂F/∂ui j)T which

leads analogously to our relation in (1476). Notice there is a positive sign in this relation versus the negative

sign in P = −(∂F/∂V )T . Also note that we are implicitly invoking local thermodynamic equilibrium so

that the variation of the metric over the volume of the superconductor does not prevent the use of standard

thermodynamic relations such (1471) and (1476).
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For plus polarization, hττ
11 = −hττ

22 = h⊕ which corresponds to T ττ
11 = −T ττ

22 = T⊕. Since h⊕ and h⊗ are

independent degrees of freedom152, then we use153

T⊕ =

(
∂FG-L

∂h⊕

)
T

(1477)

Applying (1477) to (1470), and using m= 2me and q= 2e gives

T⊕ = ns

[
1

2
mev2+me

(
v2

x− v2
y

)
− e2

2me

(A0)
2+

α

2
+

β

4
ns

]

+
1

4

(
ε0
~E2+

1

µ0

~B 2

)
+

1

2

[
ε0

(
E2

x −E2
y

)
− 1

2µ0

(
B2

x−B2
y

)]
The Cooper pair density stress due to a

plus polarization gravitational wave in the z-direction

(1478)

For cross polarization, we have hττ
12 = hττ

21 = h⊗ which corresponds to T ττ
12 = T ττ

21 = T⊗. In that case, we can

use

T⊗ =

(
∂FG-L

∂h⊗

)
T

(1479)

Therefore, applying (1479) to (1470) and using m= 2me and q= 2e gives

T⊗ = ns

[
1

2
mev2+2mevxvy−

e2

2me

(A0)
2+

α

2
+

β

4
ns

]

+
1

4

(
ε0
~E2+

1

µ0

~B 2

)
+ ε0ExEy+

1

2µ0

BxBy

The Cooper pair density stress due to a

cross polarization gravitational wave in the z-direction

(1480)

Using (1478) and (1480), we can construct a single stress tensor which incorporates both plus and cross

152Although h⊕ and h⊗ are independent degrees of freedom, they are not completely unrelated. Since

∂ih
ττ
i j = 0, then we must have ∂xh⊕+ ∂yh⊗ = 0 and ∂xh⊗− ∂yh⊕ = 0. However, as shown at the end of

Appendix E, these differential equations can be decoupled so that h⊕ and h⊗ are found to satisfy their own

independent, second-order differential equations. Also, more relevant to the present context, h⊕ and h⊗ are

independent in the sense that they are not functions of one another and therefore ∂h⊕/∂h⊗ = ∂h⊗/∂h⊕ = 0.

153Note that the derivative is with respect to the the full time-dependent function given by hττ
i j =

Aττ
i j cos(kz−ωt), not just the magnitude, Aττ

i j . Therefore, we are considering a quasi-static approximation in

(1476).
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polarization waves. The tensor can be written as a 2×2 with {i, j} running from 1 to 2.

T ττ
i j =

(
T⊕ T⊗
T⊗ −T⊕

)
(1481)

Inserting (1478) and (1480) and neglecting the contribution to the stress by the electromagnetic fields gives

T ττ
i j = ns

[
1

2
mev2− e2

2me

(A0)
2+

α

2
+

nsβ

4

]( 1 1

1 −1

)

+ns

(
me

(
v2

x− v2
y

)
2mevxvy

2mevxvy −me

(
v2

x− v2
y

)
)

Stress tensor of the Cooper pair density due to a gravitational wave

(1482)

This expression describes the stress on a superconductor as a result of a gravitational strain field in the

superconductor. The gravitational wave is propagating in the z-direction and is given by

hττ
i j =

(
A⊕ A⊗
A⊗ −A⊕

)
cos(kz−ωt) (1483)

The following are some observations concerning these results.

• The result in (1482) is really an expectation value of a “quantum stress operator.” This follows from

the fact that the classical minimal coupling rule, π i = pi− qA, which was used to derive (1482), can

be written as a quantum minimal coupling rule, π̂ i = p̂i− qÂ. This involves promoting the dynam-

ical variables to operators so that the kinetic momentum, π̂ = mv̂, and vector potential, Â, become

multiplicative quantum operators and the canonical momentum, p̂i =−i}∂i, becomes a differentiating

quantum operator. Therefore, the expression for T ττ
i j should really be considered as a multiplicative

tensor operator. Furthermore, since |ψ|2 = ns already appears explicitly, then in actuality, what we

have in (1482) is
〈

T̂ ττ
i j

〉
where the expectation value has already been evaluated.

• For a numerical estimate of the stress, we can normalize the Ginzburg-Landau order parameter. Recall

that |ψ|2 = ns which is the number density of Cooper pairs. Then integrating over the volume of the

superconductor gives ∫
ψ
∗
ψdV =

∫
nsdV = nsV = N (1484)

where N is the number of Cooper pair in the superconductor. Therefore ns = N/V where V = Ad with

A being the surface area and d the thickness of the superconductor. For ultra-relativistic Cooper pairs, it

is necessary that vmax = 2
√

2c/3 (in order to avoid the production of particle-anti-particle pairs). Since

the electron mass is me ≈ 10−30kg, then an upper bound on the stress is

〈
T̂ ττ

i j, max

〉
∼ nsmev2

max

2
∼ N4mec2

3Ad
(1485)
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• The stress obtained in (1482) differs from the quantum stress tensor result of Section 50. There we

found in (896) that the stress tensor for a “quantized ideal fluid” is

T̂ 00 = ρc2, T̂ 0i =−icn}∂i, T̂ i j =−n}2

m0

∂i∂ j+Pη i j (1486)

where n involves the particle number density of the material and m0 is the mass of the constitutive

particles. It is evident that the prefactor of T̂ i j involves }2 while the prefactor of (1482) does not.

Rather, the prefactor in (1482) only involves ns since
∣∣ψ2
∣∣= ns. This indicates that the role of quantum

mechanics for the quantized ideal fluid occurs through the explicit appearance of } while the role

of quantum mechanics for (1482) appears only through the normalization constant of the Ginzburg-

Landau order parameter.

• In this treatment, by setting h00 = h0i = 0 and hi j = hττ
i j , we have only considered the transverse-

traceless strain field hττ
i j . Therefore we have effectively neglected the contribution to the metric due

to the mass density of the superconductor
(
T00 = ρmc2

)
, the currents (T0i = ρcvi) and the other stress

quantities in Ti j. However, in order to properly describe the full response of the Cooper pair density (all

pressures, shears, and currents), we would need to use the full hµν metric perturbation and generalize

(1476) to

T µν =

(
∂FG-L

∂hµν

)
T

(1487)

• If we consider the charge-separation effect that is expected to occur in the superconductor, then it is

critical to consider the role of the electromagnetic fields that would arise in the superconductor. In

that case, it would be important to return to the expressions in (1478) and (1480) which describe the

transverse-traceless stress in terms of both the Ginzburg-Landau supercurrents as well as the contri-

bution of the electromagnetic fields to the resulting stress. In fact, since the supercurrents consist of

electrons (which have very small mass), and the electric field due to the charge-separation effect is ex-

pected to be very large, then it is possible that the contribution to the stress due to the electromagnetic

fields would even exceed the contribution due to the supercurrents.

On the other hand, if the electromagnetic fields are absent, then ~A= 0 which means that p̂= mv̂.

However, for the zero momentum eigenstate, we have p̂ = 0 and therefore mv̂ = 0. This means that

there would be no supercurrents and therefore T̂ ττ
i j would reduce to just

T̂ ττ
i j =

ns

2

(
α+

β

2
ns

)( 1 1

1 −1

)
(1488)

• The magnitude of hττ
i j does not affect the magnitude of T ττ

i j since hττ
i j does not appear in the expres-

sion for T ττ
i j . This implies that the stress of the Cooper pair density (to linear order in the metric)

is completely independent of the magnitude of the strain of the gravitational wave causing the stress.

Physically, this is strange since it would imply that the gravitational field can be made arbitrarily large

and yet the resulting stress would remain unchanged.

It is important to note that the kinetic velocities in (1482) are not the result of the gravitational

wave. Rather, these kinetic velocities were already present in the Ginzburg-Landau equation (as a

kinetic energy term). They are simply coupled to the gravitational field due embedding the free energy

density in curved space-time. Since these velocities were not produced by the gravitational wave, then

the magnitude of the stress found in (1482) is truly independent of the strength of the gravitational

wave.

• The result for T ττ
i j implies that the stress is suddenly “switched on” the moment a gravitational wave is

present. This follows from the fact that in the absence of a gravitational wave, we would have hττ
i j = 0

and therefore (1476) clearly gives T ττ
i j = 0. However, when hττ

i j 6= 0, then T ττ
i j = constant regardless
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of the strength of hττ
i j . Even if we gradually turn on the gravitational strain, we find that the stress

undergoes a sudden jump from zero to some constant. This means that there is a “DC” offset in the

stress that is suddenly “switched on” regardless of how small the gravitational wave strain is or how

slowly it is turned on.

To further highlight this anomaly, we can compare it to the case of pressure or magnetization. In

the case of pressure, we find that the derivative of the free energy with respect to volume must produce

a result such that the pressure and volume varying inversely. In the case of magnetization, we find

that the derivative of the free energy (which varies with B2) leads to a linear response such that the

magnetization varies linearly with the field.

However, in our case here, we find that the derivative of the free energy density with respect to

strain is a constant so that the stress does not vary at all with strain. This is likely related to the fact that

in [79], p. 10, we find the statement, “In considering a deformed body at some temperature (constant

throughout the body), we shall take the undeformed state to be the state of the body in the absence

of external forces . . . Then, for uik = 0, the internal stresses are zero also, i.e. σ ik = 0. Since

σ i j = ∂F/∂uik, it follows that there is no linear term in the expansion of F in powers of uik. . . .

Expanding F in powers of uik, we therefore have as far as terms of the second order

F = F0+
1
2
λu2

ii+µu2
ik (1489)

Therefore, in our case here, in order to obtain an expression with a dependency on hττ
i j (that is, a

constitutive equation relating T ττ
i j and hττ

i j ), we would need an analysis that is second order in the

metric. Then taking the derivative using (1476) would lead to a constitutive equation that is first order

in the metric. This situation appears to be unique to gravitation.

• It is questionable whether the derivative of the free energy density with respect to the gravitational

wave strain field gives the material stress. This approach is expressed by (1476) which is ordinarily

applied to a material strain, not a gravitational strain.154 Recall that the material strain, ui j, is related

to the stress, σ i j, according to

σ i j =−sui j (1490)

where s is the shear modulus of the material. In this equation, the stress, σ i j, is the cause and the

strain, ui j, is the effect.155 On the other hand, the gravitational strain, hττ
i j , is related to the stress, T ττ

i j ,

according to the Einstein equation (in the linearized trace-reversed harmonic gauge) given by (1374)
as

�hττ
i j =−2κT ττ

i j (1491)

In this equation, the stress, T ττ
i j , is the cause and the strain, hττ

i j , is the effect.

It is important to also recognize that ui j is an internal strain of the material whereas hττ
i j is an

external gravitational strain of space (which may propagate through the material). This distinction is

evidenced further by the fact that the velocity of the internal material strain, ui j, is given by v=
√

s/ρ

where s is the material shear modulus and ρ is the mass density. This velocity is similar to the velocity

of sound (pressure waves) given by v =
√

∂P/∂ρ where P is the pressure. This is in contrast to the

154The distinction between gravitational strain and material strain does not seem to be recognized by Press

in [73] or Millette in [75]−[78]. However, it is clealy identified by Dyson in [74], eq. (2.25) and (2.26) where

the material strain is written as zm and the gravitational wave strain field is hmn.

155In [79], eq. 3.6, it is shown that σ i j = (∂F/∂ui j)T , where σ i j is the stress and ui j is the strain. It

is also shown in eq. 4.11, that when Hook’s law is valid, the strain can be obtained from the stress using

ui j = ∂F/∂σ i j. This means that the relation σ i j = sui j can be understood to describe either the stress as the

cause of a strain, or the strain as the cause of a stress. It is analogous to F =−k∆x which can be understood

to describe the force as a cause of displacement, or the displacement as a cause of force.
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velocity of the gravitational wave strain, hττ
i j , which is given by a group velocity and phase velocity

based on a particular constitutive equation. For example, for a constitutive equation given by

T ττ
i j =−µhττ

i j (1492)

we found the phase and group velocity in Section 76 to be

vphase =
c√

1−ω2
G/ω

2

and vgroup = c

√
1−ω2

G/ω
2 (1493)

Note that for the constitutive equation in (1492), the strain, hττ
i j , is the cause and the stress, T ττ

i j , is the

effect which is the opposite case of (1490).

In light of these considerations, we must determine whether the relation in (1476) is appropriate

for a gravitational strain of space, hττ
i j , or whether it is appropriate only for a material strain, ui j. Since

the material strain, ui j, is an internal strain of the material (similar to the internal pressure and volume

of the material), and because (1476) and (1471) arise from a similar derivation (involving the derivative

of the free energy), then it would seem that (1476) is an appropriate formulation for the internal strain

of the material, ui j, not the external gravitational strain of space, hττ
i j .

• It is unclear whether the quantum stress in (1482) can be used in the Einstein field equation to determine

the resulting gravitational radiation that would be emitted by the Cooper pair density. Doing so may

imply that we are using a semi-classical approach to gravitation as described by

Gµν = κ
〈
ψ|T̂µν |ψ

〉
(1494)

This introduces difficulties since the Einstein tensor is a non-linear function of the metric while the

wave function and all operators obey standard linear quantum mechanical commutation relations. If

one uses a semi-classical version of linearized GR, such as

�h̄µν =−2κ 〈ψ| T̂µν |ψ〉 (1495)

(which is in terms of the trace-reversed metric perturbation in the harmonic gauge), or a semi-classical

equation for gravity in the Newtonian limit, such as

∇
2
ΦN = 4πG〈ψ| T̂00 |ψ〉 (1496)

there is still a problem with interpreting the meaning of a quantum measurement. In the common

Copenhagen viewpoint, the effectively instantaneous “collapse” of the wave function upon making a

quantum measurement will introduce a discontinuity in the gravitational field as it correspondingly

“collapses” from a superposition state to a measured state.156

However, we should point out that because the Cooper pairs are in a zero-momentum eigenstate

(p0 = 0) which leads to ψ = C, then the wavefunction is effectively already “collapsed.” We are not

introducing a superposition state to the classical Einstein equation. In fact, since this is the only state

of the system, then the expectation value and the eigenvalue become the same and the quantum stress

tensor essentially yields what could be considered a single, classical result. (In fact, one could argue

that any classical source is really just the result of quantum decoherence which “collapses” the wave-

function to a single eigenvalue. The only difference here is that there is only one eigenvalue to begin

with, so there is no need for “collapse” of the wavefunction.) This process is very similar to the case of

using the classical Maxwell equations (such as Ampere’s law, ∇×~B= µ0
~J) with the Ginzburg-Landau

current
~J =

e

me

Re
[
ψ
∗
(
−i}∇−2e~A

)
ψ

]
(1497)

156For more discussion of these topics, see Wald [57], pp. 382-383, 410-411.
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Therefore, although it may not be correct to write (1494) as a general equation for gravitation

since ψ could be a superposition state, by contrast, it may be valid to write

Gµν = κnsTµν (1498)

since 〈ψ| T̂µν |ψ〉= |C|2Tµν = nsTµν where ψ has a single eigenstate with an eigenvalue of Tµν . Then

the linearized Einstein equation (1495) in terms of the transverse-traceless components, gives

�hττ
i j =−2κnsTττ

i j (1499)

where Tττ
i j can be considered a quantum stress eigenvalue given by (1482).
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14.2 The Ginzburg-Landau free energy density to second order

We can return to (1449) and once again write the metric as a perturbation to flat space-time using gµν =
ηµν + hµν . However, this time we do not approximate

√−g ≈ 1. As before, we sum over µ and ν in the

kinetic term and sum over µ and ρ in the last term. In the electromagnetic strength tensor, we can use also

use F00 = 0 and F0i =−F i0 again to simplify the expression.

FG-L =
√
−g

{
}2

2m

[
g00 (D0ψ)∗ (D0ψ)+g0i (D0ψ)∗ (Diψ)

]

+
}2

2m

[
gi0 (Diψ)

∗ (D0ψ)+gi j (Diψ)
∗ (D jψ)

]
+α |ψ|2+ β

2
|ψ|4

− 1

4µ0

[
−2
(
η i j+hττ

i j

)
F0iF0 j+

(
η i j+hττ

i j

)
(ηkl+hττ

kl )F
ikF jl

]}
(1500)

For gravitational waves in the far-field, we can let h00 = h0i = 0 so the inverse metric components become

g00 =−1, g0i = 0, gi j = δ i j−hi j+hkihk j (1501)

We can use hττ
i j = Aττ

i j cos(kz−ωt) for a wave propagating in the z-direction. Then the last term in (1501) is

xσ
∂σ hττ

i j = (zk−ωct)Aττ
i j sin(kz−ωt) (1502)

For distance scales comparable to the wave length157, then z ≈ λ which means zk ≈ 2π . Also, averaging

over a period gives t ≈ T = 2π/ω . Therefore, the entire expression in (1502) vanishes. Inserting (1501) into

(1500) and using F ikF jl = FkiF l j to combine two terms gives

FG-L =
√
−gττ

{
}2

2m

[
−(D0ψ)∗ (D0ψ)+(Diψ)

∗ (Diψ)
]

+
}2

2m

(
−hττ

i j +hττ
ki hττ

k j

)
(Diψ)

∗ (D jψ)+α |ψ|2+ β

2
|ψ|4

− 1

4µ0

[
−2
(
η i jF

0iF0 j+hττ
i j F0iF0 j

)]

− 1

4µ0

[(
η i jηklF

ikF jl+η i jh
ττ
kl F ikF jl+hττ

i j ηklF
ikF jl+hττ

i j hττ
kl F ikF jl

)]}
(1503)

Since we are considering a wave propagating in the z-direction, then hττ
i3 = 0 (since hττ

i j is transverse). Also

hττ
11 = −hττ

22 = h⊕ where h⊕ = h⊕ cos(kz−ωt) for plus polarization while hττ
12 = hττ

21 = h⊗ where h⊗ =

157We will be applying our results to a cavity with dimensions on the order of centimeters with microwave

frequencies
(
λ ≈ 10−2m

)
. Therefore, this approximation will remain valid.
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h⊗ cos(kz−ωt) for cross polarization.158 We also sum over the indices in the last term and use F ii = 0.

FG-L =
√
−gττ

{
}2

2m

[
−(D0ψ)∗ (D0ψ)+(Diψ)

∗ (Diψ)
]
+α |ψ|2+ β

2
|ψ|4

− }
2

2m

{
h⊕
[
(D1ψ)∗ (D1ψ)− (D2ψ)∗ (D2ψ)

]
+h⊗

[
(D1ψ)∗ (D2ψ)+(D2ψ)∗ (D1ψ)

]}
+
}2

2m

(
h2
⊕+h2

⊗
)[
(D1ψ)∗ (D1ψ)+(D2ψ)∗ (D2ψ)

]
+

1

2µ0

[(
F0i
)2
+h⊕

(
F01
)2
+2h̃⊗F01F02−h⊕

(
F02
)2
]

+
1

2µ0

[
−1

2
F i jFi j−

1

2
h⊕
[(

F21
)2
+
(
F31
)2
]]

+
1

2µ0

[
−h⊗

(
F31F32

)
+

1

2
h⊕
[(

F12
)2
+
(
F32
)2
]
+
(
h2
⊕+h2

⊗
)(

F12
)2
]}

(1504)

Now we also use the components of the electromagnetic field strength tensor given by F0i= 1
c
E i, F i j = ε i jkBk,

and F ii = 0 to obtain

FG-L =
√
−gττ

{
}2

2m

[
−(D0ψ)∗ (D0ψ)+(Diψ)

∗ (Diψ)
]
+α |ψ|2+ β

2
|ψ|4

− }
2

2m

{
h⊕
[
(D1ψ)∗ (D1ψ)− (D2ψ)∗ (D2ψ)

]
+h⊗

[
(D1ψ)∗ (D2ψ)+(D2ψ)∗ (D1ψ)

]}
+
}2

2m

(
h2
⊕+h2

⊗
)[
(D1ψ)∗ (D1ψ)+(D2ψ)∗ (D2ψ)

]
+

1

2µ0c2

(
~E2+h⊕E2

x +2h̃⊗ExEy−h⊕E2
y

)
+

1

2µ0

[
~B 2− 1

2
h⊕
(
B2

z +B2
y

)
+h⊗ (ByBx)

]

+
1

2µ0

[
1

2
h⊕
(
B2

z +B2
x

)
+
(
h2
⊕+h2

⊗
)

B2
z

]}
(1505)

158Note that writing η i jηklF
ikF jl = F ilF il will lead to F ilF il = ~B2. This will lead to −1

2µ
~B2 which is the

wrong sign for the magnetic field energy density. Therefore, we treat η i j as a metric which lowers indices so

that η i jηklF
ikF jl = F ilFil which leads to the corret sign for the magnetic field energy density.
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Lastly, using 1/c2 = µ0ε0 and rearranging gives

FG-L =
√
−gττ

{
}2

2m

[
−(D0ψ)∗ (D0ψ)+(Diψ)

∗ (Diψ)
]
+α |ψ|2+ β

2
|ψ|4

− }
2

2m

[
(D1ψ)∗ (D1ψ)− (D2ψ)∗ (D2ψ)

]
h⊕

− }
2

2m

[
(D1ψ)∗ (D2ψ)+(D2ψ)∗ (D1ψ)

]
h⊗

+
}2

2m

[
(D1ψ)∗ (D1ψ)+(D2ψ)∗ (D2ψ)

](
h2
⊕+h2

⊗
)

+
ε0

2
~E2+

1

2µ0

~B 2+
1

2

[
ε0

(
E2

x −E2
y

)
− 1

2µ0

(
B2

x−B2
y

)]
h⊕

+

(
ε0ExEy+

1

2µ0

BxBy

)
h⊗+

1

2µ0

B2
z

(
h2
⊕+h2

⊗
)}

G-L free energy density in the presence of a gravitational wave

propagating in the z-direction (to second order in the metric)

(1506)

Utilizing the covariant derivative, canonical momentum and zero-momentum eigenstate

We now make use of the gauge covariant derivative given in (1445) as Dµ = ∂µ− iq

} Aµ . Since the Cooper

pairs are in a zero-momentum eigenstate (p0 = 0), then ψ =Ce

(
i
}~p0·~r

)
=C. In that case, all the derivatives

vanish and we can factor out ψ∗ψ =C∗C = |C|2. Also recall that |ψ|2 = ns which is the number density of

Cooper pairs. Therefore |C|2 = ns and (1457) becomes

FG-L =
√
−gττ

{
nsq

2

2m

[
−(A0)

2+(Ai)
2
]
+nsα+

n2
s β

2
+

ε0

2
~E2+

1

2µ0

~B 2

+
nsq

2

2m

[
(A1)

2
(
h2
⊕+h2

⊗−h⊕
)
+(A2)

2
(
h2
⊕+h2

⊗+h⊕
)
−2A1A2h⊗

]

+
1

2

[
ε0

(
E2

x −E2
y

)
− 1

2µ0

(
B2

x−B2
y

)]
h⊕+

(
ε0ExEy+

1

2µ0

BxBy

)
h⊗

+
1

2µ0

B2
z

(
h2
⊕+h2

⊗
)}

(1507)

In (657), we found the kinetic momentum for a charged, spinless particle (such as a Cooper pair) to be

π i = γm(cg0i+glivl) (1508)
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where π i = pi− qAi and γ ≡
(
−g00−

2

c
g0 jv

j− 1

c2
g jkv jvk

)−1/2

. In our case here, we set g0i = 0, gli =

η li+hττ
li

, and pi = 0. Therefore, we have

γ =

(
1− v2

c2
− 1

c2
hττ

jk v jvk

)−1/2

(1509)

and (1459) becomes

−qAi =

(
1− v2

c2
− 1

c2
hττ

jk v jvk

)−1/2

m(η li+hττ
li )vl (1510)

Keeping to order v2/c2 in velocity and using k for the repeated index gives

Ai = −m

q
(vi+hττ

ki vk) (1511)

Since we will need (Ai)
2

in (1458), then to second order in the metric, (1462) gives

(Ai)
2 =

m2

q2

(
v2+2hττ

ki vivk+hττ
ki hττ

li vkvl

)
(1512)

Summing over indices and using hττ
11 =−hττ

22 = h⊕ and hττ
12 = hττ

21 = h⊗ gives

(Ai)
2 =

m2

q2

[
v2+2h⊕ (v1)

2−2h⊕ (v2)
2+4h⊗v1v2+

(
h2
⊕+h2

⊗
)(

v2
1+ v2

2

)]
(1513)

Since we will also need A1 and A2 in (1458), then using hττ
11 = −hττ

22 = h⊕ and hττ
12 = hττ

21 = h⊗ in (1462)
gives

A1 = −m

q
(v1+h⊕v1+h⊗v2) A2 =−

m

q
(v2+h⊗v1−h⊕v2) (1514)

We also need A1A2 to second order in the metric which is

A1A2 =
m2

q2

[
v1v2+h⊗ (v1)

2+h⊗ (v2)
2+h⊗h⊕ (v1)

2−h⊕h⊗ (v2)
2+h2

⊗v1v2−h2
⊕v1v2

]

A1A2 =
m2

q2

[
v1v2+h⊗ (v1)

2+h⊗ (v2)
2+h⊗h⊕ (v1)

2−h⊕h⊗ (v2)
2+h2

⊗v1v2−h2
⊕v1v2

−h⊕h⊗ (v2)
2+h2

⊗v1v2−h2
⊕v1v2

]
(1515)

Lastly, squaring A1 and A2 and remaining to second order in the metric gives

(A1)
2 =

m2

q2

[
(v1)

2+2h⊕ (v1)
2+2h⊗v1v2+h2

⊕ (v1)
2+h2

⊗ (v2)
2+2h⊗h⊕v1v2

]
(1516)

and

(A2)
2 =

m2

q2

[
(v2)

2−2h⊕ (v2)
2+2h⊗v1v2+h2

⊕ (v2)
2+h2

⊗ (v1)
2−2h⊗h⊕v1v2

]
(1517)
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Now we can substitute (1513)− (1517) into (1507). Eliminating all terms that are higher than second order

in the metric and simplifying gives

FG-L =
√
−gττ

{
nsm

2
v2− nsq

2

2m
(A0)

2+nsα+
n2

s β

2
+

ε0

2
~E2+

1

2µ0

~B 2

+
nsm

2

(
h⊕v2
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y+2h⊗vxvy

)
+

1

2

[
ε0

(
E2

x −E2
y

)
− 1

2µ0

(
B2
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y

)]
h⊕+

(
ε0ExEy+

1

2µ0

BxBy

)
h⊗

}

+
1

2µ0

B2
z

(
h2
⊕+h2

⊗
)}

(1518)

Surprisingly, all second order terms cancel. Next we can use the determinant of the metric (to second order

in the metric) found in (2661) as

gττ =−1−
(
h⊕+h⊗−h2

⊕−h2
⊗
)

(1519)

Then we have √
−gττ =

√
1+
(
h⊕+h⊗−h2

⊕−h2
⊗
)

(1520)

Using a binomial expansion to second order159 gives√
−gττ = 1+

1

2

(
h⊕+h⊗−h2

⊕−h2
⊗
)
− 1

8

(
h⊕+h⊗−h2

⊕−h2
⊗
)2

(1521)

Multiplying out terms and remaining to second order in the metric gives√
−gττ = 1+

1

2
(h⊕+h⊗)−

5

8

(
h2
⊕+h2

⊗
)
− 1

4
h⊕h⊗ (1522)

Inserting (1522) into (1518), distributing, and eliminating terms higher than second order gives

FG-L =

(
nsm

2
v2− nsq

2

2m
(A0)

2+nsα+
n2

s β

2
+

ε0

2
~E2+

1

2µ0

~B 2

)
·
[

1+
1

2
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5

8

(
h2
⊕+h2

⊗
)
− 1

4
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]
+

nsm

2

(
h⊕v2
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y+2h⊗vxvy

)
+

nsm

4

[
h2
⊕
(
v2

x− v2
y

)
+2h2

⊗vxvy+h⊕h⊗
(
v2

x− v2
y+2vxvy

)]
+

1

4

[
ε0

(
E2

x −E2
y

)
− 1

2µ0

(
B2

x−B2
y

)](
2h⊕+h2

⊕+h⊕h⊗
)

+
1

2

(
ε0ExEy+

1

2µ0

BxBy

)(
2h⊗+h⊕h⊗+h2

⊗
)
+

1

2µ0

B2
z

(
h2
⊕+h2

⊗
)

(1523)

159The binomial expansion to second order is
√

1+ x≈ 1+ 1
2
x− 1

8
x2 for x<< 1.
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According to (1477), we can take a derivative of this expression with respect to h⊕ to obtain T⊕. However,

this will result in T⊕ being expressed in terms of both h⊕ and h⊗. In order to obtain an expression for T⊕
that is purely in terms of h⊕, we can consider the cases of plus polarization and cross polarization waves

independently. For a gravitational wave with purely plus polarization, we can set h⊗ = 0 in (1523) to obtain

F⊕
G-L =

(
nsm

2
v2− nsq

2

2m
(A0)

2 |C|2+nsα+
n2

s β

2
+

ε0

2
~E2+

1

2µ0

~B 2

)(
1+

1

2
h⊕−

5

8
h2
⊕

)

+
nsm

2

(
h⊕+

1

2
h2
⊕

)(
v2

x− v2
y

)

+
1

4

[
ε0

(
E2

x −E2
y

)
− 1

2µ0

(
B2

x−B2
y

)](
h2
⊕+2h⊕

)
+

1

2µ0

B2
z h2
⊕ (1524)

Similarly, for a gravitational wave with purely cross polarization, setting h⊕ = 0 in (1523) gives

F⊗
G-L =

(
nsm

2
v2− nsq

2

2m
(A0)

2+nsα+
n2

s β

2
+

ε0

2
~E2+

1

2µ0

~B 2

)(
1+

1

2
h⊗−

5

8
h2
⊗

)

+nsmvxvy

(
h⊗+

1

2
h2
⊗

)

+
1

2

(
ε0ExEy+

1

2µ0

BxBy

)(
h2
⊗+2h⊗

)
+

1

2µ0

B2
z h2
⊗ (1525)

Pressures and stresses in a superconductor in the presence of a gravitational wave strain

Next we find the stress produced by a gravitational wave interacting with the Cooper pair density using

the Ginzburg-Landau free energy density. From (1476) we have

T i j =

(
∂FG-L

∂hi j

)
T

(1526)

For plus polarization, we only have hττ
11 =−hττ

22 = h⊕ which corresponds to T ττ
11 =−T ττ

22 = T⊕. In that case,

we can use

T⊕ =

(
∂F⊕

G-L

∂h⊕

)
T

(1527)
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Applying (1527) to (1524) and using m= 2me and q= 2e gives

T⊕ =
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+
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B2
z h⊕ (1528)

We can separate terms that contain h⊕ and terms that do not. This gives

T⊕ = ns

[
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2
mev2+me
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2me
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+
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−5

2
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[
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mev2− 2

5
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[
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ε0
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− ε0
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)
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y−4B2
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)]
h⊕

Stress on the Cooper pair density due to a plus polarization

gravitational wave propagating in the z-direction (to second order in the metric)

(1529)

As expected, we find that the first two lines match (1478) where we found T⊕ to linear order in the metric.

These stress terms are essentially a “DC background” associated with the Cooper pair density and the elec-

tromagnetic field. The second two lines come from working with the metric to second order and describe

the linear response of the stress of the entire system (Cooper pair density and electromagnetic fields) to the

gravitational wave strain field. If we consider a constitutive equation given by T⊕ =−µ⊕h⊕, where µ⊕ is the

“gravitational modulus” of the superconductor for plus polarization, then µ⊕ can be found from the second

two lines in the expression above.

µ⊕ =
5

2
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[
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2
mev2− 2

5
me
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2me
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+
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y−4B2

z

)]
Gravitational modulus of the Cooper pair density in response to a

plus polarization gravitational wave propagating in the z-direction

(1530)
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This expression describes the effective “stiffness” of the superconductor (including the electromagnetic fields

it contains) in response to the strain of a plus polarization gravitational wave. It also demonstrates a linear

response of the induced stress as a result of the incident gravitational wave strain. Since the result is specifi-

cally for a plus-polarization wave, we have labeled the gravitational modulus with a corresponding subscript:

µ⊕. For cross polarization, we have hττ
12 = hττ

21 = h⊗ which corresponds to T ττ
12 = T ττ

21 = T⊗. In that case, we

can use

T⊗ =

(
∂F⊗

G-L

∂h⊗

)
T

(1531)

Then applying (1531) to (1524) and using m= 2me and q= 2e gives

T⊗ =
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2
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B2
z h⊗ (1532)

We can separate terms that contain h⊗ and terms that do not. This gives

T⊗ = ns
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nsβ
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− ε0ExEy−
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z

)]
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Stress on the Cooper pair density due to a cross polarization

gravitational wave propagating in the z-direction (to second order in the metric)

(1533)

As expected, we find that the first two lines match (1480) where we found T⊗ to linear order in the metric.

Once again, we can notice that the first two lines contains stress terms which are essentially a “DC back-

ground” associated with the Cooper pair density and the electromagnetic field while the second two lines

describe the linear response of the stress of the entire system (Cooper pair density and electromagnetic fields)

to the gravitational wave strain field. If we consider a constitutive equation given by T⊗ = −µ⊗h⊗, where

µ⊗ is the “gravitational modulus” of the superconductor for cross polarization, then µ⊗ can be found from
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the second two lines in the expression above.

µ⊗ =
5ns

2

[
1

2
mev2− 4

5
mevxvy−

e2

2me

(A0)
2+

α

2
+

nsβ

4

]

+

[
5
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(
ε0
~E2+

1
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~B 2

)
− ε0ExEy−

1

2µ0

(
BxBy+2B2

z

)]
Gravitational modulus of the Cooper pair density in response to a

cross polarization gravitational wave propagating in the z-direction

(1534)

Once again, this expression describes the effective “stiffness” of the superconductor (including the electro-

magnetic fields it contains) in response to the strain of a cross polarization gravitational wave. Since the result

is specifically for a plus-polarization wave, we have labeled the gravitational modulus with a corresponding

subscript: µ⊗.

The following are some observations concerning these results.

• Unlike the usual definition of a shear modulus, the gravitational shear moduli in (1530) and (1534)
are not necessarily positive and are not just an inherent property of the material (like the usual shear

modulus and bulk modulus in continuum mechanics). Rather, the values of µ⊕ and µ⊗ depend on

the supercurrent velocities and electromagnetic fields within the superconductor. This implies that the

“stiffness” of the superconductor in response to gravitational waves can be affected by changing the

electromagnetic fields in the superconductor.

However, µ⊕ and µ⊗ still describe the effective “stiffness” of a superconductor (including the

electromagnetic fields it contains) in response to the strain of a gravitational wave. They also demon-

strate that there can be a linear response of the induced stress as a result of the incident gravitational

wave strain.

• The derivation of µ⊕ and µ⊗ in (1530) and (1534), respectively, required using the metric to second

order. The reason a second order treatment is required to derive this quantity is simply because the

energy must necessarily be second order in hττ
i j in order to derive a first order (linear) Hooke’s law.

This topic is discussed in [92], pp. 31-32. It is shown that a Taylor expansion of an arbitrary potential

about a maximum at x= x0 is given by

V (x) = V (x0)+V ′ (x0)(x− x0)+
1

2
V ′′ (x0)(x− x0)

2+ · · · (1535)

It is then stated that V (x0) can be subtracted since a constant V (x) term does not change the force. It

is also recognized that V ′ (x0) = 0 since V (x) is a minimum at x = x0. (There is no gradient of the

potential, or net force, acting on the system.) Then dropping the higher order terms makes the potential

become

V (x)≈ 1

2
V ′′ (x0)(x− x0)

2
(1536)

which describes simple harmonic oscillation about the point x0 with an effective spring constant k =
V ′′ (x0). Note that V ′′ (x0) ≥ 0 since x0 is a minimum. If we choose our coordinate system so that

x0 = 0, then we obtain the usual simple harmonic potential, V (x) ≈ 1
2
kx2. Now applying the same
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treatment to our analysis here, we find that expressing the free energy density as a function of the strain

gives the following Taylor expansion160

F (hi j)≈ F
(
hi j (0)

)
+F ′

(
hi j (0)

)(
hi j−hi j (0)

)
+

1

2
F ′′
(
hi j (0)

)(
hi j−hi j (0)

)2
(1537)

where hi j (0) is the internal strain when F (hi j) is a minimum and F ′′
(
hi j (0)

)
is the effective spring

constant or “stiffness” of the system. In this context, we identify F ′′
(

hττ

i j (0)

)
= µG(SC) which is the

gravitational shear modulus, since hi j = hττ
i j is a shear field. The corresponding Hooke’s law then

becomes T ττ
i j =−µG(SC)h

ττ
i j . In fact, if we consider the stress as a function of strain, then an expansion

of the stress would give

T ττ
i j

(
hττ

i j

)
= T ττ

i j (0)−µG(SC)h
ττ
i j + · · · (1538)

where the first term, T ττ

i j (0), is an internal stress of the system in the absence of any external strain field

hττ
i j . The second term describes the first order (linear) response of the stress to the external strain field,

hττ
i j . We neglect higher order terms in the stress since this would involve a treatment that is third order

in the metric.

What may be surprising is that our analysis shows that T ττ

i j (0) 6= 0. This implies that embedding

the free energy density of the superconductor into curved space-time leads to the superconductor pos-

sessing an internal stress which is independent of the strength of the external strain field. The physical

cause of this constant stress cannot be ascribed simply to electromagnetic or quantum mechanical rea-

sons. It is necessarily associated with the gravitational field as is evidenced by the fact that T⊕ (0) and

T⊗ (0) differ from one another. This can be seen by comparing the first two lines in (1529) and (1533).
This means that the polarization of the gravitational wave affects the nature of this internal stress.

By comparison, recall that in (1535), we set V ′ (x0) = 0 on the basis that V (x) is a minimum at

x= x0. Because V (x) is a function of x, then V ′ (x0) = 0 means there is no gradient force on the system

which would accelerate the system. However, for the case of the stress in a superconductor, we have

described the free energy, F (hi j), as a function of the strain in the system, not the position. Therefore,

having F ′ (hi j) 6= 0 implies the free energy is not a minimum when the strain field is hi j = hi j (0).

It seems that a fixed background stress suddenly appears when any non-zero external strain field is

introduced.

This stress term could be regarded as a “symmetry breaking” term in the superconductor since

it appears only when an external strain field is applied but it does not depend on the strength of the

external strain field. The final conclusion is that a superconductor subjected to a gravitational wave

will exhibit a “DC” or static stress (a symmetry breaking term), as well as a stress which follows a

linear response to hττ
i j . Of course, there may also be other higher effects which we have not considered

here.

• Since the derivation of T⊕ and T⊗ in (1529) and (1533), respectively, require using the metric to

second order, it may be inquired whether it is legitimate to insert this result into the linearized Einstein

equation. However, note that T ττ
i j = −µG(SC)h

ττ
i j is still a linear relationship which is first order in

the metric. Using a second order metric to analyze the free energy density (in order to obtain a linear

response) does not imply that the field equations (relating T ττ
i j to hττ

i j ) cannot also be linearized.

160Formally speaking, there is another second order term formed by the contraction of the metric perturba-

tion that could be included which is
(
η i jhi j

)2
. However, this term involves pressures (not shears) therefore

to simplify the discussion, we only keep hi jhi j.
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14.3 Properties of the Cooper pair density in response to a GR wave

In the previous section we derived a gravitational modulus for the Cooper pair density in a superconductor

in response to a gravitational wave. This was done by starting with the Ginzburg-Landau free energy density

in curved space-time and finding the second derivative with respect to the strain. Using this procedure, we

found a gravitational modulus in (1530) and (1534) for plus and cross polarization waves, respectively. We

can consider the case of no electromagnetic fields, ~E,~B = 0, which also requires ~A = 0. This means that

p̂ = mv̂− qÂ reduces to just p̂ = mv̂. However, for the zero momentum eigenstate, we have p̂ = 0 and

therefore mv̂ = 0. This means that there would also be no supercurrents and both (1529) and (1533) reduce

to just

T⊕,⊗ =
ns

2

(
α+

nsβ

2

)
− 5ns

4

(
α+

nsβ

2

)
h⊕,⊗ (1539)

Correspondingly, using T ττ
i j =−µG(SC)h

ττ
i j , we find that the effective shear moduli become

µG(CP) =
e2ns

me

A2+αns+
nsβ

2
(1540)

µG(CP) =
5

4
ns

(
α+

nsβ

2

)
(1541)

where “CP” represents the Cooper pairs. Since α and β are phenomenological parameters describing the

superconductor, then this shear modulus also becomes a phenomenological parameter - an inherent property

of the superconductor. It could be considered the irremovable quantum “stiffness” of the Cooper pair density

in response to a gravitational wave of arbitrary polarization. It is an irremovable stiffness because it remains

even in the absence of any supercurrents or electromagnetic fields which could contribute to the effective

stiffness.)

It is interesting to compare the gravitational modulus, µG(CP), to the coherence length, ξ , which can also

be thought of as a type of stiffness of the superfluid density, |ψ|2, where

ξ =
}√

2me |α|
(1542)

If ξ is small, then the energy cost of ns (the particle density of Cooper pairs), varying from place to place

will be small. If the order parameter has a homogeneous equilibrium value but is somehow changed from

this equilibrium value by an external force at one point in space, then ξ specifies the length scale over which

it is restored or “healed.”161 The equilibrium value of the Ginzburg-Landau order parameter in the absence

of electromagnetic fields is162

|ψ0|
2 =−α

β
(1543)

161This is similar to Hook’s law, F = −k∆x, where k is the stiffness of the spring, ∆x is the displacement

from equilibrium, and 1/k is a characteristic length scale associated with the stiffness and the displacement

from equilibrium.

162This follows from the fact that minimizing the free energy density in (1443) gives

0=
1

2me

(
−i}∇−2e~A

)2

ψ+2αψ+2β |ψ|2 ψ+
~B2

2µ0

Therefore, when there are no electromagnetic fields, this reduces to just 0 = 2α |ψ0|+ 2β |ψ0|
2

ψ0. Then

solving for |ψ0|
2

gives (1543).
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Therefore, it is intuitive that we find µG(CP) is also related to the parameters α and β just as the equilibrium

value of the order parameter and the coherence length (which describes the stiffness of the superfluid density)

are also related to the parameters α and β . In fact, µG(CP) can be expressed completely in terms of the

coherence length. Using |ψ0|
2 = ns in (1543) gives β = −α/ns. Then using (1542), we can express α and

β as

α =
}2

2meξ
2

and β =− }2

2mensξ
2

(1544)

We can insert these relations into (1541) to obtain

µG(CP) =
5}2ns

16meξ
2

(1545)

If each atom contributes two conduction electrons, and only 10−3 of the conduction electrons are in a super-

conducting state, then ns ≈ 2n
(
10−3

)
where n = ρm/m is the number density of atoms. For Niobium, the

mass density is ρm ≈ 8.6×103kg/m3 and the mass per atom is m≈ 1.5×10−25kg/atom. Then the number

density of atoms is n≈ 5.7×1028m−3 and therefore the number density of Cooper pairs is

ns ≈ 2n
(
10−3

)
≈ 1.1×1026m−3 (1546)

Inserting this result in (1545) and using ξ ≈ 39nm for the coherence length of Niobium gives

µG(CP) ≈ 2.9×102J/m3 (1547)

Since the constitutive equation describing the stress in a superconductor due to a gravitational strain is

T ττ
i j =−µG(SC)h

ττ
i j , then we see that for a given gravitational strain, the resulting stress is extremely small. In

other words, the Cooper pair density demonstrates very little response to a gravitational wave. By equating

these two constitutive equations, the material strain can be expressed in terms of the gravitational strain as

uττ
i j =

µG(CP)

s
hττ

i j

Strain of matter in terms of

gravitational strain of space
(1548)

For Niobium, s≈ 38GPa= 3.8×1010J/m3. Therefore, using (1547)we find that the material strain is related

to the gravitational strain by a factor of

µG(CP)

s
≈ 7.6×10−9 (1549)

If the amplitude of the gravitational wave is on the order of ∼ 10−20, then uττ
i j ∼ 10−29. This demonstrates

that the material strain caused by a gravitational wave acting on the Cooper pair density (for a Niobium

superconductor with edges on the order of centimeters) is completely negligible. Of course, this result does

not include the effects of electromagnetic fields and the associated supercurrents they induce. In fact, since

the Cooper pair density will be effectively unresponsive while the lattice ions accelerate freely in the presence

of the gravitational wave, then there may arise a charge-separation effect. This will lead to electromagnetic

fields being setup (at least within the electromagnetic penetration depth of the super conductor) and therefore

µG(CP) will need to be expressed in it’s full form of (1530) or (1534). However, in the incipient state when

this charge-separation effect is still forming, (1545) would describe the stiffness of the Cooper density.
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Furthermore, we can also determine the time-scale for the stress tensor of the Cooper pair density to

equilibrate in the presence of a gravitational wave. Inserting µG(CP) ≈ 2.9× 102J/m3 from (1547) into the

time-scale given by (1373) gives

T = c

√
π

8GµG

≈ 1.3×1012s≈ 4.2×104 years (1550)

This tremendously large time-scale implies that the Cooper pair density is essentially a perfect “gravitational

insulator.” We can also consider the gravitational plasma frequency for the Cooper pair density. Inserting

µG(CP) ≈ 2.9×102J/m3 into (1321) gives

ωG =
√

16πGµG ≈ 3.3×10−9rad/s (1551)

This incredibly small plasma frequency implies that the Cooper pair density is “stiff” all the way down

to extremely low frequencies. Since reflection generally occurs for frequencies that satisfy ω < ωG, then

essentially no time-varying strain field would be expelled by the Cooper pair density. Lastly, if we consider

the corresponding penetration depth, then using µG(CP) ≈ 2.9×102J/m3 gives

δ G =
c

ωG

≈ 8.9×1016m (1552)

This is about 9.6 thousand light years! Therefore, we see that the penetration depth is absurdly huge and there

is essentially no attenuation of the gravitational wave field by the Cooper pair density.

We can also return to the expression for µG(CP) in (1530) and (1534) for plus and cross polarization,

respectively, and evaluate the corresponding gravitational penetration depth. Let us consider a time-varying

vector potential given by A = A0 cos(ωt). Then using ~E = −∂t
~A gives E = −ωA. Also, since Ai = −

m

q
vi,

then

vi =
e

ωme

Ei (1553)

Inserting this into (1530) and dropping the magnetic field and scalar potential for simplicity gives

µ⊕ =
5

2
ns

[
e2

2ω2me

E2− 2e2

5ω2me

(
E2

x −E2
y

)
+

α

2
+

nsβ

4

]

+
1

2

[
5

4

(
ε0
~E2
)
− ε0

(
E2

x −E2
y

)]
(1554)

We can confine our attention to a single hyperbolic trajectory and define E2
⊕ ≡ E2

x −E2
y which is constant on

the path (although still time-dependent). Then the expression above becomes

µ⊕ = 16πG
5

2
ns

[
e2

2meω2

(
E2− 4

5
E2
⊕

)
+

α

2
+

nsβ

4

]
+

ε0

2

(
5

4
E2−E2

⊕

)
(1555)
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14.4 Upper bounds and approximations for fields and supercurrents

Here we consider some upper bounds concerning the relativistic supercurrents and the gravitational and

electric fields that can exist in the superconductor without destroying the superconducting state of the system.

Both a classical analysis as well as a quantum mechanical analysis is considered. We also examine some

approximations that can be used to determine the electric field that would exist in the superconductor as a

result of the charge-separation effect.

Classical versus quantum calculation of maximum gravitational wave due to BCS energy gap

The BCS energy gap is the binding energy associated with each Cooper pair due to the quantum me-

chanical self-coupling interactions that exist in the superconductor. This energy gap is described by the BCS

theory of superconductivity as

Egap =
7
2
kBTC (1556)

where TC is the critical temperature of the superconductor. For the case of Niobium, we have TC = 9.3 K.

Therefore to preserve the superconducting state of the Cooper pairs, the maximum power that can be delivered

to the superconductor by an incident gravitational wave with frequency ω/2π is Pmax = Egapω/2π . Using

(1556) gives

Pmax =
7

4π
ωkBTC (1557)

This expression limits the power (and hence the wave amplitude) that is permitted for a gravitational wave

incident on the superconductor without destroying the superconducting state of the system. We can use the

Isaacson power flux formula as a means of relating the power to the strain field of the gravitational wave. The

Isaacson power flux formula is given in [43] as

P =
c3

16πG

〈
ḣ2
++ ḣ2

×
〉

(1558)

where P is the power per unit area (P/A) while h+ and h× are the plus and cross polarized strain fields. The

polarization state is not relevant to our analysis here so we can simply use h0 for the strain field. The time

derivative for an oscillating field can be written as ḣ0 = ωh0. We can also substitute P = P/A and solve for

h0. Doing so gives

h0 =

√
16πGP

c3ω2A
(1559)

Inserting Pmax =
7

4π
ωkBTC from (1557) gives

h0, max =

√
28πGkBTC

c3ωA
(1560)

Using TC = 9.3K, ω ∼ 1010Hz, and A∼ 1010 gives

h0,max ≈ 10−31 (1561)

This is the maximum strain field for a gravitational wave that can be incident on the superconductor without

destroying any of the Cooper pair states.163 Then we find that the maximum gravitational wave force on a

Cooper pair is approximately

F GR wave
(max − classical)

≈ mech0ω ∼ 10−43N (1562)

163This value is comparable to the value obtained in equ. (40) of [91] which was 10−28 based on a 30 GHz

gravitational wave with a milliwatt of power incident on an area of 1 cm2.
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On the other hand, if there is a gravitational photo-electric effect, then the energy of a gravitational wave that

would destroy a Cooper pair would not be given by the amplitude of the wave but rather by the frequency of

the wave using E = }ω . Equating this to (1556), and solving for ω gives

ω =
7kBTC

2}
≈ 7×1011Hz (1563)

This implies that as long as the gravitational waves are below 70Ghz, then no Cooper pair states could be

destroyed by the gravitational waves.



15 Interaction of gravitational (GR)

waves with the lattice ions

of a superconductor
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15.1 The Debye free energy in the low-temperature limit

A treatment of the Debye model can be found in [80]-[83]. The Debye free energy can be derived by

starting from the energy of N harmonic oscillators given by

E =
N

∑
α=1

p2
α

2m
+

1

2

N

∑
α,β

K

2

∣∣rα − rβ

∣∣2 (1564)

where α and β are indexing the N atoms being summed over, and K characterizes the harmonic electric

potential between the atoms. This can be reformulated into a sum of quantum mechanical vibrational modes.

We know that a quantum harmonic oscillator of the form(
1

2m
p̂2+

1

2
mω

2q̂2

)
ϕ = Êϕ (1565)

has energy levels given by En =
(
n+ 1

2

)
}ω , with n = 0 giving the ground state energy. Likewise, the N

harmonic oscillators in (1564) can be written in terms of the energy levels as

E =
3N

∑
α=1

}ωα nα (1566)

where α is now indexing the oscillators and nα is the number of phonons with frequency ωα . (We have

dropped the ground state energy, 1
2
}ω .) Note that the upper limit of the summation is 3N to account for the

three spatial degrees of freedom for the oscillators. Then the Debye free energy is found to be

F =
3kBTV

2π2

∫ kD

0
ln
(

1− e−β}vk
)

k2dk (1567)

where the Debye wave vector and frequency are, respectively,

kD =

(
6π2N

V

)1/3

and ωD = v

(
6π2N

V

)1/3

(1568)

with N being the number of atoms. Using k = ω/v and β = (kBT )−1
makes (1567) become

F =
3V

2π2βv3

∫
ωD

0
ln
(

1− e−β}ω

)
ω

2dω (1569)

We now consider the low temperature limit. For T ≈ 10−2K, we have β} ≈ 1.5× 10−59s. From the graph

below, we can see that the integral in (1569) has almost no contribution past β}ω ≈ 0.2. After that, the

graph is asymptotically zero. From (1585) we see that ωD ≈ 1013Hz and therefore β}ωD ≈ 1.5× 10−46.

This means that to a very good approximation, the integral can be cut off well before every reaching the

upper limit of ωD. Stating it another way, we can extend the upper limit to infinity and still have a very good

approximation to the integral.
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Figure 9: A graph of the free energy of the Debye model in the low-temperature limit.

To evaluate the integral in (1569), we can use integration by parts with

U = ln
(
1− e−β}ω

)
dV = ω2dω

dU =
β}

eβ}ω −1
dω V =

1

3
ω3

(1570)

Then the integral in (1569) becomes∫
ωD

0
ln
(

1− e−β}ω

)
ω

2dω =

[
1

3
ω

3 ln
(

1− e−β}ω

)]ωD

0

− β}
3

∫
ωD

0

ω3

eβ}ω −1
dω (1571)

We can use a change of variable given by

x= β}ω and dx= (β})dω (1572)

Then the upper bound of the integral on the right side of (1571) becomes xD = β}ωD and we have164

β}
3

∫
ωD

0

ω3

eβ}ω −1
dω =

1

3β
3}3

∫ xD

0

x3

ex−1
dx (1573)

164The Debye temperature is also defined as TD ≡ }ωD/kB, so we could also express the integral in terms

of an upper bound given by xD = TD/T . At very low temperatures where T << TD, only long wavelength

acoustic modes are thermally excited. These are modes that can be treated as an elastic continuum with

macroscopic elastic constants. The energy of those short wavelength modes are too high to be populated

significantly at low temperatures.
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The exponential in the denominator becomes extremely large well before x reaches the upper limit of the inte-

gral165. This means the integrand is extremely small near the upper limit and the integral can be approximated

by increasing the limit to infinity. Then we can make use of the standard integral166

∫
∞

0

x3

ex−1
dx =

π4

15
(1574)

Therefore, the free energy in (1569) becomes

F ≈ V

2π2βv3

{[
ω

3 ln
(

1− e−β}ω

)]ωD

0
− π4

15β
3}3

}
(1575)

Evaluating the first term at ω = 0 requires taking a limit. Rearranging that term and using L’Hospital’s rule

gives

lim
ω→0

ln
(
1− e−β}ω

)
1/ω3

LH
= lim

ω→0

β}e−β}ω

−3
(
1− e−β}ω

)
ω−4

= −β}
3

lim
ω→0

ω4

eβ}ω −1
(1576)

Applying L’Hospital’s rule again gives

−β}
3

lim
ω→0

ω4

eβ}ω −1

LH
= −4

3
lim
ω→0

4ω3

eβ}ω
= 0 (1577)

Then (1575) becomes

F ≈ V

2π2βv3

[
ω

3
D ln

(
1− e−β}ωD

)
− π4

15β
3}3

]
(1578)

Inserting ωD from (1568) and distributing gives

F ≈ 3N

β
ln
(
1− e−β}ωD

)
− π2V

30β
4}3v3

Debye free energy for a low-temperature lattice

(1579)

The number of atoms, N, can be found from

N =
M

m
=

ρV

m
(1580)

where M is the total mass, m is the mass per atom, and ρ is the mass density. Using (1580) we can also write

ωD from (1568) as

ωD = v

(
6π2ρ

m

)1/3

(1581)

165We found in (1585) that the Debye frequency is ωD ≈ 3.1× 1013Hz for Niobium. This means that

for T ≈ 10−2K, we have xD = β}ωD ≈ 2.4× 104. Therefore 1/ex becomes vanishingly small well before

reaching the upper bound.
166This procedure is described on p. 157 of [81], p. 200 of [82], and p. 13 of [83].
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For a shear wave in Niobium, we can use the material shear modulus, s, to obtain a wave speed.

v=

√
s

ρ
(1582)

Inserting (1580)− (1582) into (1579) and factoring out the volume gives

F ≈V

[
3ρ

βm
ln
(
1− e−β}ωD

)
− π2

30β
4}3

(
ρ

s

)3/2
]

Debye free energy for a low-temperature lattice

in terms of mass density and material shear modulus

(1583)

The free energy for low temperature Niobium

For the case of Niobium, the material shear modulus is s ≈ 38GPa = 3.8× 1010J/m3, so the speed of a

shear wave according to (1582) is

v =

√
s

ρ
≈ 2.1×103m/s (1584)

Also, for Niobium we have m ≈ 1.54× 10−25kg/atom and ρ ≈ 8.6× 103kg/m3. Then (1580) and (1581)
give

N

V
=

ρ

m
≈ 5.6×1028m−3, kD ≈ 1.5×1010m−1, ωD ≈ 3.1×1013s−1 (1585)

Note that kD corresponds to a wavelength of λ = 2π/kD ≈ 4.2× 10−10m which is on the order of the in-

teratomic spacing as expected for modes in the Debye model. Also notice that ωD is above microwave

frequencies and therefore our approximation here is valid for microwave frequency oscillations induced in

the lattice. For T ≈ 10−2K, we also have

β} ≈ 7.6×10−10s and β}ωD ≈ 2.4×104 (1586)

We can now evaluate the free energy for Niobium. Using (1584)− (1586), we find that the first and second

terms in the bracket of (1583) are

3ρ

βm
ln
(

1− e−β}ωD

)
≈ 0 and

π2

30β
4}3v3

≈ 10−8J/m3 (1587)

Note that the first term is vanishingly small because β}ωD in (1586) is so large. Therefore (1583) becomes

F ≈ −
(
10−8J/m3

)
V . This implies that for a superconductor with dimensions on the order of centimeters

(V ≈ 10−6m3), the total free energy of the lattice is F ≈−10−14J ≈−100keV .
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15.2 Quantum harmonic oscillators (QHO) coupled to GR waves

To describe the interaction of a gravitational wave with the quantum harmonic oscillators, we can begin

with (790) which gives the Hamiltonian for coupling to gravitational waves to first order in the metric.167

H = mc2+
p2

2m
−

hττ
i j pi p j

2m
(1588)

This Hamiltonian is similar to the interaction Hamiltonian obtained by Rothman and Boughn (RB) in equation

(5.6) of [54] and on page 8 of [55]. However, RB employ the transverse-traceless gauge which is only valid

in vacuum. Instead, we specifically work with the transverse-traceless part of the metric, hττ
i j , which is the

radiative degrees of freedom of the metric. The important feature to note about hττ
i j is that it is a gauge-

invariant quantity that satisfies a wave equation in matter as found using the Helmholtz Decomposition

formulation of linearized GR. Therefore, hττ
i j can be used to describe the interaction of gravitational waves

with quantum harmonic oscillators inside the matter.

Using (1588), we can modify (1564) to write the Hamiltonian for relativistic harmonic oscillators coupled

to a gravitational wave as

H =
N

∑
α=1

(
mα c2+

p2
α

2mα

−
hττ

i j

(
pi p j

)
α

2mα

)
+

1

2

N

∑
α,β

K

2

∣∣rα − rβ

∣∣2 (1589)

If we quantize the momentum, pi→ p̂i =−i}∂ i, then the term involving the gravitational wave becomes168

hττ
i j p̂i p̂ j

2m
=

}2

2m
hττ

i j ∂
i
∂

j (1590)

For a harmonic oscillator, we know that p̂i = m}ω x̂i. This means we have

p̂i p̂ j = m2}2
ω

2x̂ix̂ j = m}2
ω

2D̂i j (1591)

We can define a “mass quadrupole moment operator” as

D̂i j ≡ mx̂ix̂ j (1592)

so that we have

p̂i p̂ j = m}2
ω

2D̂i j (1593)

Then (1590) becomes

hττ
i j p̂i p̂ j

2m
=

1

2
}2

ω
2hττ

i j D̂i j (1594)

167Another alternative is to use an effective field theory similar to Blencowe in [84]. The Hamiltonian

obtained is

H = }ω0a†a

(
1+∑

i

λ i

qi

∆i

)
+∑

i

(
p2

i

2mi

+
1

2
miω

2
i q2

i

)
Here the coupling to gravity comes in through the term involving λ i. Blencowe uses this Hamiltonian to

describe a gravitational decoherence due to a cosmic gravitational wave background. However, this result

involves a second quantization approach where the scalar field has also been quantized (hence the creation and

annihilation operators). By contrast, the Debye model does not necessitate a second quantization approach.

168Note that here we are taking a semiclassical approach where the gravitational wave field, hττ
i j , is a classi-

cal field while p̂ is a quantum operator describing the matter.
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Also defining x̂i
αβ
≡
∣∣r̂α − r̂β

∣∣i as the displacement in the i-direction between atom number α and atom

number β , we can extend the definition of the “mass quadrupole moment operator” to be

D̂
i j

αβ
≡ m

∣∣r̂α − r̂β

∣∣i ∣∣r̂α − r̂β

∣∣ j
(1595)

This is the mass quadrupole moment between atom number α and atom number β , where m is the mass of

either atom.169 Now we can write the Hamiltonian in (1589) as

Ĥ =
N

∑
α,β

(
mα c2+

(
p̂i

α

)2

2mα

− }
2ω2

α

2mα

hττ
jk

D̂
jk

αβ
+

Ki

4

(
x̂i

αβ

)2

)

Hamiltonian for N quantum harmonic oscillators

coupled to a gravitational wave (first order in the metric)

(1596)

Here Ki characterizes the harmonic electric potential in the i direction. This expression gives a compact

form for expressing the Hamiltonian in terms of the quadrupole moments formed by N quantum harmonic

oscillators due to a gravitational wave. Notice that the free index (i) runs from 1 to 3 which means that there is

a Hamiltonian for each value of i. In order to develop the Debye free energy density, we will need to consider

each of these three Hamiltonian separately. In the case of no gravitational wave, the three Hamiltonians are

identical and therefore the entire set of 3N quantum harmonic oscillators can be written in terms of a single

sum as given in (1566). However, with the introduction of a gravitational wave coupled to the oscillators,

this symmetry is broken and we must deal with each Hamiltonian separately for the x-direction, y-direction,

and z-direction.

169Here we are assuming that the quadrupole consists of identical atoms. For a lattice with differing types

of atoms, the expression becomes more complicated.
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15.3 Quasi-energies of QHO coupled to gravitational waves

We can return to (1589) and use xi ≡
∣∣rα − rβ

∣∣i as the distance between harmonic oscillators. If we

consider a single oscillator, then we can drop the summation. In the non-relativistic limit, we can also drop

the rest mass energy.170 Then promoting the Hamiltonian and canonical momentum to quantum operators

gives171

Ĥ =
p̂2

2m
+

hττ
i j p̂i p̂ j

2m
+

Ki

4
x̂2

i (1597)

For a wave propagating in the z-direction, hττ
xx =−hττ

yy = h⊕ (z, t) for plus-polarization as well as hττ
xy = hττ

yx =
h⊗ (z, t) for cross-polarization, with hττ

i j = 0 for all other components. Then summing over repeated indices

in the expression above gives

Ĥ = (1+h⊕)
p̂2

x

2m
+(1−h⊕)

p̂2
y

2m
+h⊗

p̂x p̂y

m
+

p̂2
z

2m
+

Ki

4
x̂2

i (1598)

We can act the Hamiltonian on a state Ψ(~x, t) and use the quantum operator for the Hamiltonian, Ĥ = i}∂t ,

and for the canonical momentum, p̂i =−i}∂i.

i}∂tΨ(~x, t) = − }
2

2m

[
(1+h⊕)∂

2
x +(1−h⊕)∂

2
y +2h⊗∂x∂y+∂

2
z

]
Ψ(~x, t)+

Ki

4
x̂2

i Ψ(~x, t)

(1599)

We can consider a separable solution given by Ψ(~x, t) = ψ (~x)ϕ (t). Inserting this in the Hamiltonian and

dividing by Ψ(~x, t) = ψ (~x)ϕ (t) gives

i}
1

ϕ (t)
∂tϕ (t) = − }

2

2m

1

ψ (~x)

[
(1+h⊕)∂

2
x +(1−h⊕)∂

2
y +2h⊗∂x∂y+∂

2
z

]
ψ (~x)+

Ki

4
x̂2

i

(1600)

We can equate the left side to E (t) which is the energy as a function of time. Then we have

i}
1

ϕ (t)
∂tϕ (t) = E (t) ⇒ ∂tϕ (t) =−

iE (t)

}
ϕ (t) (1601)

If we define

ε (t) ≡
∫ t

0
E
(
t ′
)

dt ′ (1602)

170It was found in (778) that remaining to order p2 requires remaining to first order in hτt
i j . Going to

second order in hτt
i j would lead to terms involve p4 which is beyond the non-relativistic limit considered here.

Furthermore, we will being using a formulation involving the energy eigenvalues of a harmonic oscillator

which necessitates remianing to order p2 in momentum.

171We are taking a semiclassical approach where the gravitational wave field, hττ
i j , is a classical field while p̂

is a quantum operator describing the matter. Also note that the internal electromagnetic field between atoms

is accounted for by the harmonic potential term, K
4

x̂2
i . However, if there is also an external electromagnetic

field, then we would need to account for this by using the minimal coupling rule, π i = pi−qAi . This leads

to a more complicated formulation which is handled in a later section.
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then the solution to the differential equation above has the form

ϕ (t) = e−iε(t)t/} (1603)

Hence we find that the gravitational wave will introduce a phase shift to the quantum wave function172

determined by ε (t). Returning to (1600), we can equate the right side to E (t) and multiply through by ψ (~x).

E (t)ψ (~x) = − }
2

2m

[
(1+h⊕)∂

2
x +(1−h⊕)∂

2
y +2h⊗ (z, t)∂x∂y+∂

2
z

]
ψ (~x)

+
Ki

4
x̂2

i ψ (~x) (1604)

Notice that this is not a time-independent Schrödinger equation. The states are time-independent, but the co-

efficients, h⊕ (z, t) and h⊗ (z, t), make the Hamiltonian time-dependent. We can separate the time-dependent

terms of the Hamiltonian by writing the expression above as

E (t)ψ (~x) =

[
− }

2

2m

(
∂

2
x +∂

2
y +∂

2
z

)
+

Ki

4
x̂2

i

]
ψ (~x)

− }
2

2m

[
h⊕∂

2
x −h⊕∂

2
y +2h⊗∂x∂y

]
ψ (~x) (1605)

The first line can now be considered as an unperturbed Hamiltonian, Ĥ0, while the second line is a time-

dependent perturbation, Ĥ1 (t), so that we have

Ĥ (t) = Ĥ0+ Ĥ1 (t) (1606)

where

Ĥ0 =−
}2

2m

(
∂

2
x +∂

2
y +∂

2
z

)
+

Ki

4
x̂2

i (1607)

and

Ĥ1 (t) = − }
2

2m

[
h⊕∂

2
x −h⊕∂

2
y +2h⊗ (z, t)∂x∂y

]
(1608)

Ordinarily, we would need to apply time-dependent perturbation theory to this problem. However, for a

gravitational wave with periodic time-dependence (such as a standing or traveling sinusoidal wave), then the

full Hamiltonian (with the perturbation) has a periodic behavior. This means that the Hamiltonian satisfies

the condition

Ĥ (t+T ) = Ĥ (t) (1609)

Therefore, we can applying Floquet’s theorem leads to obtain quasi-energy eigenvalues as described by

Zel’dovich [86] and later with further detail by Sambe [87].

172This was also pointed out by Stodolsky [64] and Sorge [85].
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Zel’dovich points out that for a Hamiltonian satisfying the condition in (1609), we can find periodic solutions

given by173

ϕα (t+T ) = e−iα
ϕα (t) (1610)

Then the corresponding quasi-energy eigenvalues are given by174

E = }α/T, T = 2π/ω (1611)

In our case, we know that ω will be the frequency of the gravitational wave which is causing the time-

dependent perturbation.175 We can define the quasi-energy eigenstates of the system as Ψα (~x, t)≡ψα (~x)ϕα (t)
where ϕα (t) satisfies the condition required by (1610). Now the quasi-energy eigenvalues in (1611) simply

require that we determine α such that the condition given by (1610) is satisfied. Evaluating (1603) at t+T

gives

ϕ (t+T ) = e−iε(t+T )/} (1612)

To evaluate ε (t+T ), we first need to determine ε (t) using (1602). This means we need a function for E (t).
Using (1330) ,we can consider the case of standing gravitational waves in the z-direction given by

h⊕ (z, t) = A⊕ cos(kz)sin(ωt) and h⊗ (z, t) = A⊗ cos(kz)sin(ωt) (1613)

173Zel’dovich states, “With respect to the operator H (t), states of this kind play the same role as the sta-

tionary states do for a constant Hamiltonian. In this case however, the expansion coefficients of an arbitrary

function ψ (x) with respect to the states ψα (x, t) will depend on the time t, and their absolute values will

exhibit a periodic time dependence (with period T ). On the contrary, an arbitrary exact solution ψ (x, t) of the

Schrödinger equation with the Hamiltonian H (t) will have constant expansion coefficients when expanded

with respect to the states ψα (x, t).” The key point being made here is that by choosing to express our solutions

in terms of ψα (x, t) in (1610), we pay the price by the fact that any general solution expanded with respect

to ψα (x, t) will have time-dependent coefficients. In a sense, we have shifted the time dependence from the

energy eigen-values to the expansion coefficients.

174The validity of (1611) can be easily verified by considering the trivial case where E (t) is constant in

time. In that case, ε (t) =
∫

E (t)dt = Et and (1603) becomes ϕ (t) = e−iEt/}. If we separate the unperturbed

energy, E0, from the perturbation energy, E1 (t), as shown in (1606), then we have

ϕ (t) = e−i(E0+E1(t))t/} = e−iE0t/}e−iE1(t)t/}

Evaluating ϕ (t+T ) gives

ϕα (t+T ) = e−iE0(t+T )/}e−iE1(t+T )t/} = e−i(E0+E1)T/}e−i(E0+E1)t/} = e−iα
ϕα (t)

where α =(E0+E1)T/} and ϕα (t)= e−i(E0+E1)t/}. Therefore we have satisfied the form required in (1610).
From (1611), this means that the quasi-energy eigenvalues are simply E = E0+E1. This is precisely what

would be expected from (1606).

175Zel’dovich makes the assertion that “The totality of all linearly independent solutions with different

quasi-energies forms a complete set of functions (at any given instant of time).” This fact suits our purpose

here since we are interested in ultimately determining the free energy of the system at a particular instant

of time so that we can take the derivative with respect to the strain (at that same instant of time) and find the

gravitational shear modulus. We do not ultimately need a free energy that is a function of time.
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Here we are using A⊕ and A⊗ for the amplitudes for plus-polarization and cross-polarization waves, respec-

tively.176 We can insert (1613) into (1598) and write the expression in terms of the eigenvalues of the energy

and the eigenvalues of momenta.

E (t) = (1+A⊕ cos(kz)sin(ωt))
p2

x

2m
+(1−A⊕ cos(kz)sin(ωt))

p2
y

2m

+A⊗ cos(kz)sin(ωt)
px py

m
+

p2
z

2m
+

Ki

4
x2

i (1614)

Then evaluating ε (t) =
∫ t

0 E (t ′)dt ′ gives

ε (t) =

[
t− A⊕

ω
cos(kz)cos(ωt)

]
p2

x

2m
+

[
t+

A⊕
ω

cos(kz)cos(ωt)

]
p2

y

2m

−A⊗
ω

cos(kz)cos(ωt)
px py

m
+

(
p2

z

2m
+

Ki

4
x2

i

)
t

−cos(kz)

2mω

(
A⊕p2

x−A⊕p2
y−2A⊗px py

)
(1615)

Now evaluating ε (t+T ) and using the fact that cos [ω (t+T )] = cos(ωt) gives

ε (t+T ) =

[
t+T − A⊕

ω
cos(kz)cos(ωt)

]
p2

x

2m

+

[
t+T +

A⊕
ω

cos(kz)cos(ωt)

]
p2

y

2m

−A⊗
ω

cos(kz)cos(ωt)
px py

m
+

(
p2

z

2m
+

Ki

4
x2

i

)
(t+T )

+
cos(kz)

2mω

(
A⊕p2

x−A⊕p2
y+2A⊗px py

)
(1616)

176Alternatively, it is also possible to use a gravitational wave given by (1332) which could be written as

h⊕ (z, t) = A⊕e−z/δ G sin(ωt) and h⊗ (z, t) = A⊗e−z/δ G sin(ωt)

where δ G is the gravitational penetration depth.
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To satisfy the form required by (1610), we need to exponentiate this result and separate the time-dependent

part from the time-independent part. We can define the time-dependent part as

f (t) ≡
[

t− A⊕
ω

cos(kz)cos(ωt)

]
p2

x

2m
+

[
t+

A⊕
ω

cos(kz)cos(ωt)

]
p2

y

2m

−A⊗
ω

cos(kz)cos(ωt)
px py

m
+

(
p2

z

2m
+

Ki

4
x2

i

)
t (1617)

We can also define the time-independent part as

g(T ) ≡
[

1

2m

(
p2

x+ p2
y+ p2

z

)
+

Ki

4
x2

i

]
T +

cos(kz)

2mω

[
A⊕
(

p2
x− p2

y

)
+2A⊗px py

]
(1618)

Then exponentiating (1616) and expressing it in terms of f (t) and g(t) gives

eε(t+T ) = eg(T )+ f (t) = eg(T )e f (t) (1619)

Therefore, we can write (1612) as

ϕ (t+T ) = e−ig(T )/}e−i f (t)/} (1620)

Comparing this to ϕα (t+T ) = e−iα ϕα (t) from (1610), we find that

α = g(T )/} and ϕα (t) = e−i f (t)/} (1621)

We now have an expression for α using (1618). We can insert α into the quasi-energy eigenvalues given in

(1611) as E = }α/T where T = 2π/ω . This gives

E =
1

2m

(
p2

x+ p2
y+ p2

z

)
+

Ki

4
x2

i +
cos(kz)

4πm

[
A⊕
(

p2
x− p2

y

)
+2A⊗px py

]
Quasi-energy eigenvalues for a quantum harmonic oscillator in the

presence of a gravitational wave in the z-direction

(1622)

The expression above has a form that can be interpreted as E = E0+E1. This is consistent with (1606) which

gives the full Hamiltonian as Ĥ = Ĥ0+ Ĥ1 (t), where Ĥ0 is the unperturbed Hamiltonian and Ĥ1 (t) is the

time-dependent perturbation. Also notice that the energy eigenvalues have a periodic dependence on z which

is expected since the gravitational wave is in the z-direction.

There are essentially two options for writing the entire energy of the system. One option is to recognize

that the unperturbed energy, E0, has the form of a spherically symmetric 3-dimensional quantum harmonic

oscillator, and then use the known energy eigenvalues for such a system. In that case, the perturbation energy,

E1, will simply remain expressed in terms of the momenta. However, this will complicate the process of

applying the Debye model which ordinarily begins with the energy eigenvalue of each quantum harmonic

oscillator, En =
(
n+ 1

2

)
}ω , and then sums over all N oscillators in the x, y, and z directions as shown in

(1566). If part of the energy is expressed in terms of n and part of it is expressed in terms of momentum

eigenvalues, then we will not be able to follow the usual process for applying the Debye model.
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Therefore, we consider a second option which is to express the entire energy, E = E0+E1, as a single

modified 3-dimensional quantum harmonic oscillator. The plus-polarization wave, A⊕, will have the effect

of changing the spherical symmetry to an elliptical symmetry. The cross-polarization wave, A⊗, will have

the effect of coupling the momentum in the x-direction and the y-direction. In both cases, we find that the

factor of cos(kz) will prevent the entire equation from being separable into three independent differential

equations for x, y, and z. However, we can try a similar approach to the one used above which made use of

the temporal periodicity of the energy. Instead, we would make use of the spatial periodicity of the energy in

the z-direction. Specifically, Block’s theorem states that for a periodic potential

V (z+a) =V (z) (1623)

where a is a lattice spacing, there are periodic solutions given by

ψ (z) = eikzzu(z) where u(z+a) = u(z) (1624)

It is evident from (1622) that the periodicity of the energy in the z-direction can be described by kGRz→
kGRz+ 2πn , or equivalently, z→ z+ 2πn/kGR, where kGR is the wave number of the gravitational wave.

Therefore, we can identify the “lattice spacing” due to the periodic form of the gravitational wave as

a= 2π/kGR = λ GR (1625)

where λ GR is the wavelength of the gravitational wave. Writing (1624) in a form that is more analogous to

the quasi-energy eigenstates in (1610) gives

ψβ (z+λ GR) = eiβ
ψβ (z) (1626)

If we also evaluate (1624) for z+λ GR and use the fact that u(z+λ GR) = u(z), then we have

ψ (z+λ GR) = eikz(z+λ GR)u(z) (1627)

Also analogous to the quasi-energy eigenvalues in (1611), we might anticipate that the corresponding quasi-

momentum eigenvalues in the z-direction would be given by

pz = }β/λ GR, λ GR = 2π/kGR (1628)

Returning to (1622), we can consider the case of a thin film177 where z<< λ so that kz<< 1 and therefore

cos(kx) ≈ 1. We can also insert (x̂i)
2 = x̂2+ ŷ2+ ẑ2 and use Kx, Ky and Kz to characterize the harmonic

electric potential in the x, y, and z-directions, respectively. Then writing (1622) as an operator equation and

acting on a state ψ (~x) gives

Eψ (~x) =
1

2m

(
p̂2

x+ p̂2
y+ p̂2

z

)
ψ (~x)+

1

4

(
Kxx̂2+Kyŷ2+Kzẑ

2
)

ψ (~x)

+
1

4πm

[
A⊕
(

p̂2x
y − p̂2

y

)
+2A⊗ p̂x p̂y

]
ψ (~x) (1629)

We can use p̂i = −i}∂i and insert a separable solution, ψ (~x) = ψx (x)ψy (y)ψz (z). After distributing, we

177Note that the gravitational waves in (1613) could also be written with a factor e−z/δ G , where δ G is

a gravitational penetration depth. In that case, it would be necessary to impose the additional condition

z<< δ G in order to approximate e−z/δ G ≈ 1 and hence obtain a result that has the form of quantum harmonic

oscillator.



296

have

Eψxψyψz = − }
2

2m

(
ψyψz∂

2
x ψx+ψxψz∂

2
y ψy+ψxψy∂

2
z ψz

)

+
1

4

(
Kxx̂2+Kyŷ2+Kzẑ

2
)

ψxψyψz

− }2

4πm

[
A⊕
(
ψyψz∂

2
x ψx−ψxψz∂

2
y ψy

)
+2A⊗ψz∂x∂y

(
ψxψy

)]
(1630)

We can divide by ψxψyψz and group terms to identify harmonic oscillators in x, y, and z.

E =

[
− }

2

2m

(
1+

A⊕
2π

)
1

ψx

∂
2
x ψx+

1

4
Kxx̂2

]

+

[
− }

2

2m

(
1− A⊕

2π

)
1

ψy

∂
2
y ψy+

1

4
Kyŷ2

]

+

[
− }

2

2m

1

ψz

∂
2
z ψz+

1

4
Kzẑ

2

]

−}
2A⊗

2πm

1

ψxψy

∂x∂y

(
ψxψy

)
(1631)

In the last term we find there is a coupling of the differential equations in x and y. To avoid this, we can

choose to consider the case of a plus-polarization gravitational wave so we can set A⊗ = 0. Then we can

separate the differential equation into the following three differential equations.

Ex = − }
2

2m

(
1+

A⊕
2π

)
1

ψx

∂ 2ψx

∂x2
+

Kx

4
x̂2 (1632)

Ey = − }
2

2m

(
1− A⊕

2π

)
1

ψy

∂ 2ψy

∂y2
+

Ky

4
ŷ2 (1633)

Ez = − }
2

2m

1

ψz

∂ 2ψz

∂ z2
+

Kz

4
ẑ2 (1634)

For brevity, we can define

A±⊕ ≡ 1± A⊕
2π

(1635)
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Also rewriting the energies above in terms of momentum operators and rearranging gives

Ex

A+⊕
ψx =

p̂2
x

2m
ψx+

Kx

4A−⊕
x̂2

ψx (1636)

Ey

A−⊕
ψy =

p̂2
y

2m
ψy+

Ky

4A+⊕
ŷ2

ψy (1637)

Ezψz =
p̂2

z

2m
ψz+

Kz

4
ẑ2

ψz (1638)

We know that a quantum harmonic oscillator has the form

Ĥψ =

(
p̂2

2m
+

1

2
mω

2x̂2

)
ψ (1639)

Therefore, to put (1636)− (1638) into the form of a quantum harmonic oscillator, we can define x̃, ỹ, and z̃

as178

1

2
mω

2
x x̃2 ≡ K

4A+⊕
x̂2,

1

2
mω

2
y ỹ2 ≡ K

4A−⊕
ŷ2,

1

2
mω

2
z z̃2 ≡ K

4
ẑ2 (1640)

Then (1636)− (1638) become

Ex

A+⊕
ψx =

p̂2
x

2m
ψx+

1

2
mω

2
x x̃2

ψx (1641)

Ey

A−⊕
ψy =

p̂2
y

2m
ψy+

1

2
mω

2
y ỹ2

ψy (1642)

Ezψz =
p̂2

z

2m
ψz+

1

2
mω

2
y z̃2

ψz (1643)

For a quantum harmonic oscillator, we need to insure [x̃, p̂x] = [ỹ, p̂y] = [z̃, p̂z] = i}. First, we can solve (1640)
for x̃, ỹ, and z̃ which gives

x̃ =

√
K

2mω2
xA+⊕

x̂, ỹ=

√
K

2mω2
yA−⊕

ŷ, z̃=

√
K

2mω2
z

ẑ (1644)

178Note that we can drop the subscripts on Kx, Ky, and Kz which were used to distinguish the different

effective “spring constants” in the x, y, and z directions due to the effect of the gravitational wave. Now we can

use a single constant K for all directions since the effect of the gravitational wave in the x, y, and z directions

is shown explicitly in (1640) in terms of A−⊕ and A+⊕. The subscripts of ωx, ωy, and ωz still represent the fact

that the frequencies are modulated differently in the x, y, and z directions due to the gravitational wave.
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Then evaluating [x̃, p̂x], [ỹ, p̂y], and [z̃, p̂z] gives

[x̃, p̂x] =

√
K

2mω2
xA+⊕

i}, [ỹ, p̂y] =

√
K

2mω2
yA−⊕

i}, [z̃, p̂z] =

√
K

2mω2
z

i} (1645)

If we require [x̃, p̂x] = [ỹ, p̂y] = [z̃, p̂z] = i}, then the left side of each equation above is i}. We can define the

unmodulated frequency in the absence of the gravitational wave as179

ω =

√
K

2m
(1646)

Then the expressions in (1645) become

ωx =
ω√
A+⊕

, ωy =
ω√
A−⊕

, ωz = ω (1647)

Since a quantum harmonic oscillator has energy levels given by En =
(
n+ 1

2

)
}ω , with n = 0 giving the

ground state energy, then the left side of each equation in (1641)−(1643) is playing the role of En. Therefore

we have

Enx
= A+⊕

(
nx+

1
2

)
}ωx, Eny

= A−⊕
(
ny+

1
2

)
}ωy, Enz

=
(
nz+

1
2

)
}ωz (1648)

where nx, ny, and nz are numbering the modes with frequencies ωx, ωy, and ωz in the x, y, and z directions,

respectively.180 We can sum over N oscillators, with nα being the number of phonons with frequency ωa.

This gives181

Enx
=

N

∑
α

A+⊕}ωx,α

(
nx,α +

1
2

)
(1649)

Eny
=

N

∑
α

A−⊕}ωy,α

(
ny,α +

1
2

)
(1650)

Enz
=

N

∑
α

}ωz,α

(
nz,α +

1
2

)
(1651)

179As in the case of the standard Debye model (with no coupling to gravitational waves), we assume that K

is the same in each direction for an isotropic lattice (in the absence of a gravitational wave).

180Note that the energy eigenvalues of the quantum harmonic oscillators in the z-direction are not affected

by the presence of a gravitational wave propagating in the z-direction. This is expected since a gravitational

wave is a transverse wave and therefore only the energy of the oscilaltors in the x-direction and y-direction

should be affected.

181We could also drop the zero-point energy, 1
2
}ω , since it does not affect the thermodynamic quantities

that are derived from the partition function (such as the entropy, specific heat, etc.) However, because the

zero-point energy does not vanish from the free energy (which we will be interested in calculating later), then

we opt to keep it in the expression for the energy eigenvalues.
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We can write the total energy as E = Enx
+Eny

+Enz
. Inserting (1647) and factoring out ωα gives

E(nx,ny,nz) = }
N

∑
α

ωα

[√
A+⊕
(
nx,α +

1
2

)
+
√

A−⊕
(
ny,α +

1
2

)
+
(
nz,α +

1
2

)]
Quasi-energy eigenvalues in terms of phonon modes for

N quantum harmonic oscillators in the presence of a gravitational wave

with plus-polarization, propagating in the z-direction

(1652)

Ordinarily, an isotropic ensemble of 3-D harmonic oscillators has ωx = ωy = ωz =
√

K/m. This allows the

total energy to be written simply as }ωα

(
nα +

1
2

)
summed over 3N oscillators as shown in (1566). However,

here we find that the coupling to a gravitational wave breaks the isotropy and prevents this simplification. In

particular, (1647) shows ωx 6= ωy 6= ωz which means there is no isotropy and therefore we cannot simplify

(1652).

The gravitational wave (propagating in the z-direction) essentially squeezes/stretches space in the x and y

directions. This effectively shortens/lengthens the boundary conditions for the quantum harmonic oscillators

in the x and y directions, and as a result, modulates the frequencies in the x and y directions. Therefore, the

factors,

√
A+⊕ and

√
A−⊕, can be considered as essentially “gravitational modulation factors” which determine

the modulation of the frequencies (and corresponding energies) for the quantum harmonic oscillators in the x

and y directions.

Since there are different prefactors in the x, y, and z directions (which are

√
A+⊕,

√
A−⊕, and unity, respec-

tively), it is evident that the gravitational wave also breaks the spatial isotropy of the ionic lattice. In fact,

because the gravitational wave couples to the zero-point energy of the oscillators ( 1
2
}ω), this implies that the

gravitational wave also breaks the isotropy of the vacuum as well, and therefore introduces anisotropy to the

ground state vacuum energy of the ionic lattice.

Since the gravitational wave is dynamic, then it dynamically modulates the zero-point energies of the

phonon modes. Therefore, this can be thought of as a type of dynamical Casimir effect which is driven by a

gravitational wave. (This is analogous to the mechanical oscillation of conducting plates which leads to the

standard electromagnetic dynamical Casimir effect.) Since the zero-point energy is that of lattice phonons,

then effect might be referred to as “dynamical gravito-phonon Casimir effect.”

The physical meaning of this dynamical Casimir effect is that an increase in the occupation number of the

phonon modes of the lattice is predicted to occur in the presence of the gravitational wave. This effect could

be interpreted as a quantum-mechanical analog of a “Weber-bar effect” where the amplitude of the sound

waves in the lattice grows in the classical limit due to the coupling of energy from the gravitational wave

into energy in the modes of the lattice. However, in this case, the gravitational wave energy incident upon

the superconductor is coupled to the vacuum energy of the ionic lattice and then converted into sound wave

energy in the lattice.
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15.4 The Debye free energy in curved space-time

We can now evaluate the free energy using the energy eigenvalues found in (1652). Recall that the

partition function for a canonical ensemble is given by

Z =∑
n

exp(−βEn) (1653)

where En are the energy eigenvalues values of the system. Then substituting (1652) into the partition function

gives182

Z = ∑
n

exp

{
−β}

N

∑
α

ωα

[√
A−⊕
(
nx,α +

1
2

)
+
√

A+⊕
(
ny,α +

1
2

)
+ωz,α

(
nz,α +

1
2

)]}
(1654)

We can also simplify the expression by first summing over the zero-point energies of all N oscillators in the

x, y, and z direction. Then the zero-point energy of the entire system can be described by a partition function,

Z0, found to be183

Z0 = e−βE0 where E0 =
1
2
}Nω

(√
A−⊕+

√
A+⊕+1

)
(1655)

Here we are using ω0 to represent the zero-point energy frequency. Factoring Z0 out of (1654) gives

Z = Z0 ∑
n

exp

[
−β}

N

∑
α

ωα

(√
A−⊕nx,α +

√
A+⊕ny,α +nz,α

)]
(1656)

We would like to simplify the expression so that it does not contain two summations. Since the exponential

of a sum is the product of exponentials, then we have

Z = Z0 ∑
n1,n2,···nα ,···nN

∏
α

exp

[
−β}ωα

(√
A−⊕nx,α +

√
A+⊕ny,α +nz,α

)]
(1657)

Here we are essentially taking a product of the partition function for each phonon state (numbered by α)

and then summing over the number of phonons that occupy each state (given by nα ). However, if we move

the sum past the product, then we would first sum over the phonons, nα , that occupy a given state α (where

nα goes from 1 to ∞ since there can be an unlimited number of phonons in a given state) and then take the

product over all the phonon states numbered by α .

Z = Z0 ∏
α

∞

∑
nα=1

exp

[
−β}ωα

(√
A−⊕nx,α +

√
A+⊕ny,α +nz,α

)]
(1658)

182Here we are essentially applying the concept of “periodic thermodynamics” as described by Kohn in [88]
and more recently by Langemeyer and Holthaus in [89].

183Notice that the gravitational field also couples to the ground state energy and therefore breaks the isotropy

of the zero-point energy in the lattice.
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We can take the log of both sides and use the fact that the log of a product is the sum of logs, then we have

ln(Z) = lnZ0+ ln
∞

∑
n1=1

exp

[
−β}ω0

(√
A−⊕nx,0+

√
A+⊕ny,0+nz,0

)]

+ ln
∞

∑
n2=1

exp

[
−β}ω1

(√
A−⊕nx,1+

√
A+⊕ny,1+nz,1

)]

+ · · ·+ ln
∞

∑
nα=α

exp

[
−β}ωα

(√
A−⊕nx,α +

√
A+⊕ny,α +nz,α

)]
+ · · · (1659)

Notice that if we perform the summation from 1 to ∞ in each term above, then all the terms will be identical.

Since the terms are being added, and because there is an infinite number of them, then we can write them all

in a single summation numbered by nα going from 1 to ∞. We also use the fact that the sum of logs is a log

of the product to pull the log outside again.

ln(Z) = ln

{
Z0

∞

∑
nα=1

exp

[
−β}ωα

(√
A−⊕nx,α +

√
A+⊕ny,α +nz,α

)]}
(1660)

We have now reduced the expression to a single summation over the number of phonons in each state nα .

Again we can make use of the fact that the exponential of a sum is the product of exponentials in order to

separate the exponentials involving nx, ny, and nz. Then we have

ln(Z) = ln

[
Z0

∞

∑
nα=1

exp

(
−β}

√
A−⊕ωα nx,α

)
∞

∑
nα=1

exp

(
−β}

√
A+⊕ωα ny,α

)
(1661)

·
∞

∑
nα=1

exp(−β}ωα nz,α)

]
(1662)

Each summation is now an infinite geometric sum184 which is given by

∞

∑
nα=0

arnα =
a

1− r
if |r|< 1 (1663)

In each summation of (1661) we have a = 1. In the first sum, we have r = exp
(
−β}

√
A−⊕ωα

)
. In the

second sum, we have r = exp
(
−β}

√
A+⊕ωα

)
. In the last sum, we have r = exp(−β}ωα). Then using the

formula for an infinite geometric sum in (1663), we find that (1661) becomes

ln(Z) = ln

[
Z0

(
1

1− e−β}
√

A−⊕ωα

)(
1

1− e−β}
√

A+⊕ωα

)(
1

1− e−β}ωα

)]
(1664)

184Note that because ωn = πnv/L, then we can start each of the summations at n= 0 without changing the

value of the summation.
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Finally, exponentiating both sides gives

Z = Z0

(
1

1− e−β}
√

A−⊕ωα

)(
1

1− e−β}
√

A+⊕ωα

)(
1

1− e−β}ωα

)
(1665)

Each of the factors in parentheses is effectively a partition function for a set of oscillators with frequencies

given by ωα , where α numbers the oscillators from α = 1 to N. Then the Helmholtz free energy, F =
−kBT ln(Z), for the sum of oscillators in the x, y, and z directions are, respectively,

Fx = −kBT
N

∑
α=1

ln

(
1

1− e−β}
√

A−⊕ωα

)
(1666)

Fy = −kBT
N

∑
α=1

ln

(
1

1− e−β}
√

A+⊕ωα

)
(1667)

Fz = −kBT
N

∑
α=1

ln

(
1

1− e−β}ωα

)
(1668)

Since the Helmholtz free energy is additive, then the combined free energy in the x, y, and z directions can

be found by adding the expressions above. We also include the zero-point energy as

F0 = −kBT lnZ0 =−kBT lne−βE0 = E0 (1669)

Lastly, using the log property, loga−1 =− loga, leads to a total free energy given by

F = E0+ kBT
N

∑
α=1

ln
(

1− e−β}
√

A−⊕ωα

)
+ kBT

N

∑
α=1

ln
(

1− e−β}
√

A+⊕ωα

)

+kBT
N

∑
α=1

ln
(
1− e−β}ωα

)
Helmholtz free energy for N quantum harmonic oscillators in the presence

of a gravitational wave with plus-polarization in the z-direction

(1670)

Notice that dropping the zero-point energy and setting A−⊕ = A+⊕ = 1, makes all three summations become

identical and the free energy reduces to the known expression for 3N quantum harmonic oscillators. Using

(1566), it is found in equation 4.3.7 of [80] to be

F = kBT
3N

∑
α=1

ln
(

1− e−β}ωα

)
(1671)

Next we apply the Debye model to the free energy in (1670). Each three-dimensional oscillator is char-

acterized by a wave vector~k. If the crystal lattice is a volume V = LxLyLz, then the allowed values of the
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wavelength in any direction is λ n/2= nL, with n being nonnegative integers. This means that the components

of k = λ/2π are

kx =
πnx

Lx

, ky =
πny

Ly

, kz =
πnz

Lz

(1672)

Debye’s assumption is that ω = vk, where v is a constant speed in the material for all modes. Then we can

write (1670) as

FD = E0+ kBT
N

∑
nx=1

ln
(

1− e−β}
√

A−⊕vk
)

+kBT
N

∑
ny=1

ln
(

1− e−β}
√

A+⊕vk
)
+ kBT

N

∑
nz=1

ln
(

1− e−β}vk
)

(1673)

Successive terms in the summations correspond to k’s which differ by π/L. When L is macroscopically large,

then the difference between successive terms of exp(−β}vk) in a given sum will be extremely small.185

Therefore the summations can be approximated by integrals. Also using (1672), we see that dn= L
π

dk which

means that we can write the integrals in terms of dk as

FD = E0+ kBT
Lx

π

∫
ln
(

1− e−β}
√

A−⊕vxkx

)
dkx+ kBT

Ly

π

∫
ln
(

1− e−β}
√

A+⊕vxky

)
dky

+kBT
Lz

π

∫
ln
(

1− e−β}vzkz

)
dkz (1674)

Ordinarily in the Debye model, the material is assumed to be isotropic so that the three summations in (1673)
are identical and we can simply write

FD = E0+3kBT
N

∑
nx,ny,nz

ln
(

1− e−β}vn/L
)

(1675)

Then instead of obtaining the three integrals in (1674), we find instead that using d3n= L3

π3 d3k with V = L3

gives a single integral.

FD = E0+
3kBTV

π3

∫
ln
(

1− e−β}vk
)

d3k (1676)

This makes it possible to integrate over a sphere in k-space which can be done by integrating d3k = 4πk2dk

from 0 to kD = ωD/v where ωD is the Debye cut-off frequency. However, in our case here, we found in

(1647) that ωx 6= ωy 6= ωz. Therefore, ω = vnπ/L is not identical in each direction. This means that we

185For example, using T ≈ 10−2K, a macroscopic length scale of centimeters
(
L≈ 10−2m

)
, and a shear

velocity for Niobium given by (1584) as vs ≈ 103m/s, we find that β}vsk=
}vs

kBT

πn

L
≈ 10−6n. The difference

between the terms with n= 1 and n= 2 will be ln
(
1− e−β}vsk2

)
− ln

(
1− e−β}vsk1

)
≈ 0.7. At the upper limit

of n, the difference beteween the terms with n=N−1 and n=N can be found using N =V ρ/m≈ 1022 from

(1585). This gives ln
(
1− eβ}vskN−1

)
− ln

(
1− eβ}vskN

)
≈ 0.
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cannot write (1673) as a single summation and hence obtain a single spherically symmetric integral in k-

space. Returning to (1674), we can apply integration by parts to each integral. Focusing on the first integral,

we can let

U = ln
(

1− e−β}
√

A−⊕vk
)
, dV = dk

dU =
β}
√

A−⊕v

eβ}
√

A−⊕vk−1
dk, V = k

(1677)

Then the integral becomes∫
ln
(

1− e−β}
√

A−⊕vk
)

dk = k ln
(

1− e−β}
√

A−⊕vk
)
−β}

√
A−⊕v

∫
k

eβ}
√

A−⊕vk−1
dk (1678)

As shown in (1587), we know that in the low-temperature limit, the first term on the right will become

vanishingly small. Also, the integral on the right can be approximated extremely well by using bounds from

0 to infinity. We can also use the following change of variables

x =

(
β}
√

A−⊕v

)
k, dx=

(
β}
√

A−⊕v

)
dk (1679)

Then the integral on the right side of (1678) becomes a known integral

−β}
√

A−⊕v

∫
∞

0

k

eβ}
√

A−⊕vk−1
dk = − 1

β}
√

A−⊕v

∫
∞

0

x

ex−1
dx=− 1

β}
√

A−⊕v

π2

6
(1680)

Similarly, applying integration by parts to the second and third integrals in (1674) will lead to a form analo-

gous to (1678) in each case. Then similar to (1680), we will obtain∫
ln
(

1− e−β}
√

A+⊕vk
)

dk ≈− 1

β}
√

A+⊕v

π2

6
(1681)

and ∫
ln
(

1− e−β}vk
)

dk ≈ − 1

β}v

π2

6
(1682)

Now we can insert (1680)− (1682) into (1674), insert the expression for E0 from (1655), and use β =

(kBT )−1
. This gives

FD =
1

2
}Nω

(√
A−⊕+

√
A+⊕+1

)
− π

6}β
2
v

 Lx√
A−⊕

+
Ly√
A+⊕

+Lz

 (1683)

We can also use the following expression for A±⊕ from (1635) which is

A±⊕ ≡ 1± A⊕
2π

(1684)
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In (1683), we can expand
(
A±⊕
)1/2

and
(
A±⊕
)−1/2

to first order as186

(
A±⊕
)1/2 ≈

(
A±⊕
)−1/2 ≈ 1± A⊕

4π
(1685)

Inserting this into (1683) and eliminating terms higher than first order in A⊕ gives

FD =
3

2
}Nω− π

6}β
2
v

Lx

(
1− A⊕

4π

)
− π

6}β
2
v

Ly

(
1+

A⊕
4π

)
− π

6}β
2
v

Lz

Debye free energy for a low-temperature lattice in the presence

of a gravitational wave with plus-polarization in the z-direction

(1686)

We can now formulate the Debye free energy density in curved space-time by taking the derivative of

(1683) with respect to proper volume. Recall that the coordinate-dependent volume can be expressed in

terms of the proper volume as dV = dVproper/
√−g. We can use gττ

⊕ to represent the determinant of the

metric when the only perturbation to flat space-time is h⊕. We can also define the Debye free energy density

with respect to proper volume (in the presence of a plus-polarized gravitational wave) as

FD ≡ dFD

dV
=

√
−gττ
⊕

dFD

dVproper

(1687)

To evaluate the dFD/dV , we need to express FD in (1686) in terms of the volume. We can do this by inserting

N = nV where n is the number density of atoms in the lattice, and by using V = LxLyLz. This gives

FD =
3}ωnV

2
− πV

6}β
2
vLyLz

(
1− A⊕

4π

)
− πV

6}β
2
vLxLz

(
1+

A⊕
4π

)
− πV

6}β
2
vLxLy

(1688)

Evaluating dFD/dV and inserting into (1687) gives the Debye free energy density with respect to proper

volume in curved space-time as

FD =

√
−gττ
⊕

[
3}ωn

2
− π

6}β
2
vLyLz

(
1− A⊕

4π

)
− π

6}β
2
vLxLz

(
1+

A⊕
4π

)
− π

6}β
2
vLxLy

]
(1689)

In (2661) of Appendix G, it was found that the determinant of the metric (in terms of the transverse-

traceless metric perturbation) is gττ = −1+ h2
⊕+ h2

⊗. Setting h⊗ set to zero for plus-polarized waves and

using a binomial expansion to first order187 gives√
−gττ ≈ 1+

1

2
h⊕ (1690)

Recall that we have been working with a standing gravitational wave in the z-direction given by (1613) as

h⊕ (z, t) = A⊕ cos(kz)sin(ωt). Also recall that we are considering the case of a thin film where z << λ so

that kz << 1 and therefore cos(kx) ≈ 1. For approximation purposes, we can also choose ωt = π/2 so that

sin(ωt) = 1. Then (1690) can be expressed just in terms of the amplitude, A⊕. We can insert (1690) into

186The expansions used here are (1± x)1/2 ≈ (1± x)−1/2 ≈ 1± 1
2
x for |x|<< 1.

187The binomial expansion to second order is
√

1+ x≈ 1+ 1
2
x− 1

8
x2 for x<< 1.
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(1689), distribute, and eliminate terms that are higher than second order in A⊕.

FD =
3}ωn

2
+

3}ρω

4m
A⊕−

π

6}β
2
vLyLz

(
1− A⊕

4π

)
− π

12}β
2
vLyLz

A⊕

− π

6}β
2
vLxLz

(
1+

A⊕
4π

)
− π

12}β
2
vLxLz

A⊕−
π

6}β
2
vLxLy

(
1+

1

2
A⊕

)

Grouping terms according to order in A⊕ gives

FD =
3}ωn

2
− π

6}β
2
v

(
1

LyLz

+
1

LxLz

+
1

LxLy

)

+
3}ωn

4
A⊕+

1

24}β
2
v

(
1

LyLz

− 1

LxLz

)
A⊕

−
[

π

12}β
2
v

(
1

LyLz

+
1

LxLz

+
1

LxLy

)]
A⊕

Debye free energy density with respect to proper volume in curved space-time

for a low-temperature lattice in the presence of a gravitational wave

with plus-polarization in the z-direction

(1691)

Note that the expression reduces considerably if we drop the zero-point energy which is given by the expres-

sions involving ω . Then we have

FD = − π

6}β
2
v

(
1

LyLz

+
1

LxLz

+
1

LxLy

)
+

1

12}β
2
v

(
1−2π

2LyLz

− 1+2π

2LxLz

− π

LxLy

)
A⊕ (1692)

The zero-point energy is ordinarily neglected because it does not contribute to macroscopic thermodynamic

quantities (such as entropy, specific heat, etc.). However, in this context we find that the strain field of the

gravitational wave is coupled to the zero-point energy. This will be relevant in the next section where we will

take the derivative of the free energy with respect to the strain field to find the stress induced by a gravitational

wave acting on the ionic lattice of a superconductor. This means that if we remove the zero-point energy at

this stage, we would be neglecting its contribution to the stress in the following section.
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15.5 A gravitational shear modulus for the ionic lattice

To consider the work done on a system due to a gravitational strain, hi j, causing a stress, Ti j, we can use

W =
∫

T i jdhi j where W is the work density (or work per unit volume). This means that T i j = dW /dhi j. By

the work-energy theorem, we can recognize that work done by the system must reduce the internal energy

density so that U = −W . Also, we can use the fact that the internal energy satisfies the relation dU =
T dS−PdV and the Helmholtz free energy is F =U−T S. However, now we recognize that when stresses and

strains are present, then the Helmholtz free energy also satisfies the relation dF =−SdT +T i jdhi j, where S
is the entropy density (or entropy per unit volume). It follows that the stress produced by a gravitational wave

interacting with the Cooper pair density can be expressed in terms of the Debye free energy density as188

T i j =

(
∂FD

∂hi j

)
T

(1693)

For plus polarization, we have hττ
11 = −hττ

22 = h⊕ which corresponds to T ττ
11 = −T ττ

22 = T⊕. In that case, we

can use189

T⊕ =

(
∂FD

∂h⊕

)
T

(1694)

Therefore, applying (1694) to (1691) gives

T⊕ =
3}ωn

4
+

1

24}β
2
v

(
1

LyLz

− 1

LxLz

)

−
[

π

12}β
2
v

(
1

LyLz

+
1

LxLz

+
1

LxLy

)]

−}ωn

8

(
1

2π2
+15

)
A⊕+

1

24}β
2
vLyLz

[
5π+1−

(
8π2+3

4π

)]
A⊕

+
1

24}β
2
vLxLz

[
5π−1+

(
8π2−3

4π

)]
A⊕+

5π

24}β
2
vLxLy

A⊕

Stress on a low-temperature lattice due to a gravitational wave

with plus-polarization in the z-direction

(1695)

The first two lines are stress terms that are essentially a “background stress” due to the metric perturbation to

first order. The last two lines come from the metric to second order and describe the linear response of the

stress in the ionic lattice to the strain field of the gravitational wave. If we consider a constitutive equation

given by T⊕ = −µ⊕h⊕, where µ⊕ is the “gravitational modulus” of the ionic lattice for a plus-polarization

188Here we are using a formulation similar to [79], eq. 3.3, which gives dF = −SdT +σ i jdui j, where σ i j

is the material stress and ui j is the material strain. It is also shown in eq. 3.6 that σ i j = (∂F/∂ui j)T which

leads analogously to our relation in (1476). Notice there is a positive sign in this relation versus the negative

sign in P=−(∂F/∂V )T .

189Note that the derivative is with respect to the the full time-dependent function given by hττ
i j =

Aττ
i j cos(kz−ωt), not just the magnitude, Aττ

i j . However, for approximation purposes, we have eliminated

the time-dependence in the free energy density and therefore the derivative can be considered as being with

respect to the amplitude A⊕.
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wave, then µ⊕ can be found from the last two lines in the expression above.

µ⊕ =
}ρω

8m

(
1

2π2
+15

)
− 1

24}β
2
vLyLz

[
5π+1−

(
8π2+3

4π

)]

− 1

24}β
2
vLxLz

[
5π−1+

(
8π2−3

4π

)]
− 5π

24}β
2
vLxLy

Gravitational modulus for a low-temperature lattice in response

to a gravitational wave with plus-polarization in the z-direction

(1696)

This expression describes the effective “stiffness” of the ionic lattice in response to the strain of a plus-

polarization gravitational wave. It also demonstrates a linear response of the induced stress as a result of

the incident gravitational wave strain. Since the result is specifically for a plus-polarization wave, we have

labeled the gravitational modulus with a corresponding subscript. Note that if Lx ≈ Ly, then we can simplify

the result to

µ⊕ ≈
}ωn

8

(
1

2π2
+15

)
− 5π

24}β
2
vLzL

2
x

(2Lx+Lz) (1697)

We can also approximate
(

1
2π2 +15

)
≈ 15 which simplifies the first term. Also, since we have been consid-

ering the case of a thin film where Lz << λ , then we would also expect that Lz << Lx which simplifies the

second term. Then the result above can be reduced further to

µ⊕ ≈
15}ωn

8
− 5π

12}β
2
vLxLz

(1698)

The first term can be referred to as the “zero-point energy” term since it originates from the contribution of

the zero-point energy to the free energy of the system. The second term can be referred to as the “sum of

modes” term since it originates from the contribution of the sum of all the other modes of the system. There

are several important differences between these two terms.

• The “zero-point energy” term involves } in the numerator while the “sum of modes” term involves }
in the denominator. The } shifted to the denominator in the process of utilizing the Debye model and

evaluating the integral over all frequencies in (1680)− (1682).

• The “sum of modes” term varies with T 2 which means that as the temperature approaches zero, this

term vanishes. However, the “zero-point energy” term would always remain.

• The “zero-point energy” term is an intensive property of the system since subdividing the system would

not change the uniform number density of atoms, n, or the zero-point energy frequency, ω . On the other

hand, the “sum of modes” term is an extensive property of the system since subdividing the system

would change the length (either Lx, Ly, or Lz) and therefore would change the contribution to µ⊕ from

the second term in the expression above.

• The “zero-point energy” term is always a positive value while the “sum of modes” term is always a

negative value. Since the constitutive equation is T⊕ = −µ⊕h⊕, then this means that the “zero-point

energy” term follows the generalized Hooke’s law relationship which predicts that an external field h⊕
would produce a stress T⊕ that opposes the external field. However, the “sum of modes” term does not

follow the generalized Hooke’s law relationship and would therefore contribute to a “run away” effect

if the “sum of modes” term were dominant.
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For an upper bound on the “zero-point energy” term, we can use the Debye frequency, ωD, which is the

cut-off frequency in the Debye model. For a Niobium superconductor, we found in (1584) that n = N/V ≈
5.6×1028m−3 and ωD ≈ 3.1×1013s−1. For the “sum of modes” term, we can use a thickness for the film on

the order of millimeters
(
Lz ≈ 10−3m

)
and a surface with edges on the order of centimeters

(
Lx ≈ 10−2m

)
.

From (1584) we also have v =
√

s/ρ ≈ 2.1× 103m/s. We can also use T ≈ 10−2K for the temperature of

the superconductor. Using all of these values, we find the gravitational modulus has a value given by

µ⊕ ≈ 3.4×108J/m3−1.4×10−13J/m3 (1699)

Here we find that the “zero-point energy” term produces a result that is 21 orders of magnitude greater than

the “sum of modes” term. This is obviously due to the factor of n appearing in the “zero-point energy” term.

In order for the “zero-point energy” term to be comparable to the “sum of modes” term, then the two terms

in (1698) we would need to be comparable.

15}ωn

8
≈ 5π

12}β
2
vLzLx

(1700)

This leads to a frequency of

ω ≈ 2π

9}2β
2
nvLzLx

≈ 1.3×10−8s−1 (1701)

This corresponds to a period of T = 2π/ω ≈ 4.8×108s≈ 15 years. This is clearly an unrealistic period and

therefore we see that the “sum of modes” term would never be comparable to the “zero-point energy” term.

However, if we solve this for the temperature, then we have

T ≈ 3}
kB

√
ωnvLzLx

2π
(1702)

Using the frequency in (1701) gives T ≈ 3.5×10−2K. This is a reasonable temperature that can be achieved

in the lab. On the other hand, if we use the upper limit of the zero-point energy given by the Debye frequency

and still require the “sum of modes” term to be comparable to the “zero-point energy” term then we have

T ≈ 1.7×109K. This is obviously far beyond lab-scale temperatures.
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15.6 Quantifying the charge-separation effect

In previous sections, a constitutive equation, T ττ
i j =−µG(SC)h

ττ
i j , was developed which describes the linear

response of the transverse-traceless stress in a superconductor, T ττ
i j , caused by a transverse-traceless gravi-

tational strain of space, hττ
i j , where µG(SC) is the gravitational shear modulus. From continuum mechanics,

it is also possible to develop a constitutive equation describing the transverse-traceless material strain, uττ
i j ,

caused by a transverse-traceless stress applied to an object. In equation (4.6) of Landau and Lifshitz’s Theory

of Elasticity [79], the stress tensor is related to the material strain tensor as190

Ti j = Kuδ i j+2s
(
ui j− 1

3
uδ i j

)
(1703)

where K is the bulk modulus, s is the shear modulus, and u= δ
i j

ui j is the trace of ui j. Taking the trace of this

expression, δ
i j

Ti j, gives

T = 3Ku (1704)

The transverse-traceless stress tensor can be defined as

T ττ
i j ≡ Ti j− 1

3
T δ i j (1705)

where ∂iTi j = 0 in order for T ττ
i j to be transverse as well as traceless. Inserting (1703) and (1704) into (1705)

gives

T ττ
i j = 2s

(
ui j− 1

3
uδ i j

)
(1706)

The transverse-traceless material strain can be defined as

uττ
i j ≡ ui j− 1

3
uδ i j (1707)

where ∂iui j = 0 in order for uττ
i j to be transverse as well as traceless. Then the material constitutive equation

in (1706) can be written as

T ττ
i j = 2suττ

i j

Transverse-traceless constitutive

equation for the material strain
(1708)

This relationship has the same form as T ττ
i j = −µG(SC)h

ττ
i j which is the constitutive equation describing the

response of a superconductor to a gravitational wave. However, there is an important distinction between hττ
i j

(the strain of space) and uττ
i j (the strain of matter). If an object is in the presence of a gravitational strain of

space, it is possible that the resulting strain of matter in the material is not equal to the strain of space. The

reason is because the material can essentially resist the strain of space due to an internal rigidity (caused by

electromagnetic, quantum mechanical, or other internal interactions within the material). Therefore, it should

not be assumed that hττ
i j = uττ

i j for a given object. In fact, this would only be true of free particles.

Ordinarily, if the space between particles stretches/squeezes, then the particles will move with space

so that the distance between them increases/decreases accordingly. This means uττ
i j = hττ

i j which can be

associated with “motion with space” in the presence of a gravitational wave. By contrast, if the particles

that make up an object are fixed rigidly with respect to each other (such as in a crystal lattice structure or

an incompressible fluid), then the distance between the particles will not increase/decrease in a manner that

is equal to the stretching/squeezing of the space between them. Since space would be stretching/squeezing

relative to the particles, then the particles could be considered as effectively moving through space. Therefore,

uττ
i j 6= hττ

i j can be associated with “motion through space” in the presence of a gravitational wave. This

distinction between moving with space and moving through space can be compared to the distinction between

a Doppler redshift (due to motion of objects through space) and a Cosmological redshift (due to motion of

objects with space).

190Landau and Lifshitz use σ ik for the stress tensor, ull for the trace, and µ for the shear modulus.
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Now comparing the stress found in the material constitutive equation, T ττ
i j = suττ

i j , and the stress found in

the gravito-London constitutive equation, T ττ
i j =−µG(SC)h

ττ
i j , requires careful consideration of the difference

between an internal stress within a material versus an external stress applied to a material. It should be

recognized that there is a sign difference between these two stress quantities. This can be understood by

recognizing that in each constitutive equation, there is an external quantity causing an internal effect. For the

material constitutive equation, there is an external stress acting on the material which causes an internal strain.

Hence, writing the equation in the form “internal effect caused by external source” leads to uττ

i j (internal) =(
1
2s

)
T ττ

i j (external). This is consistent with the fact that s is interpreted as the “stiffness” of a material to an

external stress, which means 1/s could be interpreted as the “responsiveness” of a material to an external

stress. In contrast to this, the gravito-London constitutive equation, T ττ
i j =−µG(SC)h

ττ
i j , involves an external

gravitational strain field causing an internal stress. Once again, writing the equation in the form “internal

effect caused by external source” leads to T ττ

i j (internal) =−µG(SC)h
ττ

i j (external).

Therefore, to relate the two constitutive equations, it is important to recognize that mechanical equilibrium

requires that an external stress acting on a material must be equal and opposite to the internal stress that exists

within the material. This means T ττ

i j (external) =−T ττ

i j (internal). Then using the two constitutive equations leads

to the following relationship.191

uττ
i j =

µG(SC)

2s
hττ

i j

Strain of matter in terms of

gravitational strain of space
(1709)

This gives a cause-effect relationship between hττ
i j (an external gravitational wave strain field acting as the

cause) and uττ
i j ( the internal strain of an object which is the effect). As expected, the material strain is in the

same direction as the gravitational wave strain field. For example, if a gravitational strain is expanding space

(at a given instant), then the material strain should also be an expansion, not a contraction.

Also notice that the proportionality constant relating uττ
i j and hττ

i j in (1709) has an intuitive interpretation.

It is µG(SC) (the responsiveness of a material to a gravitational wave) divided by s (the stiffness of the material

to an external stress). A larger responsiveness (and/or smaller stiffness) will lead to a larger material strain,

uττ
i j , for a given gravitational wave strain, hττ

i j . In fact, the free particle limit would be µG(SC)/s = 1 so that

uττ
i j = hττ

i j . This implies that free particles move in manner that is completely slaved to the gravitational wave.

The other extreme case would be an object with very low responsiveness (small µG(SC)) and/or a very high

stiffness (large s). Such an object would experience very little material strain in response to a gravitational

strain of space. Therefore, from the discussion above, it must be the case that

0<
µG(SC)

s
≤ 1 (1710)

where the lower bound is for a very stiff material, and the upper bound is for free particles.192

191The relation T ττ

i j (external) =−T ττ

i j (internal) is exactly the same physical relation given in equation (2.10) of

[74] as Tjk = −S jk, where Tjk is the external stress tensor and S jk is the internal Cauchy stress tensor of the

material.
192This result can be compared to Dyson’s equation (2.31) in [74] which gives a boundary expression

expressed as

λN jz
m,m+µNk

(
z j,k+ zk, j−h jk

)
= 0

where z j describes the elastic motions of the solid, and N j is a vector normal at any point on the surface. For

a transverse symmetric strain, zm,m = 0 and z j,k = zk, j, which leads to z j,k = 1
2
h jk. Matching this to (1709)

implies that µG = s.

Dyson’s formulation is based on taking a standard Lagrangian density found in non-relativistic mechanics

to describe the motion of a solid, and adding an additional interaction term, L =− 1
2
h jkS jk, to describe the
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To formulate the charge-separation effect in a superconductor, uττ

i j(LI) can be used to describe the strain of

the ionic lattice, and uττ

i j(CP) can be used to describe the strain of the Cooper pairs density. Then using (1709)

leads to

uττ

i j(CP) =
µG(CP)

2s
hττ

i j and uττ

i j(LI) =
µG(LI)

2s
hττ

i j (1711)

The material shear modulus, s, must be the same for the Cooper pair density and the ionic lattice. This is due

to the fact that s is determined experimentally by applying a mechanical stress to a material and then measur-

ing the corresponding strain. In doing so, the Cooper pair density and ionic lattice will both expand/contract

together due to the electric force which binds them and preserves charge neutrality throughout the super-

conductor. If this were not the case, then applying a mechanical stress on a superconductor would lead to a

charge-separation effect, or in other words, an electric polarization.

However, the gravitational shear moduli, µG(LI) and µG(CP), are very different from one another due to

the difference in the quantum mechanical nature of the ionic lattice and the Cooper pair density. For the

Cooper pair density, the coupling to gravity was due to a term of the form hi jTi j which appeared in the energy

expression after expanding the relativistic four-momentum invariant: gµν pµ pν = −m2c2. The energy was

evaluated (to second order in velocity) and a partition function was formulated. The Cooper pairs are modeled

as effectively a single quantum particle in the ground state, rather than an ensemble of particles in multiple

states. Therefore, the energy becomes equivalent to the free energy, and the Ginzburg-Landau free energy

density can be written by introducing the coupling terms involving α and β .

From the free energy density, it is apparent that the coupling hi jTi j involves a quantum stress of the

form T i j = 1
2m

(
π iψ

)∗ (
π jψ

)
. The free energy density can be written in curved space-time by introducing

a Jacobian factor,
√−g. Expanding to second order in the metric and taking a derivative of the free energy

density with respect to the gravitational strain field leads to an interaction stress tensor with an expression for

the gravitational modulus. Using an upper bound imposed by the BCS energy gap, and using the coherence

length of the superconductor, it was shown in (1547) that µG(CP) ≈ 104J/m3 for niobium. It is ultimately the

coherence length that determines the value of µG(CP).

On the other hand, the ionic lattice was modeled as an ensemble of quantum harmonic oscillators coupled

to a gravitational wave. The interaction term in the Hamiltonian has the form hττ
i j (z, t)T

i j, where T i j =

p̂i p̂ j/2m. The periodic time-dependence of the Hamiltonian leads to quasi-energy eigenvalues which can

be used to construct a partition function. Summing over all the phonon modes in the lattice, evaluating the

Helmholtz free energy, applying the Debye model in the low-temperature limit, and introducing the Jacobian

factor,
√−g, leads to a free energy density in curved space-time. Then taking the derivative of the free energy

density with respect to the strain field leads to a stress tensor with an expression for the gravitational modulus.

For a niobium slab with an area of 1cm2, it was shown in (1699) that µG(LI) ≈ 108J/m3. It is ultimately the

ground state energy of the lattice phonons that determines the value of µG(LI).

Therefore, it is clear that the interaction of the gravitational wave occurs in a different way for the Cooper

pair density than it does for the ionic lattice, and consequently the results for µG(LI) and µG(CP) are very

coupling of the metric perturbation to the stress tensor. Then the Euler-Lagrange equation is used to obtain an

equation of motion involving the material strain and the gravitational strain (subject to appropriate boundary

conditions and conservation laws). In this formulation, the only parameter describing the response of matter

to a gravitational wave is the material shear modulus (since µG = s). Therefore, this result treats hττ
i j and ui j

as essentially the same type of strain. There is no distinction between a gravitational strain and a material

strain in the equation of motion. However, this cannot be the case since the gravitational strain , hττ
i j , is

coupled to the system not just through an interaction Lagrangian, but also through a Jacobian factor,
√
−gττ ,

which descibes all densitiy quantities in terms of the invariant proper volume. This is fundamentally different

from way that the material strain enters in the formulation. In other words, hττ
i j introduces a curvature to

space-time itself, unlike uττ
i j which simply describes the strain of a material.
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different. This leads to a charge-separation effect that can now be quantified. The relative strain between the

Cooper pairs and lattice ions can be defined as

uττ

i j(relative) ≡ uττ

i j(LI)−uττ

i j(CP) (1712)

If the responses to a gravitational wave by the Cooper pair density and the ionic lattice were the same, then

uττ

i j(LI) = uττ

i j(CP). This would lead to uττ

i j(relative) = 0 which means that the Cooper pairs and lattice ions would

simply co-move together in response to the gravitational wave. There would be no relative strain between

them and hence there would be no charge-separation effect. However, since the response of the Cooper pair

density and the ionic lattice are different, then inserting (1711) into (1712) gives

uττ

i j(relative) =
µG(LI)−µG(CP)

2s
hττ

i j

Relative strain between the lattice ions

and Cooper pairs of a superconductor

due to a gravitational wave

(1713)

Since µG(CP) ≈ 104J/m3 for the Cooper pairs and µG(LI) ≈ 108J/m3 for the lattice ions, then µG(LI) >>
µG(CP) which means

uττ

i j(relative) ≈
µG(LI)

2s
hττ

i j (1714)

This shows that the charge-separation effect can be described simply in terms of the response of the ionic

lattice. The Cooper pair density can be considered as relatively unresponsive to the gravitational wave. For

niobium, the material shear modulus is s≈ 1010J/m3. This leads to a relative strain between the Cooper pair

density and ionic lattice that is given by

uττ

i j(relative) ≈ 0.01hττ
i j (1715)

Hence the charge-separation effect proposed conceptually in [7] has now been quantified. For a 1cm2 slab

of superconducting niobium, the relative strain between the Cooper pair density and the ionic lattice is ap-

proximately 1% of the gravitational wave strain field. However, it should be noted that the charge separation

effect will produce an electric field which will act as a restoring force between the ionic lattice and Cooper

pair density. This force will oppose the relative strain between the the ionic lattice and Cooper pair density.

Therefore, including this force in the analysis would reduce the relative strain. In other words, the result in

(1715) was obtained by calculating the response of the Cooper pair density and the response of the ionic

lattice independently, then simply taking the difference of their strains to determine the charge separation

effect. However, a more realistic model would include the restoring electric force which increases along with

the relative strain in (1713), and hence would lead to a smaller coefficient in (1715).
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16.1 The electromagnetic free energy density in curved space-time

In this section, the response of the electromagnetic fields to a gravitational wave is formulated using the

electromagnetic free energy density in curved space-time. In general, the four-momentum can be expressed

in terms of the stress tensor as193

pµ =
∫ √
−gT µν dSν (1716)

where dSν is a differential four-surface with ν indicating the direction of the normal vector. The energy can

be obtained by setting µ = 0 so that p0 = E/c. Raising the index of the four-surface using a metric and

summing over repeated indices gives

E = c

∫ √
−ggρν T 0ν dSρ (1717)

= c

∫ √
−g
(
g00T 00dS0+g0 jT

0 jdS j
)

(1718)

Note that dS0 = dV · dx̂0 is a differential volume with a time-like normal unit vector dx̂0 = 1
c
dt̂. Also note

that dSi =
(
dA · 1

c
dt
)

dx̂i is a differential area multiplied by a differential time with a space-like normal unit

vector. The metric can be expanded as gµν = ηµν + hµν . For gravitational waves in the far-field, hi j = hττ
i j

and h0µ = 0. Also, the Jacobian for the transverse-traceless metric can be written as gττ . Then the total

energy can now be written as

E =
∫ √
−g
[
T 00dV +T 0 j (dA ·dt)

]
(1719)

It is now evident that the first term in the integral represents the energy density, T 00, integrated over a spatial

volume. The second term in the integral represents an energy flux density (or moment flow density ), T 0 j,

integrated over an area and time. Evaluating the energy at a single instant in time means dt = 0 and therefore

the second term in the integral vanishes. In (2661) of Appendix G, it was found that gττ = −1+ h2
⊕+ h2

⊗.

Then applying a first order approximation to the metric gives

E =
∫ (

1− 1
2
h2
⊕− 1

2
h2
⊗
)

T 00dV (1720)

Determining T 00 for electromagnetic fields can be done by starting with the electromagnetic energy-momentum

tensor.

T
µν

(EM)
=

1

µ0

(
Fµα Fν

α − 1
4
gµν Fρσ Fρσ

)
(1721)

Using the metric to write the electromagnetic strength tensor in terms of upper indices only gives

T
µν

(EM)
=

1

µ0

(
gαρ Fµα Fνρ − 1

4
gµν gαρ gβσ Fρσ Fαβ

)
The metric can be expanded as gµν =ηµν+hµν . Once again, for gravitational waves in the far-field, hi j = hττ

i j

and h0µ = 0. Evaluating T 00
(EM), summing over repeated indices, and using ηµ0 = (−1,1,1,1) gives

T 00
(EM) =

1

µ0

(
−F00F00+gi jF

0iF0 j
)

− 1

4µ0

(
F00F00−gi jF

0iF0 j−gi jF
i0F j0+gi jgklF

jlF ik
)

(1722)

193Note that the integral in terms of proper volume since the proper volume is dV =
√−gdV , where V is

the coordinate volume and
√−g is the Jacobian expressed in terms of the determinant of the metric, g.
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The components of the electromagnetic field tensor can be written in terms of the electric and magnetic fields

as

F0i =
1

c
E i, F i j = ε

i jkBk, Fµµ = 0, where Fµν =−Fνµ (1723)

Using these relations makes the stress tensor become

T 00
(EM) =

1

µ0c2
gi jE

iE j− 1

4µ0

(
2

c2
gi jE

iE j−gi jgklε
jlmBm

ε
iknBn

)
(1724)

The spatial metric can now be written as gi j = δ i j+hττ
i j . Separating out terms involving hττ

i j , staying to first

order in hττ
i j , and using ε0 = 1/

(
µ0c2

)
gives

T 00
(EM) =

ε0

2
E2+

1

4µ0

ε
ikm

ε
iknBmBn+

ε0

2
hττ

i j E iE j

+
1

4µ0

(
hττ

i j δ kl+δ i jh
ττ
kl

)
ε

jlm
ε

iknBmBn (1725)

Using ε ikmε ikn = 2δ
mn

as well as

ε
jlm

ε
ikn = δ

i j
(

δ
kl

δ
mn−δ

ln
δ

mk
)
−δ

jk
(

δ
il
δ

mn−δ
ln

δ
mi
)
−δ

jn
(

δ
li
δ

mk−δ
kl

δ
mi
)

(1726)

gives194

T 00
(EM) =

1

2

(
ε0E2+

1

µ0

B2

)
+

ε0

2
E iE jhττ

i j

+
1

2µ0

[
3BiB j−δ

kl
δ

j

k
δ

i
lB

2+δ
kl

δ
j

k
BlB

i−δ
kl

δ
i
lBkB j

]
hττ

i j (1727)

The first term is the standard result for the electromagnetic energy density in flat space-time. The second and

third terms include the coupling to a gravitational wave field, hττ
i j . Inserting (1727) into (1720) and staying

to second order in the metric gives

E =
1

2

∫ (
1− 1

2
h2
⊕− 1

2
h2
⊗
)(

ε0E2+
1

µ0

B2

)
dV (1728)

Evaluating this integral requires explicit functions for the gravitational wave fields, h⊕ and h⊗, as well as the

electromagnetic fields, E and B. Using (1332), the gravitational wave fields can be written as

h⊕ (z, t) = A⊕e−z/δ G cos(ωt) and h⊗ (z, t) = A⊗e−z/δ G cos(ωt) (1729)

where δ G is the frequency-dependent gravitational penetration depth, and A⊕ and A⊗ are amplitudes for

plus-polarization and cross-polarization waves, respectively. To determine the electromagnetic fields inside

the superconductor, we consider the case of a plus-polarized gravitational wave with normal incidence on a

planar superconductor. As described in [7], it is expected that the edges of the superconductor will exhibit a

charge-separation effect due to a difference in the way the Cooper pair density and the ionic lattice respond to

the gravitational wave. This difference produces a surface charge density at the edges of the superconductor

while the bulk of the superconductor remains electrically neutral. (The total charge is conserved since the

surface charge on adjacent faces have different signs.)

194Note that upper indices which match lower indices imply a summation over indices, such as the upper

and lower indices in δ
kl

δ
j

k
= δ

1l
δ

j

1+δ
2l

δ
j

2+δ
3l

δ
j

3. However, lower indices that match are understood to

be simply Kronecker deltas, such as δ i jδ ik = δ jk.
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The following diagram (found in [7]) shows the charge accumulation on the edges of the planar supercon-

ductor at a particular instant.

Figure 10: The charge separation effect in a superconductor (for a plus-polarized gravitational wave).

Since the supercurrents follow hyperbolic trajectories, it is expected that the associated electric field (due

to a plus-polarized gravitational wave) will have a form given by

~E =
E0

L
(−xx̂+ yŷ)e−z/λ L cos(ωt) (1730)

where L is the length of one side of a superconducting slab with a square face, and λ L is the London pen-

etration depth.195 Inserting (1729) and (1730) into (1728), setting t = 0, and omitting the magnetic field

gives196

E =
ε0E2

0

2L2

∫ L

0

∫ L

0

∫ d

0

(
1− 1

2
A2
⊕e−2z/λ G

)(
y2+ x2

)
e−2z/λ L dxdydz (1731)

195Using a cross-polarized gravitational wave would lead to an electric field induced in the superconductor

given by ~E = E0
L
(yx̂+ xŷ)e−z/λ L cos(ωt), which leads to the same result for the energy found in (1735).

196In the “DC limit,” the frequency-dependent gravitational penetration depth, δ G, becomes the frequency-

independent value, λ G.
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Here d is the thickness of the superconducting slab. The integral can be written in cylindrical coordinates

using dA= dxdy= 2πrdr and x2+y2 = r2. Also, the upper bounds (x= L and y= L) lead to r=
√

2L. Then

the integral becomes

E =
πε0E2

0

L2

∫ √2L

0
r3dr

∫ d

0

(
e−2z/λ L − 1

2
A2
⊕e−2z(1/λ G+1/λ L)

)
dz (1732)

Evaluating the integrals gives

E = πL2
ε0E2

0

[(
−λ L

2
e−2z/λ L +

1

4

(
λ Gλ L

λ G+λ L

)
A2
⊕e−2z(1/λ G+1/λ L)

)]d

0

(1733)

If the thickness of the superconducting slab is much greater than the London penetration depth and gravita-

tional penetration depth, then d >> λ L,λ G which means e−2d/λ L ≈ e−2d/λG ≈ 0. This gives

E =
πL2λ Lε0E2

0

2

[(
1− λ G

2(λ G+λ L)
A2
⊕

)]
(1734)

Since the amplitude of the gravitational wave is typically very small, A⊕ << 1, then the second term can be

neglected which leaves

E = 1
2
πL2

λ Lε0E2
0 (1735)

This is the total energy due to the electric field induced in the superconducting slab. It is essentially the en-

ergy density, 1
2
ε0E2

0 , multiplied by a volume, πL2λ L. The Helmholtz free energy, F =−kBT ln(Z), can now

be evaluated use the partition function for a canonical ensemble, Z = ∑exp(βEn), with En being the energy

modes of the system, and β = (kBT )−1
where kB is the Boltzmann constant, and T is the temperature. Since

the electromagnetic field is induced by the incident gravitational wave, then the frequency of the electromag-

netic field oscillation will be that same as the frequency of the gravitational wave. In that case, there is only

a single mode, and the free energy is the same as the energy of the system.

F = −kBT ln(Z) =−kBT ln
(

e−βE
)
= E (1736)

Therefore, the electromagnetic free energy is just

FEM =
1
2
πL2

λ Lε0E2
0 (1737)

The electromagnetic free energy density in curved space-time can be found by taking the derivative of the

free energy with respect to proper volume. Recall that the coordinate-dependent volume can be expressed in

terms of the proper volume as dV = dV /
√
−gττ , where

√
−gττ
⊕ is the Jacobian, and gττ

⊕ is the determinant

of the metric containing only the transverse-traceless part of the metric perturbation for a plus-polarized

gravitational wave. Then the electromagnetic free energy density can be expressed in terms of proper volume

as

FEM ≡
dFEM

dV
=

1√
−gττ

dFEM

dV
(1738)

Evaluating dFEM/dV requires expressing (1737) in terms of the volume, V = L2d, where d is the thickness

of the superconducting slab. This gives

FEM =
πV λ Lε0E2

0

2d
(1739)

Taking the derivative with respect to volume and inserting into (1738) gives the electromagnetic energy

density with respect to proper volume in curved space-time.

FEM =
1√
−gττ

πλ Lε0E2
0

2d
(1740)
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Using gττ
⊕ =−1+h2

⊕ and applying a binomial approximation gives

FEM =

(
1+

1

2
h2
⊕

)
πλ Lε0E2

0

2d
(1741)

The magnitude of the electric field induced in a superconductor can be determined using the charge-separation

effect. For an order of magnitude approximation, the adjacent sides of a superconducting slab can be modeled

as a parallel plate capacitor so that

E =
σ

ε0

(1742)

The surface charge density, σ = Q/A, can be determined using Q = ρV , where ρ is volume charge density

occupying a volume V = A∆L, where ∆L is the separation distance between the Cooper pair density and the

ionic lattice. Also using ρ = nse, where ns is the Cooper pair density, gives

σ =
Q

A
=

ρV

A
=

ρA∆L

A
= nse∆L (1743)

The separation distance in the x-direction and y-direction can be found, respectively, using

∆Lx = uxxLx and ∆Ly = uyyLy (1744)

where Lx and Ly are the reference lengths of the superconductor along the x-direction and the y-direction,

respectively, before a strain ui j is applied. Arbitrarily choosing the x-direction or the y-direction, and using

(1714) gives

∆L=
µG(LI)

s
h⊕L (1745)

Inserting this result into (1743) and putting the result into (1742) gives

E =
nseµG(LI)h⊕L

ε0s
(1746)

Finally, using µG(LI) =
3
2
}ωDn, where ωD is the Debye frequency and n is the number density of atoms,

gives

E =
3Lnsen}ωD

2ε0s
h⊕

Electric field due to the charge-separation effect in a superconductor

induced by a plus-polarized gravitational wave

(1747)

As would be expected, the amplitude of the induced electric field in the superconductor is determined by the

strength of the gravitational wave, h⊕. Inserting (1747) into (1741) and staying to second order in the metric

gives

FEM =
9πL2λ Ln2

s e2n2}2ω2
D

8dε0s2
h2
⊕

Electromagnetic free energy density in curved space-time

in the presence of a plus-polarized gravitational wave

(1748)
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16.2 A gravitational shear modulus for the electromagnetic fields

Since hττ
11 =−hττ

22 = h⊕ for a plus-polarized gravitational wave, then the stress induced by this wave can

be written correspondingly as T ττ
11 =−T ττ

22 = T⊕. Similar to (1477), T⊕ can then be found using

T⊕ =−
(

∂FEM

∂h⊕

)
T

(1749)

Applying this to (1748) gives

T⊕ =−
9πL2λ Ln2

s e2n2}2ω2
D

8dε0s2
h⊕

Stress induced in the electromagnetic fields of a superconductor

due to a plus-polarized gravitational wave

(1750)

A constitutive equation can be written as T⊕ = −µG (EM)h⊕, where µG (EM) is the “gravitational modulus”

of the electromagnetic fields. Then µG (EM) can be identified above as

µG (EM) =
9πL2λ Ln2

s e2n2}2ω2
D

8dε0s2

Gravitational modulus for the electromagnetic fields of a superconductor

in response to a plus-polarized gravitational wave

(1751)

This expression describes the effective “responsiveness” of the electromagnetic fields in response to the strain

of a plus-polarized gravitational wave. It also demonstrates a linear response of the induced stress as a result

of the incident gravitational wave strain. Since the energy found in (1735) is valid for both plus-polarization

and cross-polarization, then the gravitational modulus found above is also valid for both polarizations.

For an order of magnitude approximation, consider a niobium superconducting slab (ns ≈ 1026m−3, ns ≈
6×1028m−3, s≈ 4×1010J/m3, and λ L ≈ 4×10−8m) with centimeter edges and micrometer thickness. Also

using ωD ≈ 3×1013s−1 gives

µG (EM) ≈ 1017J/m3 (1752)

This value is clearly much greater than the gravitational modulus for the Cooper pairs (µG (CP) ≈ 104J/m3)

or the lattice ions (µG (LI) ≈ 108J/m3).
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16.3 The full gravitational shear modulus for a superconductor

The full gravitational shear modulus for a superconductor can be written as

µG (SC) = µG (CP)+µG (LI)+µG (EM) (1753)

It was found that these gravitational shear moduli can be expressed as

µG (CP) =
mnsv

2

2
+
}2ns

4meξ
2

(1754)

µG (LI) =
3

2
}ωDn+

πk2
BT 2

3}L2

√
ρ

s
(1755)

µG (EM) =
9πL2λ Ln2

s n2e2}2ω2
D

8dε0s2
(1756)

For a niobium superconductor, at a temperature T ≈ 10−2K, with centimeter edges (L ≈ 10−2m) and mi-

crometer thickness (d ≈ 10−2m), it was found that the maximum values for the gravitational shear moduli (in

J/m3) are

µG (CP) ≈ 104, µG (LI) ≈ 108, µG (EM) ≈ 1012 (1757)

Recall that the gravitational penetration depth was found in (1337) to be

λ G =
1√

2κµG (SC)

(1758)

where κ = κrκ0 and κ0 = 8πG/c4. Since µG(EM) dominates over all the other terms, then µG (SC) ≈ µG (EM).

Therefore, using (1756) makes the gravitational penetration depth become

λ G =
c2s

6πLnsen}ωD

√
2dε0

Gκrλ L

Gravitational penetration depth of a superconductor

(1759)

Hence it is found that the electromagnetic energy density due to the charge-separation effect ultimately de-

termines the gravitational penetration depth. Since µG (EM) ≈ 1017J/m3, then the gravitational penetration

depth (in meters) is

λ G ≈
1012

√
κr

(1760)
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16.4 The Maxwell stress tensor in the presence of GR waves

The linearized Einstein field equation for gravitational waves (using the Helmholtz Decomposition ap-

proach) was found in (333) to be �hττ
i j = −2κT ττ

i j , where the source term involves the transverse-traceless

stress tensor. Therefore, in this section the transverse-traceless part of the electromagnetic stress tensor,

T ττ

i j (EM), is evaluated starting from the full electromagnetic stress tensor in curved space-time given by

T
µν

(EM)
=

1

µ0

(
Fµα Fν

α −
1

4
gµν Fρσ Fρσ

)
(1761)

where Fµν is the electromagnetic field tensor. Using the metric to write the electromagnetic field tensor with

raised indices gives

T
µν

(EM)
=

1

µ0

(
gαβ Fµα Fνβ − 1

4
gµν gαρ gβσ Fρσ Fαβ

)
(1762)

The metric can be expanded as gµν = ηµν + hµν . For gravitational waves in the far-field, hi j = hττ
i j and

h0µ = 0. Evaluating the spatial components of the stress tensor, T
i j

(EM)
, summing over repeated indices, and

using ηµ0 = (−1,1,1,1) gives

T
i j

(EM)
=

1

µ0

(
−F i0F j0+gklF

ikF jl
)

− 1

4µ0

gi j
(

F00F00−gklF
0lF0k−gklF

l0Fk0+gklgmnF lmFkn
)

(1763)

The components of the electromagnetic field tensor can be written in terms of the electric and magnetic fields

as

F0i =
1

c
E i, F i j = ε i jkBk, Fµµ = 0, where Fµν =−Fνµ (1764)

Using these makes the stress tensor become

T
i j

(EM)
=

1

µ0

(
− 1

c2
E iE j+gklε ikmBm

ε jlnBn

)

+
1

4µ0

gi j

(
2

c2
gklE

kE l−gklgmnε lmpBp
εknqBq

)
(1765)

The metric can be written as gi j = δ i j+hττ
i j . Separating out terms involving hττ

i j , staying to first order in hττ
i j ,
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and using ε0 = 1/
(
µ0c2

)
gives

T
i j

(EM)
= −ε0E iE j+

1

µ0

ε ikmε jknBmBn+δ
i j ε0

2
E2− 1

4µ0

δ
i j

ε lnpε lnqBpBq

+δ
i j

hττ
kl ε0EkE l− 1

4µ0

δ
i j
(
hττ

kl ε lmpεkmq+hττ
mnεkmpεknq

)
BpBq

+h
i j
ττ

(
1

2
ε0E2− 1

4µ0

εknpεknqBpBq

)
+

1

µ0

hττ
kl ε ikmε jlnBmBn (1766)

Using εkimεk jn = δ i jδ mn−δ inδ m j and ε lnpε lnq = 2δ pq leads to

T
i j

(EM)
= −ε0E iE j− 1

µ0

BiB j+
1

2

(
ε0E2+

1

µ0

B2

)
δ

i j
(1767)

+δ
i j

hττ
kl ε0EkE l− 1

2µ0

δ
i j
(

hττ
kl δ lkB2−hττ

kl BkBl
)

+h
i j
ττ

(
1

2
ε0E2− 1

2µ0

B2

)
+

1

µ0

hττ
kl ε ikmε jlnBmBn (1768)

The last term can be evaluated using

ε ikmε jln = δ i j (δ klδ mn−δ knδ ml)−δ il

(
δ k jδ mn−δ knδ m j

)
−δ in

(
δ k jδ ml−δ klδ m j

)
(1769)

This gives

T
i j

(EM)
=−ε0E iE j− 1

µ0

BiB j+
1

2

(
ε0E2+

1

µ0

B2

)
δ

i j

+

[
ε0EkE l− 1

2µ0

(
δ lkB2−BkBl

)]
δ

i j
hττ

kl
+

(
1

2
ε0E2− 1

2µ0

B2

)
h

i j
ττ

+
1

µ0

[
δ i j

(
δ klB

2−BkBl
)
−δ il

(
δ k jB

2−B jBk
)
−δ k jB

lBi+δ klB
jBi
]

hττ
kl

Maxwell stress tensor with coupling to a gravitational wave

(1770)

The top line is the standard result for the Maxwell stress tensor in flat space-time. The second and third lines

have a similar form except they include coupling to the gravitational wave field, hττ
i j . The transverse-traceless

part of (1770) can be found by using

T ττ

i j (EM) = Ti j (EM)− 1
3
T(EM)δ i j (1771)

where T(EM) is the trace of Ti j (EM). To first order in the metric, we can use T(EM) = δ
i j

Ti j (EM). Working to

this order requires neglecting the terms in (1770) that involve hττ
i j so that it becomes simply

T
i j

(EM)
= −ε0E iE j− 1

µ0

BiB j+
1

2

(
ε0E2+

1

µ0

B2

)
δ

i j
(1772)
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Then taking the trace gives

T(EM) = −ε0E2− 1

µ0

B2+
3

2

(
ε0E2+

1

µ0

B2

)
(1773)

Putting this into (1392) and using (1772) gives

T ττ

i j (EM) =−ε0E iE j− 1

µ0

BiB j+
1

3

(
ε0E2+

1

µ0

B2

)
δ i j

Transverse-traceless Maxwell stress tensor

(1774)

Note that in order for this tensor to be transverse, it requires that ∂iB
i = 0 (which is always true due to the

absence of magnetic monopoles) and ∂iE
i = 0. As shown in Appendix Q, the London formulation requires

that ∇ϕ = 0 so that ~E =−∂t
~A. Also, the London gauge requires ∂iA

i= 0 in a superconductor, which therefore

leads to ∂iE
i = 0. Hence T ττ

i j (EM) is in fact transverse as well as traceless.
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17.1 Equations of motion due to the charge-separation effect

In this section, equations of motion are found for the Cooper pair density and the ionic lattice in response

to a plus-polarized gravitational wave with normal incidence on a planar superconductor. As described in

previous sections, it is expected that the edges of the superconductor will exhibit a charge-separation effect

due to a difference in the way the Cooper pair density and the ionic lattice respond to the gravitational

wave. This difference produces a surface charge density at the edges of the superconductor while the bulk of

the superconductor remains electrically neutral. (The total charge is conserved since the surface charge on

adjacent faces have different signs.) The following figure shows the charge accumulation on the edges of the

planar superconductor at a particular instant.

Figure 11: The charge separation effect in a superconductor (for a plus-polarized gravitational wave).

A Hooke’s law response due to the combined electric and gravitational forces on the ions

Since the charge-separation effect will set up an electric field within the superconductor, then the posi-

tively charged lattice ions will experience an electric force as well as a gravitational force due to the gravi-

tational wave. If the gravitational force on the lattice ions is described as ~F
(ion)
G and the electric force on the

lattice ions is ~F
(ion)
E , then the equation of motion for a lattice ions is

~F
(ion)
G +~F

(ion)
E = m(ion)~a(ion) (1775)

The electric force will oppose the gravitational wave force at every point in the superconductor. This means

that along a trajectory in any one of the quadrants of the figure above, the equation of motion in terms of

magnitudes is

F
(ion)
G −F

(ion)
E = m(ion)a(ion) (1776)

Furthermore, the lattice ions will have an oscillatory motion which implies that the total force acting on them

is essentially a Hooke’s law restoring force. Therefore, the net force (due to both the gravitational wave and

the electric field) can be written as

F
(ion)
G −F

(ion)
E =−k f (~x) where − k f (~x) = m(ion)a(ion) (1777)
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Here k is an effective “spring constant” which characterizes the stiffness of the superconductor and f (~x) is

a linear function of the position of the lattice ions which leads to a simple harmonic motion for the lattice

ions.197

The gravitational wave field, electric field, and acceleration field acting on ions

A plus-polarized gravitational wave field acting on an ion (represented as a vector for a single particle in

one quadrant) will have the form

~h⊕ =
A⊕√

2L
(−xx̂+ yŷ)cos(kz−ωt) (1778)

where A⊕ is the amplitude of the gravitational wave, and~k = kẑ is the wave vector for a gravitational wave

propagating in the z-direction.198 Note that x and y are measured from the center of the superconducting slab,

and 2L is the length of the superconducting slab in the x-direction or y-direction. Therefore, x,y ≤ L so that√
x2+ y2 is confined to the dimensions of the superconductor. It is evident that~h⊕ has a minimum value of

zero at the center of the superconducting slab, and a maximum value at the corners of the superconductor

where x,y=±L.

When the gravitational wave field is at a maximum, the charge separation effect will also be at a maximum

which means that the resulting electric field must be in phase with the gravitational wave field. This implies

that the electric field will have the form

~E =
E0√
2L
(−xx̂+ yŷ)cos(kz−ωt) (1779)

where E0 is the amplitude of the electric field. Once again, ~E has a minimum value of zero at the center of

the superconductor, and a maximum value at the corners. The resulting acceleration field along a trajectory

in the diagram above (in any one of the four quadrants) will have the form

~a=
amax√

2L
(−xx̂+ yŷ)cos(kz−ωt) (1780)

Then the magnitude of the acceleration is

a=
√
~a2 =

amax√
2L

√
(x2+ y2)cos(kz−ωt) (1781)

From this expression, it is clear that the acceleration is zero at the center where x = y = 0. On the other

hand, the acceleration is a maximum when x,y = ±L. Once again, this corresponds to the corners of the

197Note that the geodesic equation leads to a velocity-dependent equation of motion. As shown in (2765),
to lowest order in velocity, the equation of motion is ai =−ḣττ

i j v j. However, the geodesic equation is a gauge-

dependent equation, in contrast to the the geodesic deviation equation which can be expressed in terms of

the Riemann tensor and is therefore gauge-invariant. As shown in (527), to lowest order in velocity, the

geodesic deviation equation is L̈i =
1
2
ḣττ

i j L j which is not velocity-dependent. It is linearly dependent on the

displacement between two test masses in the presence of a gravitational wave. Therefore, it is consistent with

(1777) which implies a Hook’s law force that is displacement-dependent.

198Note that there is a limit to the value for A⊕ for a superconductor acting as a mirror for gravitationl waves.

Press states in [73] that the condition for a mirror to be possible is µG & ρc2, where µG is the gravitational

shear modulus and ρ is the mass density. A material that satisfies this condition will violate the dominant

energy condition if µG remains constant up to strains of order unity. However, a material that is very rigid

(such that µG & ρc2 only over a very small range of strain), will not violate the dominant energy condition.
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superconductor.199 Relating the acceleration field to the forces in (1776) implies that a maximum acceleration

must correspond to a maximum in the difference between the gravitational wave force and the electric force.

Since this occurs at the corners of the superconductor, then is is necessary to relate amax, A⊕, and E0 at the

corners of the slab.

The relative acceleration between lattice ions and Cooper pairs

The equation of motion for Cooper pairs has some important differences from the equation of motion

for the lattice ions. This is due to two reasons: (i) the Cooper pair density has a negligible response to

the gravitational wave compared to the ionic lattice200 (F
(CP)
G ≈ 0); and (ii) the Cooper pair density has the

opposite charge of the lattice ion density. This means that the electric forces are related by

~F
(CP)
E =−~F(ion)

E (1782)

If we consider Cooper pairs on the same trajectory as the lattice ions, then the equation of motion has the

same form as (1776) except the gravitational force is set to zero and the electric force is reversed. In terms

of magnitudes, the force on Cooper pairs is

F
(CP)
E = m(CP)a(CP) (1783)

Using (1782) gives

F
(ion)
E =−m(CP)a(CP) (1784)

The relative acceleration between the ionic lattice and the Cooper pair density can be expressed as

arelative ≡ a(ion)−a(CP) (1785)

Using (1776) and (1784) gives

arelative =
F
(ion)
G −F

(ion)
E

m(ion)
+

F
(ion)
E

m
(CP)

(1786)

Since m(ion) = 41(mproton+mneutron) and m(CP) = 2me, then m(ion) is greater than m(CP) by a factor of

∼ 103. This would imply that the relative acceleration is dominated by the second term − the acceleration

of the Cooper pairs due to the electric field. However, if the superconductor is very “stiff ” in response to

gravitational waves, then k in (1777) could be a very large value. This could also make f
(ion)
G − f

(ion)
E very

large, depending on the magnitude of f (~x). A more formal analysis is required to determine the relative

magnitude of these values.

Also, since the Cooper pairs are only accelerated by the electric field while the lattice ions are accelerated

by the electric field as well as the gravitational field, then there is no reason to assume that the Cooper

pairs and lattice ions will have the same amplitude of motion. It is expected that they should have the same

frequency (assuming a linear response of all charges/masses to their corresponding fields). However, the

difference in amplitude could make the relative motion of the Cooper pairs and lattice ions more complicated.

199For a cross-polarized gravitational wave, the acceleration field, gravitational wave field, and electric field

would have (yx̂+ xŷ) replacing (−xx̂+ yŷ). The magnitude of the fields would all stay the same, however,

the maxima would occur at points A, B, C, and D on the diagram, rather than at the corners.

200It was shown in (1713) that the relative strain between the lattice ions and Cooper pairs due to a gravita-

tional wave is

uττ

i j(relative) =
µG(LI)−µG(CP)

2s
hττ

i j

Since µG(CP) ≈ 104J/m3 for the Cooper pairs and µG(LI) ≈ 108J/m3 for the lattice ions, then µG(LI) >>
µG(CP) which means the Cooper pair density can be considered as relatively unresponsive to the gravitational

wave compared to the ionic lattice.
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17.2 Concerning superluminal supercurrents in the “Mirrors” paper

In the paper, “Do gravitational mirrors exist?” (Minter, Wegter-McNelly, Chiao) [7] (henceforth referred

to as the “Mirrors” paper), it is hypothesized that superconductors may act as mirrors for gravitational fields.

The process for such reflection is said to require the presence of superluminal supercurrents.201 Here we

examine the details of this conclusion to determine if superluminal supercurrents are in fact predicted by the

analysis in that paper.

A summary of the Mirrors paper analysis which led to the impression of superluminal supercurrents

The key equation in the Mirrors paper that is used to argue that the induced supercurrents are superluminal

is equation (101). This gives the velocity of the induced supercurrents as∣∣∣v
c

∣∣∣= 1

c

Ξ

Ξ−1
|h| (1787)

where h is the gravitational vector potential and Ξ is a proportionality constant defined in equation (76) as

Ftot = ΞqE (1788)

This constant Ξ is referred to as the “fractional correction factor” of the total force acting upon a given Cooper

pair relative to a purely electrical force acting on the same pair. The total force on a given Cooper pair is also

stated in equation (74) as

Ftot = qE+mEG (1789)

where E is the electric field and EG is the gravito-electric field (which is essentially the Newtonian gravita-

tional field). Equating (1788) and (1789) and solving for E gives

E=
1

(Ξ−1)

m

q
EG (1790)

which is given in equation (77) of the paper. In equation (96) it is found that Ξ can be expressed as

Ξ= 1− 4πε0Gm2
e

e2
≈ 1− 1

4.2×1042
(1791)

In equation (69), the kinetic velocity of the quantum current is found to be

v=− q

m
A−h (1792)

As shown in the Mirrors paper, we can take a time-derivative of (1792) and use equation (71) given as202

E = − ∂

∂ t
A and EG =−

∂

∂ t
h (1793)

to obtain equation (70) which is effectively

ma= qE+mEG (1794)

201The same discussion occurs in Stephen Minter’s dissertation [9], p. 124.

202In Sections 4 and 5, there is a detailed discussion showing that the approximation of slow-moving sources

(which is required to obtain the gravito-electromagnetic “Maxwell-like” equations) requires that ∂t
~h = 0.

However, in this section, we will simply overlook this issue.
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The acceleration for an oscillating electron can be written as a=ωv so that we obtain equation (73) in the

Mirrors paper given as

mωv= qE+mEG (1795)

Using this expression, the Mirrors paper points out the issue of a possible superluminal supercurrent. This is

shown by substituting (1790) into (1795) which gives

mωv =
1

Ξ−1
mEG+mEG (1796)

ωv = EG

(
1

Ξ−1
+1

)
(1797)

v =
EG

ω

(
Ξ

Ξ−1

)
(1798)

Since (1791) gives Ξ≈ 1−10−43, then the expression above becomes

v=
EG

ω

(
1−10−43

10−43

)
(1799)

Since 1−10−43 ≈ 1, then we simply have

v≈ EG

ω
1043 (1800)

The enormous value of 1043 is pointed out in the Mirrors paper as requiring the supercurrent to be su-

perluminal in order to have a non-negligible gravitational field. For example, for microwave frequencies

(ω ≈ 1010Hz) and extremely small values of EG (such as 10−24 SI units), the velocity will still be superlumi-

nal (v∼ 109 m/s).

Although the Mirrors paper refers specifically to (1795) as the equation which leads to a superluminal

result, it can be shown that this same result follows from any form of the gravito-electromagnetic Lorentz

force given by (1789), (1790), or (1795) which are equations 74, 77, and 73, respectively, in the Mirrors

paper. However, next we will show that the result in (1800) simply follows from the fact that the entire

analysis in the Mirrors paper assumes that EG is extremely small. In fact, we will show that the paper implic-

itly treats EG and E as essentially the gravitational and electric fields, respectively, between two electrons.

Because the mass-to-charge ratio of the electron is so small, then naturally EG is extremely small compared

to E. However, the process used to arrive at v in (1800) gives the impression that EG can be made larger by

allowing v to be made larger. This seems to imply that it is possible to have a non-negligible value for EG by

using a superluminal value for v. This false impression caused by (1800) can be clarified by considering the

following more concise approach to the analysis.

A streamlined analysis showing that superluminal supercurrents are not required

The most streamlined way to show the relevant relations is to consider the Coulomb force and the New-

tonian force on a given electron due to another electron. Since they will point in opposite directions, then the

total force is

Ftot = (FC−FN) F̂ (1801)
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where FC and FN are the Coulomb and Newtonian forces, respectively. Using Coulomb’s law and Newton’s

law of gravitation gives

Ftot =

(
Ke2

r2
− Gm2

e

r2

)
F̂ (1802)

=
Ke2

r2

(
1− Gm2

e

Ke2

)
F̂ (1803)

= eE

(
1− Gm2

e

Ke2

)
(1804)

Also, using q = e in (1788) gives Ftot = ΞeE. Matching this to (1804), we see immediately that Ξ = 1−
4πε0Gm2

e/e
2. From this result it is evident that Ξ can be expressed in terms of the ratio of the Coulomb

electric force and the Newtonian gravitational force for the case of two electrons (or Cooper pairs) separated

by an arbitrary distance.203 Dividing the Newtonian gravitational force by the Coulomb electric force gives

FN

FC

=
Gm2

e

Ke2
=

4πε0Gm2
e

e2
(1805)

where we have used K =
1

4πε0

. Therefore, (1791) can actually be written as

Ξ= 1− FN

FC

(1806)

We can also define

ε ≡ FN

FC

≈ 2.4×10−43 (1807)

so that Ξ= 1− ε . This method for expressing Ξ is not explicitly shown in the Mirrors paper, however, it will

prove useful as we examine the claim that the supercurrents are predicted to be superluminal. Specifically,

this approach is instructive in demonstrating that the value of Ξ already assumes that EG and E are essentially

the gravitational and electric fields, respectively, between two electrons. This already requires EG to be

extremely small. We cannot change the value of EG by requiring the supercurrents to be superluminal as

(1800) would seem to suggest.

To highlight this point further, we can return to the expression in (1801) and show that this expression

alone is all that is needed to examine the claim of superluminal supercurrents. First, we can write the total

force for an oscillating electron as Ftot = ma=mωv, which is similarly done in the Mirrors paper. Then the

magnitude of (1801) becomes

mωv= FC−FN (1808)

This is essentially the same as (1795) which is equation (73) in the Mirrors paper. The key is to recognize

that there are two ways to rearrange this relation. We can either choose to factor out FN (which leads to the

false impression that superluminal supercurrents are necessary) or we can choose to factor out FC (which

does not lead to the impression that superluminal supercurrents are necessary). Here we show the two cases

203This ratio is discussed in [91], pp. 3-7. Specifically, when FN = FC, then the resulting “criticality”

charge-to-mass ratio is
q

m
=
√

4πε0G. This leads to an equality of quadrupolar EM and GR radiation.
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side by side. In both cases, we make use of ε =
FN

FC

from (1807).

mωv= FN

(
FC

FN

−1

)
mωv= FC

(
1− FN

FC

)

= FN

(
1− ε

ε

)
= FC (1− ε)

(1809)

Here we can use FN = meEG and FC = eE. Then solving each expression for v gives

v=
EG

ω

(
1− ε

ε

)
v=

eE

meω
(1− ε) (1810)

Since α ≈ 10−43, then (1− ε)≈ 1 and we have

v=
EG

ωε
≈ EG

ω

(
1043

)
v≈ eE

meω
(1811)

The first expression in (1811) is the same as the expression found in (1800) which led to the impression

in the Mirrors paper that superluminal supercurrents are required for a non-negligible EG field. However,

the second expression in (1811) does not indicate the need for a superluminal supercurrent. In fact, the

second expression in (1811) is simply the Lorentz force on an electron which is oscillating in the presence

of an oscillating electric field. If we require the velocity to be superluminal, then setting v> c in the second

expression of (1811) gives
eE

meω
> c ⇒ E >

meωc

e
(1812)

For microwave frequencies (ω ≈ 1010Hz), this implies E > 1.07× 109 N/C which is clearly an enormous

electric field. This demonstrates that in order to maintain consistency in the formulation of the Mirrors paper,

it is necessary for EG to remain a very small value. Increasing the value of EG by increasing the value of v

(even to large but subluminal values), will require that E is also increased accordingly. It can be misleading

to express v in terms of just EG (without E appearing) as is done in (1811). This gives the impression that v

and EG can be adjusted independently of E. However, this is not the case since we find that v, EG, and E are

all related by (1795).

The fundamental reason for this interdependence of v, EG, and E is that the same particle (the electron)

plays the role of both the mass-carrier as well as the charge-carrier. It is not possible to change the velocity

and the gravito-electric field independently of changing the electric field. Also, the electric field will always

vastly dominate the dynamics compared to the gravito-electric field. Therefore, the velocity of the electron

is effectively “slaved” to the electric field. Attempting to change the velocity and gravito-electric field will

quickly lead to huge values of the electric field.

Some additional comments concerning footnotes [33] and [34] of the Mirrors paper

From (1810) we pointed out that the equation which gave the impression that superluminal supercurrents

are required for a non-negligible gravitational field is

|v|= |EG|
ω

∣∣∣∣1−α

α

∣∣∣∣ (1813)

Since (1793) gives EG = −∂th, then for a sinusoidally oscillating field, we have EG = ωh. Also using

|1−α|= Ξ and dividing by c gives ∣∣∣v
c

∣∣∣= 1

c

Ξ

Ξ−1
|h| (1814)
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This relation is shown in equation (101) of the Mirrors paper. However, equation (101) also includes an

additional equality. It is given as ∣∣∣v
c

∣∣∣= 1

c

Ξ

Ξ−1
|h|= 1

2

Ξ

Ξ−1
|h+| (1815)

The last part of this equation involves h+ which is the strain field for a gravitational wave with plus polariza-

tion. The relationship between the gravito-vector potential, h, and the strain field, h+, is found in footnote

[33] of the Mirrors paper. The derivation uses equation (7) from Saulson’s paper [31] which gives the gravi-

tational wave flux as

F =
1

32π

c3

G
ω

2h2
+ (1816)

where h+ is the amplitude of the gravitational wave.204 Although Saulson does not show this explicitly,

(1816) comes from the Isaacson power flux formula which gives the power flux of a gravitational wave. It is

given in [43] as

PIsaacson =
c3

16πG

〈
ḣ2
++ ḣ2

×
〉

(1817)

where P is the power per unit area while h+ and h× are the plus and cross polarization strain fields. Using a

sinusoidal strain field for plus polarization, hxx = h+ sin
(
~k ·~x−ωt

)
, the power flux becomes

PIsaacson =
c3

16πG

〈
ω

2h2
+ sin2

(
~k ·~x−ωt

)〉
=

c3ω2h2
+

32πG
(1818)

which matches Saulson’s expression in (1816).

Therefore, Saulson used a correct representation of the gravitational wave as a strain field (which is

a tensor wave by nature), and a power given by the Isaacson power flux formula. In the Mirrors paper,

the gravitational wave is described as a vector wave consisting of oscillating gravito-electromagnetic fields.

Accordingly, there is a “time-averaged Poynting vector” written in the first line of equation (151) as

〈S〉= 1

2
k̂ ·Re(E∗G-incident×HG-incident) (1819)

where, presumably, HG-incident is the (auxiliary) gravito-magnetic field. In the second line of equation (151)

of the Mirrors paper, we find

〈S〉= 1

2

1

ZG

Re(E∗G-incident×EG-incident) =
1

2ZG

|E∗G-incident|
2

(1820)

This implies that the relation HG-incident = ZGEG-incident was used. However, this relation can not be obtained

from the gravito-electromagnetic field equations. This is discussed in detail in Section 23. The reason is

because we do not have the relation BG = EG/c for gravitation. The analogous relationship in electromag-

netism, B=E/c, occurs as a result of considering plane wave solutions to the vector wave equations involving

E and B. Such waves do not exist for gravitation. Nevertheless, continuing on from equation (152) of the

Mirrors paper, we find that the time-averaged energy flux of the gravito-electric field is given as205

〈S〉= 1

2ZG

〈EG-incident〉2 (1821)

204Saulson uses h0 for the wave amplitude. However, here we use h+ to follow the notation of the Mirrors

papers.
205This expression treats EG as completely analogous to E by assuming that just as the time-average power

flux of E is 〈SE〉 =
1

2Z0

|E|2, so also the time-average power flux of EG is
〈
SEG

〉
=

1

2ZG

|EG|2. However,

in General Relativity, there is a long standing issue with attempting to describe a local energy density of

a gravitational field. This is due to the fact that the Equivalence Principle allows the field (and hence the

energy) to vanish by transforming to a local Lorentz (freely-falling) frame. (For a discussion of this issue,

see MTW [11], pp. 466-467).
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From (1793), we have |EG| = |∂th| = ω |h| for a sinusoidally oscillating field. Also, using the gravitational

impedance, ZG = 4πG/c, then (1821) becomes

〈S〉= c

8πG
ω

2 |h|2 (1822)

At this point the assumption is made that the gravitational wave flux found by Saulson in (1816) is the same

as the gravitational wave flux for a gravito-electric field found in (1822). Therefore, these equations are set

equal to obtain
|h|
c
=
|h+|

2
(1823)

This relation is what leads to the last equality in (1815). From there the Mirrors paper proceeds with the

issue of superluminal supercurrents. However, because v is now expressed in terms of h+, then the argument

is described in terms of the gravitational wave field, rather than the gravito-electric field or gravito-vector

potential field. Nevertheless, this alternative form does not affect the question of whether there are superlu-

minal supercurrents. In fact, the additional steps to express v in terms of h+ (instead of EG or h) may only

cloud the issue. The issue is shown simply in (1811) where we find that expressing v in terms of EG (without

E appearing) gives the impression that a non-negligible EG can be achieved via a superluminal supercurrent.

Since EG and h are not radiation fields (but rather near-zone fields), then they cannot be related to h+ by

equating a time-averaged energy density of EG (1822) to the Isaacson power flux of h+ (1816). Rather, these

two fields can be related (at least approximately) by their relationship to a common source. Specifically, we

know from (437) that the components of the trace-reversed metric perturbation are related by

h̄0i ∼ h̄00

(
vs

c

)
and h̄i j ∼ h̄00

(
vs

c

)2

(1824)

where vs is the characteristic speed of the sources of the gravitational fields. Also, in (32) we wrote the

gravito-scalar potential and gravito-vector potential each in terms of the trace-reversed metric perturbation

as, respectively,

ϕG =−
c2

4
h̄00 and h=

c

4

(
h̄01, h̄02, h̄03

)
(1825)

These are the relationships that lead to the “Maxwell-like” gravito-electromagnetic equations in (58) which

are similar to those used in the Mirrors paper. Also, the gravito-electric field is defined in (46) as EG=−∇ϕG.

For sinusoidally varying fields, we can use ∇ϕG = kϕG where k = ω/c in vacuum. Combining this with

ϕG =−
c2

4
h̄00 from (1825) gives

|EG|=
ωc

4
h̄00 (1826)

Then using h̄00 ≈ h̄0i

(
c

vs

)
from (1824) and h=

c

4

(
h̄01, h̄02, h̄03

)
from (1825) gives

|EG| ≈
ωc

4

(
c

vs

)(
4

c
|h|
)
=

ωc

vs

|h| (1827)

Inserting this into (1813), using Ξ= 1−α , and dividing by c gives∣∣∣v
c

∣∣∣= 1

vs

(
Ξ

Ξ−1

)
|h| (1828)

This would be the appropriate expression for |v| rather than (1814) which relies on EG = −∂th, which is

a relationship we have shown in Section 4 is not valid in this approximation. Next we can combine the

two expressions in (1824) to obtain h̄i j ≈ h̄0i

(
vs

c

)
. Then using h =

c

4

(
h̄01, h̄02, h̄03

)
from (1825) gives
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h̄i j ≈
4vs

c2
|h|. In the transverse-traceless gauge, we have h̄xx = h+ for a plus-polarization wave. This means

that

|h|
(

vs

c2

)
=
|h+|

4
(1829)

This clearly differs from the result found in the Mirrors paper as shown in (1823). Solving (1829) for |h| and

inserting into (1828) gives ∣∣∣v
c

∣∣∣= 1

vs

(
Ξ

Ξ−1

)
|h|= c2

4v2
s

(
Ξ

Ξ−1

)
|h+| (1830)

We have now obtained a complete replacement for equation (101) in the Mirrors paper. This new expression

gives a more valid relationship206 between |v|, |h|, and |h+|. If we consider the motion of the test mass, |v|,
to be comparable to the motion of the gravitational sources, vs, then |v| ≈ vs. In that case, multiplying (1830)
through by v/c gives ∣∣∣v

c

∣∣∣2 = ( Ξ

Ξ−1

)
|h|
c
=

c

4v

(
Ξ

Ξ−1

)
|h+| (1831)

Relating |v| on the far left to |h+| on the far right gives

v3

c3
=

1

4

(
Ξ

Ξ−1

)
|h+| (1832)

Using

(
Ξ

Ξ−1

)
≈ 1043 gives

v

c
≈
(
1.4×1014

)
|h+|1/3 (1833)

In this case, we find that v < c when |h+| < 3.6× 10−43. In fact, the velocity is 10% of the speed of light

when |h+|< 3.6×10−46.

As a final note, we point out that the issue of group velocity versus phase velocity (as discussed in footnote

[34] of the Mirrors paper) is not applicable to the gravito-Lorentz force which is a force acting on a point

particle. One must recall that the gravito-Lorentz force is derived from the geodesic equation of motion (or

the Lorentz force in curved space-time if electromagnetic fields are also included). The geodesic equation

describes a single worldline of a completely localized particle. In fact, the geodesic equation can even be

derived directly from the Equivalence Principle (see Weinberg’s text, [32]) which is only valid for a point-like

particle, not for an extended object such as a wave. This is further demonstration that phase velocity is not

applicable to the analysis using the gravito-Lorentz force.

206Formally speaking, the expression in (1830) is still not legitimate because the gravito-electromagnetic

“Maxwell-like” equations involve the approximation that hi j ≈ 0 which means that there are no gravitational

waves. Therefore, the appearance of h+ in (1830) is technically not consistent.
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17.3 Alternative formulations for the “Mirrors” paper

There are three critical issues in the “mirrors” paper that need to be addressed: 1. The coupling rule; 2.

The field equation; 3. The equation of motion. The following are possible replacements. The Newtonian

field equation, ∇ ·EG =−ρ/εG, could be replaced with the field equation for the gauge-invariant, transverse-

traceless strain field.

�hττ
i j = −16πG

c4
T ττ

i j (1834)

The non-relativistic equation of motion in terms of the gravito-electric field, m~a = q~E +m~EG, could be

replaced with the geodesic equation of motion (to lowest order in velocity) in terms of the gravitational wave

field.

mai = qEi−mv jḣττ
i j (1835)

For the coupling rule, the DeWitt coupling rule in terms of the gravito-vector potential, pi =⇒ pi−mch0i,

can be replaced with the coupling rule for a gravitational wave field given by

p2 =⇒ p2− pi p jhi j (1836)

The equation of motion in terms of a factional correction factor

Using mai = ΞqEi to express (1835) in terms of a fractional correction factor, Ξ, and solving for the

electric field gives

ΞqEi = qEi−mv jḣττ
i j (1837)

Ei =
1

1−Ξ

m

q
v jḣττ

i j (1838)

Assuming a sinusoidal solution for the acceleration gives

mωvi = qEi−mv jḣττ
i j (1839)

vi =
1

ω

(
Ξ

1−Ξ

)
v jḣττ

i j (1840)

It is evident that we can not simply solve for the velocity because it is contracted with the metric on the right

side. We could sum over the indices and solve for the separate components of the velocity, but we will not

be able to get a single vector relationship. Also note that it’s not clear if this equation permits sinusoidal

solutions.

m
∂ 2

∂ t2
xi (t) = qEi (t)−mḣττ

i j (t)v
j (t) (1841)

We could assume that the gravitational field, the electric field, and the particle motion all have the same fre-

quency and vary sinusoidally with the same phase. However, instead we will just assume that xi = Aicos(ωt)
is a valid solution for the position and leave the frequency and phase of hττ

i j and Ei unspecified. Then we have

−mω
2Ai cos(ωt) = qEi (t)−mω ḣττ

i j (t)A
j sin(ωt) (1842)
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At t = 0, we have

−mω
2Ai = qEi(0) (1843)

This means that xi (t) and Ei (t)must be in phase otherwise the amplitude of motion would be zero. Similarly,

a half cycle later at t = T/2
0= qEi(t=T/2)−mω ḣττ

i j(t=T/2)A
j (1844)

This means that the electric field and the gravitational field can also be in phase. Therefore, it appears that we

can have the displacement, electric field, and gravitational field all in phase. We can write Ei (t)=Ei,0 cos(ωt)
and hττ

i j (t) = hττ
i j,0 cos(ωt) where hττ

i j,0 is a constant transverse-traceless amplitude tensor. Then the equation

of motion becomes

−mω
2Ai cos(ωt) = qEi,0 cos(ωt)−mω

2A jhττ
i j,0 sin2 (ωt) (1845)

Notice that from this result we cannot proceed to a simplified expression because the terms above do not all

have the same sinusoidal dependence. In fact, the last term (which describes the force due to the gravitational

wave) appears as a squared sinusoid. This is a second harmonic behavior which is similar to the second

harmonic behavior found in Appendix S for a single mass oscillator generating gravitational waves. Also

notice that the amplitude of motion is summed over the amplitude tensor of the gravitational wave. As a

result of these complications, it is not possible to write a linear expression relating the displacement to the

electric field by a proportionality constant.
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17.4 A new fractional correction factor for gravitational waves

The factional correction factor in (1806) is shown to be Ξ = 1− ε , where ε is given by (1807) as ε =
FN/FC. This is the ratio of the Newtonian gravitational force to the Coulomb electric force between two

elections. We can define the reciprocal of this quantity as

ε ≡ FN

FC

=
Gm2

e

Ke2
≈ 2.4×10−43 (1846)

This is described in the Mirrors paper as a huge enchancement factor in the response of a superconductor to an

incident gravitational wave. The justification is that the charge-separation effect produced in a superconductor

in response to a gravitational wave will cause an electric force on the Cooper pairs that is greater than the

gravitational force by a factor of 1/ε ≈ 1042, as evidenced by the value in (1846). Therefore, the electric

force acts as an extremely stiff Hooke’s law back-action that leads to the reflection of the gravitational wave.

Notice that (1846) involves the Newtonian gravitational force rather than the gravitational wave force.

Therefore, we would like to derive an alternative to (1846) that compares the electric force to the gravitational

wave force. We can define this quantity as

α ≡ FGR wave

FC

(1847)

Before evaluating an expression for this quantity, we first note some important features about (1846) that do

not occur for (1847). First, we find that (1846) only involves fundamental constants of nature (K and G) and

static properties of the Cooper pair particles (q= 2e and m= 2me). This fact is due to the symmetry between

the Coulomb electric potential and the Newtonian gravitational potential. The potential field equations are

given by

∇
2
ϕ = ρc/ε0 and ∇

2
ϕG = ρm/εG (1848)

Using Green’s function solutions, these lead to

ϕ (~r) = K

∫
ρc (~r

′)

|~r−~r′|dV ′ and ϕG (~r) = G

∫
ρm (~r

′)

|~r−~r′| dV ′ (1849)

Since ϕ and ϕG are both static fields with inverse square laws, then the 1/r2 dependence vanishes in the ratio

given in (1846) and there is no dependence on velocity, frequency, or any other dynamic quantity. There is

also symmetry in the equations of motion which are

~a=− q

m
∇ϕ and ~a=−∇ϕG (1850)

Note that in both cases, the acceleration is given by a type of charge-to-mass ratio multiplying a field. For the

electric case, the charge-to-mass ratio is q/m which multiplies the electric field. For the gravitational case, the

ratio of “gravitational charge” to the mass is unity by the Equivalence Principle. All of these characteristics

make the the Coulomb electric force and the Newtonian gravitational force similar which leads to the result

in (1846). In fact, from (1849) and (1850), it is clear that we can express (1846) as

ε =
m∇ϕG

q∇ϕ
(1851)

Now we consider the case for the ratio of the electric force to the gravitational wave force which we defined

in (1847) as

α ≡ FGR wave

FC

(1852)

Note that the gravitational wave field is essentially a potential field (in the sense that its derivative appears

in the equation of motion, similar to ϕ and ~A for EM). Therefore, to draw a proper comparison, we need

to compare the electric potential to the gravitational wave potential similar to the comparison in (1849).
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Note that the field equation for the transverse-traceless strain field is �hττ
i j =−2κT ττ

i j . The Green’s function

solution is therefore

hττ
i j (t,~r) =

κ

2π

∫ T ττ
i j (tr,~r

′)

|~r−~r′| dV ′ (1853)

where tr is the retarded time. To draw a closer comparison between the electric potential and the gravitational

wave potential, we can take the static limit for the gravitational wave field so that the box operator becomes

a Laplacian. If we consider the case of relativistic dust, then (431) shows that the transverse-traceless stress

is T ττ
i j = ρm

(
viv j− 1

3
δ i jv

2
)
. Then we can write a comparison between the electric potential and the gravita-

tional wave potential similar to the comparison given by (1849). Using κ = 8πG/c4, we have

ϕ (~r) = K

∫
ρc (~r

′)

|~r−~r′|dV ′ and hττ
i j (~r) =

4G

c4

∫
ρm

(
viv j− 1

3
δ i jv

2
)

|~r−~r′| dV ′ (1854)

If we consider just the hττ
xy component for a cross-polarization gravitational wave, with vx = vy, then(

viv j− 1
3
δ i jv

2
)
= vxvy− 1

3
δ i jv

2 = 2
3
v2 (1855)

For a spherically symmetric charge distribution, the electric potential reduces to the familiar expression for a

point charge. If we also assume a uniform mass distribution, then we can also approximate the gravitational

wave potential. Therefore the expressions above become

ϕ (~r) =
Kq

r
and A⊗ (~r)≈

G

c4

mv2
s

r
(1856)

where A⊕ represents the amplitude of a cross-polarization gravitational wave and vs is the speed of the grav-

itational source. Next we use the geodesic equation of motion (1835) for charged particles in the presence of

gravitational waves and an electric field. Writing it in terms of the electric potential and a plus-polarization

gravitational wave, hττ
i j (t) = hττ

i j,0 cos(ωt) where h12 = h21 = A⊗, gives

mai =−q∂iϕ−2mA⊗ωvp (1857)

where vp is the speed of the particles in the presence of a gravitational wave. Therefore, we can write the

magnitude of the gravitational wave force as FGR wave =mvpωA⊕. We can also use A⊗ from (1856). Inserting

these expressions into (1852) gives

α =

mvpω

(
G

c4

mv2
s

r

)
Kq2/r2

=
Gm2

Kq2

ωvpv2
s

c4
r (1858)

Since we are considering a situation where the particles that are oscillated by the gravitational wave are also

the same particles that will produce the outgoing gravitational wave, then we have v = vp = vs. Also, since

we are working in the near-field zone (where the electric field is predominantly the Coulomb field), then we

can approximate k ≈ 1/r, where k = ω/vwave with vwave being the speed of the gravitational wave. Also,

using κ = 8πG/c4 as well as q= 2e and m= 2me gives

α =
Gm2

e

Ke2

v3vwave

c4
(1859)



340

If the gravitational wave is in vacuum or a dispersionless medium, then vwave = c and we have

α =

(
Gm2

e

Ke2

)(
v3

c3

)
Fractional correction factor for gravitational wave force in vacuum

relative to Coulomb force for a dispersionless medium

(1860)

Comparing this to (1846), we find that ε is simply multiplied by a factor of v3/c3. Therefore, we can write

the expression above as

α = ε

(
v3

c3

)
(1861)

Although we have shown the formal details for obtaining this result, we could have also obtained it quickly by

simply making use of the relation h00 ≈ hi j

(
c2/v2

)
as given in (437). Since ϕG ∼ h00, then it is evident that

(1846) can be written in terms hi j by simply introducing a factor of v2/c2. Also, notice that the gravitational

wave force in (1857) involves a factor of ωv while the ratio of ∇ϕG ∼ 1/r2 and A⊗ ∼ 1/r from (1854)
will involve a factor of 1/r ≈ k (in the near-field zone). This gives an overall factor of k/(ωv) = c/v for

gravitational waves in vacuum. Lastly, since the field equation in (1854) has a coupling constant of 2κ =
16πG/c4, rather than 1/εG = 4πG, then putting it all together would lead to

α = ε

(
h00

hi j

)(
ωv

k

)
(2κεG)≈ ε

(
v3

c3

)
(1862)

Notice that the ultra-relativistic limit, v≈ c, leads to α ≈ ε . In this limit, the gravitational wave force becomes

comparable to the Newtonian gravitational force since the source of each field would become comparable:

Ti j = ρmviv j ≈ ρmc2 = T00. Also, writing (1852) as FGR wave = αFC and inserting (1860) gives

FGR wave = FC

(
Gm2

e

Ke2

)(
v3

c3

)
(1863)

Here we find that as v→ 0, then FGR wave → 0 which is exactly what we would expect due to the velocity

dependence of the gravitational wave force in (1857) as well as the velocity dependence of the gravitational

wave field in (1856).

Returning to (1859), note that if the gravitational wave is propagating in matter which causes a dispersion,

then we do not simply have vwave = c. Instead, the velocity of the wave can be expressed as vwave = c/nG,

where nG is a gravitational index of refraction. For a superconductor, (1324) gives n2
G (ω) ≡

(
1−ω2

G/ω2
)

so that c/vwave = nG =
√

1−ω2
G/ω

2. Then (1859) becomes

α =

(
Gm2

e

Ke2

)(
v3

c3

)(
1− ω2

G

ω2

)−1/2

Fractional correction factor for gravitational wave force

relative to Coulomb force in a medium with dispersion

(1864)
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A fractional correction factor from the geodesic deviation equation

We could also consider a fractional correction factor derived from the geodesic deviation equation rather

than the geodesic equation of motion as we have done above. We can define this fractional correction factor

as

β ≡ FC

FGR wave (deviation)
(1865)

From (540) we can write the geodesic deviation force as FGR wave (deviation) =mL̈i ≈mḧττ
i j L j. Once again, we

can use ḧττ
i j = ω2hττ

i j ∼ ω2A⊗ for cross-polarization. Then using (1856) gives

FGR wave (deviation) = mω
2

(
G

c4

mv2

r

)
L=

Gm2ω2v2L

c4r
(1866)

where v as the speed of the source of gravitational waves. Inserting this into (1865) and using FC = Kq2/r2

gives

β =

(
Gm2

Kq2

)(
ω2v2Lr

c4

)
(1867)

In the near-field zone, we can set L= r ≈ 1/k and use k = ω/vwave. Also using q= 2e and m= 2me gives

β =

(
Gm2

e

Ke2

)(
v2v2

wave

c4

)
(1868)

If the gravitational wave is in vacuum or a dispersionless medium, then vwave = c and we have

β =

(
Gm2

e

Ke2

)(
v2

c2

)
Fractional correction factor for gravitational wave deviation force

(in vacuum or a dispersionless medium) relative to Coulomb force

(1869)

As before, we find that in the ultra-relativistic limit, v≈ c, we have β ≈ α . Also, taking the static limit using

(1866) leads to FGR wave (deviation) → 0 as v→ 0 and therefore (1869) does not diverge. Comparing (1869)
to (1860) we find that the result obtained from the geodesic deviation is smaller than the the result obtained

from the geodesic equation of motion by a factor of v/c. This follows from the fact that the geodesic deviation

equation does not have a velocity dependence while the geodesic equation of motion does.

Returning to (1868), note that if the gravitational wave is propagating in matter which causes a dispersion,

again we can use c2/v2
wave = 1−ω2

G/ω
2. Then (1859) becomes

β =

(
Gm2

e

Ke2

)(
v2

c2

)(
1− ω2

G

ω2

)−2

Fractional correction factor for Coulomb force relative to

gravitational wave deviation force in a medium with dispersion

(1870)

Once again, we find that the fractional correction factor is frequency dependent for the case of dispersion.

However, comparing to (1864), we find that the result obtained from the geodesic deviation varies with(
1−ω2

G/ω
2
)−2

while the the result obtained from the geodesic equation of motion varies with
(
1−ω2

G/ω2
)−1/2

.
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17.5 Energy conservation and linear response by a superconductor

Constitutive equations

Here we consider the maximum electric fields that could be produced by the charge-separation effect in a

superconductor. By energy conservation, we can equate the energy of the incident gravitational wave to the

energy of the electric fields produced in a superconductor. The Isaacson power flux formula can be used to

relate the gravitational wave power to the strain field of the gravitational wave. It is given in [43] as

P =
c3

16πG

〈
ḣ2
++ ḣ2

×
〉

(1871)

Here P is the power per unit area (P = P/A) while h+ and h× are the plus and cross polarization strain

fields. The particular polarization is not relevant to the analysis here so we can simply use h0 for the amplitude

and write a sinusoidal strain field as

h= h0 sin
(
~k ·~x−ωt

)
(1872)

Inserting this in the Isaacson power flux formula (1971) and using P = Pin/A for an incoming gravitational

wave gives

Pin =
c3

16πG
A

〈
ω

2h2
0 sin2

(
~k ·~x−ωt

)〉
=

c3

32πG
Ah2

0ω
2
wave (1873)

where ωwave is the angular frequency of the wave. The energy density of the electric field is U = E2/ε0.

We can multiply this by the volume, V = Aδ L, where δ L is the London penetration depth, and divide by the

period of the wave, T = 2π/ω , to obtain the average power of the electric field.

P Electric =
E2Aδ Lωwave

ε02π
(1874)

Equating (1873) and (1874), and solving for E gives

E = h0

√
c3ε0ωwave

16Gδ L

(1875)

This can be considered as a constitutive equation which predicts the maximum electric field that could be

induced in a superconductor in response to a gravitational wave. Note that it gives a linear response of the

electric field to the gravitational wave field. We can write this relationship as

E = Ξh0 where Ξ≡

√
c3ε0ωwave

16Gδ L

A linear constitutive equation for the electric field induced

in a superconductor due to an incident gravitational wave

(1876)

The London penetration depth from (2938) can be written as λ L = c

√
ε0me

ne2
. Therefore, we can also write Ξ

as

Ξ = c

(
ε0ne2ω2

wave

256G2me

)1/4

(1877)
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Using microwave gravitational waves (ωwave≈ 1010Hz) and the London penetration depth for Niobium (λ L≈
39nm), we find that (1876) gives

Ξ≡

√
c3ε0ωwave

16Gδ L

≈ 2.4×1020N/C (1878)

This implies the possibility of a large electric field for a relatively small gravitational wave strain field. For

an order of magnitude approximation of the electric field, we need a value for h0. We can solve (1873) for

h0 and consider a milliwatt of gravitational wave power (P GR wave ≈ 10−3W ) with microwave frequencies(
ω ≈ 1010Hz

)
incident on a square centimeter

(
A≈ 10−4m

)
. This gives

h0 =

√
16πG

c3

P GR wave

Aω2
wave

≈ 3.5×10−27 (1879)

Inserting this into (1876) and using the value of Ξ in (1878) gives

E = Ξh0 ≈ 8.5×10−7N/C (1880)

Now we can use the Lorentz force to describe the non-relativistic equation of motion for lattice ions or Cooper

pairs.207

ma= qE (1881)

We can use this to obtain a relationship between the non-relativistic208 supercurrents induced in the super-

conductor and the gravitational wave field. For particles with sinusoidal motion, we can use a = vω particles.

Then inserting E = Ξh0 from (1876) into the Lorentz force and solving for v gives

v =
q

mω particles

Ξh0 (1882)

The expression in (1882) gives an effective supercurrent velocity. Inserting this into the charge supercurrent

(J = nqv) and mass supercurrent (J = nmv) gives

J =
nq2

mω particles

Ξh0 and Jm =
nq

ω particles

Ξh0 (1883)

where n is the number density of the charge/mass carriers which have charge and mass given by q and

m, respectively. Once again, we have a linear relationship between the supercurrents and the gravitational

207Note that the Lorentz force can be applied to either the Cooper pairs or the lattice ions. Therefore, we

can use m = 2me for Cooper pairs or we can use m ≈ mNiobium for lattice ions where mNiobium is the mass

of a Niobium atom. The mass used in the Lorentz force should not be confused with the mass used in the

London penetration depth which is necessarily the mass of the Cooper pairs, m = 2me. This is because it is

the only Cooper pair supercurrent that determines the depth to which electromagnetic fields can penetrate a

superconductor.

208The velocities are certainly non-relativistic as can be confirmed from (1882) by inserting the value for Ξ

from (1876), using microwave frequencies (ω ≈ 1010Hz), and using the strain field in (1879). For lattice ions

(m ≈ mNiobium ≈ 1.5× 10−25kg), we find v ≈ 10−10m/s. For Cooper pairs (m ≈ me), we find v ≈ 10−5m/s.

In fact, solving (1882) for h0, we find that in order for the Cooper pairs to have a velocity that is 10% of

the speed of light (v= .1c), we would need microwave gravitational waves with a strain field on the order of

10−23. Using the Isaacson power formula (1873), this would correspond to a power flux (P/A) on the order

of 1027W/m2 which is clearly absurd.
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wave field. To emphasize the linear relationship, we can absorb the constants in (1883) into newly defined

constants. Using Ξ from (1876), we have209

Ξq ≡ nq2

m

√
c3ε0

16Gδ Lω
and Ξm ≡ nq

√
c3ε0

16Gδ Lω
(1884)

Then the supercurrents in (1883) simply become

J = Ξqh0 and Jm = Ξmh0

Linear constitutive equations for the charge/mass supercurrents

in a superconductor due to an incident gravitational wave

(1885)

Re-radiated gravitational waves calculated from the Einstein field equation

Now we can consider the gravitational wave power that can be emitted back out from the superconductor.

We can use the linearized Einstein equation for the transverse-traceless strain using the Helmholtz Decom-

position formulation. From (361) we have

�hττ
i j =−

16πG

c4
T ττ

i j (1886)

The retarded Green’s function solution is

hττ
i j (t,~x) =

4G

c4

∫ T ττ
i j (tr,~x

′)

|~x−~x′| d3x′ (1887)

where~x′ is the spatial coordinate of each infinitesimal element of T ττ
i j occupying a differential volume element

d3x. Also, T ττ
i j (tr,~x

′) is the stress-energy-momentum contribution at ~x′ evaluated at a retarded time tr and

located at a distance |~x−~x′| from the field point where hττ
i j is measured. We can therefore express the retarded

time as tr = t−|~x−~x′|/c. For simplicity, we can consider the case of relativistic dust (to order v2/c2) which

we found in (431) gives

T ττ
i j = ρ

(
viv j− 1

3
δ i jv

2
)

(1888)

For plus polarization, we have T⊕ =
2

3
ρv2

x =−
2

3
ρv2

y . Likewise, for cross polarization, we have T⊗ = ρvxvy.

Therefore, we can simply approximate T ≈ ρv2 in (2356) and use hout to represent the outgoing gravitational

wave. This gives

hout (t,~x) =
4G

c4

∫
ρv2

|~x−~x′|d
3x′ (1889)

where ρ and v2 can be functions of (tr,~x
′). For small distance and time scales, we can neglect the dependence

of ρ and v2 on the retarded time and also consider them approximately uniform over a volume V . Let us also

consider the distance from the source to the field point as remaining approximately a constant distance given

by d. Then we have

hout ≈
4Gρv2V

c4d
(1890)

209Here we are assuming that the frequency of oscillation of the particles, ω particles, is comparable to the

frequency of the gravitational wave, ωwave, so that we can work with a single frequency, ω .
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We can use V = Ad where A is the surface area that the gravitational wave is incident upon. We can also

insert the velocity found in (1882) to obtain

hout ≈
4GAρv2q2

m2c4ω2
Ξ

2h2
0 (1891)

where h0 is still the amplitude of the incoming gravitational wave field. We can use the number density,

n = ρ/m, and q2 = 4e2 (for lattice ions or Cooper pairs). We can also insert the expression for Ξ from

(1876). This gives210

hout ≈
(

e2ε0

4c

)(
Ah2

0

δ Lω

)(
n

m

)
(1892)

The first parentheses only involves constants of nature and is on the order of ∼ 10−58 in SI units. The second

parentheses involves the properties of the incident gravitational wave (h0 and ω) and the properties of the

superconductor (A and λ L). The last parentheses depends on whether we choose to consider the lattice ions

or the Cooper pairs as the particles which re-radiate the gravitational waves. This follows from the fact that

m is the mass of the particles being accelerated by the Lorentz force in (1881) and n = ρ/m where ρ is the

mass density of the particles radiating gravitational wave according to (1889).

To obtain a numeric value for hout , we can use a surface with dimensions on the order of centimeters

(A ≈ 10−4m) made of Niobium (λ L ≈ 39nm) and consider a gravitational wave with microwave frequency

(ω ≈ 1010Hz) and a power of 1mW (h0 ≈ 3.5×10−27) as given by (1879). First we can consider the case of

lattice ions re-radiating gravitational waves. Then m≈ 1.5×10−25kg and n= ρ/m≈ 5.7×1028m−3 where

we have used ρ ≈ 8.6× 103kg/m3 for Niobium. Using these values in (1892) gives hout ≈ 10−63. We can

use the Isaacson formula (1873) to obtain a power flux for the outgoing gravitational wave.

Pout ≈ 10−73W/m2

Power flux of GR waves re-radiated by lattice ions from a Niobium

superconductor with incident microwave gravitational waves

(1893)

On the other hand, if we consider the case of Cooper pairs re-radiating gravitational waves, then m ≈ 9.1×
10−31kg. We would still have n ≈ 5.7× 1028m−3 for an electrically neutral sample.211 Using these values

in (1892) gives hout ≈ 10−57. We can insert this result into the Isaacson power formula (1873) to obtain a

power flux for the outgoing gravitational wave.

Pout ≈ 10−61W/m2

Power flux of GR waves re-radiated by Cooper pairs from a Niobium

superconductor with incident microwave gravitational waves

(1894)

The results for the lattice ions in (1893) and the Cooper pairs in (1894) are obviously both miniscule. How-

ever, it is interesting to note that the power flux by the Cooper pairs is 12 orders of magnitude larger than for

the lattice ions. This follows from the fact that the smaller mass of the Cooper pairs makes the velocity of

the Cooper pairs in (1882) much greater than the velocity for lattice ions. Then in (1890) we find that the

210It is interesting to note that the outgoing strain field, hout , varies according to the square of the incoming

strain field, h0. This can be traced back to (1882) where the velocity of the particles varies with the incoming

strain field, v∼ h0, and (1889)where the outgoing strain field varies with the square of the velocity, hout ∼ v2.
211Technically, by using this approximation, we are using all the electrons of the sample for determing the

gravitional waves re-radiated This means we are using the electrons that are in a superconducting Cooper pair

state as well as the normal electrons.
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re-radiated field varies linearly with the mass but quadratically with the velocity. Therefore, the field for the

Cooper pairs has an overall factor of mNiobium/me ≈ 106 compared to the field of the lattice ions. Since the

power varies with the square of the field, then the power flux for Cooper pairs is expected to be 12 orders of

magnitude greater than the lattice ions.

We can summarize the procedure and results of this analysis as follows: The energy of an incoming gravi-

tational wave was assumed to be completely converted into the energy of electric fields in the superconductor.

The Lorentz force (on lattice ions or Cooper pairs) gives a velocity for the supercurrents induced in the su-

perconductor. The velocity is then used in the Einstein field equation to determine the outgoing gravitational

wave field. The Isaacson power formula is utilized to determine the power of the outgoing gravitational wave.

This procedures leads to the conclusion that for an incoming gravitational wave with a strain of 10−27, the

lattice ions produce an outgoing wave with a strain of 10−63 and the Cooper pairs produce an outgoing wave

with a strain of 10−57. These results can also be expressed in terms of power flux. A milliwatt of incoming

gravitational wave power incident on a square centimeter of Niobium will produces an outgoing gravitational

wave power flux of 10−61W/m2 at most.212

Re-radiated gravitational wave power from a high Q cavity

Recall that in obtaining (1874), we divided the energy of the electric field by the period the gravitational

wave to obtain a power. However, for a high Q cavity, the appropriate approach may be to divide the energy

of the electric field by the ring down time of the cavity, τ = Q/ω , instead of the period of the gravitational

wave. In that case, (1874) becomes

PElectric =
E2Aδ Lω

ε0Q
(1895)

For a cavity with Q≈ 109, we find that (1878) would become

Ξ≡

√
c3ε0Qω

32πGδ L

≈ 3.0×1024N/C (1896)

and this would ultimately lead to (1892) becoming

hout ≈
(

e2ε0

c

)(
QAh2

0

2πδ Lω

)(
n

m

)
(1897)

Inserting this into the Isaacson power flux formula (1873) and using λ L = c

√
ε0me

ne2
gives

Pout =

(
e6ε0

128π3Gcme

)
Q2A2n3h4

0

m2

Power flux of GR waves re-radiated by a cavity with quality factor Q

(1898)

The prefactor in parentheses is ∼ 10−96 in SI units. Using (1897) and (1898), we find that lattice ions

give a strain field of hout ≈ 10−54 for the outgoing gravitational wave and a corresponding power flux of

approximately 10−55W/m2. For Cooper pairs, we have a strain field of hout ≈ 10−48 and a corresponding

power flux of approximately 10−43W/m2. Therefore, we find that the benefit of a high Q cavity is not

sufficient to make the outgoing gravitational wave power significant.

212It would be helpful to verify these results by calculating the outgoing gravitational wave power predicted

by the Einstein quadrupole formula (1975) for the same system analyzed here.
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In this analysis we have arbitrarily set the power of the incoming gravitational wave to a milliwatt. How-

ever, we could consider a laser-like system where parametric amplification can spontaneously occur from

quantum vacuum fluctuations through a gravitational Casimir-like effect. In that case, we would need to start

with a gravitational wave that originates from the quantum ground state of the cavity. The gravitational wave

strain due to the ground state energy of a cavity with dimensions on the order of centimeters and a quality

factor of Q≈ 109 was found in (2354) to be

hground state =

√
8Gh

AQc3
≈ 1.45×10−37 (1899)

Using this value for h0, the incoming gravitational wave strain in the analysis above, leads to an outgo-

ing gravitational wave strain field of hout ≈ 10−54 for the lattice ions and a corresponding power flux of

approximately 10−55W/m2. For Cooper pairs, we obtain hout ≈ 10−48 and a corresponding power flux of

approximately 10−43W/m2.



18 Reflection/Expulsion of

gravitational (GR) waves

by a superconductor

348



349

18.1 Conditions for the reflection of gravitational fields

In this section we consider the conditions required for to reflect gravitational fields. First we evaluate the

condition that would be required for the reflection of a time-varying gravito-electric field due to a planar slab

of mass with time-varying mass currents. We perform a similar calculation for the a time-varying gravito-

magnetic field. Then we consider the case a gravitational wave using the geodesic equation of motion for the

test masses making up the material. Similarly, we consider the Lorentz force in curved space-time (which

is the geodesic equation with an additional contribution due to electromagnetic fields) to examine the same

situation involving a gravitational wave but with the inclusion of electric forces. Lastly, we examine the

results obtained by using the geodesic deviation equation.

Reflection of the gravito-electric field

Solving Newton’s law of gravitation for the case of a planar slab of mass gives

∇ ·~EG = 4πGρ ⇒ EG = σ/εG (1900)

where εG = 1/(4πG). We can consider a sinusoidally time-varying mass density σ which would produce a

corresponding sinusoidally time-varying gravito-electric field, EG. We can also consider the effect of this field

on a second planar slab which is parallel to the first slab and consists of freely moving massive particles. If we

use the geodesic equation with only the gravito-electric field, a = EG, and assume a sinusoidal acceleration,

a= vω , then the equation of motion of the particles in the second slab is given by

vω = σ/εG (1901)

Let us describe the lowest order (linear) response of the second slab by a constitutive equation analogous to

Ohm’s law:
~J = k~EG (1902)

where ~J = ρ~v is the mass current density per unit volume and k is a material parameter characterizing the

response of the material to the gravitational field (analogous to an electrical conductivity). We can use

ρ = σ ′/δ G where δ G is a characteristic depth to which the gravito-electric field penetrates the slab and σ ′ is

the mass density of the second slab. Then we can write J = σ ′v/δ G. Inserting this into the left side of (1902)
and using (1900) on the right side gives

σ ′v

δ G

=
kσ

εG

(1903)

In order to have reflection, we need EG and E ′G (the field due to each slab) to be comparable. Therefore, from

(1900)we find that the slabs must also have comparable mass densities, σ ′ = σ . We can also use δ G = c/ωG,

where ωG is a gravitational plasma frequency. Then we obtain

k = εGωG

v

c
(1904)

Solving this for v and inserting into (1901) gives

σ = kc
ω

ωG

(1905)

Notice that to generate the largest possible mass current in (1902), we would want k to be as large as possible.

Therefore, as an upper limit, we can set v= c in (1904)which means k= εGωG and therefore (1905) becomes

σ = εGcω . Finally, using εG = 1/(4πG) gives

σ =
c

4πG
ω

Minimum surface mass density required for

reflection of the gravito-electric field
(1906)
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The prefactor cεG is on the order of 1017 (SI units). Therefore, using microwave frequencies, ω ≈ 1010Hz,

leads to σ ≈ 1028kg/m2 which is on the order of an earth mass per square centimeter. On the other hand,

if we use laboratory-scale mass densities, such as a Niobium cavity
(
ρ ≈ 8.6×103kg/m3

)
with thickness

d ≈ 10−2m, then σ ≈ ρd ≈ 86 kg/m2. In that case, (1906) gives ω ≈ 10−16Hz. This corresponds to a

time scale on the order of 84 million years! However, in the following sections it is shown that for the

gravitational wave tensor field, hττ
i j , this the mass density is not the determining factor of whether reflection

can occur. Rather, it is the gravitational shear modulus, µG(SC), and the relative gravitational permeativity,

κr.
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18.2 Relating the GR and EM penetration depths by proportionalities

In this section, a gravitational penetration depth is developed in relation to the London penetration depth

from electromagnetism. The analysis starts with Maxwell’s field equations for electromagnetism (in the

Lorenz gauge) as well as the transverse-traceless linearized Einstein field equations for gravitation (using the

Helmholtz Decomposition formulation). These are, respectively,

�Ai =−µ0Ji and �hττ
i j =−2κT ττ

i j (1907)

By using Fourier transforms or applying a Green’s function solution, it can be shown that

Ai
∝ Ji and hττ

i j ∝ T ττ
i j (1908)

Furthermore, in a superconductor, the London constitutive equation and the gravitational London-like consti-

tutive equation are, respectively,213

Ji =−ΛLAi and T ττ
i j =−µG(SC)h

ττ
i j (1909)

Inserting these into the corresponding field equations in (1907), and taking the DC limit, leads to the follow-

ing Yukawa-like equations

∇
2
Ai−ΛLAi = 0 and ∇

2
hττ

i j −2κµGhττ
i j = 0 (1910)

These differential equations have solutions given, respectively, by

Ai
∝ e−z/λ L and hττ

i j ∝ e−z/λ G (1911)

where λ L is the London penetration depth, and λ G is the gravitational penetration depth. Using (1908) also

implies that

Ji
∝ e−z/λ L and T ττ

i j ∝ e−z/λ G (1912)

Relating the current density and stress tensor to the supercurrent velocity of the charge/mass carriers of the

superconductor (namely, the Cooper pairs) gives

Ji
∝ vi and T ττ

i j ∝ viv j (1913)

Comparing the expressions for Ji found in (1912) and (1913) requires that

vi
∝ e−z/λ L (1914)

Therefore, (1908), (1911), and (1914) can be used to summarize the relationship between the gravitational

wave field, the stress tensor, and the supercurrent velocity as

hττ
i j ∝ T ττ

i j ∝ viv j ∝ e−2z/λ L ∝ e−z/λG (1915)

From the last proportionality in (1915), it is found that the gravitational penetration depth is half of the

London penetration depth, λ G =
1
2
λ L. Using the expression for the London penetration depth found in

(2983) leads to

λ G =

√
me

4µ0nse
2

(1916)

213From (1297), the London constituent equation in the presence of a gravitational wave is Ji
s =

−ΛL

(
Ai+A jh

ττ
i j

)
where ΛL = nse

2/me. However, since the electromagnetic fields will completely dom-

inate over the gravitational wave field in driving the supercurrent, then Ai >> A jh
ττ
i j and therefore A jh

ττ
i j can

be neglected.
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Conceptually, this result follows from the fact that any supercurrents generated within the superconductor

by a gravitational wave would also produce electromagnetic fields. However, since the supercurrents and

electromagnetic fields must decay according to the London penetration depth, likewise, the stress tensor and

gravitational wave field must also decay within a gravitational penetration depth that is comparable to the

London penetration depth.

However, it is troubling that the gravitational penetration depth in (1916) would depend only on elec-

tromagnetic properties, namely, the magnetic permeability of free space. It does not include the Einstein

constant, κ , which is found in the Einstein field equations and determines the strength of the gravitational

field that is produced by a given stress tensor.214 Also, the result in (1916) does not include the gravitational

modulus, µG(SC), which characterizes the response of a superconductor to a gravitational wave. These factors

have been omitted due to the use of proportional reasoning which bypasses the use of Einstein’s equation

or a gravitational constitutive equation for the superconductor. In a sense, the only field equation that is im-

plicitly utilized is the Maxwell field equation, and the only constitutive equation that is implicitly utilized is

the London constitutive equation. The only connection to gravity is through the proportionality hττ
i j ∝ T ττ

i j

and T ττ
i j ∝ viv j. In fact, the gravitational side of equations (1909) and (1910) is never even used in the

proportional reasoning argument that leads to (1916). Therefore, a more formal approach is to construct

the complete stress tensor for a superconductor (which incorporates the interaction of the gravitational wave

with the superconductor as well as the presence of supercurrents and electromagnetic fields), then apply the

linearized Einstein field equations in order to arrive at a result for the gravitational penetration depth. This

analysis is carried out in the following sections.

214Typically the value of κ is determined by κ = 8πG/c4. However, it is possible that a material may

have a relative gravitational permeativity, κr, such that κ = κrκ0 where κ0 = 8πG/c4 in vacuum. Since the

gravitational penetration depth is found in (1335) to be λ G = 1/
√

2κc2µG, then it is possible that a large

enough value for κr would lead to λ G being comparable to λ L, the London penetration depth.
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18.3 A complete stress tensor in the presence of GR waves

A complete stress tensor for a superconductor in the presence of gravitational waves can be written as

T ττ
i j =−µG(SC)h

ττ
i j +T ττ

i j (EM)+T ττ

i j (supercurrents) (1917)

The first term here is the gravito-London constitutive equation describing the interaction of the gravitational

wave with the Cooper pairs and lattice ions, the second term is the stress tensor associated with electromag-

netic fields within the superconductor, and the third term is the stress tensor produced in the superconductor

due to the presence of supercurrents. For the electromagnetic stress tensor, we can assume that the electro-

magnetic fields dominate over the gravitational wave field so that B2 >> BkB jh
ττ
ik

and E2 >> EkE jh
ττ
ik

. This

leads to (1774) which gives

T ττ

i j (EM) = −ε0E iE j− 1

µ0

BiB j+
1

3

(
ε0E2+

1

µ0

B2

)
δ i j (1918)

For a superconductor, the London constitutive equations were found in Appendix Q as

∂t
~Js =

nse
2

me

~E and ∇× ~Js =−
nse

2

me

~B (1919)

In the DC limit, the first constitutive equation requires ~E = 0. For convenience, a transverse-traceless “mag-

netic field tensor” can be defined as

Bττ
i j ≡ BiB j− 1

3
δ i jB

2 (1920)

Then in the DC limit, (1918) simply becomes

T ττ

i j (EM) = − 1

µ0

Bττ
i j (1921)

For the supercurrent stress tensor,

It is also possible to develop a constitutive equation for the transverse-traceless stress tensor within a

superconductor. In (429) it is shown that the source of gravitational waves is given by the transverse-traceless

stress, T ττ
i j =

(
ρ+P/c2

)(
viv j− 1

3
δ i jv

2
)
, for an ideal fluid (to second order in velocity). Substituting in

(1296) for each velocity term gives

T ττ
i j =

e2
(
ρ+P/c2

)
m2

e

[
(Ai+hττ

ik Ak)
(

A j+hττ
jl Al

)
− 1

3
δ i j (Ak+hττ

kl Al)
2
]

(1922)

Remaining to first order in hττ
i j gives215

T ττ

i j (supercurrents) =
e2
(
ρ+P/c2

)
m2

e

[
AiA j+AkA jh

ττ
ik
+AlAih

ττ
jl
− 1

3
δ i j

(
A2+2AkAlh

ττ
kl

)]
Transverse-traceless stress tensor due to supercurrents

in the presence of a gravitational wave

(1923)

215Note that T ττ

i j (superrcurrents) is transverse by virtue of the fact that taking a divergence will lead to terms

involving ∂iAi = 0 which is essentially the London gauge condition that is known to exist within a supercon-

ductor.
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This is the stress tensor produced inside a superconductor due to supercurrents in the presence of a gravita-

tional wave field. Once again, if the vector potential is set to zero, the stress tensor vanishes regardless of the

presence of a gravitational wave. Therefore, this constitutive equation does not describe the stress generated

in a superconductor due to a gravitational wave alone. Rather, it involves terms of the form AlAih
ττ
jl

which

are corrections to the stress tensor that would already exist in a superconductor due to electromagnetic fields.

This stress tensor will be used in a later section (in conjunction with the Einstein field equation) to find a

gravitational penetration depth due to the supercurrents produced in a superconductor by electromagnetic

fields in the presence of a gravitational wave.

Note that (1923) gives

T ττ

i j (supercurrents) =
e2
(
ρ+P/c2

)
m2

e

[
AiA j+AkA jh

ττ
ik +AlAih

ττ
jl − 1

3
δ i j

(
A2+2AkAlh

ττ
kl

)]
(1924)

To simplify this expression, again we consider the case when the electromagnetic fields dominate the gravita-

tional fields so that A2 >> AkA jh
ττ
ik

. For convenience, a transverse-traceless “magnetic tensor potential” can

be defined as

Aττ
i j ≡ AiA j− 1

3
δ i jA

2 (1925)

Then (1924) becomes

T ττ

i j (supercurrents) =
e2
(
ρ+P/c2

)
m2

e

Aττ
i j (1926)

Inserting (1921) and (1926) into (1917) gives

T ττ
i j = −µG(SC)h

ττ
i j +

e2
(
ρ+P/c2

)
m2

e

Aττ
i j −

1

µ0

Bττ
i j (1927)

This is the full stress tensor for the superconductor in the DC limit,
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18.4 A gravitational penetration depth from the complete stress tensor

Next, the gravitational penetration depth can be determined using a stress tensor given by

Inserting this into the transverse-traceless linearized Einstein field equations given in (1907) and taking

the DC limit of the wave equation leads to a Poisson equation.

∇
2
hττ

i j = 2κµGhττ
i j −

2κe2
(
ρ+P/c2

)
m2

e

Aττ
i j +

2κ

µ0

Bττ
i j (1928)

In this approximation (with electromagnetic fields dominating the gravitational wave field), the solution to

Maxwell’s equation is Ai = Ai,0e−z/λ L and Bi = Bi,0e−z/λ L . Inserting these above gives

∇
2
hττ

i j = 2κµGhττ
i j −

2κe2
(
ρ+P/c2

)
m2

e

Aττ
i j,0e−2z/λ L +

2κ

µ0

Bττ
i j,0e−2z/λ L = 0 (1929)

The following is an ansatz solution to the differential equation.

hττ
i j = hττ

i j,0(incident GR wave)e
−z/λ G +

κλ
2
L

2

(
1

µ0

Bττ
i j,0−

e2
(
ρ+P/c2

)
m2

e

Aττ
i j,0

)
e−2z/λ L (1930)

where hττ

i j,0(incident GR wave) is the amplitude of the gravitational wave that is incident on the superconductor.

From the second term in (1930), it is evident that the amplitude of the gravitational wave produced by the

supercurrents and electromagnetic fields is given by

hττ

i j,0(due to EM fields and supercurrents) =
κλ

2
L

2

(
1

µ0

Bττ
i j,0−

e2
(
ρ+P/c2

)
m2

e

Aττ
i j,0

)
(1931)

Then the solution in (1930) can be written as

hττ
i j = hττ

i j,0(incident GR wave)e
−z/λ G −hττ

i j,0(due to EM fields and supercurrents)e
−2z/λ L (1932)

From these results, it is found that there are effectively two gravitational penetration depths. One penetration

depth, which may be called λ G(incident GR wave), is associated with the incident gravitational wave field which

interacts with the Cooper pairs and lattice ions according to the coupling parameter µG(SC). The other pene-

tration depth, which may be called λ G(due to EM fields and supercurrents), is associated with the gravitational wave

field produced by the electromagnetic fields and the supercurrents in the superconductor. The two penetration

depths can be written as

λ G(incident GR wave) =
1√

2κµG

and λ G(due to EM fields and supercurrents) = λ L/2

Penetration depths for a gravitational wave in a superconductor

(first depth is due to a gravito-London constitutive equation

and second depth is due to supercurrents and EM fields)

(1933)

The first expression describes the depth that an incident gravitational wave will penetrate into a superconduc-

tor. It is determined by Einstein’s constant, κ , and the gravitational modulus, µG(SC). The second expression
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gives the penetration depth of the gravitational wave that is produced by the electromagnetic fields and the

supercurrents driven by electromagnetic fields. In the absence of electromagnetic fields (Ai = 0 and Bi = 0),

the second term in (1930) would vanish. In that case, the only penetration depth remaining is the first one

given in (1933).

Lastly, it should be noted that the amplitude of the gravitational wave that is produced by the electromag-

netic fields (and the supercurrents driven by electromagnetic fields) is extremely small. To determine a value,

assume that ρ >> P/c2 and ρ = nsme so that (1931) simplifies to

hττ

i j,0(due to EM fields) =
κλ

2
L

2

(
1

µ0

Bττ
i j,0−

e2ns

me

Aττ
i j,0

)
(1934)

Using the definition of Aττ
i j and Bττ

i j in (1925) and (1920), respectively, along with the London constitutive

equation, Ji
s =− nse2

me
Ai, and the current density, Ji

s = nsevi, gives

hττ

i j,0(due to EM fields and supercurrents) =
κλ

2
L

2

[
1

µ0

(
BiB j− 1

3
δ i jB

2
)
−nsme

(
vi,0v j,0− 1

3
δ i jv

2
0

)]
(1935)

Notice that nsmev2
0 is essentially the kinetic energy density of the Cooper pairs. To obtain a numerical result,

we consider that each atom contributes two conduction electrons, and only 10−3 of the conduction electrons

are in a superconducting state [34], then ns ≈ 2n
(
10−3

)
where n= ρm/m is the number density of atoms. For

Niobium, the mass density is ρm ≈ 8.6×103kg/m3 and the mass per atom is m≈ 1.5×10−25kg/atom. Then

the number density of atoms is n≈ 5.7×1028m−3 and therefore the number density of Cooper pairs is ns ≈
2n
(
10−3

)
≈ 1.1×1026m−3. For an upper limit on the maximum kinetic energy density of the Cooper pairs,

note that the superconducting state is only preserved up to the BCS energy gap, Egap =
7
2
kBTc, where kB is the

Boltzmann constant and Tc is the critical temperature. For niobium, Tc = 9.3K, so the energy density of the

BCS energy gap is Egapns ≈ 5×104J/m3. Using this value for nsmev2
0, as well as κ = 8πG/c4 ≈ 10−43m/J

and λ L ≈ 40nm for niobium, gives the following dimensionless amplitude of the gravitational field.

hττ

i j,0(due to EM fields and supercurrents) ≈ κλ
2
LEgapns ≈ 10−53 (1936)

This is the maximum amplitude of the gravitational field that can be produced by the supercurrents in the

superconductor without exceeding the BCS energy gap. Any higher amplitude would require supercurrent

velocities with a kinetic energy that exceeds the BCS energy gap and therefore breaks up the Cooper pairs

and destroys the superconducting state of the system.
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18.5 GR wave reflectivity and transmissivity for linear media

In this section, reflection and transmission coefficients are developed for a gravitational wave that is

normally incident on the interface between two linear media.

Figure 12: An incident, reflected, and transmitted gravitational waves at the interface of two linear media.

The reflected and transmitted gravitational wave fields can be shown to satisfy

E
(R)
i j =

(
Z
(2)
G −Z

(1)
G

Z
(1)
G +Z

(2)
G

)
E
(I)
i j and E

(T )
i j =

(
2Z
(2)
G

Z
(1)
G +Z

(2)
G

)
E
(I)
i j (1937)

We can write these expressions in terms of the amplitude reflection and transmission coefficients, r and t,

respectively as

E
(R)
i j = rE

(I)
i j and E

(T )
i j = tE

(I)
i j (1938)

Then we have

r =

(
Z
(2)
G −Z

(1)
G

Z
(1)
G +Z

(2)
G

)
and t =

(
2Z
(2)
G

Z
(1)
G +Z

(2)
G

)
(1939)

These can also be written as

r =

(
1−Z

(1)
G /Z

(2)
G

1+Z
(1)
G /Z

(2)
G

)
and t =

(
2

1+Z
(1)
G /Z

(2)
G

)
(1940)

This form emphasizes that the ratio Z
(1)
G /Z

(2)
G determines the reflection and transmission of the wave.
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For complex impedance values, the power reflection and tramission coefficients can be written as

R= r∗r and T = t∗t (1941)

If the impedance values are real, then using (1940) makes these become216

R =

(
1−Z

(1)
G /Z

(2)
G

1+Z
(1)
G /Z

(2)
G

)2

and T =

(
2

1+Z
(1)
G /Z

(2)
G

)2

(1942)

Now consider the case of medium 1 being vacuum, and medium 2 being a superconductor. Then

Z
(1)
G = Z

(vac)
G =

4πG

c
and Z

(2)
G = Z

(SC)
G =

4πG/c√
1−2c2κµG(SC)/ω2

(1943)

Then using the gravitational plasma frequency for a superconductor, ωG =
√

2c2κµG(SC), we can define a

dimensionless relative impedance as

Z
(SC)
r ≡

Z
(vac)
G

Z
(SC)
G

=
√

1−ω2
G/ω

2 (1944)

Rearranging gives

Z
(SC)
r =

√
ω2−ω2

G(SC)

ω
(1945)

Notice that Z
(SC)
r is purely imaginary if ω < ωG(SC). In fact, it can be written as

Z
(SC)
r = i

√
ω2

G(SC)
−ω2

ω
(1946)

In that case, the reflection coefficient in (1941) becomes

R =

(
1−Z

(SC)
r

1+Z
(SC)
r

)∗(
1−Z

(SC)
r

1+Z
(SC)
r

)
=

(
1+Z

(SC)
r

1−Z
(SC)
r

)(
1−Z

(SC)
r

1+Z
(SC)
r

)
= 1 (1947)

This means that there is total reflection of the wave. On the other hand, the transmission coefficient in (1941)
becomes

T =

(
2

1+Z
(SC)
r

)∗(
2

1+Z
(SC)
r

)
=

4(
1−Z

(SC)
r

)(
1+Z

(SC)
r

) = 4

1−
(

Z
(SC)
r

)2
(1948)

Using (1946) and simplifying gives

T =
4ω2

ω2
G(SC)

(1949)

However, we would expect that T = 0 when R= 0.

216The results in (1942) have the same form as equation (9.109) of Griffiths [29].
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If ω % ωG(SC), then Z
(SC)
G is real but much greater than Z

(vac)
G . This leads to R ≈ 1. (Note that the

expression for the transmission coefficient is not valid in these cases.) However, if ω > ωG (SC), then Z
(SC)
G

is real which leads to values for R and T . In the limit that ω >> ωG, we find that Z
(vac)
G /Z

(SC)
G ≈ 1 which

leads to R≈ 0 and T ≈ 1. This means that there is almost perfect transmission.

For a normal conductor (NC), the gravitational impedance is

Z
(NC)
G =

4πG/c√
1+ i2c2κηG(NC)/ω

(1950)

Once again, we can let Z
(1)
G = Z

(vac)
G and Z

(2)
G = Z

(NC)
G . For a perfect gravitational conductor, ηG(NC) → ∞,

which means that Z
(NC)
G → 0 and (1941) predicts R = 1 and T = 0, which implies perfect reflection. On

the other hand, for an extremely poor gravitational conductor, ηG(NC)→ 0, which means Z
(NC)
G → Z

(vac)
G and

(1941) predicts R= 0 and T = 1, which implies perfect transmission.
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18.6 Summary of electromagnetic quantities and gravitational analogs

In this section, a summary is provided of electromagnetic quantities and their corresponding gravitational

analogs as developed in this dissertation.
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19 Gravitational wave

boundaryconditions

and power output

363
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19.1 Gravitational wave boundary conditions and waveguides

Here we consider gravitational waves confined to the interior of a waveguide which is assumed to be a

perfect “gravitational conductor.” We can make use of the fact that the Helmholtz Decomposition formulation

of linearized GR allows us to isolate the radiative degrees of freedom as hττ
i j which is a transverse-traceless,

gauge-invariant quantity. Using this formalism, we find the boundary conditions and wave modes that are

possible in an arbitrarily shaped waveguide.

Gravitational wave field constraints, sources and field equations

As shown in (330)− (333), it was found that Φ,Θ, and Ξi satisfy Poisson equations while hττ
i j satisfies a

wave equation. Therefore, the solutions for Φ,Θ, and Ξi will fall off as 1/r2, while the solution for hττ
i j will

fall off as 1/r. For that reason, hττ
i j can be considered as describing gravitational waves that propagate out to

the far-field region, while Φ,Θ, and Ξi are all confined to the near-field region. Therefore, the treatment in

this section will be focused on characterizing the boundary conditions for hττ
i j . Recall from (181) and (182)

that hττ
i j is both transverse and traceless so that

∂ih
ττ
i j = 0 and δ

i j
hττ

i j = 0 (1951)

The wave equation in (361) for hττ
i j can be written as

�hττ
i j =−2κT ττ

i j (1952)

The retarded Green’s function solution to the D’Alembert (wave) operator is
−δ (t−|~x−~x′|/c)

4π |~x−~x′| . Therefore,

we have

hττ
i j (t,~x) =

4G

c4

∫ T ττ
i j (tr,~x

′)

|~x−~x′| d3x′ (1953)

where~x′ is the spatial coordinate of each infinitesimal element of T ττ
i j occupying a differential volume element

d3x. Also, T ττ
i j (tr,~x

′) is the stress-energy-momentum contribution at ~x′ evaluated at a retarded time tr and

located at a distance |~x−~x′| from the field point where hττ
i j is measured. We can therefore express the retarded

time as tr = t−|~x−~x′|/c. In (429) we found that the transverse-traceless stress tensor for an ideal fluid is

T ττ
i j =

(
ρ+

P

c2

)
γ

2
(
viv j− 1

3
δ i jv

2
)

(1954)

For the case of relativistic dust (to order v2/c2), we found in (431) that this reduces to

T ττ
i j = ρ

(
viv j− 1

3
δ i jv

2
)

(1955)

Therefore, we can consider T ττ
i j as effectively describing mass-currents (of a tensor nature) in a gravitational

conductor.
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Gravitational wave boundary conditions

If we consider a “Gaussian pillbox” extending just slightly from the vacuum (region 1) to the inside of

the conductor (region 2) and apply Gauss’s theorem, we find that the normal component of hττ
i j is continuous

since T ττ
i j is purely transverse.217

hττ

i j 1⊥−hττ

i j 2⊥ = 0 (1956)

This is consistent with the fact that (1951) gives ∂ih
ττ
i j = 0 which is analogous to the magnetic field which

satisfies ∂iBi = 0. This is no surprise since Bi and hττ
i j are both transverse fields which are generated from

electric currents and mass currents, respectively. They are both unlike Ei which can be generated from static

charges.

We can also use a rectangular “Amperian loop” of length~l that is straddling the surface of the conductor

and therefore “threaded” by a free surface mass-current density, ~K f , on the conductor.Note that n̂ is a unit

Figure 13: An Amperian loop straddling the surface of a gravitational conductor with a surface mass-current

density, ~K f .

vector normal to the conductor (pointing from region 2 to region 1). Therefore n̂×~l is normal to the Amperian

loop and the free mass-current on the conductor is given by

I f ree = ~K f ·
(

n̂×~l
)
= K f ẑ · lẑ= K f l (1957)

In this case, (1953) reduces to effectively just a line-integral and therefore hττ

i j ‖ is discontinuous across the

boundary between regions 1 and 2. From (1953) we obtain

hττ

i j 1,‖ (t,~x)−hττ

i j 2,‖ (t,~x) =
4G

c4

∫ l

0

T ττ
i j

|x− x′|dx′ (1958)

217Formally, to show this we would need to apply a time-like Killing vector to T ττ
µυ to turn it into a rank-1

tensor (four-vector) Jµ =
(
cρ,Ji

m

)
. Then we can properly apply Gauss’s law in curved space-time. We can

also obtain the free surface mass-current density ~K f by taking a line-integral of ~Jm.
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Gravitational waves propagating along the axis of a waveguide of arbitrary geometry

We can begin with a waveguide of arbitrary geometry as shown in the diagram below.Since the interior

Figure 14: A gravitational wave guide with arbitrary geometry

of the waveguide is vacuum, then in that region we simply have

�hττ
i j = 0 (1959)

Note that hττ
i j has six components which are all associated with gravitational radiation. However, within the

six components there are really only two physical degrees of freedom due to the constraint equations given

by (1951) where ∂ih
ττ
i j = 0 involves three constraints (for transversality) and δ

i j
hττ

i j = 0 is one additional

constraint (for tracelessness). For a plane wave propagating in the z-direction, the wave vector is ki= (0,0,k).
We can write the gravitational wave as hττ

i j (~x, t) = Re h̃ττ
i j (~x, t) where

h̃ττ
i j (~x, t) = Aττ

i j (x,y)e
i(kz−ωt) (1960)

Applying ∂ jhττ
i j = k jAττ

i j = 0 requires Ai3 = 0. Also, applying δ
i j

hττ
i j = 0 requires A11 = −A22. We can use

the notation A11 = h⊕ and A12 = h⊗ to write Aττ
i j in a form similar to the transverse-traceless gauge. Then we

have

Aττ
i j (x,y) =

(
h⊕ h⊗
h⊗ −h⊕

)
(1961)

where h⊕ and h⊗ are functions of x and y such that Aττ
i j (x,y)→ 0 as r→ ∞ in order to satisfy the conditions

necessary for the Helmholtz Decomposition formulation. Also, it is shown in (2637) and (2638) of Appendix

F, that because hττ
i j is transverse

(
∂ih

ττ
i j = 0

)
and traceless

(
δ

i j
hττ

i j = 0
)

, we also must satisfy the following

relations.

∂xh⊕+∂yh⊗ = 0 and ∂xh⊗−∂yh⊕ = 0 (1962)
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Inserting (1960) into (1959) and using ∇
2
⊥ = ∂ 2

x +∂ 2
y as the transverse Laplacian gives(

∇
2
⊥+∂

2
z −

1

c2
∂

2
t

)
Aττ

i j (x,y)e
i(kz−ωt) = 0 (1963)

Although this is formally a tensor wave equation, we can express it as two scalar wave equations since

Aττ
i j (x,y) has only two degrees of freedom. Using h⊕ and h⊗ from (1961) gives(

∇
2
⊥− k2+

ω2

c2

)
h⊕ (x,y) = 0 and

(
∇

2
⊥− k2+

ω2

c2

)
h⊗ (x,y) = 0 (1964)

Notice that this is mathematically identical to the case for electromagnetic waves in the z-direction. Accord-

ing to Griffiths [29], equation (9.181), the electric and magnetic fields are given by(
∇

2
⊥− k2+

ω2

c2

)
Ez (x,y) = 0 and

(
∇

2
⊥− k2+

ω2

c2

)
Bz (x,y) = 0 (1965)

The difference is that for the case of electromagnetism, the boundary conditions for a perfect conductor are

given in [29], equation (9.175) as E‖ = 0, B⊥ = 0. However, in the case of gravitational waves, we find

from (1956) that h⊥⊕ = h⊥⊗ = 0. This means that gravitational radiation degrees of freedom have boundary

conditions that are similar only to the magnetic field in electromagnetism. (As noted earlier, this is due to the

fact that both Bi and hττ
i j are transverse and are generated only by currents, not static sources.)

We can also notice that in the case of electromagnetism, it is possible to have Ez 6= 0 or Bz 6= 0 for a wave

propagating in the z-direction. In other words, it is possible to have a longitudinal degree of freedom for the

fields. However, in the case of gravitation, a wave propagating in the z-direction can only have fields given by

hxx = −hyy and/or hxy = hyx. This means that there are absolutely no longitudinal degrees of freedom. This

is consistent with the fact that hττ
i j is transverse and traceless.

Furthermore, in the case of electromagnetism, there can be three wave modes: the TE (transverse electric)

mode which has Ez = 0; the TM (transverse magnetic) mode which has Bz = 0; and the TEM (transverse

electromagnetic) mode which has Ez = Bz = 0. However, in the case of gravitation, these modes don’t seem

to exist. In a sense, there is only a single mode (which could be called the “transverse gravitational” mode).

This is due to the fact that setting h⊕ or h⊗ to zero (analogous to setting Ez or Bz to zero) doesn’t lead to

different modes but rather to different polarizations.

Also, setting h⊕ = h⊗ = 0 implies there is no gravitational wave. This is clearly in contrast to the case

for electromagnetism where the choice of setting Ez = Bz = 0 simply leads to the TEM mode.218 This is a

consequence of the fact that ~E and ~B satisfy wave equations that are fundamentally derived from first-order

differential equations, namely, the Maxwell equations. Therefore, if Ez and Bz are both zero, it is still possible

to return to the Maxwell equations to describe the other components of ~E and ~B. (See footnote 18 on p. 407

of [29] concerning this issue.)

This is also related to the fact that ~E and ~B can be near-fields as well as radiation fields. (In other

words, they satisfy first-order differential equations involving sources and they also satisfy second-order

wave equations.) In contrast to this, hττ
i j is purely a radiation field. It only satisfies a second-order wave

equation. In fact, as shown by the Helmholtz Decomposition formulation, hττ
i j is uniquely projected out from

the rest of the metric as the only quantity that satisfies a wave equation.

Yet another factor related to this point is the proof for showing that the TEM mode is not supported in a

waveguide. It is shown on p. 407 of [29] that due to Gauss’s law and Faraday’s law, it is impossible to have an

218Although the TEM mode is not supported by a waveguide, it is certainly valid in vacuum. This still

demonstrates the point that setting Ez = Bz = 0 can lead to EM waves, whereas setting h⊕ = h⊗ = 0 leads to

no GR wave.
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electromagnetic wave if Ez = Bz = 0. However, for the case of gravitational waves, there is no gravitational

Gauss’s law or Faraday’s law for hττ
i j . Therefore there is no corresponding restrictions that would apply to

hττ
i j .

Concerning polarizations, we find for EM waves that setting Ez = 0 or Bz = 0 in (1965) doesn’t deter-

mine the polarization of the waves. For example, for Ez = 0 (the TE mode), we still have Ex and Ey remaining

unspecified. Only if we set Ex = 0 or Ey = 0 do we have the polarization specified. This is in contrast to

gravitational waves in (1964) where setting h⊕ or h⊗ to zero will determine the polarization of the gravita-

tional wave. In fact, setting h⊗ = 0 gives a purely “plus” polarization wave, setting (h⊕ = 0) gives a purely

“cross” polarization wave, and letting (h⊗ = h⊕ 6= 0) gives a “mixed” polarization which can be a “circular”

or “elliptical” polarization, depending on the relative phase of h⊕ (x,y) and h⊗ (x,y).

Lastly, in (2637) and (2638) of Appendix F, it was found that the transverse Laplacian of h⊕ or h⊗ is

zero. Therefore, (1964) reduces to just(
−k2+

ω2

c2

)
h⊕ (x,y) = 0 and

(
−k2+

ω2

c2

)
h⊗ (x,y) = 0 (1966)

As a result, the boundary conditions in the x and y directions don’t play a role and no modes or cut-

off frequency can be obtained. This is a surprising result since it would be expected that a gravitational

waveguides would have a cut-off frequency for the gravitational waves that it can support. However, it

follows mathematically from the fact that hττ
i j is transverse (∂ih

ττ
i j = 0) and traceless (δ i j

hττ
i j = 0) that

∇
2
⊥h⊕ (x,y) = ∇

2
⊥h⊗ (x,y) = 0.

The role of near fields and conservation laws for determining boundary conditions

In the treatment above, boundary conditions for hττ
i j were developed based on the transversality of the

field (1956) and the transversality of T ττ
i j in (1958). However, it should be noted that hττ

i j is also related to

other near-fields by the Bianchi identities. In previous sections, the following relations were developed.

∂ jSik−∂kSi j =−∂tUi jk and ∂kVli j−∂lVki j =−∂tWi jkl (1967)

Here we have used the following tensor field definitions.

Si j ≡ δ i jΘ̈+ ḧττ
i j , Ui jk ≡ ∂

[
kδ i jΘ̇

]
−∂i∂ [kΞ j]+∂

[
kḣττ

i j

]
Vi jk ≡ ∂

[
kδ i jΘ̇

]
+∂

[
kḣττ

i j

]
, Wi jkl ≡ ∂k∂

[
j

(
hττ

il
+δ i jΘ

)]
−∂i∂

[
j

(
hττ

ik
+δ ikΘ

)] (1968)

These relations imply that spatial and temporal changes in Θ and Ξi can induce spatial and temporal changes

in hττ
i j . (This is similar to the case in electromagnetism where spatial and temporal changes in ~E can induce

spatial and temporal changes in ~B, and vice versa.) Therefore, inside a wave guide, it is expected that hττ
i j

would be determined not just by the source T ττ
i j , but by changes in Θ and Ξi due to changed in their associated

sources as well.

Note that the field equations for Φ,Θ, Ξi, and hττ
i j were fond in (330)− (333) to be

∇
2
Φ= 4πG

(
ρ+

3

c2

(
P− İ

))
, ∇

2
Θ=−8πG

c2
ρ

∇
2
Ξi =−

16πG

c2
Ri, �hττ

i j =−
16πG

c4
T ττ

i j

(1969)
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These equations would seem to imply that hττ
i j could also be indirectly coupled to Φ,Θ, and Ξi through

conservation of the stress-energy tensor, ∂ ν Tµν = 0, which would relate the sources of Φ,Θ, and Ξi to the

source of hττ
i j . However, the conversation laws were found in (283), (289), and (292) to be, respectively,

ρ̇ = ∇
2
I, 2

3
∇

2
L= İ−P, ∇

2
ri = Ṙi (1970)

Since T ττ
i j is not related to the other stress tensor sources by any conservation law, then hττ

i j is not related to

Φ,Θ, and Ξi through conservation of the stress tensor. Hence we conclude that the boundary conditions for

hττ
i j are determined only by the transversality of the field (1956), the transversality of T ττ

i j in (1958), and the

Bianchi identities that relate hττ
i j to Θ and Ξi.
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19.2 Ratio of output to input GR wave power (scattering cross-section)

The Isaacson power flux formula can be used to relate the gravitational wave power to the strain field of

the gravitational wave. It is given in [43] as

P =
c3

16πG

〈
ḣ2
++ ḣ2

×
〉

(1971)

Here P is the power per unit area (P = P/A) while h+ and h× are the plus and cross polarization strain

fields. The particular polarization is not relevant to the analysis here so we can simply use h0 for the amplitude

and write a sinusoidal strain field as

h = h0 sin
(
~k ·~x−ωt

)
(1972)

Inserting this in the Isaacson power flux formula (1971) and using P = Pin/A for an incoming gravitational

wave gives

Pin =
c3

16πG
A

〈
ω

2h2
0 sin2

(
~k ·~x−ωt

)〉
(1973)

=
c3

32πG
Ah2

0ω
2
wave (1974)

where ωwave is the angular frequency of the wave. If this power is deposited on a mass distribution that

re-radiates gravitationally, then the outgoing gravitational radiation power can be found using Einstein’s

gravitational quadrupole power formula given in [91] as

Pout =
G

45c5

〈...
D

2
i j

〉
(1975)

Here
〈...

D
2
i j

〉
is the square of the third time-derivative of the mass quadrupole-moment which is time-averaged

over at least a period. We can divide (1975) by (1971) to determine the ratio of outgoing to incoming power.

This gives

Pout

Pin

=

(
32πG2

45c8

)〈 ...
D

2
i j

ḣ2
++ ḣ2

×

〉
(1976)

The prefactor here is ∼ 10−89 SI units. This is obviously an extremely small value which would imply that

there is no appreciable reflected gravitational wave. However, we can examine the remaining part of the

expression to determine if the ratio of outgoing to incoming power must necessarily be miniscule. Using

(1974), we can rewrite the ratio as

Pout

Pin

=

(
32πG2

45c8

) 〈...
D

2
i j

〉
Ah2

0ω2
wave

(1977)
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For an order of magnitude calculation, we can consider a quadrupole moment similar to the form shown

in Appendix T.219 The following is a diagram of the system.

Figure 15: A time-varying mass-quadrupole moment consisting of two particles of mass m which are sep-

arated by an average distance r0 and oscillate with an amplitude of motion given by d. The solid arrows

represent the half-cycle when the particles are moving away from each other, and the dashed arrows repre-

sent the half-cycle when the particles are moving toward each other.

If ωmass is the angular frequency describing the sinusoidal oscillation of the masses, then from (2200) we

find 〈...
D

2
〉
= 4m2d2

ω
6
mass

(
16d2+

r 2
0

2

)
(1978)

To simplify the calculation for each of the four cases, we will always consider the frequency of oscillation

of the masses to be comparable to the frequency of the gravitational wave so that we can work with a single

frequency: ω ≈ ωmass ≈ ωwave. We can also express the mass of the quadrupole moment in terms of a

mass density using m = ρV . The volume containing the Niobium atoms (or Cooper pairs) that re-radiate

can be described by the surface area of the cavity, A, multiplied by the gravitational penetration depth, δ G,

which characterizes the depth to which the transverse-traceless stress current will exist in the walls of the

superconductor. Therefore, we have m= ρAδ G and (1978) becomes〈...
D

2
〉
= 4ρ

2A2
δ

2
Gd2

ω
6

(
16d2+

r 2
0

2

)
(1979)

There are four cases that we can consider:

1. A single large quadrupole moment occupying the face of the material
(
A≈ r2

0

)
and a large strain field

which oscillates particles across the face of the material (r0 ≈ d);

2. A single large quadrupole moment occupying the face of the material
(
A≈ r2

0

)
and a small strain field

which oscillates particles a small distance (r0 >> d);

3. An array of small quadrupole moments with small average spacing between them
(
A>> r2

0

)
which

are driven in phase.

4. An array of small quadrupole moments with small average spacing between them
(
A>> r2

0

)
and a

random phase distribution.

We will determine the gravitational modulus, gravitational plasma frequency, and associated penetration

depth for each of the cases above.

219This model could be referred to as a ”gravitational Lorentz oscillator” since it is similar to the standard

Lorentz oscillator which consists of an electron in harmonic motion relative to an atomic nucleus. The

difference here is that we consider the two masses of the oscillator to be equal and we neglect the charge.
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1. A single large quadrupole
(
A≈ r2

0

)
with a large strain field (r0 ≈ d)

If the entire ensemble of particles on the surface of the material form a single quadrupole, then for

plus-polarization and cross-polarization, respectively, the surface would have acceleration fields shown be-

low.Since we are considering the case when r0 ≈ d, then (1979) gives

Figure 16: Plus-polarized and cross-polarized gravitational wave acceleration fields.

〈...
D

2
〉
= 66ρ

2A2
δ

2
Gd4

ω
6 (1980)

Inserting this into (1977) gives

Pout

Pin

=

(
704πG2

15c8

)
ρ2Aδ

2
Gd4ω4

h2
0

(1981)

From the geodesic deviation equation in (577) or (578), we can consider that r̈ ≈ 1
2
r0h0ω2. Also, from

(2072) and (2073) we have r̈ ≈ 2dω2. Combining these gives220

d ≈ r0h0

4
(1982)

Note that if we are considering r0 ≈ d, then we must have h0 ≈ 4. We are also considering the case when

A≈ r2
0. Lastly, we can set the frequency to the gravitational plasma frequency, ω2

G = 16πGµG, where µG(SC)

is the gravitational modulus, and also use δ G = c/ωG. Then (1981) becomes

Pout

Pin

=

(
352π2G3

15c6

)
ρ

2r6
0µG(SC) (1983)

220Note that rearranging (1982) gives h0 ≈ 4d/r0. This is consistent with the fact that h0 is a strain field

which can be expressed as h0 = ∆L/L, where ∆L is the change in length per unit length L. However, notice

that if r0 ≈ d, then this would imply that the strain field, h0 ≈ 4d/r0, is greater than unity. This is far from

realistic since (1879) predicts that a milliwatt of power will only produce h0 ≈ 10−27.



373

For nearly perfect reflection, we have Pout/Pin ≈ 1. Then solving for the gravitational modulus gives

µG(SC) ≈
(

15c6

704π2G3

)
1

ρ2r6
0

(1984)

For a Niobium superconductor with edges on the order of centimeters, then ρ ≈ 8.6× 103kg/m3 and r0 ≈
10−2m. This gives µG(SC) ≈ 7× 1082J/m3. This implies that the gravitational plasma frequency, ωG =√

16πGµG, and penetration depth, δ G = c/ωG, are

ωG ≈ 2×1037s−1 and δ G ≈ 2×10−29m

Gravitational plasma frequency and penetration depth for

a single large quadrupole with A≈ r2
0 ≈ d2

(1985)

The reason for these extreme results is due to the approximation that A ≈ r2
0 ≈ d2 which implies that the

gravitational strain field greater than unity and the surface of the material forms a single large quadrupole.

2. A single large quadrupole
(
A≈ r2

0

)
with a small strain field (r0 >> d)

If the entire ensemble of particles on the surface of the material form a single quadrupole, then for plus

and cross polarization, respectively, we still have the diagrams given above. However, now since we are

considering the case when r0 >> d, then we can eliminate the first term in parentheses in (1979) which gives〈...
D

2
〉

= 2ρ
2A2

δ
2
Gd2

ω
6r2

0 (1986)

Inserting this into (1977) gives

Pout

Pin

=

(
64πG2

45c8

)
ρ2Aδ

2
Gd2ω4r2

0

h2
0

(1987)

Again we can use d ≈ r0h0/4 from (1982) and A ≈ r2
0. We can also set the frequency to the gravitational

plasma frequency, ω2
G = 16πGµG, and use δ G = c/ωG. Then we have

Pout

Pin

=

(
64π2G3

45c6

)
ρ

2r6
0µG(SC) (1988)

This result is almost identical to the previous result in (1983) except for a slightly different numeric prefactor.

For nearly perfect reflection, again we have Pout/Pin ≈ 1. Then solving for the gravitational modulus gives

µG(SC) ≈
(

45c6

64π2G3

)
1

ρ2r6
0

(1989)

For a Niobium superconductor with edges on the order of centimeters, then ρ ≈ 8.6× 103kg/m3 and r0 ≈
10−2m. This gives µG(SC) ≈ 2.3× 1084J/m3. This implies that the gravitational plasma frequency, ωG =√

16πGµG, and penetration depth, δ G = c/ωG, are

ωG ≈ 9×1037s−1 and δ G ≈ 3×10−30m

Gravitational plasma frequency and penetration depth for

a single large quadrupole with A≈ r2
0 and r0 >> d2

(1990)
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The reason for these extreme results is again due to the approximation that A ≈ r2
0 which implies that the

surface of the material forms a single large quadrupole. Comparing this with (1985) shows that the small

strain field, r0 >> d, does not end up playing a significant role.

Note that for a gravitational plasma frequency that is on the order of microwaves, we would need the

gravitational modulus,

µG(SC) =
ω2

G

16πG
≈ 3×1028J/m3 (1991)

Using (1989), we find that this would require

r0 ≈
[(

45c6

32π2G3

)
1

ρ2µG(SC)

]1/6

≈ 5×1015m (1992)

This means the gravitational wave would need to be incident on a surface with an area on the order of

A≈ 2.5×1031m2. If we insist on using A≈ r2
0 ≈ 10−4m and microwave frequencies (with µG(SC) ≈ 3×1028),

then (1988) gives

Pout

Pin

=

(
64π2G3

45c6

)
ρ

2
µG(SC)r

6
0 ≈ 5×10−57 (1993)

This means that there is effectively no output power scattered by the material.

3. An array of small quadrupole moments
(
A>> r2

0

)
which are in phase.

Now we consider the case where the surface of the material consists of an array of small quadrupole

moments. We can represent plus and cross polarization quadrupole moments with the following diagrams.

Figure 17: Arrays of small plus-polarized and cross-polarized quadrupole moments.
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Since the quadrupole moments are all in phase, then they can be considered as a coherent array and we

can sum over
...
Di for all the quadrupole moments. Summing over an Avogadro number of quadrupoles gives

...
D =

NA

∑
i=1

...
Di = NA

...
Di (1994)

where
...
Di applies to any of the small identical quadrupole momentums and NA is Avogadro’s number. Again

we can use (2200) and assume r0 >> d for a small strain field which means we neglect the term involving

d2. Then we have221 〈...
D

2
〉

= N2
A

〈...
D

2
i

〉
= 2N2

Am2
i d2

ω
6r2

0 (1995)

where mi of a single quadrupole moment. Inserting this into (1977) gives

Pout

Pin

=

(
64πG2

45c8

)
N2

Am2
i d2ω4r2

0

Ah2
0

(1996)

Notice that the output power scales with N2
A, not with NA. However, instead of using Avogadro’s number, we

can simply use n as the number of particles occupying a penetration depth with volume V = Aδ G. Then we

can express this in terms of a mass density using nmi = ρAδ G. Then we have

Pout

Pin

=

(
64πG2

45c8

)
ρ2Aδ

2
Gd2ω4r2

0

h2
0

(1997)

This matches (1987), however, here we do not have A ≈ r2
0. Instead, r0 is essentially the lattice spacing

between the individual quadrupole moments. We can also use d ≈ r0h0/4 from (1982) as well as set the

frequency to the gravitational plasma frequency, ω2
G = 16πGµG, and use δ G = c/ωG. Then we have

Pout

Pin

=

(
64π2G3

45c6

)
Aρ

2r4
0µG(SC) (1998)

For nearly perfect reflection, again we have Pout/Pin ≈ 1. Then solving for the gravitational modulus gives

µG(SC) =

(
45c6

64π2G3

)
1

ρ2Ar4
0

(1999)

If this spacing of the quadrupole moments is on the order of the wavelength of the gravitational wave, then

r0 ≈ λ = c/ωG and we have

µG(SC) =

(
G

180c2

)
ρ

2A (2000)

For a Niobium superconductor with edges on the order of centimeters, then ρ ≈ 8.6× 103kg/m3 and A ≈
10−4m. This gives µG(SC) ≈ 3.0× 10−26J/m3. This implies that the gravitational plasma frequency, ωG =√

16πGµG, and penetration depth, δ G = c/ωG, are

ωG ≈ 1×10−17s−1 and δ G ≈ 3×1025m

Gravitational plasma frequency and penetration depth for an array of quadrupoles

that are in phase and separated by a gravitational wavelength (r0 ≈ c/ωG)

(2001)

221Since (1879) predicts that a milliwatt of power will only produce h0 ≈ 10−27, then clearly we should

assume a small strain field. Then (1982) requires that r0 >> d.
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Here we find a drastically different result for the gravitational plasma frequency and penetration depth. There

is clearly a significant difference between having a single large quadrupole occupy the material versus an

array of independent quadrupoles. Even having all of the small quadrupoles in phase does not lead to a result

that is comparable to a single large quadrupole.

In (1991)we found that for a gravitational plasma frequency that is on the order of microwaves, we would

need the gravitational modulus to be µG(SC) ≈ 3×1028. Using (2000), this implies that we would need

A =

(
180c2

G

)
µG(SC)

ρ2
≈ 1050m2 (2002)

Alternatively, if the area is kept to A≈ 10−4m, then (1999) requires the lattice spacing between the quadrupole

moments would be

r0 =

[(
45c6

64π2G3

)
1

ρ2AµG

]1/4

≈ 9×1011m (2003)

If we insist on using A ≈ 10−4m, and a lattice spacing on the order of the wavelength of the gravitational

wave, r0 ≈ λ = c/ωG, and microwave frequencies for the wave (µG(SC) ≈ 3×1028), then (1998) gives

Pout

Pin

=

(
G

180c2

)
ρ2A

µG(SC)

≈ 10−54 (2004)

This means that there is effectively no output power scattered by the material.

If we consider the quadrupoles to consist of neighboring atoms, then r3
0 ≈ 8mi/ρ where mi ≈ 1.5×

10−25kg for the mass of a single Niobium atom.222 In that case, we have r0 ≈ 5.2× 10−10m. Then using

(1998) with A≈ 10−4m and microwave frequencies for the wave (µG(SC) ≈ 3×1028) gives

Pout

Pin

=

(
64π2G3

45c6

)
Aρ

2r4
0µG(SC) ≈ 9.5×10−86 (2005)

If we do not require microwave frequencies, then (1999) becomes

µG(SC) =

(
45c6

64π2G3

)
1

ρ2Ar4
0

≈ 3.2×1047J/m3 (2006)

Then the gravitational plasma frequency, ωG =
√

16πGµG, and penetration depth, δ G = c/ωG, are

ωG ≈ 3×1019s−1 and δ G ≈ 9×10−12m

Gravitational plasma frequency and penetration depth for an array of quadrupoles

that are in phase and separated by a lattice length
(
r3

0 ≈ 8mi/ρ
) (2007)

222We obtain r3
0 ≈mi/ρ by considering that the mass density for a lattice cube (with one atom at each corner

and sides of length r0) is ρ ≈ 8mi/r
3
0 since there are 8 corners. Therefore r3

0 ≈ 8mi/ρ .



377

4. An array of small quadrupole moments
(
A>> r2

0

)
with a random phase distribution.

Now we consider the case where the surface of the material consists of an array of small quadrupole

moments which have a random distribution of phases. This can be considered as an incoherent array. The

diagrams given above still apply, however, now we cannot coherently add
...
D for each quadrupole. Instead,

we must consider the power produced by each quadrupole individually, Pi, and then sum them. Using (1975)
to find the power of each quadrupole moment and then summing over an Avogadro number of them gives

Pout =
NA

∑
i=1

Pi =
NA

∑
i=1

G

45c5

〈...
D

2
〉

i
=

G

45c5
NA

〈...
D

2
〉

i
(2008)

Again we can use (2200) and assume r0 >> d for a small strain field which means we neglect the term

involving d2.

Pout =
2G

45c5
NAm2

i d2
ω

6r2
0 (2009)

Notice that now the output power scales with NA, not with N2
A as it did for a coherent array.223 Instead of

using Avogadro’s number, we can simply use n as the number of particles occupying a penetration depth with

volume V = Aδ G. Then we can express this in terms of a mass density using nmi = ρAδ G. Then using (1974)
to write the ratio of output power to input power gives

Pout

Pin

=

(
64πG2

45c8

)
nm2

i d2ω4r2
0

Ah2
0

(2010)

We can express this in terms of a mass density using nmi = ρV and V = Aδ G.

Pout

Pin

=

(
64πG2

45c8

)
miρδ Gd2ω4r2

0

h2
0

(2011)

Again we can use d ≈ r0h0/4 from (1982) as well as set the frequency to the gravitational plasma frequency,

ω2
G = 16πGµG, and use δ G = c/ωG. Then we have

Pout

Pin

=

(
256π5/2G7/2

45c7

)
miρr4

0µG(SC) (2012)

For nearly perfect reflection, again we have Pout/Pin ≈ 1. Then solving for the gravitational modulus gives

µG(SC) =

[(
45

256

)2
c14

π5G7

1

m2
i ρ2r8

0

]1/3

(2013)

If the spacing is on the order of the wavelength of the gravitational wave, then r0 ≈ λ = c/ωG and we have

µG(SC) =
1

2025

πG3

c6
m2

i ρ
2 (2014)

223This issue of coherent versus incoherent sources (which leads to a factor of N2
A or NA, respectively) is

dealt with in more detail in [102].
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For a Niobium superconductor, ρ ≈ 8.6× 103kg/m3 and mi ≈ 1.5× 10−25kg. This gives µG(SC) ≈ 1.0×
10−126J/m3. This implies that the gravitational plasma frequency, ωG =

√
16πGµG, and penetration depth,

δ G = c/ωG, are

ωG ≈ 6×10−67s−1 and δ G ≈ 5×1074m

Gravitational plasma frequency and penetration depth for an array

of quadrupoles with a random distribution of phases

and separated by a gravitational wavelength (r0 ≈ c/ωG)

(2015)

Here we find a gravitational plasma frequency and penetration depth that is even more extreme. There is

clearly a huge difference between having an array of quadrupoles that are in phase versus a random distribu-

tion of phases.

If we consider the quadrupoles to consist of neighboring atoms, then r3
0 ≈ 8mi/ρ where mi ≈ 1.5×

10−25kg for the mass of a single Niobium atom. In that case, we have r0 ≈ 5.2×10−10m. Then using (2012)
with A≈ 10−4m and microwave frequencies for the wave (µG(SC) ≈ 3×1028) gives

Pout

Pin

=

(
256π5/2G7/2

45c7

)
miρr4

0µG(SC) ≈ 5.5×10−109 (2016)

If we do not require microwave frequencies, then (2013) becomes

µG(SC) =

[(
45

256

)2
c14

π5G7

(
ρ2

m14
i

)1/3
]1/3

≈ 4.5×10100J/m3 (2017)

Then the gravitational plasma frequency, ωG =
√

16πGµG, and penetration depth, δ G = c/ωG, are

ωG ≈ 3×1045s−1 and δ G ≈ 1×1053m

Gravitational plasma frequency and penetration depth for an array

of quadrupoles with a random distribution of phases

and separated by a lattice length
(
r3

0 ≈ 8mi/ρ
) (2018)

Notice that for an array of quadrupole moments (cases 3 and 4), the result is very sensitive to the spacing

between quadrupole moments. For example, for the coherent array, if the spacing is on the order of a wave-

length, then the plasma frequency is on the order of 10−17s−1. However, if the spacing is on the order of

a lattice separation, then the plasma frequency is on the order of 1019s−1. That’s a factor of 36 orders of

magnitude! The situation is even more extreme with the incoherent array. If the spacing is on the order of a

wavelength, then the plasma frequency is on the order of 10−67s−1. However, if the spacing is on the order

of a lattice separation, then the plasma frequency is on the order of 1045s−1. That’s a factor of 112 orders of

magnitude!
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19.3 Ratio of output EM to input GR wave power (GR to EM transduction)

In the previous section, we found the ratio of output GR wave power to input GR wave power for a

“gravitational Lorentz oscillator” which was essentially a time-varying quadrupole consisting of two equal

masses oscillating relative to each other. In this section, we will analyze the same system again except now

we consider the two equal masses to also be charged with equal and opposite charges.224 The following is a

diagram of the system.

Figure 18: A modified Lorentz oscillator consists of two particles with equal mass m, and opposite charges,

q and −q. The particles oscillate with an amplitude of motion given by d. They are separated by an average

distance r0 >> d. Note that the solid arrows represent the half-cycle when the particles are moving away

from each other and the dashed arrows represent the half-cycle when the particles are moving toward each

other.

As in the previous section, we consider the masses to be driven into motion by a gravitational wave.

However we will now determine the ratio of outgoing electromagnetic (EM) wave power relative to the

incoming gravitational (GR) wave power. In this sense, we are effectively determining the efficiency of GR

to EM wave transduction by the system. Once again, we begin with the Isaacson power flux formula to relate

the gravitational wave power to the strain field of the gravitational wave. It is given in [43] as

P =
c3

16πG

〈
ḣ2
++ ḣ2

×
〉

(2019)

Here P is the power per unit area (P = P/A) while h+ and h× are the plus and cross polarization strain

fields. The particular polarization is not relevant to our analysis here so we can simply use h0 for the strain

field. The time derivative for an oscillating field can be written as ḣ0 = ωh0. Then taking the time average

gives
〈
ḣ2
++ ḣ2

×
〉
≈ 1

2
ω2h2

0. We can also substitute P = Pin/A for an incoming gravitational wave. This gives

P
(GR)
in =

c3

32πG
Ah2

0ω
2
wave (2020)

where ωwave is the angular frequency of the gravitational wave. If the gravitational wave oscillates the charges

in the modified Lorentz oscillator, then they will re-radiate electromagnetic radiation. We can consider four

possible cases:

1. An array of dipole moments driven in phase.

2. An array of dipole moments with a random phase distribution.

3. An array of quadrupole moments driven in phase.

4. An array of quadrupole moments with a random phase distribution.

224This system could be referred to as a ”modified Lorentz oscillator” since it is similar to the standard

Lorentz oscillator which consists of an electron in harmonic motion relative to an atomic nucleus. The

difference here is that we consider the two masses of the oscillator to be equal. Hypothetically, this could be

considered an “electron-positron Lorentz oscillator.”
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1. An array of dipole moments driven in phase.

If the charges in the Lorentz oscillator have opposite sign, then Appendix T shows that the lowest order

radiation will be dipole radiation. The outgoing dipolar EM radiation can be found using the Larmor power

formula225 given by Griffiths [29] (equ. 11.70) as226

P
(EM)
out =

1

6πε0c3

〈
p̈2
〉

(2021)

where
〈

p̈2
〉

is a time-average of p̈2 over a period. The second time-derivative of the dipole was found in

(3027) as

p̈ = 2q
··
r0 (2022)

If ωmass is the angular frequency describing the sinusoidal oscillation of the masses, then from (2072) or

(2073)we find that the acceleration of the particles relative to each other given as r̈2
0 = 4d2ω4

mass sin2 (ωmasst).
Taking a time average and using

〈
sin2 (ωt)

〉
= 1/2 gives〈
r̈2

0

〉
= 2d2

ω
4
mass (2023)

Then using this in (2022) gives
〈

p̈2
〉
= 8q2d2ω4

mass. We can insert this into (2021) and divide by (2020) to

determine the ratio of outgoing EM wave power to incoming GR wave power. This gives

P
(EM dipole)
out

P
(GR)
in

=

(
128G

3ε0c6

)
q2d2ω4

mass

Ah2
0ω2

wave

(2024)

The prefactor in parentheses has a value of ∼ 10−49 in SI units. This is obviously an extremely small value

which would imply that there is no appreciable transduction of GR wave power to dipolar EM wave power.

However, we can examine the remaining part of the expression to determine if the ratio of outgoing to incom-

ing power must necessarily be miniscule.

To simplify the calculation, we can consider the frequency of oscillation of the masses to be comparable

to the frequency of the gravitational wave so that we can work with a single frequency: ω ≈ ωmass ≈ ωwave.

Also, if the charge carriers are either Cooper pairs or lattice ions in a superconductor, then q= 2e. Therefore

(2024) becomes

P
(EM dipole)
out

P
(GR)
in

=

(
512G

3ε0c6

)
e2d2ω2

Ah2
0

(2025)

225Note that for relativistic charges, we would need to use Liénard’s generalization of the Larmor formula

given in Griffiths [29] (equ. 11.73) as P=
µ0q2a2γ6

6πc

(
a2−|~v×~a|2 /c2

)
.

226The expression in Griffiths is actually P=
µ0q2a2

6πc
. In (2021) we have used µ0 =

1

ε0c2
and written q2a2

as
〈

p̈2
〉

for the case of a time-varying acceleration.
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From the geodesic deviation equation in (577) or (578), we have r̈≈ 1
2
r0h0ω2. Also, from (2072) or (2073),

we already have r̈ ≈ 2dω2. Combining these gives227

d ≈ r0h0

4
(2026)

Inserting this into (2025) gives

P
(EM dipole)
out

P
(GR)
in

=

(
32G

3ε0c6

)
e2r2

0ω2

A
(2027)

From Griffiths [29] (pp. 454-457), we find that the Larmor power formula in (2021) is derived under the

following three conditions: (1) r0 << r where r0 is the length scale of the source and r is the distance from

the source to the field point; (2) r0 << λ where λ is the wavelength of the EM wave; (3) 1/r2 << 1/r which

implies that the power is evaluated in the far-field so that near-fields can be neglected. In our case here, we

can consider the dipoles as involving pairs of neighboring atoms so that r0 is the lattice spacing of Niobium.

Using r3
0 ≈ 8m/ρ for the lattice spacing228 with m ≈ 1.5× 10−25kg for the mass of a single Niobium atom

and ρ ≈ 8.6×103kg for the mass density gives r0 ≈ 5.2×10−10m. We can also consider microwave radiation

(ω ≈ 1010s−1) and use an area A= r2 where r ≈ 1cm for the walls of a cavity with centimeter dimensions.

P
(EM dipole)
out

P
(GR)
in

=

(
32G

3ε0c6

)
e2r2

0ω2

A
≈ 7.6×10−82

Transduction efficiency of GR waves

to dipolar EM waves by a single Lorentz oscillator

(2028)

An array of dipole moments that are all in phase can be considered as a coherent array. Therefore, we

can add p̈i for all the dipole moments in the array. Summing over an Avogadro number of dipoles gives

p̈ =
NA

∑
i=1

p̈i = NA p̈i = NAqd̈i (2029)

where NA is Avogadro’s number. Then using the same analysis as above, we find
〈

p̈2
〉
= 8N2

Aq2d2ω4 and

therefore (2028) will have an extra factor of N2
A.

P
(EM dipole)
out

P
(GR)
in

=

(
32G

3ε0c6

)
N2

Ae2r2
0ω2

A
≈ 2.8×10−34

Transduction efficiency of GR waves

to dipolar EM waves by a coherent array of Lorentz oscillators

(2030)

We can compare this to (2005) from the previous section to determine how much of the re-radiation will be

227Note that rearranging (2026) gives h0 ≈ 4d/r0. This is consistent with the fact that h0 is a strain field

which can be expressed as h0 = ∆L/L, where ∆L is the change in length per unit length L.
228We obtain r3

0 ≈mi/ρ by considering that the mass density for a lattice cube (with one atom at each corner

and sides of length r0) is ρ ≈ 8mi/r
3
0 since there are 8 corners. Therefore r3

0 ≈ 8mi/ρ .
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electromagnetic and how much will be gravitational.229

P
(EM dipole)
out

P
(GR)
out

=

(
15

8π2ε0G2

)
N2

Ae2ω2

A2ρ2r2
0µG(SC)

≈ 2.8×10−34

9.5×10−86
≈ 2.9×1051 (2031)

This implies that the electromagnetic re-radiation is 51 orders of magnitude greater than the gravitational

re-radiation from an array of dipole oscillators that are in phase.

2. An array of dipoles moments with a random phase distribution.

Now we consider the case of dipole moments which have a random distribution of phases. This can be

considered as an incoherent array and therefore we cannot add p̈ for each dipole. Instead, we must consider

the power produced by each dipole individually, Pi, and then sum them. Using (2021) to find the power of

each dipole moment and then summing over an Avogadro number of them gives

P
(EM dipole)
out =

NA

∑
i=1

Pi =
NA

∑
i=1

1

6πε0c3
p̈2

i =
1

6πε0c3
NA p̈2

i (2032)

This will lead to a result that is identical to (2028) except for a factor of NA. Once again, we can use

r0 ≈ 5.2×10−10m as the lattice spacing of Niobium, q= 2e for each charge in the dipole, A≈ 10−4m for the

walls of a cavity with centimeter dimensions, and ω ≈ 1010s−1 for microwave radiation. Therefore, we have

P
(EM dipole)
out

P
(GR)
in

=

(
8G

3ε0c6

)
NAe2r2

0ω2

A
≈ 4.6×10−58

Transduction efficiency of GR waves

to dipolar EM waves by an incoherent array

of Lorentz oscillators with a random distribution of phases

(2033)

We can compare this result to (2016) to determine how much of the re-radiation will be electromagnetic

and how much will be gravitational.

P
(EM dipole)
out

P
(GR)
out

=
15c

32ε0π5/2G5/2

NAe2r2
0ω2

A2miρr4
0µG(SC)

≈ 4.6×10−58

5.5×10−109
≈ 8.4×1050 (2034)

Similar to (2031), we find that the EM re-radiation is 50 orders of magnitude greater than the GR re-radiation

from an array of dipole oscillators with a random distribution of phases.

3. An array of quadrupole moments driven in phase.

If the charges in the Lorentz oscillator have the same sign, then Appendix T shows that the lowest order

radiation will be quadrupole radiation. The outgoing EM radiation can be found using the quadrupole power

229Note that in the previous section, we considered four cases. However, two cases involved A≈ r2
0 which

is not permitted in the approximation required to obtain the Larmor power formula. Therefore, we are only

comparing the results here to cases 3 and 4 in the previous section.



383

formula found in Jackson, [40] (equ. 9.49) as

P
(EM quad)
out =

1

1440πε0c5

〈...
Q

2
i j

〉
(2035)

where
〈...

Q
2
i j

〉
is a time-average of

...
Q

2
i j over a period. The third time-derivative of the quadrupole moment was

found in (3027) as
...
Q = 2q

(
3
·
~r
··
~r+~r ·

···
~r
)

(2036)

If the amplitude of the oscillation is small relative to the distance between the oscillators,230 then r0 >> A.

In that case, we can use the same process that led to (2200) and we would similarly have〈...
Q

2
〉

= 8q2d2r 2
0 ω

6
mass (2037)

We can insert (2037) into (2035) and divide by (2020) to determine the ratio of outgoing EM wave power to

incoming GR wave power. This gives

P
(EM quad)
out

P
(GR)
in

=

(
8G

45ε0c8

)
q2d2r 2

0 ω6
mass

Ah2
0ω2

wave

(2038)

The prefactor in parentheses has a value of ∼ 10−68 in SI units. This is even smaller than the case for dipolar

EM radiation. Once again, such a small value would imply that there is no appreciable transduction of GR

wave power to quadrupolar EM wave power. However, we can examine the remaining part of the expression

to determine if the ratio of outgoing to incoming power must necessarily be miniscule. To simplify the

calculation, once again we can consider the frequency of oscillation of the masses to be comparable to the

frequency of the gravitational wave so that we can work with a single frequency: ω ≈ ωmass ≈ ωwave. Also,

if the charge carriers are either Cooper pairs or lattice ions in a superconductor, then q= 2e. We can also use

d ≈ r0h0/4 from (2026). Therefore (2038) becomes

P
(EM quad)
out

P
(GR)
in

=

(
2G

45ε0c8

)
e2r 4

0 ω4

A
(2039)

Once again, we can use r0 ≈ 5.2× 10−10m as the lattice spacing of Niobium, A ≈ 10−4m for the walls of a

cavity with centimeter dimensions, and ω ≈ 1010s−1 for microwave radiation. Then we have

P
(EM quad)
out

P
(GR)
in

=

(
2G

45ε0c8

)
e2r 4

0 ω4

A
≈ 9.6×10−100

Transduction efficiency of GR waves

to quadrupolar EM waves by a single Lorentz oscillator

(2040)

Once again, an array of quadrupole moments that are all in phase can be considered as a coherent array.

Therefore, we can add
...
Qi for all the quadrupole moments in the array. Summing over an Avogadro number

230This is equivalent to requiring a linear response between fields and sources. In other words, since the

power is proportional to the square of the field
(
PGR ∼~h2 and PEM ∼ ~E2

)
and the fields are proportional

to the amplitude of motion (d ∼ h0 and d ∼ E for GR and EM waves, respectively) then we should also have

the power proportional to the square of the amplitude of motion
(
PGR ∼ d2 and PEM ∼ d2

)
.
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of quadrupoles gives

...
Q =

NA

∑
i=1

...
Qi = NA

...
Qi (2041)

Using the same analysis as above, we find that (2037) becomes
〈...

Q
2
〉
= 8N2

Aq2d2r 2
0 ω6 and therefore (2040)

will have an extra factor of N2
A.

P
(EM quad)
out

P
(GR)
in

=

(
2G

45ε0c8

)
N2

Ae2r 4
0 ω4

A
≈ 3.5×10−52

Transduction efficiency of GR waves to

quadrupolar EM waves by a coherent array of Lorentz oscillators

(2042)

We can compare this result to (2005) from the previous section to determine how much of the re-radiation

will be electromagnetic and how much will be gravitational.231

P
(EM quad)
out

P
(GR)
out

=

(
1

32π2ε0c2G2

)
N2

Ae2ω4

A2ρ2µG(SC)

≈ 3.5×10−52

9.5×10−86
≈ 3.7×1033 (2043)

This implies that the EM re-radiation is 33 orders of magnitude greater than the GR re-radiation from an array

of quadrupole oscillators that are in phase.

4. An array of quadrupole moments with a random phase distribution.

Now we consider the case of quadrupole moments which have a random distribution of phases. This can

be considered as an incoherent array and therefore we cannot add
...
Qi for each quadrupole. Instead, we must

consider the power produced by each quadrupole individually, Pi, and then sum them. Using (2035) to find

the power of each dipole moment and then summing over an Avogadro number of them gives

P
(EM quad)
out =

NA

∑
i=1

Pi =
NA

∑
i=1

1

1440πε0c5

...
Q

2
i =

1

1440πε0c5
NA

...
Q

2
i (2044)

This will lead to a result that is identical to (2040) except for a factor of NA. Once again, we can use

r0 ≈ 5.2×10−10m as the lattice spacing of Niobium, q= 2e for each charge in the dipole, A≈ 10−4m for the

walls of a cavity with centimeter dimensions, and ω ≈ 1010s−1 for microwave radiation. Therefore, we have

P
(EM quad)
out

P
(GR)
in

=

(
2G

45ε0c8

)
NAe2r 4

0 ω4

A
≈ 5.8×10−75

Transduction efficiency of GR waves

to quadrupolar EM waves by an incoherent array

of Lorentz oscillators with a random distribution of phases

(2045)

231In the previous section, we considered four cases. However, two cases involved A ≈ r2
0. Here we have

specifically required that A>> r2
0 for a linear response approximation. Therefore, we are only comparing the

results here to cases 3 and 4 in the previous section.
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We can compare this to (2016) to determine how much of the re-radiation will be electromagnetic and how

much will be gravitational.

P
(EM quad)
out

P
(GR)
out

=

(
1

32π2ε0c2G2

)
NAe2ω4

A2ρ2µG(SC)

≈ 5.8×10−75

5.5×10−109
≈ 1.1×1034 (2046)

Similar to (2031), we find that the EM re-radiation is 34 orders of magnitude greater than the GR re-radiation

from an array of quadrupole oscillators with a random distribution of phases. As a final observation, we can

see from (2046) that in order for the outgoing GR wave power to be comparable to the outgoing EM wave

power, we can set P
(EM quad)
out /PGR

(out) ≈ 1. The only free parameters in the expression are ω , A, and µG(SC).

For microwave frequencies (ω ≈ 1010s−1) and centimeter dimensions (A≈ 10−4m), we can solve for µG(SC)

to obtain

µG(SC) ≈
(

NAe2

32π2ε0c2G2

)
ω4

A2ρ2
≈ 1.4×1036J/m3 (2047)

Using (1321), this would correspond to a gravitational plasma frequency given by

ωG =
√

16πGµG ≈ 6.7×1013Hz (2048)

Therefore, we find that a material with a value for µG(SC) that allows GR waves to be scattered with the same

efficiency as EM waves would correspond to a gravitational plasma frequency on the order of terahertz. This

means that an incident GR wave at gigahertz frequencies (microwaves) could produce comparable scattered

EM and GR waves. However, even in such a situation, both the EM and GR waves will still be 52 orders of

magnitude weaker than the incident GR wave as shown by (2042) for a coherent array of quadrupoles, and

75 orders of magnitude weaker than the incident GR wave as shown by (2042) for an incoherent array of

quadrupoles.
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20.1 Overview of models of coupling gravitation to quantum matter

Here we consider the detection and generation of gravitational waves via low-temperature quantum-

coherent matter. Equating the Compton wavelength and Schwarzschild radius of a particle can be used as a

model for describing matter that is completely quantum coherent while also exhibiting extremely high gravi-

tation. We discuss Planck quantities (length, time, energy, and power scales) which give an upper bound for

highly gravitational, quantum coherent matter. Because the Planck scale is experimentally inaccessible, we

consider how low-temperature quantum states may allow an extended object to continue exhibiting quantum

coherence even at mesoscopic length scales. In particular, we examine the possibilities of Bose-Einstein con-

densates, Fermi-pair condensates, superfluids and superconductors as candidates for low-temperature quan-

tum coherent matter that can be coupled to gravitational waves.

Gravitational waves are predicted by General Relativity to exist, however, because the coupling strength

to matter is so weak, detecting gravitational waves is extremely difficult.[22][57] Therefore, it has long been

believed that generating any detectable gravitational waves in the laboratory is effectively impossible.[11] In

fact, only astrophysical sources have been considered to have enough mass moving at high enough veloci-

ties to generate detectable gravitational waves.[90] As a result, the focus has been to build extremely large

interferometers (such as LIGO) in the attempt to detect gravitational waves.

We propose an alternative approach which utilizes the quantum characteristics of low-temperature matter

to effectively couple gravitational waves to quantum-coherent material.[91] Doing so would ultimately pro-

vide a way of performing extremely delicate quantum mechanical experiments for the purpose of detecting

gravitational waves. In addition to such detection, one could also in principle generate gravitational waves.[4]

The ability to both detect and generate gravitational waves would completely revolutionize various areas of

physics and technology, in particular, the fields of communication, astronomy, and cosmology.
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20.2 The Compton wavelength for relativistic quantum particles

The total relativistic energy of a particle is given by

E2 = m 2
0 c4+ p2c2 (2049)

where the particle’s rest energy is E0 = mc2, and the kinetic energy is KE = pc. A particle becomes highly

relativistic when the kinetic energy approaches the rest mass energy, KE ≈ E0, so pc ≈ m0c2. This means

that232

p≈ m0c (2050)

Substituting this into the Heisenberg Uncertainty Principle, ∆x∆p≥ }/2, and solving for ∆x gives

∆x≥ }
2m0c

(2051)

Aside from a factor of 1
2
, it is evident that ∆x is the reduced Compton wavelength of a particle. [92]

λC =
}

m0c
(2052)

This sets the ideal length-scale for which a particle will exhibit quantum mechanical, wave-like behavior.

Objects occupying length-scales significantly larger than λC will not typically exhibit quantum mechanical

behavior due quantum decoherence (in accordance with the correspondence principle). On the other hand,

length-scales significantly smaller than λC will have a larger momentum according to the de Broglie wave-

length, λ =
h

p
. This means that the momentum will be greater than p ≈ mc in (2050) and thus the kinetic

energy will exceed the rest energy, KE >> E0.

Therefore, if a particle reaches speeds this high, then it must be properly treated by the use of relativistic

quantum mechanics, or more importantly, quantum field theory (QFT). An important prediction of QFT is

that particles with such high kinetic energy can spontaneously “decay” into other particles which emerge from

the vacuum. This occurs when the large kinetic energy of the original relativistic particle is “deposited” into

the vacuum and effectively transformed into the rest mass energy of the new particles. Therefore, although

quantum mechanics does not forbid a particle from occupying a length-scale that is smaller than the Compton

wavelength, in order to maintain quantum coherent matter, it is necessary that particles would not occupy a

length scale below their Compton wavelength. Otherwise their associated kinetic energy will be so high as to

cause pair-creation events which would disrupt the existence of the quantum-coherent state.

232Note that the relativistic momentum of a particle is p = γm0v where γ =
(
1− v2/c2

)−1/2
. Therefore, if

p=m0c, as assumed in (2050), then γv= c. Using the definition for γ and solving for v gives v= c√
2
≈ .71c.

This means that the particle is going over 71% of the speed of light which is indeed highly relativistic.
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20.3 Planck quantities at the interface of gravity and quantum mechanics

It can also be said that the Schwarzschild radius [11]

Rs =
2mG

c2
(2053)

sets the length scale for which the particle will exhibit strong gravitational fields. Setting these two lengths

equal (λ = Rs = l) turns (2052) and (2053) into l =
2π}
mc

and l =
2mG

c2
, respectively. If we use these

equations to solve for the mass m (ignoring a factor of
√

π), then we obtain the Planck mass.[93]

mp =

√
}c

G
Planck mass (2054)

The numeric value (in SI units) obtained for this mass is ∼2.2x10-8kg. However, having an object with this

mass is not sufficient to determine if it will be highly gravitational, quantum coherent matter. In this analysis,

there was the critical requirement that this mass is localized to a length scale determined by the Compton

wavelength and Schwarzschild radius which were set equal. Substituting the Planck mass into (2052) (again

ignoring a factor of
√

π) gives the Planck length.

lp =

√
G}
c3

Planck length (2055)

The numeric value (in SI units) obtained for this length is ∼1.6x10-35m. This length is considered to be

the smallest physical length possible before the very concept of space and time break down. At this scale,

the quantum fluctuations of the vacuum (as a result of the Heisenberg Uncertainty principle) are believed

to produce a turbulent “quantum space-time foam” (as John Wheeler described it). In addition, a particle

possessing a Planck mass contained within a region as small as a Planck length (or, more accurately, as

small as a Planck volume, Vp ≈ l3
p ≈ 4.2x10−105m3) would generate such a massive gravitational field in

such an infinitesimal region of space that there would be no way to understand such a system without a fully

developed theory of quantum gravity.

It is interesting to note that the value of the Planck mass (∼2.2x10-8kg) would give the impression that

this highly-gravitational quantum matter is within the realm of experimental possibilities. However, because

this Planck mass must be considered in conjunction with the Planck length (or volume) it occupies, it is

typically considered well beyond the scope of any modern day experimentation. However, as will be shown

later, this assumption is not necessarily true when low-temperature, quantum coherent matter is considered.

It is also helpful to note the Planck time which corresponds to this Planck scale. Since a photon in vacuum

will travel at the maximum speed of light, then to travel a distance of one Planck length would require a time

interval given by

tp =
lp

c
=

√
G}
c3

1

c
=

√
G}
c5

Planck time (2056)

The numeric value (in SI units) of the Planck time is approximately∼5.4x10-44s. This is considered to be the

smallest “quantum of time.” Since the Planck length is considered the shortest conceivable distance, and a

photon in vacuum is the fastest conceivable speed, then this time duration would be the shortest possible time

duration that can exist. We now have the three fundamental Planck quantities that can be used to determine

all other Planck quantities as well. The Planck energy scale is derived from the Planck mass as

Ep = mpc2 =

√
}c

G
c2 =

√
}c5

G
Planck energy (2057)
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This energy has a value of approximately∼2.0x109J or∼1.2x1028eV. This is far above the maximum energy

that has been achieved in high energy physics which is ∼6x1012 eV. This further illustrates the fact that

probing the Planck scale is far from technologically achievable at this time.

Finally, we can consider a Planck power using the Planck quantities determined above. In general, power

is P= dE/dt, therefore we can describe the Planck power as a Planck energy per Planck time.

Pp =
Ep

tp

=

√
}c5/G√
G}/c5

=
c5

G
Planck power (2058)

This power has a value of ∼3.6x1052W. This is a tremendously large power which would be found only

in an astrophysical context, not in a laboratory environment. It is interesting that the Planck power only

involves c and G, constants from General Relativity, and not } from Quantum Mechanics. In that sense,

the Planck power is not necessarily associated with Quantum Mechanics but rather with General Relativity

(incorporated here via the Schwarzschild radius). To find the Planck power directly from General Relativity,

we can consider the Einstein field equations given by [11]

Gµν = κTµν (2059)

Here the coupling constant, κ =
8πG

c4
, couples the curvature of space-time, Gµν , to the stress-energy-

momentum tensor, Tµν . If we define f = 1/κ , then we obtain the “Einstein force,” fE =
c4

8πG
which is

∼4.8x1042N. We can find a power associated with this force if we consider the force acting on a mass mov-

ing nearly the speed of light. Then the ”Einstein power” is PE = fE · c.

PE =
c5

8πG
Einstein power (2060)

This is again the same as the Planck power (neglecting a factor of 8π). The value of PE is ∼1.4x1051W

which is obviously comparable to the Planck power found above.233 It is remarkable that this amount of

power would be associated with a mass that is only a Planck mass (∼2.2x10-8kg). The reason for this

tremendous power is due to the fact that we have considered the Planck mass as occupying only a Planck

length (∼1.6x10-35m). This extreme compactification results in an extreme mass density, namely, the Planck

mass density.

ρ p =
mp

Vp

=
mp

l3
p

=

√
}c/G(√

G}/c3
)3
=

c5

G2}
Planck mass density (2061)

The value of ρ p is ∼5.2x1098kg/m3, once again an enormous value. Since the Planck length is far too small

to be probed directly, and the Planck density is far too large to achieve experimentally, we have no choice

but to consider a much larger length scale (with a correspondingly lower mass density). However, it should

be noted that in order to detect and possibly generate gravitational waves, it may not be necessary to have

such an extremely small length scale with such a large mass density. The Planck mass and Planck length

essentially give the upper limit where the effects of Quantum Mechanics and General Relativity would both

be tremendous. This is the most extreme case of a “Planck particle” that is compressed to nearly a black hole,

occupying the smallest conceivable volume of space, and yet remains within it’s own Compton wavelength

as it moves at nearly the speed of light. We can obviously consider a far less extreme state of matter that

would still exhibit quantum mechanical properties and also be coupled to gravity with sufficient strength that

gravitational waves could be detected and possibly generated.

233Due to the fact that the Planck power (the maximum power in nature) is the prefactor found in the

equation for General Relativity (GR), it has been said that perhaps GR could be considered a theory of

maximum power just as Special Relativity is a theory of maximum speed and Quantum Mechanics may be

considered a theory of minimum action.
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If we do not require the Compton wavelength to be equal to the Schwarzschild radius, then we have some

freedom to consider different mass values and determine the quantum behavior and gravitational coupling

such matter would still have. Notice that the Compton wavelength relation motivates us to use the smallest

mass possible to raise the wavelength value up from the Planck scale. On the other hand, gravitation motivates

us to use the largest mass possible to produce the greatest mass density and hence the greatest gravitational

effects. Therefore, there is a tension concerning the choice of mass scale.

There is not such a tension concerning the choice of length scale. Quantum mechanics motivates us to

use the smallest length possible in order to main quantum coherence. With a larger length scale, the object

will no longer occupy the space of only a single compton wavelength and therefore will have less quantum

coherence. The quantum properties of the object will diminish according to the correspondence principle.

In fact, larger objects must necessarily be composite objects consisting of many constitutive particles. The

more particles present, the less quantum coherence is likely. Likewise, gravitation also motivates us to use

the smallest length possible to produce the greatest mass density and hence the greatest gravitational effects.

We can summarize these observations with the following four possibilities:

1. Small mass & large length =⇒ Low gravitation and low quantum coherence (common objects)

1. Small mass & small length =⇒ Low gravitation but high quantum coherence (subatomic particles)

2. Large mass & large length=⇒ High gravitation but no quantum coherence (black holes, neutron stars)

3. Large mass & small length =⇒ High gravitation and high quantum coherence (“Planck particles”

which are ideal for quantum coherent, highly gravitational matter)

The following graph shows length versus mass for a “gravity curve” (the Schwarzschild radius) and a “quan-

tum curve” (the Compton wavelength). The four possibilities described above (for different mass and length

scales) is illustrated.

Figure 19: The “quantum curve” (multi-colored) is the Compton wavelength relationship (2052) while the

“gravity curve” (green) is the Schwarzchild radius relationship (2053). The graphs are in natural units:

c= G= }= 1.

Notice that the closer the curves are to each other in the figure above, the closer the system is to an ideal

“quantum gravitational system.” Therefore, the curves intersect at the Planck mass and Planck length. The

further these curves are apart, the more the system exhibits mainly quantum mechanical characteristics or

mainly gravitational characteristics.
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20.4 Coupling ultra-cold quantum systems to gravitation

For the purpose of our analysis, we can fix the mass quantity to a single Planck mass since this is an

experimentally realistic, mesoscopic value (∼2.2x10-8kg). However, because the Planck length is not an

experimentally tenable value (∼1.6x10-35m), we must consider how to increase the length scale while still

preserving the quantum coherence of the system. This leads to the consideration of low-temperature, quantum

coherent states. In these states, there is the theoretical possibility of having an extended, mesoscopic object

which maintains quantum coherence. In that case, the restriction posed by the Compton wavelength for a

single quantum particle is no longer a limitation.

One example of achieving such a state is through ultra-cold states of matter which behave quantum

mechanically. These include Bose-Einstein condensates and Fermi-pair condensates leading to phenomena

such as superconductors and super-fluids. Such materials have the unique characteristic of behaving quantum

mechanically even while possessing a size and mass significantly larger than single quantum particles. In

fact, these objects can consist of a large ensemble of particles which are in an identical quantum state thereby

forming an extended quantum coherent object. Such materials offer the possibility of exhibiting detectable

gravitational coupling to quantum coherent matter.

A Bose-Einstein condensate (BEC) occurs when an ensemble of bosons is brought to a temperature low

enough that the chemical potential becomes effectively zero and a large number of particles fall together to

the ground state. Since these particles have an identical quantum state, they behave as a single quantum

particle with a single de Broglie wavelength. In this way, an extended object, composed of multiple particles,

can behave quantum mechanically as though it is a single quantum particle.

A Fermi-pair condensate can be considered as a more sophisticated form of a BEC, where fermion pairs

are coupled in such a way as to behave as bosons. As T → 0, there is a critical temperature at which a type of

spontaneous symmetry breaking occurs and particles suddenly drop to the lowest energy state of the system

(ε = 0). The occupation of this state is effectively a phase transition which can consist of a macroscopically

large population of particles. When this occurs, the sample is said to form a Bose-Einstein condensate

(BEC).234[98]

Since the BEC allows an extended, macroscopic ensemble to behave as effectively a single quantum

particle, then experiments could be conducted without concern for classical particle interactions. Instead the

entire ensemble can be treated as a single wave. In the case of superconductivity, it is pairs of electrons,

referred to as Cooper pairs, that behave as bosons.[94] In the case of superfluidity, it is pairs of atomic

nuclei that are coupled together and behave as bosons.[95] A detailed treatment of such topics requires more

advanced theories, such as BCS theory for superconductivity.[96][97] However, as a simple model, consider

the relativistic energy of the condensate taken as a single Planck mass object.

E2 = m2c4+ p2c2 (2062)

The momentum is related to the kinetic energy by p2 = 2mK. We can write the kinetic energy as a thermal

energy, K ≈ kBT (neglecting prefactors) so combining these relations gives p2 ≈mkBT . Substituting this into

the relativistic energy in (2062) yields

E2 = m2c4+(mkBT )c2 (2063)

For a quantum particle, the energy is also E = }ω = h
c

λ
. Substituting this into (2063) and solving for λ

gives

λ =
h√

m2c2+mkBT
(2064)

234It is interesting to note that this mechanism can be likened to the Higgs mechanism in high-energy particle

physics which effectively gives mass to particles in the Standard Model. Although the Higgs mechanism is

purely quantum mechanical, it gives rise to inertial mass which (according to the Equivalence Principle) is

equivalent to gravitational mass which of course is the source of gravitation.
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Thus we see that the length scale for quantum coherence is modified according to the temperature. Note

that as T → 0 in (2064) we recover the Compton wavelength, λ c =
h

mc
. For very large T , we would have

mpkBT >> m2
pc2 which means T >>

mpc2

kB

. In that case the thermal energy would be much greater than the

rest mass energy giving the thermal de Broglie wavelength.235

λ dB =
h√

mkBT
(2065)

The original graph in the previous figure would then be modified to give the graph below.236

Temperature
Tp

mp

lp

Length

Mass

Figure 20: The “quantum curve” (multi-colored) is the modified wavelength (eq.2064) while the “gravity

curve” (green) is the Schwarzchild radius relationship (eq.2053). The graphs are in Planck units, c = G =
}= kB = 1.

Notice that introducing the temperature in this figure has the effect of “bending” the “quantum surface”

so that it now intersects with the “gravity surface” for a variety of mass and length values. Notice in particular

that there is now an intersection of the curves for mass values and length values greater than the Planck mass

and Planck length. Therefore, it should be experimentally possible to examine systems that exhibit both

quantum coherence and strong gravitational coupling provided the system can be brought to a low enough

temperature to produce a BEC.

235For a mass as small as the Planck mass, mp =
√

}c
G

, a thermal de Broglie wavelength would require an

enormously large temperature, namely the Planck temperature: Tp =
mpc2

kB
=

√
}c5

Gk2
B

≈ 1.4x1032K.

236Note that the curves are shown in the graph to extend below the Planck length. This is done only to allow

the shape of the curves to be viewed. However, it is generally believed that there is no meaningful spatial

length shorter than the Planck length.



394

When two such BEC ensembles interact, then instead of particle collisions, there will be wave interference

as shown in the following figure. Although achieving a BEC as been very difficult (requiring temperatures

∼1.7nK), current research has shown that a BEC could be formed at higher temperatures, even as high as

room temperature.[99]

Figure 21: Wave interference between two BEC clouds has been observed. The diagram above can be found

at http://cua.mit.edu/ketterle_group/Projects_1997/Interference/Interference_BEC.htm

Another benefit of such low-temperature systems is the fact that all internal degrees of freedom are es-

sentially “frozen out” so that only the center of mass of the entire quantum system can respond to an external

impulse. Since it is impossible for a crystal lattice to respond to a fraction of a phonon, the entire macroscopic

system must recoil as a single unit. (For example, this is demonstrated by the Mossbauer effect[100] when an

entire macroscopic mass can recoil due to the emission of a gamma ray by a single nucleus.) Such quantum

coherence in a macroscopic object could be instrumental in detecting and generating gravitational waves.

From this examination, we find that it is possible in principle to have matter in a quantum coherent state

while also exhibiting large gravitational coupling. The ideal case was shown to be the “Planck particle”

which would maintain quantum coherence (being confined to a space the size of its Compton wavelength)

and also exhibit extremely strong gravitation (being nearly a black hole). However, such particles are shown

to be experimentally untenable due to the extremely small length scales and extremely large mass densities

required. Instead, we considered the possibility of using ultra low-temperature material which can exist at

larger length scales without losing quantum coherence. Such materials hold the promise of strongly coupling

to gravity while still maintaining quantum coherence. There only remains the challenge of maintaining the

system in such a low temperature that quantum coherence is preserved. It is left to experimental innovation to

demonstrate if this can be realistically accomplished so that gravitational waves can be detected and generated

via such a mechanism.



21 Levitated charged spheres

at the foci of a

superconducting ellipsoid
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21.1 Description of the model

In this section we consider a pair of Planck-mass SC spheres levitated by means of microwaves focused

at the two foci F1 and F2 of an ellipsoidal microwave SC cavity. The two spheres are charged to “criticality”,

i.e., so that the Newtonian force of attraction is balanced against the Coulomb force of repulsion between

them.237In this model, the ellipsoid is a superconducting cavity with a transverse-magnetic (TM) standing

Figure 22: A pair of Planck-mass SC spheres is levitated by means of microwaves focused at the two foci F1

and F2 of an ellipsoidal microwave SC cavity. The two spheres are charged to “criticality”, i.e., so that the

Newtonian force of attraction is balanced against the Coulomb force of repulsion between them.

wave mode within. This standing wave oscillates each charged SC sphere about its corresponding focus of

the ellipsoid with a motion that is along the line between the spheres. It is expected that this motion will cause

each sphere to generate both electromagnetic (EM) and gravitational (GR) radiation which are necessarily

quadrupolar to lowest order. This is understood plainly from the symmetric geometry of the system. A

formal proof is also provided in Appendix T. The two identical superconducting (SC) Planck mass spheres

are negatively charged such that the Coulomb electrostatic force and Newtonian gravitational force are equal

in magnitude and opposite in direction, ~FCoulomb =−~FNewton. This means that

1

4πε0

|q|2

r2
= G

m2

r2
(2066)

Solving this for the charge-to-mass ratio gives ∣∣∣ q

m

∣∣∣=√4πε0G (2067)

This condition is referred to as the “criticality” condition. Since each mass is a Planck mass, then

mp =

√
}c

G
(2068)

Substituting this mass into (2067) gives the charge on each sphere.

|q|= G

√
4πε0

}c
(2069)

237This ratio is discussed in [91], pp. 3-7. Specifically, when FN = FC, then the resulting “criticality”

charge-to-mass ratio is
q

m
=
√

4πε0G. This leads to an equality of quadrupolar EM and GR radiation.
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21.2 Motion of the charged spheres due to the standing TM wave

For the purpose of this analysis, we consider the charged spheres to be effectively point charges: q1 at

focus F1 and q2 at focus F2. The distance between the foci is r0. If the wavelength of the standing TM wave

is adjusted such that

r0 =
(
n+ 1

2

)
λ , n= 0,1,2,3, ... (2070)

then the electric field will point in opposite directions at the two foci. The charges will therefore accel-

erate sinusoidally out of phase along the line between them so that the motion of the two charges is anti-

symmetric.238 The relative displacement between the charges can be given by239

r = r0+2Asin(ωt) (2071)

where A is the amplitude of oscillation of each charge about its corresponding focus (with 2A < r0 to avoid

collision). Also, ω is the angular frequency of the standing TM wave that is oscillating the charges. Note

that the use of sin(ωt) means that at t = 0 the charges are positioned at their corresponding foci and moving

away from each other. Then the velocity240 and acceleration of q1 relative to q2 will be, respectively,

~v1 = −2Aω cos(ωt) ẑ and ~a1 = 2Aω
2 sin(ωt) ẑ (2072)

Also, because the motion of the charges is anti-symmetric, then~v2 =−~v1 and~a2 =−~a1.

~v2 = 2Aω cos(ωt) ẑ and ~a2 =−2Aω
2 sin(ωt) ẑ (2073)

Ignoring for the moment the interaction between the charges, we know that each charge is only being oscil-

lated by the standing wave in the TM mode. Therefore, the acceleration of each charge due to this wave can

be found from Newton’s Second law.

~Fz (t) = q~Ewave (t) = m~a(t) (2074)

238A standing TM wave inside an ellipsoidal conductor will have a vanishing magnetic field on the axis

between the foci. Therefore, only the electric force needs to be considered.

239I have choosen to use 2A instead of A for the coefficient of sin(ωt) so that A can represent the amplitude

of a single point charge about its corresponding focus. Since r is the relative displacement between the

charges, then the maximum displacement between the charges will be r0+2A.This is because the motion of

each charge will add an amount A to the distance r0 between them. Likewise, the minimum distance between

the charges will be r0−2A.

240The magnitudes of v1 and v2 is found from the time-derivative of r in (2071) However, the direction of

v1 and v2 are put in "by hand" based on the fact that at t = 0 the charges are moving away from each other.

Therefore, we know that we must have v1 pointing in the −ẑ direction and v2 point in the +ẑ direction. The

accelerations a1 and a2 are found by simply taking the time-derivatives of v1 and v2, respectively.
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The acceleration of a single Planck mass (relative to the cavity) will be ~a = Aω2 sin(ωt) ẑ. Since (2074)
requires that q~Ewave (t) and~a1 (t) are in phase, then we must have241

q~Ewave (t) = qE0 sin(ωt) ẑ (2075)

where E0 is the amplitude of the standing wave’s electric field. Then (2074) gives

qE0 = mAω
2 (2076)

Therefore, we must have that the amplitude of oscillation is

A =
qE0

mω2
(2077)

Formally speaking, Newton’s Second Law should take into account all the forces acting on the charge.

For example, the total force acting on the left sphere (with charge q1 and mass m1) will be due to the electric

field of the standing TM wave, as well as the electromagnetic and gravitational forces of the other sphere

(with charge q2 and mass m1).

However, the static Coulomb force and Newton force cancel by the “criticality” condition. The remaining

dynamic contributions from the electromagnetic and gravitational forces are q
∂~A2

∂ t
and 4m

∂h2

∂ t
, respectively. It

will be shown later that these forces point in the same direction and therefore could alter the amplitude and

motion of the spheres. However, if the charged masses have low velocities and weak fields (compared to the

field of the standing TM wave), then their effects on the spheres can be considered small perturbations that

are relatively negligible.

241Note that a(t) is in phase with qEwave (t), not with Ewave (t). Since q is negative, this means that we

actually have Ewave (t) =−E0 sin(ωt) ẑ.
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21.3 Electromagnetic power

The two moving charges will have their own electric and magnetic fields associated with their motion. If

the velocity of q1 relative to q2 is given by~v1, then the electromagnetic Lorentz force on q1 due to q2 will be

~F2→1
(EM)

= q1

(
~E2+~v1×~B2

)
(2078)

where ~E2 and ~B2 are the electric and magnetic fields of q2, respectively. They can be written in terms of

potentials as

~E2 = −∇ϕ2−
∂~A2

∂ t
and ~B2 = ∇×~A2 (2079)

Substituting ~E2 into the Lorentz force (2078) gives the force of q2 acting on q1.

~F2→1
(EM)

= q1

[
−∇ϕ2−

∂~A2

∂ t
+
(
~v1×~B2

)]
(2080)

Now we can dot this with ~v1 (the velocity of q1 relative to q2) to find the electromagnetic power, PEM, 1,

delivered to q1 due to the electromagnetic fields of q2.

P1, EM = ~F2→1
(EM)

·~v1 (2081)

= q1

[
−∇ϕ2−

∂~A2

∂ t
+
(
~v1×~B2

)]
·~v1 (2082)

= (−q1∇ϕ2 ·~v1)+

(
−q1

∂~A2

∂ t
·~v1

)
+
[
q1

(
~v1×~B2

)
·~v1

]
(2083)

The first term is essentially ~F(Coulomb) ·~v1. This is the power due to the electrostatic Coulomb field. The second

term is the power due to the electrodynamic field
∂~A2

∂ t
. The third term is clearly zero due to orthogonality,

which is expected since the magnetic field can not do work. So the electromagnetic power in (2083) has two

non-zero terms:

P1, EM = ~F2→1
(Coulomb)

~v1−q1

∂~A2

∂ t
·~v1 (2084)

We can describe these two terms as the “semi-static” term and the “dynamic” term.242

P1, EM = P1, EM

(semi−static)

+ P1, EM

(dynamic)

(2085)

242The “semi-static” term is not truly static since there is still a velocity, ~v1, associated with this power.

However, the terms are meant to distinguish between the power due to electrostatic Coulomb force, ~Fstatic =

−q∇ϕ , and the power due to the electrodynamic force, ~Fdynamic =−q
∂~A

∂ t
.
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where

P1, EM

(semi−static)

= ~F2→1
(Coulomb)

~v1 (2086)

and

P1, EM

(dynamic)

= −q1

∂~A2

∂ t
·~v1 (2087)

First we will look at P1, EM

(semi−static)

. The Coulomb force due to q2 acting on q1 is always pointing to the left so

~F2→1
(Coulomb)

= − 1

4πε0

|q1q2|
r2

ẑ (2088)

We can substitute this into (2086) and also use (2071) and (2072) for r and~v1, respectively. Then we have

P1, EM

(semi−static)

=

(
− 1

4πε0

|q1q2|
[r0+2Asin(ωt)]2

ẑ

)
·2Aω cos(ωt)(−ẑ) (2089)

=
|q1q2|Aω

2πε0

cos(ωt)

[r0+2Asin(ωt)]2
(2090)

We can use A=
qE0

mω2
from (2077) and also the fact that the charge on the two spheres is identical, q1= q2= q.

PEM
(semi−static)

=
q2ω

2πε0

(
qE0

mω2

)
cos(ωt)[

r0+2

(
qE0

mω2

)
sin(ωt)

]2
(2091)

=
q2ω

4πε0r0

(
2qE0

mω2r0

)
cos(ωt)[

1+

(
2qE0

mω2r0

)
sin(ωt)

]2
(2092)

We can define a dimensionless parameter243 as

γ ≡ 2qE0

mω2r0

(2093)

Using this definition for γ gives

PEM
(semi−static)

=

(
1

4πε0

q2ωγ

r0

)
cos(ωt)

[1+ γ sin(ωt)]2
(2094)

243Note that this means that γ = 2A/r0. Since we stated that r0 > 2A to avoid a collision of the spheres, then

we must always have γ < 1. This fact will be useful later in the analysis.



401

Next we will look at P1, EM

(dynamic)

from (2087) which contains
∂~A2

∂ t
·~v1 due to the electrodynamic field. To

visualize this dot product, consider the following diagram.

Figure 23: Point charge, q2, moving to the right with velocity ~v2 relative to q1. This generates a magnetic

field, ~B2, and an associated magnetic vector potential, ~A2.

It can be seen that the magnetic field, ~B2, circulates around the line of motion while ~A2 points in the same

direction as ~v2. Since the two particles move anti-symmetrically, then ~v1 points in the opposite direction of
~A2. Also, since q2 is in motion, then the time-derivative of ~A2 must be non-zero. Therefore, it is evident that

∂~A2

∂ t
·~v1 6= 0. (2095)

We can write the magnetic vector potential (in vacuum) in terms of the current density244

~A2 =
µ0

4π

∫ ~J2

r
dV (2096)

where~r is the vector from the current density ~J2 (occupying a differential volume dV ) to the field point where
~A2 is evaluated. Since ~J = ρ~v, then for a point charge we have

∫
~JdV = q~v. So we can write (2096) as245

~A2 =
µ0

4π

q2~v2

r
(2097)

where r is the distance between q1 and q2, while~v2 is the velocity of q2 relative to q1.

244See Giffiths [29], equation (5.63).

245This is approximately true for the non-relativistic case when v << c, which is the case throughout all

of this treatment. Otherwise, the potentials are given by the relativistic Liénard-Wiechert potentials for a

moving point charge. These are shown in Griffiths [29], equations 10.39 and 10.40 whcih are, respectively,

V (r, t) =
1

4πε0

qc

(rc− r ·v) and A(r, t) =
µ0

4π

qcv

(rc− r ·v) .
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The expression in (2084) requires evaluating
∂~A2

∂ t
.

∂~A2

∂ t
=

µ0q2

4π

∂

∂ t

(
~v2

r

)
(2098)

=
µ0q2

4π

(
r~a2−~v2ṙ

r2

)
(2099)

where~a2 is the acceleration of q2 relative to q1. Substituting (2099) back into (2087) gives

P1, EM

(dynamic)

= −µ0q1q2

4πr2
(r~a2−~v2ṙ) ·~v1 (2100)

We can use (2071)− (2073) to substitute for r, ~v2, and~a2. Then (r~a2−~v2ṙ) from (2100) becomes

(r~a2−~v2ṙ) = [r0+2Asin(ωt)]
[
−2Aω

2 sin(ωt) ẑ
]
− [2Aω cos(ωt) ẑ] [2Aω cos(ωt)] (2101)

= −2r0Aω
2 sin(ωt) ẑ−4A2

ω
2 sin2 (ωt) ẑ−4A2

ω
2 cos2 (ω) ẑ (2102)

= −
[
2r0Aω

2 sin(ωt)+4A2
ω

2
]

ẑ (2103)

We can use the result in (2103) along with ~v1 from (2072) to write the dot product, (r~a2−~v2ṙ) ·~v1, from

(2100) as

(r~a2−~v2ṙ) ·~v1 = −
[
2r0Aω

2 sin(ωt)+4A2
ω

2
]

ẑ · [−2Aω cos(ωt)] ẑ (2104)

= 4r0A2
ω

3 sin(ωt)cos(ωt)+8A3
ω

3 cos(ωt) (2105)

= 4A2
ω

3 cos(ωt) [r0 sin(ωt)+2A] (2106)

Substituting this result as well as r = r0+2Asin(ωt) from (2071) into P1, EM

(dynamic)

in (2100) gives

P1, EM

(dynamic)

= − µ0q1q2

4π [r0+2Asin(ωt)]2
4A2

ω
3 cos(ωt) [r0 sin(ωt)+2A] (2107)

= −µ0q1q2

π
A2

ω
3 r0 sin(ωt)+2A

[r0+2Asin(ωt)]2
cos(ωt) (2108)

Finally, we can use A =
qE0

mω2
from (2077) and the fact that the charge on the two spheres is identical,

q1 = q2 = q. This leads to

PEM
(dynamic)

= −µ0q2

π

(
qE0

mω2

)2

ω
3

r0 sin(ωt)+2

(
qE0

mω2

)
[

r0+2

(
qE0

2mω2

)
sin(ωt)

]2
cos(ωt) (2109)
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Rearranging gives

PEM
(dynamic)

= −µ0q2ω3r0

4π

(
2qE0

mω2r0

)2

(
2qE0

mω2r0

)
+ sin(ωt)[

1+

(
2qE0

mω2r0

)
sin(ωt)

]2
cos(ωt) (2110)

Once again, using the dimensionless constant, γ =
2qE0

mω2r0

, gives

PEM
(dynamic)

=−
(

µ0

4π
q2ω3r0γ2

)
γ+ sin(ωt)

[1+ γ sin(ωt)]2
cos(ωt) (2111)

We can write a single combined expression for the total electromagnetic power delivered by one charge to

the other using (2094) and (2111).

PEM = PEM
(semi−static)

+ PEM
(dynamic)

(2112)

=

(
1

4πε0

q2ωγ

r0

)
cos(ωt)

[1+ γ sin(ωt)]2
−
(

µ0

4π
q2

ω
3r0γ

2
)

γ+ sin(ωt)

[1+ γ sin(ωt)]2
cos(ωt) (2113)

Using µ0 =
1

ε0c2
, we can write this as

PEM =

(
1

4πε0

q2ω

r0

)
γ cos(ωt)

[1+ γ sin(ωt)]2
−
(

1

4πε0c2
q2

ω
3r0

)
γ3+ γ2 sin(ωt)

[1+ γ sin(ωt)]2
cos(ωt) (2114)

PEM =

(
1

4πε0

q2ω

r0

)
cos(ωt)

[1+ γ sin(ωt)]2

{
γ−
(

ω2r 2
0

c2

)[
γ3+ γ2 sin(ωt)

]}
(2115)

We now have an explicit function for the total electromagnetic power in terms of just the properties of the

TM standing wave (ω and Eo) and the properties of the SC Planck mass spheres (q and m).

Observations concerning the EM power

For the purpose of making some observations about PEM
(semi−static)

and PEM
(dynamic)

, we can substitute γ =
2qE0

mω2r0

back into just the prefactors of (2094) and (2111) . Then we have

PEM
(semi−static)

=

(
q3E0

2πε0mωr 2
0

)
cos(ωt)

[1+ γ sin(ωt)]2
(2116)
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and

PEM
(dynamic)

= −
(

µ0q4E 2
0

πm2ωr0

)
γ+ sin(ωt)

[1+ γ sin(ωt)]2
cos(ωt) (2117)

Using (2116) and (2117) we can make the following observations.

1. The semi-static power scales linearly with E0 (the magnitude of the electric field of the TM wave).

This seems to emerge from the linear coupling of the charged mass with the electric force of the TM

standing wave which was utilized to find the amplitude of the motion in (2074). The dynamic power

scales quadratically with E0. This could be related to the fact that the energy of an electromagnetic

wave also scales quadratically with the magnitude of the electric field: U = ε0E 2
0 .

2. The semi-static power scales as r −2
0 where r0 is the initial separation distance of the charges masses be-

fore oscillation. This is consistent with the fact that this “semi-static” power emerges from Coulomb’s

law which has an inverse square dependence. The dynamic power scales as r −1
0 which is consistent

with the fact that radiation should fall off as r−1 in the far-field.

3. Both the semi-static and dynamic power scale as ω−1 where ω the angular frequency of the standing

TM wave. This is surprising since it would be expected that the more rapidly the spheres are oscillated,

the more rapidly energy could be transferred in or out of the two-sphere system and hence the higher

the power values. However, the ω−1 dependency arises from the following:

• PEM
(semi−static)

∼ Aω from (2090) and A∼ ω−2 from (2077).

• PEM
(dynamic)

∼ A2ω3 from (2108) and A∼ ω−2 from (2077).

Therefore, the reason that the power decreases with higher angular frequency is because the amplitude

decreases with higher angular frequency. Basically, if the spheres oscillate faster then they move

through a smaller distance and therefore deliver and receive less power.

4. The semi-static power scales as m−1 which is consistent with the fact that a heavier mass will have

greater inertia and therefore will not accelerate as easily by the standing TM wave. The dynamic power

is suppressed even further by the mass since it scales as m−2.

5. The semi-static power scales as q3 while the dynamic power scales as q4. These dependencies arise

from the fact that

• PEM
(semi−static)

∼ q2A from (2090) and A∼ q from (2077).

• PEM
(dynamic)

∼ q2A2 from (2108) and A∼ q from (2077).

From these results, we can see that both the semi-static power and dynamic power are affected more

by the charge on the spheres than the mass of the spheres. This means that if both the charge and mass

are increased together linearly according to the “criticality” condition in (2067), the result will be more

power, not less. In other words, even though the increased mass will introduce more inertia and hence

slow down the motion of the spheres, nevertheless, the higher amount of charge will still increase the

power delivered and received.

6. Both the semi-static power and dynamic power fluctuate in sign (+ or −) due to the cos(ωt) term.

This is consistent with the fact that the power is associated with the sinusoidal motion of the moving

charges.

• At t = 0, when the charges are a distance r0 apart and moving away from each other, the power

is a positive maximum. The spheres have the fastest rate of EM energy received.
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• A quarter cycle later, when they are a distance r0+ 2A apart and not moving, there is no energy

transfer so the power is zero.

• Another quarter cycle later, when they are a distance r0 apart again but moving toward each other,

the power is a negative maximum. The spheres have the fastest rate of EM energy extracted.

• Finally, another quarter cycle later, when they are a distance r0−2A apart and not moving, there

is no energy transfer so the power is zero.

These results are consistent with the fact that as the charges move toward each other, they ex-

perience stronger fields due to their proximity and hence have a positive energy transfer. Likewise,

as the charges move away from each other, they experience weaker fields due to their distance

and hence have a negative energy transfer. Also, when the charges are moving their fastest (when

they are a distance r0 apart) they have a maximum energy transfer (either positive or negative).

7. Both the semi-static power and dynamic power demonstrate a “sloshing” behavior.

• For the semi-static power, the “sloshing” is due to the term
1

[1+ γ sin(ωt)]2
.

• For the dynamic power, the “sloshing” is due to the term
γ+ sin(ωt)

[1+ γ sin(ωt)]2
.

This “sloshing” may be due to the near-field effects by sinusoidally moving charges. The speeding

up and slowing down of the charges at sinusoidal rates in the proximity of each other will cause

a “sloshing” behavior in the transfer of energy.

• Notice that when γ << 1, then
1

[1+ γ sin(ωt)]2
≈ 1 and

γ+ sin(ωt)

[1+ γ sin(ωt)]2
≈ 1.

This means that the “sloshing” behavior of the total power vanishes and there is only a “smooth”

cos(ωt) fluctuation in the energy transfer.

• We defined γ ≡ 2qE0

mω2r0

which means that to have γ << 1 we need mω2r0 >> 2qE0

or
ω2r0

2E0

>>
q

m
. Using the “criticality” condition,

q

m
=
√

4πε0G, means we need
ω2r0

E0

>>

2
√

4πε0G. Thus, for given values of ω and E0 of the standing TM wave, the “sloshing” can be

reduced if the distance between the spheres, r0, is made large.

8. Mathematically, there is the possibility for the power to diverge if [1+ γ sin(ωt)] = 0 in the denomina-

tor. Physically this is due to the fact that the denominator contains the displacement vector r between

the two charges. If this becomes zero at any time then it implies that the two charges are completely

“overlapped.” Power is the transfer of energy per time, therefore if there is no separation, then the

transfer will be instantaneous and hence the power will become infinite.

To avoid a divergence we must have |1+ γ sin(ωt)| > 0 for all t values. Since sin(ωt) has a

minimum of −1, then we must make γ < 1. This means we need
2qE0

mω2r0

< 1 or
q

m
<

ω2r0

2E0

. Again,

we can use the “criticality” condition,
q

m
=
√

4πε0G, so the condition to avoid divergence becomes

ω2r0

2E0

>
√

4πε0G.
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21.4 Gravitational power

In the gravito-electromagnetic framework, the gravito-electric field, ~EG, and gravito-magnetic field, ~BG,

can be defined in terms of the gravitational scalar potential, ϕG, and gravito-magnetic vector potential,~h, as

follows:

~EG = −∇ϕG−4
∂~h

∂ t
and ~BG = ∇×~h (2118)

The gravito-electromagnetic Lorentz force on m1 (the mass of charge q1) due to m2 (the mass of charge q2)

is246

~F2→1
(GR)

= m1

[
−∇ϕG,2−4

∂~h2

∂ t
+4
(
~v1×~BG,2

)]
(2119)

Now we can dot this with ~v1 (the velocity of m1 relative to m2) to find the gravitational power, P1, GR,

delivered to m1 due to the gravitational fields of m2.

P1, GR = ~F2→1
(GR)
·~v1 (2120)

= m1

[
−∇ϕG,2−4

∂~h2

∂ t
+4
(
~v1×~BG,2

)]
·~v1 (2121)

=
(
−m1∇ϕG,2 ·~v1

)
+

[
−4m1

∂~h2

∂ t
·~v1

]
+
[
4m1

(
~v1×~BG,2

)
·v1

]
(2122)

The first term is essentially ~F(Newton) ·~v1. This is the power due to the gravito-electrostatic Newtonian field.

The second term is the power due to the gravito-electrodynamic field
∂~h2

∂ t
. The third term is clearly zero due

to orthogonality, which is expected since the gravito-magnetic field can not do work. So the gravitational

power in (2122) has two non-zero terms:

P1, GR = ~F2→1
(Newton)

·~v1−4m1

∂~h2

∂ t
·~v1 (2123)

We can describe these two terms as the “semi-static” term and the “dynamic” term.247

P1, GR = P1, GR

(semi−static)

+ P1, GR

(dynamic)

(2124)

246Note that a factor of 4 appears in the terms containing 4
∂~h2

∂ t
and 4~v1 × ~BG,2. This arises from the

linearized geodesic equation,
duµ

dτ
= −Γ

µ(1)
αβ

uα uβ where −Γ
µ(1)
αβ

is linear in hµν , the perturbation metric.

This also assumes that we only keep terms that are first order in v/c.

247The “semi-static” term is not truly static since there is still a velocity, ~v1, associated with this power.

However, the terms are meant to distinguish between the power due to the gravito-electrostatic Newtonian

force, ~Fstatic =−m∇ϕG, and the power due to the gravito-electrodynamic force, ~Fdynamic =−4m
∂~h

∂ t
.
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where

P1, GR

(semi−static)

= ~F2→1
(Newton)

·~v1 (2125)

and

P1, GR

(dynamic)

= −4m1

∂~h2

∂ t
·~v1 (2126)

First we will look at P1, GR

(semi−static)

. The Newton force due to m2 acting on m1 is always pointing to the right so

~F2→1
(Newton)

= G
m1m2

r2
ẑ (2127)

We can substitute this into (2125) and also use (2071) and (2072) for r and v1, respectively. Then we have

P1, GR

(semi−static)

=

(
G

m1m2

[r0+2Asin(ωt)]2
ẑ

)
·2Aω cos(ωt)(−ẑ) (2128)

= −2Gm1m2Aω
cos(ωt)

[r0+2Asin(ωt)]2
(2129)

We can use A=
qE0

mω2
from (2077) and also the fact that the mass of the two spheres is identical, m1=m2=m.

PGR
(semi−static)

= −
(
2Gm2

ω
)( qE0

mω2

)
cos(ωt)[

r0+2

(
qE0

mω2

)
sin(ωt)

]2
(2130)

= −
(

Gm2ω

r0

)(
2qE0

mω2r0

)
cos(ωt)[

1+

(
2qE0

mω2r0

)
sin(ωt)

]2
(2131)

Using the dimensionless parameter defined in (2093) as

γ ≡ 2qE0

mω2r0

(2132)

leads to

PGR
(semi−static)

=−
(

Gm2ωγ

r0

)
cos(ωt)

[1+ γ sin(ωt)]2
(2133)
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Next we will look at P1, GR

(dynamic)

from (2126)which contains
∂~h2

∂ t
·~v1 due to the gravito-electrodynamic field.

To visualize this dot product, consider the following diagram.

Figure 24: The point mass, m2, moving to the right with velocity~v2 relative to m1. This generates a gravito-

magnetic field, ~BG,2, and an associated gravito-magnetic vector potential,~h2.

It can be seen that the gravito-magnetic field, ~BG,2, circulates around the line of motion, however, it is

in the opposite direction of the right-hand rule due to the negative sign in the static gravito-electromagnetic

Ampere’s law, ∇×~BG =−µG
~Jm. Also notice that~h2 points in the opposite direction of~v2 due to defining the

gravito-magnetic field in terms of the vector potential as ~BG ≡∇×~h, which leads to ∇×
(

∇×~h
)
=−µG

~Jm.

Since the two particles move anti-symmetrically, then v1 points in the same direction as~h2. Also, since m2 is

in motion, then the time-derivative of~h2 must be non-zero. Therefore, it is evident that

∂~h2

∂ t
·~v1 6= 0 (2134)

The gravito-magnetic vector potential can be written in terms of the mass-current density248 by analogy to

(2096). This gives

~h2 =−
µG

4π

∫ ~Jm,2

r
dV (2135)

where ~r is the vector from the mass-current density ~Jm,2 (occupying a differential volume dV ) to the field

point where~h2 is evaluated. Since ~Jm = ρm~v (where ρm is the mass density), then for a point mass we have∫
~JmdV = m~v. So we can write (2135) as

~h2 =−
µG

4π

m2~v2

r
(2136)

where r is the distance between m2 and m1, while~v2 is the velocity of q2 relative to q1.

248See [10], equation 4.52.
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Since (2123) requires that we evaluate
∂~h2

∂ t
·~v1, then by analogy to the electromagnetic case in (2099),

we will have

∂~h2

∂ t
= −µGm2

4π

(
r~a2−~v2ṙ

r2

)
(2137)

where~a2 is the acceleration of m2 relative to m1. Substituting (2137) back into (2126) gives

P1, GR

(dynamic)

=
µGm1m2

πr2
(r~a2−~v2ṙ) ·~v1 (2138)

From (2106) and (2071) we can use

(r~a2−~v2ṙ) ·~v1 = 4A2
ω

3 cos(ωt) [r0 sin(ωt)+2A] and r = r0+2Asin(ωt)

to write (2138) in a form analogous to (2108).

P1, GR

(dynamic)

=
µGm1m2

π [r0+2Asin(ωt)]2
4A2

ω
3 cos(ωt) [r0 sin(ωt)+2A] (2139)

=
4µGm1m2

π
A2

ω
3 r0 sin(ωt)+2A

[r0+2Asin(ωt)]2
cos(ωt) (2140)

Finally, we can use A =
qE0

mω2
from (2077) and the fact that the mass of the two spheres is identical, m1 =

m2 = m.

PGR
(dynamic)

=
4µGm2

π

(
qE0

mω2

)2

ω
3

r0 sin(ωt)+2

(
qE0

mω2

)
[

r0+2

(
qE0

mω2

)
sin(ωt)

]2
cos(ωt) (2141)

Rearranging gives

PGR
(dynamic)

= =
µGm2ω3r0

π

(
2qE0

mω2r0

)2

[(
2qE0

mω2r0

)
+ sin(ωt)

]
[

1+

(
2qE0

mω2r0

)
sin(ωt)

]2
cos(ωt) (2142)

Once again, using the dimensionless constant, γ =
2qE0

mω2r0

, gives

PGR
(dynamic)

=
(

µG

π
m2ω3r0γ2

)
γ+ sin(ωt)

[1+ γ sin(ωt)]2
cos(ωt) (2143)

We can write a single combined expression for the total gravitational power delivered by one charge to the

other using (2133) and (2143).

PGR = PGR
(semi−static)

+ PGR
(dynamic)

(2144)

= −
(

Gm2ωγ

r0

)
cos(ωt)

[1+ γ sin(ωt)]2
+
(

µG

π
m2

ω
3r0γ

2
)

γ+ sin(ωt)

[1+ γ sin(ωt)]2
cos(ωt) (2145)
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Using µG =
4πG

c2
, we can write this as

PGR = −
(

Gm2ω

r0

)
γ cos(ωt)

[1+ γ sin(ωt)]2
+

(
4πG

πc2
m2

ω
3r0

)
γ3+ γ2 sin(ωt)

[1+ γ sin(ωt)]2
cos(ωt)

PGR =−
(

Gm2ω

r0

)
cos(ωt)

[1+ γ sin(ωt)]2

{
γ−
(

4ω2r 2
0

c2

)[
γ3+ γ2 sin(ωt)

]}
(2146)

where γ =
2qE0

mω2r0

. We now have explicit functions for the total gravitational power in terms of just the

properties of the TM standing wave (ω and Eo) and the properties of the SC Planck mass spheres (q and m).

Observations concerning the EM power

For the purpose of making some observations about PGR
(semi−static)

and PGR
(dynamic)

, we can substitute γ =
2qE0

mω2r0

back into just the prefactors of (2133) and (2143) . Then we have

PGR
(semi−static)

= −
(

2GmqE0

r 2
0 ω

)
cos(ωt)

[1+ γ sin(ωt)]2
(2147)

and

PGR
(dynamic)

=

(
4µG

πωr0

q2E 2
0

)
γ+ sin(ωt)

[1+ γ sin(ωt)]2
cos(ωt) (2148)

Almost all the observations made concerning PEM can likewise apply to PGR . Specifically, in Section 79,

“Observations Concerning the EM Power,” points 1-3 and 6-8 apply to both PEM and PGR so they will not

be repeated here. However, points 4-5 (which deal with the way the power scales with mass and charge) are

not the same for both PEM and PGR, therefore they will be discussed below. Also, there are a number of

other differences that will be highlighted when comparing (2116) and (2117) for EM power to (2147) and

(2148) for GR power.

1. The semi-static power scales linearly with m. This is due to the fact that mass plays the role of “gravita-

tional charge” as well as a measure of the inertia of an object. Therefore, although increasing the mass

of the spheres would make them more difficult to move and thus could decrease gravitational radiation,

on the other hand, increasing the mass also increases the source of gravitational radiation and hence

could increase the radiation. It turns out that the net result for the semi-static power is an increase in

radiation.

It is interesting that the dynamic power does not scale with m at all. In this case, an increase

in “gravitational charge” would perfectly cancel an increase in inertia so that the net result is that the

dynamic power does not depend on the mass at all.

Note that these results assume the Equivalence Principle holds absolutely true since it treats in-

ertial mass and gravitational mass as equivalent and allows them to “cancel out.” The inertial mass

only enters into the calculation via Newton’s Second Law when finding the amplitude of oscillation in

(2077).
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As a result, it can be seen by backtracking through the calculation that every mass that appears in

(2142) is an inertial mass except for the squared mass appearing in the first term,
(

µG

π
m2ω3r0

)
, which

is a gravitational mass coming from the gravitational Lorentz force (2119) and the gravito-magnetic

vector potential (2136). If this gravitational mass cancels with the inertial mass appearing in the term(
qE0

mω2r0

)2

, then the Equivalence Principle predicts that PGR
(semi−static)

in (2147) scales linearly with m and

PGR
(dynamic)

in (2148) does not scale with the mass at all.

2. The semi-static power scales linearly with q while the dynamic power scales quadratically with q2.

This means that if both the charge and mass are increased together linearly according to the “criticality”

condition in (2067), the result will be more power, not less. In other words, even though the increased

mass will introduce more inertia and hence slow down the motion of the spheres, nevertheless, the

higher amount of charge will still increase the power delivered and received. So the power is affected

more by the charge on the spheres than the mass of the spheres. This is similar to the case with

electromagnetic power.

3. Both the semi-static and dynamic gravitational power expressions have a minus sign when compared to

the corresponding electromagnetic power expressions. For the semi-static power, the minus sign is due

to the Coulomb force being in the opposite direction from the Newtonian force. For the dynamic power,

the minus sign is due to the minus sign in the static gravitational Ampere’s law, ∇×~BG=−µGJm which

does not appear in the electromagnetic Ampere’s law, ∇×~B= µ0J.

This overall minus sign for the gravitational power compared to the electromagnetic power means

that the fluctuation of each type of power will be perfectly out of phase. Therefore, when electromag-

netic energy is being lost, gravitational energy will be gained, and vice versa.
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21.5 “Criticality” condition for semi-static versus dynamic power and forces

Semi-static versus dynamic power

The total EM and GR power from (2115) and (2146) are, respectively,

PEM =

(
1

4πε0

q2ω

r0

)
cos(ωt)

[1+ γ sin(ωt)]2

{
γ−
(

ω2r 2
0

c2

)[
γ

3+ γ
2 sin(ωt)

]}
(2149)

and

PGR = −
(

Gm2ω

r0

)
cos(ωt)

[1+ γ sin(ωt)]2

{
γ−
(

4ω2r 2
0

c2

)[
γ

3+ γ
2 sin(ωt)

]}
(2150)

In either expression above, the first term in the braces (the single factor of γ) is the semi-static power term.

The second term in the braces (which has an extra factor of 4 for the GR power) is the dynamic power term.

First we can consider a ratio of magnitudes of the semi-static power terms.∣∣∣∣∣∣∣
PEM

(semi−static)

PGR
(semi−static)

∣∣∣∣∣∣∣ =

(
1

4πε0

q2ω

r0

)
γ(

Gm2ω

r0

)
γ

=
1

4πε0G

q2

m2
(2151)

If we require the EM and GR semi-static power to be equal, then

∣∣∣∣∣∣∣
PEM

(semi−static)

PGR
(semi−static)

∣∣∣∣∣∣∣= 1 so we have
1

4πε0G

q2

m2
= 1.

This leads to

∣∣∣ q

m

∣∣∣ =
√

4πε0G (2152)

This is precisely the “criticality” condition obtained in (2077) by equating the Coulomb electrostatic force,
~F(Coulomb), and the Newtonian gravitational force, ~F(Newton). Therefore, we find that the the “criticality”

condition makes the semi-static EM and GR power equal. Next we can consider the ratio of magnitudes of

the dynamic power terms.∣∣∣∣∣∣∣
PEM
(dynamic)

PGR
(dynamic)

∣∣∣∣∣∣∣ =

(
1

4πε0

q2ω

r0

)(
ω2r 2

0

c2

)[
γ3+ γ2 sin(ωt)

]
(

Gm2ω

r0

)(
4ω2r 2

0

c2

)
[γ3+ γ2 sin(ωt)]

=
1

4πε0G

q2

4m2
(2153)

If we require the EM and GR dynamic power to be equal, then we will have

∣∣∣∣∣∣∣
PEM
(dynamic)

PGR
(dynamic)

∣∣∣∣∣∣∣ = 1 which gives

1

4πε0G

q2

4m2
= 1. This leads to

∣∣∣ q

m

∣∣∣ = 2
√

4πε0G (2154)
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Notice that this is exactly twice the “criticality” condition. Therefore, we find that there is no single “criti-

cality” condition that will make the total EM and GR power equal. It is only when γ << 1 that we will have

γ3 and γ2 become very small and therefore the total power in (2149) and (2150) will become approximately

just the semi-static power. Then the “criticality” condition will make the EM and GR power equal. Since

we defined γ =
2qE0

mω2r0

and the criticality conditions is

∣∣∣ q

m

∣∣∣ = √πε0G, then having γ << 1 requires that

ω2r0

E0

>> 2
√

4πε0G.

Semi-static versus dynamic forces

The “criticality” condition,

∣∣∣ q

m

∣∣∣ = √4πε0G, could be described as a “static criticality” condition since

only the electrostatic Coulomb force and the gravitationally static Newtonian force are made equal by it.

However, because the spheres are in motion, then we must consider the full dynamic forces acting on the

spheres. This leads to what could be referred to as a “dynamic criticality” condition. The static and dynamic

criticality conditions can then be compared.

First, let us recall that in the static case, the net force on q1 (with mass m1) due to q2 (with mass m2) is

given by

~F2→1
(Static)

= ~F2→1
(Coulomb)

+ ~F2→1
(Newton)

(2155)

=
1

4πε0

q2

r2
(−ẑ)+G

m2

r2
ẑ (2156)

Applying the static criticality condition,

∣∣∣ q

m

∣∣∣=√4πε0G will give

~F2→1
(Static)

= 0 (2157)

This is expected, of course, since the static criticality condition was designed to yield this result. In a similar

way, we can consider the dynamic case by adding the total EM and GR Lorentz forces from (2080) and

(2119), respectively. This gives

~F 2→1
(Total)

= ~F2→1
(EM)

+~F2→1
(GR)

(2158)

= q1

[
−∇ϕ2−

∂~A2

∂ t
+
(
~v1×~B2

)]
+m1

[
−∇ϕG,2−4

∂~h2

∂ t
+4
(
~v1×~BG,2

)]
(2159)

If we impose the static criticality condition, then the first term in each bracket will cancel each other. As

described before, the third term in each bracket is zero since the motion of spheres is along the line between

them and therefore ~B2 and ~BG,2 is zero along that line. This leaves the dynamic force as

~F2→1
(Dynamic)

= −q1

∂~A2

∂ t
−4m1

∂~h2

∂ t
(2160)
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From (2099) and (2137) we had, respectively,

∂~A2

∂ t
=

µ0q2

4π

(
r~a2−~v2ṙ

r2

)
and

∂~h2

∂ t
=−µGm2

4π

(
r~a2−~v2ṙ

r2

)
(2161)

We can substitute these into (2160). Also, since the charge and mass of the two spheres are identical, then

we can use q1 = q2 = q and m1 = m2 = m.

~F(Dynamic) =

[
−µ0q2

4π
+

4µGm2

4π

](
r~a2−~v2ṙ

r2

)
(2162)

In order to make ~F(Dynamic) = 0 we would need a dynamic criticality condition which makes −µ0q2 +

4µGm2 = 0. This leads to

q

m
=

√
4µG

µ0

(2163)

Making use of µ0 =
1

c2ε0

and µG =
4πG

c2
gives

∣∣∣ q

m

∣∣∣ = 2
√

4πε0G (2164)

Once again, we find that dynamic criticality condition is twice the charge-to-mass ratio of the static criticality

condition. This is directly attributable to the factor of 4 that is found in the dynamic part of the GR Lorentz

force.
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21.6 Behavior of the dynamic force

We can return to (2162) and determine an explicit function for ~F(Dynamic) in the case of static criticality.

Substituting in

∣∣∣ q

m

∣∣∣=√4πε0G as well as the relations µ0 =
1

ε0c2
and µG =

4πG

c2
gives

~F(Dynamic) =
1

4π

[
−
(

1

ε0c2

)(
m
√

4πε0G

)2

+4

(
4πG

c2

)
m2

](
r~a2−~v2ṙ

r2

)
(2165)

=
3Gm2

c2

(
r~a2−~v2ṙ

r2

)
(2166)

From (2103) we have (r~a2−~v2ṙ) =−
[
2r0Aω2 sin(ωt)+4A2ω2

]
ẑ. Also, from (2071) we have

r = r0+2Asin(ωt). Substituting these into (2166) gives

~F(Dynamic) = −3Gm2

c2

(
2r0Aω2 sin(ωt)+4A2ω2

[r0+2Asin(ωt)]2

)
ẑ (2167)

Using A=
qE0

mω2
from (2077) gives

~F(Dynamic) = −3Gm2

c2


2r0

(
qE0

mω2

)
ω2 sin(ωt)+4

(
qE0

mω2

)2

ω2[
r0+2

(
qE0

mω2

)
sin(ωt)

]2

 ẑ (2168)

= −3Gm2

c2


r 2

0

(
2qE0

mω2r0

)
ω2 sin(ωt)+ r 2

0

(
2qE0

mω2r0

)2

ω2

r 2
0

[
1+

(
2qE0

mω2r0

)
sin(ωt)

]2

 ẑ (2169)

Just as before, we define γ =
2qE0

mω2r0

. Then we have

~F(Dynamic) =−
3Gm2ω2γ

c2

{
γ+ sin(ωt)

[1+ γ sin(ωt)]2

}
ẑ (2170)

As discussed before, we must have γ < 1 in order for the spheres not to collide and produce a divergence

in the power. However, if γ ≈ 1, then the numerator, γ + sin(ωt), is positive for most values of t. This

means that the force spends most of the time pointing in the negative ẑ direction for q1 (and the the positive

ẑ direction for q2). This would result in the spheres being pushed further and further apart by the “DC”

component of the force. The only compensating force that could keep the spheres oscillating about the foci
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would be due to the standing TM wave mode which would have nodal regions at the foci. These nodal regions

would effectively provide a negative pressure that could help to keep the motion of the spheres centered at

the foci.

On the other hand, γ can also be made arbitrarily small. For the case when γ << 1, then the force

approaches

~F(Dynamic) ≈ −3Gm2ω2

c2
γ sin(ωt) ẑ (2171)

This force does not have a “DC” component at all. However, it could serve to either drive or dampen the

motion of the spheres depending on its phase relationship with the oscillatory motion of the spheres. From

(2074) we know the force of the TM standing wave is

~Fz (t) = q~Ewave (t) = qE0 sin(ωt) ẑ (2172)

Since q is negative, then the force due to the standing wave will be

~Fz (t) = −|q|E0 sin(ωt) ẑ (2173)

This means that ~F(Dynamic) will be in phase with ~Fz (t) and therefore will serve to drive the system, not dampen

it. This could be beneficial for the purpose of generating more radiation. However, if the spheres are driven

too hard relative to any compensating damping force (such as the negative pressure of the nodal regions at

the foci), then the oscillation amplitude could grow indefinitely and even lead to collision of the spheres.



417

21.7 Summary of ideal experimental specifications

Based on all of the analysis shown above, we can summarize the ideal specifications that would be needed

to optimize this experiment.

1. To keep the spheres from colliding, we must satisfy the condition
ω2r0

2E0

>
√

4πε0G.

This means the following:

• The distance between the foci of the ellipse must satisfy r0 >
2E0

√
4πε0G

ω2
.

• The amplitude of the electric field of the standing wave must satisfy E0 <
ω2r0

2
√

4πε0G
.

• The angular frequency of the standing wave must satisfy ω2 >
2E0

√
4πε0G

r0

.

2. To reduce “sloshing” in the transfer of energy, we need
ω2r0

E0

>> 2
√

4πε0G. This means it is ideal to

have the highest angular frequency possible and lowest power possible for the standing TM wave. It

is also ideal to have r0 as large as possible which means using the largest possible ellipsoid with the

greatest eccentricity.

3. To produce the greatest amount of EM and GR radiation, the spheres should be charged as much as

possible. This can be seen from the way that the EM power and GR power both scale with the charge.

• PEM
(semi−static)

∼ q3 and PEM
(dynamic)

∼ q4

• PGR
(semi−static)

∼ q and PGR
(dynamic)

∼ q2

4. Keep the charge-to-mass ratio constant by using more mass in proportion to using more charge. The

EM and GR power scale with lower powers of the mass than they do with charge. This means the

additional inertia that would inhibit motion will be superseded by the additional radiation from the

added charge. This can be seen from the way that the EM power and GR power both scale with the

mass.

• PEM
(semi−static)

∼ m−1 and PEM
(dynamic)

∼ m−2

• PGR
(semi−static)

∼ m and PGR
(dynamic)

doesn’t scale with mass

Note also that mass is essentially “gravitational charge” which means that the greater the mass,

the greater the gravitational radiation.

5. The charge-to-mass ratio should satisfy the “criticality” condition,

∣∣∣ q

m

∣∣∣=√4πε0G to insure the strongest

coupling to EM radiation while also producing the greatest GR radiation. This condition will make the

EM and GR power approximately equal. Since using the greatest amount of charge ideal, the only

limitation would be the amount of mass that could be levitated at the foci of the ellipsoid and kept

stable while oscillating.
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6. If the dynamic force (EM and GR) acting on the spheres has a “DC” component that is too large, then

it will push the spheres further and further apart. In that case, try to make
ω2r0

E0

>> 2
√

4πε0G.

7. If the dynamic force is too close to a pure sinusoid that is in phase with the standing TM wave, then

it will drive the spheres in resonance which will increase the amplitude of the motion and could cause

the spheres to collide. In that case, try to reduce
ω2r0

E0

so that it is closer to 2
√

4πε0G.
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21.7 Numerical results of power delivered between the charged masses

The following are some numerical estimates based on the relations developed in this memo. All calcula-

tions assume that a charge-to-mass ratio satisfying criticality. The suggested arrangement is an ellipsoid with

a 1cm spacing between the foci and a milliwatt of microwave (30GHz) power for the standing TM wave. First

we can check if these parameters are compatible with the restrictions of the system as described previously

in this memo.

• Allowable TM wave power

For a microwave frequency of 30GHz , the angular frequency will be

ω = 2π f = 2π
(
30×109

)
≈ 1.88×1011rad/s (2174)

For a separation distance between the foci of 1cm, the amplitude of the electric field of the standing

wave must satisfy

E0 <
ω2r0

2
√

4πε0G
≈
(
1.88×1011

)2 (
10−2

)
2(8.61×10−11)

N/C ≈ 1.32×1027N/C (2175)

This corresponds to a power of

P = ε0E2c≈
(
8.85×10−12

)(
1.32×1027

)(
3.00×108

)
W ≈ 4.62×1051W (2176)

This is obviously far above any laboratory power. Therefore, there is no risk of using too much power

to drive the spheres. Using a milliwatt of power is far below what this system can tolerate.

• Allowable frequency of the TM wave

For a milliwatt of TM wave power, the corresponding electric field amplitude is

E0 =

√
P

ε0c
≈

√
10−6

(8.85×10−12)(3.00×108)
N/C ≈ 1.94×10−2N/C (2177)

Using a separation distance between the foci of 1cm, the angular frequency of the the standing wave

must satisfy

ω >

√
2E0

√
4πε0G

r0

≈

√
2
(
1.94×10−2

)(
8.61×10−11

)
10−2

≈ 1.83×10−5rad/s (2178)

This corresponds to a frequency of

f =
ω

2π
≈ 2.87×10−5Hz (2179)

This is about 9 cycles per hour which is obviously far slower than any frequency of interest. Therefore,

there is no risk of driving the system too slowly.



420

• Allowable distance between the ellipsoid foci

For a milliwatt of 30GHz microwave power, the distance between the foci of the ellipse must satisfy

r0 >
2E0

√
4πε0G

ω2
≈

2
(
1.94×10−2

)(
8.61×10−11

)
(1.88×1011rad/s)2

m≈ 1.47×10−31m (2180)

This is obviously far smaller than any laboratory length scale. Therefore, there is no risk of having a

cavity that is too small. The smaller the cavity can be made, the better the results will be.

We have now established that the use of one milliwatt of microwave power at 30GHz with a

separation distance of 1cm is completely within the bounds permitted by this system. Next we can

calculate the maximum displacement, speed, and acceleration of the spheres. We can also calculate the

maximum EM and GR power between the spheres.

• Maximum displacement of the spheres

The amplitude of oscillation for the spheres was found in (2077) to be

A =
qE0

mω2
(2181)

Using the criticality condition,

∣∣∣ q

m

∣∣∣=√4πε0G, this becomes

A =
E0

√
4πε0G

ω2
(2182)

For a milliwatt TM wave power, the corresponding electric field was found above to be E0 ≈ 1.94×
10−2N/C. Also, for a microwave frequency of 30GHz, the angular frequency was found to be 1.88×
1011rad/s. Then the amplitude of oscillation is

A ≈
(
1.94×10−2

)(
8.61×10−11

)
(1.88×1011rad/s)2

m≈ 4.73×10−35m (2183)

Since the spheres will move through a distance of 2A, then the maximum displacement will be 9.45×
10−35m. This is just about the Planck length.

• Maximum speed of the spheres

From (2072) we know that the maximum speed of either sphere249 is |~v| = Aω . Using the amplitude

found above, we have

|~v| ≈ 2
(
7.52×10−34

)(
1.88×1011

)
m/s≈ 2.82×10−22m/s (2184)

249We do not include the factor of 2 here because this factor was associated with the velocity and acceler-

ation of one sphere with respect to the other sphere. In this calculation we are interested in the speed and

acceleration with respect to the cavity (or lab frame).
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• Maximum acceleration of the spheres

From (2072) we know that the maximum acceleration of either sphere is |~a|= Aω2. Using the ampli-

tude found above, we have

|~v| ≈ 2
(
7.52×10−34

)(
1.88×1011

)2
m/s2 ≈ 5.32×10−11m/s2 (2185)

These results are obviously extremely small. However, it was shown on the previous page that this

system would permit much higher power from the TM standing wave, or a much lower frequency, or

a much larger separation between the foci. Making any of these adjustments would increase the dis-

placement, speed, and acceleration of the spheres. However, we will continue with the values selected

above for the calculation of the maximum EM or GR power.

• Maximum EM or GR power due to oscillation of the spheres

The total EM and GR power from (2115) and (2146) are, respectively,

PEM =

(
1

4πε0

q2ω

r0

)
cos(ωt)

[1+ γ sin(ωt)]2

{
γ−
(

ω2r 2
0

c2

)[
γ

3+ γ
2 sin(ωt)

]}
(2186)

and

PGR = −
(

Gm2ω

r0

)
cos(ωt)

[1+ γ sin(ωt)]2

{
γ−
(

4ω2r 2
0

c2

)[
γ

3+ γ
2 sin(ωt)

]}
(2187)

where γ =
2qE0

mω2r0

. If we use the criticality condition,

∣∣∣ q

m

∣∣∣=√4πε0G, then we have

γ =
2E0

√
4πε0G

ω2r0

≈
2
(
1.94×10−2

)(
8.61×10−11

)
(1.88×1011rad/s)2 (10−2)

≈ 9.45×10−33 (2188)

Since γ << 1, then γ2 and γ3 are negligible and we only need the first term in the braces of (2186) or

(2187). In other words, the total power will become approximately just the semi-static power. It was

also shown that for the criticality condition, the semi-static EM and GR power are equal so we can just

calculate one of them. Using the expression for PGR, we then have

PGR = −
(

Gm2ω

r0

)
γ cos(ωt)

[1+ γ sin(ωt)]2
(2189)

For γ << 1, the denominator of this expression becomes [1+ γ sin(ωt)]2 ≈ 1. Also, to find the maxi-

mum power, we can take cos(ωt) = 1. This gives

PGR, max ≈ Gm2ωγ

r0

(2190)

If the spheres are chosen to be a Planck mass, then we can use (2068) to substitute m =

√
}c

G
. This
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gives

PGR, max ≈ }cωγ

r0

≈
(
1.05×10−34

)(
3.00×108

)(
1.88×1011rad/s

)(
9.45×10−33

)
10−2

W

PGR, max ≈ 5.60×10−45W (2191)

This is obviously a negligible result. It represents the total power fluctuations (either EM or GR) that

would occur between the two spheres.
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22.1 Configuring “transmitter” and “receiver” ellipsoid cavities

We now consider the case of two ellipsoid configurations that can communicate with each other – one

acting as a “transmitter” and the other as a “receiver.” We will not assume a charge-to-mass ratio satisfying

the “criticality” condition. We also do not need to assume that the ellipsoids are necessarily identical. In

fact, it will be shown that the specifications for the transmitter must be different from the specifications for

the receiver.For the case of the transmitter cavity, by exciting a TM standing wave, the charged spheres are

Figure 25: A transmitter-receiver gravitational wave communication system. The dark green pattern in the

transmitter cavity depicts the standing TM wave that is excited in the cavity. The charged masses at the foci

are driven into oscillation as shown by the arrows representing their motion. (Note the solid arrows and dotted

arrows represent the fact that the motion is anti-symmetric. This quadrupole motion of the masses generates

GR waves. The wave fronts are shown in red as they propagate toward the receiver cavity. The energy falls

off as 1/r2 but remains sufficient to drive the charged masses at the foci of the receiver cavity into oscillation.

As these charged masses oscillate, they will produce small but detectable EM radiation which can be detected

in the receiver cavity. This EM radiation is depicted as a lighter-colored green pattern in the receiver cavity.

driven into quadrupolar motion which allows them to radiate gravitationally. In that sense, the spheres could

be considered as a transducer that is powered by an EM wave and produces GR waves of the same frequency.

The GR waves will propagate out of the transmitter cavity and travel toward the receiver cavity. In this

process, the energy of a GR wave would diffuse over a spherical shell which would cause the energy to scale

by the inverse square law as it propagates away from the transmitter cavity.

When the GR wave enters the receiver cavity, the acceleration field of the GR wave will oscillate the

two spherical masses at the foci of the ellipsoid with the same frequency as the wave. The spheres will

then generate EM and GR waves inside the receiver cavity. In other words, the spheres will be acting as a

transducer which is powered by an incident GR wave and produces EM waves as a result. We could then

measure the resulting EM radiation that is produced in the receiver cavity.

Power Delivered by Transmitter Cavity

Inside the “transmitter” cavity, a standing TM wave is used to oscillate the charged spheres. The spheres

would then produce GR waves given again by Einstein’s gravitational quadrupolar formula.[91]

P
(quad)
GR =

G

45c5

〈...
D

2
i j

〉
(2192)
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where
〈...

D
2
i j

〉
is the square of the third time-derivative of the mass quadrupole-moment tensor time-averaged

over a period. In (3025) from Appendix T, the third time-derivative of the mass quadrupole moment for the

system of two point masses oscillating in anti-symmetric directions along the line between them was found

to be

...
D = 2m

(
3
·
~r
··
·~r+~r ·

···
~r
)

(2193)

where~r is the displacement between the spheres. Using (2071) for the displacement between the spheres, we

have

r = r0+2Asin(ωt) , ṙ = 2Aω cos(ωt) , r̈ =−2Aω
2 sin(ωt) ,

...
r =−2Aω

3 cos(ωt)(2194)

Substituting these into (2193) gives

...
D = 2m

{
3 [2Aω cos(ωt)]

[
−2Aω

2 sin(ωt)
]
+[r0+2Asin(ωt)]

[
−2Aω

3 cos(ωt)
]}

(2195)

= −2m
[
12A2

ω
3 cos(ωt)sin(ωt)+2r0Aω

3 cos(ωt)+4A2
ω

3 sin(ωt)cos(ωt)
]

(2196)

= −4mAω
3 [8Acos(ωt)sin(ωt)+r0 cos(ωt)] (2197)

Squaring this gives

...
D

2 = 16m2A2
ω

6
[
64A2 cos2 (ωt)sin2 (ωt)+r 2

0 cos2 (ωt)+8Ar0 cos2 (ωt)sin(ωt)
]

(2198)

Next we take the time average over a period. Since
〈
sin2 (ωt)

〉
=
〈
cos2 (ωt)

〉
= 1/2 and also 〈sin(ωt)〉= 0,

then we have

〈...
D

2
〉

= 16m2A2
ω

6
[
16A2+r 2

0 /2
]

(2199)

If the amplitude of the oscillation is small relative to the distance between the spheres in the cavity, then

r0 >> A which gives250 〈...
D

2
〉

= 8m2A2r 2
0 ω

6 (2200)

We can substitute this result back into (2192) to obtain the GR wave power from the transmitter cavity.

PGR
(Transmitter ouput)

=
2G

45c5
m 2

T A2
T r 2

0 ω
6 (2201)

250Notice that this approximation removes the term with A4 and leaves only the term with A2. This is

equivalent to requiring a linear response between fields and sources. In other words, since the power is

proportional to the square of the field
(
PGR ∼~h2 and PEM ∼ ~E2

)
and the fields are proportional to the

amplitude of motion (AGR ∼ g and AEM ∼ E by Newton’s Second Law as seen in (2202) and (2216) for GR

and EM waves, respectively) then we should also have the power proportional to the square of the amplitude

of motion
(
PGR ∼ A2

EM and PEM ∼ A2
GR

)
, not the fourth power of the amplitude of motion.
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where mT is the mass of either sphere in the transmitter cavity. According to (2077), the amplitude of the

standing TM wave, E0, determines the amplitude of oscillation for the spheres. So we obtain

AT =
qT E0

mT ω2
(2202)

where qT is the charge on a sphere in the transmitter cavity. Substituting (2202) into (2201) gives

PGR
(Transmitter ouput)

=
2G

45c5
q 2

T E 2
0 r 2

0 ω
2 (2203)

If the power injected in the cavity is PT M , then the power delivered to the charged spheres at the foci

will be QPT M where Q is the quality factor of the resonator. This power is related to the electric field by

QPT M = ε0cE 2
0 A⊥, where A⊥ = 2

(
πa2

T

)
is the total cross-sectional area receiving the power, with the factor

of 2 taking into account both transmitter spheres. Then we have

E 2
0 =

QPT M

2πε0ca2
T

(2204)

Then we can write (2203) as

PGR
(Transmitter ouput)

=
G

45πε0c6

(
r0ωqT

aT

)2

QPT M (2205)

Power Loss Between the Cavities

Between the cavities, the GR wave would be traveling the distance that the cavities are separated by. If we

call this distance, d, then the GR power could be considered as spread over a spherical shell with area 4πd2.

The power incident on the receiver spheres (each of radius aR) would be incident on one side of both spherical

surfaces, which means over a total area of 2
(
πa 2

R

)
. Therefore, the power incident on the two spheres due to

the wave propagating from the transmitter spheres to the receiver spheres can be found by proportionately.

PGR
(Receiver input)

= PGR
(Transmitter ouput)

2πa2
R

4πd2
(2206)

= PGR
(Transmitter ouput)

(
a2

R

2d2

)
(2207)

Substituting in (2205) gives

PGR
(Receiver input)

=
G

90πε0c6

(
r0ωaRqT

aT d

)2

QPT M (2208)

Power Detected by Receiver Cavity

The gravitational wave incident on the receiver cavity will oscillate the charged spheres and cause them

to produce quadrupolar EM radiation. The formula for the power of quadrupolar EM radiation is[91]

P
(quad)
EM =

K

45c5

〈...
Q

2
i j

〉
(2209)
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where K = 1
4πε0

and
〈...

Q
2
i j

〉
is the square of the third time-derivative of the charge quadrupole-moment tensor

time-averaged over a period. In (3027) from Appendix T, the third time-derivative of the charge quadrupole-

moment for this system was found to be

...
Qm = 2q

(
3
·
~r
··
~r+~r ·

···
~r
)

(2210)

Using the same process that led to (2200), we would similarly have〈...
Q

2
〉

= 8q2A2r 2
0 ω

6 (2211)

We can substitute this result back into (2209) to obtain the EM wave power from the receiver cavity.

PEM
(Receiver out put)

=
8K

45c5
q 2

R A 2
R r 2

0 ω
6 (2212)

where qR is the charge on either sphere in the receiver cavity.251 To find the amplitude of motion, AR, we can

ignore the small interaction between the charges and consider the spheres as being oscillated only by the GR

wave. Therefore, the acceleration of each charge due to this wave can be found from Newton’s Second law.

~Fz (t) = mRg(t) = mR~aR (t) (2213)

where g(t) is the acceleration field252 of the GR wave at the receiver cavity. The acceleration of one sphere

is

~aR (t) = ARω
2 sin(ωt) ẑ (2214)

Since g(t) and~aR (t) must be in phase, then we must have

g(t) = gsin(ωt) ẑ (2215)

where g is the amplitude of the GR wave at the receiver cavity. Matching g(t) and ~aR (t) requires that we

have ARω2 = g. Then the amplitude of oscillation of the receiver spheres is

AR =
g

ω2
(2216)

Substituting (2216) into (2212) gives

PEM
(Receiver out put)

=
8K

45c5
q 2

R g2r 2
0 ω

2 (2217)

251This is consistent with [11], p. 978 where it is stated that the gravitational wave "luminosity" is roughly

the square of the reduce quadrupole moment multiplied by G/c5.

252This is identical to the gravito-electric field, Eg, from the gravito-electromagnetic framework described

in Part I of this memo.
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We can relate the wave amplitude g to the power of the GR wave using PGR = εGcg2A where A is the

cross-sectional area receiving the power analogous to PEM = ε0cE2
0 A for electromagnetism.253 Here we are

using εG =
1

4πG
as the gravitational analog to the permittivity of free space. Since the power is delivered

to one side of each of the receiver spheres (each of radius aR), then there is a total area of approximately

A= 2
(
2πa 2

R

)
. So the wave amplitude is

g2 =
G

ca 2
R

PGR
(Receiver input)

(2218)

and (2217) becomes

PEM
(Receiver out put)

=
2KG

45c6

(
r0ωqR

aR

)2

PGR
(Receiver input)

(2219)

To relate this back to the initial EM wave power provided to the transmitter cavity we can substitute for

PGR (Transmitter ouput) using (2208). Also, using K =
1

4πε0

gives

PEM
(Receiver out put)

=
G

90πε0c6

(
r0ωqR

aR

)2
[

G

90πε0c6

(
r0ωaRqT

aT d

)2

QPT M

]
(2220)

PEM
(Receiver out put)

=
G2

8100ε2
0c12

r 4
0 ω4

(
qR qT

aT d

)2

QPT M (2221)

This result now describes the power of the EM wave detected in the receiver cavity in terms of the power of

the standing TM wave in the transmitter cavity. Note that this equation is only valid for r0 >> A which means

sufficiently small g and/or large ω since A= g/ω2.Observations concerning receiver power expression

We can make the following observations concerning the output power detected in the receiver cavity as

shown in (2241) to be

PEM
(Receiver out put)

=
G2

8100ε2
0c12

r 4
0 ω

4

(
qR qT

aT d

)2

QPT M (2222)

• Power scales linearly with QPT M .

This is expected for a linearly driven system. A linear response of the oscillation to the field amplitude

was assumed when applying Newton’s Second Law in (2074) and (2213).

253In describing the power of the gravitational wave, we are choosing the lab frame where the receiver

masses are accelerating. In principle, it is always possible to transform to the local inertial frame of these

masses where an observer is co-accelerating with the masses in "freefall." In that frame there is no grav-

itational field and hence no gravitational wave power. (This is emphasized in MTW [11], pp. 466-468.)

However, in that frame, we would also find that the amplitude of the electromagnetic wave vanishes as well

as since (2077) relates the amplitude of the wave to the accleration of the sphere which would be measured

to be zero in its local inertial frame.
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• Power scales quadratically with the charge of the transmitter/receiver spheres, qT and qR.

This is due to the fact that more charge on the transmitter spheres will cause the spheres to be coupled

more strongly to the standing EM wave in the transmitter cavity and hence they will oscillate with

a greater amplitude. This will in turn generate stronger gravitational waves which will oscillate the

receiver spheres with a greater amplitude as well and hence produce more EM power in the receiver

cavity. Also, the more charge on the receiver spheres, the more EM wave power they will produce for

a given oscillation amplitude. Therefore, this will also produce more EM power in the receiver cavity.

• Power scales as the inverse square of the radius of the transmitter spheres, aT .

This is a result of (2204) which shows that a 2
T E0 ∼PT M . Therefore, with a given input power PT M ,

a smaller radius aT will require a larger wave amplitude E0 to keep the same input power PT M . Since

there will be a larger wave amplitude E0, then the amplitude of motion of the transmitter spheres will

be larger and hence will produce GR waves with greater power.

• Power does not depend on the radius of the receiver spheres, aR.

This is a result of (2204) which shows that a 2
R g ∼PGR. Therefore, with a given input power PGR,

a smaller radius aR will require a larger wave amplitude g to keep the same input power PGR. Since

there will be a larger wave amplitude g, then the amplitude of motion of the transmitter spheres will

be larger and hence will produce GR waves with greater power. This would lead to a inverse square

dependence
(
1/a 2

R

)
like we have for aT . However, from (2207) we see that the power of the input GR

wave that is incident on the receiver spheres depends on a 2
R therefore the net result is that the receiver

output power does not depend on aR at all.

• Power depends on the radius of the transmitter spheres.

This is due to the fact that the larger the radius of the spheres, the more surface there is to be driven by

a wave, whether an EM or a GR wave. Therefore, having large transmitter or receiver spheres results

in more EM power in the receiver cavity.

• Power does not depend on the mass of the transmitter spheres.

This is due to the fact that the mass was eliminated from the expression in (2201) for the gravitational

wave power emitted by the transmitter spheres. The GR wave power scales as PGR ∼ m 2
T A2

T and the

amplitude of motion in (2202) due to the spheres being driven by the TM wave scales as A ∼ 1/mT .

The net result is that the GR wave power is not dependent on the mass of the transmitter spheres.

• The power does not depend on the mass of the transmitter spheres.

This is due to the fact that the mass was eliminated from the expression in (2201) for the gravitational

wave power emitted by the transmitter spheres. The GR wave power scales as PGR ∼ m 2
T A2

T and the

amplitude of motion in (2202) due to the spheres being driven by the TM wave scales as A ∼ 1/mT .

The net result is that the GR wave power is not dependent on the mass of the transmitter spheres.

• The power does not depend on the mass of the receiver spheres.

This is due to the fact that the expression in (2212) for the EM power emitted by the receiver spheres

does not contain the mass. Also the amplitude of motion in (2216) due to the spheres being driven by

the GR wave also does not depend on mass. This is a result of the Equivalence Principle which was

implicitly used when the gravitational mass of the spheres was canceled with the inertial mass of the

spheres in going from (2213) to (2216). In other words, when the receiver spheres experience “free

fall” motion in the presence of the gravitational field of the GR wave, the mass of the spheres becomes

irrelevant to the motion. The net result is that the GR wave power is not dependent on the mass of the

transmitter spheres. Therefore, the final EM power in the receiver cavity does not depend on the mass

of either the transmitter spheres or the receiver spheres.
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• The receiver power does not scale with the charge-to-mass ratio of either set of spheres.

This is obviously because the receiver power does not depend on the mass of any of the spheres at all.

This indicates that the “criticality” charge-to-mass ratio given by (2067) is not necessarily the ideal

choice for maximizing the receiver power. Rather, the greater the charge that is used (regardless of the

mass of the spheres), the more the final power produced in the receiver cavity will be.

• The power scales with the squared inverse of the distance between the cavities,
(
1/d2

)
.

This is simply a result of (2207)where we use the fact that the inverse-square law for energy propagates

away from the source and diffuses over the surface of a sphere which has a surface area 4πr2.

• The power scales with the fourth power of the angular frequency, ω4.

This is intuitive since it is expected that the more rapidly the standing TM wave oscillates the transmitter

spheres, the greater the final signal will be in the receiver cavity. Mathematically, this result arises in

going from (2201) to (2203) where it can be seen that the amplitude scales as A ∼ ω−2 and the GR

wave power scales as PGR ∼ A2ω6 so that the net result is that PGR ∼ ω2. Once again it is due to the

Equivalence Principle which relates the amplitude of oscillation to the amplitude of the GR wave by

A=
h0

ω2
.
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22.2 The receiver power in terms of experimental parameters

We can reformulate the receiver power expression from (2221) in terms of experimental parameters that

would be relevant to an actual laboratory arrangement. First, we can write the receiver power expression in

terms of ρ , the mass density of the spheres, where mT = ρVT = ρ
(

4
3
πa 3

T

)
. Then (2221) becomes

PEM
(Receiver out put)

=
QPT M

90πε2
0c6

(qRr0ω)2
(

3qT

4πρa3
T

)2(
aR

d

)2

(2223)

=
QPT M

160π3ε2
0c6

(
r0ωaRqRqR

ρda3
T

)2

(2224)

We can also convert the charges into voltages by considering the energy of a uniformly charged spherical

shell of radius a and charge q. Using equation (2.45) from [29] we have the electrostatic work associated

with assembling a total charge q is

W =
ε0

2

∫
all space

E2dV (2225)

where E is the electric field associated with the charge distribution. Since the field inside a conductor is zero

and the field outside a spherical charged conductor is E =
q

4πε0r2
, then the work required to assemble the

charge q is

W =
ε0

2

∫
∞

a

(
q

4πε0r2

)2

4πr2dr =
ε0

2

4πq2

(4πε0)
2

∫
∞

a

1

r2
dr =

ε0

2

4πq2

(4πε0)
2

[
−1

r

]∞

a

=
q2

8πε0a
(2226)

Since the energy of this configuration can also be written as W = qV , then we have

qV =
q2

8πε0a
=⇒ q= 8πε0aV (2227)

Now we can write the charge in terms of the voltage for the transmitter spheres and receiver spheres, respec-

tively, as

qT = 8πε0aTVT and qR = 8πε0aRVR (2228)

Substituting these into (2224) gives

PEM
(Receiver out put)

=
QPT M

160π3ε2
0c6

[
r0ωaR (8πε0aRVR)(8πε0aTVT )

ρda3
T

]2

(2229)

Simplifying gives

PEM
(Receiver out put)

= κ

(
r0ω

ρd

a2
R

a2
T

VrVt

)2

QPT M (2230)

where κ =
8πε2

0

5c6
≈

8π
(
8.85×10−12

)2

5(3.00×108)6
≈ 5.40×10−73 in SI units.

It is a challenge to find numerical values for the parameters of this system that are experimentally tenable

and yet satisfy the expression in (2230). The parameters can be classified in terms of “hard” parameters which



432

are necessary constraints defined by limits which cannot be exceeded, and “soft” parameters which can be

adjusted to allow the system to operate the most effectively. (This is classification is somewhat artificial but is

helpful in determining what combination of numeric values can lead to a realizable experiment.) The “hard”

parameters are dictated by the following requirements:

Condition 1. The oscillation amplitude and separation distance must satisfy A<< r0.

For the linear driving response approximation that was used, the amplitude of oscillation must be significantly

smaller than the separation distance of the spheres. The amplitude is given in (2202) as A=
qT E0

mT ω2
. We can

write this in terms of experimental parameters using mT = ρVT = ρ
(

4
3
πa 3

T

)
as well as E 2

0 =
QPT M

ε0c
from

(2204) and qT = 4πε0aTVT from (2228). This gives

A =
qT E0

mT ω2
=
(4πε0aTVT )

ρ
(

4
3
πa 3

T

)
ω2

√
QPT M

ε0c
(2231)

A =
3Vt

ρa2
T ω2

(
ε0

c
QPT M

)1/2
(2232)

Condition 2. The sphere size and separation distance must satisfy a<< r0.

The size of the spheres must be significantly smaller than the separation distance of the spheres. This is

required for the point-mass and point-charge approximations that were used.

Condition 3. Parameters must be physically realistic.

All the values of the parameters must be technologically possible and, more strictly, within the engineering

that is available to our laboratory.

Numerical results for a transmitter-receiver communication system

The following are the “hard” parameters dictated by the requirements described in the previous section.

• The density of the spheres: ρ ≈ 8.57 kg/m3.

This assumes that we must use niobium as the superconducting material for the spheres.

• The highest standing TM wave must be in the microwave range: ω ≈ 2π×1010Hz.

The receiver power in (2230) scales with ω2 so the higher the frequency, the greater the receiver power

will be. However, the maximum frequency of the standing TM wave must be in the microwave range

for a superconducting cavity to remain below the BCS energy gap.

• The smallest receiver power: PEM
(Receiver out put)

≈ 10−20W .
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The minimum EM power that can be detected254 is on the order of 10 zeptowatts (where 1zW =
10−21W ) assuming a bandwidth limited to only 1Hz at room temperature (∼ 300 K).

Using the values stated above in (2230) gives

PEM
(Receiver out put)

= κ

(
r0ω

ρd

a2
R

a2
T

VRVT

)2

QPT M (2233)

10−20 ≈
(
5.40×10−73

)[2π×1010

8.57

(
r0a2

RVRVT

da2
T

)]2

QPT M (2234)

r0a2
RVRVT

a2
T d

√
QPT M ≈ 1.86×1016 in SI units (2235)

We must now satisfy this relationship with the reaming “soft” parameters. It is evident that we need the

largest possible values in the numerator of (2235) and the smallest possible values in the denominator. The

following are values that can be considered.

• For long-range communication we need at least d ≈ 1m.

To test a long-range communication system, the receiver and transmitter should be at least one meter

apart.

• The cavity could have a size on the order of decimeters: r0 ≈ 10−1m.

The receiver power in (2230) scales with r2
0 where r0 is the separation distance of the spheres. There-

fore, the larger the separation distance, the greater the receiver power will be. However, the separation

distance dictates the cavity size and it is not within our engineering options to construct a cavity larger

than ∼ 10cm.

• The radius of the transmission spheres can be aT ≈ 10−8m.

The size of the transmission spheres should not be smaller than this since it is approaching the size of

a single atom which is ∼ 10−10m. A radius of 10−8m means that we are still working with spheres that

are at least hundreds of atoms and can be modeled classically.

• The radius of the receiver spheres can be aR ≈ 10−3m.

Since r0 is on the order of centimeters and we must have a<< r0, then the radius of the spheres must

be on the order of millimeters at most. Otherwise we will violate this condition.

• The voltage used to charge the spheres can be V ≈ 102V .

The highest voltage that can be realistically applied in a standard laboratory setting is in the hundred-

volt range.

254This limit is due to the Johnson-Nyquist thermal noise power, P = kBT ∆ f , where kB is Boltzmann’s

constant, T is the ambient temperature, and ∆ f is the bandwidth of sensitivity.
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• The effective TM wave power (due to resonance with high Q): QPT M ≈ 106W .

The receiver power in (2230) scales linearly with PT M so the higher the TM wave power, the higher

the receiver power will be. The TM wave power supplied to the transmitter cavity could be on the

order of hundreds of milliwatts (10−4W ) and the superconducting cavity could have a quality factor of

Q≈ 1010. Then the effective power driving the spheres would be QPT M ≈
(
1010

)(
10−4W

)
= 106W .

Substituting the values stated above into (2235) gives

r0a2
RVRVT

da2
T

√
QPT M ≈ 1016 (2236)

This matches the order of magnitude required in (2235). This means that we have successfully satisfied the

expression for the receiver power given in (2230). We must also check that the values chosen above will

satisfy conditions 1 through 3 stated earlier which gave the “hard” parameters. Condition 1 requires that

A << r0 where the amplitude was given in (2232) as A =
3VT

ρa2
T ω2

(
ε0

c
QPT M

)1/2
. Using the values given

above, we have A≈ 1.52×10−11m. Since r0 is on the order of 10−1m, then we see that A<< r0 so Condition

1 is clearly satisfied.

To satisfy Condition 2, we must have a << r0. Since the radii of the spheres are aT ≈ 10−8m and

aR = 10−3 while the separation distance is r0 ≈ 10−1m, then we clearly have a<< r0 for both sets of spheres.

Condition 2 is therefore satisfied.

Lastly, we have satisfied Condition 3 by carefully choosing all values with consideration of actual engi-

neering and laboratory limitations. Hence we see that even with a system of classical masses and charges,

there is a realistic possibility of producing an EM to GR wave transducer (and vice-versa). The only factors

in this system that are related to quantum mechanics are the superconductivity of the cavity (required for

high Q) and the possible superconductivity of the charged spheres (which may be necessary to “freeze out”

all internal degrees of freedom so that only the center of mass and center of charge would co-move together

rigidly as assumed in this model).

Note that Misner, Thorne, and Wheeler [11] give an example in their text of a massive rotating steel beam

as a generator of GR waves. They conclude that the power produced by such an object would only be on

the order of 10−29W . To compare, we can also calculate the GR wave power that would be generated by

the system of superconducting ellipsoids with oscillating charged masses at the foci. The GR wave power is

given in (2201) as

PGR
(Transmitter out put)

=
2G

45c5

(
mT Aω

3r0

)2
(2237)

The mass of each transmitter sphere is

mT = ρVT = ρ

(
4

3
πa 3

T

)
≈ 3.59×10−23kg (2238)

So the GR wave power is

PGR
(Transmitter out put)

≈ 2.23×10−58W (2239)

Although this power is many orders of magnitude weaker than the experiment described by MTW, it has been

shown here that it is still possible to detect this signal indirectly by using the strong coupling of charge to EM

waves. This concept of a GR-to-EM wave transducer for detecting GR waves is completely absent from the

argument by MTW.
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22.3 The receiver power in terms of Planck masses

An alternative way of expressing the receiver power expression is to consider the case when the spheres

in the transmitter cavity are each a Planck mass. From (2068), the Planck mass is

mp =

√
}c

G
(2240)

From (2221), the receiver power expression is

PEM
(Receiver out put)

=
QPT M

90πε2
0c6

(qRr0ω)2
(

qT

mT

)2(
aR

d

)2

(2241)

Substituting the Planck mass (2240) into the receiver power (2241) gives

PEM
(Receiver out put)

=
QPT M

90πε2
0c6

(qRr0ω)2
(

qT

√
G

}c

)2(
aR

d

)2

(2242)

=
GQPT M

90πε2
0}c7

(
qRqT r0ωaR

d

)2

(2243)

Substituting in qT = 4πε0aTVT and qR = 4πε0aRVR from (2228) gives

PEM
(Receiver out put)

=
GQPT M

90πε2
0}c7

(
(4πε0aRVR)(4πε0aTVT )r0ωaR

d

)2

(2244)

=
128π3ε2

0G

45}c7

(
VRVT aT a2

R

d
r0ω

)2

QPT M (2245)

We can define the prefactor as Λ=
128π3ε2

0G

45}c7
so

PEM
(Receiver out put)

= Λ

(
VRVT aT a2

R

d
r0ω

)2

QPT M (2246)

where

Λ ≈
128π3

(
8.85×10−12

)2 (
6.74×10−11

)
45(1.05×10−34)(3.00×108)7

≈ 2.03×10−56 in SI units (2247)
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First we can consider the result of using the same parameters used before.

• Distance between cavities: d ≈ 10m

• Distance between spheres inside cavity: r0 ≈ 10−1m

• Radius of transmission spheres: aT ≈ 10−8m

• Radius of receiver spheres: aR ≈ 10−3m

• Voltage to charge spheres: V ≈ 102V

• Standing TM wave angular frequency: ω ≈ 2π×1010Hz

• Effective TM wave power (due to resonance with high Q): QPT M = 106W

Using these values in (2246), we obtain

PEM
(Receiver out put)

= Λ

(
VRVT aT a2

R

d
r0ω

)2

QPT M ≈ 8.01×10−53W (2248)

This is many orders of magnitude below the minimum value of detectable EM power which is ∼ 10−20W .

This is not surprising if we consider how the mass density of the transmitter spheres has been changed by

using a Planck mass. The new mass density would be

ρ =
mp

V
=

√
}c/G

4
3
πa3

T

=
3
√
}c

4π
√

Ga3
T

(2249)

Substituting in values with aT ≈ 10−8m gives

ρ ≈ 5.16×1015kg/m3 (2250)

This is an enormous mass density. The elements with the greatest density are only on the order of 104kg/m3

(such as for osmium or iridium). If we insist on using a Planck mass and we use the densest element possible

for the sphere, then the minimum radius of the sphere can be found by solving for aT in (2249).

at =

(
3
√
}c

4π
√

Gρ

)1/3

≈ 8.02×10−5m (2251)

This shows that we cannot use the radius of aT ≈ 10−8m that we used before. We must use aT ≈ 8.02×10−5m

instead. Now that we have a value for the mass density and the radius of the transmitter sphere, we can return

to the original receiver power expression that we had in (2230).

PEM
(Receiver out put)

= κ

(
r0ω

ρa2
T

a2
R

d
VRVT

)2

QPT M where κ ≈ 5.40×10−73 in SI units (2252)

We can again attempt to choose values for the parameters that will satisfy this equation. Notice that because

the mass density is much greater than before (104kg/m3 versus 8.57 kg/m3), then we must attempt to com-

pensate for this. The values in the numerator of (2252) must be made as large as reasonably possible while

the values in the denominator must be made as small as reasonably possible. First we will begin with using

some of the “hard” parameters that are required in the system. We can use the following values.

• Density of transmission spheres: ρ ≈ 104kg/m3
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• Radius of transmission spheres: aT = 8.02×10−5m

• Standing TM wave angular frequency: ω ≈ 2π×1010Hz

• Minimum detectable EM power in receiver cavity: PEM
(Receiver out put)

≈ 10−20W

Using these values in (2252), we obtain

10−20W ≈
(
5.40×10−73

)[ 2π×1010

(104)(8.02×10−5)
2

(
r0a2

RVRVT

d

)]2

QPT M (2253)

r0a2
RVRVT

d

√
QPT M ≈ 1.44×1011 in SI units (2254)

We must choose values that satisfy (2254) and also satisfy Conditions 1 and 2 from Section 89. These

conditions require a<< r0 and A<< r0. We can try the following values

• Distance between cavities: d ≈ 10m

• Distance between spheres inside cavity: r0 ≈ 10−1m

• Radius of receiver spheres: aR ≈ 10−2m

• Voltage to charge spheres: V ≈ 106V

• Effective TM wave power with Q= 1010 and 1W injected: QPT M ≈ 1010W

Using these values in (2254) gives

r0a2
RVRVT

d

√
QPT M ≈ 1011 (2255)

This matches the order of magnitude required in (2254). This means that we have successfully satisfied

the expression for the receiver power given in (2252). However, notice that these parameters are even more

extreme than we had earlier in Section 90. Specifically, the spheres must now be charged to thousands of

kilovolts, and the power injected into the transmitter cavity must be on the order of watts rather than hundreds

of milliwatts.

We must also check that Conditions 1 and 2 are still satisfied. Condition 1 requires that A << r0 where

A =
3Vt

ρa2
t ω2

(
ε0

c
PT M

)1/2
. Using the values given above, we have A ≈ 1.52× 10−14m. Since r0 is on the

order of 1m, then we see that A<< r0 so Condition 1 is clearly satisfied.

To satisfy Condition 2, we must have a << r0. Since the radii of the spheres are aT ≈ 10−5m and

aR = 10−2 while the separation distance is r0 ≈ 1m, then we clearly have a<< r0 for both spheres. Condition

2 is therefore satisfied. Condition 3 is clearly not satisfied since many of the values are not within the range of

actual engineering and laboratory limitations. Therefore, we see that using Planck masses for the transmitter

spheres will greatly reduce the likelihood that this GR wave communication system could be realistically

operational.
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22.4 Efficiency factors

There are three efficiency factors that can be considered for this GR wave transmitter-receiver system.

1. “Transmitter-Receiver Efficiency”

The most important efficiency factor of this system can be referred to as the “Transmitter-Receiver

Efficiency” which relates the final output power from the receiver to the initial input power of the

transmitter. It is given by

ηTransmitter
− Receiver

=
PEM (Receiver out put)

PT M (Transmiter input)
(2256)

Here we have PEM (Receiver out put) is the final electromagnetic output power that would be detected in

the receiver. It is given in (2221) as

PEM
(Receiver out put)

=
4G2

2050ε2
0c12

ω
4r 4

0

(
aT aR qR qT

d

)2

QPT M (2257)

Also, we define PT M (Transmiter input) =QPT M where PT M is the electromagnetic power injected in the

transmitter cavity and Q is the quality factor of the transmitter cavity. So we can write the “Transmitter-

Receiver Efficiency” as

ηTransmitter
− Receiver

=
4G2

2050ε2
0c12

ω4r 4
0

(
aT aR qR qT

d

)2

(2258)

Notice that this efficiency factor takes into account all the relevant parameters that exist in both the

transmitter and receiver cavities. Therefore, this efficiency factor alone provides all the information

necessary to work on improving the efficiency of the entire communication system. Also, this effi-

ciency factor is dependent on the distance between the cavities as well. Therefore, it is always possible

to increase this efficiency by bringing the cavities closer to each other if needed. Lastly, note that

we could use PEM (Receiver out put) in terms of experimental parameters as found in (2230). Then the

“Transmitter-Receiver Efficiency” would be

ηTransmitter
− Receiver

=

(
8πε2

0

5c6

)(
r0ω

ρ

a2
R

a2
T

VRVT

)2

(2259)

In a previous section, we found that for the receiver cavity to give an output power of 10−20W ,

then we needed to inject 10−4W into the transmitter cavity with a quality factor of 1010 so that

PT M (Transmiter input) =QPT M =
(
1010

)(
10−4

)
= 106W . This gives a “Transmitter-Receiver Efficiency”

of

ηTransmitter
− Receiver

=
PEM (Receiver out put)

QPT M

≈ 10−20W

101010−4W
≈ 10−26 (2260)

It is important to note that in Section 90 we used the most extreme parameters possible to maximize this

efficiency while still insuring that the system is still experimentally tenable. The two other efficiency

factors below will help to explain the reason that this “Transmitter-Receiver Efficiency” is so small.
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2. “EM-to-GR Transducer Efficiency”

If we isolate our attention to just the transmitter cavity, we can determine an “EM-to-GR Transducer

Efficiency.” This is the efficiency by which the transmitter cavity can convert EM wave power to GR

wave power.

ηEM−to−GR
Transducer

=
PGR (Transmitter ouput)

PT M (Transmiter input)
(2261)

Here we have PGR (Transmitter ouput) is the GR wave power that is emitted from the transmitter cavity

when the cavity is filled with an EM wave power given by PT M (Transmiter input). The GR wave power is

given in (2205) as

PGR
(Transmitter ouput)

=
2G

45c6ε0

q 2
T ω

2r 2
0 PT M
(Transmiter input)

(2262)

Again, we define PT M
(Transmiter input)

= QPT M where PT M is the electromagnetic power injected in the

transmitter cavity and Q is the quality factor of the transmitter cavity. So the “EM-to-GR Transducer

Efficiency” is

ηEM−to−GR
Transducer

=
2G

45c6ε0

q 2
T ω2r 2

0 (2263)

Notice that this efficiency only depends on the charge of the transmitter spheres and not the mass. This

is a surprising result since this efficiency is describing the amount of GR wave power produced and

therefore it would be assumed that more mass would produce more GR radiation. However, this is not

the case. The reason can be seen by looking at the way (2205) was derived. Since the gravitational

quadrupole wave power goes as P
(quad)
GR ∼ A2m2 and the amplitude goes as A∼ m−2, then the masses

cancel (according to the Equivalence Principle). Therefore the gravitational power does not depend on

the mass, and likewise neither does the “EM-to-GR Transducer Efficiency.”

Conceptually, this can be understood by recognizing that having more mass will produce more

GR wave power, and yet having less mass will decrease the inertia and allow the spheres to oscillate

faster which produces more GR radiation. The net result is a perfect balance of these two effects so

that the mass does not determine the GR wave power or the “EM-to-GR Transducer Efficiency” at all.

Only the charge plays a role since it determines how strongly the charged spheres will be coupled to

the EM wave driving their motion.

Again we can use the parameters given in Section 90 to find a value for this efficiency. In (2239)
we already found that PGR (Transmitter ouput) ≈ 2.23× 10−58W . For the input power we already used

PT M (Transmiter input) = QPT M =
(
1010

)(
10−4

)
= 106W . This gives an “EM-to-GR Transducer Effi-

ciency” of

ηEM−to−GR
Transducer

=
PGR (Transmitter ouput)

QPT M

≈ 2.23×10−58W

101010−4W
≈ 2.23×10−64 (2264)

Obviously this is an extremely small efficiency factor. Therefore, when driving the charged, massive

spheres into oscillation by an EM wave, the resulting GR wave power is extremely small. It is only

because the opposite procedure will take place in the receiver cavity that it is still possible to indirectly

detect these GR waves.
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3. “GR-to-EM Transducer Efficiency”

Lastly, we can isolate our attention to just the receiver cavity to determine a “GR-to-EM Transducer

Efficiency.” This is the efficiency by which the receiver cavity can convert EM wave power to GR wave

power.

ηGR−to−EM
Transducer

=
PEM (Receiver out put)

PGR (Receiver input)
(2265)

Here we have PEM (Receiver out put) is the EM wave power that is emitted from the receiver cavity when

a GR wave is incident on the receiver cavity. The power of this output EM wave is given in (2217) in

terms of the GR wave amplitude as

PEM
(Receiver out put)

=
4G2

2050ε2
0c12

ω
4r 4

0

(
aT aR qR qT

d

)2

QPT M (2266)

The power of the input GR wave is given in (2208) as

PGR
(Receiver input)

=
8πG

45ε0c6
(ωr0aT qT )

2

(
a2

R

2d2

)
QPT M (2267)

So the “GR-to-EM Transducer Efficiency” is

ηGR−to−EM
Transducer

=
9G

410πε0c6
(ωr0qR)

2
(2268)

Notice that this efficiency is determined only by the charge of the receiver spheres which determines

the amount of EM wave power that is produced by the spheres. So we expect to see it play a role in the

“GR-to-EM Transducer Efficiency.” The mass of either spheres does not play a role once again due to

the Equivalence Principle.

Once more we can use the parameters given in Section 90 to find a value for this efficiency. We al-

ready know from (2239) that the GR wave power produced by the transmitter is PGR (Transmitter ouput)≈
2.23× 10−58W . However, since the wave diffuses in 3-dimensional space as it travels to the receiver

cavity, then we must multiply this by (aR/d)
2

so we have

PGR
(Receiver out put)

= PGR
(Transmitter ouput)

(
aR

d

)2

≈ 2.23×10−58W

(
10−3m

1m

)2

(2269)

PGR
(Receiver input)

≈ 2.23×10−64W (2270)

The out EM power was determined to be PEM
(Receiver out put)

≈ 10−20W so the “GR-to-EM Transducer Effi-

ciency” is

ηGR−to−EM
Transducer

=
PEM (Receiver out put)

PGR (Receiver input)
≈ 10−20W

2.23×10−58W
≈ 4.48×1037 (2271)

Therefore, we find that the “GR-to-EM Transducer Efficiency” can be extremely large. This is the

reason that although there is a tremendous “loss” in the “EM-to-GR Transducer Efficiency”
(
∼ 10−64

)
and there is also a “diffusion factor” of (aR/d)

2 ≈ 10−6, it is still possible to recover a detectable
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amount of EM power in the receiver cavity because of a very large “GR-to-EM Transducer Efficiency”(
∼ 1037

)
. The net result, as shown above, is a “Transmitter-Receiver Efficiency” of ∼ 10−26. Since

EM power on the order of 106W can be produced at the foci of a high-Q superconducting resonator,

and because EM power as low as 10−20W can be detected, then this overall communication system is

physically realizable.

As a final consideration, we can recognize that the “Transmitter-Receiver Efficiency” can be obtained by

multiplying the “GR-to-EM Transducer Efficiency,” the “EM-to-GR Transducer Efficiency,” and the “diffu-

sion factor.”

ηTransmitter
− Receiver

= ηEM−to−GR
Transducer

(
aR

d

)2

ηGR−to−EM
Transducer

(2272)

Substituting the efficiency expressions from (2258), (2263), and (2268) gives

(qRr0ω)2

90πε2
0c6

(
qT

mT

)2(
aR

d

)2

=

(
2Gq 2

T ω2r 2
0

45c6ε0

)(
aR

d

)2
(

Kq 2
R

Gm 2
T

)
(2273)

1

90πε2
0c6

(
r0ωqRqT aR

mT d

)2

=
2

45c6ε0

(
r0ωqRqT aR

mT d

)2(
1

4πε0

)
(2274)

1

90πε2
0c6

(
r0ωqRqT aR

mT d

)2

=
1

90πε2
0c6

(
r0ωqRqT aR

mT d

)2

(2275)

Therefore we see that we have algebraic consistency. We can also substitute into (2272) the values of the

efficiencies from (2260), (2264), and (2271) to confirm there is numeric consistency. We find that both give

a value of 10−26. Alternatively, we can express (2272) in terms of wave power. This gives

PEM (Receiver out put)

PT M (Transmiter input)
=

PGR (Transmitter ouput)

PT M (Transmiter input)

(
aR

d

)2 PEM (Receiver out put)

PGR (Receiver input)
(2276)

Once again, we can confirm numeric consistency by substituting in the value for each power. Once again,

this leads to 10−26 on each side.

Note that in the entire discussion of this section, the use of the term “efficiency” is different from the

standard use of the terms in physics. Typically, the efficiency of a system gives a ratio of the input energy to

the usable output energy of a system which can do work. The difference between the input and output energy

is understood to be irrecoverably lost. It is associated with a non-reversible process which requires that any

type of energy exchange cannot be 100% efficient because some energy must be lost as heat and thereby

contribute to the ever-increasing entropy of the universe. So the efficiency is a thermodynamic property of

the system and can never be greater than unity.

However, the use of “efficiency” here is very different. In fact, it is clearly not limited to a maximum

value of one. This is because the conversion of input to output energy is in fact a reversible process and

therefore the “efficiency” described here is not describing the energy that is lost to entropy. In this model, we

have assumed that all energy is conserved. So we are simply interested in how much of it transitions from

one form to another. We have neglected the issue of thermodynamic efficiency since the charged spheres can

be considered as levitated in vacuum so that there is effectively no loss to any kind of friction. Therefore, any

thermal loss is completely negligible.



442

In this context, the term “efficiency” is understood to mean the effective conversion of one type of energy

to another, namely from EM energy to GR energy or vice-versa. This conversion is determined by the way a

source couples to its corresponding field, that is, the way that charge couples to EM fields and the way mass

couples to GR fields. Since charge couples much more strongly to EM fields than mass does to GR fields,

then we expect that a “GR-to-EM transducer” will be highly “efficient” while an “EM-to-GR transducer” will

be highly “inefficient.” In other words, when a charged, massive system is driven into oscillation, then it will

produce relatively large amounts of EM radiation and relatively small amounts of GR radiation. As a result,

we anticipate that there will be a “loss” at the transmitter cavity (where we use EM waves to generate GR

waves), but there will be a “gain” at the receiver cavity (where we use GR waves to generate EM waves). Since

there is also a diffusion of the energy due to the inverse-square law as the wave propagates in 3-dimensional

space between the cavities, then there is an additional “loss” due to the corresponding dissipation factor. So

the net result is that the “loss” at the transmitter and the “loss” during propagation must be compensated for

by the “gain” at the receiver as much as possible.



23 Electromagnetic and

gravitational Casimir Effects

in a parallel-plate waveguide
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23.1 The TEM mode in a parallel-plate waveguide

The following figure shows a parallel-plate waveguide with two perfectly conducting, infinitesimally thin

plates that extend infinitely in the z-direction. The width of the plates is W and the separation distance is d

with W >> d (so that fringing effects can be neglected). The upper plate is at y= d while the lower plate is

at y= 0 (the x-z plane).The fundamental mode in such a waveguide is the TEM mode. In this mode, both the

Figure 26: A parallel-plate wave guide.

electric and magnetic fields only have components that are transverse to the direction of propagation.[29][40]

For a wave propagating in the positive or negative z-direction, this means Ez = 0 and Bz = 0. Note that for

uncharged conductors, we must also satisfy the boundary conditions at the conductor required by Faraday’s

Law and the Ampere-Maxwell Law.

E‖
∣∣
y=0,d

= 0 and B⊥|y=0,d = 0 (2277)

To satisfy these, we can consider a plane-polarized EM wave with the electric field polarized in the y-

direction, which means the magnetic field is in the x-direction. For a wave propagating in the positive z-

direction, the fields can be described as

~E+ = E0 cos(kz−ωt) ŷ and ~B+ =
E0

c
cos(kz−ωt) x̂ (2278)

For a wave propagating in the negative z-direction (with the same polarization) we have

~E− = E0 cos(kz+ωt) ŷ and ~B− =−
E0

c
cos(kz+ωt) x̂ (2279)

These traveling waves (propagating in opposite directions) can be combined to describe a single standing

wave.

~E = ~E++~E− = E0 [cos(kz−ωt)+ cos(kz+ωt)] ŷ (2280)

~B = ~B++~B− =
E0

c
[cos(kz−ωt)− cos(kz+ωt)] x̂ (2281)

It is shown in Appendix U that applying trigonometric identities can simplify these expressions to

~E = 2E0 cos(kz)cos(ωt) ŷ and ~B=
2E0

c
sin(kz)sin(ωt) x̂ (2282)
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23.2 Currents and magnetic forces on the plates

By Ampere’s law, the magnetic field will have an associated current on each plate. We can use a rec-

tangular Amperian loop of length~l that is straddling the surface of the conductor and therefore “threaded”

by the free surface current density, ~K f , on the conductor.Note that n̂ is a unit vector normal to the conductor

Figure 27: An Amperian loop straddling the surface of a conductor with a surface current density ~K f .

(pointing from 2 to 1 for the lower plate and pointing from 1 to 2 for the upper plate). Then n̂×~l is normal to

the Amperian loop. So the free current on the conductor is given by

I f ree = ~K f ·
(

n̂×~l
)
= K f ẑ · lẑ= K f l (2283)

If we let the Amperian loop have the same width as the conductor, W , then the total current is I f ree = K fW .

Because ~B is uniform in the x-direction, then K f uniform is as well and the current I is a constant within the

Amperian loop. Also, since the magnetic field of the EM wave only exists on one side of the conductor, then∮
~B ·d~l = BW . So Ampere’s law gives

∮
~B ·d~l = µ0Ienclosed (2284)

BW = µ0I (2285)

I =
BW

µ0

(2286)

Substituting for the magnetic field from (2282) gives

I =
2E0W

µ0c
sin(kz)sin(ωt)

{
in the negative z-direction for the lower plate

in the positive z-direction for the upper plate
(2287)
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Equivalently, we could also define the currents on the lower and upper plates in terms of the positive z-

direction as

Ilower = −2E0W

µ0c
sin(kz)sin(ωt) and Iupper =

2E0W

µ0c
sin(kz)sin(ωt) (2288)

which shows explicitly that we always have Ilower = −Iupper at any given time and location along the z-

direction.

The direction of the current was be determined by the right-hand-rule. For the lower plate, when the

magnetic field points in the positive x-direction, the current points in the negative z-direction. For the upper

plate, when the magnetic field points in the positive x-direction, the current points in the positive z-direction.

This means the currents directly across from one another will always be in opposite directions and therefore

will cause a repulsive force between the two plates.

From (2287)we see that the current will alternate between the positive and negative z-direction depending

both on time and location along the z-direction. It is essentially a longitudinal oscillation of charge along the

length of the waveguide. Since the oscillation is effectively a standing wave, then no net charge is transferred.

The force on each plate is actually due to the magnetic field of the EM wave interacting with the currents

on the plates. From (2282) and (2287) it can be seen that the magnetic field and currents are in phase. As

stated earlier, when the magnetic field points in the positive x-direction, the current points in the negative

z-direction for the lower plate. Then the right-hand rule gives a force in the negative y-direction for the lower

plate.

The magnetic force, ~fM , along a one-dimensional infinitesimally thin strip of the lower plate (in the z-

direction) from z= 0 to z= L is

~fM =
∫ L

0
Id~l×~B (2289)

where the direction of d~l is determined by the current in the lower plate. According to(2287) this means

d~l =−d~z for the lower plate so the force on the strip of the lower plate becomes

~fM =
∫ z

0
I
(
−d~z′

)
×Bx̂=−

∫ z

0
IBdz′ŷ (2290)

Substituting into (2290) the expressions for I and B from (2287) and (2282), respectively, gives

~fM = −
∫ z

0

[
2E0W

µ0c
sin
(
kz′
)

sin(ωt)

][
2E0

c
sin
(
kz′
)

sin(ωt)

]
dz′ŷ (2291)

= −4E2
0W

µ0c2
sin2 (ωt)

∫ z

0
sin2

(
kz′
)

dz′ŷ (2292)

= −4E2
0W

µ0c2
sin2 (ωt)

∫ z

0

1

2

[
1− cos

(
2kz′

)]
dz′ŷ (2293)
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Evaluating the integral gives

~fM = −2E2
0W

µ0c2
sin2 (ωt)

[
z′− 1

2k
sin
(
2kz′

)]z

0

ŷ (2294)

= −2E2
0W

µ0c2
sin2 (ωt)

[
z− 1

2k
sin(2kz)

]
ŷ (2295)

Since this is the force on a single strip with infinitesimal width dx and length L, then the total force on the

lower plate can be found by integrating the force on each strip, ~fM , from x= 0 to x=W and then dividing by

W . This gives

~FM =
1

W

∫ W

0

~fMdx (2296)

Since ~fM does not vary in the x-direction, then the integral simply gives W . So we arrive back at the same

expression for the magnetic force on the lower plate.

~FM =−
2E2

0W

µ0c2
sin2 (ωt)

[
z− 1

2k
sin(2kz)

]
ŷ (2297)

The magnetic force on the upper plate is equal and opposite.
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23.3 The charge and electric forces on the plates

To find the electric force on the lower plate, we must determine the charge distribution on the plate. Since

I =
dq

dt
, then we can use the current on the lower plate from (2288) to find the charge on the lower plate at a

given time t.

q =
∫ t

0
Ilowerdt ′ =

∫ t

0

[
−2E0W

µ0c
sin(kz)sin

(
ωt ′
)]

dt ′ (2298)

=
2E0W

µ0cω
sin(kz) [cos(ωt)−1] (2299)

Note that according to (2288) we always have Ilower = −Iupper at any given time and location along the

z-direction. Therefore the result for q will also have opposite signs for the charge on the upper and lower

plates. This means that an electric force will always be attractive between the plates at any location along the

waveguide. To find the electric force on the bottom plate, we can consider the charge per unit length, λ q, on

an infinitesimally thin strip of the plate from z′ = 0 to z′ = z.

λ q =
dq

dz
=

d

dz

{
2E0W

µ0cω
sin(kz) [cos(ωt)−1]

}
(2300)

=
2E0W

µ0c2
[cos(kz)] [cos(ωt)−1] (2301)

Since the electric force is given by ~fE = q~E, then the force due to the electric field acting on a charge q on

the strip from z= 0 to z= L is

~fE =
∫ q

0
dq′~E =

∫ z

0
λ qdz′~E (2302)

Substituting into (2302) the expressions for λ q and ~E from (2301) and (2282), respectively, gives

~fE =
∫ z

0

2E0W

µ0c2

[
cos
(
kz′
)]
[cos(ωt)−1]

[
2E0 cos

(
kz′
)

cos(ωt) ŷ
]

dz′ (2303)

=
4E2

0W

µ0c2
[cos(ωt)−1]cos(ωt)

∫ z

0
cos2

(
kz′
)

dz′ŷ (2304)

=
4E2

0W

µ0c2

[
cos2 (ωt)− cos(ωt)

]∫ z

0

1

2

[
1+ cos

(
2kz′

)]
dz′ŷ (2305)

=
2E2

0W

µ0c2

[
cos2 (ωt)− cos(ωt)

][
z′+

1

2k
sin
(
2kz′

)]z

0

ŷ (2306)

=
2E2

0W

µ0c2

[
cos2 (ωt)− cos(ωt)

][
z+

1

2k
sin(2kz)

]
ŷ (2307)
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Since this is the force on a single strip with infinitesimal width dx and length L, then the total force on the

plate can be found by integrating the force on each strip, ~fE , from x = 0 to x =W and then dividing by W .

This gives

~FE =
1

W

∫ W

0

~fEdx (2308)

However, ~fE does not vary in the x-direction so the integral simply gives W . Then we simply arrive back at

the same expression for the electric force on the lower plate.

~FE =
2E2

0W

µ0c2

[
cos2 (ωt)− cos(ωt)

][
z+

1

2k
sin(2kz)

]
ŷ (2309)

The electric force on the upper plate is equal and opposite.
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23.4 The full electromagnetic force on the plates

Adding the electric and magnetic forces from (2297) and (2309), respectively, gives the full electromag-

netic force on the lower plate.

~FEM = ~FE +~FM (2310)

=
2E2

0W

µ0c2

{[
cos2 (ωt)− cos(ωt)

][
z+

1

2k
sin(2kz)

]
− sin2 (ωt)

[
z− 1

2k
sin(2kz)

]}
ŷ (2311)

Using k = 2π/λ and rearranging gives

~FEM =
2E2

0W

µ0c2

{[
cos2 (ωt)− cos(ωt)

][ λ

4π
sin

(
4πz

λ

)
+ z

]

+sin2 (ωt)

[
λ

4π
sin

(
4πz

λ

)
− z

]}
ŷ (2312)

=
2E2

0W

µ0c2

{[
λ

4π
cos2 (ωt)sin

(
4πz

λ

)
− λ

4π
cos(ωt)sin

(
4πz

λ

)
+ zcos2 (ωt)− zcos(ωt)

]

+
λ

4π
sin2 (ωt)sin

(
4πz

λ

)
− zsin2 (ωt)

}
ŷ (2313)

Using cos2 φ + sin2
φ = 1 and cos2 φ − sin2

φ = cos(2φ) gives

~FEM =
2E2

0W

µ0c2
ŷ

{
λ

4π
sin

(
4πz

λ

)
− λ

4π
cos(ωt)sin

(
4πz

λ

)
+ zcos(2ωt)− zcos(ωt)

}
(2314)

~FEM =
2E2

0W

µ0c2
ŷ

{
zcos(2ωt)− zcos(ωt)− λ

4π
sin

(
4πz

λ

)
cos(ωt)+

λ

4π
sin

(
4πz

λ

)}
(2315)

This is the full electromagnetic force on the lower plate as a function of time t. The electromagnetic force

on the upper plate is equal and opposite. Notice that the last term is a constant with respect to time. This

indicates that it should contribute a “DC” offset to the sinusoidal oscillation of the force. The graph on the

following page shows ~FEM with respect to time with z>> λ . The graph is over two periods from t =−T to

t = T , where the period is T = 2π .
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Figure 28: Graph of electromagnetic force (with respect to time) on the walls of a parallel-plate waveguide

due to a TEM wave.

Notice that because the force expression in (2315) contains sinusoids of different frequencies, the result

is a “sloshing” behavior in time. There is still, however, an overall “DC” force in the negative direction. In

fact, if we take a time average of (2315), then we obtain〈
~FEM

〉
=

λE2
0W

2πµ0c2
ŷsin

(
4πz

λ

)
(2316)

Using sin

(
4πz

λ

)
= 1−2sin

(
2πz

λ

)
, we can write this as

〈
~FEM

〉
=

λE2
0W

2πµ0c2
ŷ

[
1−2sin

(
2πz

λ

)]
(2317)

The modes that lead to the greatest repulsive force on the plates occur when sin(2πz/λ ) = 1 which means

2πz/λ = π/2+2πn or

z

λ
=

1

4
+n=

1+4n

4
=⇒ λ =

4z

4n+1
, n= 1,2,3... (2318)

On the other hand, modes for the greatest attractive force occur when sin(2πz/λ ) = −1 which means

2πz/λ =−π/2+2πn or

z

λ
=−1

4
+n=

4n−1

4
=⇒ λ =

4z

4n−1
, n= 1,2,3... (2319)

If we consider the case when the length of the waveguide is significantly longer than the wavelength of the

electromagnetic wave, then we can have z >> λ so z << k. since k = 2π/λ . In that case, from (2312) we

see that the second term in brackets (the magnetic force) is slightly greater than the first term in brackets (the

electric force) by a factor of z. This means that for large length values along the stripline, the cause for the

DC offset will be the magnetic field. Lastly, if
〈
~FEM

〉
is in the lowest repulsive mode (n = 1), then (2316)

can be written as ∣∣∣〈~FEM

〉∣∣∣=− zE2
0W

5πµ0c2
ŷ (2320)



452

23.5 Quantizing the electromagnetic waveguide energy

The average energy density in the waveguide due to the standing EM wave is

〈u〉 =
1

2
ε0E2

0 (2321)

The volume of the waveguide from z′ = 0 to z′ = z is

V = zWd (2322)

Then the total EM energy in that volume is

Energy = 〈u〉V (2323)

=
1

2
ε0E2

0 zWd (2324)

If the standing EM wave is due to quantum vacuum fluctuations, then the ground state (zero-point) energy is

Energy =
1

2
}ω =

hc

2λ
(2325)

The fundamental mode between the plates is when d = λ/2 so λ = 2d and the energy is

Energy =
hc

4d
(2326)

Equating the EM energy in (2324) with the quantum ground state energy in (2326) gives

1

2
ε0E2

0 zWd =
hc

4d
(2327)

Solving for the electric field amplitude gives

E2
0 =

hc

2ε0zWd2
(2328)

Substituting this result into the force expression found in (2320) and using c2 =
1

ε0µ0

gives

〈
~FEM

〉
= − zW

5πµ0c2

(
hc

2ε0zWd2

)
ŷ (2329)

〈
~F
〉

EM
=− hc

10πd2
ŷ (2330)
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This result can be understood to be an effective Casimir force as it is the force experienced by a conducting

plate due to an electromagnetic quantum vacuum fluctuation. The commonly accepted Casimir force for a

parallel-plate Fabry-Perot resonator (as shown in the figure below) is given by255

~F =
hcπ2A

240d4
ŷ (2331)

Figure 29: The attractive Casimir force that is known to occur between two plates due to the difference in

standing wave modes of quantum energy fluctuations. These standing waves are normal to the cavity (such

as in a Fabry-Perot resonator arrangement) rather than transverse (such as in the paralle-plate wave guide

arrangement).

We can note the following differences between the “Waveguide Casimir force” in (2330) and the common

“Fabry-Perot Casimir force” in (2331).

1. The force is repulsive rather than attractive.

2. The force falls off as 1/d2 rather than 1/d4.

3. The force is independent of the area of the plates.

255See J. Garrison and R. Chiao, Quantum Optics [101], pp. 32-38, 60-65.
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23.6 The full gravito-electromagnetic force on the plates

We now consider the gravitational analogue of the electromagnetic force derived above. To do so, we use

the gravito-electromagnetic (GEM) fields as derived in previous sections. The gravitational “Lorentz-like”

force was is given by (105) as

~FGEM = m

(
~EG+4~v×~BG

)
(2332)

Therefore, the gravitational analogue to the magnetic force in (2289) is

~FGM = 4

∫ L

0
Imd~l×~BG (2333)

By direct analogy with (2297), we can recognize that the gravito-magnetic force on the bottom plate will be

~FGM =−
8E2

g,0W

µGc2
sin2 (ωt)

[
L− 1

2k
sin(2kL)

]
ŷ (2334)

where Eg,0 is the amplitude of oscillation256 of the gravito-electric field, ~EG. Also, by direct analogy with

(2309), we can recognize that the gravito-electric force on the bottom plate will be

~FGE =
2E2

g,0W

µGc2

[
cos2 (ωt)− cos(ωt)

][
L+

1

2k
sin(2kL)

]
ŷ (2335)

Combining the gravito-electric and gravito-magnetic forces gives the full gravito-electromagnetic (GEM)

force on the lower plate.

~FGEM =

{
8E2

0W

µ0c2

[
cos2 (ωt)− cos(ωt)

][
L+

1

2k
sin(2kL)

]

+−2E2
0W

µ0c2
sin2 (ωt)

[
L− 1

2k
sin(2kL)

]}
ŷ (2336)

Notice that because the gravito-magnetic force expression has a factor of 4, it is not possible to simplify the

full GEM force as we did for the full EM force. Instead, we will immediately consider the time-average of

the force to obtain an expression analogous to (2316). Since

〈cos(ωt)〉= 〈sin(ωt)〉= 0 and
〈
cos2 (ωt)

〉
=
〈
sin2 (ωt)

〉
= 1/2 (2337)

then we obtain

〈
~FGEM

〉
=

3LE2
0W

µ0c2
ŷ (2338)

This is the full GEM force on the lower plate as a function of time t. The GEM force on the upper plate is

equal and opposite. Notice that the result is similar to the electromagnetic case in (2320).

256We are careful not to refer to these gravito-electromagnetic fields as “waves” since gravitational waves

tensor fields arising from quadrupolar soures (versus vector fields arising from dipolar soures, as is the

case for electromagnetism). Therefore, we will refer to the gravito-electromagnetic fields here as simply

“oscillating fields.”
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23.7 Quantizing the gravitational waveguide energy

Here we use an order-of-magnitude calculation to show that microwave gravitational radiation in a quan-

tum ground state is associated with mass-energy densities that are within laboratory scales. For the sake of

discussion, consider a parallel-plate configuration similar to that used for the Casimir force as shown in the

figure below.257 Each plate is composed of niobium in a superconducting state.

Figure 30: Casimir force on a superconducting parallel-plate configuration

Let us assume that super-conductors can act as mirrors for gravitational waves as described in [7]. Then

quantum mechanically, the lowest energy mode for an oscillating gravitational field is given by the ground

state energy (zero-point energy) due to quantum vacuum fluctuations.

U =
1

2
}ω (2339)

To examine the gravitational fields associated with this energy, we can begin with the Einstein Field equations.

Gµν = κTµν (2340)

where κ = 8πG/c4 is the Einstein coupling constant. Since a gravitational field in a quantum ground state

would be extremely weak, we can use the linearized, weak-field limit of the Einstein equations. (See Appen-

dix A for details.) In the non-relativistic, weak-field limit, we have Tµν ≈ 0 for µ,ν 6= 0 and the lowest order

257A gravitational Casimir force is considered in [103] by Quach.
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contribution to the energy-momentum tensor is

T00 ≈ ρc2 (2341)

where ρ is the volume mass density of the plates. The metric in the weak-field limit can be considered as

a small perturbation about a flat Minkowski space-time metric: gµν ≈ ηµν + hµν where hµν << 1. The

Newtonian limit gives us g00 ' −1+ h00 where h00 = −2ϕG/c
2 and ϕG is the gravitational potential.

Therefore we can use

h00 =−
2ϕG

c2
(2342)

As shown in Appendix A, the linearized, weak-field limit of the Einstein equations leads to

∇
2
h00 ≈−κT00 (2343)

Substituting (2341) and (2342) into (2343) gives

∇
2

(
2ϕG

c2

)
= κρc2 (2344)

The potential energy is related to the gravitational potential by U = mϕG where m is the mass of either

superconducting plate. If we define D as the surface mass density and A as the area of a plate, then the mass

of a plate is given by m= DA. We can therefore write the potential energy as

U = DAϕG (2345)

For the ground state energy of a gravitational field, we can use U = 1
2
}ω from (2339). Substituting this into

(2345) and solving for ϕG gives

ϕG =
}ω

2DA
(2346)

Now we can insert (2346) into (2344) and consider ∇ to be on the order of 1/λ where λ is the wavelength

of the gravitational oscillating field. This yields(
1

λ

)2( }ω

c2DA

)
≈ κρc2 (2347)

To simplify, we can use λ = c/ f , }ω = h f , and κ = 8πG/c4. Then solving for D gives

D≈
(

h

8πGc2

)(
f 3

µA

)
(2348)

The mass density for niobium is ρ ≈ 8.6 kg/m3. For microwave oscillations of the gravitational field, we can

use f ≈ 1010Hz. A reasonable area for the plates is on the order of centimeters, 10−2m. Using these values

to determine a result for the surface mass density (in SI units) gives

D≈ 1.03×10−10kg/m2 (2349)

Thus we find that a very small surface mass density is required to have microwave gravitational oscillations in

a quantum ground state between two superconducting niobium plates with an area on the order of centimeters.

This indicates that reflection of gravitational fields does not require extreme mass densities which are present

only in astrophysical systems. Rather, we find that incorporating quantum mechanics (namely, by introducing

Planck’s constant via a ground state energy) opens the possibility of probing the effects of gravitational

radiation in a laboratory-scale setting. For details concerning the specific mechanism by which gravitational

radiation can be reflected by superconductors, we refer the reader to the treatment found in [7]. Furthermore,

if gravitational waves can be reflected, we anticipate that parametric amplification of these waves could also

be achieved as described in [4].
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23.8 Quantum versus classical sources of gravitons in a cavity

The Isaacson power flux formula for a gravitational wave is given in [43] as258

PIsaacson =
c3

16πG

〈
ḣ2
++ ḣ2

×
〉

(2350)

where P is the power per unit area (P/A) while h+ and h× are the plus and cross polarization strain fields.

The particular polarization is not relevant to the analysis here so we can simply use h0 for the amplitude and

write a sinusoidal strain field as

h = h0 sin
(
~k ·~x−ωt

)
(2351)

Inserting this in the Isaacson power flux formula (2350) gives

PIsaacson =
c3

16πG

〈
ω

2h2
0 sin2

(
~k ·~x−ωt

)〉
=

c3ω2h2
0

32πG
(2352)

We can also use the ground state energy of a single graviton
(
E = 1

2
}ω
)
, the area of the cavity (A), and the

ring down time of the cavity (τ = Q/ω , where Q is the quality factor) to write the power flux for a single

ground state graviton as

Pground
state

=
1
2
}ω

Aτ
=

hω2

4πAQ
(2353)

We can equate the power flux expressions in (2352) and (2353) and solve for the strain field amplitude, h0.

Using Q= 109 and an area with edges on the order of centimeters gives259

h0 =

√
8Gh

AQc3
≈ 1.45×10−37

Gravitational strain field for the quantum ground state of a cavity

(2354)

This is the strain field associated with a single graviton produced by the ground state quantum fluctuations

of a cavity with quality factor Q and surface area A. It is interesting to note that the result is independent of

the frequency. We can also consider what classical source would be required to produce the same strain. To

do this, we can use the linearized Einstein equation for the transverse-traceless strain using the Helmholtz

Decomposition formulation. From (361) we have

�hττ
i j =−

16πG

c4
T ττ

i j (2355)

258Note that (2350) is typically derived in the transverse-traceless gauge where h00 = h0i = 0 and hi j = hT T
i j .

This leads to the gravitational wave field being expressed completely in terms of hxx = −hyy = h+ for plus

polarization, and hxy = hyx = h× for cross polarization. However, the metric has the same form using the

Helmholtz Decomposition formulation in the far field zone where h00 = h0i = 0 and hi j = hττ
i j .

259Note that the quantity A = Gh/c3 is the Planck area. Therefore we see that the quantity in (2354) is

dimensionless as it should be for a strain field.
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The retarded Green’s function solution to this wave equation is

hττ
i j (t,~x) =

4G

c4

∫ T ττ
i j (tr,~x

′)

|~x−~x′| d3x′ (2356)

where~x′ is the spatial coordinate of each infinitesimal element of T ττ
i j occupying a differential volume element

d3x. Also, T ττ
i j (tr,~x

′) is the stress-energy-momentum contribution at ~x′ evaluated at a retarded time tr and

located at a distance |~x−~x′| from the field point where hττ
i j is measured. We can therefore express the retarded

time as tr = t−|~x−~x′|/c. For simplicity, we can consider the case of relativistic dust (to order v2/c2) which

we found in (431) gives

T ττ
i j = ρ

(
viv j− 1

3
δ i jv

2
)

(2357)

For plus polarization, we have T⊕ =
2

3
ρv2

x =−
2

3
ρv2

y . Likewise, for cross polarization, we have T⊗ = ρvxvy.

Therefore, we can simply approximate T ≈ ρv2 in (2356) and use hout to represent the outgoing gravitational

wave. This gives

h(t,~x) =
4G

c4

∫
ρv2

|~x−~x′|d
3x′ (2358)

where ρ and v2 can be functions of (tr,~x
′). For small distance and time scales, we can neglect the dependence

of ρ and v2 on the retarded time and also consider them approximately uniform over a volume V . Let us also

consider the distance from the source to the field point as remaining approximately a constant distance given

by d. Then we have

h0 ≈ 4Gρv2V

c4d
(2359)

We can use V = Aδ G where A≈ d2 is the surface area that the gravitational wave is incident upon and δ G is

gravitational penetration depth which characterizes the depth to which the gravitational wave field can induce

transverse-traceless currents in the walls of the superconductor. Then solving for v gives

v ≈

√
c4h0

4Gρdδ G

(2360)

The classical result in (2360) is also independent of frequency just as the case for the previous calculation

using the quantum ground state. However, (1334) shows that the gravitational penetration depth can be

written in terms of the gravitational plasma frequency as δ G = c/ωG. We can consider a gravitational plasma

frequency on the order of microwaves (ωG ≈ 1010Hz) and consider d to have a maximum value on the order

of centimeters inside the cavity. We can also use the value of h0 from (2354) and ρ ≈ 8.6× 103kg/m3 for

Niobium. This gives

v≈

√
c4h0ωG

4Gρdc
≈ 1.7×106m/s (2361)

This is a rough estimate of the velocities required for Niobium atoms to generate a single graviton at mi-

crowave frequencies.
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We can also determine an estimate of the number of Niobium atoms that would be involved in producing

this field. We can solve (2361) for ρ and multiply by a volume V to obtain the mass of Niobium atoms

needed.

M = ρV =
c4h0V

4Gv2dδ G

(2362)

Once again, we can consider the volume containing the Niobium atoms to be described by the surface area of

the cavity
(
A≈ d2

)
multiplied by a depth on the order of the gravitational penetration depth, δ G. Then using

(2362) and inserting the value found in (2361) gives

M =
c4h0d

4Gv2
≈ 1.5×10−8kg (2363)

Dividing by mNiobium ≈ 1.5×10−25kg/atom for a single Niobium atom gives

n≈ 1017 Niobium atoms (2364)

This is the number of Niobium atoms within a gravitational penetration depth of the cavity wall which must

move at the speed given in (2361) to produce a single microwave graviton.
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Conclusion

In conclusion, the primary achievement of this dissertation was to develop a variety of methods for de-

scribing how gravity can be coupled to quantum mechanical and classical systems in ways that may yield

experimentally testable results. Some examples include the interaction of gravity with superconductors and

normal conductors, the possibility of scalar and vector gravitational Aharonov-Bohm effects, a gravitational

Casimir effect between conducting parallel plates, and a gravitational wave transmitter-receiver system via

superconducting ellipsoidal cavities. Some of the theoretical discoveries were found unexpectedly in the

process of attempting to describe how gravitational waves interact with superconductors. Some examples

are the formulation of a graviton mass in superconductors, and the discovery of a gravitationally induced

dynamical Casimir effect in the phonon modes of the ionic lattice.

Perhaps one of the most important achievements of the dissertation was showing formally that a charge-

separation effect occurs in a superconductor in response to a gravitational wave. This may provide a new

way of detecting gravitational waves in a manner that was never previously attempted. It was also shown

that this effect may play a role in a gravito-Meissner effect which would expel gravitational waves from

superconductors in the DC limit, and hence lead to the possibility of reflection of incident gravitational

waves.

However, a primary question that could not be conclusively answered is whether the generation and de-

tection of gravitational waves in a laboratory setting is possible. Although a comprehensive mathematical

framework was successfully developed to investigate this question, it remains an open question since there

are still phenomenological parameters which require numerical values need to be known. In particular, the

gravitational permeativity is the remaining undetermined quantity which will dictate whether lab scale super-

conductors can reflect gravitational waves. It still needs to be determined if this quantity can be theoretically

estimated (similar to the London penetration depth) or whether it can only be experimentally measured.

Therefore, further research of this topic is required. Such research may involve developing a “free stress ten-

sor” (analogous to the free current in electromagnetism) and formulating gravitational wave auxiliary fields

and constitutive equations in matter which could lead to a numerical estimate for the value of the gravitational

permeativity of a superconductor.

On a related note, another important future research goal is to demonstrate conclusively how the gravita-

tional penetration depth and London penetration depth are related. It was found that one can arrive at a result

that implies that the gravitational penetration depth is half of the London penetration depth. However, the

interpretation of this result is still open to debate. Further analysis and understanding of this topic is certainly

needed.

Lastly, it would be a lofty but achievable goal to write a comprehensive textbook describing the way

gravitation interacts with classical and quantum matter, similar to the comprehensive framework that already

exists for electromagnetism. In fact, the work in this dissertation is ultimately intended to contribute to

the broader goal of developing new areas of gravitational physics such as gravitational quantum optics and

gravitational laser physics. This would undoubtedly lead to a new era of technology and advancements that

have never before been imagined.
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Appendix A

Review of linearized General Relativity

The linearized Christoffel symbols and Riemann tensor

In the weak-field limit, the metric can be considered as a small perturbation about the flat Minkowski

space-time metric.

gµν ≈ ηµν +hµν where
∣∣hµν

∣∣<< 1 (2365)

We employ the usual process for evaluating the Einstein tensor by finding the linearized Christoffel symbols,

Riemann tensor, Ricci tenor and Ricci scalar. The Christoffel symbols can be found from

Γ
µ

νσ =
1
2
gµρ

(
∂σ gρν +∂ν gσρ −∂ρ gνσ

)
(2366)

We can substitute (2365) into (2366) to find the Christoffel symbols. For the derivatives we can use ∂γ gδβ =

∂γ

(
ηδβ +hδβ

)
= ∂γ hδβ . Then for a lowest order approximation, we can use gµδ ≈ ηµδ so that we only

keep terms of order ∂γ hδβ . Notice that using gµδ ≈ ηµδ − hµδ would result in higher order terms of order

hµρ
(
∂σ hρν

)
. Therefore, we have

Γ
µ

νγ =
1
2
ηµρ

(
∂γ hρν +∂ν hγρ −∂ρ hνγ

)
Linearized Christoffel symbols (2367)

The Riemann tensor is given by

R
µ

νγδ
= ∂γ Γ

µ

νδ
−∂δ Γ

µ

νγ +Γ
µ

ργ Γ
ρ

νδ
−Γ

µ

ρδ
Γ

ρ

νγ (2368)

We can substitute (2367) into (2368) to find the linearized Riemann tensor. The first two terms will be of

order ∂γ ∂ν hδβ while the second two terms will be of a higher order,
(
∂γ hδβ

)2
. So we can neglect the second

two terms in (2368) and insert (2367) to obtain

R
µ

νγδ
= 1

2
η

µρ
∂γ

(
∂δ hρν +∂ν hδρ −∂ρ hνδ

)
− 1

2
η

µρ
∂δ

(
∂γ hρν +∂ν hγρ −∂ρ hνγ

)
(2369)

Canceling ∂γ ∂δ hρν gives

R
µ

νγδ
= 1

2
ηµρ

(
∂γ ∂ν hδρ −∂γ ∂ρ hνδ −∂δ ∂ν hγρ +∂δ ∂ρ hνγ

)
Linearized Riemann tensor

(2370)

This is the weak-field, linearized Riemann tensor. The term “linearized” is common in the literature for

this formulation, however, it may be somewhat misrepresentative. “Linear” typically refers to the first term

after the constant term in a Taylor expansion or a polynomial expansion of a function. After that comes the

first derivative (second-order term), the second derivative (third-order term, etc.) However, here the lowest

order Riemann tensor has second derivatives of the metric perturbation. In other words, it is third order in

the metric perturbation. Therefore, when speaking of linearized GR, it should be emphasized that this means

that the highest order in the metric perturbation is technically third order.

For example, consider a component of the metric perturbation expressed as h = Aeikx where A is a con-

stant. In that case, notice that the term that was neglected from the Christoffel symbols is of the order

hµρ
(
∂σ hρν

)
∼ A2k. For example, if a gravitational wave has an amplitude A ∼ 10−21 and a frequency in

the microwave range, k = ω/c ∼ 1010/108 = 102, then we are neglecting terms of order A2k ∼ 10−40 in

the Christoffel symbols. We are only keeping terms of order ∂γ hδβ ∼ Ak ∼ 10−19. Likewise, in the Rie-

mann tensor we are neglecting terms of order
(
∂γ hδβ

)2 ∼ A2k2 ∼ 10−38. However, we keep terms of order
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∂γ ∂ν hδβ ∼ Ak2 ∼ 10−17. Hence, it is evident that when dealing with extremely weak gravitational fields

(such as terrestrial gravitational waves), the approximations in linearized GR are completely appropriate.

In the example above, we dealt with a very small amplitude and a relatively high frequency. In that case,

we find that higher order products of the metric perturbation (such as h2, h3, etc.) are much smaller terms

which are neglected in the Riemann tensor. On the other hand, higher order derivatives (such as ∂ 3h, ∂ 4h,

etc.) yield terms that continue to increase gradually. Therefore, in such a situation, we find that higher order

products of the metric are discarded while higher order derivatives of the metric are permitted.

On the other hand, if we consider a situation with a much larger amplitude and a much smaller frequency,

then the approximation scheme changes. For example, consider a field where A ∼ 10−9 (such as the gravi-

tational field of the earth). We know that the potential falls off as 1/r. Therefore, the variation goes as the

derivative of 1/r which is 1/r2. Near the surface of the earth, we can use the radius of the earth which is

approximately 6× 103km. Therefore 1/r2 gives approximately 10−8 which would play the effective role of

k. Then we find that the term that was neglected from the Christoffel symbols is of the order A2k ∼ 10−26.

We are only keeping terms of order Ak ∼ 10−17. Likewise, in the Riemann tensor we are neglecting terms of

order A2k2 ∼ 10−34. However, we are keeping terms that are of order Ak2 ∼ 10−25. Now in this particular

situation, we find that both the higher order products as well as the higher order derivatives must be neglected.

For example, the third derivative of the metric will be of the order Ak3 ∼ 10−33. This is comparable to the

terms we neglected in the Riemann tensor which we stated are of the order A2k2 ∼ 10−34. This means that

we cannot justifiably keep the third derivative (or higher order derivatives) of the metric in this situation.

The linearized Einstein tensor

The Ricci tensor can be found by contracting the first and third index of the Riemann tensor. Setting

µ = γ in (2370) gives Rνδ = R
γ

νγδ
. This becomes

Rνδ = 1
2
η

γρ
(
∂γ ∂ν hδρ −∂γ ∂ρ hνδ −∂δ ∂ν hγρ +∂δ ∂ρ hνγ

)
(2371)

= 1
2

(
∂

ρ
∂ν hδρ −�hνδ −∂δ ∂ν h+∂δ ∂

γ hνγ

)
(2372)

where h is the trace of hµν and � = ∂µ ∂ µ = ∇
2− 1

c2

∂ 2

∂ t2
. The Ricci scalar is the trace of the Ricci tensor,

R= ηνδ Rνδ = R ν
ν . This gives

R = 1
2
η

νδ
(
∂

ρ
∂ν hδρ −�hνδ −∂δ ∂ν h+∂δ ∂

γ hνγ

)
(2373)

= 1
2

(
∂

ρ
∂

δ hδρ −�h−�h+∂
ν
∂

γ hνγ

)
(2374)

= −�h+∂
ν
∂

γ hνγ (2375)

The Einstein tensor is just the trace-reversed Ricci tensor

Gµν = Rµν − 1
2
Rηµν (2376)

Substituting (2372) and (2375) into (2376) and using µ and ν for free indices gives

Gµν = 1
2

(
∂

γ
∂µ hνγ −�hµν −∂µ ∂ν h+∂ν ∂

γ hµγ

)
− 1

2

(
−�h+∂

ρ
∂

γ hργ

)
ηµν (2377)

= 1
2

(
∂

γ
∂µ hνγ −�hµν −∂µ ∂ν h+∂ν ∂

γ hµγ +ηµν�h−ηµν ∂
ρ

∂
γ hργ

)
(2378)
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Rearranging terms gives the resulting linearized Einstein tensor.

Gµν =
1
2

(
∂ γ ∂µ hγν +∂ γ ∂ν hγµ +ηµν�h−�hµν −∂µ ∂ν h−ηµν ∂ ρ ∂ γ hργ

)
Linearized Einstein tensor

(2379)

From (2379) we can obtain each of the linearized Einstein tensor components, G00, G0i, and Gi j. First we

sum over the indices in (2379) and expand the first box operator as �= ∂k∂ k−∂ 2
t /c2.

Gµν = 1
2

[(
∂

0
∂µ h0ν +∂

k
∂µ hkν

)
+
(

∂
0
∂ν h0µ +∂

k
∂ν hkµ

)
+ηµν ∂k∂

kh−ηµν ḧ/c2

−�hµν −∂µ ∂ν h−ηµν

(
∂

0
∂

0h00+∂
0
∂

kh0k+∂
k
∂

0hk0+∂
k
∂

lhkl

)]
(2380)

Writing the full trace of the metric perturbation as

h= ηµν hµν = η00h00+η iih
ii =−h00+H (2381)

where H = δ
i j

hi j = hi
i is the trace of the purely spatial part of the metric perturbation. Also, writing ∂ 0 =

−∂t/c and using the dot “dot derivative” notation gives

Gµν = 1
2

[
−∂µ ḣ0ν/c+∂

k
∂µ hkν −∂ν ḣ0µ/c+∂

k
∂ν hkµ +ηµν ∂k∂

k (−h00+H)

−ηµν

(
−ḧ00+ Ḧ

)
/c2−�hµν −∂µ ∂ν (−h00+H)

−ηµν

(
ḧ00/c

2−2∂
kḣ0k/c+∂

k
∂

lhkl

)
(2382)

Canceling similar terms gives

Gµν = 1
2

[
−∂µ ḣ0ν/c+∂

k
∂µ hkν −∂ν ḣ0µ/c+∂

k
∂ν hkµ +ηµν ∂k∂

k (H−h00)

−ηµν Ḧ/c2−�hµν +∂µ ∂ν (h00−H)+ηµν

(
2∂

kḣ0k/c−∂
k
∂

lhkl

)]
(2383)

Evaluating G00 and expanding the box operator as �= ∂k∂ k−∂ 2
t /c

2 gives

G00 = 1
2

(
−ḧ00/c

2+∂
kḣk0/c− ḧ00/c

2+∂
kḣk0/c−∂k∂

k (H−h00)

+Ḧ/c2−
(

∂k∂
kh00− ḧ00/c

2
)
+
(
ḧ00− Ḧ

)
/c2−2∂

kḣ0k/c+∂
k
∂

lhkl

)
(2384)

Canceling similar terms, using ∂k∂ k = ∇
2 and writing the last term as ∂i∂ jhi j gives

G00 =
1
2

(
∂i∂ jhi j−∇

2
H

)
(2385)

Returning to (2383) to evaluate G0i and expanding the box operator as �= ∂k∂ k−∂ 2
t /c

2 gives

G0i = 1
2

[
−∂0ḣ0i/c+∂

k
∂0hki−∂ν ḣ00/c+∂

k
∂ihk0+η0i∂k∂

k (H−h00)

−η0iḦ/c2−
(

∂k∂
kh0i− ḧ0i/c2

)
+∂0∂i (h00−H)

]
+η0i

(
2∂

kḣ0k/c−∂
k
∂

lhkl

)]
(2386)
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Canceling similar terms, using ∂k∂ k =∇
2, lowering spatial indices (which is valid to first order in the metric)

and rearranging terms gives

G0i =
1
2

(
∂kḣki/c−∂iḢ/c+∂i∂khk0−∇

2
h0i

)
(2387)

Lastly, returning to (2383) and evaluating Gi j gives

Gi j = 1
2

[
−∂iḣ0 j/c+∂

k
∂ihk j−∂ jḣ0i/c+∂

k
∂ jhki+η i j∂k∂

k (H−h00)

−η i jḦ/c
2−�hi j+∂i∂ j (h00−H)+η i j

(
2∂

kḣ0k/c−∂
k
∂

lhkl

)]
(2388)

Using ∂k∂ k = ∇
2, writing η i j = δ i j, lowering spatial indices and rearranging gives

Gi j =
1
2

[
−�hi j−

(
∂iḣ0 j+∂ jḣ0i

)
/c+∂k∂ihk j+∂k∂ jhki+∂i∂ j (h00−H)

+2δ i j∂kḣ0k/c−δ i j∂k∂lhkl−δ i j∇
2
h00+δ i j∇

2
H−δ i jḦ/c

2
]

(2389)

The linearized Einstein equation and conservation of the stress-energy-momentum tensor

Since the Einstein equation is given by Gµν = κTµν , then using (2379) we can write

2κTµν = ∂
ρ

∂µ hρν +∂
ρ

∂ν hρµ +ηµν�h−�hµν −ηµν ∂
σ

∂
ρ hσρ −∂µ ∂ν h (2390)

If we raise the indices (using gαµ gβν ≈ ηαµ ηβν to maintain only first order in the metric), then we have

2κTµν = η
βν

∂
ρ

∂
α hρν +η

αµ
∂

ρ
∂

β hρµ +η
αβ�h

−�hαβ −η
αβ

∂
σ

∂
ρ hσρ −∂

α
∂

β h (2391)

Now taking ∂α of both sides gives

2κ∂α T αβ = η
βν

∂
ρ�hρν +∂

µ
∂

ρ
∂

β hρµ +∂
β�h−∂α�hαβ −∂

β
∂

σ
∂

ρ hσρ −�∂
β h (2392)

= ∂ρ�hβρ +∂
µ

∂
ρ

∂
β hρµ +∂

β�h−∂α�hαβ −∂
β

∂
σ

∂
ρ hσρ −�∂

β h (2393)

On the right side, we find that the first and fourth terms cancel, the second and fifth terms cancel, and the

third and sixth terms cancel. Therefore 2κ∂α T αβ = 0 and we can write the linearized conservation of mass-

energy-momentum as

∂ν T µν = 0 Linearized conversation of energy-momentum (2394)

The full non-linear conservation of stress-energy-momentum is written in terms of covariant derivatives as

∇ν T µν = ∂ν T µν+Γν
νσ T σ µ+Γ

µ

νσ T νσ . From (2367), we know that to first order in the metric, the Christoffel

symbols involve terms with ∂σ hµν . Therefore, using ∂ν T µν = 0 as the linear conservation of stress-energy-

momentum involves neglecting terms of order
(
∂σ hµν

)
T µν .

We can also write (2394) in terms of the covariant stress tensor, Tµν . First we write (2394) as ∂ ν T
µ

ν = 0.

Using the inverse metric, we can also write this as

∂
ν T σ

ν = ∂
ν
(
gσ µ Tµν

)
= 0 (2395)
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In (2415) we show that the inverse metric (to first order in the metric) is given by gσ µ = ησ µ − hσ µ so the

equation directly above becomes

∂
ν
[
(ησ µ −hσ µ)Tµν

]
= 0 (2396)

As stated above, in this linearized approximation we must neglect terms involving
(
∂σ hµν

)
T µν . Therefore

the equation above becomes

∂
ν
(
η

σ µ Tµν

)
= 0 (2397)

By the product rule we have

(∂ ν
η

σ µ)Tµν +η
σ µ
(
∂

ν Tµν

)
= 0 (2398)

The first term is obviously zero and therefore we are left with ησ µ
(
∂ ν Tµν

)
= 0. Applying ησ µ to both sides

gives

∂ ν Tµν = 0 (2399)

Linearized gauge freedom

In general, the Einstein tensor is invariant under a linear coordinate transformation (or diffeomorphism)

x′µ = xµ −ξ
µ

(2400)

where ξ
µ

is an arbitrary 4-displacement vector. We know the inverse metric transforms as

g′µν =
∂xµ ′

∂xσ

∂xν ′

∂xρ
gσρ (2401)

Using (2400) to evaluate one of the derivatives in (2401) gives

∂xµ ′

∂xσ
=

∂

∂xσ

(
xµ −ξ

µ
)
= ∂σ xµ −∂σ ξ

µ = δ
µ

σ −∂σ ξ
µ

(2402)

Now substituting (2402) into the right side of (2401) gives

g′µν =
(
δ

µ

σ −∂σ ξ
µ
)(

δ
ν

ρ −∂ρ ξ
ν
)

gσρ (2403)

=
[
δ

µ

σ δ
ν

ρ −∂σ ξ
µ

δ
ν

ρ −δ
µ

σ ∂ρ ξ
ν +
(
∂σ ξ

µ
)(

∂ρ ξ
ν
)]

gσρ (2404)

= gµν −
(
∂σ ξ

µ
)

gσν −
(
∂ρ ξ

ν
)

gµρ +
(
∂σ ξ

µ
)(

∂ρ ξ
ν
)

gσρ (2405)

We can use the metric to raise the indices of the derivatives and obtain

g′µν = gµν −∂ ν ξ
µ −∂ µ ξ

ν +
(
∂σ ξ

µ
)(

∂ σ ξ
ν
)

Metric gauge freedom (2406)

This is the full gauge freedom of the metric for a linear coordinate transformation. However, in (2365) we

chose to consider the weak-field limit such that gµν ≈ δ
µν +hµν with |hµν |<< 1. It is valid to consider that

g′µν is also of the same order as gµν only if we require that ∂ ν ξ
µ

is of the same order as hµν . In that case, if
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we only keep first order in hµν , then we can only keep first order in ∂ ν ξ
µ

which means we must neglect the

last term in (2406). This gives

g′µν ≈ gµν −∂
ν
ξ

µ −∂
µ

ξ
ν

(2407)

To evaluate this in terms of the metric perturbation, we need an expression for the inverse metric. We can

define the inverse metric as

gµν = η
µν + f µν (2408)

The inverse metric must satisfy

gµσ gσν = δ
ν

µ (2409)

Inserting (2365) and (2408) into (2409) gives(
ηµσ +hµσ

)
(ησν + f σν) = δ

ν

µ (2410)

ηµσ η
σν +ηµσ f σν +hµσ η

σν +hµσ f σν = δ
ν

µ (2411)

To first order we can neglect hµσ f σν . Also using ηµσ ησν = δ
ν

µ gives

δ
ν

µ +ηµσ f σν +hµσ η
σν = δ

ν

µ (2412)

ηµσ f σν = −h ν
µ (2413)

We can apply ηµρ to both sides. On the left side we can use ηµρ ηµσ = δ
ρ

σ and the right side we can use

ηµρ to raise the index of h ν
µ to linear order. This gives

f ρν =−hρν (2414)

Then the inverse metric in (2408) can be written as

gµν = ηµν −hµν Inverse metric (to first order) (2415)

Substituting (2415) on both sides of (2407) gives

η
′µν −h′µν = η

µν −hµν −∂
ν
ξ

µ −∂
µ

ξ
ν

(2416)

h′µν = hµν +∂
µ

ξ
ν +∂

ν
ξ

µ
(2417)

To lower all the indices, we can apply the metric twice recognizing that to first order in the metric we have

g′µσ g′νρ ≈η ′µσ η ′νρ and gµσ gνρ ≈ηµσ ηνρ . Then we obtain h′σρ = hσρ+∂σ ξ ρ+∂ρ ξ σ . Changing the indices

to µ and ν gives

h′µν = hµν +∂µ ξ ν +∂ν ξ µ

Linearized metric perturbation

gauge freedom
(2418)

This is the linearized gauge freedom of the metric to first order in hµν and ∂µ ξ ν under a linear coordinate

transformation x′µ = xµ − ξ
µ

. From (2402) we see that if ∂µ ξ ν is small, then ∂ρ x′µ must also be corre-

spondingly small. This implies that the coordinates x′µ cannot have a large rate of change with respect to

the coordinates xµ . However, having ∂µ ξ ν be small does not imply that we must keep ξ µ itself small. In

other words, we can transform between coordinates with an arbitrarily large 4-displacement between them,
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ξ
µ = xµ − x′µ , and still not violate the first order approximation of the metric. More concretely, this means

that we can transform between coordinates that are separated by large spatial distances and large intervals of

time without violating the first order approximation for the transformed metric. We simply cannot transform

to coordinates where the spatial coordinates are greatly curved (or compressed/stretched), or the clocks run

much faster/slower. In that case, if ∂µ ξ ν is not small enough to be comparable to hµν , then a first order

approximation for the transformed metric may not be valid.

Transformation of derivatives of the metric to first order in the metric

In general, we can show that a linear coordinate transformation, x′µ = xµ −ξ
µ

, does not affect differen-

tiation. That is ∂µ ′ ≈ ∂µ to first order in hµν and ∂ µ ξ
ν
. To demonstrate this we may apply the chain rule to

write

∂µ =
∂x′ν

∂xµ

∂

∂x′ν
=

∂x′ν

∂xµ
∂ν ′ (2419)

To evaluate
∂x′ν

∂xµ
, we can substitute x′µ = xµ −ξ

µ
and apply the chain rule.

∂x′ν

∂xµ
=

∂
(
xν −ξ

ν
)

∂xµ
= δ

ν

µ −∂µ ξ
ν

(2420)

Inserting this into (2419) gives

∂µ =
(
δ

ν

µ −∂µ ξ
ν
)

∂ν ′ = ∂µ ′ −∂µ ξ
ν
∂ν ′ (2421)

Applying this to the metric perturbation gives

∂µ hρσ = ∂µ ′h
ρσ −∂µ ξ

ν
∂ν ′h

ρσ (2422)

Since we are neglecting terms or order ∂µ ξ
ν
∂ν ′h

ρσ , then we simply have

∂µ hρσ = ∂µ ′h
ρσ (2423)

Therefore, we find that to first order in hµν and ∂ µ ξ
ν

we have

∂µ ′ ≈ ∂µ Gauge invariance of the four-derivative (2424)

We can also show that this result is consistent with the linearized gauge freedom for h′µν as given in

(2418). Taking the derivative of h′µν in (2418) gives

∂
′
σ h′µν =

∂h′µν

∂x′σ
=

∂

(
hµν +∂µ ξ ν +∂ν ξ µ

)
∂
(
xσ −ξ

σ
) (2425)

Dividing top and bottom of the right side by ∂xρ gives

∂
′
σ h′µν =

∂

(
hµν +∂µ ξ ν +∂ν ξ µ

)
/∂xρ

∂
(
xσ −ξ

σ
)
/∂xρ

=
∂ρ

(
hµν +∂µ ξ ν +∂ν ξ µ

)
δ

σ

ρ −∂ρ ξ
σ (2426)
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Since we only keep ∂ρ ξ
σ

to first order, then we can approximate
(

δ
σ

ρ −∂ρ ξ
σ
)−1

≈ δ
σ

ρ +∂ρ ξ
σ

. This gives

∂
′
σ h′µν = ∂ρ

(
hµν +∂µ ξ ν +∂ν ξ µ

)(
δ

σ

ρ +∂ρ ξ
σ
)

(2427)

Once again, to keep only fist order in hµν and ∂µ ξ ν , we must neglect squared terms in ∂σ ξ
µ

and products of

hµν and ∂µ ξ ν . Therefore we must neglect ∂ρ ξ
σ

in the last parentheses of (2427) which gives

∂
′
σ h′µν = ∂σ

(
hµν +∂σ ∂µ ξ ν +∂σ ∂ν ξ µ

)
(2428)

∂
′
σ h′µν = ∂σ h′µν (2429)

This means that in our linearized approximations, again we obtain ∂ ′µ ≈ ∂µ . Therefore, throughout our

treatment we consider that taking derivatives does not break gauge-invariance in the linearized approximation.

The derivative of any gauge-invariant quantity is still a gauge-invariant quantity, provided we require that any

linear coordinate transformation given by x′µ = xµ −ξ
µ

satisfies
∣∣∂ν ξ

µ
∣∣<< 1.

However, to maintain consistency with the linearization of the Riemann tensor at the beginning of this

appendix, we still require that higher order derivatives do not yield terms which are larger than the terms that

were neglected in the Riemann tensor. Otherwise, we must return to the calculation of the Riemann tensor

and preserve higher order terms. This would significantly altar all of the formulation used throughout this

entire dissertation.
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Appendix B

Linearized General Relativity in the harmonic gauge

The trace-reversed metric perturbation

First we define the trace-reversed metric perturbation as

h̄µν ≡ hµν − 1
2
ηµν h (2430)

where h is the trace. Since we know from (2381) that the trace can be written as h = −h00+H, then the

separate components of (2430) can be written as

h̄00 =
1
2
(h00+H) , h̄0i = h0i, h̄i j = hi j+

1
2
δ i j (h00−H) (2431)

Note that if we take the trace of (2430) using gµν ≈ ηµν to first order in the metric, then we obtain

η
µν h̄µν = η

µν hµν −
1

2
η

µν
ηµν h (2432)

h̄ν
ν = hν

ν −
1

2
4h (2433)

h̄ = −h (2434)

Hence the trace of h̄µν is the negative trace of hµν , which is the reason for the name “trace-reversed” pertur-

bation. Substituting h̄=−h into (2430) gives h̄µν = hµν +
1

2
ηµν h̄. Solving for hµν gives

hµν = h̄µν −
1

2
ηµν h̄ (2435)

Notice this has the same form as (2430) but with hµν and h exchanged with h̄µν and h̄, respectively.

The trace-reversed harmonic gauge260

Next we consider the divergence of h′µν from (2418) which gives

∂
ν h′µν = ∂

ν hµν +∂
ν
∂µ ξ ν +�ξ µ (2436)

This can be expressed in terms of the trace-reversed metric perturbation by inserting (2435).

∂
ν

(
h̄′µν −

1

2
ηµν h̄′

)
= ∂

ν

(
h̄µν −

1

2
ηµν h̄

)
+∂

ν
∂µ ξ ν +�ξ µ (2437)

∂
ν h̄′µν −

1

2
∂µ h̄′ = ∂

ν h̄µν −
1

2
∂µ h̄+∂

ν
∂µ ξ ν +�ξ µ (2438)

260Typically, only the term “harmonic gauge” is used however, we use “trace-reversed harmonic gauge” to

emphasize that the harmonic gauge is applied to the trace-reversed metric perturbation. As we show near

the end of this appendix, applying the harmonic gauge to the non-trace-reversed metric perturbation does not

yield the desired final result.
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We can relate h̄′ to h̄ by taking the trace of (2418) which gives

η
µν h′µν = η

µν hµν +η
µν

∂µ ξ ν +η
µν

∂ν ξ µ (2439)

h′ = h+∂
ν
ξ ν +∂

µ
ξ µ (2440)

Using h̄=−h from (2434) and combining the last two terms with a single repeating index gives

h̄′ = h̄−2∂
ρ

ξ ρ (2441)

Substituting this into (2438) gives

∂
ν h̄′µν −

1

2
∂µ

(
h̄−2∂

ρ
ξ ρ

)
= ∂

ν h̄µν −
1

2
∂µ h̄+∂

ν
∂µ ξ ν +�ξ µ (2442)

∂
ν h̄′µν = ∂

ν h̄µν +�ξ µ (2443)

We can select ξ µ so that ∂ ν h̄µν =�ξ µ which means ∂ ν h̄′µν = 0. Dropping the prime gives

∂ ν h̄µν = 0 Trace-reversed harmonic gauge (2444)

This is effectively a gauge choice261 which is often referred to as the harmonic gauge262. It involves four

constraint equations (one for each value of the index µ) and therefore removes four gauge degrees of free-

dom. Since the metric is a symmetric 4x4 tensor consisting of ten non-redundant degrees of freedom (four

components on the diagonal and six off-diagonal), then this gauge choice leaves only six independent degrees

of freedom remain. This is precisely the number of physical degrees of freedom predicted in GR since the

four gauge degrees of freedom are explicitly determined by the four components of the gauge vector ξ
µ

that

generate linear transformations. The harmonic gauge is the basis for the gravito-electromagnetic formulation

in Part I which is one of the most popular forms of gravito-electromagnetism used by various authors in the

literature. (ref.)

Lastly, we also mention that the harmonic gauge is the usual starting point for developing the transverse-

traceless (TT) gauge which is typically used for describing gravitational waves as shown in the following

two appendices. We say it is the usual starting point because it is certainly not the only starting point. It is

simply convenient because it already removes four gauge degrees of freedom which leaves only another four

gauge degrees of freedom for the case of vacuum solutions which yields the TT gauge. In other words, the

linearized gauge transformation is reduced from (2418) to (2443). In the TT gauge, this is reduced further

with the choice of �ξ µ = 0. However, it is certainly possible to begin with all the degrees of freedom in

the metric and eliminate eight gauge degrees of freedom through a single process in order to arrive at the TT

gauge in vacuum. Both approaches are shown in Appendix F.

The Einstein tensor components in terms of the trace-reversed metric perturbation

We can express the Einstein tensor in terms of the trace-reversed metric perturbation by substituting

261This is directly analgous to the case in EM where the gauge freedom is A′µ =Aµ+∂ µ χ so the divergence

gives ∂µ A′µ = ∂µ Aµ +�χ . For the Lorenz gauge we choose ∂µ Aµ =−�χ so that ∂µ A′µ = 0.

262This gauge has also been referred to as the transverse or Einstein or Hilbert or de Donder gauge, or the

harmonic coordinate system.
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(2435) and (2434) into (2379). This gives

Gµν =
1

2

[
∂

γ
∂µ

(
h̄γν −

1

2
ηγν h̄

)
+∂

γ
∂ν

(
h̄γµ −

1

2
ηγµ h̄

)
−ηµν�h̄

−�
(

h̄µν −
1

2
ηµν h̄

)
+∂µ ∂ν h̄−ηµν ∂

ρ
∂

γ

(
h̄ργ −

1

2
ηργ h̄

)]
(2445)

Distributing and contracting indices gives

Gµν =
1

2

(
∂

γ
∂µ h̄γν −

1

2
∂ν ∂µ h̄+∂

γ
∂ν h̄γµ −

1

2
∂µ ∂ν h̄−ηµν�h̄

−�h̄µν +
1

2
ηµν�h̄+∂µ ∂ν h̄−ηµν ∂

ρ
∂

γ h̄ργ +
1

2
ηµν�h̄

)
(2446)

Canceling and combining terms as well as rearranging gives

Gµν =
1
2

(
∂ γ ∂µ h̄γν +∂ γ ∂ν h̄γµ −ηµν ∂ ρ ∂ γ h̄ργ −�h̄µν

)
Linearized Einstein tensor in terms of the trace-reversed metric perturbation

(2447)

Expanding the summations gives

Gµν = 1
2

[(
∂

0
∂µ h̄0ν +∂

k
∂µ h̄kν

)
+
(

∂
0
∂ν h̄0µ +∂

k
∂ν h̄kµ

)
−ηµν

(
∂

0
∂

0h̄00+2∂
0
∂

kh̄0k+∂
k
∂

l h̄kl

)
−�h̄µν

]
(2448)

Next we write an expression for each of the components of the Einstein tensor: G00, G0i, and Gi j. Evaluating

G00 and expanding the box operator as �= ∂0∂ 0+∂k∂ k gives

G00 = 1
2

[(
∂

0
∂0h̄00+∂

k
∂0h̄k0

)
+
(

∂
0
∂0h̄00+∂

k
∂0h̄k0

)
+
(

∂
0
∂

0h̄00+2∂
0
∂

kh̄0k+∂
k
∂

l h̄kl

)
−
(

∂0∂
0+∂k∂

k
)

h̄00

]
(2449)

Since ∂0 =−∂ 0, then we can cancel terms to obtain

G00 =
1
2

(
∂ k∂ l h̄kl−∂k∂ kh̄00

)
(2450)

Returning to (2448) to evaluate G0i and expanding the box operator as �= ∂0∂ 0+∂k∂ k gives

G0i = 1
2

[(
∂

0
∂0h̄0i+∂

k
∂0h̄ki

)
+
(

∂
0
∂ih̄00+∂

k
∂ih̄k0

)
−η0i

(
∂

0
∂

0h̄00+2∂
0
∂

kh̄0k+∂
k
∂

l h̄kl

)
−
(

∂0∂
0+∂k∂

k
)

h̄0i

]
(2451)

Canceling terms and using η0i = 0 gives

G0i =
1
2

(
∂ k∂0h̄ki+∂ 0∂ih̄00+∂ k∂ih̄k0−∂k∂ kh̄0i

)
(2452)
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Lastly, returning to (2448) to evaluate Gi j gives

Gi j =
1
2

[
∂ 0∂ih̄0 j+∂ k∂ih̄k j+∂ 0∂ jh̄0i+∂ k∂ jh̄ki

−δ i j

(
∂ 0∂ 0h̄00+2∂ 0∂ kh̄0k+∂ k∂ l h̄kl

)
−�h̄i j

] (2453)

The Einstein tensor in the harmonic gauge

We now apply the harmonic gauge from (2444) to the Einstein tensor in (2447). This immediately

eliminates three terms and only leaves

Gµν =− 1
2
�h̄µν

Linearized Einstein tensor

in the trace-reversed harmonic gauge
(2454)

A remarkable property of this gauge choice (in linearized GR) is that the components of the Einstein tensor

(G00, G0i, Gi j) are each expressed only in terms of the corresponding component of the (trace-reversed)

metric perturbation
(
h̄00, h̄0i, h̄i j

)
. There is no mixing of the metric perturbation components between the

Einstein tensor components. This is not immediately apparent when looking at the separate Einstein tensor

components found in (2450), (2452) and (2453) since they each contain a mix of h̄00, h̄0i, and h̄i j. However,

it can be shown that by choosing the harmonic gauge given in (2444) as ∂ ν h̄µν = 0, then the Einstein tensor

components each reduce to Gµν = − 1
2
�h̄µν . To see this, note that summing over indices in the harmonic

gauge gives ∂ 0h̄µ0+∂ kh̄µk = 0. This leads to two equations: for µ = 0 and for µ = i we have, respectively,

∂
0h̄00+∂

kh0k = 0 and ∂
0h̄i0+∂

kh̄ik = 0 (2455)

Taking a time derivative (∂0) of the first equation and a spatial derivative (∂i) of the second equation gives

∂0∂
0h̄00+∂0∂

kh̄0k = 0 and ∂i∂
0h̄i0+∂i∂

kh̄ik = 0 (2456)

In the second expression, we can freely raise the spatial indices (since we are working to first order in the

metric). We can also use ∂ 0 = −∂0 and change i to k in the first term (since it is a repeated index in both

terms). Then the expression becomes

−∂
k
∂0h̄k0+∂i∂

kh̄ik = 0 (2457)

Then adding this to the first expression in (2456) will cancel terms with ∂0∂ kh̄0k and give

∂0∂
0h̄00+∂

l
∂

kh̄ik = 0 (2458)

This means ∂ l∂ kh̄ik =−∂0∂ 0h̄00 which substituted into (2450) gives

G00 = 1
2

(
−∂0∂

0h̄00−∂
k
∂kh̄00

)
=− 1

2
�h̄00 (2459)

For G0i in (2452), we see that the two middle terms can be written together as ∂i

(
∂ 0h̄00+∂ kh̄k0

)
which

vanishes according to the first equation in (2455). This leaves

G0i =
1
2

(
∂

k
∂0h̄ki−∂

k
∂kh̄0i

)
(2460)

The first term can be replaced using the first equation in (2456) which gives

G0i = 1
2

(
−∂0∂

0h̄00−∂
k
∂kh̄0i

)
=− 1

2
�h̄0i (2461)
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For Gi j in (2453), we can write 2∂ 0∂ kh̄k0 as ∂ 0
(
∂ kh̄k0

)
+∂ k

(
∂ 0h̄k0

)
. Then the three terms in the parentheses

multiplying δ i j in (2453) become

∂
0
∂

0h̄00+2∂
0
∂

kh̄0k+∂
k
∂

l h̄kl = ∂

(
0
∂

0h̄00+∂
kh̄k0

)
+∂

k
(

∂
0h̄k0+∂

l h̄kl

)
(2462)

Using the two expressions in (2455), we see that both sets of parentheses above become zero. Then (2453)
reduces to

Gi j =
1
2

(
∂

0
∂ih̄0 j+∂

k
∂ih̄k j+∂

0
∂ jh̄0i+∂

k
∂ jh̄ki−�h̄i j

)
(2463)

Regrouping gives

Gi j =
1
2

[
∂

0
(
∂ih̄0 j+∂ jh̄0i

)
+∂

k
(
∂ih̄k j+∂ jh̄ki

)
−�h̄i j

]
(2464)

Note that taking ∂ j of the second expression in (2455) gives

∂ j∂
0h̄i0+∂ j∂

kh̄ik = 0 (2465)

Also, expressing the second expression in (2455) using an index j (instead of i) and taking ∂i gives

∂i∂
0h̄i0+∂i∂

kh̄ jk = 0 (2466)

Using (2465) and (2466) in (2464) leaves Gi j =− 1
2
�h̄i j. Therefore, we conclude that in the harmonic gauge,

each of the Einstein tensor components satisfies Gµν =− 1
2
�h̄µν .

Lastly, we point out that if we did not use the trace-reversed metric perturbation and simply used the

harmonic gauge of the non-trace-reversed metric perturbation, ∂ ν hµν = 0, then the linearized Einstein tensor

in (2379) would become

Gµν =
1
2

(
ηµν�h−�hµν −∂µ ∂ν h

)
(2467)

This is obviously not the same as (2454). Hence we find that it is only the combination of expressing the

Einstein tensor in terms of h̄µν and imposing ∂ ν h̄µν = 0 that we arrive at the simple result in (2454).

The Einstein field equations in the harmonic gauge

Since the Einstein field equations are given by Gµν = −2κTµν , then using the Einstein tensor in the

harmonic gauge from (2454) gives

�h̄µν =−2κTµν (2468)

where κ = 8πG/c4. So we can also write this as

�h̄µν =−
16πG

c4
Tµν (2469)

The retarded Green’s function solution to the D’Alembert (wave) operator is
−δ (t−|~x−~x′|/c)

4π |~x−~x′| . Therefore,

the Green’s function solution to the wave equation above is

h̄µν (t,~x) = − 1

4π

(
−16πG

c4

)∫
Tµν (tr,~x

′)

|~x−~x′| d3x′ (2470)

=
4G

c4

∫
Tµν (tr,~x

′)

|~x−~x′| d3x′ (2471)

where~x′ is the spatial coordinate of each infinitesimal element of Tµν occupying a differential volume element

d3x. Also, Tµν (tr,~x
′) is the stress-energy-momentum contribution at ~x′ evaluated at a retarded time tr and

located at a distance |~x−~x′| from the field point where h̄µν is measured. We can therefore express the retarded

time as tr = t−|~x−~x′|/c. From this expression we find that each component of Tµν is directly related to the

corresponding component of hµν .
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Appendix C

The Bianchi identity applied to the linearized Riemann tensor

Components of the linearized Riemann tensor

First, the components of the linearized Riemann tensor are evaluated. In (2370) of Appendix A, the

linearized Riemann tensor was found to be

R
µ

νγδ
= 1

2
η

µρ
(
∂γ ∂ν hδρ −∂γ ∂ρ hνδ −∂δ ∂ν hγρ +∂δ ∂ρ hνγ

)
(2472)

This can be written with all lowered indices (to lowest order in the metric) using Rβργσ = ηβ µ R
µ

ργσ . If ηβ µ

is applied to (2472) while remaining to first order in the metric, then ηβ µ ηµβ ≈ δ αβ since Rβργσ is already

first order in the metric. This gives

Rβργσ = 1
2

(
∂γ ∂ρ hσβ −∂γ ∂β hρσ −∂σ ∂ρ hγβ +∂σ ∂β hργ

)
(2473)

It is immediately evident that R0000 = 0 since all the terms would be identical and would therefore cancel.

To find the other independent components, the properties of the Riemann tensor can be applied, namely,

symmetry under exchange of the first and second pairs of indices, and anti-symmetry under exchange of the

first two indices with each other, or the last two indices with each other. This leads to the following relations.

Ri000 = R00i0 =−R0i00 =−R000i, R0i0 j =−Ri00 j =−R0i j0

Ri j00 = R00i j, Ri jk0 = Rkoi j =−R0ki j =−Ri j0k

(2474)

Notice that the set of components in the top-left contains only one temporal index, the set in the bottom-left

contains two temporal indices appearing as the first pair of indices or the last pair of indices. The set in

the top-right also contains two temporal index values, however, they are separated between the first pair of

indices and the second pair of indices. Finally, the set in the bottom-right contains only a single temporal

index.

Using (2473) to evaluate only the first Riemann tensor component in each set above gives

Ri000 = 1
2

(
∂

2
0 h0i−∂0∂ih00−∂

2
0 h0i+∂0∂ih00

)
= 0 (2475)

Ri j00 = 1
2

(
∂0∂ jh0i−∂0∂ih0 j−∂0∂ jh0i+∂0∂ih0 j

)
= 0 (2476)

R0i0 j = 1
2

(
∂0∂ih0 j−∂0∂0hi j−∂i∂ jh00+∂ j∂0h0i

)
(2477)

Ri jk0 = 1
2

(
∂k∂ih0i−∂k∂ih0 j−∂0∂ jhki+∂0∂ih jk

)
(2478)

Lastly, there is one more independent Riemann tensor component given by all spatial indices.

Ri jkl = 1
2

(
∂k∂ihli−∂k∂ih jl−∂l∂ jhki+∂l∂ih jk

)
(2479)
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In summary, the only non-zero Riemann tensor components and their corresponding symmetry properties are

in the following table. Using the notation ∂0hµν =
1

c
ḣµν gives

R0i0 j =
1
2

(
−∂i∂ jh00+

1

c
∂iḣ0 j+

1

c
∂ jḣ0i−

1

c2
ḧi j

)
where R0i0 j =−Ri00 j =−R0i j0

Ri jk0 =
1
2

(
∂k∂ih0i−∂k∂ih0 j−

1

c
∂ jḣki−

1

c
∂ih jk

)
where Ri jk0 = Rk0i j =−R0ki j =−Ri j0k

Ri jkl =
1
2

(
∂k∂ihli−∂k∂ih jl−∂l∂ jhki+∂l∂ih jk

)
The non-zero components of the linearized Riemann tensor

(2480)

The linearized Bianchi identity

The Bianchi identity for the Riemann tensor is

∇λ Rβργσ +∇σ Rβρλγ +∇λ Rβρσλ = 0 (2481)

where ∇µ is the covariant derivative defined as

∇µVν = ∂µVν +Γ
σ
µνVσ (2482)

with Vν being an arbitrary vector. Applying this to the Riemann tensor and remaining to first order in the

metric will reduce the covariant derivative to a partial derivative. This leads to

∂λ Rβργσ +∂σ Rβρλγ +∂λ Rβρσλ = 0 (2483)

If the Riemann tensor component in the first term above is Rβργσ = R0i0 j, then the identity will become

∂λ R0i0 j+∂ jR0iλ0+∂0R0i jλ = 0 (2484)

Since λ is a free index, then there are two cases: λ = 0 and λ = k. These lead to

∂0R0i0 j+∂ jR0i00+∂0R0i j0 = 0 and ∂kR0i0 j+∂ jR0ik0+∂0R0i jk = 0 (2485)

It has already been shown that R0i00 = 0. Also, using R0i0 j = −R0i j0 means that the first identity in (2485)
vanishes. Returning to (2483) and using Rβργσ = Ri jkl gives

∂λ Ri jk0+∂0Ri jλk+∂kRi j0λ = 0 (2486)

Again, there are two cases: λ = 0 and λ = l. These lead to

∂0Ri jk0+∂0Ri j0k+∂kRi j00 = 0 and ∂lRi jk0+∂0Ri jlk+∂kRi j0l = 0 (2487)
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It has already been shown that Ri j00 = 0. Also, using Ri jk0 = −Ri j0k means that the first identity in (2487)
vanishes. Lastly, returning to (2483) and using Rβργσ = Ri jkl gives

∂λ Ri jkl+∂lRi jλk+∂kRi jlλ = 0 (2488)

Again, there are two cases: λ = 0 and λ = m. These lead to

∂0Ri jkl+∂lRi j0k+∂kRi jl0 = 0 and ∂mRi jkl+∂lRi jmk+∂kRi jlm = 0 (2489)

In the first identity above, permuting indices on all three terms leads to ∂0Ri jlk+∂lRi jkl +∂kRi j0l = 0 which

is identical to the second identity in (2487). The second identity in (2489) also vanishes when inserting the

third Riemann tensor component from (2480). Therefore, the only unique, non-vanishing Bianchi identities

for the linearized Riemann tensor are given by the second identity in each of (2485) and (2487). The results

are summarized below, with the terms rearranged and using ∂0 =
1
c
∂t .

left side and a time-derivative on the right side.

∂kR0i0 j−∂ jR0i0k =− 1
c
∂tRk ji0

∂kRi jl0−∂lRi jk0 =− 1
c
∂tRi jkl

The unique, non-vanishing Bianchi identities

of the linearized Riemann tensor

(2490)

Writing the non-vanishing Bianchi identities in this form is suggestive of the Faraday-like relationships that

they predict. Specifically, notice that there is an anti-symmetric spatial derivative on the left side and a

time-derivative on the right side.
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Appendix D

Properties of plane-fronted gravitational waves

The trace-reversed metric perturbation for a plane-fronted gravitational wave can be written as

h̄µν = Āµν eikσ xσ

(2491)

where Āµν is a constant amplitude and kσ is a constant wave four-vector. We will demonstrate that gravita-

tional plane-fronted waves have the following properties.

1. They are covariantly transverse
(
Āµν kν = 0

)
in the harmonic gauge.

2. They are spatially transverse
(
Ai jk

j = 0
)

in the TT gauge.

3. They have a null wave four-vector (kσ kσ = 0) in vacuum.

4. They have a dispersion equation in matter (assuming a particular constitutive equation).

1. Plane waves are covariantly transverse
(
Āµν kν = 0

)
in the harmonic gauge.

In (2444) of Appendix B, we found the trace-reversed harmonic gauge as ∂ν h̄µν = 0. Here we show that

plane wave solutions in this gauge are necessarily transverse. Applying the gauge condition to the plane wave

solution in (2491) gives

∂
ν h̄µν = ∂

ν

(
Āµν eikσ xσ

)
= 0 (2492)

Since Āµν is a constant amplitude, once again we can bring it out of the four-derivative and apply the chain

rule to eikσ xσ

eikσ xσ

Āµν ∂
ν (kσ xσ ) = 0 (2493)

From (2502) we know that ∂ ν (kσ xσ ) = kν . So we have

eikσ xσ

Āµν kν = 0 (2494)

This result requires either the trivial solution eikα xα = 0 (which means there is no wave) or

kν Āµν = 0 covariantly transverse plane waves in the harmonic gauge (2495)

2. Plane waves are spatially transverse
(
Ai jk

j = 0
)

in the TT gauge.

Summing over ν in (2495) gives

k0Āµ0+ k jĀµ j = 0 (2496)
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In Appendix F, it is shown that specializing to the transverse-traceless (TT) gauge requires263

h0µ = 0 and h= 0 (2497)

Having h0µ = 0 means that A0µ = 0 so the first term in (2496) vanishes and the second term is non-zero only

for µ = i. So we have

Ai jk
j = 0 spatially transverse plane waves in the TT gauge (2498)

3. Plane waves have a null wave four-vector (kσ kσ = 0) in vacuum.

From (2468) we find that the linearized Einstein equation in the harmonic gauge for the case of vacuum(
Tµν = 0

)
is simply

�h̄µν = 0 (2499)

Substituting (2491) into (2499) gives

�h̄µν = ∂
ρ

∂ρ

(
Āµν eikσ xσ

)
= 0 (2500)

Since Āµν is constant, then we can bring it out of the four-derivatives and divide it from both sides. Now

applying the four-derivative ∂ρ on eikσ xσ

gives

∂
ρ

[
eikσ xσ

∂ρ (kσ xσ )
]
= 0 (2501)

Since kσ is constant, then we can pull it out of the derivative and ∂ρ (kσ xσ ) becomes

∂ρ (kσ xσ ) = kσ ∂ρ xσ = kσ δ
σ

ρ = kρ (2502)

Substituting this result into (2501) gives

∂
ρ

(
eikσ xσ

kρ

)
= eikσ xσ

kρ ∂
ρ (kσ xσ ) (2503)

= eikσ xσ

kρ kσ gρλ
∂λ xσ (2504)

= eikσ xσ

kλ kσ δ
σ

λ (2505)

= eikσ xσ

kσ kσ (2506)

From (2501) we know this quantity much vanish.

eikσ xσ

kσ kσ = 0 (2507)

This requires either the trivial solution eikσ xσ

= 0 (which means no wave) or

kσ kσ = 0 null wave four-vector for a plane wave in vacuum (2508)

263Since the trace is zero in the TT gauge, then there is no longer a distinction between hµν and h̄µν (which

is trace-reversed) and we can drop the “bar” notation if desired.
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Since kσ =
(
k0,ki

)
where k0 = ω/c, then

kσ kσ =−ω
2/c2+ k2 (2509)

Using (2508) immediately leads to

k = ω/c (2510)

Therefore, we find that gravitational waves in vacuum propagate at the speed of light. Quantum mechanically,

this would imply that gravitational waves correspond to massless gravitons.

4. Plane waves have a dispersion equation in matter.

The linearized Riemann tensor is found in (2370) as

R
µ

νγδ
= 1

2
η

µρ
(
∂γ ∂ν hδρ −∂γ ∂ρ hνδ −∂δ ∂ν hγρ +∂δ ∂ρ hνγ

)
(2511)

We can express hµν in terms of h̄µν by using (2435) which gives

hµν = h̄µν − 1
2
ηµν h̄ (2512)

We will need the trace of h̄µν = Āµν eikσ xσ

from (2491) which is

h̄ = η
µν h̄µν = η

µν Āµν eikσ xσ

= Āν
ν eikσ xσ

(2513)

Substituting (2491) and (2513) into (2512) gives

hµν = Āµν eikσ xσ − 1
2
ηµν Āν

ν eikσ xσ

(2514)

=
(
Āµν − 1

2
ηµν Ā

)
eikσ xσ

(2515)

where Ā= Āν
ν is the trace of Āµν . Then we can simply identify the non-trace-reversed amplitude tensor as

Aµν = Āµν − 1
2
ηµν Ā (2516)

and the non-trace-reversed metric perturbation for a plane wave is just

hµν = Aµν eikσ xσ

(2517)

Now we can substitute (2517) into (2511) to evaluate the Riemann tensor in the linearized approximation.

R
µ

νγδ
= 1

2
η

µρ

[
∂γ ∂ν

(
Aδρ eikσ xσ

)
−∂γ ∂ρ

(
Aνδ eikσ xσ

)
−∂δ ∂ν

(
Aγρ eikσ xσ

)
+∂δ ∂ρ

(
Aνγ eikσ xσ

)]
(2518)

Since each term in the bracket is similar, we can consider just the first term.

∂γ ∂ν

(
Aδρ eikσ xσ

)
= ∂γ

(
Aδρ eikσ xσ

ikσ δ
σ

ν

)
(2519)

= ikν Aδρ ∂γ eikσ xσ

(2520)

= i2kν Aδρ eikσ xσ

kσ δ
σ

γ (2521)

= −kν kγ Aδρ eikσ xσ

(2522)
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We can apply the same procedure to the other three terms in (2518) and factor out eikσ xσ

which we will write

as eikx. Then rearranging terms gives

R
µ

νγδ
= 1

2
eikx

η
µρ
(
kγ kρ Aνδ + kν kδ Aγρ − kν kγ Aδρ − kδ kρ Aνγ

)
(2523)

The Ricci tensor can be found by contracting the first and third index of the Riemann tensor: Rνδ = R
µ

νγδ
.

Setting µ = γ in (2523) and distributing the inverse metric ηγρ gives

Rνδ = 1
2
eikx
(
η

γρ kγ kρ Aνδ +η
γρ kν kδ Aγρ −η

γρ kδ kρ Aνγ −η
γρ kν kγ Aδρ

)
(2524)

To first order, we have gγρ ≈ ηγρ so we can contract indices using ηγρ . This gives

Rνδ = 1
2
eikx
(
kγ kγ Aνδ + kν kδ A− kδ kγ Aνγ − kν kρ Aδρ

)
(2525)

where A = A
ρ

ρ . From (2512) we know Aµν = Āµν − 1
2
ηµν Ā. Taking the trace of this leads to A = −Ā.

Substituting these relations into (2525) gives

Rνδ = 1
2
eikx
[
−kγ kγ Āνδ − kν kδ Ā− kδ kγ

(
Āνγ − 1

2
ηνγ Ā

)
− kν kρ

(
Āδρ − 1

2
ηδρ Ā

)]
(2526)

Distributing and lowering indices with ηνγ and ηδρ gives

Rνδ = 1
2
eikx
(
−kγ kγ Āνδ − kν kδ Ā− kδ kγ Āνγ +

1
2
kδ kν Ā− kν kρ Āδρ +

1
2
kν kδ Ā

)
(2527)

The second, fourth, and sixth terms cancel with one another. Using γ for all repeated indices gives

Rνδ = 1
2
eikx
(
−kγ kγ Āνδ − kδ kγ Āνγ − kν kγ Āδγ

)
(2528)

The Ricci scalar is found by contracting the Ricci tensor: R= ηνδ Rνδ = Rδ

δ
. This gives

R = 1
2
eikx

η
νδ
(
−kγ kγ Āνδ − kδ kγ Āνγ − kν kγ Āδγ

)
(2529)

Contracting indices makes the last two terms identical so they can be combined. Then using γ and ρ for all

repeated indices and writing Āδ

δ
as simply Ā gives

R = 1
2
eikx
(
−kγ kγ Ā−2kρ kγ Āργ

)
(2530)

The linearized Einstein tensor written as the trace-reversed Ricci tensor is Gµν ≈Rµν+
1
2
ηµν R. Using (2528)

and (2530) with µ and ν for free indices, and factoring out eikx gives

Gµν = 1
2
eikx
[(
−kγ kγ Āµν − kν kγ Āµγ − kµ kγ Āνγ

)
+ 1

2
ηµν

(
−kγ kγ Ā−2kρ kγ Āργ

)]
(2531)

Rearranging to gather common terms gives

Gµν = 1
2
eikx
[
−kγ kγ

(
Āµν − 1

2
ηµν Ā

)
− kγ kµ Āνγ − kγ kν Āµγ −ηµν kρ kγ Āργ

]
(2532)
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We can fix the gauge by choosing the trace-reversed harmonic gauge. Then (2495) gives kν Āµν = 0 and

therefore the last three terms in (2532) vanish. Also, since (2516) gives Aµν = Āµν − 1
2
ηµν Ā, then (2532)

becomes

Gµν =− 1
2
kγ kγ Aµν eikx

Linearized Einstein tensor for a plane-fronted gravitational wave

in the trace-reversed harmonic gauge

(2533)

This result is consistent with inserting a wave, h̄µν = Aµν eikσ xσ

, into the linearized Einstein tensor in the

trace-reversed harmonic gauge found in (2454) as Gµν = − 1
2
�h̄µν . We can now use the Einstein field

equation, Gµν = κTµν , to obtain

− 1
2
eikxkγ kγ Aµν = κTµν (2534)

Using κ = 8πG/c4 gives

eikxkγ kγ Aµν = −16πG

c4
Tµν (2535)

If we consider a constitutive equation given by Tµν = −µG(SC)e
ikxAµν , where µG(SC) is a positive constant

with dimensions of energy density, then we obtain a dispersion relation given by

kγ kγ − 16πGµ

c2
= 0 (2536)

Using kσ kσ =−ω2/c2+ k2 gives

k2− ω2

c2
− 16πGµ

c2
= 0 (2537)

Note that this dispersion relation is not unique to any particular component of the metric (h00, h0i, hi j)

or the corresponding stress tensor components (T00, T0i, Ti j). However, as shown by the field equations

in the Helmholtz Decomposition treatment (353), only the transverse-traceless components of the metric

perturbation (hττ
i j ) are radiating degrees of freedom. Therefore we expect that a gravitational wave dispersion

relation such as (2537) would only apply to hττ
i j .

Lastly, we point out that for a wave with a null wave four-vector
(
kγ kγ = 0

)
, we find from (2533) that

Gµν vanishes. Since Gµν = κTµν , then this requires Tµν = 0 which means the wave is a vacuum solution.

As expected, this implies a plane-fronted gravitational wave will have no dispersion in vacuum.
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Appendix E

Relating gauge freedom and conservation laws in GR and EM

In Appendix A, we found that there are four degrees of gauge freedom due to the four components of the

gauge four-vector ξ
µ

. In Appendix B, we applied the harmonic gauge to remove the four degrees of gauge

freedom from the metric. We also showed in Appendix D that a plane wave solution satisfies the linearized

Einstein equation in vacuum and that in the harmonic gauge, plane waves must be transverse. Here we

will show that in vacuum, the harmonic gauge does not completely fix the gauge. There are four additional

degrees of gauge freedom. We will show that this is a result of the absence of energy-momentum conservation

in vacuum since there are no sources to conserve.

Relating gauge freedom and conservation laws for gravitation

In (2443) of Appendix B, we found that the divergence of the gauge transformation for the metric pertur-

bation is

∂
ν h̄′µν = ∂

ν h̄µν +�ξ µ (2538)

In the trace-reversed harmonic gauge264, we choose

∂
ν h̄µν =−�ξ µ (2539)

so that ∂ ν h̄′µν = 0. This leads to the Einstein equation found in (2468) as

�h̄µν =−2κTµν (2540)

If we define a four-vector, ϒµ ≡�ξ µ , and apply a box operator on (2538), then we have

∂
ν�h̄′µν = ∂

ν�h̄µν +�ϒµ (2541)

Using (2540) gives

−2κ∂
ν T ′µν =−2κ∂

ν Tµν +�ϒµ (2542)

Now we have the gauge freedom related to the stress tensor rather than the metric perturbation. Conservation

of energy-momentum (in linearized GR) requires ∂ ν Tµν = 0, so (2542) becomes

�ϒµ = 0 (2543)

We can also factor out a derivative from (2542) to obtain

∂
ν
(
2κT ′µν −2κTµν +∂ν ϒµ

)
= 0 (2544)

In curved space-time, the divergence of T µν is actually given by265

∇ν T µν = ∂ν T µν +Γ
ρ

ρν T µν =
1√−g

∂ν

(√
−gT µν

)
(2545)

Also, if we apply a time-like Killing vector kµ = δ
µ

0 such that

∂
ν
(
kµ Tµν

)
= ∂

ν Jν = 0 and ∂
ν
(
kµ

∂ν ϒµ

)
= ∂

ν Lν = 0 (2546)

264For brevity, we will simply refer to this as the “harmonic gauge” rather than the “trace-reversed harmonic

gauge” throughout the rest of this appendix.
265Here we are following the formulation found in [104].
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then we can write (2544) as

1√−g
∂

ν
[√
−g
(
2κJ′ν −2κJν +Lν

)]
= 0 (2547)

Taking a volume integral over the proper 4-volume dV =
√−gd4x gives∫

∂
ν
[√
−g
(
2κJ′ν −2κJν +Lν

)]
d4x = 0 (2548)

Then applying Gauss’s law in curved space-time gives∮ (
2κJ′ν −2κJν +Lν

)
n̂ν

√
−gd3x= 0 (2549)

where n̂µ is the outward unit normal to the hypersurface d3x. Assuming J′µ ,Jµ ,∂ µ Ψ→ 0 as r→ ∞ (for a

finite stress tensor distribution), then if we evaluate the hypersurface integral at infinity, the integrand must

vanish. Denoting the longitudinal components as Jν ‖ gives

2κJ
′
ν ‖−2κJν ‖+Lν ‖ = 0 (2550)

Using (2546) gives

kµ

(
2κT

′
µν ‖−2κTµν ‖+∂ν ϒµ ‖

)
= 0 (2551)

Therefore, this is the unique solution to (2544). Since ϒµ ≡�ξ µ , then we have

2κT
′
µν ‖−2κTµν ‖+∂ν�ξ µ ‖ = 0 (2552)

Therefore we find that only the longitudinal component of Tµν is associated with the longitudinal component

of the gauge freedom described by ξ µ . Assuming that the stress tensor is gauge-invariant leads to

∂ν�ξ µ ‖ = constant (in matter) (2553)

Hence we find that conservation of energy-momentum inside matter imposes a restriction on the gauge free-

dom in (2538). In contrast to this, we can consider the case for fields in vacuum where we find there are four

additional degrees of gauge freedom. The Einstein equation (2468) in vacuum becomes �h̄µν = 0. Using

this in (2541) immediately leads to ∂ν�ξ µ = 0. This means that we have

�ξ µ = constant (in vacuum) (2554)

Comparing (2553) for matter with (2554) for vacuum shows that in vacuum, the gauge freedom is relaxed

by one derivative. It is no surprise that we find additional gauge freedom in vacuum that is not present in

matter. The presence of matter introduces additional conservation laws which reduce the symmetry of the

gauge. There are effectively four conservation laws in ∂ν T µν = 0 (one for each value of µ) and hence there

are four less degrees of gauge freedom in matter. We may consider this to be a consequence of Noether’s

theorem which shows that conservation laws are always associated with symmetries. Since the vacuum has

no energy-momentum conservation law and has a higher symmetry than matter,266 then we expect that there

would be more degrees of gauge freedom in vacuum.

266The vacuum has higher symmetry than matter because any (finite) matter distribution must have a bound-

ary and a center of mass. These features necessarily break translational symmetry and therefore reduce the

symmetry of matter compared to vacuum.
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Comparing the gauge freedom in matter and in vacuum

To demonstrate more explicitly the difference in the gauge freedom in matter versus vacuum, we can

compare the gauge freedom solutions for each case. For the case of fields in matter, we can write the solution

to (2543) as a superposition of plane waves

ϒµ (~x) = Re

∫
d3~k

(2π)3
Bµ

(
~k
)

eikσ xσ

(2555)

where kσ =
(
ω,ki

)
and kσ kσ = −ω2+ k2 = 0. Since we defined ϒµ = �ξ µ , then we also have a Green’s

function solution for ξ µ given by

ξ µ (t,~x) =−
1

4π

∫
ϒµ (tr,~x

′)

|~x−~x′| d3x′ (2556)

where tr is the retarded time expressed as tr = t−|~x−~x′|/c. Since (2556) gives ξ µ in terms of ϒµ , and (2555)
gives ϒµ in terms of Bµ , then we find that Bµ ultimately determines the four degrees of gauge freedom that

are possible in order to satisfy conservation of energy-momentum in matter.

Now in the harmonic gauge given by (2539), we have already removed four gauge degrees of freedom

from the metric. Therefore, it would seem from (2555) that there are another four degrees of gauge freedom

given by Bµ , which would imply that there are a total of eight degrees of gauge freedom in matter. However,

Bµ cannot be chosen arbitrarily. Rather, we find that Bµ is already fixed due to the fact that we must satisfy

ϒµ =�ξ µ where�ξ µ =−∂ ν h̄µν in the harmonic gauge (2539). Therefore, we find that using the harmonic

gauge and also enforcing conservation of energy-momentum does not leave any remaining degrees of gauge

freedom.

In a sense, conservation of energy-momentum removes four degrees of gauge freedom which leaves only

four degrees of gauge freedom in matter. Then the harmonic gauge completely fixes the gauge in matter by

removing the remaining four degrees of gauge freedom. This is done by imposing four constraint equations,

∂ ν h̄µν =−�ξ µ , where each value of µ gives one constraint.

Now we consider the case of fields in vacuum. Setting the constant in (2554) to zero gives �ξ µ = 0.

Notice that�ξ µ = 0 still satisfies the harmonic gauge condition in (2539)which simply becomes ∂ ν h̄µν = 0.

The solution to �ξ µ = 0 can be written as a superposition of plane waves

ξ µ (~x) = Re

∫
d3~k

(2π)3
εµ

(
~k
)

eikσ xσ

(2557)

Notice that (2557) simply expresses the four degrees of freedom from ξ µ in terms of the four components of

εµ . Therefore, choosing the constant in (2554) to be zero and obtaining (2557) did not fix any gauge degrees

of freedom.

We now have four functions given by εµ in (2557) which can be chosen arbitrarily. This implies that in

vacuum, there are four additional gauge degrees of freedom beyond the four that the harmonic gauge already

fixed. In vacuum, there are no constraints imposed by energy-momentum conservation that would determine

εµ . This is in contrast to the case in matter where the constraint �ϒµ = 0 (due to energy-momentum conser-

vation) combined with the harmonic gauge condition, ϒµ = �ξ µ = −∂ ν h̄µν , does not permit the functions

Bµ in (2555) to be chosen arbitrarily. In the next appendix, we will show that if we set �ξ µ = 0 in vacuum,

then the transverse-traceless (TT) gauge will specify conditions on the four components of εµ in (2557).
The conditions are found in (2627) in terms of the wave vector k and the components of the wave amplitude

tensor Aµν .
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The effect of imposing the TT gauge inside matter

It may seem that for the case of fields in matter, we can also set �ξ µ = 0 since this still satisfies the

harmonic gauge condition. However, since ϒµ =�ξ µ , then this would mean ϒµ = 0 and (2542) would give

T ′µν = Tµν . This implies that the stress tensor would be invariant under linear coordinate transformations.

Such a result is certainly not consistent with the linear coordinate transformation of the stress tensor which

can be shown to be267

T ′µν = Tµν −
(

∂
ρ

ξ µ

)
Tρν − (∂ ρ

ξ ν)Tµρ (2558)

For example, consider the simple case of a coordinate shift that is purely spatial, ξ µ = (0,ξ i), and is uniform,

∂kξ i = 0. Using (2558) to find T ′0i gives

T ′0i = T0i− (∂ ρ
ξ i)T0ρ − (∂ ρ

ξ i)T0ρ (2559)

= T0i−
(
∂

0
ξ i

)
T00 (2560)

If we consider a stress tensor describing dust (a pressureless ideal fluid), then Tµν = ρuµ uν . To lowest order

in the metric, we can use ∂ 0 ≈− 1
c
∂t and uµ ≈ (−c,ui). This gives

−ρcu′i =−ρcui+
1
c
ξ̇ iρc2 (2561)

Defining Ui ≡ ξ̇ i and simplifying gives

u′i = ui−Ui (2562)

This transformation implies that an observer can always boost into the rest frame of a dust particle by choosing

Ui = −ui so that u′i = 0. However, if we insist that T ′µν = Tµν , then we must have u′i = ui regardless of the

value of Ui. This means that boosting into a different frame has no effect on the observed velocity of the

particle. This clearly violates the basic tenants of relativity. Therefore, we see that choosing the transverse-

traceless (TT) gauge in matter (which requires setting �ξ µ = 0 and leads to T ′µν = Tµν ) is an unphysical

condition to impose on the stress tensor.

Relating gauge freedom and conservation laws for electromagnetism (EM)

Similar to the treatment shown above, in EM we find that charge conservation reduces the gauge freedom

of the four-potential by one degree of freedom. The gauge freedom is given by

A′µ = Aµ +∂
µ

χ (2563)

Taking a divergence gives

∂µ A′µ = ∂µ Aµ +�χ (2564)

Similar to the harmonic gauge, in the Lorenz gauge we choose

∂µ Aµ =−�χ (2565)

267We should note that (2542) cannot be derived from (2558) since (2542)was a result of using the Einstein

equation in conjunction with the metric transformation (2538). Therefore, (2542) and (2558) cannot be

checked for consistency regardless of the discussion here about gauge freedom. Nevertheless, (2558) still

demonstrates that the stress tensor should not be invariant under coordinate transformations as (2542) would

imply if we set ϒµ = 0.
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so that ∂µ A′µ = 0. If we define Ψ≡�χ and apply a box operator on (2564), then we have

∂µ�A′µ = ∂µ�Aµ +�Ψ (2566)

Since the Maxwell equations in the Lorenz gauge give �Aµ =−µ0Jµ , then in matter we have

−µ0∂µ J′µ =−µ0∂µ Jµ +�Ψ (2567)

Since charge conservation requires ∂µ Jµ = 0, then

�Ψ= 0 (in charged matter) (2568)

Hence we find that conservation of charge imposes a restriction on the gauge freedom in (2564). We can

compare this result to the case of fields in vacuum. Starting from (2563) and applying a box operator gives

�A′µ = �Aµ +∂
µ�χ (2569)

In vacuum we have �Aµ = 0 which means ∂ µ�χ = 0. Again using Ψ≡�χ gives

∂ µ Ψ= constant (in vacuum) (2570)

Comparing (2568) for matter with (2570) for vacuum shows that in vacuum, the gauge freedom is relaxed

by one derivative. It is no surprise that we find this additional gauge freedom in vacuum since the presence of

charge introduces an additional conservation law which reduces the symmetry of the gauge. Conservation of

charge, ∂µ Jµ = 0, is a single constraint equation and therefore removes a single degree of freedom in matter.

For fields in charged matter, we can write the solution to (2568) as

Ψ(~x) = Re

∫
d3~k

(2π)3
D

(
~k
)

eikσ xσ

(2571)

Since we defined Ψ≡�χ , then we also have a Green’s function solution for χ given by

χ (t,~x) = − 1

4π

∫
Ψ(tr,~x

′)

|~x−~x′| d3x′ (2572)

Notice that (2572) gives χ in terms of Ψ, and (2571) gives Ψ in terms of D, therefore we find that D gives

the single degree of gauge freedom that remains after satisfying conservation of charge in matter.

Now in the Lorenz gauge given by (2565), we have already removed a single gauge degree of freedom

from the four-potential by imposing a single constraint equation. Therefore, it would seem from (2555)
that we still have another degree of gauge freedom which would imply a total of two degrees of gauge

freedom in matter. However, D cannot be chosen arbitrarily. We must satisfy Ψ=�χ where�χ must satisfy

�χ =−∂µ Aµ in the Lorenz gauge (2565). Therefore, we find that using the Lorenz gauge and also enforcing

the conservation of charge does not leave any remaining gauge degrees of freedom. In a sense, conservation

of charge removes one degree of gauge freedom in charged matter and therefore the Lorenz gauge completely

fixes the gauge in charged matter by imposing a single constraint equation that removes the last remaining

degree of gauge freedom.
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Now we consider the case of fields in vacuum. Setting the constant in (2570) to zero and using Ψ=�χ

gives �χ = 0. The solution for χ can be written as a superposition of plane waves

χ (~x) = Re

∫
d3~k

(2π)3
F

(
~k
)

eikσ xσ

(2573)

Notice that�χ = 0 still satisfies the harmonic gauge condition in (2565)which becomes ∂µ Aµ = 0. However,

we now have an additional degree of freedom given by F in (2573) which can be chosen arbitrarily. This

implies that in vacuum, there is another gauge degree of freedom in addition to the gauge degree of freedom

already removed by the Lorenz gauge. In vacuum, there are no constraints imposed by charge conservation

that would determine F . This is in contrast to the case in charged matter where the constraint �Ψ = 0 (due

to charge conservation) and the Lorenz gauge condition given as Ψ = �χ = −∂µ Aµ , does not permit the

function F in (2573) to be chosen arbitrarily.

Next we can obtain a relationship between J′µ and Jµ to consider the role of the gauge function with

regard to the four-current. Factoring out a derivative from (2567) gives

∂µ

(
−µ0J′µ +µ0Jµ −∂

µ
Ψ
)
= 0 (2574)

Taking a volume integral over the proper 4-volume dV = γd4x gives∫
∂µ

(
µ0J′µ −µ0Jµ +∂

µ
Ψ
)

γd4x= 0 (2575)

Applying Gauss’s law in covariant form gives∮ (
µ0J′µ −µ0Jµ +∂

µ
Ψ
)

n̂µ γd3x= 0 (2576)

where n̂µ is the outward unit normal to the hypersurface d3x. Assuming J′µ ,Jµ ,∂ µ Ψ→ 0 as r→ ∞ (for a

finite four-current distribution), then if we evaluate the hypersurface integral at infinity, the integrand must

vanish. Denoting the longitudinal components as J
µ

‖ gives

µ0J
′µ
‖ −µ0J

µ

‖ +(∂
µ

Ψ)‖ = 0 (2577)

Therefore, this is the unique solution to (2574). Using Ψ=�χ gives

µ0J′µ = µ0Jµ − (∂ µ�χ)‖ (2578)

Therefore we find that only the longitudinal component of Jµ is associated with the longitudinal component

of the gauge freedom described by ∂ µ χ . This result may appear to imply that the four-current is a gauge-

dependent quantity which can be changed by a choice of χ . However, since the gauge freedom χ is not

observable and the four-current Jµ is observable, then we know this cannot be the case. Earlier we applied

conservation of charge by setting the divergence of (2578) to zero. This led to the condition in (2568) which

was enough to demonstrate that charge conservation reduces the gauge degrees of freedom in charged matter.

However, here we see that to insure Jµ cannot be changed by an unobservable gauge function, we must

require the stricter condition that (∂ µ�χ)‖ = 0. In terms of Ψ=�χ , this means

(∂ µ Ψ)‖ = 0 (in charged matter) (2579)

Note that the condition for vacuum obtained in (2570) will not change since the stricter condition obtained

here is only relevant to charged matter where Jµ must remain a gauge-invariant quantity. Note that in the case

of gravitation, we have the opposite situation. There was no need to consider a stricter condition in matter

as we have done here because the “gauge” function in (2542) involves a coordinate transformation, not an
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unobservable gauge function. Although we expect that the stress tensor should transform according to the

coordinate transformation in (2558) rather than the relationship in (2542), still we cannot simply set ∂ν ϒµ = 0

in (2542) otherwise this would imply that T ′µν = Tµν which we have demonstrated leads to violations of basic

tenants of relativity.

Therefore, we observe a fundamental difference between the source in electromagnetism, Jµ , and the

source in gravitation, Tµν . The key difference is that J′µ and Jµ in (2578) are not related by a coordinate

transformation. They are only related by a gauge transformation where the gauge freedom is given in (2563)
as A′µ = Aµ +∂ µ χ . This means that gauge choices involving χ can never conflict with transformations of Jµ

which involve boosts, rotations, translations, etc. This is in contrast to the stress tensor where T ′µν and Tµν in

(2542) are related by a gauge function ∂ν ϒµ (which is related to the gauge freedom of the metric) and they

are also related by a coordinate transformation given in (2558). As a result, there are stricter conditions that

must be satisfied for the stress tensor than for the four-current.

Comparing the Coulomb gauge in EM to the transverse-traceless (TT) gauge in GR

Next we consider the implications of using the Coulomb gauge in electromagnetism and compare the

result with using the TT gauge in gravitation. The Coulomb gauge is imposed by setting

∂iA
i = 0 (2580)

It may seem that for the case of fields inside charged matter, we can also set�χ = 0 since this still satisfies the

Lorenz gauge condition. However, since Ψ=�χ , then this would mean Ψ= 0. To consider the implications

of this, first we can use

∂µ

(
µ0J′µ

)
= ∂µ (µ0Jµ +∂

µ
Ψ) (2581)

This implies that the stress tensor would be invariant under linear coordinate transformations. Such a result

is certainly not consistent with the linear coordinate transformation of the stress tensor which is

T ′µν = Tµν −
(

∂
ρ

ξ µ

)
Tρν − (∂ ρ

ξ ν)Tµρ (2582)

Therefore, we conclude that charge conservation is a conservation law which effectively reduces the sym-

metry of the gauge. Note that charge conservation is a single conservation law (as opposed to ∂ν T µν = 0

which is effectively four conservation laws), therefore charge conservation removes only a single degree of

gauge freedom from (2564). Since we already used the Lorenz gauge
(
∂µ Aµ = 0

)
in (2565), then typically

the Coulomb gauge is also imposed so that ∂iA
i = 0. This is being used as an additional gauge condition

which removes another degree of freedom from Aµ . The Coulomb gauge is the common gauge for treating

electromagnetic radiation (hence it is sometimes referred to as the radiation gauge). It is a gauge that makes

Ai a purely transverse field. As we will show in the next appendix, it is directly analogous to the TT gauge for

gravitational radiation where we arrive at ∂ jhT T
i j = 0 so that hT T

i j is also a purely transverse field. However,

because hT T
i j is a tensor, we have the additional property that it is also traceless, δ

i j
hT T

i j , hence the name

“transverse-traceless” (TT) gauge.
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Appendix F

Linearized General Relativity in the transverse-traceless (TT) gauge

In the previous appendix, we showed that in vacuum, the harmonic gauge does not completely fix the

gauge. There are four additional degrees of gauge freedom as a result of the absence of energy-momentum

conservation in vacuum. Here we will specialize to the transverse-traceless (TT) gauge by eliminating the

additional degrees of gauge freedom in a manner that leaves only two physical degrees of freedom which

describe the polarization states for gravitational waves. The validity of this gauge will be demonstrated in

two ways: first by a physical argument based on choosing a particular frame of reference, and secondly based

on a more mathematically formal treatment by applying an appropriate gauge transformation to the metric.

The TT gauge derived by a physical argument using a particular coordinate frame

When considering gravitational waves, the most common treatment is to consider plane-fronted transverse

waves in vacuum. In Appendix D, we show that a plane wave of the form

hµν = Aµν eikσ xσ

(2583)

is transverse
(
kν Aµν = 0

)
in the harmonic gauge

(
∂ ν hµν = 0

)
. If the wave has a null wave four-vector

(kσ xσ = 0) then it is also a solution to the linearized vacuum field equation (2499). We will assume these

properties in the following discussion.

Now applying the harmonic gauge removes four of the ten degrees of freedom leaving six independent

degrees of freedom for the metric perturbation. To see this, consider a wave traveling in the z-direction, which

would have a wave four-vector given by kσ = (ω/c,0,0,k). Since a plane wave has a null wave four-vector

(kσ kσ = 0), then ω/c= k. In that case, the wave four-vector can be written as

kσ = (k,0,0,k) (2584)

We also showed in (2495) that a plane wave in the harmonic gauge is transverse so that

kν Aµν = 0 (2585)

Using (2584) in (2585) means we have

k0Aµ0+ k3Aµ3 = 0 (2586)

Since k0 = k3, then A0µ =−Aµ3 which we can write as

A00 =−A03, A01 =−A13, A02 =−A23, A30 =−A33 (2587)

This removes four degrees of freedom. Therefore, the remaining six degrees of freedom are

A00, A01, A02, A11, A12, A22 (2588)

Note that the first and last relation in (2587) are also equal since A03 = A30 by symmetry of the metric tensor.

This means that we also know A33 = A00. So the amplitude tensor can be written as

Aµν =


A00 A01 A02 −A00

A01 A11 A12 −A01

A02 A12 A22 −A02

−A00 −A01 −A02 A00

 (2589)
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We can show that there is still some gauge freedom remaining by choosing a frame of reference moving with

four-velocity uµ =
(
γc,γvi

)
that is transverse to the wave. Then we have

uµ hµν = 0 (2590)

Expanding the summation gives

γch0ν + γvihiν = 0 (2591)

If we choose to observe the wave from a frame of reference such that vi = 0, then we must have

h0ν = 0 (2592)

This implies that these components are not physical degrees of freedom of the wave since they can be removed

by a simple choice of velocity for the observer.268 Therefore (2592) removes another three degrees of freedom

in (2589) by setting A00 = A01 = A02 = 0. Then (2589) becomes

Aµν =


0 0 0 0

0 A11 A12 0

0 A12 A22 0

0 0 0 0

 (2593)

The harmonic gauge, ∂ µ hνµ = 0, also gives

∂
0hν0+∂

ihν i = 0 (2594)

For ν = 0 this becomes

∂
0h00+∂

ih0i = 0 (2595)

Since h0ν = 0 according to (2592), then the second term above is zero and we have ∂ 0h00 = 0. This confirms

that h00 is constant in time and is therefore a static gravitational potential that does not contribute to radiation

fields and can be eliminated from the wave metric. Using ν = i for the free index and j for the repeating

index in (2594) gives

∂
0hi0+∂

jhi j = 0 (2596)

Since h0ν = 0 according to (2592), then the first term above is zero and we are left with ∂ ihi j = 0. This means

the divergence of the spatial part of the amplitude tensor is zero. Using hµν = Aµν eikσ xσ

from (2583) gives

∂
j
(

Ai je
ikσ xσ

)
= 0 (2597)

Since Ai j and kσ are constants, then we can bring them out of the derivative. Also, since k0 = −k and

k3 = k from (2584), and because the wave is propagating in the x3 = z direction, then kσ xσ = k0x0+ klx
l =

k (−ct+ x3). So (2597) becomes

Ai je
ikσ xσ

ik∂
j (−ct+ x3) = Ai je

ikσ xσ

ikδ j3 = ikAi3eikσ xσ

= 0 (2598)

This result requires either the trivial solution eikα xα = 0 (which means no wave) or Ai3= 0. These components

have in fact been eliminated from the metric as shown in (2593). Therefore, we confirm that (2593) also

satisfies all the conditions of the harmonic gauge.

Lastly, we found in (333) that the only radiating field satisfying a wave equation is hττ
i j which is both

transverse and traceless. For the wave amplitude in (2593) to be traceless, we must have A11 = −A22. This

means that the metric for a transverse plane wave in vacuum has only two independent degrees of freedom.

268Note that because the Einstein field equation in the trace-reversed harmonic gauge is �h̄µν = −2κTµν ,

then setting h00 = 0 in the TT gauge means we have T00 = 0 which can only be true in vacuum.
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We can let A11 = −A22 = A⊕ for a plus-polarization gravitational wave and A12 = A21 = A⊗ for a cross-

polarization gravitational wave. Then the metric perturbation in the transverse-traceless (TT) gauge is

hT T
µν =


0 0 0 0

0 A⊕ A⊗ 0

0 A⊗ −A⊕ 0

0 0 0 0

eikx The TT gauge metric perturbation (2599)

In order to determine the TT gauge components above, we used the harmonic gauge and some physical

arguments concerning frames of reference when observing a transverse plane wave in vacuum. This allowed

us to identify which components of the metric are purely gauge artifacts and therefore can be removed.

The TT gauge derived by a mathematical argument using a gauge transformation

Here we use a more formal mathematical treatment showing how the non-zero components of the metric

are determined in the TT gauge. Once again, we begin with the harmonic gauge for the purpose of removing

the four degrees of gauge freedom that we know exist in the metric in both matter and vacuum. We can then

consider a plane wave in vacuum and identify the additional gauge freedom that results. Specifically, we can

observe from (2400) that we can make any choice we wish for ξ
µ

as long as we remain in the harmonic

gauge (and the first-order approximation). Notice (2443) indicates that we can let

�ξ
µ = 0 (2600)

while still respecting (2444). This means that we are still in the harmonic gauge since this choice simply

means that both ∂ν hµν and �ξ
µ

are zero in (2443).269 Solutions to the wave equation in (2600) are270

ξ
µ = iεµ eikσ xσ (2601)

where εµ is a constant. Inserting (2601) into (2400) gives

x′µ = xµ + iεµ eikσ xσ (2602)

which implies that there are “waves” in the coordinates. Therefore, although we are free to choose ξ
µ

in

whatever way will satisfy (2600), it would be ideal to choose εµ so that it removes these nonphysical degrees

of freedom from the metric. To do this, we can apply a coordinate transformation to the metric given in

(2418) as

h′µν = hµν +∂
µ

ξ
ν +∂

ν
ξ

µ
(2603)

Using hµν = h̄µν− 1
2
ηµν h̄ from (2435) to express this in terms of the trace-reversed metric perturbation gives

h̄′µν − 1
2
η

µν h̄′ = h̄µν − 1
2
η

µν h̄+∂
µ

ξ
ν +∂

ν
ξ

µ
(2604)

Using the trace-reversed metric perturbation given in (2583) as a plane wave, h̄µν = Aµν eikσ xσ

, and the trace

from (2441) expressed as h̄′ = h̄−2∂ρ ξ
ρ

, gives

A′µν eikσ xσ − 1
2
η

µν
(
h̄−2∂ρ ξ

ρ
)
= Aµν eikσ xσ − 1

2
η

µν h̄+∂
µ

ξ
ν +∂

ν
ξ

µ
(2605)

269This is directly analogous to being in both the Lorenz gauge and the Coulomb gauge in electromagnetism,

which is the common approach for dealing with electromagnetic radiation.
270We insert an “i” only for the purpose of obtaining simpler equations when we take the derivative of ξ

µ

later in the appendix.
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A′µν eikσ xσ

= Aµν eikσ xσ

+∂
µ

ξ
ν +∂

ν
ξ

µ −η
µν

∂ρ ξ
ρ

(2606)

Inserting ξ
µ = iεµ eikσ xσ from (2601) gives

A′µν eikσ xσ

= Aµν eikσ xσ

+∂
µ iεν eikσ xσ +∂

ν iεµ eikσ xσ −η
µν

∂ρ iερ eikσ xσ (2607)

Since ερ is a constant, then the derivative can move past it. Also, from (2502) we know that ∂ µ (kσ xσ ) = kµ

and similarly, ∂µ (kσ xσ ) = kµ . Then we have

A′µν eikσ xσ

= Aµν eikσ xσ − ε
ν kµ eikσ xσ − ε

µ kν eikσ xσ +η
µν

ε
ρ kρ eikσ xσ (2608)

A′µν = Aµν − ε
µ kν − ε

ν kµ +η
µν

ε
ρ kρ (2609)

For a plane wave propagating in the z-direction, (2584) gives kρ = (k,0,0,k) and kµ = (−k,0,0,k). Then the

expression above can be written as

A′µν = Aµν − ε
µ kν − ε

ν kµ +η
µν k
(
ε

3− ε
0
)

(2610)

The ten components of the transformed metric (omitting redundant components due to symmetry of the

metric) will give the following transformation relations.

A′00 = A00− k
(
ε0+ ε3

)
, A′01 = A01− kε1, A′13 = A13− ε1k

A′11 = A11+ k
(
ε3− ε0

)
, A′02 = A02− kε2, A′12 = A12

A′22 = A22+ k
(
ε3− ε0

)
, A′03 = A03− k

(
ε0+ ε3

)
, A′23 = A23− ε2k

A′33 = A33− k
(
ε0+ ε3

)
(2611)

We would like to choose the constants εµ so as to eliminate as many components as possible in order to

remove all gauge artifacts from the metric. If we set A′00 = 0, then we have

A00 = k
(
ε

3+ ε
0
)

(2612)

Setting A′01 = 0 and A′02 = 0 will give, respectively,

ε
1 = A01/k and ε

2 = A02/k (2613)

We also found in (2587) that in the harmonic gauge, a plane wave propagating in the z-direction requires that

A00 =−A03, A01 =−A13, A02 =−A23, A03 =−A33 (2614)

Since symmetry of the metric requires A30 = A03, then we can combine the first and last relations into a single

equality. We can also write all the relations with upper indices since we have (to first order in the metric)

A00 = A00, Ai0 =−Ai0 and Ai j = Ai j. Therefore, the relations above become

A00 = A03 = A33, A01 = A31, A02 = A32 (2615)
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Since A00 = A03 = A33, then using (2612) we have A03 = A33 = k
(
ε3+ ε0

)
. Substituting these into A′03 and

A′33 in (2611) gives A′03 = A′33 = 0. Also, using A01 = A31 from (2615) as well as A01 = kε1 from (2613)
requires that A31 = kε1. Substituting this into A′13 in (2611)means A′13 = 0. Similarly, using A02 = A32 from

(2615) and A02 = kε2 from (2613) requires that A′32 = A′23 = 0. With all these conditions, the expressions

in (2611) reduce to just

A′11 = A11+ k
(
ε

3− ε
0
)
, A′22 = A22+ k

(
ε

3− ε
0
)
, A′12 = A12 (2616)

Solving (2612) for ε0 gives ε0 = A00/k− ε3. Substituting this into (2616) gives

A′11 = A11−A00, A′22 = A22−A00, A′12 = A12 (2617)

We have now used all the expressions which relate the metric perturbation components to the gauge freedom

represented by εµ . Although it appears that there are three final independent degrees of freedom in (2617),
we can make one additional gauge choice. By adding A′11 and A′22 and setting the sum to zero we have

A′11+A′22 = A11+A22−2A00 = 0 (2618)

This means that

A′11 =−A′22 (2619)

The choice in (2618) can be justified by choosing ε3 and ε0 in (2616) so that the sum of A′11 and A′22 is zero.

This means the sum of A′11 and A′22 can be written as

A′11+A′22 = A11+A22+2k
(
ε

3− ε
0
)
= 0 (2620)

Solving for ε3− ε0 gives

ε
3− ε

0 =−A11+A22

2k
(2621)

Now we simply require consistency between the relation for
(
ε3− ε0

)
in (2621) and the relation for

(
ε3+ ε0

)
from (2612). We can write (2612) as

ε
3+ ε

0 = A00/k (2622)

Adding (2621) and (2622) gives

2ε
3 = −A11+A22

2k
+

A00

k
(2623)

ε
3 =

2A00−A11−A22

4k
(2624)

Also, subtracting (2621) and (2622) gives

−2ε
0 = −A11+A22

2k
− A00

k
(2625)

ε
0 =

2A00+A11+A22

4k
(2626)

Therefore, we summarize our choices for εµ as follows

ε0 =
(
2A00+A11+A22

)
/4k, ε1 = A01/k

ε2 = A02/k, ε3 =
(
2A00−A11−A22

)
/4k

(2627)
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We also conclude from the last relation in (2617) and from (2619) that the only two remaining independent

physical degrees of freedom are

A12 = A21 and A11 =−A22 (2628)

From this we see that for a wave traveling in the z-direction, the amplitude of the wave is only in the x and

y directions. In other words, the wave is transverse. Also, applying the second condition in (2628) means

that the trace of the amplitude tensor is zero so that it is traceless. Hence we arrive at the transverse-traceless

(TT) gauge. Once again, we can let A11 =−A22 = A⊕ for the “plus” polarization state and let A12 = A21 = A⊗
for the “cross” polarization state of the gravitational wave. Similar to the result found in (2599), we can write

the metric perturbation tensor in the TT gauge as

hT T
µν =


0 0 0 0

0 A⊕ A⊗ 0

0 A⊗ −A⊕ 0

0 0 0 0

eikx (2629)

The full metric in the TT gauge is

gT T
µν = ηµν +hT T

µν =


−1 0 0 0

0 1+h⊕ h⊗ 0

0 h⊗ 1−h⊕ 0

0 0 0 1

 (2630)

Then the relativistic invariant interval can be written as

ds2 = −cdt2+(1+h⊕)dx2+(1−h⊕)dy2+2h⊗dxdy+dz2 (2631)

For plus polarization, h⊕ 6= 0 and h⊗ = 0. Then the invariant is

ds2 = −cdt2+(1+A⊕)dx2+(1−A⊕)dy2+dz2 (2632)

For cross polarization, h⊕ = 0 and h⊗ 6= 0. Then the invariant is

ds2 = −cdt2+dx2+dy2+dz2+2h⊗dxdy (2633)

Independence of polarization fields

Although h⊕ and h⊗ are independent degrees of freedom, they are not completely unrelated. Since

∂ih
T T
i j = 0, then we must have

∂xh⊕+∂yh⊗ = 0 and ∂xh⊗−∂yh⊕ = 0 (2634)

However, we can show that these differential equations can be decoupled. Taking ∂x of both equations in

(2634) gives

∂
2
x h⊕+∂x∂yh⊗ = 0 and ∂

2
x h⊗−∂x∂yh⊕ = 0 (2635)

Also taking ∂y of both equations in (2634) gives

∂y∂xh⊕+∂
2
y h⊗ = 0 and ∂x∂yh⊗−∂

2
y h⊕ = 0 (2636)
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Subtracting the first equation in (2635) from the second equation in (2636) gives

∂
2
x h⊕+∂

2
y h⊕ = 0 (2637)

Likewise, adding the second equation in (2635) to the first equation in (2636) gives

∂
2
x h⊗+∂

2
y h⊗ = 0 (2638)

Therefore, we find that h⊕ and h⊗ each satisfy their own independent, second-order differential equation.



497

Appendix G

The determinant of the metric to second order

Since gµν = ηµν +hµν , then writing the metric as an explicit matrix gives

gµν =


−1+h00 h01 h02 h03

h10 1+h11 h12 h13

h20 h21 1+h22 h23

h30 h31 h32 1+h33

 (2639)

Then the determinant of gµν is

g = (−1+h00)

∣∣∣∣∣∣
1+h11 h12 h13

h21 1+h22 h23

h31 h32 1+h33

∣∣∣∣∣∣−h01

∣∣∣∣∣∣
h10 h12 h13

h20 1+h22 h23

h30 h32 1+h33

∣∣∣∣∣∣

+h02

∣∣∣∣∣∣
h10 1+h11 h13

h20 h21 h23

h30 h31 1+h33

∣∣∣∣∣∣−h03

∣∣∣∣∣∣
h10 1+h11 h12

h20 h21 1+h22

h30 h31 h32

∣∣∣∣∣∣ (2640)

For convenience, this can be written as

g = A−B+C−D (2641)

Evaluating A gives

A = (−1+h00)

(
(1+h11)

∣∣∣∣ 1+h22 h23

h32 1+h33

∣∣∣∣
−h12

∣∣∣∣ h21 h23

h31 1+h33

∣∣∣∣+h13

∣∣∣∣ h21 1+h22

h31 h32

∣∣∣∣) (2642)

= (−1+h00){(1+h11) [(1+h22)(1+h33)−h23h32]

−h12 [h21 (1+h33)−h23h13]+h13 [h21h32− (1+h22)h31]} (2643)

Multiplying out terms gives

A = (−1+h00) [(1+h11)(1+h22+h33+h22h33−h23h32)

−h12 (h21+h21h33−h23h13)+h13 (h21h32−h31−h22h31)] (2644)
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Distributing and eliminating terms that are higher than second order gives

A = (−1+h00)(1+h22+h33+h22h33−h23h32+h11

+h11h22+h11h33−h12h21−h13h31) (2645)

Multiplying out terms and eliminating more terms that are higher than second order gives

A = −1−h22−h33−h22h33+(h23)
2−h11−h11h22−h11h33

+(h12)
2+(h13)

2+h00 (1+h22+h33+h11) (2646)

The trace of hi j can be written as H = δ
i j

hi j = h11+h22+h33, then the result above becomes

A = −1−H+h00 (1+H)−h11h22−h22h33−h11h33+(h12)
2+(h13)

2+(h23)
2

(2647)

Now evaluating B gives

B = h01

(
h10

∣∣∣∣ 1+h22 h23

h32 1+h33

∣∣∣∣−h12

∣∣∣∣ h20 h23

h30 1+h33

∣∣∣∣+h13

∣∣∣∣ h20 1+h22

h30 h32

∣∣∣∣ ) (2648)

= h01 {h10 [(1+h22)(1+h33)−h23h32]−h12 [h20 (1+h33)−h23h30]

+h13 [h20h32− (1+h22)h30]} (2649)

Multiplying out terms and eliminating terms that are higher than second order gives

B= (h01)
2

(2650)

Now evaluating C gives

C = h02

(
h10

∣∣∣∣ h21 h23

h31 1+h33

∣∣∣∣− (1+h11)

∣∣∣∣ h20 h23

h30 1+h33

∣∣∣∣+h13

∣∣∣∣ h20 h21

h30 h31

∣∣∣∣ ) (2651)

= h02 {h10 [h21 (1+h33)−h23h31]− (1+h11) [h20 (1+h33)−h23h30]

+h13 [h20h31−h21h30]} (2652)

Multiplying out terms and eliminating terms that are higher than second order gives

C =−(h02)
2

(2653)
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Now evaluating D gives

D = h03

(
h10

∣∣∣∣ h21 1+h22

h31 h32

∣∣∣∣− (1+h11)

∣∣∣∣ h20 1+h22

h30 h32

∣∣∣∣+h12

∣∣∣∣ h20 h21

h30 h31

∣∣∣∣ ) (2654)

= h03 {h10 [h21h32− (1+h22)h31]− (1+h11) [h20h32 (1+h22)h30]

+h12 [(h20h31−h21h30)]} (2655)

Multiplying out terms and eliminating terms that are higher than second order gives

D= (h03)
2

(2656)

Inserting (2647), (2650), (2653), and (2656) into (2641) gives

g=−1−H+h00 (1+H)−h11h22−h22h33−h11h33

+(h12)
2+(h13)

2+(h23)
2− (h01)

2− (h02)
2− (h03)

2

Metric determinant to second order in the metric

(2657)

For the transverse-traceless metric perturbation in (177), the metric becomes gττ
µν = ηµν +hττ

µν . The matrix

is

gττ
µν =


−1 0 0 0

0 1+h11 h12 h13

0 h21 1+h22 h23

0 h31 h32 1+h33

 (2658)

Since hττ
i j is spatially traceless, then H = 0. Also, since hττ

0µ
= 0, then the determinant of the metric in (2657)

reduces to

gττ =−1−h11h22−h22h33−h11h33+(h12)
2+(h13)

2+(h23)
2

(2659)

For a gravitational wave propagating in the z-direction, hττ
i3 = 0 (since hττ

i j is transverse). Also hττ
11 =−hττ

22 =
h⊕ for plus-polarization, and hττ

12 = hττ
21 = h⊗ for cross-polarization. Then the metric reduces further to

gττ
µν =


−1 0 0 0

0 1+h⊕ h⊗ 0

0 h⊗ 1−h⊕ 0

0 0 0 1

 (2660)

Correspondingly, the determinant of the metric in (2659) reduces further to

gττ =−1+h2
⊕+h2

⊗
Determinant for the

transverse-traceless metric
(2661)

Note that this result could have been obtained directly from the metric in (2660) by taking the determinant.

This leads to gττ =− [(1+h⊕)(1−h⊕)]−h2
⊗ which reduces to (2661). Hence, it is found that the determi-

nant of the transverse-traceless metric does not contain any linear terms. The lowest order terms are second

order. It also does not contains any higher order terms than second order.
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Appendix H

The linearized transverse-traceless Landau-Lifshitz pseudotensor

In (2468) of Appendix B, we find the linearized Einstein field equation in the trace-reversed harmonic

gauge is

�h̄µν =−2κTµν (2662)

Here we consider the case where Tµν is a stress tensor induced by some incoming gravitational wave h
(in)
µν

which is incident on some matter distribution. The resulting back-action could produce an outgoing gravi-

tational wave h
(out)
µν . Since gravitation is a self-coupling field, then the incoming gravitational wave is also

essentially a “source” of gravitation in addition to the stress tensor of the matter. To account for this, a com-

mon approach is to use tµν as a stress-energy pseudotensor for the gravitational field. As shown in MTW

[11] (p. 465), the total stress tensor now becomes

T
µν

eff = Tµν + tL-L
µν (2663)

Then the resulting Einstein field equation in (2662) becomes

�h̄µν =−2κ
(
Tµν + tµν

)
(2664)

As shown in MTW [11] (p. 466), we can use the Landau-Lifshitz pseudotensor, tL-L
µν . Then the Einstein

equation can be written as271

∂α ∂β H
µανβ

L-L = 2κ (−g)
(
T µν + t

µν

L-L

)
where H

µανβ

L-L = gµνgαβ −gανgµβ (2665)

Here we have gµν ≡ (−g)1/2 gµν and g ≡ detgµν . Combining the equations above and using the Einstein

equation, Gµν = κT µν , yields

∂α ∂β

[
(−g)

(
gµν gαβ −gαν gµβ

)]
= 2κ (−g)

(
1

κ
Gµν + t

µν

L-L

)
(2666)

Solving for t
µν

L−L gives

t
µν

L-L =−
1

κ
Gµν +

1

2κ (−g)
∂α ∂β

[
(−g)

(
gµν gαβ −gµα gνβ

)]
Landau-Lifshitz pseudotensor

(2667)

For gravitational waves, only the transverse-traceless part of the metric perturbation, hττ
i j , is the propagat-

ing field.272 In that case, (2664) becomes

�h
ττ (out)
i j =−2κ

(
T ττ

i j + tττ
i j L-L

)
(2668)

271Note that MTW [11] set G= c= 1 so that κ = 8π . However, here we keep κ explicit in the calculation.

272Since hττ
i j is the only metric component that satisfies a wave equation, then all the other components of

the metric will vanish in the far-field approximation.
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where h
ττ (out)
i j represents the outgoing gravitational wave.273 Then the transverse-traceless Landau-Lifshitz

pseudotensor can be written using (2667) as

tττ
i j L-L = − 1

κ

{
Gi j−

1

2g
∂

α
∂

β
[
g
(
gi jgαβ −giα g jβ

)]}ττ

(2669)

In (268), it is found that the transverse-traceless part of Gi j is Gττ
i j = − 1

2
�hττ

i j . Inserting this into (2669)
gives

tττ
i j L-L =

1

2κ

{
�hττ

i j +
1

gττ
∂

α
∂

β

[
gττ

(
gττ

i j gττ

αβ
−gττ

iα gττ

jβ

)]}
(2670)

For the transverse-traceless metric perturbation in (177), the metric becomes gττ
µν = ηµν +hττ

µν . The explicit

matrix is

gττ
µν =


−1 0 0 0

0 1+h11 h12 h13

0 h21 1+h22 h23

0 h31 h32 1+h33

 (2671)

Using the result in (2659), it is evident that eliminating second order terms of the determinant leaves gττ
µν = 1.

Then (2670) simply becomes

tττ
i j L-L =

1

2κ

{
�hττ

i j +∂
α

∂
β

(
gττ

i j gττ

αβ
−gττ

iα gττ

jβ

)}
(2672)

Summing over α gives

tττ
i j L-L =

1

2κ

{
�hττ

i j +∂
β

[
∂

0
(

gττ
i j gττ

0β
−gττ

i0 gττ

jβ

)
+∂

k
(

gττ
i j gττ

kβ
−gττ

ik gττ

jβ

)]}
(2673)

From (2671) it is evident that gττ
i0 = 0, so the terms involving gττ

i0 gττ

jβ
can be eliminated. Then summing over

β gives

tττ
i j L-L =

1

2κ

{
�hττ

i j +∂
0
[
∂

0
(
gττ

i j gττ
00

)
+∂

k
(
gττ

i j gττ
k0 −gττ

ik gττ
j0

)]
+∂

l
[
∂

0
(
gττ

i j gττ
0l

)
+∂

k
(

gττ
i j gττ

kl −gττ
ik gττ

jl

)]}
(2674)

Again, using gττ
k0 = 0 and gττ

00 =−1 gives

tττ
i j L-L =

1

2κ

{
�hττ

i j −∂
0
∂

0gττ
i j +∂

l
∂

k
(

gττ
i j gττ

kl −gττ
ik gττ

jl

)}
(2675)

Using gττ
i j = η i j+hττ

i j and ∂ 0 ≈− 1
c
∂t (to first order in the metric perturbation) gives

tττ
i j L-L =

1

2κ

{
�hττ

i j −
1

c2
ḧττ

i j

+∂
l
∂

k
[(

η i j+hττ
i j

)
(ηkl+hττ

kl )− (η ik+hττ
ik )
(

η jl+hττ
jl

)]}
(2676)

273The Landau-Lifshitz pseudotensor in (2667) is in terms of the incoming wave, h
ττ (in)
i j . However, the

superscript “in” is dropped for brevity and hττ
i j (with no superscript) is used to refer to the incoming wave.
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Keeping only first order terms in the metric and recognizing that derivatives of η i j are zero gives

tττ
i j L-L =

1

2κ

{
�hττ

i j −
1

c2
ḧττ

i j +∂
l
∂

k
[(

ηklh
ττ
i j +η i jh

ττ
kl

)
−
(

η jlh
ττ
ik +η ikhττ

jl

)]}
(2677)

Distributing the derivatives and using η i j = δ i j gives

tττ
i j L-L =

1

2κ

(
�hττ

i j −
1

c2
ḧττ

i j +∇
2
hττ

i j +∂
l
∂

khττ
kl η i j−∂ j∂

khττ
ik −∂i∂

lhττ
jl

)
(2678)

Since hττ
kl

is transverse, then ∂ khττ
kl
= 0, so the last three terms vanish. Using � = − 1

c2 ∂ 2
t +∇

2 to combine

the other terms gives274

tττ
i j L-L =

1

κ
�hττ

i j

The transverse-traceless Landau-Lifshitz

pseudotensor to first order in the metric
(2679)

Lastly, substituting this back into (2668) gives

�h
ττ (out)
i j =−2κT ττ

i j −2�hττ
i j (2680)

where h
ττ (out)
i j is the outgoing gravitational wave and hττ

i j is understood to be the incoming wave. Note that

both fields must be transverse-traceless for consistency, while T ττ
i j is the transverse-traceless part of the full

stress tensor, Tµν .

274Alternatively, we could have seen from (2672) that because gττ
iα is transverse, then ∂ α ∂ β gττ

iα gττ

jβ
= 0 so

the last term in (2672) vanishes. Also, using the metric to lower the index of a derivative gives ∂ α ∂ β gττ
i j gττ

αβ
=

∂ α ∂α gττ
i j =�gττ

i j . Therefore, the first two terms in (2672) combine and we immediately have tττ
i j L-L =

1
κ

hττ
i j

as found in (2679). This avoids the need for summing over indices explicitly as was done above.
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Appendix I

The linearized ideal fluid stress tensor

The covariant components of the ideal fluid stress tensor

The ideal fluid stress tensor is given by

T
(ideal f luid)
µν =

(
ρ+P/c2

)
uµ uν +Pgµν (2681)

where uµ is the four-velocity and P is the pressure. Substituting uµ uν = gµσ gνρ uσ uρ and expressing the

metric as gµν = ηµν +hµν gives275

T
(ideal f luid)
µν =

(
ρ+P/c2

)(
ηµσ +hµσ

)(
ηνρ +hνρ

)
uσ uρ +P

(
ηµν +hµν

)
(2682)

As noted in Appendix A, using ∂ ν Tµν = 0 as the linear conservation of stress-energy-momentum involves

neglecting terms of order
(
∂σ hµν

)
T µν . This does not require neglecting terms of order hµν T µν . Therefore,

to first order in hµν , we only neglect terms involving hµσ hνρ .

T
(ideal f luid)
µν =

(
ρ+P/c2

)(
ηµσ ηνρ +ηµσ hνρ +hµσ ηνρ

)
uσ uρ +P

(
ηµν +hµν

)
(2683)

We can distribute terms and use uµ = γvµ , where vµ =
(
c,vi
)

and γ is given by (2738) as

γ =

(
1−h00−2h0i

vi

c
− v2

c2
−hi j

viv j

c2

)−1/2

(2684)

Then we have

T
(ideal f luid)
µν =

(
ρ+P/c2

)(
ηµσ ηνρ vσ vρ +ηµσ hνρ vσ vρ +hµσ ηνρ vσ vρ

)
γ

2+P
(
ηµν +hµν

)
(2685)

We now evaluate each of the stress tensor components. For T00 we have

T
(ideal f luid)

00 =
(
ρ+P/c2

)(
η0σ η0ρ vσ vρ +η0σ h0ρ vσ vρ +h0σ η0ρ vσ vρ

)
γ

2+P(−1+h00)

(2686)

Summing over σ and ρ gives

T
(ideal f luid)

00 =
(
ρ+P/c2

)
γ2
(
c2−2c2h00−2ch0kvk

)
−P+Ph00 (2687)

For T0i, (2685) gives

T
(ideal f luid)

0i =
(
ρ+P/c2

)(
η0σ η iρ vσ vρ +η0σ hiρ vσ vρ +h0σ η iρ vσ vρ

)
γ

2+Ph0i (2688)

275As noted in Appendix A, using ∂ ν Tµν = 0 as the linear conservation of stress-energy-momentum in-

volves neglecting terms of order
(
∂σ hµν

)
T µν . This does not require neglecting terms of order hµν T µν .
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Summing over σ and ρ gives

T
(ideal f luid)

0i =
(
ρ+P/c2

)
γ2
(
−cvi− c2hi0− chikvk+ ch00vi+h0kvkvi

)
+Ph0i (2689)

For Ti j, (2685) gives

T
(ideal f luid)

i j =
(
ρ+P/c2

)(
η iσ η jρ vσ vρ +η iσ h jρ vσ vρ +hiσ η jρ vσ vρ

)
γ

2+P
(
η i j+hi j

)
(2690)

Summing over σ and ρ gives

T
(ideal f luid)

i j =
(
ρ+P/c2

)
γ2
(
viv j+ chi0v j+ ch j0vi+hikvkv j+h jkvkvi

)
+P

(
η i j+hi j

)
(2691)

Neglecting self-coupling and terms higher order than v2/c2

If we neglect any self-coupling of the gravitational field to the stress tensor sources, then we can neglect

terms involving hµν Tρσ and γ2 reduces to the usual Lorentz factor in Special Relativity, γ2 =
(
1− v2/c2

)−1
.

In that case, (2687), (2689) and (2691) become, respectively,

T
(ideal f luid)

00 ≈
(
ρc2+P

)
γ

2−P (2692)

T
(ideal f luid)

0i ≈ −(ρc+P/c)viγ
2 (2693)

T
(ideal f luid)

i j ≈
(
ρ+P/c2

)
viv jγ

2+Pη i j (2694)

Furthermore, if we are only interested in keeping source terms to order v2/c2, then we can use a binomial

approximation to write γ2 =
(
1− v2/c2

)−1 ≈ 1+ v2/c2. Substituting this into the expressions above and

keeping only v2/c2 to highest order gives

T
(ideal f luid)

00 ≈
(
ρc2+P

)(
1+ v2/c2

)
−P (2695)

T
(ideal f luid)

00 ≈ ρc2
(
1+ v2/c2

)
+Pv2/c2 (2696)

T
(ideal f luid)

0i ≈−(ρc+P/c)
(
1+ v2/c2

)
vi (2697)

T
(ideal f luid)

0i ≈−(ρc+P/c)vi (2698)
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T
(ideal f luid)

i j ≈
(
ρviv j+Pviv j/c

2
)(

1+ v2/c2
)
+Pη i j (2699)

T
(ideal f luid)

i j ≈ ρviv j+Pviv j/c
2+Pη i j (2700)

Linearized conservation of the stress-energy-momentum tensor

The linearized conservation law for the stress-energy-momentum tensor is given in (2394) of Appendix

A as

∂
ν Tµν = 0 (2701)

Summing over ν gives

∂
0Tµ0+∂

iTµi = 0 (2702)

For µ = 0, we have the following mass-momentum continuity equation.

∂
0T00+∂

iT0i = 0 (2703)

Since we are neglecting terms involving hµν Tρσ , then we can lower indices using gµν ≈ ηµν . Substituting

(2692) and (2693) into the expression above gives

∂
0
[(

ρc2+P
)

γ
2−P

]
−∂

i
[
(ρc+P/c)viγ

2
]
= 0 (2704)

Applying the product rule for the spatial derivative gives

− 1
c

[(
ρ̇c2+ Ṗ

)
γ

2+
(
ρc2+P

)
2γγ̇+ Ṗ

]
−
(
∂

i
ρc+∂

iP/c
)

viγ
2

−(ρc+P/c)
(
∂

ivi

)
γ

2− (ρc+P/c)vi2γ∂
i
γ = 0 (2705)

For a fluid with incompressible flow, we have ∂ivi = 0. Also, if the mass density remains uniform, then

∂iρ = 0. Lastly, if there are no pressure gradients, then ∂iP= 0. In that case, (2705) simply becomes

−
(
ρ̇c2+ Ṗ

)
γ

2−
(
ρc2+P

)
2γγ̇− Ṗ = 0 (2706)

2c2
γγ̇ρ+ γ

2c2
ρ̇+2γγ̇P+

(
γ

2+1
)

Ṗ = 0 (2707)

For the case of a relativistic dust (no pressures), we have

2γ̇ρ+ γρ̇ = 0 (2708)

Since γ2 =
(
1− v2/c2

)−1
, then

γ̇ = −
(
1− v2/c2

)−2
∂t

(
1− v2/c2

)
(2709)

=
(
1− v2/c2

)−2 (
2va/c2

)
(2710)

= 2vaγ
4/c2 (2711)
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Then (2708) becomes

4γ
3
ρva/c2+ ρ̇ = 0 (2712)

To order v2/c2, we have γ =
(
1− v2/c2

)−1/2 ≈ 1+
v2

2c2
. Then writing the expression above to order v2/c2

gives

4ρva/c2+ ρ̇ = 0 (2713)

This is effectively an equation of motion for relativistic dust (to order v2/c2). If we take the non-relativistic

limit, then va/c2 ≈ 0 and we simply have

ρ̇ = 0 (2714)

This means that the mass density distribution of a non-relativistic, pressureless, ideal fluid cannot change

in time. If we return to (2394) and let µ = i, then we have the following momentum-stress conservation

equation.

∂
0Ti0+∂

jTi j = 0 (2715)

Inserting (2693) and (2694) gives

∂
0
[
−(ρc+P/c)viγ

2
]
+∂

j
[(

ρ+P/c2
)

viv jγ
2+Pη i j

]
= 0 (2716)

Once again, we can set ∂ivi = ∂iρ = ∂iP= 0. Then we have(
ρ̇c+ Ṗ/c

)
viγ

2+(ρc+P/c)aiγ
2+(ρc+P/c)vi2γγ̇ = 0 (2717)

Using (2711) gives (
ρ̇c+ Ṗ/c

)
vi+(ρc+P/c)

(
ai+4vaγ

3vi/c2
)
= 0 (2718)

For the case of a relativistic dust (no pressures), we have

ρ̇vi+ρai+4ρvaγ
3vi/c

2 = 0 (2719)

To order v2/c2, we have γ =
(
1− v2/c2

)−1/2 ≈ 1+
v2

2c2
. Then writing the expression above to order v2/c2

gives

ρ̇vi+ρai+4ρavvi/c
2 = 0 (2720)

If we take the non-relativistic limit, then va/c2 ≈ 0 and we simply have

ρ̇vi+ρai = 0 (2721)

This is effectively an equation of motion for a mass element with mass density ρ , velocity vi and acceleration

ai. If the mass element doesn’t accelerate, then ai = 0 and we simply have ρ̇vi = 0 which indicates that the

mass element is moving with a constant velocity and is changing in mass density.
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Appendix J

The linearized geodesic equation of motion

Reparameterizing the geodesic equation of motion in terms of coordinate time

The geodesic equation of motion is given by

d2xµ

dτ2
+Γ

µ

ρσ

dxρ

dτ

dxσ

dτ
= 0 (2722)

We can reparameterize the equation in terms of t instead of τ by using a chain rule

dxµ

dτ
=

dt

dτ

dxµ

dt
= γvµ (2723)

where γ = dt/dτ and vµ =
(
c, ẋi
)
=
(
c,vi
)
. We can obtain

d2xµ

dτ2
by applying

d

dτ
again on (2723). Using the

chain rule again gives

d2xµ

dτ2
=

d

dτ
(γvµ) (2724)

=
dt

dτ

d

dt
(γvµ) (2725)

= γ
d

dt
(γvµ) (2726)

Now applying the product rule gives

d2xµ

dτ2
= γ (γaµ + γ̇vµ) (2727)

= γ
2aµ + γγ̇vµ (2728)

where aµ =
(
0, v̇i

)
. Substituting this result into (2722) and using

dxµ

dτ
= γvµ for the terms contracted with

the Christoffel symbols gives

γ2aµ + γγ̇vµ + γ2Γ
µ

ρσ vρ vσ = 0
Geodesic equation of motion

in terms of coordinate time
(2729)
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The “Lorentz factor” in curved space-time

To find an expression for γ = dt/dτ , recall that the proper time dτ is defined in terms of the invariant

interval ds by

ds2 = −c2dτ
2 (2730)

We can also express the invariant interval in terms of the metric as

ds2 = gµν dxµ dxν (2731)

This gives

ds2 = c2g00dt2+2cg0idtdxi+gi jdxidx j (2732)

= c2dt2

(
g00+

2

c
g0i

dxi

dt
+

1

c2
gi j

dxi

dt

dx j

dt

)
(2733)

= c2dt2

(
g00+

2

c
g0iv

i+
1

c2
gi jv

iv j

)
(2734)

Equating (2730) and (2734) gives

dτ2

dt2
= g00+2g0i

vi

c
+gi j

viv j

c2
(2735)

Writing the metric as a perturbation added to flat Minkowski space-time, gµν = ηµν +hµν , gives

dτ2

dt2
= −(η00+h00)−2(η0i+h0i)

vi

c
−
(
η i j+hi j

) viv j

c2
(2736)

Since η00 =−1, η0i = 0, and η i j = δ i j, then we have

dτ2

dt2
= 1−h00−2h0i

vi

c
− v2

c2
−hi j

viv j

c2
(2737)

Since the Lorentz factor in Special Relativity is defined as γ ≡ dt/dτ , then we can define a “Lorentz factor”

in curved space-time by solving (2737) for dt/dτ . This gives

γ =

(
1−h00−2h0i

vi

c
− v2

c2
−hi j

viv j

c2

)−1/2

Lorentz factor in GR (2738)

Note that for a flat Minkowski space-time, we have hµν = 0, and the Lorentz factor reduces to the familiar

form in Special Relativity: γ =
(
1− v2/c2

)−1/2
.
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Conservation of energy momentum

Recall that in Special Relativity, the energy and momentum are not conserved independently. Rather they

are conserved together according to the relation E2− c2 p2 = m2c4. Taking the derivative of this expression

with respect to proper time (for a particle with constant mass) gives

E
dE

dτ
− c2 d p

dτ
= 0 (2739)

This expression can be related to the geodesic equation of motion by writing (2722) in terms of pµ =m
dxµ

dτ
.

This gives

d pµ

dτ
+

1

m
Γ

µ

ρσ pρ pσ = 0 (2740)

Since pµ =
(
E/c, pi

)
, then for µ = 0 and µ = i we have, respectively,

dE

dτ
+

c

m
Γ

0
ρσ pρ pσ = 0 and

d pi

dτ
+

1

m
Γ

i
ρσ pρ pσ = 0 (2741)

The first expression represents conservation of energy while the second represents conservation of momen-

tum. As shown in (2739), these quantities are not actually conserved independently, but rather their differ-

ence is conserved. To relate this to the acceleration, we can evaluate (2729) for µ = 0 and for µ = i, and use

aµ =
(
0, v̇i

)
and vµ =

(
c,vi
)
. This gives

cγγ̇+ γ
2
Γ

0
ρσ vρ vσ = 0 and γ

2ai+ γγ̇vi+ γ
2
Γ

i
ρσ vρ vσ = 0 (2742)

Multiplying the first equation by vi/c and subtracting it from the second gives

ai =−Γi
ρσ vρ vσ +Γ0

ρσ vρ vσ vi/c
Geodesic equation of motion

in terms of coordinate time
(2743)

This is the geodesic equation of motion in terms of the metric perturbation and Christoffel symbols with

absolutely no approximations. Notice that the terms with γγ̇ by subtraction from one another, and γ2 vanishes

when divided from each term. Therefore, (2738) does not need to be inserted. Matching this result to (2741),
we find that the first term (involving Γi

ρσ ) corresponds to accelerations due to changes in momentum, while the

second term (involving Γ0
ρσ ) corresponds to accelerations due to changes in energy. Summing over repeated

indices and rearranging leads to

ai = −
(

c2
Γ

i
00+2cΓ

i
0 jv

j+Γ
i
jkv jvk

)
+
(

Γ
0
00c+2Γ

0
j0v j+Γ

0
jkv jvk/c

)
vi (2744)

This result matches [28], equation (3.2). In order to evaluate this expression to linear order in hµν , we can

use the linearized Christoffel symbols. These must now be determined.
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The Christoffel symbols to first order in the metric

To obtain an expression completely in terms of the metric, we can evaluate the Christoffel symbols using

(2367) which gives

Γ
α

βγ
= 1

2
η

αρ
(
∂γ hρβ +∂β hγρ −∂ρ hβγ

)
(2745)

For α = 0, the only non-vanishing Christoffel symbols have ρ = 0 so that ηαρ =−1. This gives

Γ
0
βγ
=− 1

2

(
∂γ h0β +∂β hγ0−∂0hβγ

)
(2746)

Setting β = 0 gives

Γ
0
0γ =− 1

2

(
∂γ h00+∂0hγ0−∂0h0γ

)
=− 1

2
∂γ h00 (2747)

For γ = 0, (2747) becomes

Γ0
00 =− 1

2
∂0h00 (2748)

For γ = i, (2747) becomes

Γ0
0i =− 1

2
∂ih00 (2749)

Returning to (2746) and setting β = i gives

Γ
0
iγ =− 1

2

(
∂γ h0i+∂ihγ0−∂0hiγ

)
(2750)

For γ = 0, (2750) becomes

Γ
0
i0 =− 1

2
(∂0h0i+∂ih00−∂0hi0) =− 1

2
∂ih00 (2751)

This matches (2749) as expected since Christoffel symbols are symmetric in the lower two indices. For γ = j,

(2750) becomes

Γ0
i j =− 1

2

(
∂ jh0i+∂ih j0−∂0hi j

)
(2752)

Now we return to the general expression for the Christoffel symbols in (2745) and choose α = i.

Γ
i
βγ

= 1
2
η

iρ
(
∂γ hρβ +∂β hγρ −∂

ihβγ

)
(2753)

Γ
i
βγ

= 1
2

(
∂γ hi

β
+∂β hi

γ −∂
ihβγ

)
(2754)

Setting β = 0 gives

Γ
i
0γ =

1
2

(
∂γ hi

0+∂0hi
γ −∂

ih0γ

)
(2755)

For γ = 0, (2755) becomes

Γ
i
00 = 1

2

(
∂0hi

0+∂0hi
0−∂

ih00

)
(2756)

Γi
00 = ∂0hi

0− 1
2
∂ ih00 (2757)
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For γ = j, (2755) becomes

Γi
0 j =

1
2

(
∂ jh

i
0+∂0hi

j−∂ ih0 j

)
(2758)

Returning to (2754) and setting β = j gives

Γ
i
jγ = 1

2

(
∂γ hi

j+∂ jh
i
γ −∂

ih jγ

)
(2759)

For γ = 0, (2759) becomes

Γ
i
j0 = 1

2

(
∂0hi

j+∂ jh
i
0−∂

ih0 j

)
(2760)

This matches (2758) as expected again since Christoffel symbols are symmetric in the lower two indices. For

γ = k, (2759) becomes

Γi
jk =

1
2

(
∂khi

j+∂ jh
i
k−∂ ih jk

)
(2761)

In summary, the following is the set of all non-vanishing Christoffel symbols.276

Γ0
00 =− 1

2c
ḣ00

Γ0
0i = Γ0

i0 =− 1
2
∂ih00

Γ0
i j =− 1

2

(
∂ jh0i+∂ih j0− 1

c
ḣi j

)
Γi

00 =
1
c
ḣ0i− 1

2
∂ih00

Γi
0 j = Γi

j0 =
1
2

(
∂ jh0i+

1
c
ḣi j−∂ih0 j

)
Γi

jk =
1
2

(
∂khi j+∂ jhik−∂ih jk

)

(2762)

The geodesic equation of motion to first order in hµν

We now make use of the Christoffel symbols found above to expand the geodesic equation in (2744).

ai = −cḣ0i+
c2

2
∂ih00−

(
c∂ jh0i− c∂ih0 j+ ḣi j

)
v j− 1

2

(
∂khi j+∂ jhik−∂ih jk

)
v jvk

−
[

1
2
ḣ00+ v j

∂ jh00+
1
2c

(
∂kh0 j+∂ jhk0− 1

c
ḣ jk

)
v jvk

]
vi (2763)

276We express ∂0hµν as 1
c
ḣµν . We also apply the metric to terms such as hi

0 to write them with all lower

indces. Note that the metric applied to hµν will simply be gµν ≈ ηµν to maintain linear order in hµν .

Therefore spatial indices can be freely raised and lowered while temporal indices bring in a negative sign.
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In the last term of the first line, we have ∂khi j and ∂ jhik both being summed identically over v jvk. Therefore

we can combine them. Similarly, ∂kh0 j and ∂ jhk0 in the second line can be combined. Then after some

rearranging, we have

ai =
c2

2
∂ih00− cḣ0i− c

(
∂ih0 j−∂ jh0i

)
v j− 1

2
ḣ00vi− ḣi jv

j

−(∂ jh00)v
jvi+

(
1

2
∂ih jk−∂khi j

)
v jvk+

(
1

c
∂ih j0−

1

2c2
ḣi j

)
viv jvk

Geodesic equation of motion to first order in the metric perturbation

(2764)

This expression gives the acceleration of test particles to first order in the metric perturbation and with no

approximations applied to the particle velocity. The first three terms on the right can be viewed as a grav-

itational “Lorentz force.” analogous to
m

q
ai = −∂iϕ −Ai+ v j (∂iA j−∂ jAi) in electromagnetism. The next

two terms on the right side of (2764) contain temporal derivatives of the metric perturbation: ḣ00vi and ḣi jv
j.

These do not have analogous quantities in the electromagnetic Lorentz force. The remaining terms in the

second line involve the velocity to second and third order, which also does not occur in the electromagnetic

Lorentz force.

The terms containing temporal and spatial derivatives of hi j describe how a gravitational strain field

couple to matter. This includes how gravitational waves affect test masses. In the far-field zone, we have

h00 = h0i ≈ 0 and hi j = hττ
i j . This gives

ai =−v jḣττ
i j +

(
1

2
∂ih

ττ
jk −∂ jh

ττ
ik

)
v jvk− 1

2c2
ḣττ

jk v jvkvi (2765)

This the geodesic equation of motion which describes the motion of test particles in the presence of a

gravitational wave (to first order in the metric perturbation).

The equation of motion for one-dimensional motion

In general, the acceleration on the left side of (2764) cannot be isolated to obtain an expression for ai

appearing alone on one side. The reason is because ai is summed over other quantities and therefore its

components are distributed over multiple terms. They cannot be factored out to form a single vector for ai

multiplying the rest of the quantities in the parentheses. This fact is a consequence of Special Relativity, not

General Relativity. It arises due to the fact that finding the acceleration in (2727) involves a term with γ̇

where γ involves v2. Taking the time derivative of v2 will lead to a term with viai which involves ai being

summed with vi. Therefore, the only way to avoid ai appearing in multiple terms is to go to lower order

than (v/c)2 (which simply recovers the Newtonian, non-relativistic acceleration) or to consider the case of

one-dimensional motion. In that case ai can be completely factored out. For example, if there is only motion

in the x1 direction, then we have

a1+ v1a j

(
v j+h00v j+ ch0 j+ vkh jk

)
/c2 =

c2

2
∂1h00

(
1−2

v2

c2

)
− cḣ01

(
1−2

v2

c2

)
+cv j

(
∂1h0 j−∂ jh01

)
− 1

2
v1ḣ00− ḣ0 jv

jv1/c

−v jḣ1 j+ v jvk
(

1
2
∂1h jk−∂kh1 j

)
(2766)
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Since we only have j = k = 1, then we can sum on the left side and factor out a1. Also, simplifying the right

side gives

a1

[
1+

v2

c2
+

v2

c2
(h00+h11)+

v1

c
h01

]
=

c2

2
∂1h00

(
1−2

v2

c2

)
− cḣ01

(
1−2

v2

c2

)

−v1

2
ḣ00−

v2

c
ḣ01− v1ḣ11+

v2

2
∂1h11

(2767)

Dividing by the bracket on the left side means we will have

[
1+

v2

c2
+

v2

c2
(h00+h11)+

v1

c
h01

]−1

multiplying

the right side. We can use a weak-field approximation in the form

[
1+

v2

c2
+

v2

c2
(h00+h11)+

v1

c
h01

]−1

≈ 1+
v2

c2
− v2

c2
(h00+h11)−

v1

c
h01 (2768)

Then (2767) becomes

a1 =

[
c2

2
∂1h00

(
1−2

v2

c2

)
− cḣ01

(
1−3

v2

c2

)
− v1

2
ḣ00− v1ḣ11+

v2

2
∂1h11

]

·
[

1+
v2

c2
− v2

c2
(h00+h11)−

v1

c
h01

]
(2769)

We can immediately eliminate the last two terms in the last line since they will yield results that are second

order in hµν . Distributing each of the other two terms in the last bracket and eliminating any terms that will

yield results that are higher order than v2/c2 gives

a1 =

[
c2

2
∂1h00

(
1−2

v2

c2

)
− cḣ01

(
1−3

v2

c2

)
− v1

2
ḣ00− v1ḣ11+

v2

2
∂1h11

]

+
v2

c2

(
c2

2
∂1h00− cḣ01

)
(2770)

Finally, combining common terms gives

a1 =
c2

2
∂1h00

(
1− v2

c2

)
− ḣ00

v1

2
− cḣ01

(
1−2

v2

c2

)
− ḣ11v1+

v2

2
∂1h11

Geodesic equation of motion in the weak-field limit with v2/c2 test masses

for motion in 1-D

(2771)

This expression gives the acceleration of test particles in the weak-field limit for test mass velocities to order

v2/c2 and motion in only the x1 direction.

Analysis of the approximation to order v2/c2

As discussed at the end of Section 26, it is important to recognize that this equation of motion technically

goes beyond the first-order approximation of linearized GR. This is due to the fact that to first order in the
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metric, the Einstein equation predicts no coupling between the Christoffel symbols and the stress tensor.

Therefore, the equation of motion in (2764) is valid as long as it is understood to only describe the lowest

order response of matter to an external gravitational field. It cannot be used to predict the net field that is a

result of both the external gravitational field and the gravitational field generated by the moving matter.

It is also important to consider the approximations that were used to obtain (2764) which required that we

restrict the accelerations permitted for the test masses. Specifically, we eliminated terms of order a(v/c)n with

n being integers from 1 to 4. For n= 1, the lowest order acceleration term neglected is a(v/c). If we consider

a velocity given by v= v0eiωt , then the acceleration is a∼ vω particle where ω particle characterizes how rapidly

the velocity of the particle varies. Then the lowest order acceleration term neglected is a(v/c)∼ v2ω particle/c.

We can consider the case of a gravitational wave given by h=Aeiωt . From (2765)we see that the equation

of motion for test particles involves the time derivative of the wave, ḣ∼ Aωwave. The equation of motion also

involves the spatial derivative of the wave which can be approximated using the wave vector, k = ωwave/c.

Then ∇h∼ Ak ∼ ωwave/c.

With these quantities, we may now consider the conditions associated with our approximations. Specifi-

cally, we must insure that the lowest order terms neglected are much less than the terms retained in (2765).
Looking back at (2764), we see that if vi is distributed through the last line, then the last term in the expres-

sion is, ∼ hv2a/c2, which involves the coupling of the acceleration to gravitational waves. Since this term

was neglected, then we must insure that it is much smaller than the terms in (2765). Using the first term in

(2765) requires

hv2a/c2 << ḣv (2772)

On left we can use a ∼ vω particle and h ∼ A while on the right we can use ḣ ∼ Aωwave. We can also assume

that the frequency of the motion of the test particle is the same as the wave. Then we have

Av3
ω particle/c

2 << Aωwavev =⇒ v2/c2 << 1 (2773)

This result is consistent with retaining velocities to order (v/c)2 in our approximation. We can also compare

the same term from (2764) to any of the other terms in (2765). Then we have

hv2a/c2 << ∇hv2 (2774)

Again we use a ∼ vω particle and h ∼ A as well as ∇h ∼ Ak ∼ Aωwave/c. We also assume that the frequency

of particle motion is the same as the wave. Then we have

Av3
ω particle/c

2 << Aωwavev2/c =⇒ v/c<< 1 (2775)

Once again, this result is consistent with our approximation. It is a stricter constraint than we obtained in

(2773), however, it does not violate our approximation.

The insight we may draw from (2773) and (2775) is that the first term in (2765) which involves ḣi jv j,

will have a greater effect on the test particle (by a factor of v/c) when compared with the effect of the other

terms involving ∇hv2. This is naturally expected since the time variation is much more substantial than the

spatial variation for a gravitational wave in the microwave range.

However, for a particle with a velocity approaching c, we find that all the terms in (2765) will contribute

equally. However, in that case, we no longer have the right to neglect higher order velocity terms. In fact, as

we demonstrated above in (2773) and (2775), neglecting the lowest order terms involving the acceleration

in (2764) requires that the speed is limited to v/c << 1 or at least v2/c2 << 1. If we abandon this low-

velocity limit, then we cannot justifiably eliminate other terms from (2764). In that case, they must all
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appear. However, if we still work with gravitational wave in the far-field, then (2764) becomes

ai = −ḣi jv
j− 1

2
v jvk

(
∂khi j+∂ jhki−∂ih jk

)
−1

2
vi

(
1− v2

c2

)(
1

c2
ḣ jkv jvk+

2

c2
v ja

j+
2

c2
h jkv jak

)
(2776)

This is the appropriate equation of motion for particles moving with v ∼ c in the presence of gravitational

waves (in the TT gauge). The only approximation is the weak-field approximation, but there are no approxi-

mations concerning the velocities or accelerations.

Notice that for velocities approaching c, the entire last half of the equation is suppressed due to the factor

of
(
1− v2/c2

)
. If we take the extreme case of v ≈ c and use ḣ ∼ Aωwave as well as ∇h ∼ Aωwave/c, then

from (2776) we obtain a∼ Acω . If we consider the case of a gravitational wave with an amplitude A∼ 10−20

and a frequency in the microwave range, ωwave ∼ 1010, then this gives an acceleration of a ∼ 10−2 m/s2.

Therefore, we find that for the case of gravitational waves, we are completely justified in neglecting higher

order acceleration terms since the lowest order acceleration is extremely small even for the case of high

frequency waves and an extremely high particle velocity. The reason is obviously due to how small the field

is
(
A∼ 10−20

)
.
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Appendix K

The equation of motion of a test mass orbiting a Schwarzschild metric

The Schwarzschild metric is

ds2 = (1−RS/r)
−1

dr2+ r2dΩ
2− (1−RS/r)c

2dt2 (2777)

where dΩ2 = dθ
2 + sin2

θdφ
2 and the Schwarzschild radius is Rs = 2GM/c2. The non-zero Christoffel

symbols for the Schwarzschild metric are the following:

Γr
rr =

RS

2r (RS− r)
, Γθ

rθ
= Γθ

θr
= 1/r,

Γr
φφ
= (RS− r)sin2

θ , Γθ
φφ
=−sinθ cosθ ,

Γr
θθ
= RS− r, Γ

φ

rφ
= Γ

φ

φr = 1/r,

Γr
tt =

RS (r−RS)

2r3
Γ

φ

φθ
= Γ

φ

θφ
= cotθ

Γt
rt = Γt

tr =
RS

2(r2−RSr)

(2778)

Now we use the geodesic equation of motion277

ẍµ +Γ
µ

ρσ ẋρ ẋσ = 0 (2779)

For xµ = r, the geodesic equation gives

r̈+Γ
r
ρσ ẋρ ẋσ = 0 (2780)

Using the Christoffel symbols of the form Γr
ρσ in (2778) gives

r̈+Γ
r
rr ṙṙ+Γ

r
φφ φ̇ φ̇ +Γ

r
θθ θ̇ θ̇ +Γ

r
tt (cṫ)(cṫ) = 0 (2781)

r̈+
RS

2r (RS− r)
ṙ2+(RS− r)sin2

θφ̇
2
+(RS− r) θ̇

2
+

RS (r−RS)

2r3
c2ṫ2 = 0 (2782)

To determine the velocity of the test mass,~u= d~r/dτ we must take the derivative of the displacement vector

~r with respect to proper time. By the chain rule we have

~u =
d~r

dτ
=

d~r

dt

dt

dτ
=

d~r

dt
ṫ (2783)

Since~r = rr̂, then by the product rule
d~r

dt
=

d

dt
(rr̂) = r̂

dr

dt
+ r

dr̂

dt
so (2783) becomes

~u =

(
r̂

dr

dt
+ r

dr̂

dt

)
ṫ (2784)

277Note that ẋµ is a derivative of xµ with respect to proper time τ , not coordinate time t.
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Since we have reserved the dot-derivative for a derivative with respect to proper time, then we will use the

prime to represent a derivative with respect to coordinate time t. So (2784) becomes

~u= ṫ
(
r̂r′+ rr̂′

)
(2785)

The time derivative of the unit vector r̂ can be found from any classical mechanics reference to be

r̂′ = θ
′
θ̂ +φ

′ sinθφ̂ (2786)

Substituting this into (2785) gives

~u= ṫ

(
r̂

dr

dt
+ r

dθ

dt
θ̂ + r

dφ

dt
sinθφ̂

)
(2787)

So (2787) becomes

~u = ṫ
(
r′r̂+ rθ

′
θ̂ + rφ

′ sinθφ̂
)

(2788)

Notice that this is just ~u = ṫ~v where ~v is d~r/dt. In other words, by the chain rule we can recognize that

taking the derivative of ~r with respect to τ is the same as taking the derivative of ~r with respect to t and

then multiplying by ṫ. Therefore, if we want the proper acceleration, d2~r/dτ2 we can simply multiply the

coordinate acceleration ~a by ṫ2. We can use the acceleration in spherical coordinates from any classical

mechanics reference to write the proper acceleration as

d2~r

dτ2
= ṫ2~a= ṫ2

(
r′′− rθ

′2− r sin2
θφ
′2) r̂+ ṫ2

(
rθ
′′+2r′θ ′− r sinθ cosθφ

′2)
θ̂

+ṫ2
(
r sinθφ

′′+2r cosθθ
′
φ
′+2r′φ ′ sinθ

)
φ̂ (2789)

Since the gravitational force of a central mass will point only in the radial direction, then we can use only the

radial component of (2789). Also, working in the equatorial plane where θ = π/2 and θ̇ = 0, then we have

d2~r

dτ2
= ṫ2

(
r′′− rφ

′2) r̂ (2790)

=
(

r̈− rφ̇
2
)

r̂ (2791)

Now we look at the geodesic equation of motion in (2782). If we confine the motion to the equatorial plane

so that θ = π/2 and θ̇ = 0 then we have

r̈+
RS

2r (RS− r)
ṙ2+(RS− r) φ̇

2
+

RS (r−RS)

2r3
c2ṫ2 = 0 (2792)

Since d2r/dτ2 =
(

r̈− rφ̇
2
)

r̂ from (2791), then we can rearrange the terms in (2792) to obtain r̈− rφ̇
2

on

one side.

r̈− rφ̇
2
= − RS

2r (RS− r)
ṙ2−RSφ̇

2− RS (r−RS)

2r3
c2ṫ2 (2793)

We can recall that the components of the four-momentum were determined from the Schwarzschild metric as

follows.

p0 = g00 p0 =−(1−RS/r)mẋ0 =−E

c
(2794)
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where ẋ0 = cṫ. So from this we can see that

ṫ =
E

(1−RS/r)mc2
(2795)

Likewise, we also found that

p3 = g33 p3 = mr2 sinθφ̇ = L (2796)

Since θ = π/2 in the equatorial plane, then solving for φ̇ gives

φ̇ =
L

mr2
=

l

r2
(2797)

where l = L/m. We also found the equation of motion to be

ṙ2+ c2

(
1− RS

r

)(
1+

(l/c)2

r2

)
=

(
E

mc

)2

(2798)

ṙ2 =

(
E

mc

)2

− c2

(
1− RS

r

)(
1+

(l/c)2

r2

)
(2799)

Substituting (2795), (2797), and (2799) into (2793) gives

r̈− rφ̇
2
= − RS

2r (RS− r)

[(
E

mc

)2

− c2

(
1− RS

r

)(
1+

(l/c)2

r2

)]

−RSl2

r4
− RS (r−RS)

2r3
c2

(
E

(1−RS/r)mc2

)2

(2800)

Now we work to algebraically simplify the expression.

r̈− rφ̇
2
= − RS

2r (RS− r)

[(
E

mc

)2

− c2

(
1+

(l/c)2

r2
− RS

r
− RS (l/c)

2

r3

)]

−RSl2

r4
− RS (r−RS)c

2

2r3

(
Er

(r−RS)mc2

)2

(2801)

Distributing gives

r̈− rφ̇
2
= − RSE2

2r (RS− r)m2c2
+

RSc2

2r (RS− r)

(
1+

(l/c)2

r2
− RS

r
− RS (l/c)

2

r3

)

−RSl2

r4
− RSE2

2r (r−RS)m2c2
(2802)
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We can cancel the first and last terms and also distribute in the second term.

r̈− rφ̇
2
=

RSc2

2r (RS− r)

(
1+

(l/c)2

r2
− RS

r
− RS (l/c)2

r3

)
− RSl2

r4
(2803)

=
RSc2

2r (RS− r)
+

RSl2

2r3 (RS− r)
− R2

Sc2

2r2 (RS− r)
− R2

Sl2

2r4 (RS− r)
− RSl2

r4
(2804)

Factoring out a common RS/2 and getting a common denominator gives

r̈− rφ̇
2
=

RS

2

(
c2r3+ l2r−RSc2r2−RSl2−2l2 (RS− r)

r4 (RS− r)

)
(2805)

Combining similar terms gives

r̈− rφ̇
2
=

RS

2

(
c2r3+3l2r−RSc2r2−3RSl2

r4 (RS− r)

)
(2806)

Rearranging terms and factoring out (RS− r) gives

r̈− rφ̇
2
=

RS

2

(
c2r2 (r−RS)+3l2 (r−RS)

r4 (RS− r)

)
(2807)

= −RS

2

(
c2r2+3l2

r4

)
(2808)

Substituting RS = 2GM/c2 gives

r̈− rφ̇
2
= −GM

c2

(
c2

r2
+

3l2

r4

)
(2809)

= −GM

r2

(
1+

3(l/c)2

r4

)
(2810)

From (2791) we know that the left side is just~a= d2~r/dτ2 so we have

~a=−GM

r2

[
1+3

(l/c)2

r2

]
r̂ (2811)

Here we have effectively recovered the Newtonian gravitational force with an additional relativistic correc-

tion.
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Appendix L

The geodesic deviation equation

Here we follow an approach similar to [105] to derive the geodesic deviation equation. We can consider

a particle with worldline xµ (τ) following a geodesic

Duµ =
duµ

dτ
+Γ

µ

σρ (x)u
σ uρ = 0 (2812)

and a second particle with worldline x̃µ (t) following a neighboring geodesic

Dũµ =
dũµ

dτ
+Γ

µ

σρ (x̃) ũ
σ ũρ = 0 (2813)

The two particles are separated by a coordinate distance Lµ = x̃µ − xµ . From this relation we can find the

proper acceleration278 of Lµ which is the relative acceleration between xµ and x̃µ .

d2

dτ2
Lµ =

d

dτ
ũµ − d

dτ
uµ (2814)

L′′µ = ũ′µ −u′µ (2815)

= −Γ
µ

σρ (x̃) ũ
σ ũρ −Γ

µ

σρ (x)u
σ uρ (2816)

= Γ
µ

σρ (x̃)
(
uσ +L′σ

)(
uρ +L′ρ

)
−Γ

µ

σρ (x)u
σ uρ (2817)

Multiplying out terms and staying to first order in L′σ gives

L′′µ = −Γ
µ

σρ (x̃)
(
uσ uρ +L′σ uρ +uσ L′ρ

)
+Γ

µ

σρ (x)u
σ uρ (2818)

Expanding Γ
µ

σρ (x̃) to first order about xµ gives

Γ
µ

σρ (x̃) ≈ Γ
µ

σρ (x)+
(
∂γ Γ

µ

σρ (x)
)
(x̃γ − xγ) (2819)

≈ Γ
µ

σρ (x)+
(
∂γ Γ

µ

σρ (x)
)

Lγ (2820)

We can insert this into (2818) and drop the function notation since all quantities are now functions of x.

L′′µ = −
[
Γ

µ

σρ +
(
∂γ Γ

µ

σρ

)
Lγ
](

uσ uρ +L′σ uρ +uσ L′ρ
)
+Γ

µ

σρ uσ uρ (2821)

Canceling common terms and eliminating the higher order terms containing Lγ L′ρ gives

L′′µ = −Γ
µ

σρ L′σ uρ −Γ
µ

σρ uσ L′ρ −Lγ
(
∂γ Γ

µ

σρ

)
uσ uρ (2822)

278In this section we use the notation x′µ = dxµ/dτ as the derivative with respect to proper time in order

distinguish from ẋµ = dxµ/dt which is the derivative with respect to coordinate time.
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Since Γ
µ

σρ is symmetric in σ and ρ , then we can combine the first two terms to express the geodesic deviation

equation as

L′′µ =−2Γ
µ

σρ L′σ uρ −
(
∂γ Γ

µ

σρ

)
uσ uρ Lγ Coordinate dependent

geodesic deviation equation
(2823)

If we wish to express the geodesic deviation equation in terms of the Riemann tensor, we can start with the

covariant derivative acting on Lµ .

DLµ = L′µ +Γ
µ

γρ Lγ uρ (2824)

Then applying the covariant derivative to Lµ twice gives

D2Lµ =
d

dτ

(
L′µ +Γ

µ

γρ Lγ uρ
)
+Γ

µ

αβ

(
L′α +Γ

α
γρ Lγ uρ

)
uβ (2825)

Using the product rule to evaluate the derivative and distributing gives

D2Lµ = L′′µ +Γ
′µ
γρ Lγ uρ +Γ

µ

γρ L′γ uρ +Γ
µ

γρ Lγ u′ρ +Γ
µ

αβ
L′α uβ +Γ

µ

αβ
Γ

α
γρ Lγ uρ uβ (2826)

Using the chain rule, we can write Γ
′µ
γρ (x

µ) as

Γ
′µ
γρ (x

µ) =
d

dτ
Γ

µ

γρ (x
µ) =

dxσ

dτ

d

dxσ
Γ

µ

γρ = uσ
(
∂σ Γ

µ

γρ

)
(2827)

We can substitute this into the second term of (2826). We can also substitute (2823) in the first term and

(2812) in the fourth term to obtain

D2Lµ = −2Γ
µ

ρσ L′σ uρ −
(
∂γ Γ

µ

σρ

)
uσ uρ Lγ +∂σ Γ

µ

γρ Lγ uρ uσ

+Γ
µ

γρ L′γ uρ +Γ
µ

γρ Lγ
(
−Γ

ρ

σν uσ uν
)
+Γ

µ

αβ
L′α uβ +Γ

µ

αβ
Γ

α
γρ Lγ uρ uβ (2828)

The three terms involving Γ
µ

σρ L′σ uρ cancel to give

D2Lµ = −
(
∂γ Γ

µ

σρ

)
Lγ uσ uρ +∂σ Γ

µ

γρ Lγ uρ uσ −Γ
µ

γρ Γ
ρ

σν Lγ uσ uν +Γ
µ

αβ
Γ

α
γρ Lγ uρ uβ (2829)

We can change repeated indices so they match in each term and then factor out Lγ uσ uρ .

D2Lµ = −
(
∂γ Γ

µ

σρ

)
uσ uρ Lγ +∂σ Γ

µ

γρ Lγ uρ uσ −Γ
µ

γα Γ
α
σρ Lγ uσ uρ +Γ

µ

σα Γ
α
γρ Lγ uρ uσ (2830)

=
(
−∂γ Γ

µ

σρ +∂σ Γ
µ

γρ −Γ
µ

γα Γ
α
σρ +Γ

µ

σα Γ
α
γρ

)
Lγ uρ uσ (2831)

Lastly, since the Riemann tensor given in (2368) can be written as

R
µ

ργσ = ∂γ Γ
µ

σρ −∂σ Γ
µ

γρ +Γ
µ

γα Γ
α
ρσ −Γ

µ

σα Γ
α
ργ (2832)
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Recognizing that the term in parentheses in (2831) is −R
µ

ργσ gives

D2Lµ =−R
µ

ργσ Lγ uρ uσ Coordinate-free geodesic deviation equation (2833)

We can choose to consider the local Lorentz frame of xµ so that Γ
µ

σρ (x
µ) = 0. Then (2826) gives D2Lµ =

L′′µ . If we are also in the proper (rest) frame of xµ , then L′′µ = L̈µ . Then (2833) becomes

L̈µ =−R
µ

ργσ Lγ uρ uσ Geodesic deviation equation

in the proper Lorentz frame
(2834)

We can also write this result in terms of the metric perturbation. In (2473) of Appendix C, we found the

linearized Riemann tensor to be

R
µ

ργσ = 1
2
η

µα
(
∂γ ∂ρ hσα −∂γ ∂α hρσ −∂σ ∂ρ hγα +∂σ ∂α hργ

)
(2835)

In that case, the geodesic deviation equation in (2834) becomes

L̈µ =−Rµργσ Lγ uρ uσ Linearized geodesic deviation equation

in the proper Lorentz frame
(2836)
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Appendix M

Lagrangians for relativistic charged particles in curved space-time

The Lagrangian in flat space-time

First we consider the action for particle on a given path written in terms of the Lagrangian L as

S=
∫ t2

t1

Ldt (2837)

where we are choosing to parameterize the path by t. Minimizing the action (δS= 0) leads to the Euler-

Lagrange equations of motion. For a relativistic particle, the action should only involve relativistic invariants

so we can use dt = γdτ to express the coordinate time, dt, in terms of the invariant proper time, dτ .

S=
∫

τ2

τ1

γLdτ (2838)

We also know that in the rest frame of the particle, the Lagrangian is just the rest energy of the particle,

E = mc2. Therefore, it is also possible to minimize the action with

S=
∫

τ2

τ1

mc2dτ (2839)

Equating the action expressions in (2838) and (2839) gives γL = mc2. In flat space-time, we have γ−1 =√
1− (v/c)2, where v is the speed of the particle279 in this case, then we have

L= mc2

√
1− (v/c)2 (2840)

As an alternative method, we could also obtain the same results using the invariance of the relativistic length

interval:

ds2 = dxµ dxµ = ηµν dxµ dxν (2841)

Using xµ =
(
ct,xi

)
gives

ds2 =−c2dt2+
(
dxi
)2
=

[
−1+

(
dxi
)2

c2dt2

]
c2dt2 =

[
−1+(v/c)2

]
c2dt2 (2842)

In that case, we would minimize the action given by the path length:

S= mc

∫ √
ds2 = mc

∫ t2

t1

√[
−1+(v/c)2

]
c2dt2 = mc2

∫ t2

t1

√
(v/c)2−1dt (2843)

Hence we find the Lagrangian is

L= mc2

√
(v/c)2−1 (2844)

279Formally, the speed v found in γ−1 =

√
1− (v/c)2 is the relative speed between two moving inertial

frames. However, since we are choosing one frame to be the rest frame of the particle (with time τ), and the

other frame to be moving relative to the rest frame with velocity~v (and with time t) then the velocity of the

particle would be observed in the frame with time t to be moving with velocity −v̄. When the expression for

the Lagrangian only contains v2 then the negative is irrelevant. In fact, multiplying the lagrangian with an

overall negative sign does not change the Euler-Lagrange equation of motion,
d

dτ

∂L

∂~v
=

∂L

∂~x
. Therefore, this

lagrangian is often found written with a negative sign.
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The Lagrangian in (2844) is the same as (2840) except for a minus sign inside the root which does not affect

the equation of motion.

The Lagrangian in curved space-time

To generalize the Lagrangian in (2840) to curved space-time, we can first use the Lagrangian in (2840)
to write the action in flat space-time as

S=
∫

τ2

τ1

mc2

√
1− (v/c)2dτ =

∫
τ2

τ1

mc
√

c2− v2dτ =
∫

τ2

τ1

mc

√
ηµν uµ uν dτ (2845)

Then in curved space-time, we could just replace ηµν with gµν .

S=
∫

τ2

τ1

mc
√

gµν uµ uν dτ =
∫

τ2

τ1

mc

√
gµν

dxµ

dτ

dxν

dτ
dτ (2846)

From here we can immediately identify the Lagrangian as L = mc
√

gµν uµ uν . If we are using a metric with

signature diag(−1,1,1,1), then we need to include a negative inside the root to keep the Lagrangian real-

valued. So we use L = mc
√
−gµν uµ uν . It is apparent that this Lagrangian is associated with the invariance

of the four-velocity: √
−gµν uµ uν = c (2847)

For an electron-pair that is also coupled to an electromagnetic field, Aµ , then minimal coupling requires that

we have280

L=−mc

√
−gµν uµ uν + eAµ uµ Four-velocity invariant Lagrangian

in covariant form
(2848)

Note that we intentionally neglect the electron spin in this Lagrangian since we are ultimately interested

in describing electron-pairs such as the Cooper pairs of a superconductor. Consequently, a single Cooper pair

may be thought of as a composite boson particle with no spin since there must be one spin-up electron and

one spin-down electron paired in a single state as required by the Pauli Exclusion Principle. Therefore, the

Lagrangians throughout this paper are specifically describing these spinless bosons as particles with a mass

that is twice the mass of an electron, m = 2me, and a charge that is twice the charge of an electron, q = 2e.

Formally speaking, the Lagrangian in (2848) would be written L1 = 2mec
√
−gµν uµ uν +2eAµ uµ . However,

we will drop the subscript on the mass and drop the common factor of 2 (which doesn’t affect the equation

of motion) and simply write the Lagrangian as shown in (2848).

Alternatively, to generalize the results from (2841) to curved space-time, we could replace ηµν with gµν

in (2841) so it becomes

ds2 = dxµ dxµ = gµν dxµ dxν = gµν

dxµ

dτ

dxν

dτ
dτ

2 (2849)

Again we can write the action in terms of the path length as281

S= mc

∫ √
−ds2 = mc

∫
τ2

τ1

√
−gµν

dxµ

dτ

dxν

dτ
dτ (2850)

280Notice that we have written a negative sign in front of the kinetic term. In the case of the free particle,

this was not necessary since it would just be an overall negative to the entire lagrangian. However, in the case

of the coupled particle, we must make sure the kinetic term and the coupled term have opposite signs in order

to obtain the correct equaton of motion. This Lagrangian is also found in Jackson [40] (eq. 12.31).
281We must use a minus sign inside the square root in order to keep it from becoming complex since

gµν ẋµ ẋν =−c2 for a metric with signature diag(−1,1,1,1).
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Again we can immediately identify the Lagrangian as L=mc
√
−gµν uµ uν and if the electron-pair is coupled

to an electromagnetic field, Aµ , then we can make the kinetic term negative and the Lagrangian would be the

same as the one found in (2848).
L=−mc

√
−gµν uµ uν + eAµ uµ (2851)

Note that this is the same Lagrangian used by DeWitt in equation (1) of [42].

Yet another alternative is to begin with a form of the Lagrangian which is similar to the form in non-

relativistic mechanics. For a free particle, the Lagrangian is just the kinetic energy given by

L=
~p2

2m
(2852)

where ~p is the momentum 3-vector. We may anticipate that the generalization to Special Relativity would

involve the momentum four-vector instead.282

L=
pµ pµ

2m
(2853)

Since pµ = (E/c,~p), then pµ pµ = −E2+ p2c2. Also, since pµ = muµ , then pµ pµ = m2uµ uµ = −m2c2.

Equating these two results leads to E2 =m2c4+ p2c2 which is the standard formulation of relativistic energy

(E = γmc2) in terms of the rest-mass energy (mc2) and the kinetic energy (pc) of a free particle. To generalize

the Lagrangian to curved space-time, we could write

L=
gµν pµ pν

2m
(2854)

The action associated with this Lagrangian could be written without the factor of 2 as

S=
∫

gµν pµ pν

m
dτ (2855)

It is apparent that this Lagrangian is associated with the invariance of the four-momentum:

gµν pµ pν = −m2c2 (2856)

For this reason, we refer to this Lagrangian as the “four-momentum invariant Lagrangian.” If the electron-pair

is also coupled to an electromagnetic field, Aµ , then minimal coupling gives

L2 =
1

2m
gµν pµ pν + eAµ uµ Four-momentum invariant Lagrangian

in covariant form
(2857)

Throughout this paper we will consistently use L1 to refer to the “four-velocity invariant Lagrangian” and L2

to refer to the “four-momentum invariant Lagrangian.”

Reparameterizing the Lagrangian in terms of coordinate time

Notice that the Lagrangian is parameterized in the action by proper time, τ . We can reparameterize the

Lagrangian so that rather than being a function of four coordinates (xµ) parameterized by proper time τ ,

instead it can be a function of three coordinates
(
xi
)

parameterized by coordinate time t. To do this, we use

the chain rule to write
dxµ

dτ
=

dxµ

dt

dt

dτ
(2858)

282The factor of 1/2 does not have any significance since it does not affect the equation of motion.
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We can define the “dot derivative” as a derivative with respect to t, the coordinate time.283 So we can write

(2858) as
dxµ

dτ
= ẋµ dt

dτ
(2859)

Then the action for the Lagrangian in (2848) can be written as

S1 =
∫

τ2

τ1

(
mc
√
−gµν uµ uν + eAµ uµ

)
dτ (2860)

=
∫

τ2

τ1

(
mc

√
−gµν

(
ẋµ

dt

dτ

)(
ẋν

dt

dτ

)
+ eAµ ẋµ dt

dτ

)
dτ (2861)

=
∫ t2

t1

(
mc
√
−gµν ẋµ ẋν + eAµ ẋµ

)
dt (2862)

Hence we can write the reparameterized “space + time” Lagrangian as

L̃1 = mc

√
−gµν ẋµ ẋν + eAµ ẋµ Four-velocity invariant Lagrangian

in “space+time” form
(2863)

The Lagrangian used by DeWitt follows similarly from (2851) as

L = −mc
√
−gµν ẋµ ẋν + eAµ ẋµ (2864)

Likewise, the four-momentum invariant Lagrangian in (2857) becomes

L̃2 = ẋµ pµ + eAµ ẋµ

Four-momentum invariant Lagrangian

in “space+time” form
(2865)

where we have dropped the prefactor of 1/2 in the kinetic term.284

In the process of reparameterizing each Lagrangian, the action went from an integral of proper time (dτ)
to an integral of coordinate time (dt). In a sense, this corresponds to deparameterizing a four-dimensional

configuration space {xµ (τ)} parameterized in τ , to a three-dimensional configuration space
{

xi
(
x0
)}

pa-

rameterized in x0. It is for this reason that the new Lagrangian must depend on xi and vi = dxi/dx0 rather

than xµ and uµ = dxµ/dτ . (This is the same convention used by DeWitt [42] when writing the Lagrangian

in terms of ẋµ with the “dot” being a derivative with respect to x0.) This formulation is valid as long as the

corresponding Euler-Lagrange equation is written in terms of coordinate time as

dL

dt
− ∂L

∂ (dxµ/dx0)
= 0 (2866)

rather than in terms of proper time as
dL

dτ
− ∂L

∂ (dxµ/dτ)
= 0 (2867)

283DeWitt [42] does the same except that he defines it as a derivative with respect to x0 with c= 1. If we do

not set c= 1, then it is actually a derivative with respect to t = x0/c.
284As shown by the action in (2855), the prefactor of 1/2 in the kinetic term is not necessary. It was

included in (2857) only to demonstrate in Section 43 that the Lagrangian and Hamiltonian for a free particle

are found to be the same, and the Hamiltonian for a particle coupled to an electromagnetic field simply

becomes H2 =
1

2m
(pµ −qAµ)2.
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Appendix N

The spatial inverse metric

We can define the “spatial inverse metric” as g̃ik where

g̃ikg jk = δ
i
j (2868)

To find an expression for g̃ik, we can develop relations between the metric and inverse metric components.

Since gµν gλν = δ
µ

λ
, then summing over ν gives

gµ0gλ0+gµkgλk = δ
µ

λ
(2869)

We can consider the various combinations of choosing space and time components for µ and λ . Using (2869)

and recognizing that δ
i
i = δ

0
0 = 1 and δ

i
0 = 0, gives the following.

For µ = i, λ = j =⇒ gi0g j0+gikg jk = δ
i
j (2870)

For µ = 0, λ = j =⇒ g00g j0+g0kg jk = δ
0
j =⇒ g0kg jk =−g00g j0 (2871)

For µ = j, λ = 0 =⇒ g j0g00+g jkg0k = δ
j

0 =⇒ g jkg0k =−g j0g00 (2872)

For µ = 0, λ = 0 =⇒ g00g00+g0kg0k = δ
0
0 =⇒ g0kg0k = 1−g00g00 (2873)

Inserting (2870) into (2868) and dividing by g jk gives

g̃ik =
gi0g j0+gikg jk

g jk

=
gi0g j0

g jk

+gik (2874)

From (2871) we also have g jk =−
g00g j0

g0k
. Inserting this in the first term of (2874) gives

g̃ jk = gik− g0ig0k

g00
Spatial inverse metric (2875)

To first order in the metric, we have gµν = ηµν −hµν . Also using η0i = 0 and η00 =−1 gives

g̃ jk = gik− h0ih0k

−1−h00
= gik+

h0ih0k

1+h00
(2876)

Approximating the denominator to first order gives
(
1+h00

)−1 ≈ 1−h00. This means we have

g̃ jk ≈ gik+h0ih0k
(
1−h00

)
(2877)

Therefore, if we remain to first order in the metric, we simply have g̃ jk ≈ gik. However, (2875) is valid to all

orders in the metric. There are two quantities that appear in the Hamiltonian in (677) that we can evaluate
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here. They are g̃ikg0k and
(
g̃ jkg0 jg0k−g00

)
. Writing (2871) with µ = 0, λ = k and using j for the repeated

index gives

g00gk0+g0 jgk j = δ
0
k =⇒ g jk =−

g00gk0

g0 j
(2878)

Inserting this into (2868) gives

g̃ik

(
−g00gk0

g0 j

)
= δ

i
j (2879)

g̃ikg0k =−
g0i

g00
(2880)

The other quantity,
(
g̃ jkg0 jg0k−g00

)
, can be evaluated by inserting (2875) into it. This gives

g̃ jkg0 jg0k−g00 =

(
g jk− g0 jg0k

g00

)
g0 jg0k−g00 (2881)

= g jkg0 jg0k−
g0 jg0k

g00
g0 jg0k−g00 (2882)

Inserting (2872) in the first term and factoring out g0 jg0 j from two terms gives

g̃ jkg0 jg0k−g00 =
(
−g j0g00

)
g0 j−

g0 jg0k

g00
g0 jg0k−g00 (2883)

= g0 jg0 j

[
−g00−

g0kg0k

g00

]
−g00 (2884)

Inserting (2873) twice and simplifying gives

g̃ jkg0 jg0k−g00 =
(
1−g00g00

)[
−g00−

(
1−g00g00

)
g00

]
−g00 (2885)

g̃ jkg0 jg0k−g00 =−
1

g00
(2886)
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Appendix O

The quantum phase and local gauge-invariance of the wavefunction

In the electromagnetic case, we know that a magnetic field, ~BG = ∇×~A, leads to a coupling rule for the

canonical momentum given by

~p =⇒ ~p−q~A (2887)

Since the kinetic momentum is~π = ~p−q~A, then the (non-relativistic) Hamiltonian becomes

H =
~π2

2m
=

1

2m

(
~p−q~A

)2

(2888)

Quantizing the Hamiltonian and canonical momentum, and acting on a wavefunction gives the following

Schrödinger equation.

i}∂tΨ(~r, t) =

[
1

2m

(
i}∇−q~A

)2
]

Ψ(~r, t) (2889)

If we Ψ(~r, t) is a solution to (2889), then we can consider a different wavefunction with a phase factor, eiφ̃ ,

where φ̃ is the phase.285

Ψ= eiφ̃
Ψ̃ (2890)

For a quantum particle in the vicinity of a mass solenoid such as the one depicted in Section 9, the phase is

related to ~A by

φ̃ =
q

}

∫ r

0

~A
(
~r′
)
·d~r′ (2891)

To evaluate the Schrödinger equation in (2889), we must first find ∇Ψ. Applying the product rule to (2890)
gives

∇Ψ= eiφ̃
(
∇iφ̃

)
Ψ̃+ eiφ̃

∇Ψ̃ (2892)

Since φ̃ =
q

}

∫ r

0

~A(~r′) ·d~r′, then ∇φ̃ =
q

}
~A (by the fundamental theorem of calculus). So we have

∇Ψ= eiφ̃
(

i
q

}
~A
)

Ψ̃+ eiφ̃
∇Ψ̃ (2893)

Next we substitute Ψ= eiφ̃ Ψ̃ for the first term on the right, combine terms with Ψ, and multiply through by

−i}. (
−i}∇−q~A

)
Ψ=−i}eiφ̃

∇Ψ̃ (2894)

Now we substitute Ψ= eiφ̃ Ψ̃ on the left and cancel eiφ̃ on both sides.(
−i}∇−q~A

)
Ψ̃ = −i}∇Ψ̃ (2895)

We can consider both sides of (2895) as being operators acting on Ψ̃. Applying the same operators on both

sides again gives (
−i}∇−q~A

)2

Ψ̃ = (−i}∇)2 Ψ̃ (2896)

(
i}∇+q~A

)2

Ψ̃ = −}∇
2
Ψ̃ (2897)

285We will use the notation φ̃ to distinguish the phase from the scalar potential found in h00 =−2φ/c2.
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Substituting Ψ̃=Ψ/eiφ̃ on the left and multiplying by eiφ̃ gives(
i}∇+q~A

)2

Ψ=−}eiφ̃
∇

2
Ψ̃ (2898)

Next we substitute this back into the right side of Schrödinger’s equation (2889).

i}∂tΨ(~r, t) =−
}

2m
eiφ̃

∇
2
Ψ̃(~r, t) (2899)

Then substituting Ψ= eiφ̃ Ψ̃ on the left and canceling eiφ̃ on both sides gives

i}∂tΨ̃(~r, t) = − }
2m

∇
2
Ψ̃(~r, t) (2900)

This result is the Schrödinger equation for a free particle with a wavefunction Ψ̃(~r, t). In other words, we

find that Ψ̃(~r, t) is also a solution of Schrödinger’s equation but with the absence of ~A. This means that the

presence of ~A just causes the wavefunction to acquire a phase factor. So we conclude that multiplying the

wavefunction by a phase factor, eiφ̃ , so that Ψ = eiφ̃ Ψ̃ where φ̃ =
q

}

∫ r

0

~A(~r′) · d~r, causes the Schrödinger

equation given in (2889) for a coupled particle with no phase, to become the Schrödinger equation given in

(2900) for a free particle which has a phase.

Here the analysis has been done using the coupling rule in (2887) which involves ~A. However, this

analysis could be carried out for any vector field, ~V , which transforms the canonical momentum according to

~p =⇒ ~p−c~V where c is the particular “charge” quantity of the particle which couples to the arbitrary vector

field ~V . Then the corresponding phase would obviously be expressed as φ̃ =
c

}

∫ r

0

~V (~r′) ·d~r.
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Appendix P

Quantum phase interference due to a Newtonian potential

Here we examine a basic example of a quantum wavefunction phase shift due to a common Newtonian

gravitational field, such as the gravitational field of the earth. We consider the case of a nearly monoenergetic

beam of particles that is split into two parts and then brought together as shown in the following diagram

from Sakurai, Modern Quantum Mechanics, [71] (pp. 136-139).

Figure 31: The quantum wave function of a beam of particles is split into paths at point A and then brought

together again point D. One path is ABD while the other path is ACD. A quantum phase interference will

occur due to the Newtonian potential of Earth’s gravitational field.

Assuming that the size of the wave packet is much smaller than the macroscopic dimension of the loop

formed by the two alternate paths, then we can apply the concept of a classical trajectory. Let us describe the

path ABC as Path 1 and the path ACD as Path 2. If we consider the wave function on each path to be a plane

wave, then the wave functions are

Ψ1 (~r, t) = Aei(~k1·~r1−ω1t1) and Ψ2 (~r, t) = Aei(~k2·~r2−ω2t2) (2901)

If the loop is rotated by an angle δ about the segment AC, then the path of each wave will rise in height as

the wave goes from A to D. The energy of the particle is E = p2

2m
+mgz, so a rise in height will increase the

gravitational potential energy and therefore decrease the kinetic energy. Decreasing kinetic energy means

decreasing momentum and therefore increasing the wavelength, λ = h/p. The sum of these changes in

wavelength over the length of the path will cause an effective phase change at the interference region. So the

wave function will have a phase factor eiφ . By gauge invariance of the wave function, we can multiply the

wave function by eiφ and it will still satisfy the Schrödinger wave equation. Then the two wave functions

given above we will be

Ψ1 (~r, t) = Aeiφ1ei(~p1·~r1/}−r1/v1) and Ψ2 (~r, t) = Aeiφ2ei(~p2·~r2/}−r2/v2) (2902)
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We can write the phase for each wave as

φ 1 =
∫

Path 1

~k1 ·d~l and φ 2 =
∫

Path 2

~k2 ·d~l (2903)

The total path length is the same for the two waves. However, the segment BD along Path 1 is at a greater

height than the segment AC along Path 2. Therefore, Ψ1 has more of its path at a higher gravitational potential

than Ψ2 and consequently λ 1 = h/p1 will be larger than λ 2 = h/p2 when comparing segments BD and CD.

As a result there will be a phase difference between the two waves. This difference is

∆φ = φ 1−φ 2 =
∫

Path 1

~k1 ·d~l−
∫

Path 2

~k2 ·d~l (2904)

Note that the segment AB on Path 1 and the segment CD on path 2 will not contribute to the phase difference

between the wave functions because the heights of the wave functions increase identically on these segments.

Therefore, we can consider only the segment BD on Path 1 and AC on Path 2. Then we have

∆φ = k1l1− k2l1 (2905)

The energy, E = p2

2m
+mgz, for either path must be the same since it is a single particle. So we have

p2
1

2m
+mgz1 =

p2
2

2m
+mgz2 (2906)

p2
1 = p2

2+2m2g(z2− z1) (2907)

}2k2
1 = }2k2

2+2m2g(z2− z1) (2908)

k2
1 = k2

2−
2m2g

}2
(z1− z2) (2909)

We are considering the case when the loop is rotated by an angle δ that makes the segment BD (from path 1)

higher than the segment AC (from path 2). So the difference in heights is given by z1− z2 = l2 sinδ . Then we

have

k2
1 = k2

2−
2m2gl2 sinδ

}2
(2910)

We can now combine equations (2905) and (2910) to solve for ∆φ . Rearranging the terms in (2905) and

squaring both sides gives

(∆φ + k2l1)
2 = k2

1l2
1 (2911)

Using (2910) to substitute for k2
1 gives

(∆φ + k2l1)
2 =

(
k2

2−
2m2gl2 sinδ

}2

)
l2
1 (2912)

∆φ
2+2k2l1∆φ + k2

2l2
1 = k2

2l2
1 −

2m2gl2
1 l2 sinδ

}2
(2913)

∆φ
2+2k2l1∆φ +2m2gl2l2

1 sinδ/}2 = 0 (2914)
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We can use the quadratic formula with a= 1, b= 2k2l1, and c= 2m2gl2l2
1 sinδ/}2.

∆φ =
−b±

√
b2−4ac

2a
(2915)

=
−2k2l1±

√
4k2

2l2
1 −8m2gl2l2

1 sinδ/}2

2
(2916)

= −k2l1±
√

k2
2l2

1 −2m2gl2l2
1 sinδ/}2 (2917)

This is an exact answer. If we would like to simplify this, we must make some approximations. First we can

factor out k2
2l2

1 from the square root.

∆φ = −k2l1± k2l1

√
1+

2m2gl2 sinδ

k2
2}2

(2918)

Notice that the fraction inside the square root can be written as
mgl2 sinδ

p2/2m
which is the ratio of the gravitational

potential energy to kinetic energy. For a very small mass (such as neutrons which were used to experimentally

verify this effect), the kinetic energy is much greater than the gravitational potential energy so
mgl2

p2/2m
<< 1.

This means that we can apply the binomial expansion:
√

1− x≈ 1− 1
2
x for x<< 1. So we obtain

∆φ ≈ −k2l1± k2l1

(
1− m2gl2 sinδ

k2
2}2

)
(2919)

≈ −k2l1±
(

k2l1−
m2gl1l2 sinδ

k2}2

)
(2920)

Here we have the option of using the positive or negative sign from the “± .” The negative sign will result

in a factor of −2k2l1 contributing to the phase difference. Since we are only interested in the effect of the

gravitational potential on the phase difference, then we can apply the positive sign in order for the k2l1 terms

to cancel. This gives

∆φ ≈ −m2gl1l2 sinδ

k2}2
(2921)

Therefore we see that even a common Newtonian gravitational field such as the earth’s can produce a phase

shift in the wavefunction.
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Appendix Q

The London equations and penetration depth in electromagnetism

The London Equations

The brothers F. and H. London developed two equations which lead to an expression for the penetration

depth for EM fields incident on a superconductor [72]. By modeling the electrons in a superconductor as

flowing with no resistance, the electrons will accelerate uniformly according to the Lorentz force law

m~a= q~E (2922)

Using~a= ∂t~v and q=−e gives

∂t~v=−
e

me

~E (2923)

The supercurrent can be written as
~Js = nsq~v=−nse~v (2924)

where ~Js is the charge current and ns is the number density of superconducting carriers (electrons). Then

(2923) becomes what is often referred to as the first London equation. Since it involves the electric field, we

will refer to it as the electric London equation.

∂t
~Js =

nse
2

me

~E Electric London equation (2925)

Note that inserting ~E =−∇ϕ−∂t
~A into the expression above and rearranging gives

∂t

(
~Js+

nse
2

me

~A

)
=−nse

2

me

∇ϕ (2926)

In (2931) it is found that ~Js =−
nse

2

me

~A which means that the entire term in parentheses above must be zero.

Then the equation above requires that ∇ϕ = 0 inside a superconductor.286

Next, we can take the curl of (2925) and apply Faraday’s law, ∇×~E =−∂t
~B, to obtain

∂t∇× ~Js =−
nse

2

me

∂t
~B (2927)

Integrating both sides with respect to time and setting the integration constant to zero gives what is often

referred to as the second London equation. Since it involves the magnetic field, we will refer to it as the

magnetic London equation.287

∇× ~Js =−
nse

2

me

~B Magnetic London equation (2928)

286This means the electric field does not have a contribution due to the scalar potential. It must be written

as: Ei = −∂tAi. Taking a divergence and applying the London gauge, ∂iAi = 0, also means ∂iEi = 0. By

Gauss’s law this means ρ/ε = 0. Therefore, either ρc = 0 or ε → ∞ inside a superconductor.
287Note that (2925) and (2928) are constituent equations, not field equations. These equations describe the

current density produced in the superconductor due to external electric and magnetic fields. These equations

do not describe the fields produced by the current density in the superconductor. The field equations are still

the standard Maxwell field equations.
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This using ~B= ∇×~A gives

∇×
(
~Js+

nse
2

me

~A

)
= 0 (2929)

The solution to this differential equation is

~Js+
nse

2

me

~A+∇ f (r, t) = 0 (2930)

For a steady state current, we have ρ̇ = 0 and therefore ∇ · ~Js = 0 by the continuity equation. Also, in the

Coulomb (or London) gauge, we have ∇ ·~A = 0. Therefore, taking the divergence of (2930) requires that

∇
2

f (r, t) = 0. Assuming ~Js and ~A go to zero as r→ ∞, then we must also have that ∇ f (r, t)→ 0 as r→ ∞

which means that f (r, t)→ constant as r→∞. Then the unique solution to ∇
2

f (r, t) = 0 is f (r, t) = constant

everywhere and therefore ∇ f (r, t) = 0 everywhere. Therefore (2930) simply reduces to

~Js =−
nse

2

me

~A London constitutive equation (2931)

The equation in (2931) can be thought of as a constitutive equation288 which describes how the supercurrent

in a superconductor responds to an external field ~A. The equation in (2931) can also be thought of as a single

London equation which combines the previous two London equations into one relationship. We can observe

this by taking a time derivative of (2931) and using ~E = −∂t
~A to obtain the electric London equation in

(2925). Also, taking the curl of (2931) and using ~B= ∇×~A gives the magnetic London equation in (2928).

We may also derive (2931) by use of the minimal coupling rule for a charged particle coupled to an EM

field. The kinetic momentum, me~v, is expressed in terms of the canonical momentum, ~pcan, according to

(842) as

~pcan = me~v− e~A (2932)

Since the superconducting state of a system is a zero-momentum state, then the canonical momentum be-

comes zero and we have~v= e~A/me. Substituting this into (2924) gives

~Js =−
nse

2

me

~A (2933)

This matches the result found in (2931).

The London penetration depth for the vector potential and the magnetic field

Ampere’s law for a steady-state supercurrent is ∇×~Bs = µ~Js. Taking the curl gives

∇×∇×~Bs = µ∇× ~Js (2934)

Since ∇ ·~Bs= 0, then the vector calculus identity ∇×∇×~Bs=∇

(
∇ ·~Bs

)
−∇

2~Bs will become ∇×∇×~Bs=−
∇

2~Bs. Then the equation above becomes

−∇
2~Bs = µ∇× ~Js (2935)

288This is similar to Ohm’s law, ~J = σ c
~E, where σ c is the conductivity that characterizes the response of a

conductor to an electric field.
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Inserting (2928) into the right side of (2935) gives289

∇
2~B=

µnse
2

me

~B (2936)

We can write the prefactor on the right side as
µnse

2

me

=
1

λ
2
L

. Then we have

∇
2~B− 1

λ
2
L

~B= 0 (2937)

The solution to this equation is B(x) = B0e−x/λ L where the London penetration depth is

λ L =

√
me

µnse
2

London penetration depth (2938)

This determines the characteristic depth to which an external magnetic field can penetrate into the interior of

a superconductor. This can also be expressed as a plasma frequency ω p =
c

λ L

. This gives290

ω p = c

√
µnse

2

me

(2939)

We can return again to Ampere’s law for a steady-state supercurrent, ∇×~B = µ~Js. This time, we substitute
~B= ∇×~A on the left and insert (2931) on the right.

∇×∇×~A=−µnse
2

me

~A (2940)

Using the Coulomb (or London) gauge, ∇ ·~A = 0, makes the vector calculus identity given by ∇×∇×~A =
∇

(
∇ ·~A

)
−∇

2~A become ∇×∇×~A=−∇
2~A. Then the equation above becomes

∇
2~A =

µnse
2

me

~A (2941)

Writing this in terms of the London penetration depth from (2938) gives

∇
2~A− 1

λ
2
L

~A= 0 (2942)

289Formally speaking ~B and ~Bs are not the same since ~Bs is the magnetic field produced by the supercon-

ductor while ~B is an external magnetic field acting on the superconductor. In fact, the external ~B is related to

an external ~E (by Faraday’s law used earlier) which provided an external Lorentz force according to (2923).
Therefore, technically the differential equaton constains two separate ~B fields that cannot be treated as the

same field. However, this is often overlooked by simply viewing ~B as taking into account all the fields,

including those produced by the material of the superconductor as well as those introduced externally.

290Since c = 1/
√

ε0µ0, then (2938) could also be written as λ L = c

√
ε0me

nse
2

and (2939) could also be

written as ω p =

√
nse

2

ε0me

.
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Therefore, the vector potential is also expected to vanish within the London penetration depth.

The London penetration depth for the supercurrent and electric field

Taking the curl of the magnetic London equation in (2928) gives

∇×∇× ~Js = −nse
2

me

∇×~B (2943)

Since ρ̇ = 0 for a steady state current, then by the continuity equation we have ∇ · ~Js = 0. In that case, the

vector calculus identity ∇×∇× ~Js = ∇

(
∇ · ~Js

)
−∇

2~Js becomes ∇×∇× ~Js = −∇
2~Js. Then the equation

above can be written as

∇
2~Js =

nse
2

me

∇×~B (2944)

Substituting Ampere’s law for a steady-state supercurrent, ∇×~B= µ~Js, gives

∇
2~Js =

µnse
2

me

~Js (2945)

Writing this in terms of the London penetration depth from (2938) gives

∇
2~Js−

1

λ
2
L

~Js = 0 (2946)

Therefore, the supercurrent is also expected to vanish within the London penetration depth. This is consistent

with the fact the magnetic field (which would drive the supercurrent) also penetrates into the superconductor

only up to the London penetration depth. Taking the time derivative of (2946) and using the electric London

equation from (2925) gives

∇
2~E− 1

λ
2
L

~E = 0 (2947)

Therefore, the electric field is also expected to vanish within the London penetration depth.

An alternative approach to the London equations

We begin by expressing the Lorentz force for a differential volume element containing a charge density

ρc = dq/dV and mass density ρm = dm/dt.

ρm~a = ρc

(
~E+~v×~B

)
(2948)

Using~a= ∂t~v and ~Js = ρc~v for the supercurrent density gives

ρm∂t
~Js = ρ

2
c

(
~E+~v×~B

)
(2949)
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For a supercurrent of electrons, we have ρc/ρm =−e/me which gives

∂t
~Js = −eρc

me

(
~E+~v×~B

)
(2950)

This is effectively the same as the electric London equation in (2928) except we have retained the contribution

of the magnetic force. We can take the curl of this equation and apply Faraday’s law, ∇×~E = −∂t
~B. This

gives

∂t∇× ~Js = −eρc

me

[
−∂t

~B+∇×
(
~v×~B

)]
(2951)

We can apply the identity ∇×
(
~v×~B

)
=~v
(

∇ ·~B
)
− (∇ ·~v)~B and use ∇ ·~B= 0. Also, for an incompressible

flow, we have ∇ ·~v= 0. Therefore, the equation above becomes

∂t∇× ~Js =
eρc

me

∂t
~B (2952)

Integrating both sides with respect to time gives

∇× ~Js =
eρc

me

~B+ f (~x) (2953)

where f (~x) is an integrating function of position but not time. Setting f (~x) = 0 and using ρc = nse gives

∇× ~Js =
nse

2

me

~B (2954)

This is the same as the magnetic London equation found in (2928). Using ~B= ∇×~A gives

∇×
(
~Js+

eρc

me

~A

)
= 0 (2955)

Once again, we can argue that the unique solution to this differential equation is

~Js = −eρc

me

~A (2956)

which is the same as the single London equation in (2931) except in terms of ρc rather than nse.

The negligibility of the displacement current

We now express the full Ampere’s law in terms of the supercurrent without neglecting the displacement

current. For an oscillating field, we can use ∂t
~E = ω~E so that we have

∇×~B= µ~Js+
ω

c2
~E (2957)

For an oscillating current, we can also use ∂t
~J = ω~J. Inserting this into the electric London equation from

(2925) and gives

ω~Js =
nse

2

me

~E (2958)
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Solving this for ~E and substituting it into (2957) gives

∇×~B= µ~Js+
ω2me

c2e2ns

~Js (2959)

This can be written in terms of the London penetration depth from (2938).

∇×~B= µ~Js+
µλ

2
Lω2

c2
~Js (2960)

From this expression we can easily compare the strength of the charge current (determined by µ) to the

strength of the displacement current, determined by the prefactor µλ
2
Lω2/c2. We can let µ ≈ µ0 ≈ 1.3×

10−6 (SI units). We can also consider the case of microwave frequencies, f ∼ 1010Hz, and a Niobium

superconductor, λ L ≈ 10−9. Then the prefactor for the displacement current becomes µλ
2
Lω2/c2 ≈ 5.7×

10−20 (SI units). Therefore, the contribution by the displacement current is weaker than the contribution by

the charge current by a factor on the order of 10-14. Therefore the displacement current can be neglected in

the London equations even for high frequencies.

The “London prescription”

The process used for determining the London penetration depth can be considered as essentially a “pre-

scription” which is summarized as follows.

1. Express the velocity in terms of the current density: v=− J

nse
.

2. Substitute this into the Lorentz force to obtain the electric London equation in (2925). This will

determine the proportionality constant that ultimately appears in (2931).

3. Use Faraday’s law to express the electric London equation in terms of ~B. This gives the magnetic

London equation. Express ~B as ~B= ∇×~A to obtain the single London equation given by (2931).

4. Use Ampere’s law to formulate a differential equation in terms of ~B or ~A which can then be used to

determine the penetration depth of the field based on an exponential decay function.
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Appendix R

Electrodynamics within a superconductor

First we use Maxwell equations in the Lorenz gauge to obtain dispersion relations and penetration depths for

the vector potential, ~A, for two cases: 1) Ohm’s law and 2) London’s constitutive equation. Then we use the

Maxwell equations to derive non-homogenous wave equations for ~E and ~B in matter. The source terms are

evaluated for four cases: 1) Ohm’s law; 2) London’s constitutive equation; 3) the two fluid model; and 4) the

full Lorentz force density. These are shown to lead to different dispersion relations and penetration depths

for ~E and ~B.

A dispersion relation, plasma frequency, and penetration depth for ~A and ~J

The wave equation for the vector potential describing electromagnetic waves in the Lorenz gauge is

given by �Ai = −µ0Ji. The London constitutive equation is Ji = −ΛLAi, where we found in (2931) that

ΛL = nse
2/me. Inserting this into the wave equation and expanding the box operator gives

− 1
c2 ∂

2
t Ai+∇

2
Ai = µ0ΛLAi (2961)

To obtain a dispersion relation, we can use a monochromatic, plane-fronted wave propagating in the z-

direction given by

A(z, t) = A0ei(kz−ωt) (2962)

where A0 is a constant amplitude. Then the wave equation above gives291

− (−iω)2

c2
Ai+(ik)2 Ai = µ0ΛLAi (2963)

(
k2− ω2

c2
+µ0ΛL

)
Ai = 0 (2964)

For a non-trivial solution
(
Ai 6= 0

)
, we have

k2 =
ω2

c2
−µ0ΛL (2965)

We can factor out ω2/c2 to obtain the following dispersion relation for electromagnetic waves in a supercon-

ductor.

k2 =
ω2

c2

(
1− µ0c2ΛL

ω2

)
Dispersion relation for electromagnetic waves

in a superconductor
(2966)

We can define an electromagnetic plasma frequency as292

ω2
EM ≡ µ0c2ΛL Electromagnetic plasma frequency (2967)

291Note that that the frequency of the incoming electromagnetic wave (on the right) is assumed to have the

same frequency as the outgoing electromagnetic wave (on the left).

292Since ΛL = µ/λ
2
L where λ L is the London penetration depth, then ωEM = c/λ L. For Niobium

(λ L ≈ 39nm), this gives ωEM ≈ 8×1015Hz.
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Then (2966) can also be written as

k2 =
ω2

c2

(
1− ω2

EM

ω2

)
(2968)

It is clear from (2968) that reflection or absorption will occur when ω ≤ ωEM which means k becomes

imaginary. We can also write (2968) as

k2 =
ω2

c2
n2 (ω) (2969)

where we are using an index of refraction defined as

n2 (ω)≡
(

1− ω2
EM

ω2

)
Electromagnetic index of refraction (2970)

This characterizes the reflection and refraction of electromagnetic waves in matter. Next we can evaluate an

electromagnetic wave penetration depth. We can define a complex wave number as

k = K+ iκ0 (2971)

where K and κ0 are real quantities. Inserting this into the plane wave of (2962) and separating the real and

imaginary parts of the phase gives

A(z, t) = A0ei[(K+iκ)z−ωt] = A0e−κzei(Kz−ωt) (2972)

Here we clearly see that the wave falls off exponentially with distance where κ as the exponential decay

factor. The square of the wave number in (2971) is

k2 = K2−κ
2
0+2iKκ0 (2973)

Since k2 in (2965) is only real, then we must have either K = 0 or κ0 = 0 to eliminate the last cross term

above. Setting κ0 = 0 and using (2965) gives

K2 =
ω2

c2
−µ0ΛL (2974)

Note that this condition is only valid for ω2/c2 ≥ µΛL since K is real. Using the electromagnetic plasma

frequency in (2967), we can write this condition as ω ≥ ωEM . Then the plane wave of (2972) becomes

A(z, t) = A0ei(Kz−ωt) where K =±
√

ω2

c2 −µ0ΛL

Propagating solution for an electromagnetic wave

in a superconductor (for ω ≥ ωEM)

(2975)

This result corresponds to a wave with a frequency above the plasma frequency which therefore cannot

interact with the material and hence propagates with no attenuation. On the other hand, setting K = 0 and

using (2965) and (2973) gives

κ
2
0 = µ0ΛL−

ω2

c2
(2976)
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Note that this condition is only valid for ω2/c2 ≤ µ0ΛL since κ0 is real. Using the electromagnetic plasma

frequency in (2967), we can write this condition as ω ≤ ωG. Then the plane wave of (2972) becomes293

A(z, t) = A0e−κ0ze−iωt where κ0 =
√

µ0ΛL− ω2

c2

Exponentially decaying solution for an electromagnetic wave

in a superconductor for (ω ≤ ωEM)

(2977)

This result corresponds to a wave with a frequency below the plasma frequency. Such a wave will interact

with the material and is therefore attenuated as it propagates in the material. Therefore, we can identify a

characteristic frequency-dependent penetration depth as δ EM = 1/κ0. Using (2976) gives

δ
2
EM =

c

c2µ0ΛL−ω2
(2978)

Using ΛL = nse
2/me, we can write this as

δ
2
EM =

c

c2µ0nse
2/me−ω2

Electromagnetic wave penetration depth (2979)

We can also write this in terms of the electromagnetic plasma frequency in (2967) as

δ
2
EM =

c

ω2
EM−ω2

(2980)

In this form, we see that as ω approaches ωEM , we have δ EM approaching infinity. This means that as the

frequency approaches the plasma frequency, the wave is no longer attenuated with depth. On the other hand,

for ω >> ωEM , we find that δ EM ≈ c/ωEM . In fact, for the “DC” limit (ω = 0), the penetration depth is no

longer frequency-dependent and using (2967) gives294

δ EM =
c

ωEM

=
c2√

µ0c2ΛL

Electromagnetic penetration depth for ω = 0 (2981)

If we consider the static limit of (2961), then we have a Yukawa-like equation given as

∇
2
Ai−µ0ΛLAi = 0 (2982)

Since ΛL = nse
2/me, then we can write the prefactor as

1

λ
2
L

= µnse
2/me so the solution to (2982) is A(z) =

A0e−z/λ L where

λ L =

√
me

µ0nse
2

(2983)

293Formally, κ0 should have a positive and negative root. However, if we consider the case of z< 0 repre-

senting the vacuum and z > 0 representing the superconductor, then we can write κ0 with only the positive

root in order to obtain an exponential decay solution and avoid a diverging exponential growth solution.

294Another way of arguing this is to consider that the wave can only penetrate the skin of the superconductor

to a depth on the order of a wavelength. Then using k = c/ωEM and ω2
EM = µc2ΛL leads to (2981).
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This is the electromagnetic London penetration depth for a static vector potential field expelled from a su-

perconductor as found in (2938). From (2967), the electromagnetic plasma frequency can be written as

ω2
EM = µ0c2ΛL = µ0c2nse

2/me. Therefore, we find λ L = c/ωEM as expected. This is equivalent to the

electromagnetic penetration depth found in (2981) in the static or “DC” limit.

Lastly, we point out that because the London constitutive equation, Ji =−ΛLAi, is just a proportionality

between Ji and Ai, then we can replace Ai with Ji all throughout the analysis above and obtain the same exact

results for the dispersion relation and penetration depth. Therefore, the solutions in (2975) and (2977) can

also be used to describe the current density when the London constitutive equation applies.295 This means

that for ω ≥ ωEM we have

J (z, t) = J0ei(Kz−ωt) where K =±
√

ω2

c2 −µ0ΛL (2984)

and for ω ≤ ωEM we have

J (z, t) = J0e−κ0ze−iωt where κ0 =

√
µ0ΛL− ω2

c2 (2985)

Also, the penetration depth for this exponentially decaying current density in (2985) is given by (2979).

Inhomogenous wave equations for ~E and ~B

The four Maxwell field equations in matter are

∇ ·~E = ρ/ε ∇ ·~B= 0

∇×~E =−
·
~B ∇×B= µ~J+µε

·
~E

(2986)

Taking the curl of Faraday’s law and applying the identity ∇×
(

∇×~E
)
= ∇

(
∇ ·~E

)
−∇

2~E gives

∇

(
∇ ·~E

)
−∇

2~E =−∇×
·
~B (2987)

Using Gauss’s law on the left side and Ampere’s law on the right side gives

ε∇ρ−∇
2~E =−µ J̇−µε

··
~E (2988)

Rearranging and using µε = 1/c2 gives

∇
2~E− 1

c2

··
~E = ε∇ρ+µ

·
~J Inhomogeneous wave equation for ~E (2989)

Next we take the curl of Ampere’s law and again apply ∇×
(

∇×~B
)
= ∇

(
∇ ·~B

)
−∇

2~B to obtain

∇

(
∇ ·~B

)
−∇

2~B= µ

(
∇× ~J

)
+

(
µε∇×

·
~E

)
(2990)

Using Gauss’s law for ~B on the left side and Faraday’s law on the right side gives

−∇
2~B= µ

(
∇× ~J

)
−µε

··
~B (2991)

295This is similar to Ohm’s constituent equation, Ji = σ∂tA
i, however, Ohm’s equation required the addi-

tional step of taking a time derivative of the wave equation to write it in terms of the current.
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Rearranging and using µ0ε0 = 1/c2 gives

∇
2~B− 1

c2

··
~B=−µ∇× ~J Inhomogeneous wave equation for ~B (2992)

Dispersion relations for ~E and ~B using Ohm’s law

Inserting Ohm’s law, ~J = σ~E into the electric field wave equation (2989) gives

∇
2~E− 1

c2

··
~E = ε∇ρ+µσ

·
~E (2993)

Using complex sinusoid functions for the field, ~E = ~E0ei(~k·~x−ωt) and charge density, ρ = ρ0ei(~k·~x−ωt) gives

−k2E0+
ω2

c2
E0 = εikρ0+µσωE0 (2994)

Using the continuity equation, Gauss’s law, and Ohm’s law, we found in (1359) that the charge density is

given by ρ = ρ0e−t/τ where τ = ε/σ c is the characteristic time scale that describes how rapidly and net

charge in the interior of the conductor will move to the surface. For a conductor like copper, this time scale

is on the order of 10−19s therefore we can drop the term involving ρ .... This matches the results found in

Griffiths [29] (p. 394)

Wave equations for ~E and ~B in terms of the Lorentz force density

The Lorentz force, m~a= q~E+q~v×~B, can be written in terms of mass density, ρm, and charge density, ρc, as

ρm~a= ρc
~E+ρc~v×~B (2995)

Using~a=
·
~v, the current density, ~J = ρc~v, and the conversion, ρm =

q

m
ρc, gives

q

m

·
~J = ρc

~E+ ~J×~B

Lorentz force density in terms of current density

(2996)

Inserting this into the electric field wave equation (2989) gives

∇
2~E− 1

c2

··
~E = ε∇ρ+

mµ

q

(
ρc
~E+ ~J×~B

)
(2997)

Using complex sinusoid functions for the fields and sources gives

∇
2~E− 1

c2

··
~E = ε∇ρ+

mµ

q

(
ρc
~E+ ~J×~B

)
(2998)
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Appendix S

The frequency of gravitational waves from a single mass oscillator

Here we show that a single mass oscillator with frequency ω will produce gravitational waves with double

the frequency, 2ω . Consider a particle of mass m oscillating along the z-axis according to z= zocosωt. The

gravitational radiation power due to the oscillator is given by

P=− G

5c9

(...
Q

i j...
Qi j

)
(2999)

where Qi j is the mass quadrupole moment given by

Qi j =
∫

xix jT 00d3x (3000)

Since the mass is oscillating along the z-axis according to z = zocosωt, then we can describe T 00 with delta

functions.

T 00 = mc2
δ (x)δ (y)δ (z− z0 cosωt) (3001)

Then (3017) gives

Qi j =
∫

xix jmc2
δ (x)δ (y)δ (z− z0 cosωt)d3x (3002)

Note that the delta functions in x and y are zero for all x and y except when x = y = 0. However, when xi or

x j are zero, then the integral will become zero. Thus when i, j, or both have values of 1 or 2 then the integral

will become zero. So we are left with only Q33. Taking the integral of the delta functions will simply give

the integrand.

Q33 = z2mc2 (3003)

= z2
0 cos2 (ωt)mc2 (3004)

Using a half-angle formula gives

Q33 = z2
0mc2

[
1

2
+

1

2
cos(2ωt)

]
(3005)

Taking the first, second, and third time derivatives gives

Q̇33 = z2
0mc2 [−ω sin(2ωt)] (3006)

Q̈33 = −2z2
0mc2

ω
2 cos(2ωt) (3007)

...
Q

33
= 4z2

0mc2
ω

3 sin(2ωt) (3008)

Substituting (3008) into (2999) gives

P=− G

5c9

[
4z2

0mc2
ω

3 sin(2ωt)
]2

(3009)

P=−16G

5c5
z4

0m2ω6 sin2 (2ωt) (3010)

As expected, we find that the power of the gravitational waves has a frequency that is double the frequency

of oscillation of the source given by z = zocosωt. If we take a time-average over several periods then〈
sin2 (2ωt)

〉
= 1/2 so we have

〈P〉=− 8G

5c5
z4

0m2
ω

6 (3011)
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Appendix T

Charge/mass dipole and quadrupole moments of a Lorentz oscillator

Figure 32: Two spherical charged masses are shown with a displacement vector~r between them. The particle

at position ~r1 has mass m and charge q1, while the particle at position ~r2 has mass m and charge q2. The

positions~r1 and~r2 are equidistant from an arbitrary origin. The vector ~R gives the position of the center of

mass of the system as measured from the origin.

The charge dipole moment for the arrangement in the figure above can be found as

~p =
2

∑
i=1

qi~ri = q1~r1+q2~r2 (3012)

Note that~r1 = ~R− 1
2
~r and~r2 = ~R+

1
2
~r. Then the dipole moment becomes

~p =

[
q1

(
~R− 1

2
~r

)
+q2

(
~R+

1

2
~r

)]
(3013)

If the charges are identical, then we can write q1 = q2 = q, and we have

~p(q1=q2) = 2q~R (3014)

If the charges equal and opposite, then q1 =−q2 =−q and (3013) becomes

~p(q1=−q2) = −q

[(
~R− 1

2
~r

)
+

(
~R+

1

2
~r

)]
(3015)

= 2q~r (3016)
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The charge quadrupole moment can also be found as296

Q = 2
2

∑
i=1

qi~r
2

i = 2
(
q1~r

2
1 +q2~r

2
2

)
(3017)

Using~r1 = ~R− 1
2
~r and~r2 = ~R+

1
2
~r gives

Q = 2

[
q1

(
~R− 1

2
~r

)2

+q2

(
~R+

1

2
~r

)2
]

(3018)

= 2

[
q1

(
~R2−~R ·~r+1

4
~r2

)
+q2

(
~R2+~R ·~r+1

4
~r2

)]
(3019)

If the charges are identical, then we can write q1 = q2 = q and we have

Q(q1=q2) = q

(
4~R2+~r2

)
(3020)

If the charges equal and opposite, then q1 =−q2 = q and (3019) becomes

Q(q1=−q2) = 4q~R ·~r (3021)

We can also perform this same analysis for a mass dipole moment, ~pm, and a mass quadrupole moment, Qm,

given respectively as

~pm =
2

∑
i=1

mi~ri and Qm = 2
2

∑
i=1

mi~r
2

i (3022)

Since the mass is the same for both particles, then the mass dipole and mass quadrupole will have the same

form as (3014) and (3020), respectively.

~pm = 2m~R and Qm = m

(
4~R2+~r2

)
(3023)

Now we consider the particles accelerating in anti-symmetric directions along the line between them and

evaluate the time-derivative of the moments. Since the center of charge/mass does not move relative to the

origin, then
·
~R = 0. The time-derivative of the charge dipole moment in (3014) will therefore be zero. Like-

wise, the time-derivative of the mass dipole moment in (3023) will also be zero (as required by conservation

of linear momentum). Notice that Q(q1=−q2) in (3021) depends on ~R which is defined using an arbitrary

coordinate system. This means it is possible to choose a coordinate system where ~R= 0 (that is, choosing the

origin to be at the center-of-charge of the system). Therefore, Q(q1=−q2) is not a coordinate free quantity and

can be omitted. Then the time-derivatives of the remaining charge and mass moments in (3016), (3020) and

(3023) will be, respectively,

·
~p(q1=−q2)

= 2q
·
~r, Q̇(q1=q2) = 2q~r ·

·
~r, Q̇m = 2m~r ·

·
~r (3024)

296In Jackson [40] (equ. 4.9), we find that formally the electric quadrupole moment is a tensor quantity

given by Qi j =
∫

ρ (~r)
(
3rir j− r2δ i j

)
d3r. For discreet charges, this becomes Qi j = ∑

k

qk

(
3rikr jk− r2

k δ i j

)
.

For charges on a single axis we have i = j and therefore Qi j can be written as the scalar quantity shown in

(3017).
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We can also consider the second time-derivatives of the charge and mass moments above.

··
~p(q1=−q2)

= 2q
··
~r, Q̈(q1=q2) = 2q

( ·
~r

2
+~r ·

··
~r
)
, Q̈m = 2m

( ·
~r

2
+~r ·

··
~r
)

(3025)

Since quadrupole radiation involves the third time-derivative of the quadrupole moment, then we can take

another time-derivative of the quadruples to obtain

...
Q(q1=q2) = 2q

(
3
·
~r
··
~r+~r ·

···
~r
)
,

...
Qm = 2m

(
3
·
~r
··
~r+~r ·

···
~r
)

(3026)

Therefore, we find that for a Lorentz oscillator, the electromagnetic radiation can be dipolar to lowest order

(if the charges are oppositely signed) or quadrupolar to lowest order (if the charges have the same sign). We

also find that the gravitational radiation is quadrupolar to lowest order. These results can be summarized by

writing the following charge and mass moments which are the only moments that are relevant for radiation

by a Lorentz oscillator.

··
~p(q1=−q2)

= 2q
··
~r,

...
Q(q1=q2) = 2q

(
3
·
~r
··
~r+~r ·

···
~r
)
,

...
Qm = 2m

(
3
·
~r
··
~r+~r ·

···
~r
)

(3027)
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Appendix U

Standing wave from the superposition of opposite traveling waves

In (2280) and (2281) we combine the waves propagating in both z-directions to obtain

~E = ~E++~E− = E0 [cos(kz−ωt)+ cos(kz+ωt)] ŷ (4)

~B = ~B++~B− =
E0

c
[cos(kz−ωt)− cos(kz+ωt)] x̂ (5)

For (2280) we can use the trigonometric identity cos(a±b) = cosacosb∓ sinasinb. This gives

cos(kz−ωt)+ cos(kz+ωt) = [cos(kz)cos(ωt)+ sin(kz)sin(ωt)]

+[cos(kz)cos(ωt)− sin(kz)sin(ωt)] (3028)

= 2cos(kz)cos(ωt) (3029)

Therefore we can write the standing electric field wave as

~E = 2E0 cos(kz)cos(ωt) ŷ (3030)

For (2281) again we use the trigonometric identity cos(a±b) = cosacosb∓ sinasinb. This gives

cos(kz−ωt)− cos(kz+ωt) = [cos(kz)cos(ωt)+ sin(kz)sin(ωt)]

− [cos(kz)cos(ωt)− sin(kz)sin(ωt)] (3031)

= 2sin(kz)sin(ωt) (3032)

Therefore we can write the standing magnetic field wave as

~B=
2E0

c
sin(kz)sin(ωt) x̂ (3033)
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