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ABSTRACT OF THE DISSERTATION 

 

Multicore Scheduling for Network Applications Based on Highest Random Weight 

by 

Danhua Guo 

 

Doctor of Philosophy, Graduate Program in Computer Science 

University of California, Riverside, June 2010 

Dr. Laxmi N. Bhuyan, Chairperson 

 

The widening spectrum of network applications incurs increasing stress on physical 

resources for both the network infrastructure and the web servers. Meanwhile, the 

emergence of faster Ethernet has shifted the bottleneck of network performance to the 

processing capability of the web servers. This trend has driven the prevalence of Chip 

Multiprocessors (CMP, a.k.a. multicore). However, even running on the state of the art 

multicore web servers, the network performance still falls short of expectations. 

 In this study, we optimize multicore scheduling in both the OS kernel and userspace 

for three legacy network applications, i.e. Deep Packet Inspection (DPI), multimedia 

transcoding and SPECweb2005. In the OS kernel, we propose an interrupt affinity based 

scheduler to prevent starvation by separating interrupt handlers from userspace 

application. In the userspace, we first parallelize the network application and then 

propose an affinity based scheduler that affinitizes all the packets in the same connection 

to the same core. However, this scheduler is oblivious of load balancing, which can offset 

the cache benefits. We therefore propose several hash based schedulers to strike a balance 
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between connection locality and load balancing. While the baseline Highest Random 

Weight (HRW) hash balances workload at the connection level, our Adjusted HRW 

(AHRW) achieves packet level load balancing by comparison of runqueue length of each 

core. In addition, we enable cache awareness of AHRW by means of a communication 

matrix in Cache-Aware AHRW (CA-HRW), and propose a hierarchical version, H-

CAHRW, for different core/cache topologies. To incorporate QoS concerns, we also 

develop a Proportional Share HRW scheduler, PS-HRW, by allocating cores to each 

connection based on connection buffer size. We implement and verify all of our 

schedulers using real application measurements. 

 With the resurgent interest in system virtualization, we present a performance 

characterization of a virtualized multicore server under consolidated network workloads 

and show that L2 cache misses are the major bottleneck. We therefore optimize the 

virtual CPU migration policy to take advantage of the cache topology. Then, we port all 

our schedulers developed in the native system to a virtualized multicore server, and 

observe minimum performance degradation.  
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Chapter 1  

Introduction 

The growing variety of network applications has demanded scaling physical resources 

not only in network bandwidth but also in the processing capability of the backend 

servers. For example, Deep Packet Inspection (DPI), widely applied in ISP devices to 

monitor spiraling volume of network traffic, requires significant computing and memory 

resources to complete pattern matching of the packet payload [4, 81] at wire speed. On 

the other hand, multimedia applications have real time "on-demand" characteristic of 

transcoding that requires significant processing capability. In addition, as more and more 

backend processing has been moving to the "cloud" network [18], it is necessary to 

distribute the workload and utilize the shared network bandwidth and processing 

resources efficiently. The distribution must also ensure that Quality of Service (QoS) is 

guaranteed.  

 Fortunately, innovations and technology have evolved in different directions to fulfill 

the demand of network applications. At the infrastructure level, the emergence of high 

speed Internet resolves the performance limit on the network bandwidth. We have seen 

the prevalence of Gigabit Ethernet for home users, 10 Gbps and 40 Gbps uplinks for ISPs, 

and the forthcoming 100 Gbps Ethernet ready to be shipped from the hardware vendors. 

Consequently, the performance bottleneck has shifted from the network to the processing 
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end. Chip-level multiprocessors (CMPs), i.e., multicore processors, have arguably 

become the de facto platform for modern web servers. The reasons behind this trend are 

two folds. On the one hand, the increase in CPU clock rate can no longer keep up linearly 

with the growing network bandwidth [70]. On the other hand, the cap of Instruction Level 

Parallelism (ILP) in network applications drives the target of hardware development from 

more powerful single core chip to multiple slower cores on chip.  

 The increasing processing power of multicore servers has not only satisfied the 

resource demand of network applications in native systems, it also shows great potential 

in running more OS boxes on the same physical machine. Despite the long envisioned 

benefits, Virtual Machine (VM) technology has regained its popularity only recently, 

when multicore chips can provide enough processing capability to for performance 

isolation, manageability and scalability. VM technology implements a management layer, 

Virtual Machine Monitor (VMM), sitting on top the native operating system. VMM 

monitors and schedules all guest VMs, giving them an illusion to be running directly on 

the physical devices. As the processing power no longer stays the bottleneck of network 

processing, virtualized multicore servers are expected to run applications that are more 

diverse and complicated. Essentially, we see a trend toward server consolidation, i.e. 

running different types of applications on the same physical machine. While this 

additional VMM layer makes VM a promising solution to server consolidation, the I/O 

processing overhead gets more complicated in the new context of consolidated workloads 

and multicore servers.  
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 Despite the fact that multicore servers provide powerful processing capabilities for 

various network applications, the overall performance still falls below the requirement to 

satisfy the ever increasing network bandwidth. In the following sections, we will discuss 

some major challenges facing the deployment of multicore web servers. 

1.1 Challenges in Modern Network Applications 

Among the wide spectrum of network applications, an interesting characteristic is the 

hierarchical relationship between packets and connections - packets in the same 

connection usually share the header data. By exploiting the above locality between 

packets belonging to the same connection, we can schedule them efficiently in multicore 

servers to boost throughput and reduce latency. We pick two popular representatives of 

the network applications, which have high computational demand, are widely studied and 

productized and describe their locality characteristics below. 

 L7-filter is a Deep Packet Inspection (DPI) program for Linux and is becoming 

increasingly popular in both academia [10, 25, 26, 29, 43, 85] and industry [17, 30, 38] as 

a complement to the traditional header based packet inspection. It classifies packets based 

on application layer payload and is of great importance in traffic monitoring when port 

numbers are purposely hidden or require dynamically allocation. The major bottleneck of 

DPI is pattern matching, which lags far behind wire speed. Most of the current research 

focuses on the algorithm of pattern matching, leaving the deployment architecture 

untouched. As the processing capability of web servers evolves at an unprecedented 

speed, we believe studies in the scheduling of multithreaded DPI programs complements 

well with the algorithm studies. 
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 Multimedia transcoding is a promising solution to customize the size of objects and 

distribute the available network bandwidth among Internet clients with various hardware 

resources, software sophistication and quality of connectivity [2, 23, 24, 27, 28, 63, 90]. 

A traditional solution to this problem is to store multiple copies of the source stream on 

the media server and select a copy according to some initial negotiation with the client. 

While this solution works for small scale multimedia requirements, it is infeasible as the 

demand has moved to the real time scale which requires faster processing and higher 

accuracy at a finer grain.  In transcoding, based on the network bandwidth of each client, 

the transcoding algorithm responds to the client request accordingly. On-demand 

transcoding has been proposed to transform media streams in the active routers to adapt 

media streams to fluctuating network conditions [27, 28]. It is also widely adopted to 

satisfy real time requests by users using embedded systems, such as cell phone and 

netbooks. Because these devices usually requires a video version of small frame size and 

low bit rate, the video needs to be transcoded on an active router to fit the client's device. 

 As servers possess more processing capability, we see a trend of running multiple 

applications concurrently to fully explore the server. SPECweb2005 is a consolidated 

benchmark merging computation, database as well as I/O operations. The performance of 

SPECweb2005 is a direct test of the capability of web server under real workload 

pressure. No previous work has reported any thorough analysis at the architectural level 

of server consolidation under real measurement. 
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1.2 Challenges in Multicore Scheduling 

The goal of scheduling is to achieve high throughput and low latency while maintaining 

QoS requirements if necessary. Unfortunately, while more multicore processors are 

shipped to web server vendors to provide increasing processing density on chip, the 

performance is not as good as expected. Experiments showed that the 8-core test server 

running a modified SPECweb2005 [82] workload achieved only a 4.8X speedup in 

throughput (compared to the ideal 8X) [88]. In another experiment on a Sun Niagara 2 

based web server, which resides 16 independent pipelines, the system throughput is only 

increased by a factor of 10 instead of the ideal 16 [26]. The major challenges of multicore 

scheduling include: 

 1) Lack of parallelism. Most of legacy network applications such as DPI or 

multimedia were developed using single thread. Therefore, these applications cannot 

fully explore the core resources. In our study, both L7-filter and multimedia transcoding 

are originally written as a single thread program.  

 2) Ignorance of application characteristics. The intuitive data partitioning at the 

packet level in parallelization fails to consider the packet affinity within the same 

connection. The architecture of each multicore processor usually carries both logical and 

physical core topology. The location of the cache hierarchy is mapped onto the core 

topology to ameliorate the expensive memory access. Failing to schedule workload 

affinity to a right cache affinity causes unnecessary waste of miss penalties in the cache.   

  3) Load imbalance. While favoring packet affinity benefits from reusing shared data 

in the cache, the workload distribution can be significantly uneven when each connection 
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has a different number of packets. Paper [26] shows that the load imbalance on a Sun 

Niagara 2 processor that has a large number of threads, the benefits of cache affinity can 

be offset by load imbalance. On the other hand, a non-work-conserving QoS scheduling 

mechanism inevitably restrains processes from using idle CPUs because of the allocation 

cap.  

 4) QoS requirement. QoS scheduling allocates a proportional share of the processing 

resources to each process according to the weight of the process. General Processor 

Sharing (GPS) [19, 42, 64, 65] was a theoretically ideal scheduler that provides QoS 

guarantee. The GPS scheduling was also extended to multiple links scenario [9]. While 

GPS and its extension are a theoretically ideal scheduling policy to ensure fairness in 

multicore scheduling based on the weight of each process, it is impractical to implement 

in real systems. In addition, QoS guarantee usually sacrifices cache locality and load 

balancing [27, 28]. We have not seen any previous studies that consider this trade off. 

 5) Tradeoff between overhead and heuristics. While schedulers can achieve better 

performance with additional computation for more heuristics, its overhead should not 

contend with other processes for physical resources. Specifically in the network 

application domain, the scheduling frequency is an important factor that affects the 

system performance. Given this performance constraint, the multicore scheduling should 

balance between application characteristics, QoS requirement and load balancing.  

1.3 Challenges in System Virtualization 

While the emergence of virtualization has been a promising solution towards sever 

consolidation and cloud computing, the virtualized network performance lags 
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significantly behind the performance in native systems operating directly on physical 

devices. The lack of performance characterization of multicore virtualized networking 

clouds the study of VM performance and delays the production of useful optimizations 

for the problem.  

 Most of the previous studies [45, 50, 51] in VM are limited to some simplistic 

benchmarks such as Iperf [34] or Netperf [58]. Their experiment results are therefore 

valid in a limited context. On the other hand, multicore servers possess extensive 

processing power that can be exploited for parallelization within an application or among 

multiple applications. In addition, shared memory multicore servers usually include a 

multi-layer cache topology to alleviate the memory wall problem.  

 Quite a few research groups have proposed different optimizations for virtualized 

network I/O [16, 47, 50, 51, 61, 69, 91]. Even though these optimizations claimed to 

improve virtualized I/O in their own context, none of them focuses their research on 

multicore systems, especially the cache topology. Since VM introduces the additional 

mapping between virtual to physical devices, it complicates the research results in 

multicore scheduling in native operating systems. This is not saying we should start a 

brand new area of VM study, but rather, we need to pinpoint the bottleneck of VM 

performance and build VM optimizations on top of those in native systems.  

1.4 Overview of the Research 

The goal of this study is to build a generic scheduling mechanism that improves system 

throughput by fully utilizing the parallelization resources on multicore web servers.  To 

achieve this goal, we propose solutions to all of the challenges mentioned above in the 
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following manner: scheduling optimizations in the kernel, parallelizing userspace 

network applications and affinity based scheduling, userspace hash based scheduling 

optimizations, and scheduling optimizations in virtualization.  

 In the first aspect of this study, we find that userspace processes can be starved when 

the interrupt rate is high due to the heavy traffic in high speed network. We further 

observe that the bottom half of interrupt handler is nonpreemptable, causing userspace 

processes to wait on interrupt handlers and will be delayed until all the interrupts are 

processed. Therefore, we enable the kernel to schedule interrupt handlers and application 

layer processes to different cores to prevent resource competition. We propose to separate 

interrupt processing from application processing and statically affinitize them to cores 

that share a last level cache. This idea is similar to the TCP onloading [70, 71] technique 

in the OS. However, in our onloading proposal, it is not necessary to modify the entire 

TCP stack to separate userspace applications from kernel processing. 

 The second aspect of our study is to parallelize userspace network applications by 

partitioning incoming traffic at the packet level. Among the three applications we choose 

in this study, L7-filter and transcoding were both originally single threaded. As both 

applications require a significant amount of computation and memory, parallelization is 

necessary to fully utilize all the core resources.  We develop a trace driven model for both 

applications to decouple noises in the network from the performance bottleneck. This 

model helps the study of processing requirements in a well-controlled environment 

without noises from network infrastructure and kernel stack. Then, we observe that naive 

parallelism does not fully utilize all the computing resource on a multicore server. We 
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therefore propose a processor affinity based scheduler to focus on connection locality. 

Essentially, we assign packets belonging to the same connection to the runqueue of the 

same thread, which is dispatched to a dedicated core in multicore server. Similar to 

Receive Side Scaling (RSS) [73] for the NIC, our scheduler works in software and 

provides faster packet classification with good scalability in multicore servers. 

 However, maintaining connection locality sacrifices the load balancing, core 

topology as well as QoS requirement in workload scheduling. Therefore, in the third 

aspect of this study, we design several hash based schedulers to balance between these 

concerns. The baseline hash is a robust hash function called Highest Random Weight 

(HRW) [74, 86], which only guarantees load balance at the connection level. A major 

benefit of hash is the uniform distribution of the input key to the hash space. HRW uses 

connection ID based on 4-tuple information, and hashes it with server ID to generate a 

weight for each server. The server with the highest weight will be the host of selection for 

the current packet. However, when the connection size varies, HRW scheduling 

inevitably incurs load imbalance. As a result, we propose an Adjusted HRW (AHRW) to 

balance the workload at the packet level by considering the runqueue length and 

maintaining the connection locality based on the Minimum Disturbance Rate property of 

HRW. A similar technique was adopted to develop an adaptive load balance technique 

for network processing based on processor utilization [40, 41]. However, designing a 

system based on processor utilization is difficult to implement. Additionally, our AHRW 

is a robust hash that maintains the connection locality by the famous minimum disruption 

property [40, 41, 74, 86].  
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 Albeit the advantages of AHRW, two essential problems still remain untouched: 1) 

cache-awareness in multicore architecture with heterogeneous inter-core communication 

cost and 2) a generalized scheduler, for different core/cache topologies with both cache 

awareness and adaptive load balancing mechanisms. Therefore, we propose CA-AHRW, 

a Cache-Aware AHRW hash scheduler. This novel scheduler is designed for different 

core/cache topologies and is able to maintain both the connection and the packet level 

load balancing with cache-awareness while maintaining connection locality. Specifically, 

we construct a communication matrix for any given multicore architecture characterizing 

the heterogeneous inter-core communicating overhead. Then, we obtain a weighted queue 

vector for each core based on this matrix and apply the weighted queue vector as a 

multiplier to the original AHRW to adjust the hash value.  

 In addition to single layer hash schedulers, we extend our solutions to a hierarchical 

environment, where the extensive parallelism resources on multicore servers form a 

virtual "tree" structure. By extending our scheduler into these tree structures rather than 

running a linear scheduling, we can reduce the scheduling overhead from 𝑂(𝑁)  to 

𝑂(𝑙𝑔𝑁), where N is the number of scheduling candidates. We verify our Hierarchical 

CA-AHRW (H-CAHRW) scheduler on real web servers using different multicore 

architectures, including Intel Xeon [33], AMD Opteron [1] and Sun Niagara 2 [79]. We 

show that the system throughput can be improved by 50.7% on average compared to the 

connection locality heuristic and by 19.8% on average compared to the linear AHRW 

scheduler. H-CAHRW can be applied to different multicore servers with hierarchical 

locality.  
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 As to the QoS requirement, we propose a two-level proportional share scheduler, 

Proportional Share HRW, PS-HRW, based on H-CAHRW. In the first level, we use H-

CAHRW to pick integral number of cores with the highest weights for the incoming 

traffic. The residual fractional request (smaller than one core) is handled in the second 

level. In the next level, we apply an influential vector 𝑋 = (𝑥1, 𝑥2 , … , 𝑥𝑁) to H-CAHRW 

so that the scheduled request on each core follows the capacity vector 𝑃 = (𝑝1, 𝑝2, … , 𝑝𝑁). 

To derive the influential vector, we assign the cores selected in the first level with 

capacity 𝑝𝑖 = 1/𝑁, and the rest of the cores with capacity 𝑝𝑖 ′ = 𝑟𝑒𝑠𝑖𝑑𝑢𝑎𝑙_𝑣𝑎𝑙𝑢𝑒/𝑁. Our 

method follows a proof in [74] for heterogeneous robust hash mapping. Compared to [27, 

28], PS-HRW incorporates cache locality and load balancing factors into QoS decision. 

 The fourth aspect of our study is to verify the performance of our scheduler in a 

virtualized environment. Because of the additional mapping between virtual to physical 

resources, what proven to be correct in the native system might not be as effective in 

virtualization. In our VM study, we first conduct a thorough performance evaluation of 

multicore virtualized network performance and then propose two scheduling 

optimizations in the VMM. We choose the SPECweb2005 [82] benchmark suite. The 

three different types of workloads in SPECweb2005 simulate the realistic network traffic 

processed by web servers in the real world. We present the performance evaluation for a 

consolidation scenario where database transaction, computations and I/O processing 

applications run concurrently on the server. Our profiling breaks down the overhead at 

the architectural level, i.e. CPI, TLB, L1 instruction and data cache, and L2 cache. We 

then relate the collected hardware performance to the VMM scheduler by profiling the 
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VMM software at a detailed function level. We apply a unique "Life-of-Packet" analysis 

to break down the processing latency of a packet along the reception path. To the best of 

our knowledge, this study carries the most in-depth hardware profiling of a virtualized 

multicore server running consolidated workloads. We find that the current VMM 

scheduler is oblivious to the underlying cache topology and hence incurs a significant 

overhead. Our findings are in line with a previous study [3] that calls for attentions in the 

cache deployment for VM. However, instead of advocating a new (asymmetric) cache 

architecture, we propose an optimization for the current VM scheduler to be aware of the 

underlying cache topology in addition to all the schedulers we proposed in native OS. 

 Specifically for the interrupt affinity scheduler, similar to the kernel study in native 

OS, we apply the interrupt affinity scheduling in virtualization by binding all the virtual 

CPUs that handles interrupt processing to one core and the rest of the VCPUs to another 

core. We observe an average of 12% improvement in throughput for the Iperf benchmark 

compared to the default system scheduler (in OS or VMM) that works in a round-robin 

fashion. For the consolidated SPECweb2005 benchmark that consumes more than two 

cores for execution, we propose to modify the VMM scheduler to dynamically favor 

cores in the same cache domain when Virtual CPUs (VCPUs) are migrated. Results show 

an average of 15% improvement in supported concurrent sessions for the three 

benchmarks in SPECweb2005 suite. We further verify our optimization by showing the 

reduction of cache misses in the benchmark execution. We believe these findings will be 

useful for VMM and platform architects as they provide insights and solutions to the 
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performance bottleneck and possible optimizations of virtualized I/O in multicore 

architectures. 

1.5 Outline and Contributions 

This study addresses the challenges in multicore scheduling for network applications and 

provides several effective solution to improve the system performance in terms of 

throughput, load balancing as well as QoS concerns. The contributions of this study can 

be summarized as follows: 

 We break down the packet processing into kernel and userspace segments and 

propose several schedulers in both segments. In the kernel, we propose an 

interrupt affinity based scheduler to save userspace processes from starvation due 

to the original non-preemptive interrupt processing. The research is presented in 

Chapter 3. 

 In the userspace, we design and implement parallel algorithms for L7-filter and 

transcoding at the packet level. We also develop a trace-driven model for network 

applications to decouple the performance bottleneck from noises. This model 

helps the study of processing requirements in a well-controlled environment 

without noises from network infrastructure and kernel stack. In addition, we 

propose an affinity based scheduler to take advantages of cache benefits and then 

The research is presented in Chapter 4. 

 In the userspace, we propose several HRW hash based schedulers, such as AHRW, 

CA-AHRW, and H-CAHRW to improve system throughput by balancing between 
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cache benefits, load balancing, core topology in different multicore architectures, 

and system overhead.  The research is presented in Chapter 5 and 6. 

 We propose a QoS aware proportional share scheduler, PS-HRW, based on the 

previous HRW schedulers. It provides QoS guarantees for incoming network 

requests following the assigned weight. Compared to research [27, 28], PS-HRW 

incorporates cache locality and load balancing factors into QoS decisions by using 

H-CAHRW. The research is presented in Chapter 7.  

 We present the first performance evaluation for virtualized multicore system 

under a consolidated SPECweb2005 network workload. We profile the 

benchmark execution by collecting hardware events and break down the overhead 

of virtualization at a function level. We relate the performance overhead to the 

obliviousness of the cache topology of the current VMM scheduler, and propose 

an additional dynamic VCPU scheduler in the VMM to migrate a VCPU to the 

PCPU in the same cache domain as the original PCPU. The research is presented 

in Chapter 8. 

 We verify our proposed schedulers in both native system and virtualization. In our 

experiments, we choose a wide variety of multicore platforms including Intel 

Xeon, AMD Opteron and Sun Niagara 2. Cross platform/OS experiments give us 

confidence in the efficacy of our proposals. We have released all our source code 

online and maintain a website for further development and collaboration at: 

http://www.cs.ucr.edu/~dguo/. 

 



15 

 

Chapter 2  

Background and Related Work 

2.1 Research in DPI 

The intensity of network resource competition increases as a greater number of 

applications demand high bandwidth and more computing capability. Consequently, the 

Quality of Service (QoS) in the network domain requires faster and scalable classifiers to 

distribute resources based on application priori-ties. Traditional packet classification 

software, such as Netfilter in Linux, identifies and controls packet flows based on layer 3 

and layer 4 information, i.e. IP addresses and port numbers. Many recent applications, 

such as P2P and HTTP, however, hide their port numbers in the payload or require 

dynamic allocation for port numbers during connection establishment. Under such 

circumstances, Deep Packet Inspection (DPI) plays a key role in bandwidth management 

and traffic reshaping, and is increasingly used to augment network security and underpin 

service creation and service management tools.  

 Fig. 2.1 illustrates the structure of a Linux networking system with L7-filter in an 

OSI model context. It sits on top of the transport layer, monitoring network traffic based 

on protocol features represented in packet payloads. While Netfilter relies on iptables to 

accept/forward/drop incoming packets, L7-filter further marks all the accepted packets 
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with their protocol IDs. Potential 

process/application managers can 

easily pick up the packet protocol IDs 

and reshape the traffic for security and 

management concerns. 

 By matching against signature 

fields of various protocols, L7-filter 

uses GNU regular expression 

matching to obtain protocol type 

associated with the application layer data in the packet. Different from signature-based 

Intrusion Detection Systems (IDS), which have thousands of complex network security 

regulation sets, signature-based protocol parsing schemes are comparatively simple with 

only hundreds of protocol matching rule sets, and thus can be easily implemented and 

deployed in software without any specific hardware accelerators. That said, the 

computation cost of the L7-filter software still remains high for real-time processing of 

packets [4, 10, 43, 85]. Thus, optimization effort is needed. 

 The costly pattern matching in DPI programs has been studied extensively at the 

sequential program level. Major research in this domain falls into three categories: 1) 

reducing the alphabet size [10]; 2) increasing throughput by processing multiple input 

characters per clock cycle [29, 43]; and 3) balancing between the memory bandwidth and 

memory size requirement [93]. Another direction of the research studies the deployment 

of DPI programs, i.e. how to use hardware accelerators. In this domain, both FPGA [53] 
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and Network Processor [40, 41] solutions have been proposed to explore the packet level 

parallelism inside DPI program. Tan [85] proposed a "bit-splitting" architecture to 

explore the internal parallelism inside of the state machines.  

 As multicore web servers become the mainstream plat-forms for network appliances, 

research has increasingly pro-poses to deploy DPI programs using general purpose 

multicore servers. Authors in paper [89] discussed the possibility of parallelizing SNORT 

[81] using multicore servers with a 3-level feedback system. We [26] designed a 

multithreaded L7-filter on an Intel Xeon server. It showed good performance by using 

connection locality and thread affinity. However, we found that simply applying 

connection locality optimization alone does not guarantee good performance on a highly 

threaded hierarchical multicore processor like Sun Niagara 2. Our analysis showed that 

load imbalance across the extensive parallelism resources offsets the benefits achieved 

from connection locality. Therefore, we adopted a hash-based technique and a feedback 

system to consider load balance while maintaining connection locality.  

2.2 Research in Multimedia Transcoding 

Online transcoding is a popular web service to provide various clients with the media 

source according to their demand. Many researchers [13, 14, 23, 24, 63, 90] have 

addressed how to customize the multimedia contents to match user preferences or the 

diversity of network conditions and display devices. Chandra [13] used JPEG transcoding 

techniques to customize the object size, thus allowing a web server to dynamically 

allocate available bandwidth among different classes. Fox [23] dynamically distilled the 

web page content on active proxies. They also implemented a cluster-based web 
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distillation proxy called TranSend [24]. However, their scheduling schemes emphasize 

fault tolerance more than load balancing, and parallel processing of a single stream is not 

considered. Researchers [63] and [90] proposed the concept of CLuster-based Active 

Router Architecture (CLARA), where a computing cluster is attached to a dedicated 

router. With CLARA, the multimedia transcoding tasks are processed in parallel. More 

recently, multicore web servers have become increasingly popular in processing 

multimedia applications. As a result, a plethora of scheduling strategies has been 

proposed to efficiently use the bountiful resources. 

 Simple static policies, such as random [75] and Round-Robin (RR) [39] are adopted 

in practice because they are easy to implement. Guo [28] evaluates three load sharing 

schemes, namely RR, Stream-based Mapping (SM) and Adaptive Load Sharing (ALS). 

They showed that RR is simple and fast, but it suffers from out-of-order problem. SM 

achieves good performance in terms of both throughput and video quality, but its 

advantage is limited to evenly distributed flow. Based on [41], ALS achieves better unit 

order in output streams, but it also involves higher overhead to map the media unit. Guo 

[28] further proposed two prediction-based schedulers, namely Prediction-based Least 

Load First (P-LLF) and Prediction-based Adaptive Partitioning (P-AP). P-LLF is based 

on [44], which always chooses a least loaded server to process the next media unit. 

Although the load balancing is well maintained, no flow locality is preserved. P-AP, 

however, strikes a good balance between flow locality and packet level load balancing by 

partitioning the servers into several subsets and establishes a good mapping between 
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flows and servers. However, it does not consider core/cache topology on multicore 

servers, limiting its performance improvement. 

2.3 Optimizations in Multicore Architecture for Network I/O 

TCP onloading [70, 71] uses part of the computation resource in a cluster server or 

special Processing Engines (PE) to provide TCP/IP processing service, while the host 

CPU is left to continue executing application processes. Although the idea of TCP 

onloading sounds intuitive, most of such available designs require a large amount of 

change in the operating system, particularly in the TCP/IP protocol stack. The 

interconnection between host and PE is the key to this problem. Solutions like polling 

and Direct Transport Interface (DTI) [71] proven to be efficient although such designs 

require non-negligible modifications to the operating system. Intel‟s Embedded Transport 

Acceleration (ETA) project partitions the system between the host and packet processing 

engine using DTI. DTI is used at the place where Linux kernel manages processes and 

kernel context. Paper [94] designed an onloading model using Network Processor (NP) as 

the packet processing engine, and the interconnection between Mirco-Engines (ME) 

works as the communication channel between host and PE.  

 Because TCP/IP stack processing switches at a certain frequency between interrupt 

and process context, it is not easy to find the cutting point for binding. All the previous 

solutions simply work around this problem by moving the whole TCP/IP stack to a 

separate PE, which introduces modification to the original OS. With more in-depth 

studies in the operating system, particularly the TCP/IP stack and the scheduling 
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mechanism on multicore systems, TCP onloading remains a promising solution to the 

network-CPU speed mismatch problem. 

2.4 Load Balancing and Flow-based Scheduling 

Load balance and flow-based packet scheduling are two orthogonal directions in packet 

scheduling because of their inherent incompatibility with each other. Since the advent of 

multicore based web servers, both techniques have been well studied. Load balance 

guarantees no single bottleneck in the multicore environment and was recently evaluated 

using Nash equilibrium [15] and ranked elections [36] models. A detailed survey of 

general load balancing algorithms was provided in [40].  On the other hand, the flow-

based scheduling reuses the common data in the packet headers and was productized by 

Microsoft in their Receive Side Scaling (RSS) NIC technology [73, 88].  However, our 

approach explores opportunities to strike a balance between load balance and connection 

locality. In addition, the load balanced provided in our scheduler is at the packet level 

rather than the traditional connection level. This is particularly useful when network 

traffic follows the "packet train" arrival pattern, as described in paper [37]. 

 Hash functions generate independent, uniformly distributed variables. It provides 

theoretical load balance over the input key-value mappings. Hash functions have been 

widely adopted in the scheduling domain. Researchers [12, 68, 78] have applied CRC 

hashing in scheduling packets in parallel network systems. Among all the hash functions, 

HRW stands out due to its proven flow-level load balancing, flow locality and minimum 

flow remapping. There have been many HRW-based scheduling schemes [26, 74, 86]. It 

is originally proposed in [74, 86]. [40, 41] applies it to map client requested objects into 
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the web cache in the client-server model. In the client-server model, hash functions are a 

favorable choice to map client requested objects into the web cache [74]. HRW and 

Toeplitz [73] hash are very popular in both academic studies and industrial products. The 

major drawback of hash mappings is that they are not adaptive to real time performance 

feedback and therefore are potentially vulnerable to traffic locality.  In our proposed 

scheduler, it takes advantages of the randomness of the HRW hash, meanwhile adjusting 

the weight function by a feedback vector to provide load balance at the packet level.  

2.5 QoS based Scheduling 

Provisioning of a shared server with guarantees is an important scheduling task that has 

led to significant work in a number of areas including packet scheduling. The choice of 

an appropriate service discipline at the nodes of the network is the key to providing 

effective flow control. A good scheme should allow the network to treat users differently, 

in accordance with their desired Quality of Service (QoS), i.e. predefined CPU/network 

bandwidth requirement. However, this flexibility should not compromise the fairness of 

the scheme, i.e. one user should not be able to affect the performance to another user in 

the network, to the extent that the performance guarantees are violated.  

 Among this class of scheduling, Generalized Processor Sharing (GPS) provides an 

ideal QoS guaranteed scheduling in theory [19, 42, 64, 65]. The basic idea is to assign a 

portion of total outgoing bandwidth to each request class and ensure that each class does 

not overuse its share. Demers [19] introduced a Packetized GPS (PGPS, a.k.a. WFQ) that 

for the first time realized the theory in real practice. Parekh et al. proved in [64, 65] that 

PGPS closely approximates the ideal GPS in terms of packet delay and cumulative per-
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flow service. In [8], Bennet et al. observed that the service provided to a flow under 

PGPS may unboundedly exceed the amount of service received under GPS and indicated 

that this could lead to unfairness. Later, Blanquer [9] extended the application of GPS 

from a singer server system to multiple links and proposed a M2FQ scheduler that 

balances between fairness and service stability. Guo [28] and Chandra [14] proposed a 

partition based QoS scheduler that utilized the concept of proportional share in GPS. 

However, none of the available QoS scheduler considers the architecture of multicore 

servers, i.e. cache/core topology, or load balancing issues under the fairness constraint 

defined in [19]. In addition, the implementation difficulty of GPS-based schedulers have 

never been thoroughly discussed, let alone provisioning of a feasible solution. In this 

dissertation, we try to answer all these questions. 

2.6 Network Virtualization 

Network virtualization was invented and implemented in IBM‟s System/360 and 

System/370 [80]. Each virtual machine in these initial virtualized architectures was 

exclusively assigned a particular set of physical devices. Data transfer relied on channel 

programs executing in the VMM, which ensured resource isolation. 
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 Despite the high performance through private I/O access, the costly replication of 

physical devices for each virtual machine limited per domain utilization. As a result, 

research in Xen [5] and VMware [84] designed shared access to devices and relied on a 

dedicated software entity to perform physical device management. This paper focused on 

the most popular open source virtualized system Xen. 

 Fig. 2.2 is an illustration of the Xen VMM. The VMM provides an abstraction layer 

between the VMs and the actual hardware, leaving each guest VM an illusion of running 

independently on native hardware. A privileged VM (driver domain or Dom0) runs a 

modified version of Linux that uses native Linux device drivers to manage physical I/O 

devices. Other VMs (guest domain or DomU) transmit and receive packets by 

communicating with Dom0 through shared memory I/O channels.  
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 Once a packet arrives at the NIC, it generates an interrupt. The VMM then forwards 

the interrupt to the Dom0. When Dom0 acquires CPU, it DMAs the packet into the 

reception I/O ring. After demultiplexing the packet through the nested Ethernet Bridge to 

an appropriate back-end driver, Dom0 employs a data copy mechanism by default to 

directly copy data from the back-end driver to the front-end driver in the corresponding 

DomU. Once the packet reaches the front-end driver in DomU, back-end driver requests 

the VMM to send a virtual interrupt to notify the target domain of the new packet. Then 

the packet is processed from the kernel space to the user space of DomU as if it had come 

directly from the physical NIC. 

 Since the birth of VM, research in improving virtualized I/O performance never 

faded away. We summarize previous works into three categories: VMM architecture, 

VMM scheduling and optimizations in physical devices, i.e. cache. 

 For VMM architecture, authors in papers [50, 51] initiated an architectural profiling 

in Xen and introduced a faster I/O channel for inter-domain packet transfer. Compared to 

their works, our profiling provides more architectural metrics, leading to a more thorough 

understanding of Xen. In addition, Liu [47] 's VMM-bypass model and Willmann [92]'s 

Concurrent Direct Network Access (CDNA) architecture bypassed the VMM and 

overcome many of the bottlenecks in software multiplexing and demultiplexing. 

Researchers [69] also proposed using multi-queue in the NIC and a grant-table-reuse 

mechanism to improve the performance of the grant table in Xen. However, our work 

requires modest changes to the VMM architecture, and focus on attacking the 

performance issue at an algorithm level. 
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 For VMM scheduling, Cherkasova et al. [16] discovered and enhanced the CPU 

scheduling residing in VMM to favor I/O domain without sacrificing fairness. Ongaro et 

al. [61] sorted the domains with the same states in the runqueue based on their remaining 

credits rather than arbitrarily insert the new domain at the end of each state section. 

However, with the same optimizations on our experiment environment under 10 GbE, we 

find that the blocking of scheduler tickle adversely glooms the I/O performance by a 

factor of 100 and the runqueue sort does not make any difference for I/O performance. 

We believe such a contrast is the result of the increased number of hardware interrupts, 

which cumulates a non-negligible overhead introduced by domain migration and 

therefore context switches. Our proposals differentiate from these angles by promoting 

the importance of cache topology. Liao et al. [45] proposed a credit-stealing mechanism 

for the VMM scheduler. However, the validity of their optimization is limited to the 

simplistic TCP streaming benchmark - Iperf. In our paper, the VM migration policy is 

proved efficient for more realistic workloads in SPECweb2005. 

 For optimizations in physical devices, Apparao et al.'s work [3] presented a workload 

characterization using vConsolidated benchmark and pinpointed the influence of cache in 

a virtualized multicore server. However, their proposal advocated a new asymmetric 

cache, whereas our work targets internal optimizations in Xen to use the cache more 

efficiently. 
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Chapter 3  

Interrupt Affinity based Scheduling in the Kernel 

Research in network I/O processing can be classified into three categories: 1) offload 

support on Network Interface Controller (NIC), such as TCP-IP Offloading Engine (TOE) 

[54], TCP Segmentation Offload (TSO) [70], TCP checksum offload, etc.; 2) changing 

network protocol stack by replacing TCP/IP with other O/S bypass protocols [21]; 3) 

running TCP/IP processing on an independent computation resource, which is tightly 

coupled with the application processor. Instead of using Network Processor (NP) to 

process network traffic [94] or offload the whole TCP/IP stack onto NIC, one of the cores 

on a multicore CPU can be bound to network processing, while other cores can run 

applications such as http requests and/or scientific computations. To distinguish from 

TOE, the last category is named “TCP Onloading” [70, 71]. Although the idea of TCP 

onloading sounds intuitive, most of such available designs require a large amount of 

change in the operating system, particularly in the TCP/IP protocol stack. Also, open 

problems like inter-core communication, mutual influences of processes for different 

applications still remain unsolved. 

 In this section, we implement a technique similar to TCP onloading technique for a 

heterogeneous workload on a multicore system with limited modifications to the kernel. 

We use 1) a kernel patch to change the frequency of scheduling between software 
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interrupt processing and computation processes on the same core, 2) processor and 

interrupt affinity provided by Linux Kernel for SMP platform to affinitize the TCP/IP 

processing on the receive side to one separate core in the multicore system under a 

10GbE environment, and 3) the Receive Side Scaling (RSS) [73] feature from the NIC, 

and show that our solutions are more cost-effective. Our experiments are based on a user-

configurable modified version of Iperf [34], which considers the influence of a 

computational-intensive workload on I/O processing. We believe that our workload 

modification provides a more realistic scenario in the real server application. Our results 

illustrate on average a 10% and 12% improvement in throughput with corresponding 

reduction in cache misses, compared to the default round-robin fashion scheduling in a 

native system and VM, respectively.  

 A recent paper [57] contributed extensively to core scheduling in multicore 

processors with respect to I/O performance. However, we introduce different new 

approaches, namely, interrupt scheduling, onloading, and Receive Side Scaling (RSS) to 

boost the I/O performance. Also, while the previous paper measured the MPI latency at a 

high level, we base our experiments on a modified configurable Iperf workload, through 

which we are able to measure the impact of very low level scheduling decisions. Finally, 

our measurements are obtained using two dual-quad-core machines, which contains the 

state-of-the-art multicore processors today.  

3.1 Traditional network I/O optimization 

While the efficiency of core utilization remains an open problem in a multicore system, 

most of the research in network I/O has been focusing on new designs for hardware and  
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support in Network Interface Controller (NIC), revolutionary fast connection network 

designs such as Myrinet [56], Infiniband [31], RDMA-iSCSI [72], etc. and TCP 

onloading. Although the performance gain of these techniques draws some attention in 

industry, each has its own counter-arguments. 

 TOE would work for high bandwidth, low latency applications, particularly IP 

storage network with RDMA support. However, the technique itself has been somewhat 

controversial because of the overhead in its software interface as well as security and 

extensibility concerns.  

 Fast connection aims at replacing traditional TCP/IP protocol stack with some other 

more efficient protocols and hence improves connection speed. However, two arguments 

point out its shortcomings. First of all, the price of such networking facility like 

Infiniband, iWarp [35] is higher compared to the ubiquitous Ethernet. With the already 

available 10GbE and availability of 40GbE in the near future, more interests are shown 

on protocols that support this traditional networking standard. In addition, research [22] 

shows that protocol processing itself is not the major source of I/O processing overhead. 

Instead, OS processing mechanism such as interrupt handlers, multi-copy of packets in-

between Network Interface Controller (NIC) buffer and memory buffer as well as inside 

kernel buffers contribute more to the slow down. 

 TCP onloading uses part of the computation resource in a cluster server or special 

Processing Engines (PE) to provide TCP/IP processing service, while the host CPU is left 

to continue executing application processes. The interconnect between host and PE is the 

key to this problem. Solutions like polling and Direct Transport Interface (DTI) proved to 
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be efficient although such designs require non-negligible modifications to the operating 

system. Intel‟s Embedded Transport Acceleration (ETA) project [70, 71] partitions the 

system between the host and packet processing engine using DTI. DTI is used at the 

place where Linux kernel manages process and kernel context. Paper [57] designed an 

onloading model using Network Processor (NP) as the packet processing engine. Because 

TCP/IP stack processing switches at a certain frequency between interrupt and process 

context, it is not easy to find out the cutting point for the binding, all the previous 

solutions simply work around this problem by moving the whole TCP/IP stack to a 

separate processing engine, which therefore introduces redundancy in modification to the 

original OS. With more in-depth studies in the operating system, particularly the TCP/IP 

stack and the scheduling mechanism on multicore systems, TCP onloading remains a 

promising solution to the network-CPU speed mismatch problem even without changing 

the OS to a large extent. 

3.2 Kernel core scheduling API 

Since kernel 2.6, Linux provides affinity configuration for SMP platform, the user (with 

root access) could change the CPU affinity to interrupt and user space applications. Veal 

[88] shows the efficiency of CPU affinity with multiple NICs. Compared to previous 

works [70, 71, 94], we believe tuning up affinity set up for Linux is an easier and more 

reliable solution to onloading, especially when kernel modification becomes cumbersome 

in a virtualized environment. 
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3.2.1 Interrupt Affinity 

    Interrupt affinity is a Linux kernel feature that provides a user interface to bind 

hardware interrupts to certain CPU(s) based on the IRQ number of the interrupt. Because 

transmission side of I/O processing is relatively straightforward compared to the receive 

path, we only consider receive side. To initiate the receive process, NIC raises the 

interrupt when packets arrive at the kernel receive buffer. Later on, the device driver in 

the OS registers an entry for the interrupt in the IRQ translation table.  

    The file, /proc/irq/<irq num>/smp_affinity , contains the interrupt mask of interrupt 

number <irq num>. Each bit in the number represents a group of 4 CPUs, with the 

rightmost group being the least significant. "f" is the hexadecimal representation for the 

decimal number 15 (fifteen) and the binary pattern of "1111".  Each of the places in the 

binary pattern corresponds to a CPU in the server, which means we can use the Table 3.1 

to represent the CPU bit patterns: 

 It is noted that the kernel load balances all the hardware interrupts across the 

multicore system by default. As a result, the interrupt affinity could only take effect when 

the kernel feature irqbalance is disabled at boot time. 

Table 3.1 Affinity Settings 

Settings Binary Hex 

CPU #0 00000001 1 

CPU#1 00000010 2
 

CPU #0 and CPU #1 00000011 3 

CPU #7
 

10000000 128 
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3.2.2 Processor Affinity 

Processor affinity takes advantage of the fact that some remnants of a process may 

remain in one processor's state (in particular, in its cache) from the last time the process 

ran, so scheduling the process to run on the same processor for the next time could be 

more efficient than running on another processor. 

 Without explicit processor affinity set up, OS will load-balance user processes 

among cores to achieve fairness. However, the user space part of a network I/O process 

that reads packets is always bound (by default in OS) to the CPU that processes the 

interrupt. 

 Linux kernel 2.6, set_cpus_allowed() and sched_setaffinity() syscalls are 

provided to change the CPU affinity of processes. A user space utility, taskset, can be 

used to achieve the affinity between a CPU mask and the process PID. 

3.3 Interrupt Affinity based Scheduling 

In this section, we explain our affinity-based TCP/IP onloading technique in details. We 

start with a revisit on the classic Linux mechanism for I/O interrupts, particularly the 

receive side. Based on this mechanism, we show which processes are to be bound and 

how. 

3.3.1 Linux interrupt handling mechanism 

Once an interrupt is raised from a physical device, such as NIC, OS freezes user process 

and calls the corresponding interrupt handler to take over the CPU and service the device 

request in the interrupt context. Depending on the criticality, the job of the interrupt 
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handler can be separated into two halves: top half, those time-critical jobs, such as 

acknowledging an interrupt to the PIC, reprogramming the PIC or the device controller. 

Bottom half, jobs that are deferrable, such as data copy from NIC buffer to kernel socket 

buffer. In Linux kernel 2.4, the bottom half is done in terms of system function softirq() 

by the OS. In this paper, we refer to the bottom half as interrupt context/processing unless 

stated otherwise. 

 Traditional Linux kernel services interrupt in interrupt context, in which the kernel is 

non-preemptable. No user process can be context-switched into CPU before the interrupt 

processing terminates. This mechanism is fine with limited interrupt requests on a simple 

host. However, under 10GbE network, where thousands of interrupts are generated in 

small intervals, the host CPU will be saturated by servicing interrupts, and therefore 

starving user space processes. On a consolidated server, where user space applications 

softirq(): 
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Fig.  3.1: Interrupt Handling Mechanism in Linux 
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generate tons of computational-intensive processes that require as much as, if not more, 

CPU power as opposed to those necessary for I/O processing, such a design would 

adversely influence the overall system performance to a large extent.  

 In order to solve this problem, softirq() was re-designed to handle the bottom half 

in a more flexible method. As shown in Fig. 3.1, before reaching to a pre-defined 

threshold (MAX_SOFTIRQ_RESTART=10), system function softirq() keeps handling all the 

pending requests. Notice that softirq() is interruptible, which means while it is running, 

more new interrupts might pop up. Without a threshold, softirq() falls back to the same 

mechanism as the traditional bottom half, where user mode processes could be starved. 

This threshold sets the maximum number of iterations softirq() runs before a kernel 

thread, ksoftirqd, is waken up to service the rest of pending interrupts. 

 The kernel thread ksoftirqd potentially optimizes the software interrupt processing. 

Since a thread can be scheduled, it is preemptible if another process with higher priority 

acquires the CPU that is currently running the first process instance, or the time slice of 

this process simply runs out. In fact, ksoftirqd has a low priority, so user programs have 

a very good chance to run; but if the machine is idle, the pending interrupts are executed 

quickly. This guarantees a critical tradeoff between interrupt processing and user process 

service. 

3.3.2 Affinity configuration 

 In 10 GbE, traditional Linux kernel balances physical interrupts from PCI bus among 

all the available cores. We disable this feature by adding “nonirqbalance” to the 
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bootloader so that interrupt and user application processing will be scheduled based on 

our affinity set up. 

 Previous section mentions the importance of the threshold-related kernel process 

ksoftirqd. By reducing the threshold, ksoftirqd is expected to be waken up at a higher 

frequency. In an extreme case, when ksoftirqd is exclusively used to service interrupt 

rather than using the system function in interrupt context, the whole interrupt handling 

becomes no more than a regular process which can be scheduled.  

 Most of previous research on affinity chooses to bind interrupts (with different 

IRQ#s) to different CPUs. More importantly, like [21], they claim that to affinitize 

interrupt processing and other userspace packet processing to the same CPU enhances the 

throughput by 20%.  

 Our research differs from those works in two areas. First, all of our experiments run 

in 10 GbE environment instead of 1GbE, with scalability issues involved. Secondly, we 

choose one NIC to handle all the interrupts instead of using multiple NICs. From our 

system utilization profiling (presented later), it is shown that device driver processing is 

not the bottleneck for I/O processing compared to the time spent in TCP/IP stack. 

Therefore, the number of hardware interrupts is no longer a significant benefactor to the 

performance overhead. In addition, even with just one NIC in 10GbE, we are guaranteed 

to have more hardware interrupts compared to those generated with multiple 1 GbE NICs. 

As a result, our work focuses on reducing overhead introduced by the upper half of 

operating system as opposed to the low level device driver and NICs.  



35 

 

 There is also another reason why we tried to affinitize these interrupts with the same 

IRQ # to one CPU rather than splitting them across the multicore system. During our 

experiments, we found out the infeasibility of interrupt affinity while applied to the case 

in which 1-IRQ is mapped to multiple CPUs. 

 We bind the ksoftirqd process to one CPU for I/O processing, while keeping the 

other computational intensive workload on another core. By such configurations, the 

computation and I/O process run somewhat like a pipeline.  

3.3.3 Interrupt Affinity Scheduling in VM 

 Similar to the set up 

in native system, as 

illustrated in Fig. 3.2, we 

boot 8 VCPUs for Dom0 

and 2 VCPUs for DomU. 

We use vcpu-pin utility 

to pin all the VCPUs in Dom0 to PCPU#0 because Dom0 processes all the packets in the 

initial steps, while the rest of the processing is done in VCPU #0 that processed the 

interrupt (virtual) in DomU. Therefore ,VCPU#0 in DomU is mapped to PCPU#0 and 

VCPU#1 which runs the userspace application is affinitized to other PCPU #2 that shares 

the L2 cache with PCPU #0. 

3.4 Experimental Results 

 

Fig.  3.2: Workload-Core Affinity 
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Note that Fig. 3.3 solely illustrates how to separate out interrupt processing from 

userspace applications. Even though only 2 VCPUs are used in DomU, it is convenient to 

extend this set up for DomU with more VCPUs.  

 As shown in Fig. 3.3 and Fig. 4, we observe an average improvement of 10% and 12% 

for Iperf throughput in native system and VM, respectively. The biggest improvement is 

 
Fig.  3.4: Impact of Onloading on Throughput in for Iperf  in VM 
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Fig.  3.3: Impact of Onloading on Throughput in for Iperf in Native Linux 
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37% when the message size is greater than 4KB. Meanwhile, the L2 cache misses are 

also significantly reduced. The additional benefits of onloading in VM is due to the fact 

that the interrupt rate in VM is much higher than native system due to the virtual 

interrupts when guest domains communicates with each other and when guest domain 

request to access physical devices through the hypervisor. In this case, separating 

interrupt processing from userspace applications gives more time to the userspace 

application, and therefore achieves a higher throughput. 

3.5 Summary 

 In this chapter, we proposed an interrupt affinity based scheduler to improve the 

system throughput on multicore servers by enabling interrupt scheduling. We used a 

kernel thread ksoftirqd to replace the syscall softirq() so that the bottom half of 

interrupt handler is changed from the interrupt context to the process context. We 

affinitized all the interrupt processing to one core, and leaving the rest of the userspace 

processing to the other core in the same cache domain. 

 Our proposed onloading method separates out interrupt processing irrespective to the 

intensity of the application workload. The limitation of this optimization is that it does 

not fully explore all the core resources (used only 2 out of 8). When more cores are 

involved for onloading, the cache affinity benefits will be offset by the core 

communication within the functionality group, whether it is for interrupt processing or 

userspace applications. In the following sections, we propose several schedulers in both 

native and VM systems that fully explores all the available core resources. They are 
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particularly useful for heavy workloads such as L7-filter, multimedia transcoding and 

SPECweb2005. 
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Chapter 4  

Affinity based Scheduling in Userspace 

In Chapter 3, we proposed an interrupt affinity based scheduling mechanism in the kernel 

that works well for a microbenchmark. While the improvement in system throughput is 

impressive, we also realize that it only uses two cores on the multicore web server. This 

limit significantly affects the practicality of the scheduler because the computing cost of 

network applications such as L7-filter and transcoding is increasingly expensive. An 

effective scheduler should be able to use all the available cores on the web server to 

increase the system throughput. 

 In this chapter, we propose an affinity based scheduler in the userspace that fully 

utilize the computing resources on the multicore server. We discuss two important 

computationally intensive applications - L7-filter and transcoding. These applications are 

widely adopted in modern web servers. These legacy applications were originally 

designed as single threaded application, which cannot be running at full speed on 

multicore web servers. Among all the factors that contribute to this deficit, we focus on 

the parallelization of these applications. To focus on the study of the performance 

bottleneck, we propose an offline trace-driven model to decouple the program. This 

model cancels the processing noise coming from the network and provides a pure 
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environment to study the scheduling problems of multithreaded programs on multicore 

servers. It is the foundation for the scheduler studies in the following sections. 

4.1 Parallelization of L7-filter 

    In this section, we present our optimized L7-filter system architecture to address the 

issues raised above. We first develop a decoupled offline model to focus on optimizing 

the performance bottleneck in the L7-filter. We then propose a connection level 

multithreaded L7-filter system architecture and an affinity-based scheduler to efficiently 

utilize a multicore server. As an extension, we also propose a processor mapping 

mechanism in Xen hypervisor and discuss the impact of virtualization on our new model. 

4.1.1 Decoupling Linux L7-filter Operations 

    Network traffic in original L7-filter is captured by Netfilter, which consists of a set of 

hooks inside the Linux kernel that allows kernel modules to register callback functions 

with the network stack. A registered callback function is then used for every packet that 

traverses the respective hook within the network stack. Inside the network stack of the 

kernel, a series of operations are executed to establish a connection buffer based on 5-

tuple connection information in the packet header. After such a preprocessing stage 

including TCP/IP packets checksum verification, TCP/IP reassembling, IP 

refragmentation, etc., L7-filter starts to match all the application layer data of the arriving 

packets in the same connection against the protocol database in a sequential fashion. 
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 It is known that the pattern matching operation at the application level consumes 

most of the time in DPI system [4, 10, 25, 26, 43, 67]. We expect the same to be true in 

an L7 filter, both intuitively and by the experiment data to be presented in section 4.5. 

 To concentrate on optimizing the pattern matching operation, we developed an 

offline trace-driven model in our study. We choose libnids [46] as a userspace module. 

libnids reads tcpdump trace files and simulates kernel network stack behaviors in 

userspace. In the real-world situation, packet arrival and pattern matching operations are 

tightly coupled.  However, in our study, we use an offline trace input to replace the 

handling of network packets arrival. This decoupled model has the following advantages: 

1) It frees us from dealing with complex and corner case operations in the lower layer 

networking and kernel stacks, so that we can concentrate on optimizing the hot-spot 

pattern matching operations. 2) It provides repeatable and well-controlled research 

environment, enabling testing and validation on various approaches. 3) It also allows us 

to simulate and measure L7-filter performance on reliable connections without any 

packet loss or retransmission.  

4.1.2 Modeling Single-Threaded L7-filter 

Once a packet is processed by libnids, L7-filter classifies the packet in the steps described 

in Fig. 4.1. Packets are fed into the system at the optimal speed (as in a TCP connection 

with no packet dropped).   
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 The original online L7-filter is substituted by a combination of a Preprocessing 

Thread (PT) and a Matching Thread (MT). The PT functions as a real network stack in 

the kernel and schedules the packets. At any point of processing, a connection can only 

have one of the three statuses: 1) MATCHED; 2) NO_MATCH and 3) 

NO_MATCH_YET.  For any incoming packet, L7-filter first decides the host connection 

based on the 5-tuple of this packet. It is then preprocessed based on the connection status 

in one of the following two ways:  

 For 1) or 2): L7-filter already marks a final result to the connection. No further 

action is necessary. 

 For 3): this packet is appended to the corresponding connection in the assembling 

buffer, and the new buffer is placed in the runqueue of the MT.  

    For both cases, the PT goes back to fetch the next packet from the trace file only after 

the current packet has been preprocessed. On the other hand, the MT keeps matching the 
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Fig.  4.1: Trace-driven L7-filter data flow. 
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connection in its runqueue until the queue is empty. If the number of packets in a 

connection exceeds a predefined threshold before the connection is classified, the 

connection is marked as “NO_MATCH”. 

 As shown in Fig. 4.1, one MT is handling the computation-heavy pattern matching 

operation. More MTs should be deployed to handle this operation, especially on 

multicore based systems. 

4.1.3 Parallelizing L7-filter at Connection Level with an Affinity-based 

Scheduler 

A straightforward optimization to the single-threaded L7-filter is to create more MTs in 

the thread pool. Theoretically, multithreading can improve system performance in 

proportion to the number of additional processing units. However, in real practice, the 

scalability issue of multithreading depends heavily on the OS scheduler and the design of 

multithreading. 
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Fig.  4.2: Affinity-based Mulitthreaded L7-filter Architecture. 
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 In Linux kernel 2.6, an O(1) scheduler takes the place of the O(n) scheduler in kernel 

2.4 in order to improve performance on highly threaded workloads. Processes created in 

an SMP system are placed on a given CPU's runqueue. In the general case, it is 

impossible to predict the life of a process. Therefore, the initial allocation of processes to 

CPUs is very likely to be suboptimal. To maintain a balanced workload across CPUs, 

every 200ms, Linux 2.6 scheduler checks to see whether a cross-CPU balancing of tasks 

is necessary. On the other hand, when a thread blocking for I/O is signaled, it will be 

awakened on the core (migration occurs, if necessary) where the event occurred [55, 60].  

This ensures that application processing of a flow‟s packets is likely to be executed on 

the same core as its network protocol processing. 

 Despite the advantage of resolving load imbalances and implementing I/O affinity, 

the O(1) scheduler introduces an undesirable overhead for periodic CPU statistic 

collection and additional cache misses due to inter-core data copies. Studies [76, 77] have 

shown load balancing to be an issue for edge (e.g. routing) workloads. As a result, we 

need to find an alternative to solve the multithreading scheduling problem. 

 Once more MTs are created, each MT executes on a connection buffer basis. When a 

new packet is reassembled for a connection, randomly selecting a non-empty runqueue of 

a thread introduces additional cache overhead by copying packets of the same connection 

to different cores. In addition, it also wastes the thread resources. Consider the case when 

MT #t is matching for connection #c with p packets in the buffer. During execution of 

MT #t, another packet of connection #c arrives. Since no matching result is reported yet, 

this new packet is reassembled with all the p packets in MT #t‟s buffer and the p+1 
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packets of connection #c is dispatched to another MT #t+1‟s buffer for further action. 

When MT #t+1 starts to classify for connection #c, MT #t might return that connection 

#p belongs to protocol #q. Since MT #t+1 is unaware of the status, it has to go through 

the same process and thus wastes valuable computation resources and incurs cache 

pollution if it is load-balanced to a different CPU from where MT #t executes originally. 

 To attack the challenges discussed above, we propose an affinity-based scheduling 

mechanism for our multicore server, as shown in Fig. 4.2. We affinitize the PT in core #0 

and bind an MT for each of the cores left in the multicore server.  On the one hand, 

multiple MTs ameliorate the lack of processing power for pattern matching. Even though 

OS scheduler can balance the workload to all the cores with only one MT, we believe 

dispatching an independent thread to a dedicated core saves the cost of scheduling 

overhead and reduces cache misses introduced by live migrations of unbalanced 

workloads. On the other hand, in order to avoid cold-cache-line effect, we develop our 

own scheduler for thread dispatching, which will be discussed shortly.  With our 

scheduler, the cache and resource efficiency as previously discussed are both greatly 

improved. 

 Fig. 4.3 illustrates the data flow in our scheduler. Essentially, all the assembling 

buffers for the same connection (with different number of packets) will be scheduled to 

the same MT. Similar to the baseline model in Fig. 4.2, the optimized scheduler initially 

decides whether an incoming packet needs classification based on the status of its host 

connection. If no previous result has been reported for the connection, the scheduler tries 

to append the new packet to the connection buffer and add this new buffer to the MT 
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runqueue that already contains assembling buffers of the same connection. In case the 

desired MT runqueue is full, the scheduler will sleep until the runqueue is available for 

new entries. 

 There are two heuristics in the optimized multithreaded model for resource 

contention. First, if an incoming packet belongs to a new connection, the scheduler will 

try to balance the workload by looking for an MT that has the shortest runqueue. This 

load balance mechanism incurs no extra overhead compared to the default OS scheduler 

because the new connection has to suffer from cold cache line anyway. In addition, 

before classifying each entry in the runqueue, the MT checks whether the connection 
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status has been changed. If L7-filter successfully classifies the connection with an 

assembly buffer of less number of packets, the MT will give up further attempt for this 

connection and get the next connection to be classified from its runqueue. 

 By serving connection buffer to the same MT in a FIFO fashion, wastage of MT 

resources due to information asymmetry of the classification status is avoided. Moreover, 

when previous instance fails to classify the connection, the used packets are still kept in 

the cache that hosts the MT. Consequently, further connection classification could enjoy 

the warm cache and executes more efficiently compared to the original case. 

4.2 Parallelization of Transcoding 

4.2.1 System Overview 

We consider a scalable distributed web server architecture shown in Fig. 4.4, where the 

major functionalities required in the Internet servers (e.g., SSL, HTTP, script and 

cryptographic processing, database management, multimedia processing) are partitioned 

into parallel tasks. We focus on the media server with transcoding in this paper. The 

media web server adopts multicore architecture to accelerate the processing speed and 

accommodate the high bandwidth. 

 Fig. 4.5 illustrates the overview of the scheduling process in FFmpeg transcoding 

[20]. All the incoming streams are first stored in a global queue in the FIFO order. In the 

context of transcoding, each stream consists of many Groups of Pictures (GOPs), which 

are the minimal scheduling units and can be scheduled to any core independently. The 

relationship between stream and GOP can be equivalently understood as that of flow and 
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packet. For each scheduling cycle, the scheduler fetches a GOP from the FIFO global 

queue, makes the scheduling decision based on the scheduler, and then dispatches the 

 

Fig. 4.4: Targeting web server architecture. Transcoding is deployed on media server. 

 

 

Fig.  4.5: Overview of the scheduling process in FFmpeg transcoding 
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GOP into the local queue of the scheduled core. In case of the affinity based scheduler 

described before for L7-filter, we just need to substitute "packet" with "GOP, and 

"connection" with "stream". Each core runs a transcoding thread, which iteratively 

fetches a GOP from its local queue and executes the task. 

4.2.2 FFmpeg Transcoding Process 

During the past decade, a number of video-coding standards have been developed for 

communicating video data, such as MPEG-1 for VCD, MPEG-2 for DVD and MPEG-4 

for Blu-ray. For all these video-coding standards, four video resolution criteria are used 

in commercial products as listed in Table 4.1. Table 4.2 shows four movies used in our 

experiment with their original specifications. Depending on different client requirements, 

the transcoding operations can be categorized into frame size scaling, frame rate and bit 

rate alteration. 

 Fig. 4.6 illustrates the transcoding process in detail. FFmpeg is a powerful 

multimedia processing tool that can convert multimedia files between formats. The 

original movie is first decoded into raw frames by appropriate decoder (e.g., MPEG-1). 

Meanwhile, given the transcoding requirement for this movie in terms of video size, 
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Table 4.1 Four resolution criteria in MPEG specification 

 

 

Table 4.2 Four MPEG-1 movies for transcoding 

 

 

Fig.  4.6: FFmpeg transcoding process. 
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frame rate and bit rate, the controller will specify those parameters used by encoder. Then, 

the encoder will start transcoding accordingly. The libavcodec is a library containing 

decoders and encoders for audio/video codecs and the libavformat is a library containing 

demuxers and muxers for multimedia container formats. 

4.3  Direct Mapping in Virtualization  

In this section, we extend our multithreaded L7-filter and FFmpeg to a virtualization 

environment. We expect our optimized programs to be integrated into the driver domain 

in Xen on a consolidated server. Incoming network traffic will be classified and 

demultiplexed to corresponding guest domains for further actions. The mapping between 

virtual and physical devices is transparent to userspace applications in the virtual machine. 

By default, Xen enumerates physical CPUs in a „depth first‟ fashion. For a system with 

multiple cores, virtual CPUs would be allocated first to core #0. After core #0 is saturated, 

they are allocated to cores on the same processor socket, and then to cores in other 

sockets [95]. Such an allocation causes load imbalance that suffers from inefficient 

utilization of the multicore resources. Furthermore, it ignores application characteristics, 

which may introduce potential parallelism as in L7-filter and FFmpeg. 

 Hence, we propose a direct mapping technique for the multithreaded L7-filter and 

FFmpeg in virtualization. In direct mapping, we initialize the same number of virtual 

CPUs as the number of physical cores, and hot-plug each virtual CPU to the physical core 

using the vcpu-pin command. Such a mechanism eliminates the processor mapping 

overhead in the hypervisor and keeps the benefits of balanced utilization of the multicore 

server and warm cache as in the native environment. 
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4.4 Experimental Results 

4.4.1 Experiment Platform 

We choose Intel Clovertown (Dell Poweredge 2900) as our test bed server machine. This 

server system has two CPU sockets, each embeds a quad-core Xeon X5355 2.66GHz 

processors, and 16GB of 667MHz DDR2 SDRAM. The layout of the cores is presented 

in Fig. 4.7. As we can see from the Fig., each socket has two 4MB shared L2 caches.  

 We use Linux kernel 2.6.18 as our default OS and Xen 3.1.3 with vanilla Linux 

2.6.18 as the VM environment. The baseline userspace sequential L7-filter is of version 

0.6 with protocol definition updated by 04/23/2008. We choose the most recent version 

1.23 libnids as the preprocessing component. We also use PAPI 3.6 [66] to measure 

cache misses. We hard-code time stamps into the L7-filter source to obtain eclipsed time 

of different components of the system. 
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Fig.  4.7: CPU layout of Intel Xeon X5355 Clovertown 
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 For the packet trace, we select an intrusion detection evaluation data set from the 

MIT DARPA project [52].  

4.4.2 Performance Metrics 

In order to verify the performance of our model, we compare our optimizations for 

multithreading scalability with the default OS scheduler in terms of throughput, CPU 

utilization and cache misses. We define the system throughput as the size of the total 

packets in the trace file divided by the execution time in L7-filter. For FFmpeg, we 

define throughput as the number of GOPs processed per second. In addition, we also 

provide a life-of-packet analysis to measure various overhead during processing. As an 

important metric for real router/switch, memory requirement of our model is also 

discussed. 

 We present below the evaluation of our optimized L7-filter in comparison to the 

original version. For the original case, we use the default OS scheduler to dispatch MTs 

with periodic load balancing. Our affinity-based scheduling for connection level 

parallelism is then implemented and compared with the original scheduler. The 

experimental results prove the efficiency of our design. 

4.4.3 Throughput and Core Utilization 

 Fig. 4.8 and 4.9 illustrates the throughput and CPU utilization of L7-filter and 

FFmpeg in a native system, respectively. For all the experiments, we use one thread for 

preprocessing, including disk I/O, TCP/IP reassembling and defagmentation, connection 

buffer reassembling and scheduling. The number of threads for pattern matching is varied 
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as represented by the X-axis in the Fig. 4.8 and Fig. 4.9. The bars represent the 

throughput and curves represent the CPU utilization. T-ori and T-aff illustrate 

throughputs of the original OS scheduling and our affinity-based scheduling, respectively. 

Similarly, U-ori and U-aff demonstrate CPU utilization without and with our 

optimization. The affinity-based multithreading shows its superiority in scalability 

compared to the default OS scheduler. With 7 concurrent threads, the system throughput 

 

Fig.  4.8: Throughput and CPU Utilization for L7-filter in Native OS 

 

 

Fig.  4.9: Throughput and CPU Utilization of for FFmpeg in Native OS 
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increases by 51% compared to the naive OS scheduling. The system scales near linearly 

(a speedup of 6.5X when 7 threads are applied.) to the number of MTs. Additionally, the 

CPU utilization is also less in the affinity-based technique with more efficient cache 

performance. A significant reduction of last level cache misses is observed and will be 

presented in the next subsection. We observe the effect of providing more than 7 MTs in 

the 8-core machine in the last set of bars in Fig. 4.8 and Fig. 4.9. Since core #0 is always 

running PT, the extra MT has to compete resource with the PT on core #0. The system 

performance is therefore degraded. 

 We find similar throughput and CPU utilization improvement for the virtualization 

scenario in Fig. 4.10 and 4.11. For each group of bars, the first two (T-ori and T-aff) 

demonstrate the performance without and with the affinity based scheduler. The last bar 

(T-aff w/pin) shows the system throughput when “direct mapping” is applied. The 

legends for CPU utilization follow the same pattern. Our first observation is that the 

benefits of our affinity-based scheduling are somewhat offset by the default hypervisor 

behavior. Compared to the native case (51% increase in throughput), we can only achieve 

12% increase in throughput. However, when direct mapping is applied, the system 

performance is improved by another 30%. In fact, the throughput in this case is only 

slightly lower than the native case for L7-filter (1.19Gbps V.S. 1.3Gbps). The VM 

utilization is higher than native (95.8% V.S. 89%). The difference is not significant for 

two reasons: 1) Unlike virtualized I/O where an additional data copy incurs due to packet 

transfer from the driver domain to guest domain, our offline model is ported  to the driver 

domain without additional data copies. 2) Our direct mapping reduces the overhead in the 
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hypervisor by replacing virtual CPU scheduling with the native core scheduling. Notice 

that using L7-filter in driver domain has much broader utilization than its residence in 

guest domain. In server consolidation, each guest domain is likely to handle network 

traffic with the same functionality. Consequently, adding L7-filter in the driver domain 

helps improve the efficiency of packet demultiplexing and reduce the workload in guest 

OS. However, the implementation and design of guest domain infrastructure in 

 

Fig.  4.10: Throughput and CPU Utilization for L7-filter in VM. 

 

 

Fig.  4.11: Throughput and CPU Utilization for FFmpeg in VM 

 

0%

20%

40%

60%

80%

100%

120%

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1 2 3 4 5 6 7 8

C
P

U
 U

ti
liz

at
io

n

Th
ro

u
gh

p
u

t 
(G

b
p

s)

T-ori

T-aff

T-aff w/pin

U-ori

U-aff

U-aff w/pin

0%

20%

40%

60%

80%

100%

120%

0

10

20

30

40

50

60

70

1 2 3 4 5 6 7 8

C
P

U
 U

ti
liz

at
io

n

Th
ro

u
gh

p
u

t 
(G

O
P

s/
se

c)

T-ori

T-aff

T-aff w/pin

U-ori

U-aff

U-aff w/pin



57 

 

virtualization is out of the scope of this section. In Chapter 7, we will introduce an 

additional optimization in the hypervisor to improve the system performance even more 

for a consolidated workload. 

4.4.4 Cache Performance 

As we discussed in section 3, the affinity-based multithreaded L7-filter is expected to 

provide performance improvement by ensuring efficient cache utilization. Fig. 4.12 

shows that the connection-based multithreading mechanism with the proposed scheduler 

reduces L2 cache misses by about 50%.  By default, threads are migrated by the OS 

scheduler to avoid imbalanced load at the price of cold cache misses. Our scheduler 

dispatches all the packets of the same connection to the same thread, which is affinitized 

to a designated core, keeping the cache warm for pattern matching.  

 

Fig.  4.12: L2 Cache Miss of the Offline Model using different # of MTs. 
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4.4.5 A Life-of-Packet Analysis 

    In this subsection, we decompose the tuned L7-filter to study the behavior of each 

component with different number of matching threads. The execution time for each 

experiment is scaled to 100% to better represent the fractional contribution. Note that all 

the measurements in Fig. 4.13 and Fig. 4.14 are based on the lifetime of one packet rather 

than the complete trace file because of the timing overlap in preprocessing thread and 

matching thread. While the PT runs the libnids routines, it also dispatches packets to the 

proper MT runqueue. In the mean time, the desired MT is also classifying connections in 

its runqueue in a FIFO manner. Therefore, it is necessary to use per packet profiles to 

explain the inter-relations among different components in the system. Due to page 

limitation, we provide the life-of-packet for the affinity-based system in Fig. 4.13 and 

only add the statistics for 7 MTs in the original non-affinity-based L7-filter as a 

comparison.  

 

Fig.  4.13: A Life-of-Packet Analysis. 
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 Our first observation from Fig. 4.13 is that preprocessing incurs very limited 

overhead, while most of the execution time is for the scheduler and pattern matching. The 

execution times include queuing times at individual components. With a limited number 

of MTs, the scheduler is very likely to stall due to the capacity limitation of the 

runqueues, hence takes a large proportion of the execution. On the other hand, when the 

number of MTs increases, more runqueues are provided to the scheduler. A packet is 

consequently reassembled into its connection buffer sooner, while more time is spent in 

MT. A large time share for MT in Fig. 4.13 means it either gets more opportunity for 

connection classification, or it sleeps frequently because it runs so fast that its runqueue is 

empty very often. Fig. 4.14 shows that for each packet, it always takes longer to match 

than scheduling, which dismisses the chance of MT sleeping. Therefore, we conclude that 

the system distributes more time for pattern matching in MT and reduces the latency of 

 

Fig.  4.14: Per-packet Component Execution Time Comparison Between the Scheduler and 

Matching Thread 
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scheduling stall. This observation is in line with the throughput results demonstrated in 

Fig. 4.8.  

 As Fig. 4.13 only presents results in percentage, we give the absolute execution time 

for the two largest contributors in the system in Fig. 4.13. A consistent observation from 

the Fig. is that affinity-based L7-filter scales better than the default case, on a per packet 

basis. Recall that packet processing by libnids incurs very limited overhead to L7-filter 

and that PT reads in a packet as soon as the previous packet was scheduled to a runqueue, 

with no unnecessary inter-packet latency introduced. We can therefore project the data 

pattern in Fig. 4.13 to the system throughput, as demonstrated earlier in Fig. 4.8. 

4.4.6 Memory Requirement (8 threads): Assembling Buffer Size 

A significant concern about application performance in a router/switch is memory 

requirements. A large memory requirement not only incurs overhead for intensive 

memory accesses, it also costs extra software and/or hardware unit to provide memory 

         

       

          

Fig.  4.15: Memory Requirement Analysis 
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management. We therefore conduct experiments to measure the memory bound for our 

affinity-based multithreading system. 

 In the experiment, we measure the total size of connection buffers every time a new 

connection buffer is scheduled to a runqueue of an MT. We used all the core resources 

with 1 core specified for PT, and the other 7 cores each running 1 MT. The last section of 

the trace is pruned to simulate the real scenario in the network (packets keep coming, so 

that there is no system down time). As Fig. 4.15 illustrates, despite some scarce growth to 

12 KB, the required memory is around 2 KB. Since a magnitude of KB in memory is 

acceptable for a router application, we believe our model is very practical to be 

implemented in a router. 

4.5 Summary 

In this paper, we developed a multithreaded programming model for L7-filter and 

transcoding to exploit the connection level parallelism in packets. We proposed a thread 

scheduling technique on a multicore architecture based on cache affinity and showed that 

the throughput is increased by 51% and core utilization is reduced by 15% compared to 

native Linux. Our experimental results were based on the configuration with one 

preprocessing thread running on core #0 and one matching thread on each of the 

remaining core. Our maximum throughput is close to linear speedup compared to the 

sequential version. We also conducted a life-of-a-packet analysis to analyze latencies due 

to different stages of L7-filter processing. This unique analysis showed that CPU time is 

more effectively distributed to the pattern matching threads in our design, which 

consequently eliminates the latency of scheduling stalls. 
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 In the future, we plan to apply our design to the real-world network products. Our 

immediate deployment candidates will be on a Cisco switch and a Cisco appliance. We 

will further optimize our multithreaded L7-filter on non-x86 based multicore processor 

architectures. We also plan to make our multithreaded L7-filter software available to the 

open source community. 
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Chapter 5  

Hash based Scheduling 

In Chapter 4, we introduced a connection affinity based scheduler that improves system 

performance by reusing packet data in the same connection from the cache. However, the 

benefits of connection locality can be offset by the following challenges from the packet 

distribution in the network traffic to the core topology in different multicore architectures. 

 First of all, maintaining connection locality sacrifices the load balancing in workload 

scheduling at both the connection level and the packet level. Because connections usually 

outnumber cores, a naive scheduler might dispatch different number of connections to 

different cores. To achieve load balance at the connection level, hash based scheduler use 

the connection ID as an input [73, 74, 86]. The uniform distribution of keys in a hash 

function guarantees that each core shares a similar number of different connections. 

However, if the network traffic is unevenly distributed, packets in some connections 

might outnumber those in the others and therefore causes a jam on the core where the 

connection with more packets is affinitized. In an extreme case, if there are more cores 

than the number of different connections being processed at a certain point in the system, 

a load balanced system should be able to use all the cores by relaxing the connection 

locality instead of wasting the idling cores and blocking the busy ones. The problem is 
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now clear: how to balance the trade-off between the maintenance of connection locality 

and load balance, subject to throughput constraint. 

 Secondly, a highly threaded hierarchical multicore server suffers from accumulative 

workload imbalance when connection locality is applied. The hierarchical Sun Niagara 2 

multicore processor features 64 hardware threads on 16 independent pipelines across 8 

SPARC cores. We show in paper [26] that with all the 64 threads enabled, the L7-filter 

system throughput can only be increased at most by a factor of 10.1X rather than the 

ideal 16X+. Note that we conservatively choose 16X to be the maximum speed up for 

"ideal" because the 64 threads only share 16 pipelines. Results in that paper also illustrate 

the imbalanced system utilization at each level in the Niagara 2 system. Therefore, how 

to schedule the extensive thread resource more efficiently on such a multicore chip 

becomes a major concern in scheduler designs. 

 In this chapter, we propose an AHRW scheduler balance the workload at the packet 

level. In addition, we optimize the AHRW scheduler for a hierarchical multicore 

architecture. Specifically, we propose a hierarchical AHRW, H-AHRW, the recursively 

calls AHRW to balance the workload progressively. Instead of computing the HRW 

weight linearly core cores in one dimension, hash-tree scheduler computes the weighted 

queue vector and hash values hierarchically by traversing a tree. Not only does the hash-

tree scheduler inherit the benefits from AHRW, such as load balancing at both the flow 

and the packet level, flow locality, minimal flow remapping and cache-awareness, it also 

1) reduces the scheduling overhead from 𝑂(𝑁)  to 𝑂(𝑙𝑔𝑁) , assuming 𝑁  is the total 
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number of nodes and 2) reduces hash collision and achieve more effective load balancing 

through multiple hashing. 

5.1 Baseline Highest Random Weight (HRW) Hash Function 

    Highest Random Weight (HRW) is a robust hash function and was originally proposed 

to map object requests to a cluster of servers [74, 86]. HRW has been popular in the areas 

of web servers, web caching and clustered digital libraries [26, 74, 86]. Given an object 

name and a set of servers, HRW assigns a weight to each server and maps the request to 

the server with the maximum weight. Because connection buffers of the same connection 

share the same connection ID, HRW guarantees the connection locality when the object 

name is represented by the connection ID. The term "robust" refers to the efficient 

maintenance of connection locality, i.e. it requires only a minimum amount of remapping 

when the connection locality is relaxed for packet level load balance.  

5.1.1 Formulation of HRW 

In software scheduling scenario, we define HRW as follows: 

 Let 𝑔(𝑐 , 𝑗) be a pseudo-random weight function 𝑔: 𝐶 ×  1,2, … ,𝑁 → (0,𝑀 − 1], i.e. 

we assume 𝑔(𝑐 , 𝑗) to generate a random variable (weight) in (0,𝑀 − 1] with uniform 

distribution. The value of 𝑀  is different, depending on the selection of the weight 

function 𝑔(𝑐 , 𝑗). Let a packet arrive at an input 𝑖, carrying an identifier vector 𝑐  belonging 

to 𝐶, i.g. the set of connection IDs. The mapping 𝑓(𝑐 ) is then computed as follows: 

𝑓 𝑐  = 𝑗 ⇔ 𝑔 𝑐 , 𝑗 = max
𝑘∈[1,𝑁]

𝑔(𝑐 , 𝑘) 
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 Because packets of the same connection share the same connection ID, our HRW 

function guarantees connection locality. Now we want to make sure this function also 

balances the workload upon the selection of the weight function. In our paper, we follow 

the random variable generation hash function 𝑔(𝑐 , 𝑗), as proposed in paper [86]. 

 The HRW hash function: 

𝑔 𝑐 , 𝑆𝑖 =  A ⋅   A ⋅ 𝑆𝑖 + 𝐵  𝑋𝑂𝑅 𝐷 𝑐   + 𝐵 (𝑚𝑜𝑑 231) 

where A = 1103515245  and 𝐵 = 12345 . 𝐷(𝑐 ) is a 31-bit digest of the object name 

𝑐  and 𝑆𝑖  is the ID of the 𝑖𝑡𝑕server in the cluster. This function generates a pseudo-random 

weight in the range[0. .231 − 1]. In our case, the object name 𝑐  is the 4-tuple header 

information of a connection buffer. Each 𝑆𝑖  is represented by a PU ID. 

 If we define a random variable 𝑞𝑖  as the probability that a request will be sent to 𝑆𝑖 , 

and another random variable 𝑙𝑖  as the amount of processing done by server 𝑆𝑖 , we claim 

the following two properties of our hash function, when the number of requests is infinite, 

as in paper [86]: 

 1) The coefficient of variation of 𝑞𝑖  is zero, i.e. each software thread has an equal 

probability of being chosen to service the request to classify the connection buffer. 

 2) The coefficient of variation of 𝑙𝑖  is zero, i.e. each software thread services the 

same amount of requests/connections.  

 These two properties guarantee that our HRW function balances different types of 

connections across the software thread pool, after enough connections pass through the 
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system. A typical real network link usually contains more than 10K connections [40, 41, 

82], which guarantees that properties 1) and 2) hold true. 

5.1.2 Minimum Disturbance Rate Property 

 To measure the maintenance of connection locality, let us define Disruption 

Coefficient (DC) as the fraction of updated mappings, i.e. the fraction of packets that 

loses connection locality. The reasoning behind minimum remapping in HRW is to 

reduce the DC by dividing the server cluster into small partitions. For simple modulo-M 

hash functions, the entire mapping set needs to be changed whenever the number of 

servers changes, and hence the DC is 1. However, if we partition the servers (hash space) 

into N sets, assuming that these sets are contiguous and of equal size: 

 The original N partitions: 

 0,
1

𝑁
 ,  

1

𝑁
,

2

𝑁
 ,  

2

𝑁
,

3

𝑁
 ,… ,  

𝑁 − 1

𝑁
, 1   

 Without loss of generality, assume that the hash space is the interval [0, 1]. Now 

suppose we add a server to the space, increasing the number of servers to N+1. 

 The new N+1 partitions: 

 0,
1

𝑁 + 1
 ,  

1

𝑁 + 1
,

2

𝑁 + 1
 ,  

2

𝑁 + 1
,

3

𝑁 + 1
 ,… ,  

𝑁 − 1

𝑁 + 1
, 1  

 The overlapping intervals represent a fraction of (1-DC) new mappings that agree 

with the original mappings: 

 0,
1

𝑁 + 1
 ,  

1

𝑁
,

2

𝑁 + 1
 ,  

2

𝑁
,

3

𝑁 + 1
 ,… ,  
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𝑁
,

𝑁

𝑁 + 1
  

 Adding the lengths of these intervals gives: 
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 Therefore, by partitioning the hash space, the DC is reduced by half. In HRW, each 

server ID is combined with the requested object for a mapping to the hash space, further 

reducing the DC value. Interested readers may find a formal proof in paper [74]. 

 In addition to minimum DC, i.e. efficient maintenance of the connection locality, 

HRW also provides load balance at the connection level. However, in case of traffic-to-

PU mappings, coarse-grained load balance at the connection level is not enough to 

guarantee system performance. Take the following case for example: for connection 

𝑐1and𝑐2 , the incoming packets distribute over 𝑐1and 𝑐2  following probability 𝑝1and 𝑝2 , 

respectively. Under the original HRW, only 2 PUs can be used to process 𝑐1  and 𝑐2 , 

leaving the other 6 PUs idle. 𝑝1and 𝑝2  are usually not identical for L7-filter, causing 

further load imbalance between  𝑐1 and 𝑐2. It is necessary to break the connection locality 

to provide packet level load balance so that no PU is idling while runqueue of other PUs 

are non-empty. 

5.2 Adjusted HRW (AHRW) 

 We introduce a multiplier vector as an adjustment to the original HRW. The new 

AHRW has properties to maintain the connection locality and only relaxes it for packet 

level load balance. Before starting to discuss the validity of AHRW, let us recall the 

scheduling requirement for L7-filter. From Section 3, we know that an incoming packet 

is first "preprocessed" in the connection reassembly buffer based on its 4-tuple (Source IP, 

Destination IP, Source port #, Destination port #) information. Therefore, the output of 
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preprocessing, which is also the input to the scheduler, is in the form of a connection 

buffer, distinguished by the connection ID. At any given point, there could be multiple 

connection buffers for the same connection, because classification for some connection 

requires multiple packets, leading to multiple connection buffers of different sizes. The 

scheduler should evenly distribute the connection buffers over the available PU resources, 

and try to put as many connection buffers with the same connection ID to the same PU as 

possible to reduce packet reordering and to increase the reuse of shared packet data in the 

cache. Now let us present the AHRW hash function. 

 Definition 5.1: Adjusted HRW Hash 𝒉 𝒄  , 𝒑, 𝒓 → 𝑾𝒆𝒊𝒈𝒉𝒕: Let 𝑔(𝑐 , 𝑝)  be the 

original HRW hash function 𝑔: 𝐶 ×  1, 2, … , 𝑁 → [0. . 231 − 1], where 𝐶  is the set of 

possible identifier vectors, i.e. connection IDs; 𝑝 ∈ [1, 𝑁] is the ID of a PU; and 𝑁 is the 

number of PUs. 𝑔  is a pseudo-random function that generates a random variable in 

[0. . 231 − 1]  with uniform distribution for each incoming connection buffer with 

identifier vector 𝑐 ∈ 𝐶and the PU ID 𝑝. We denote 𝑟𝑝 ∈ (0,1] as the ratio between the 

minimum runqueue length of all the PUs and the runqueue length of PU 𝑝 at the point of 

scheduling. Then,  

𝑕 𝑐 , 𝑝, 𝑟𝑝 = 𝑟𝑝 ⋅ 𝑔(𝑐 , 𝑝). 

where 𝑟𝑝 =
min 𝑝∈[1,𝑁] 𝑄𝑢𝑒𝑢𝑒 𝐿𝑒𝑛𝑡 𝑕𝑝

𝑄𝑢𝑒𝑢𝑒𝑙𝑒𝑛𝑡 𝑕𝑖
. 

 The AHRW hash always reduces the weight on the PU whose runqueue length is 

greater than the minimum runqueue length. The weight adjustment 𝑟𝑝 becomes more 

aggressive as the runqueue length difference increases. When 𝑟𝑝 = 1, the current PU has 

the shortest runqueue length, the AHRW function falls back to the traditional HRW. 
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When the runqueue length of 𝑝 is 0, we set 𝑟𝑝 = 1. In this case, 𝑝 is idle, and it should be 

assigned the original HRW weight. Thus, the connection locality will not be sacrificed. 

 Definition 5.2: The scheduler 𝒔𝒄𝒉𝒆𝒅 𝒄   → 𝒑:  

𝑠𝑐𝑕𝑒𝑑 𝑐  → 𝑝 ⟺ 𝑝 = arg max
𝑗 ∈[1,𝑁]

𝑕 𝑐 , 𝑗, 𝑟𝑗   

 For any given connection buffer, the scheduler decision performs load balance at the 

packet level by relaxing connection locality. We apply adaptations to all the PUs rather 

than a subset of them to guarantee fairness. The AHRW-based scheduler possesses the 

following properties:   

 Optimized connection locality: connection buffers with the same connection ID are 

initially scheduled to the same PU before the runqueue length ratio 𝑟𝑝  is applied by the 

scheduler. When 𝑟𝑝  is applied, connection locality maintenance is only affected to the 

minimum extent, i.e. although the generated weight for each PU changes, the selection of 

the maximum weight PU is affected only when necessary. Note that connection locality 

and the DC value are directly related: maintaining perfect connection locality as defined 

in our model is equivalent to the case when 𝐷𝐶 = 0. Because it is impossible to maintain 

perfect connection locality while applying a feedback system, we only need to justify that 

the relaxation is minimal for all the connections. Therefore, to prove the optimized 

connection locality property, we only need to show that DC is minimal. When 𝑟𝑝 = 1, the 

AHRW falls back to the original HRW, whose property of minimal DC value is proved in 

paper [74].  In paper [40, 41], the authors proved that for a single constant multiplier 𝛼, 

the minimal DC property holds true for an adjustment 𝛼 ∙ 𝑔 to the original HRW weight. 
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Because our adjustment is a dynamic process, we expect  𝑟𝑝  to gradually approximate the 

value 1 after the system becomes stabilized. Therefore, when 𝑟𝑝 ∈ (0,1), it falls into this 

case, i.e. our AHRW scheduler also possesses the minimum DC property.  

 Load balance: If necessary, the scheduler relaxes the connection locality by 

applying the runqueue length ratio 𝑟𝑝 . It is necessary to discuss the load balance at both 

the coarse-grained and fine-grained levels. For the coarse-grained connection level load 

balance, we simply need to consider the original HRW. Since the original HRW hash 

function 𝑔 is a pseudo-random function that generates a random variable in [0. . 231 − 1] 

with independent uniform distribution. The load balance at the connection level is 

intuitively proved. For the fine-grained packet level load balance, we should consider the 

impact of 𝑟𝑝 . At the conceptual level, 𝑟𝑝  fixes the load imbalance caused by HRW to 

maintain the connection locality, i.e. minimum DC. Thus, hash function 𝑕 provides better 

load balance on top of 𝑔 . As we pointed out in the previous proof, the value of  𝑟𝑝   

gradually approximates 1 after system warm-up. If  𝑟𝑝  is a constant multiplier, then 

𝑕 𝑐 , 𝑝, 𝑟𝑝 = 𝑟𝑝 ⋅ 𝑔(𝑐 , 𝑝) generates approximately random variables that are independent 

and uniformly distributed over[0. . 𝑟𝑝 ⋅ (231 − 1)]. Thus, when 𝑟𝑝  approximates to 1, we 

can see AHRW as a theoretical load balanced mapping model. 

5.3 Hierarchical AHRW 

 In this section, we enhance the AHRW-based scheduler into a hash-tree scheduler, so 

that it can be more properly deployed on multicore servers with cache or thread localities. 

The theory behind this enhancement is that the traversal through a tree structure will 
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guide the processing to the proper core, where the locality can be exploited. Also, the 

scheduling time is bounded by the depth of the tree (logarithmic), which is shorter 

compared to the number of leaf nodes as in a linear search. 

5.3.1 Problem Statement and Motivation 

 Although the proposed AHRW-based scheduler provides load balance and 

connection locality, it requires a non-negligible amount of scheduling overhead, which 

delays the DPI processing and potentially causes undesirable packet drops. Meanwhile, 

the mainstream multicore servers usually possess extensive parallelization and sharing of 

resources that naturally form a hierarchical structure. For example, the highly threaded 

multicore chip Sun Niagara 2 in Fig. 5.2 (a), usually have multiple hardware threads 

organized hierarchically, forming a core-pipeline-thread architecture. Similarly, the Xeon 

server can be represented as a tree consisting of L2 caches at intermediate level and cores 

at the leaf level. Thus, a scheduler based on a blindly linear hash for all the PUs is not 

only inefficient due to the large candidate pool, but also unsuitable for a hierarchical 

multicore server that accumulates the workload imbalance at each level of the 

parallelization. 

5.3.2 Solution 

Definition 5.3: The hash-tree scheduler 𝑠𝑡𝑟𝑒𝑒  𝑐  → 𝑝𝐿:  

𝑠𝑡𝑟𝑒𝑒  𝑐  → 𝑝𝐿 

⟺ 
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𝑝𝐿 = arg max 𝑕 𝑐 , 𝑑𝐿 , 𝑟𝑑𝐿 

𝑑𝐿∈{𝑙𝑒𝑎𝑓𝑠  𝑜𝑓  𝑛𝑜𝑑𝑒  𝑃𝐿−1   𝑎𝑡  𝑑𝑒𝑝𝑡 𝑕 𝑙𝑔𝑁}
…

𝑝1 = arg max  𝑕 𝑐 , 𝑑1, 𝑟𝑑1
 

𝑑1∈ 𝑐𝑕𝑖𝑙𝑑𝑟𝑒𝑛  𝑜𝑓 𝑛𝑜𝑑𝑒  𝑝0  𝑎𝑡  𝑑𝑒𝑝𝑡 𝑕 1 

𝑝0 = arg max 𝑕 𝑐 , 𝑑0, 𝑟𝑑0
 

𝑑0∈ 𝑃𝑈𝑠 𝑎𝑡  𝑑𝑒𝑝𝑡 𝑕 0 

  

Given a hierarchical multicore architecture, we can apply the AHRW hash scheduler in 

Definition 5.2 repeatedly along the traversal of the tree hierarchy. For nodes at the same 

depth of the tree, we can pick an internal node by the AHRW scheduler at that depth and 

continue the traversal from that node. The ultimate goal of the hash-tree scheduler is to 

select a candidate PU among the leave nodes by traversing through the tree.  

𝑠𝑡𝑟𝑒𝑒  𝑐  → 𝑝𝐿
𝑒.𝑔.  𝑁𝑖𝑎𝑔𝑎𝑟𝑎
         

 
 
 

 
 
𝑝𝐿 = 𝑇𝑃𝑐 = arg max 𝑕 𝑐 , 𝑖, 𝑟𝑖 

𝑖∈{𝑡𝑕𝑟𝑒𝑎𝑑𝑠  𝑜𝑛  𝑃𝑐}

𝑝1 = 𝑃𝑐 = arg max  𝑕 𝑐 , 𝑗, 𝑟𝑗  
𝑗 ∈{𝑝𝑖𝑝𝑒𝑙𝑖𝑛𝑒𝑠  𝑜𝑛  𝑐}

𝑝0 = 𝑐 = arg max 𝑕 𝑐 , 𝑘, 𝑟𝑘 
𝑘∈{𝑐𝑜𝑟𝑒𝑠  𝑖𝑛  𝑠𝑒𝑡  𝐶}

  

 As an example, for any given connection buffer and the SUN Niagara architecture, 

the hash-tree scheduler first picks a core 𝑐 with the maximum weight generated by the 

AHRW at the core level. Then we apply the AHRW at the pipeline level for the selected 

core 𝑐, and pick a pipeline 𝑃𝑐 . Finally at the thread level, on the selected pipeline 𝑃𝑐 , the 

AHRW picks the desired thread 𝑇𝑃𝑐  with the maximum weight. We can use a 3-

dimensional array indexed by the core ID, pipeline ID and thread ID, respectively. This 

data structure clearly manages the internal hierarchical relationship between each PU.  
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 The properties of connection locality and packet level load balance hold true at each 

level in the tree because the corresponding hash functions at each level are the same as 

the linear case. In addition to these two properties, the hash-tree scheduler also provides 

the following benefits: 

 Reduced computation cost. Suppose the complexity of HRW hash and the 

adjustment ratio computation is a constant number 𝐻. The complexity of the original 

linear AHRW hash scheduler is 𝑂 𝐻 ∙ 𝑁 ∙ 𝑛  for 𝑛 connection buffers and 𝑁 PUs. On the 

other hand, the hash-tree scheduler selects a PU by a three-level tree traversal. Thus, with 

the same denotation, the complexity is reduced to 𝑂 𝐻 ∙ 𝑙𝑔𝑁 ∙ 𝑛 . Note that the number 

of PUs 𝑁 could be large, if the user defines more threads (virtual PUs) than the number 

of physical PUs.  

 

 

T0 T1 T2 T3 T0 T1 T2 T3

P0 P1

C0

T0 T1 T2 T3 T0 T1 T2 T3

P0 P1

C7
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Fig.  5.1: The hierarchy of PUs on a Sun Niagara 2 chip. Each of the 8 cores (C) on chip contains 2 

pipelines (P), with 4 threads (T) in each pipeline. The solid arrows represent a scheduler-selected 

path. 
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 More effective overall load balance. Note that while the hash space remains 

[0. . 231 − 1], the hash-tree scheduler reduces the schedule space from 𝑁 to 𝑙𝑔𝑁. Thus, 

the randomness of the hash function remains the same, but the size of the adjustment 

target set is reduced, leading to faster computation for the adjustments at each layer. In 

addition, the hash-tree scheduler essentially uses multiple hashes per key input. This 

behavior not only reduces the possibility of hash collision, but also progressively 

improves the effect of load balance for the overall system performance. 

 As to this point, we have presented our scheduler in full detail. Recall that the hash 

values are used as a baseline to serve our Markov mesh model. In the experimental 

section, we will validate our model based on the performance measurement of our 

scheduler.  

5.4 Experimental Set up 

5.4.1 Experimental Platform 

For the hash based scheduler, we chose the Sun SPARC and Niagara based web servers 

are one of the most popular choices for high performance network processing [49]. In the 

experiments, we used a Sun Niagara 2 based T5120 web server as our testbed. The 

hierarchical processor architecture contains 8 in-order cores (1.2 GHz). Each of the eight 

cores embeds 2 independent integer pipelines that enable real multithreading without 

causing resource contention. Each pipeline is shared by 4 hardware threads, totaling 64 

hardware threads in the system. The eight cores are connected to share a 4MB L2 cache 
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through an 8X8 crossbar switch. Our testbed server installs 16GB of 667MHz DDR2 

memory. We use Solaris 10 as our default OS.  

 The baseline userspace sequential L7-filter is of version 0.6 with protocol definition 

updated by 05/19/2009. Because the original L7-filter was written for Linux OS, we 

make some changes in the Makefile and header files to direct the program to link to the 

corresponding libraries in Solaris.  

5.4.2 Sun Niagara 2 and the Solaris Scheduler 

Fig. 5.2 (a) illustrates the system architecture of a Sun Niagara 2 processor. The eight 

cores connect through a crossbar switch to eight banks of 16-way set associative L2 

cache, totaling 4 MB. The Sun Niagara chipset series differ from other high-end server 

processors not merely in degree but also in kind. On the other hand, the Niagara 2 

processor uses eight simple in-order SPARC cores rather than the more complicated out-

of-order x86 cores. Each core on the Niagara 2 chip runs at a relatively lower (1.2 GHz 

[49]) frequency. However, the low frequency cores are complemented with two 

independent integer pipelines, each residing 4 hardware threads. Naturally, the Niagara 

chip forms a virtual hierarchical structure, with the cores at the first level, the pipelines 

inside each core at the second level, and the threads running on each pipeline at the third 

level. 



77 

 

 Fig. 5.2 (b) demonstrates the scheduler topology in the Niagara 2-Solaris system 

architecture. At every clock cycle, the hardware strand scheduler (the "Pick" unit) grants 

one of the four threads in a pipeline exclusive access to use the pipeline resource. 

Essentially, when one thread stalls for memory access, the "Pick" unit on chip chooses 

from the other 3 idling threads on the same core to hide the latency. Note that the 

scheduling done by "Pick" is a hardware implementation that runs at a clock cycle 

granularity, which cannot be modified in software. It is at a different level from the 

thread/pipeline/core scheduling discussed in this paper. 
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Fig.  5.2 (a): The Sun Niagara 2 Chip architecture and the parallelism inside each SPARC core 
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Fig.  5.2 (b): The scheduler topology in the Niagara 2-Solaris system 
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 In addition to the "Pick" scheduler, there is also a kernel software thread scheduler 

that maps software threads to hardware threads. In Solaris 10, the kernel software thread 

scheduler spreads software threads first across cores, one thread per core until every core 

has one, then two threads per core until every core has two, and so on. Within each core, 

the kernel software thread scheduler balances the software threads onto the 8 hardware 

threads on the core's two integer pipelines [79]. This kernel software thread scheduler 

works at a higher level (closer to the application layer). The "thread affinity" system calls 

exist in both Linux and Solaris to overwrite the decisions made by this scheduler. 

    However, neither of these two schedulers distributes the incoming network traffic to 

the software thread. This kind of scheduling is defined in the application by the 

programmer. A Round-Robin distribution of the workload to the software threads is a 

common and simple default implementation. The scheduler proposed in this paper 

belongs to this category. The hierarchical architecture of the Niagara 2 is a virtual 

organization of the software threads. In order to avoid the influence of the kernel 

software thread scheduler, we use a system call (processor_bind) to affinitize each 

software thread to a hardware thread. By doing this 1-to-1 pinning, we can focus on the 

scheduling of workload distribution at the software level. 

5.4.3 Challenges in Sun Niagara 2 

Previously, we have introduced a connection locality based scheduler for L7-filter on a 

general Intel Xeon web server [25]. However, we observed that the benefits of 

connection locality are offset by two major challenges on highly threaded hierarchical 

multicore servers. 
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 First of all, a highly threaded hierarchical multicore server suffers from accumulative 

workload imbalance when connection locality is applied. The hierarchical Sun Niagara 2 

multicore processor features 64 hardware threads on 16 independent pipelines across 8 

SPARC cores. We show in Fig. 5.3 (a) that with all the 64 threads enabled, the L7-filter 

system throughput can only be increased at most by a factor of 10.1X ("conn+os"-64 VS 

"pckt+os"-1) rather than the ideal 16X+. Note that we conservatively choose 16X to be 

the maximum speedup for "ideal" because the 64 threads only share 16 pipelines. Fig. 5.3 

(b) illustrates the imbalanced system utilization at each level in the Niagara 2 system. 

This observation raises the concern of load balancing in addition to cache locality.   

 Maintaining connection locality sacrifices the fairness in workload scheduling when 

packet distribution is non-uniform. In an extreme case, if there may be more cores than 

connections giving rise to some idle servers. A load balanced system should be able to 

      
 (a) Throughput inefficiency                 (b) Workload imbalance at different levels (%) 

 

Fig.  5.3: L7-filter performance on a Sun Niagara 2 chip. (a) "pckt+os" is the default set up without 

any optimization; "conn+affinity" applies the connection locality and thread affinity optimizations 

proposed in paper [ancs08]; "conn+os" substitutes the thread affinity option to use the default 

Solaris kernel software thread scheduler, which is discussed in the section 2.2. "ideal" is the ideal 

throughput based on a linear expectation to the number of independent processing units. (b) The 

bars show the average utilization (%) at each level in the core; the lines represent the range of 

peak high and peak low values (%).  
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use all the cores by relaxing the connection locality The problem is how to balance the 

trade-off between the connection locality and load balance to maximize the throughput. 

5.4.4 A Trace Driven Model 

 We adopt the same trace driven model proposed in paper [25]. The decoupled model 

proposed in that work separates the packet processing from the pattern matching 

operations at the application layer. We choose the most recent version 1.23 libnids [46] as 

the preprocessing component, which parses the 4-tuple information in the incoming 

packet, and places it into the corresponding entry in the connection reassembling buffer.  

 In our experiment, we used three different packet trace files: 1) a 4-hour tcpdump file 

from MIT ("MIT") [52];  2) a tcpdump file from Tsinghua University which records a 

section of 4 minutes and 19 seconds internet traffic ("TU"); and 3) a segmentation of 

tcpdump from NY Poly University ("NYP"). The key features of the traces are 

summarized in Table 5.1. The "Conn. Length" column shows the average number of 

packet in a connection.  The "Distro. Disparity" column shows the degree of difference 

of the number of packets among different connections. As this value increases, we see the 

disparity among the number of packets in the connections varies more in the trace file. 

Table 5.1Key Features of The Trace Files 

Trace 
Name 

# of 
Pkt. 

# of 
Conn. 

 Conn. 
Length 

   Distro. 
Disparity 

Trace 
Size 

MIT 340K 40K 8.5 Medium 286MB 

TU 1.32M 110K 12 Large 1GB 

NYP 590K 61K 9.6 Small 500MB 
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5.4.5 Performance Metrics 

 In our experiments, we provide measurements from a real machine rather than 

simulators. We compare the AHRW hash-tree (H-AHRW) scheduler with 1) pure 

connection locality technique proposed in paper [25]; 2) Solaris OS scheduler; 3) pure 

HRW hash function which provides connection locality and load balance at the 

connection level; 4) our prototype AHRW scheduler which is more efficient compared to 

the idea proposed in paper [40, 41]. Throughput is a direct reflection of any packet 

processing system. We calculate the throughput in our system by dividing the overall 

packet length (bytes) by the execution time of our trace driven model. For system 

utilizations, we present results for physical core utilization (using a Perl script 

"corestat"). We additionally profile the life of a packet in the system to illustrate the 

overhead of scheduling versus the cost of pattern matching. 

5.5 Experiment Results 

In this section, we present the experiment results using different schedulers. Interested 

audiences may refer to paper [25, 26] for more details. The performance evaluation 

verifies the benefits of the proposed optimizations.  

5.5.1 System Throughput and Scheduler Overhead 

 In Fig. 5.4, we show that the H-AHRW scheduler improves the system throughput 

by an average of 50.7% compared to using connection locality alone ("conn") [25], 19.8% 

compared to the single layer AHRW scheduler ("AHRW"), and 22.1% compared to the 

baseline HRW.  We also find that for different traces, the system throughput increases as 
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the average connection length increases. This is because L7-filter only processes the first 

eight packets in a connection. When connection length is large, more packets could be 

directly marked by L7-filter without going through pattern matching. Another 

observation is that the AHRW hash-tree scheduler is more efficient for a larger disparity 

between the connection distribution and packet distribution.  

5.5.2 Load Balance 

 Fig. 5.6 verifies that AHRW hash-tree scheduler provides the best load balance for 

all the three traces. The star on each vertical bar represents the average system utilization; 

and the vertical bars represent the range (min-max) of the system utilization. With 

hierarchical AHRW, the load imbalance among all the cores is reduced from 89% to 7%. 

As the distribution disparity increases, the benefits of our scheduler become more 

significant. Specifically, the TU trace, in Fig. 5.6 (b), has the best load balancing among 

all the traces. This result shows that our scheduler can efficiently balance the uneven 

workload across the multicore platform. Another interesting observation is that as the 

 

Fig.  5.4:  System throughput comparison using different schedulers for all the traces 
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workload becomes more evenly distributed among the PUs, and the system utilization 

increases. This is because PUs have less opportunity to be idle in a more balanced 

environment. As a result, more PU time is dedicated to the DPI processing, leading to 

higher system throughput as presented in Fig. 5.4. 

 Here we also present the runqueue length at the thread level to directly illustrate the 

changes in workload balance. As we can see from Fig. 5.5, it is quite straightforward that 

 

Fig.  5.5: Runqueue length on all the 63 matching threads.  Note that thread #0 runs the 

preprocessing thread exclusively. 
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the runqueue length becomes much smoother when our scheduling optimizations that are 

applied. Another observation from the same Fig 5.5 shows the average runqueue length 

of the thread decreases as we further optimizes our scheduler. This observation means the 

overall matching time is reduced in the system, which is in line with the observation in 

Fig. 5.4. 

5.5.3 Life of Packet Analysis (Scheduler Overhead) 

 In this subsection, we discuss the overhead of our hash-based scheduler by 

conducting a life-of-packet analysis, which profiles the execution time for each 

component along the processing path of one packet instead of the entire packet trace.  

 Fig. 5.7 scales the execution time to 100% for all the five different optimizations. We 

would like to present the impact of scheduling overhead on the overall packet processing. 

It shows that preprocessing components take about 5% of the overall packet processing 

time. The cost of scheduler increases as more heuristics are applied. For the adaptive 

multilayer hash, it takes about 10% of the overall packet processing. Compared to the 76% 

execution time spent in pattern matching, we believe this overhead is still acceptable. We 

also observe a decreased time share of Matching Thread (MT) when more optimizations 

are applied. A smaller time-share for the MT in Fig. 5.7 can be caused by either a reduced 

matching cost in the MT or an increased computation overhead in the scheduler.  

 Fig. 5.8 shows the absolute execution time for a packet. Clearly shown from this Fig. 

5.8, each matching thread runs longer than the scheduler does. Therefore, the reduced 

MT execution percentage in Fig. 5.7 is due more to the reduction in MT execution time 

than the increased scheduler cost (from 0.49 µsec to 0.57 µsec). This observation verifies 
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our theoretical analysis in Section 5.3. The average per packet execution time for the 

MTs is reduced because workloads are more balanced on the available threads. The 

workload balance reduces blocking time by scheduling those connection buffers from a 

deeper location in a busy thread to a relatively free thread, hence increasing the overall 

system throughput. 

 

Fig.  5.7: Scaled execution time percentage for each component.  

 

 

Fig.  5.8: Absolute execution time comparison between the scheduler and matching thread. 
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5.6 Summary 

In this chapter, we propose a scheduler for L7-filter on a highly threaded hierarchical Sun 

Niagara 2 multicore server. In addition to maintaining the benefits from the connection 

locality of the network traffic like some previous proposed schedulers [25, 40, 41, 89], 

our scheduler also adaptively relaxes the locality constraint to achieve load balance at the 

packet level. Based on the hierarchical architecture of the Sun Niagara 2 processor, our 

scheduler works at the core, the pipeline and the thread level, respectively. We choose the 

HRW hash as our baseline hash function that guarantees connection locality and load 

balance over the number of different connections. We apply a low overhead adaptive 

feedback system to balance the workload over real time queue length at each level. Our 

experimental results show that the AHRW multilayer scheduler can improve the L7-fitler 

throughput by 59.2% compared to a previous work. 
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Chapter 6  

Cache Aware AHRW (CA-AHRW) 

In the previous chapter, AHRW strikes a balance between connection locality and load 

balancing at the packet level. Nonetheless, two essential problems still remain untouched: 

1) cache-awareness in multicore architecture with heterogeneous inter-core 

communication cost and 2) a generalized HRW scheduler, for different core/cache 

topologies with both cache awareness and adaptive load balancing mechanisms. 

 In this chapter, we propose CA-AHRW, a Cache-Aware AHRW hash scheduler. 

This novel scheduler is designed for different core/cache topologies and is able to 

maintain both the flow and the packet level load balancing with cache-awareness while 

maintaining flow locality. Specifically, we first construct a communication matrix for a 

given multicore architecture characterizing the heterogeneous inter-core communicating 

overhead. Then, we obtain a weighted queue vector for each core based on that matrix 

and apply the weighted queue vector and an adjustment multiplier to the original HRW to 

adjust the hash value. Lastly, we propose a generalized CA-AHRW hash scheduler that 

can be applied to different core/cache topologies. 

 Similar to H-AHRW described in Chapter 5, we further design a hash-tree scheduler 

based on CA-AHRW, H-CAHRW, to enhance its performance for mainstream multicore 

web servers with a tree-based core/cache topology. The key difference between H-
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CAAHRW and H-AHRW is that the former is generalized to accommodate different core 

topologies. 

 We implement and evaluate the H-CAHRW scheduler on two different tree based 

multicore servers, namely Intel Xeon E5335 [33] and AMD Opteron 2350 [1]. To do the 

transcoding, we parallelize FFmpeg software [20] and choose four recent movies with 20 

concurrent streams as in [28]. The performance of our scheme is compared with five 

other schedulers, including Round Robin (RR), Stream-based Mapping (SM) [27, 28], 

original HRW (HRW) [74, 86], H-AHRW [Chapter 5]. Based on the results, we show 

that our scheduler improves the throughput and video quality for a variety of workloads 

with little scheduling overhead, better load balancing and fewer cache misses. 

6.1 AHRW for Transcoding 

Adaptive HRW Hash Function: We introduce an adjustment multiplier to the original 

HRW in our new hash function. Suppose the total number of processors is 𝑁, 𝑐  is an 

identifier vector for the incoming flow and 𝑝 is the Processing Unit (PU) ID. Let 𝑔(𝑐 , 𝑝) 

be the original HRW function, where𝑔: 𝐶 × [1, 𝑁] ⟶ (0,231 − 1], 𝑁 is the number of 

PUs. We denote 𝑟𝑝 ∈ (0,1] as the ratio between the non-zero minimum queue length 

𝑄𝑚𝑖𝑛  of all the PUs and the queue length of PU 𝑝, 𝑄𝑝 , at the point of scheduling. Then, 

the AHRW can be defined using Eq. 6.1: 

      𝑕 𝑐 , 𝑝, 𝑟𝑝 = 𝑟𝑝 ∙ 𝑔 𝑐 , 𝑝 =
𝑄𝑚𝑖𝑛

𝑄𝑝
∙ 𝑔 𝑐 , 𝑝      (6.1) 

 In transcoding, the execution time of GOP can be modeled as linearly proportional to 

the GOP size [7]. Therefore, the queue length, which is measured by the total bytes of all 
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GOPs in the queue, is a good indicator of the workload on each processor. The adaptive 

HRW hash function dynamically adjusts the load balancing by reducing the weight on 

heavy loaded processor. Therefore, it decreases the chance to schedule the next packet to 

this processor. When the queue length of 𝑝 is 0, the current processor 𝑝 is idle. In this 

case, we force 𝑟𝑝  to be 1, which results in the maximum possible weight for this 

particular processor. As a result, the chance to schedule the next packet to this processor 

is increased. The corresponding scheduler based on the adaptive HRW hash function is 

given in Eq. 6.2. 

     𝑓 𝑐  = 𝑝 ⟺ 𝑕 𝑐 , 𝑝, 𝑟𝑝 = max𝑘∈[1,𝑁] 𝑕(𝑐 , 𝑘, 𝑟𝑘)   (6.2) 

6.2 Weighted Queue Length Derivation 

In the AHRW hash function, the adjustment multiplier 𝑟𝑝 will strike a good balance 

between the connection and packet level load balancing. However, this multiplier is 

unaware of the underlying core/cache topology because it simply takes into account the 

actual queue length on each PU. In fact, since the communication overhead between 

cores in a multicore architecture is heterogeneous, especially with hierarchical memory 

structure, we should distinguish the inter-core relationship by applying weighted queue 

lengths in the AHRW hash function. 
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Fig. 6.1 and Fig. 6.2 show two typical types of multicore architectures. The Tilera‟s 

TILE64 mesh processor [87] is based on the mesh topology, where each core has its own 

L1 and L2 cache. The Intel Xeon E5335 has a tree hierarchy. From bottom up, a group of 

two cores share the same L2 cache. Two of these groups (4 cores) share the same core 

socket (S1 and S2). Two of these sockets (8 cores) share the same processor chip. 

Obviously, the communication cost between cores is asymmetric as illustrated by the 

arrow thicknesses, which is proportional to the communication delay. 

 We propose a matrix representation of inter-core relationship to characterize this 

communication heterogeneity. We consider a simple example as shown in Fig. 6.3, where 

4 cores are connected in a mesh topology. We define the communication overhead ratio 

between core 𝑖  and core 𝑗  as 𝑐𝑖,𝑗 , which is defined by Eq. 6.3, assuming 

 

Fig.  6.2: A mesh-based multicore architecture: 

Tilera TILE64 Mesh Processor. 𝑪𝟎,𝟏 < 𝑪𝟎,𝟕 < 𝑪𝟎,𝟔𝟑 

 

Fig.  6.1:  A  tree-based  multicore  architecture:  

Intel Xeon E5335. 𝑪𝟎,𝟐 < 𝑪𝟎,𝟔 < 𝑪𝟎,𝟏 
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𝐶𝑜𝑚𝑝𝑗 , 𝑀𝑒𝑚𝑗 , 𝐶𝑜𝑚𝑚𝑗 ,𝑖  represent the computation time on node 𝑗, memory access time 

on node 𝑗 and the communication time from node 𝑗 to node 𝑖, respectively. 

       𝑐𝑖,𝑗 =
𝐶𝑜𝑚𝑝𝑗+𝑀𝑒𝑚 𝑗+𝐶𝑜𝑚𝑚 𝑗 ,𝑖

𝐶𝑜𝑚𝑝 𝑖+𝑀𝑒𝑚 𝑖
       (6.3) 

We define the "homenode" for a flow as the scheduled node by the original HRW hash 

scheduler, which is responsible for preserving packet departure order and is determined 

only by the identifier vector 𝑐 . Since every packet has to communicate with its homenode 

during transcoding, 𝑐𝑖,𝑗  implies the communication overhead when a packet with 

homenode 𝑖 is scheduled on core 𝑗 for packet level load balancing. 𝑐𝑖,𝑗   is always larger 

than 1, because the sum of 𝐶𝑜𝑚𝑝𝑗  and 𝑀𝑒𝑚𝑗  should be no less than that of 𝐶𝑜𝑚𝑝𝑖  and 

𝑀𝑒𝑚𝑖   in Eq. 6.3. Intuitively, the larger the 𝑐𝑖,𝑗 , the more overhead this scheduling 

decision will incur. Thus, our goal is to schedule a connection to those cores that are as 

close to its homenode as possible. 

 

Fig.  6.3: An example of  communication matrix and adjustment vector from a multicore 

architecture. 
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 In Fig. 6.3, we have two different communication overhead ratio 𝑤1 and 𝑤2. Given 

this parameter, we can construct a communication matrix to represent the inter-core 

relationship. Suppose the total number of nodes (PUs) is 𝑀, then the 𝑀 × 𝑀 matrix is 

formed by filling the position (𝑖, 𝑗) with 𝑐𝑖,𝑗 . Obviously, this is a symmetric matrix with 

the diagonal elements being all 1. We further define an adjustment vector for each node 

as follows: for node 𝑖, its adjustment vector is the 𝑖𝑡𝑕  row vector in the communication 

matrix. Fig. 6 shows the communication matrix and the derived adjustment vector for 

each node. 

 Now we address how to derive the weighted queue length for each node. Suppose we 

have an original queue vector (𝑄1, 𝑄2, 𝑄3, 𝑄4), which records the real queue length. For 

each node, by multiplying this queue vector with the adjustment vector from this node, 

we can obtain the weighted queue vector. Here, we define a new vector multiplication 

operation following Eq. 6.4.  

 

Fig.  6.4: Weighted queue vector derivation from the original queue vector and the adjustment 

vector. 
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       𝐴 ⊗ 𝐵  = 𝐶 , 𝑤𝑕𝑒𝑟𝑒 𝑐𝑖 = 𝑎𝑖 ∙ 𝑏𝑖        (6.4) 

Suppose 𝐴  is the original queue vector, 𝐵   is the adjustment vector and 𝐶  is the weighted 

queue vector. For instance, as shown in Fig. 6.4, node 1 obtains the weighted queue 

vector  (𝑤1𝑄0, 𝑄1, 𝑤1𝑄2, 𝑤2𝑄3) , which  reflects the  core/cache topology  and  

communication heterogeneity in the multicore architecture. 

6.3 Generalized CA-AHRW Hash Scheduler 

The justification of the above definition for queue length is easy to understand. On one 

hand, if all the children nodes are busy, then the queue length for the parent node is 

simply the sum of all children queue length. On the other hand, if one child queue is 

empty, we set the parent queue length to 0, which increases the chance to schedule the 

next packet to the parent node and then finally to the node with empty queue. This 

scheme facilitates load balancing in a cache-aware way by considering possible resource 

sharing. The justification of the above definition for queue length is easy to understand. 

On one hand, if all the children nodes are busy, then the queue length for the parent node 

is simply the sum of all children queue length. On the other hand, if one child queue is 

empty, we set the parent queue length to 0, which increases the chance to schedule the 

next packet to the parent node and then finally to the node with empty queue. 

 Based on the weighted queue length, we present the CA-AHRW hash function in Eq. 

6.5 and the generalized CA-AHRW hash scheduler in Eq. 6.6. Notice that the weighted 

adjustment multiplier 𝑤𝑝  substitutes the original 𝑟𝑝  in Eq. 6.1 and Eq. 6.2. 𝑄𝑝
′  is the 
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weighted queue length on node 𝑝  chosen from the weighted queue vector for the 

homenode of 𝑐  in Eq. 6.4. 

       𝑕′ 𝑐 , 𝑝, 𝑤𝑝 = 𝑤𝑝 ∙ 𝑔 𝑐 , 𝑝 =
𝑄𝑚𝑖𝑛

𝑄′𝑝
∙ 𝑔 𝑐 , 𝑝      (6.5) 

     𝑓 ′ 𝑐  = 𝑝 ⟺ 𝑕 𝑐 , 𝑝, 𝑤𝑝 = max𝑘∈[1,𝑁] 𝑕′(𝑐 , 𝑘, 𝑤𝑘)   (6.6) 

Our generalized CA-AHRW hash scheduler consists of the following four steps: 

 Step 1: Construct the communication matrix for the targeting multicore 

architecture and derive the adjustment vector for each node. 

 Step 2: For a given packet of a flow whose homenode is 𝑖, obtain the current 

weighted queue vector for node 𝑖. 

 Step 3: Apply the weighted queue length in CA-AHRW hash function following 

Eq. 6.5. 

 Step 4: Choose the node with the maximum weight resulted from the hash 

function 𝑕′(𝑐 , 𝑘, 𝑤𝑘) as the scheduling node according to Eq. 6.6. 

The four properties in the CA-AHRW hash scheduler are listed below: 

 Flow Locality: Initially, all the packets in the same flow are scheduled to the 

same processor before the adjustment multiplier 𝑤𝑝  takes effect based on the 

original HRW function. When 𝑤𝑝  is applied in the scheduler, flow locality is only 

affected to the minimum extent. Because although the generated weight for each 

processor changes, the selection of the candidate node with maximum weight is 

affected only when system load imbalance is substantial. 
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 Load  Balancing:  On the one hand, for the connection level load balancing, since 

the original HRW hash function is a pseudo-random function that generates a 

random variable in the rage of [0,231 − 1] with uniform distribution, the load 

balancing at the flow level is intuitively proved when the flow is evenly 

distributed. On the other hand, 𝑤𝑝  dynamically adjusts the load imbalance 

problem when the flow is not evenly distributed. As the system approaches the 

stable state, 𝑤𝑝  approximates to 1, which indicates that 𝑕′ 𝑐 , 𝑘, 𝑤𝑘 = 𝑤𝑝 ∙

𝑔(𝑐 , 𝑝) also generates a random variable with uniform distribution in the range of 

[0, 𝑤𝑝 ∙ (231 − 1)]. Thus, CA-AHRW also achieves packet level load balancing 

after the system is stabilized. 

 Cache Awareness:  CA-AHRW uses the weighted queue length instead of the 

real queue length to reflect the communication heterogeneity in multicore 

architectures. The weighted queue vector distinguishes the distance between cores, 

which is able to characterize the underlying multicore architecture. Our scheme 

favors to schedule the packet as close as possible to its homenode, which can 

improve the system throughput by reducing cache misses. In most general cases, 

CA-AHRW‟s weighted queue vector reduces the unnecessary long-distance 

communication between cores that are far apart. The idea of localization in 

scheduling reduces the scheduling overhead and accelerates the processing speed. 

 Architecture Independence: CA-AHRW is a generalized hash scheduler with both 

cache- awareness and adaptation, which can be used in different core/cache 

topologies. In fact, the topology difference only affects the communication matrix 
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and is independent of the later scheduling process. As long as the matrix is 

constructed, CA-AHRW can work effectively for any architecture it applies to. In 

addition, the feedback mechanism can also be carried out on any platform, 

because we only care about the local queue length on each processor. Therefore, 

CA-AHRW hash scheduler is architecture independent with its full features. 

6.4 Hierarchical CA-AHRW (H-CAHRW) 

Although CA-AHRW is a generalized HRW hash scheduler applicable for different 

core/cache topologies, it requires a non-negligible amount of computing overhead due to 

the hash computation for each node, which may delay the transcoding processing and 

potentially cause undesirable throughput. Meanwhile, as mainstream multicore web 

servers usually adopt a tree-based topology, such as Intel Xeon E5335 and AMD Opteron 

2350, we further enhance our CA-AHRW into a hash-tree scheduler as in [14, 26]. 

 

Fig.  6.5 (a):   Hash-tree   scheduling   process   on   

Intel Xeon E5335 server. The dashed arrows 

represent a scheduler-selected path: a→b→c. 

 

Fig. 6.5 (b): The hierarchy of PUs on a AMD 

Opteron 2350 server. Four cores share a L3 

cache and the server consists of eight cores 
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6.4.1 Hierarchical Queue Length for Tree-based Topology 

Similar to H-AHRW, the key idea for H-CAHRW is to take advantage of the inherent 

tree hierarchy. Traversing down from the root, we make scheduling decision at each level 

until reaching a leaf node. At each level, we apply our CA-AHRW hash scheduler. 

However, the introduction of hierarchy complicates the weighted queue length derivation 

as defined in Eq. 6.4. In H-AHRW, we naively sum up queue length of children nodes as 

the queue length of the parent node, which is not aware of the core/cache topology. To 

integrate the CA-AHRW into H-CAHRW, we propose a generic algorithm for 

hierarchical multicore architectures to derive the weighted queue length at each level. 

 We define each tree node as Processing Unit (PU) in Fig 6.2. Fig.6.5 (a) has 

demonstrated the hierarchy of PUs on Intel Xeon E5335. To illustrate another tree 

structure that will be used in our experiment, we present Fig. 6.5 (b) to show the 

hierarchy of PUs on AMD Opteron 2350. 

 Now we present the queue length derivation for each tree node. First, for all the leaf 

nodes, their queue lengths are decided by the weighted queue vector itself as in Fig. 6.4. 

Second, for any non-leaf node 𝑖 , suppose it has 𝑚  children nodes with queue length 

𝑛𝑗 , 𝑗 ∈ [0 − 𝑚 − 1]. Then, the queue length 𝑄𝑖  is derived in Eq. 6.7. 

     𝑄𝑖 =  
 𝑛𝑗𝑗 ∈[0,𝑚−1] , 𝑖𝑓 ∀𝑛𝑗 , 𝑛𝑗 ≠ 0

            0 ,                   𝑖𝑓 ∀𝑛𝑗 , 𝑛𝑗 = 0
       (6.7) 

 The justification of the above definition for queue length is easy to understand. On 

one hand, if all the children nodes are busy, then the queue length for the parent node is 

simply the sum of all children queue length. On the other hand, if one child queue is 
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empty, we set the parent queue length to 0, which increases the chance to schedule the 

next packet to the parent node and then finally to the node with empty queue. This 

scheme derives weighted queue length at each level and facilitates load balancing across 

all the cores. 

6.4. 2 H-CAHRW scheduler and Properties 

Given a hierarchical multicore architecture, we can apply our CA-AHRW hash scheduler 

repeatedly along the traversal of the tree, except that we replace the weighted queue 

length with the queue length obtained according to Eq. 6.7 for all non-leaf nodes. For 

nodes at the same depth of the tree, we can pick an internal node by the CA-AHRW hash 

scheduler and continue the traversal from that chosen node. The ultimate goal of the 

hash-tree scheduler is to select a candidate node among the leaf nodes by traversing 

through the three as shown in Eq. 6.8, assuming the tree height is 𝐿 with the root being 

level 0 and the leaf being level 𝐿. 

𝑓𝑡𝑟𝑒𝑒  𝑐  = 𝑝𝑛  

⟺ 

               

 
 

 
𝑕′ 𝑐 , 𝑝1, 𝑤1 = max 𝑕′(𝑐 , 𝑘1, 𝑤𝑘1

) , 𝑘1 ∈ 𝑐𝑕𝑖𝑙𝑑𝑟𝑒𝑛 𝑜𝑓 𝑟𝑜𝑜𝑡 𝑖𝑛 𝑙𝑒𝑣𝑒𝑙 1

𝑕′ 𝑐 , 𝑝2, 𝑤2 = max 𝑕′(𝑐 , 𝑘2, 𝑤𝑘2
) , 𝑘2 ∈ 𝑐𝑕𝑖𝑙𝑑𝑟𝑒𝑛 𝑜𝑓 𝑃1 𝑖𝑛 𝑙𝑒𝑣𝑒𝑙 2
…

𝑕′ 𝑐 , 𝑝𝐿 , 𝑤𝐿 = max 𝑕′(𝑐 , 𝑘𝐿 , 𝑤𝑘𝐿),   𝑘𝐿 ∈ 𝑐𝑕𝑖𝑙𝑑𝑟𝑒𝑛 𝑜𝑓 𝑃𝑛−1 𝑖𝑛 𝑙𝑒𝑣𝑒𝑙 𝐿

  (6.8) 

 Fig. 9 shows the deployment of H-CAHRW on Intel Xeon E5335 web server. For 

any given packet, the hash- tree scheduler first picks a socket 𝑆𝑖  with the maximum 

weight generated by the CA-AHRW hash function at the socket level (path a). Then we 

apply the CA-AHRW hash function at the L2 cache level for the selected socket 𝑆𝑖  , and 
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pick a L2 cache 𝐿𝑗  (path b). Finally, at the core level, CA-AHRW picks the desired core 

𝐶𝑘  from the selected L2 cache 𝐿𝑗  (path c). The properties of connection locality, load 

balancing and cache-awareness hold true at each level in the tree because the 

corresponding hash functions at each level are CA-AHRW. In addition, H-CAHRW also 

provides the following properties. 

 Reduced computation cost. Suppose the complexity of the original HRW hash 

function and the adjustment multiplier computation is 𝐻. The complexity of CA-

AHRW hash scheduler with flat-level linear search is 𝑂(𝐻 ∙ 𝑁 ∙ 𝑀) for 𝑁 nodes 

and 𝑀 scheduling units. On the other hand, the hash-tree scheduler selects a node 

by tree traversal. Thus, with the same denotation, the complexity is reduced to 

𝑂(𝐻 ∙ 𝑙𝑔𝑁 ∙ 𝑀). In general, the scheduling overhead is reduced from 𝑁 to 𝑙𝑔𝑁 

under the same workload and platform. 

 More  effective load  balancing.  Note that while the hash space remains in the 

range of [0,231 − 1], H-CAHRW reduces the search space from 𝑁 to 𝑙𝑔𝑁, which 

leads to faster computation for load balancing at each level. In addition, the hash-

tree scheduler essentially uses multiple hashes per input key. This behavior not 

only reduces the possibility of hash collision, but also progressively improves 

load balancing for the overall system. 
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6.5 Experimental Results 

6.5.1 Experiment Setup 

We implement and evaluate our scheduler on both Intel Xeon E5335 and AMD Opteron 

2350. The Intel server has two Quad-core Xeon E5335 processors with 2.0GHz 

frequency. Each core has a 128KB dedicated L1 cache. Two cores share a 4M L2 and 

four cores share a socket with 8M L2 cache as shown in Fig. 6.5. The AMD server has 

two Quad-core AMD Opteron 2350 processors with 2.0GHz frequency. The cache 

hierarchy includes 64KB of dedicated L1 cache and 512KB of dedicated L2 cache per 

core, with a 2MB L3 cache shared by four cores as in Fig. 8. Both systems are running 

Linux-2.6.18 OS. 

 The major implementation issue of the H-CAHRW scheduler is 1) how to provide a 

fast computable pseudo-random HRW hash function, and 2) how to construct the 

communication matrix. To solve the first issue, we follow the definition of HRW hash 

function proposed in Eq. 6.2. The identifier vector 𝑐  is the stream ID and each 𝑆𝑖  

represents a PU ID. For H-CAHRW, 𝑆𝑖  is decided by the level of the tree. In regard to the 

communication matrix, since there are only three different communicating overhead 

parameters for Intel machine (core, L2 and socket level) and two for AMD machine (core 

and L3 level), we adopt a trial-and-error approach. We test a large number of 

communicating overhead combinations for both machines and choose a group with the 

best throughput performance to construct the matrix. For Intel machine, we choose 2, 4, 

12 as the core, L2 and socket level communication overhead ratio. For AMD machine, 

we choose 1.5 and 3 for that ratio of the core and L3 level, respectively. 
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 Table 6.1 and Table 6.2 show the transcoding specifications and four used movies. 

We assume 20 concurrent streams as suggested in [28] for a full loaded system. Each 

stream requires a different transcoding operation for a chosen movie, including frame 

size scaling, frame rate and bit rate alteration. We parallelized the FFmpeg software and 

implement our H-CAHRW scheduler along with five other scheduling schemes, 

including Round Robin (RR), Stream-based Mapping (SM), HRW, H-AHRW, CA-

AHRW. The performance shows that our scheduler improves the throughput and video 

quality for a variety of workloads with little scheduling overhead, better load balancing 

and fewer cache misses. 

 

Table 6.1 Four resolution criteria in MP3s 

 

 

Table 6.2 Four resolution criteria movies 
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6.5.2 Throughput Performance 

Fig. 6.6 and Fig. 6.7 present the throughput and average CPU utilization for six 

schedulers. We measure the throughput in terms of processed GOPs per second for the 

whole system. From both Figures, we observe that throughput and CPU utilization follow 

the same trend, where H-CAHRW achieves the best performance. H-CAHRW shows an 

average of 25.7% and maximum of 35.1% throughput improvement over other schemes 

 

Fig.  6.6: Throughput and CPU utilization performance on Intel Xeon E5335. 

 

Fig.  6.7: Throughput and CPU utilization performance on AMD Opteron 2350. 
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on Intel machine, as well as an average of 30.5% and maximum of 47.0% on AMD 

machine. Although RR has relatively even distribution of GOPs among all cores, it 

suffers from poor cache performance and substantial synchronization overhead in 

preserving GOP order due to its lack of stream locality. SM and HRW produce similar 

throughput compared to RR, because their strict stream locality cause load imbalance 

when the stream distribution is not even. As regard to H-AHRW and CA-AHRW, 

although they perform better than HRW because of their adaptive feedback mechanism, 

their improvement is limited without considering the underlying core/cache topology. H-

CAHRW, taking advantage of the flow locality, adaptive load balancing and cache 

awareness, outperforms all other schemes. 

6.5.3 Load Balancing Performance 

Fig. 6.8 and Fig. 6.9 visualize the load balancing results on two platforms by the CPU 

utilization for each core. We can make three observations from these two figures. First, 

H-CAHRW, H-AHRW and RR expose better load balancing than other three schemes, 

with H-CAHRW performing the best of all, which is in line with the corresponding 

overall CPU utilization performance in the previous section. Second, the two stream-

locality schemes, namely SM and HRW, suffer imbalanced load distribution, especially 

on core 3. This is because the workload scheduled on core 3 is far less compared to other 

cores. Third, as opposed to SM and HRW, H-AHRW and CA-AHRW are capable of 

relaxing the rigid stream locality for better load balancing. However, their overall CPU is 

still less utilized as shown in Fig. 6.6 and Fig. 6.7 with more imbalanced workload 

compared to H-CAHRW. 
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 6.5.4  Cache Performance 

 In Fig. 6.10, we compare the cache performance in terms of L2 data cache miss rate 

measured by PAPI-3.7.0 [66]. On both machines, CA-AHRW incurs relatively lower 

miss rate compared to other load balancing schemes such as RR, H-AHRW and CA-

AHRW. It reduces the miss rate by as much as 42.9% on Intel machine and 22.9% on 

AMD machine in comparison with RR because of the cache-awareness adaptive 

 

Fig.  6.8: CPU utilization for each core on Intel. 

 

Fig.  6.9: CPU utilization for each core on AMD. 
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scheduling design, which fully utilizes the shared cache for different core/cache 

topologies. In addition, we observe that SM and HRW have slightly better cache 

performance than H-CAHRW due to their stream locality feature. However, that margin 

is very narrow, especially for AMD machine, where each core has its own dedicated L2 

cache. Considering the poor throughput performance and inherent load imbalance 

problem in SM and HRW, we believe H-CAHRW is the only outstanding scheduler that 

is able to attain both high throughput and good load balancing with comparable cache 

performance. 

6.5.5 Scheduling Overhead 

Fig. 6.11 and Fig. 6.12 exhibit the average transcoding time per GOP and the associated 

scheduling overhead on Intel and AMD servers. We obtain the average transcoding time 

per GOP from the inverse of the throughput performance shown in Fig. 6.6 and Fig. 6.7. 

Notice that the average time to process a GOP is tens of milliseconds. The corresponding 

 

Fig.  6.10: L2 data cache miss rate on Intel and AMD 
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scheduling overhead represents how much time is spent during the computation of 

decision making. From both figures, we see that RR and SM involve the least overhead 

due to their simple schemes. With respect to HRW-based schemes, the scheduling 

overhead is proportional to the hash function complexity. Surprisingly, H-CAHRW only 

incurs slightly more time than other adaptive schedulers. Nonetheless, the scheduling 

overhead falls in the magnitude of microseconds, which is negligible compared to GOP 

processing time. Therefore, it is believed that H-CAHRW‟s sophistication and advantage 

do not incur substantial scheduling overhead increase at all. 

6.5.6 Video Quality 

 Lastly, we measure the video quality by the out-of-order departure rate, which 

describes how many GOPs in a stream depart out of order on average, and delay jitter, 

which is the standard deviation of the GOP inter-departure time, as shown in Fig. 6.13 

and Fig. 6.14. These metrics reflect how smooth a stream will be played. It is clear that 

the two metrics follow the same pattern in both platforms, where H-CAHRW performs 

comparably well among other adaptive HRW-based schedulers. In both figures, RR 

suffers the most due to its random distribution of GOPs without stream locality, which 

results in large number of out-of-order GOPs, and high delay jitter, accordingly. On the 

contrary, SM and HRW schemes are able to maintain a very good video quality by stream 

locality, although they have load imbalance problem. The remaining three adaptive 

HRW-based schedulers perform between the former two extreme cases with a reasonable 

video quality. All three schemes relax stream locality for better load balancing at both the 

stream and GOP level, thus causing some degrade in video quality. However, H-
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CAHRW, strengthening in both throughput and video quality, still stands out among all 

other schedulers. 

 

Fig.  6.11: Scheduling overhead and GOP transcoding time on Intel Xeon E5335. 

 

Fig.  6.12: Scheduling overhead and GOP transcoding time on AMD Opteron 2350. 
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6.6 Summary 

HRW-based hash schedulers have not considered cache-awareness in multicore 

architectures nor have been applicable for different core/cache topologies. In this chapter, 

 

Fig.  6.13: Out-of-order departure rate and delay jitter on Intel Xeon E5335. 

 

 

Fig.  6.14: Out-of-order departure rate and delay jitter on AMD Opteron 2350. 
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we proposed CA-AHRW, a Cache-Aware AHRW scheduler. Our scheduler is capable of 

achieving both flow locality and load balancing in a cache-aware manner by adaptively 

changing the hashing decision based on real time workload difference and inter-core 

communication. Based on the generalized CA-AHRW, we further designed, implemented 

and evaluated a hash-tree scheduler, H-CAHRW, aiming at mainstream tree-based 

multicore architectures. The performance of H-CAHRW hash-tree scheduler was 

compared with five other scheduling schemes to show that this scheduler improves the 

throughput and video quality for a variety of workloads with little scheduling overhead, 

better load balancing and fewer cache misses. 
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Chapter 7  

QoS Aware Proportional Share Hash Scheduler (PS-

HRW) 

From Chapter 4 to Chapter 6, we have introduced several schedulers that balances 

connection locality, load balancing and core/cache topology. In this chapter, we consider 

another important aspect of network I/O scheduling - Quality of Service (QoS). 

 QoS scheduling allocates a proportional share of the processing resources to each 

process according to the weight of the process. General Processor Sharing (GPS) [8, 19, 

42, 64] was a theoretically ideal scheduler that provides QoS guarantee. GPS scheduling 

was also extended to multiple links scenario [9, 65]. While GPS and its extension provide 

theoretical QoS guarantee to ensure fairness in multicore scheduling based on the weight 

of each process, it is impractical to implement in real systems. In addition, QoS guarantee 

usually sacrifices connection locality, load balancing and core topology [27]. We have 

not seen any previous studies that consider this trade off. 

 In this chapter, we propose a proportional share hash scheduler, PS-HRW, based on 

our previous studies on hash based scheduling and incorporate QoS concerns into the 

scheduling decision. The PS-HRW consists of three steps. In the first step, PS-HRW 

calculates the proportional share of each service request, 𝜑𝑖 , based on the runqueue 
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length of the request. Then, it allocates an integral number of cores  𝑔𝑖 =
φ i

 φ jj
r  based on 

H-CAHRW. In the third step, the residual request 𝑔𝑖 −  𝑔𝑖  is allocated using a 

partitioning theory for routing requests to heterogeneous caches [74]. This theory 

generates a weight vector for H-CAHRW that follows strictly to the capacity of each PU. 

H-CAHRW then picks the proper core to host the residual request. The property of H-

CAHRW guarantees that only the core that balances connection locality, load balancing 

and cache/core topology is picked. 

 We implement PS-HRW on an Intel Xeon web server running both L7-filter and 

FFmpeg and compare the performance with H-CAHRW and the partition-based 

scheduler proposed in paper [27]. We show that PS-HRW achieves the best balance 

among many performance aspects including system throughput, and scheduling overhead. 

7.1 Definition of QoS scheduling 

Modern web servers should be able to provide QoS to each client that subscribes to the 

required service. Generally, the QoS requirements can be assessed in terms of users' 

subjective wishes or satisfaction with the quality of the application performance, cost, 

and so forth. The assessment results are then mapped onto measurable QoS parameters to 

which the router needs to guarantee. For example, the QoS parameters can be the 

message response time, the end-to-end delay or the long term message processing rate. 

When performing QoS aware message scheduling, the router needs to relate the resource 

consumed by each message type with its QoS requirements. Basically, we classify the 

service provided by a web server into several service classes, each corresponding to a 
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specification of the resource requirement and the QoS parameter. The QoS aware 

scheduling algorithm aims to provide differentiated service as follows:  

 Fairness. The system resource is allocated proportionally among the service 

classes.  

 Independent allocation. Given sufficient incoming traffic, a service class 

receives at least as much resources as were assigned to it irrespective of the traffic 

of other service classes. 

 Work conserving. Resources not used by some service class may be distributed 

among other service classes. 

 The term "fairness" has colloquial meanings. In QoS, we define "fairness" following 

the General Processor Sharing (GPS) theory. A GPS server is work conserving and 

operates at a fixed rate r. By work conserving, we mean that the server must be busy if 

there are packets waiting in the system. It is characterized by positive real numbers 

φ1, φ2 , … , φN . At any given time, a flow is either backlogged or idle. Let  Si(τ, t) be the 

amount of session itraffic served in an interval (τ, t]. A session is backlogged at time t if 

a positive amount of that session‟s traffic is queued at time t. The a GPS server is defined 

as one for which 

        
Si (τ,t)

S j (τ,t)
≥

φ i

φ j
. j = 1,2, …N       (7.1) 

for any session i that is continuously backlogged in the interval (τ, t]. 

Summing over all sessions j: 

 Sj(τ, t)

j=1,2,…,N

=
1

(t − τ) ∙ r
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Sj τ, t  φj

j

≥ (t − τ) ∙ r ∙ φi 

And session i is guaranteed a rate of  

         gi =
φ i

 φ jj
r            (7.2) 

 We propose a quantitative definition of the QoS requirements for L7-filter and 

FFmpeg. Following [2, 13, 27], the computation time of each request directly influences 

the QoS performance of network applications. In L7-filter, connection buffers are feed 

into the classification engine on a per byte basis for the state machine, the computation 

time is linear to the size of the connection buffer. In FFmpeg, the transcoding process is 

also strictly proportional to the size of the message size. Therefore, we can further 

simplify the QoS requirement for both applications to the size of runqueue in terms of 

byte for each processing request. 

 In the HRW scheduling case, let φ1, φ2 , … , φN  be the runqueue size for each request, 

and r be the overall number of cores on a server. Then following GPS, each request 

should be assigned gi =
φ i

 φ jj
r number of cores.  

 In [27, 28], we see a partitioning algorithm that satisfies this constraint in a cluster of 

servers. However, that algorithm allocates the proportional share of clusters in a round 

robin fashion, which fails to consider core/cache topology and load balancing in a 

multicore system. In addition, the system scheduler handles the fractional allocation in 

that paper automatically. Therefore, the partitioning algorithm is oblivious to the 

scheduling decisions for the fractional part. Based on our previous studies in HRW 

schedulers, we know that HRW can achieve high system throughput by satisfying 
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connection affinity, load balancing and core/cache topology. Our problem now is how to 

incorporate QoS concerns into HRW. 

7.2 PS-HRW 

Objective: Given a service request Ci, with weight φi, overall system service rate r, the 

allocated system resource gi should be proportional to its weight assignment, gi =
φ i

 φ jj
r. 

Meanwhile, system throughput, load balancing, core/cache topology and scheduling 

overhead should be balanced. 

Solution: 

We propose a take a 3-step solution to achieve the objective. In the first step, PS-HRW 

calculates the weight of each service request, 𝜑𝑖 , based on the runqueue length of the 

request. Then, it allocates an integral number of cores  𝑔𝑖 =
φ i

 φ jj
r  based on H-CAHRW. 

In the third step, the residual request 𝑔𝑖 −  𝑔𝑖  is allocated using a partitioning theory for 

routing requests to heterogeneous caches [74]. This theory generates a weight vector for 

H-CAHRW that follows strictly to the capacity of each PU. H-CAHRW then picks the 

proper core to host the residual request. The property of H-CAHRW guarantees that only 

the core that balances connection locality, load balancing and cache/core topology is 

picked. 

7.2.1 Weight Calculation 

For both L7-filter and FFmpeg, we can obtain the size of each request in terms of bytes 

by measuring the length of the connection buffer and stream size. The desired weight for 
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request 𝑖 at time 𝑡, 𝜑𝑖 𝑡 , can be calculated based on Eq. 7.3.      

        𝜑𝑖 𝑡 = 𝑠𝑖𝑧𝑒𝑖(𝑡)                         (7.3)  

Then the proportional allocation of cores for request 𝑖, 𝑔𝑖 , can be calculated based on Eq. 

7.4. 

      𝑔𝑖 𝑡 =
𝜑 𝑖 𝑡 

 𝜑 𝑖 𝑡 
𝑀
𝑗=1

∙ 𝑟 =
𝑠𝑖𝑧𝑒𝑖 𝑡 

 𝑠𝑖𝑧𝑒𝑗  𝑡 
𝑀
𝑗=1

∙ 𝑟      (7.4) 

where 𝑀 is the number of concurrent requests being processed in the system and 𝑟 is the 

number of cores. 

7.2.2 Integral Core Allocation 

For each 𝑔𝑖 𝑡 , we use H-CAHRW to allocate the greatest integer number  𝑔𝑖(𝑡)  that is 

smaller than the required cores 𝑔𝑖 𝑡 . Since 𝑔𝑖 𝑡  can be greater than 1, the algorithm 

will recursively call H-CAHRW to allocate cores until the residual value 𝑔𝑖(𝑡) −  𝑔𝑖(𝑡)  

is smaller than 1. 

7.2.3 Residual Core Allocation 

In this step, we use a partitioning theory for routing requests to heterogeneous caches 

[74]. We can apply that theory to our packet scheduler, where incoming packets function 

as URL requests and the cores function as caches. Let 𝑝1, … , 𝑝𝑁  be given arbitrary target 

probabilities for each of all the 𝑁 cores. If a core has target probability 𝑝𝑖  we desire the 

fraction 𝑝𝑖  of requests to be mapped to it.  

 In the robust hashing scheme, for a given request 𝑐  we calculate a hash value 

𝑕 = 𝑕(𝑐 , 𝑝𝑖) based on H-CAHRW for each of core 𝑖. We then map the request to the core 

that has the highest 𝑕. This scheme will map l/N of the connection buffers to each core. 
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To deal with target capacities, we introduce multipliers 𝑥1, … , 𝑥𝑁  and multiply each 𝑕 

with the respective 𝑥𝑖  , we then map the request to the core that has the largest 𝑍𝑖 = 𝑥𝑖 ∙

𝑕𝑖  value. If the multipliers are different, the fractions of requests routed to the PU will no 

longer all be the same. Specifically, we want to assign all the cores that has been used in 

step 2 with the capacity value 1/𝑁′ and the rest of the cores with 
1

𝑁′
(𝑔𝑖(𝑡) −  𝑔𝑖(𝑡) ). 

(Suppose 𝑐 cores have been allocated in step 2, 𝑁′ = 𝑐 + (𝑁 − 𝑐) ∙ (𝑔𝑖(𝑡) −  𝑔𝑖(𝑡) )). 

The intuition behind this algorithm is to use H-CAHRW and the heterogeneous 

partitioning theory to pick the residual proportional share of cores that balances between 

connection locality, load balancing and core/cache topology. 

Theorem 7.1 - Let 𝑝1, … , 𝑝𝑁 be given target capacities for each core. Reorder the cores 

so that 𝑝1 ≤ ⋯ ≤ 𝑝𝑁. Let 𝑥1 = (𝑁 ⋅ 𝑝1)1/𝑁 and let 𝑥2, … , 𝑥𝑁  be recursively calculated as 

follows: 𝑥𝑛 =  
 𝑁−𝑛+1 (𝑝𝑛−𝑝𝑛−1  )

 𝑥𝑖
𝑛−1
𝑖=1

+ 𝑥𝑛−1
𝑁−𝑛+1 

1

𝑁−𝑛+1
. Then the robust hash algorithm, H-

CAHRW with multipliers 𝑥1, … , 𝑥𝑁 will be allocate the fraction 𝑝𝑖  of requests to the 𝑖𝑡𝑕  

core for 𝑖 = 1,… ,𝑁. 

Proof - Let 𝑥1, … , 𝑥𝑁  be an arbitrary set of nonnegative multipliers satisfying 𝑥1 ≤

𝑥2 … ≤ 𝑥𝑁. Let 𝑕1, … , 𝑕𝑁  be the H-CAHRW hash values associated with each of the 𝑁 

cores. Because the outputs of a hash function can be taken to be independent, uniformly 

distributed random variables, without loss of generality, we take each 𝑕𝑖  to be uniformly 

distributed over [0,1]. Let 𝑍𝑖 = 𝑥𝑖𝑕𝑖  be the 𝑖𝑡𝑕  multiplied hash value. Note that the  𝑍𝑖s 

are independent and that 𝑍𝑖  is uniformly distributed over [0, 𝑥𝑛 ] . Let 
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𝑍(𝑖) = max⁡(𝑍1, … , 𝑍𝑖−1, 𝑍𝑖+1, … , 𝑍𝑁). Let 𝑞𝑖  be the probability that core 𝑖 has the largest 

multiplied hash value, that is, 𝑞𝑖 = 𝑃(𝑍 𝑖 ≤ 𝑍𝑖). Conditioning on 𝑍𝑖 = 𝑥, we obtain 

𝑞𝑖 = 𝑃 𝑍 𝑖 ≤ 𝑍𝑖 =

1

𝑥𝑖
 𝑃 𝑍 𝑖 ≤ 𝑥 𝑑𝑥 =
𝑥𝑖

0

1

𝑥𝑖
  𝑃(𝑍𝑗 ≤ 𝑥)𝑗≠𝑖 𝑑𝑥 =
𝑥𝑖

0

1

𝑥𝑖
 

 𝑃 𝑍𝑗≤𝑥 
𝑁
𝑗=1

𝑃(𝑍𝑖≤𝑥)
𝑑𝑥 =

𝑥𝑖
0

0𝑥𝑖1𝑥𝑖=1𝑁𝑃𝑍𝑖≤𝑥𝑑𝑥=𝑗=1𝑁𝑥𝑗−1𝑥𝑗1𝑥𝑘=1𝑖𝑃(𝑍𝑘≤𝑥)𝑑𝑥 ,      (7.5) 

where 𝑥0 = 0. We must now get an explicit expression for the product in the above 

expression. 

 For 𝑥𝑗−1 ≤ 𝑥 ≤ 𝑥𝑗 , 

𝑃 𝑍𝑖 ≤ 𝑥 =  

1,    𝑖 ≤ 𝑗 − 1

          
𝑥

𝑥𝑗
,    𝑖 ≥ 𝑗                  

  

 Thus, for 𝑥𝑗−1 ≤ 𝑥 ≤ 𝑥𝑗 , 

 𝑃 𝑍𝑖 ≤ 𝑥 =   𝑃 𝑍𝑖 ≤ 𝑥  
𝑗−1
𝑖=1    𝑃 𝑍𝑖 ≤ 𝑥  𝑁

𝑖=𝑗  =  
𝑥

𝑥𝑗
=

𝑥𝑁−𝑗+1

 𝑥𝑖
𝑁
𝑖=𝑗

𝑁
𝑖=𝑗

𝑁
𝑖=1     (7.6) 

 Insert Eq. 7.5 into Eq. 7.6  gives 

𝑞𝑖 =   
𝑥𝑁−𝑗

 𝑥𝑖
𝑁
𝑖=𝑗

𝑑𝑥 =
𝑥𝑗

𝑥𝑗−1

𝑁

𝑗=1
 

1

 𝑥𝑘
𝑁
𝑘=𝑗

1

𝑁 − 𝑗 + 1
 𝑥𝑗

𝑁−𝑗+1
− 𝑥𝑗−1

𝑁−𝑗+1
 

𝑖

𝑗=1

=   𝑥𝑘

𝑁

𝑘=1

 

−1

 
( 𝑥𝑘

𝑗−1
𝑘=1 ) 𝑥𝑗

𝑁−𝑗+1
− 𝑥𝑗−1

𝑁−𝑗+1
 

𝑁 − 𝑗 + 1

𝑖

𝑗=1

 

 We have one degree of freedom. Set  𝑥𝑘
𝑁
𝑘=1 = 1. Then 

      𝑞𝑖 =  
( 𝑥𝑘

𝑗−1
𝑘=1 ) 𝑥𝑗

𝑁−𝑗+1
−𝑥𝑗−1

𝑁−𝑗+1
 

𝑁−𝑗+1

𝑖
𝑗=1         (7.7) 

 From Eq. 7.7 we have 
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      𝑞𝑖 = 𝑞𝑖−1 +
( 𝑥𝑗

𝑖−1
𝑗=1 ) 𝑥𝑖

𝑁−𝑖+1−𝑥𝑖−1
𝑁−𝑖+1 

𝑁−𝑖+1
      (7.8) 

 The desired result follows by setting 𝑞𝑖 = 𝑝𝑖 , 𝑓𝑜𝑟 𝑖 = 1,… , 𝑁,and solving for 𝑥𝑖  in 

Eq. 7.8.                 End of Proof 

 The robust hash function with multipliers 𝑥1, … , 𝑥𝑁  in the above theorem is part of 

CARP [74]. Our algorithm is shown in Table 7.1 

Discussion  

 Because the computation in a QoS scheduler is intensive, it can only be calculated 

and updated at a realistic rate. An additional data structure is required to register the 

current connection-to-core mapping. 

 We only apply this algorithm periodically, rather than on a per packet basis. Only 

when the processing cost of a connection φi varies by more than a tolerable percentage, 

say β should we recalculate the mapping. 

 We choose different value of 𝛽  to update the weight vector (𝜑1, 𝜑2, … , 𝜑𝑚)  . A 

greater value of 𝛽 reduces the recomputation but loses scheduling accuracy.  

 We also force the scheduler to update the weight vector 𝜑(𝜑1, 𝜑2, … , 𝜑𝑚 ) any time 

when a connection finishes classification or a new connection arrives at the system.  



119 

 

7.3 Experimental Results 

We implement and evaluate our scheduler Intel Xeon E5355. The Intel server has two 

Quad-core Xeon E5335 processors with 2.0 GHz frequency. Each core has a 128KB 

dedicated L1 cache. Two cores share a 4M L2 and four cores share a socket with 8M L2 

cache. We compare our results with all the previously proposed schedulers. In addition, 

we also develop a QoS scheduler based purely on HRW, instead of H-CAHRW. The 

trace files for L7-filter has been given in Table 5.1 and the Mpeg files has been given in 

Table 4.1 and 4.2. 

Table 7.1 PS-HRW Algorithm 

Input:        𝜑𝑖 , 𝑖 = 1,… ,𝑁 
               
                   𝑐𝑖   , i = 1,… , N 

Output:     𝑠𝑒𝑡𝑐𝑖 , i = 1,… , N 

Algorithm: 

         for each 𝑖 = 1, … , 𝑁 

                  if  𝜑𝑖  varies by more than 𝛽 then 

                       𝑠𝑒𝑡𝑐𝑖={}                                 // Step 1 

                       𝑔𝑖 𝑡 =
𝜑 𝑖 𝑡 

 𝜑 𝑖 𝑡 
𝑀
𝑗=1

∙ 𝑟 =
𝑠𝑖𝑧𝑒𝑖 𝑡 

 𝑠𝑖𝑧𝑒𝑗  𝑡 
𝑀
𝑗=1

∙ 𝑟 

                       while 𝑔𝑖 𝑡  > 0  then               // Step 2 

                               𝑠𝑒𝑡𝑐𝑖 = 𝑠𝑒𝑡𝑐𝑖 ∪ 𝐻𝐶𝐴𝐻𝑅𝑊 𝑐𝑖     
                                𝑔𝑖 𝑡 −= 1 
                                                                        // Step 3 

                       for each core 𝑗  
                               if 𝑗 ∈ 𝑠𝑒𝑡𝑐𝑖  then 

                                     𝑝𝑗 = 1/𝑁′ 

                               else 

                                     𝑝𝑗 = 
1

𝑁′
(𝑔𝑖 𝑡 −  𝑔𝑖 𝑡  ) 

                      Recursively calculate vector 𝑋 = (𝑥1, … , 𝑥𝑁)       

                              using Theorem 7.1 

                      reset 𝑕(𝑐𝑖   ) to 𝑋 ∙ 𝑕(𝑐𝑖   ) in H-CAHRW 

                      𝑠𝑒𝑡𝑐𝑖 = 𝑠𝑒𝑡𝑐𝑖 ∪ 𝐻𝐶𝐴𝐻𝑅𝑊 ′ 𝑐𝑖     
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7.3.1 Selection of Scheduling Frequency 

In this experiment, the impact of different scheduling frequency is shown. A greater 

value of 𝛽  reduces the accuracy of the QoS, because it requires less update to the 

scheduler and hence less remapping of the service requests to the core. However, it also 

reduces the system overhead due to less computation. Fig. 7.1 shows that a value of 16% 

gives the best result of performance-overhead trade off. For the rest of the experiments, 

we choose this value as the test bed. 

7.3.2 System Throughput 

Fig. 7.2 and 7.3 shows the system throughput of PS-HRW compared to previously 

proposed schedulers. To address the importance of the selection of the auxiliary 

scheduler, we also show the result of a pure QoS extension to the original HRW, GPS-

HRW, in the figures. We observe a minimum of 10% degradation in system throughput 

using GPS-HRW for both L7-filter and FFmpeg. In addition, GPS-HRW, although more 

 

Fig.  7.1: Impact of scheduling frequency 𝜷 on system throughput 
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effective than AP, provides less throughput than PS-HRW and H-CAHRW based 

schedulers. On the other hand, PS-HRW generates throughput comparable to that of those 

throughput-centric schedulers. Therefore, we can see the importance of core/cache 

topology in the scheduler. 

 

Fig.  7.2: System throughput of L7-filter 

 

Fig.  7.3: System throughput of FFmpeg 
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7.3.3 Scheduling Overhead 

As one of the major drawbacks of QoS based scheduling, the overhead incurred by the 

additional computation is a key concern for our design. Because PS-HRW is applied on a 

 

Fig.  7.4: Scheduling Overhead of L7-filter 

 

 

Fig.  7.5: Scheduling overhead of FFmpeg 
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connection granularity, it is expected to have a lower overhead compared to the other 

schedulers that schedule on a per packet basis. On the other hand, the heuristic 

computation for QoS requirements are more complicated than throughput-centric 

schedulers. Therefore, we insert timestamps along the processing path of a packet and 

obtain the execution time for each component. Fig. 7.4 and 7.5 show the overhead of 

different schedulers. As expected, AP, GPS-HRW and PS-HRW incurs additional 

overhead compared to their baseline scheduler. Because of the calculation used to satisfy 

the QoS requirements, such overhead is inevitable. However, we also find that this 

overhead takes less than 9% of the overall system execution time for L7-filter and less 

than 0.2% for FFmpeg. 

7.3.4 Load Balancing 

Fig. 7.6 and Fig. 7.7 visualize the load balancing results by the range of CPU utilization 

for each scheduler. The cross ("X") represents the average CPU utilization. We make 

three observations from these two figures. First, hash based schedulers expose better load 

 

   Fig. 7.6: Load balancing of L7-filter    Fig. 7.7: Load balancing of FFmpeg 
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balancing than pure connection locality based schemes. PS-HRW performs the best, due 

to the hierarchical packet level load balancing technique adopted by H-CAHRW. Second, 

AHRW and PS-HRW achieves better balancing due to the packet level adjustment. Third, 

compared to PS-HRW, AP and GPS-HRW incurs a higher degree of imbalance due to the 

obliviousness of load balancing. This observation shows that H-CAHRW balances the 

workload better with the hierarchical steps than the original linear HRW scheduler does. 

7.3.5 Cache Misses 

In Fig. 7.8, we compare the cache performance in terms of L2 data cache miss rate 

measured by PAPI-3.7.0 [66]. Our first observation is that AP and AHRW incurs high 

cache misses due to the obliviousness of cache/core locality. Both "conn" and "HRW" 

cause less cache misses because of the strict connection locality constraint. H-CAHRW 

causes the least cache misses due to the communication matrix. PS-HRW inherits the 

cache awareness from H-CAHRW, and incurs the least cache misses compared to GPS-

HRW. 

  

    Fig. 7.8: L2 Cache Miss Rate    Fig. 7.9: Out-of-Order Departure and Jitter 
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7.3.6 Out-of-order Departure and Jitters 

Lastly, we measure the video quality by the out-of-order departure rate and delay jitter. 

The former metric describes how many GOPs/connection buffers in a stream depart out 

of order on average, while the latter is defined the standard deviation of the interdeparture 

time among GOPs/connection buffers. High jitter is detrimental to the playback quality 

for FFmpeg and wasting computing resources for L7-filter, which is the main concern of 

media clients. The results are illustrated Fig. 7.9. These metrics reflect the playing quality 

of streams is clear that the two metrics follow the same pattern, where RR suffers the 

most due to its random distribution of scheduling units without stream locality, which 

results in large number of out-of-order scheduling units, and high jitter. On the contrary, 

SM is able to maintain a very good video quality by stream locality, although it has 

throughput and load imbalance deficiency illustrated in Fig. 7.2, 7.3, 7.6 and 7.7. On the 

other hand, despite the throughput advantage using AP [28], we observe that this group of 

schedulers sacrifices video quality. Therefore, it is not the best choice when QoS 

requirement is the first performance priority. PS-HRW, strengthening both throughput 

and video quality, stands out among all other schedulers. 

7.4 Summary 

In this chapter, we propose a Proportional Share HRW based scheduler, PS-HRW. This 

scheduler balances system performance by provisioning QoS guarantees. Compared with 

previous works, PS-HRW also inherits connection locality, packet level load balancing, 

core/cache topology from H-CAHRW. We implement PS-HRW on a real web server and 

the results show that PS-HRW provides the best QoS guarantee in terms of out-of-order 
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departure rate and delay jitter. Meanwhile, it provides comparable system throughput 

compared to existing throughput-centric schedulers. In addition, we also show that PS-

HRW incurs only an additional 2% of scheduling overhead compared to the hash based 

heuristic scheduling, and causes little last level cache misses, which becomes 

increasingly important in multicore development. 

In the future, we plan to deploy the proposed algorithm on Cisco's UCS blade on 

both the physical devices and the virtualized router and switches. We believe the trend of 

QoS aware high performance scheduling has a great future in the era of cloud computing. 
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Chapter 8  

Schedulers in Virtualization 

Virtual Machine (VM) technology is experiencing a resurgent interest as the ubiquitous 

multicore processors have become the de facto configuration on modern web servers.  

Multicore servers potentially provide sufficient physical resources to realize VM's 

benefits including performance isolation, manageability and scalability. However, the 

network performance of virtualized multicore servers falls short of expectation. It is 

therefore important to understand the overhead implications. 

 In this Chapter, we evaluate the network performance of a virtualized multicore 

server using a TCP streaming microbenchmark (Iperf) and SPECweb2005. We first 

motivate our research by presenting the performance gap between native and virtualized 

environment. We then break down the overhead from an architectural viewpoint and 

show that the cache topology greatly influences the performance. We also profile the 

Virtual Machine Monitor (VMM) at a function level to illustrate that functions in the 

current version of the Xen scheduler are the major contributors to the poor utilization of 

cache topology. Consequently, we implement a static onloading scheme to separate 

interrupt handling from application processes and execute them on cores with cache 

affinity. Based on the observed benefits, we modify the Xen scheduler to migrate virtual 
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CPUs dynamically to exploit the cache topology. Our results show that the VM 

performance improves by an average of 12% for Iperf and 15% for SPECweb2005. 

8.1 Experimental Testbed and Methodology 

8.1.1 Benchmarks 

In this chapter, we use a microbenchmark, Iperf, and the SPECweb2005 benchmark suite 

to simulate the real world server workload. Iperf [6, 91] is widely chosen as an I/O 

intensive benchmark that measures TCP and UDP bandwidth performance. We 

instrument Iperf to run a user-configurable computational-intensive workload. As a result, 

every time a packet is received, the next packet has to wait until the computation is 

finished before it gets a chance to be processed. It simulates a real time network 

application, where the inter-packet latency is directly affected by the computation 

workload. With such modifications, we could bind Iperf to one core with processor 

affinity for the computation part, while binding interrupt processing to another core with 

interrupt affinity to service the I/O. SPECweb2005 [82] is a suite of synthetic workloads: 

Banking (HTTPS), E-commerce (HTTP and HTTPS), and Support (HTTP); agreed to by 

major players in the WWW market. Many well recognized papers [11, 83] have used it to 

emulate server behavior of large numbers of independent web clients with heterogeneous 

requests. Each of the three workloads consolidates web request processing, database 

transactions and dynamic workload calculation. We increase operating system limits 

where necessary to scale. We also set TCP options to values similar to those used on 

high-performance commercial web servers.  
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8.1.2 Server Software 

The native test server ran the Linux kernel 2.6.18, which was compiled with support for 

the Intel 64 (x86 64) architecture. The virtualization environment is hosted by Xen 3.3.1 

and a Vanilla Linux kernel 2.6.18. We chose software with freely-available source code 

to ease profiling. We used Apache HTTP Server 2.2.9—a multithreaded server that 

provides one thread per flow and scales at least to tens of thousands of concurrent 

sessions [48]. We also used the PHP 5.2.6 script engine for the SPECweb2005 PHP script 

and configured the Apache HTTP Server to improve scalability. The mpm worker 

module was used to provide a combined multi-process and multi-thread server with one 

thread per connection. Table 8.1 shows the settings used with the module. We also set 

EnableSendfile to “on” to allow the server to transmit file data without first copying it to 

userspace. 

 

Table 8.1 Web Server Threads Settings 

Settings Value 

ServerLimit 900 

StartServers 10
 

MaxClients 28800 

MinSpareThreads
 

25 

MaxSpareThreads 75 

ThreadsPerChild 32 

MaxRequestsPerChild 0 
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8.1.3 Testbed Configuration 

Both the server and client are Intel Clovertown machines, which is a two-processor 

platform based on the quad-core Intel Xeon processor 5300 series [33] delivering 8-

thread, 32- and 64-bit processing capabilities with 8 MB of L2 cache per processor. It is 

equipped with 16GB DRAM and 1333 MHz system bus. To conduct virtualization 

experiments using 10GbE networks, we connected these two Clovertown machines end-

to-end via two Intel 10GbE networks [32]. Since the virtualized system has not supported 

TCP/IP offloading engine (TOE) and Jumbo Frames yet, all the experiments in this paper 

were conducted without TOE support and with a MTU of 1500 bytes. We retained the 

default settings in the Intel's device driver without specific performance tuning on 

interrupt coalescing, write combining and network buffer sizes etc. 

 We use a single 10GbE NIC for all the VMs on the server machine. Despite the 

assumed scalability advantage of multiple NICs (1GbE) for VMs, it also introduces a 

significant overhead in managing traffic flows, i.e. packet demultiplexing, interrupt 

dispatching, etc. In addition, it is not practical to expect using one NIC for each 

individual VM. On the other hand, bandwidth at 10GbE level is more than enough to 

handle the network requirement of all the VMs. Therefore, optimizing network 

performance in a single 10GbE NIC is still a valid and very important research topic. 

 SPECweb2005 also requires at least one backend database simulation server (Besim) 

as part of the testbed. For simplicity, we configured the client machine to double as a 

Besim. During our experiments, we found that putting "Client"' and "Besim" on the same 
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physical machine does not saturate its CPU (maximum 240% core utilization ). Therefore, 

it was guaranteed that the performance bottleneck did not exist on the client side. 

8.1.4 Measuring Performance 

The throughput of SPECweb2005 benchmark was measured by the number of concurrent 

sessions supported by the server while meeting the QoS requirements of the benchmark 

workload, i.e. error rate. We manually booted up the SPECweb2005 performance in step 

of 100 (concurrent sessions) until the benchmark fails the QoS requirement, i.e. error rate 

< 3%. The ping-pong latency was measured by running the benchmark NetPIPE [59]. It 

marks the round trip delay of a ping-pong request from the client to the server and 

reflects how busy the server is. The greater the latency, the busier the server is running 

the major workloads. 

 To ease and expedite our web server experiments, we made several modifications to 

SPECweb2005‟s default settings. As such, our results are not suitable for comparison to 

formally published SPEC results. We made the most significant change to the 

DIRSCALING option, which we changed from 0.25 to 0.00625. This option adjusts the 

total number of files served by the web server, but it does not change the probability 

distribution of the files received by the clients. We made this change so that the file set 

would fit in the test web server‟s 16GB of main memory. We warmed the server‟s file 

cache before running experiments by sequentially reading through all the files. Without 

this change, our web server became heavily bound by I/O wait time due to reading from a 

single disk drive. To overcome I/O wait time, production web servers generally use large 

disk arrays. A recent official SPECweb2005 result for a similar system used 44 disk 
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drives for the file set [88], which allowed this result to exceed the maximum number of 

users that our server supported. Thus, a sufficiently provisioned disk array would remove 

the I/O wait bottleneck. 

 We used Xenoprof [96] to collect the architectural event information for different 

domains. Xenoprof was developed based on Oprofile 0.9.4 [62], a system-wide profiler 

for Linux systems, capable of profiling all running code at low overhead. We treated 

Dom0 and DomU equally as active domains in Xenoprof and collect measurement results 

separately.  

 In order to analyze the functional level overhead along packet processing, we 

developed a tool to anatomize the life of a packet and quantify performance from the 

architecture perspective. It instruments the VMM, Dom0, DomU and network protocol 

stack along the packet processing path. We adopted a performance counter based 

approach, where a small piece of code is manually inserted into the points of interest. 

    

           (a)         (b) 
Fig.  8.1 Performance Comparison of SPECweb 2005 in Native OS and VM 
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Those code records the current time-stamp of the measuring points into a buffer using the 

corresponding Intel Performance Counter [33]. The overhead of the instrumental code is 

small (only 90 CPU cycles for a timestamp read and 70 cycles for a performance counter 

read) and is subtracted from the measurement. 

8.2 Virtualization Analysis Under 10GbE Network 

8.2.1 Virtualization Performance Overhead 

Fig. 8.1 presents the ping-pong latency and the number of concurrent sessions for the 

three workloads of SPECweb2005 at different level of the virtualized environment. The 

maximum core utilization among all cases is 530%, which means the performance is not 

bounded by processing power. 

 As we go up the virtualization layer, more overhead occurs. Among the three 

workloads, we find Support generates the biggest performance gap between native and 

 

  (a) Support       (b) Banking      (c) Ecommerce 

 Fig.  8.2:   Architectural events for different workload. It also illustrates the individual 

contribution of VMM,  Dom0 and DomU-Linux 
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virtualized environment - a degradation of 45% in DomU. Banking and Ecommerce incur 

31% and 38% performance degradation respectively in VM compared to native OS. 

Compared to the other two workloads, Support has no encrypted connections and 

emulates file downloads from Internet clients. It provided the simplest possible 

abstraction of how a realistic application interacts with network processing and produced 

the largest networking load, so it was best suited to understand the performance of the 

network stack under heavy load. Therefore, compared to database transaction and other 

computational-intensive operations, the virtualized network stack incurs the most 

significant overhead. 

8.2.2 Architectural Characterization  

As we observed, virtualization incurs significant overhead for packet processing. In order 

to understand the loss in performance from architectural standpoint, we have gathered 

performance data from the architectural event counter for SPECweb2005. We use 

Xenoprof to read the count of the hardware events available on Xeon processor, which 

can monitor various micro-architectural activities, including cache miss, TLB miss, 

branch prediction rate, etc. All counter values are normalized with respect to native Linux 

(as "1"). We also present the overhead contributed by VMM and Dom0 to the overall 

performance overhead. Note that the DomU overhead in Fig. 8.2 is the overhead 

introduced by guest OS alone, excluding that of Dom0 and VMM. Because the delay of 

domain switching (context switches between Dom0 and DomU) is also counted for 

DomU, the guest OS, albeit almost identical to a native OS, is shown to incur more 

overhead compare to the native case. 
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 For all the 3 workloads, Fig.8.2 shows that CPI increases in virtualized environment, 

with 50%, 37% and 30% for Support, Banking and Ecommerce, respectively. This 

observation explains the difference in the number of supported client sessions between 

the three workloads, as shown in Fig. 8.1.  

 We find that L1 ICache and L2 cache misses are the most sensitive components to 

the virtualization environment for all the three workloads. Particularly for Support, the L2 

cache misses incurred in VM are 2.7X compared that of its value in native OS.  We will 

show later in Fig. 8.3 that L2 cache misses takes a much heavier weight compared to L1 

ICache misses in the overall execution time, despite of the difference in the sensitivity to 

virtualization. 

 Fig. 8.2 also shows that TLB 

and cache misses (both Instruction 

and Data) increase between 1.3X 

to 2.7X compared to the native 

Linux. This is consistent with the 

higher CPI in the virtualized 

environment. System gets a higher 

penalty due to the increased cache 

and TLB misses.  We show the 

breakdown of the total execution time for both native and virtualized environment into 

various architectural components in Fig. 8.3. We scale the execution time to 100% and 

show the percentage of each component, i.e. architectural event. In our testbed, L1 and 

Fig.  8.3:   Scaled Weight of Each Architectural Event 

towards Execution Time in SPECweb2005.     
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L2 cache misses incur 14 and 240 cycles penalty, respectively, and the average TLB miss 

penalty is 40 cycles [33]. We observe that: 1) normal instruction execution fraction for 

native Linux is higher than the virtualized instruction fraction because more time is spent 

in TLB and cache misses in a virtualized environment. 2) The increased cost from L2 

miss penalty is the main contributor for performance loss in both native and VM Linux. 

In order to improve virtualized packet processing performance, L2 cache should be used 

more efficiently. 

8.2.3 The Life-of-Packet Analysis 

In order to pinpoint the contributors of the performance overhead in virtualization, we 

need to identify the functional level timing and bottleneck functions along the path of 

packet processing in a virtualized environment. In this section, we anatomize the life of a 

network packet based on an architectural characterization. We use the Iperf benchmark to 

present the life of a received packet in the web server because SPECweb2005 workloads 

 

Fig.  8.4: Life-of-Packet Analysis on Receive Side 
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introduce complications in userspace due to extensive use of PHP scripts. Paper [97] 

adopted a similar life of a packet for UDP on a 100 Mb Ethernet without virtualization. 

Due to the page limit, we only provide the life-of-packet analysis for the receive side in 

this section. 

 Receive side processing starts from the NIC interrupt. The VMM asynchronously 

passes all interrupts to Dom0 through an event channel mechanism. As shown in Fig. 8.4, 

the Ethernet driver in Dom0 takes over the received packets and passes them to the upper 

layer through netif_receive_skb method. Currently Linux Bridge module is used to 

switch the received packets to the corresponding guest domain, which consists of two 

main routines handle_bridge and handle_forward. According to destination MAC 

address in the received packet, it passes the packets to the corresponding Back-End 

Server (BE) via the Jhash algorithm. Once BE receives packet in the data copy mode, it 

calls the VMM to directly move packets between domains, and then notifies the guest 

domain through a lightweight inter-domain event channel (eventops) to pass on 

notifications. DomU gets scheduled next to execute interrupt handler netif_int and then 

acquires the received packet. Then the received packets are passed to the upper network 

stack layer through netif_receive_skb method. Finally the ip_rcv and tcp_v4_rcv in 

TCP/IP network stack are called sequentially as is done in Linux. 

 In Fig. 8.4, the bottom line is the border of the VMM and domain kernel space, and 

the horizontal dashed line divides the user/kernel space for domains. Dom0 and DomU 

are differentiated by the vertical dashed line. And the number near to functions is IPC 

(Instruction Per Cycle) for the corresponding function. The timeline scale in Fig. 8.4 is 
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4K CPU cycles. We also found that a latency of 1.6 µs is introduced by the scheduler in 

the VMM. It means that the current VMM scheduler is concerned about fairness more 

and is less latency sensitive. To verify this claim for a more general case (SPECweb2005), 

we use Xenoprof to list the major functions in the VMM that contributes to the L2 cache 

misses, which has been proved in Fig. 8.3 to be the main contributor to the overall 

performance delay.  

 Table 8.2 presents the results for all the three workloads in SPECweb2005. We find 

that two group of functions related to the Xen grant table mechanism 

(do_grant_table_op and gnttab_copy) and the credit scheduler (csched_schedule , 

schedule_vcpu_wake, and vcpu_kick) contribute in around 60% of the system L2 misses, 

independent of the workload. Other functions like context_switch, __copy_to_user_II  

are more generally used in the current Xen version for data copy. A recent work [92] has 

proposed using multi-queue and grant reuse mechanism to attack the deficiency in the 

grant table mechanism. In this paper, we focus on optimizing the credit scheduler. 

 

Table 8.2 Major Contributors in VMM for L2 Misses 

Support Banking Ecommerce 

Function Percentage Function Percentage Function                    Percentage 

do_grant_table_op 21.10% do_grant_table_op 15.42% do_grant_table_op 18.30% 

csched_schedule 17.00% csched_schedule 13.30% csched_schedule 15.21% 

csched_vcpu_wake 15.60% vcpu_kick 11.60% gnttab_copy 12.41% 

evtchn_set_pending 13.65% csched_vcpu_wake 9.35% csched_vcpu_wake 9.60% 

gnttab_copy 9.42% context_switch 8% __copy_to_user_II 7.32% 

… … … … … … 
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 VM migration in Xen causes a lot of data copy. The current VMM Scheduler in Xen 

ignores the underlying cache topology of the multicore server. To achieve load balance, 

the scheduler moves the workload from the current core to another core with the least 

intensive workload. On modern multicore chips, cores are located in different groups 

with corresponding cache sharing topology. The communication cost between cores that 

share the last level cache is significantly lower than that between cores with different last 

level caches. The obliviousness of such important locality information incurs more time 

in scheduling. As a result, the algorithms in the scheduler need to be aware of the cache 

topology. 

8.3 Dynamic Cache-Aware Scheduling in Credit Scheduler 

8.3.1 The Credit Scheduler in Xen  

The VMM in Xen functions as an abstraction layer of the real physical devices. As a 

result, scheduling in virtualization is based on Virtual CPUs (VCPU) because Physical 

CPUs (PCPU) are transparent to the guest VMs. Each guest VM can be arbitrarily 

allocated with multiple VCPUs. The Credit Scheduler is a proportional fair share CPU 

scheduler built from the ground up to be work-conserving on SMP hosts [83]. Its 

objective is to allocate the processor resources fairly, weighted by the predefined credits 

for each domain.  

 The credit-based scheduler in Xen organizes all the online VCPUs in a runqueue and 

always picks a workload (VCPU) from the head of the queue to run on the PCPU. In 

order to decide the position of VCPUs in the runqueue, the scheduler marks each of the 
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online VCPU with one of the ternary states: OVER, UNDER and BOOST. Based on the 

remaining credits, a VCPU will be labeled OVER if it runs out of credits; UNDER if the 

remnant is positive; and BOOST if it meets the standard of UNDER and has a frequent 

wake-and-sleep behavior. All the VCPUs in BOOST state are placed in front of those in 

UNDER state in the runqueue, while those with OVER state are kept in the tail portion.  

When it comes to multicore architecture, there are a few twists while the scheduler 

functions. First of all, before a PCPU goes idle, it looks on other PCPUs to find any run-

able VCPU that might potentially use its own resource. A VCPU is run-able on all 

PCPUs as long as it is not affinitized to a certain PCPU. This guarantees that no PCPU 

idles when there is run-able work in the system.  

 In addition, domain migration might happen based on priority difference for each 

event notification. Whenever an event is notified to a target domain, the scheduler tickles 

the runqueue on the designated PCPU and re-evaluates the runqueue to see if the target 

VCPU should preempt the running VCPU and take over the processing resource. If this 

PCPU has at least two run-able VCPUs when such preemption occurs, they would be 

migrated into the idlers in the system when these idlers check to guarantee load balance 

as explained in the previous paragraph.  

 Moreover, the scheduler checks the state of the current running domain during each 

scheduler interrupt and redistributes the PCPU if necessary. If the processing VCPU has 

been BOOST since the last check, the state is reset to UNDER because other VCPUs in 

the runqueue might be more latency-sensitive than the current one. The original domain 

is then migrated to another online neighbor PCPU with the most idling neighbors in its 
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grouping, if there is one. 

Otherwise, it is simply reinserted 

back into the runqueue. 

Meanwhile, if the current domain 

has been wakening and sleeping 

at a high frequency, it keeps 

BOOST and remains working. 

This ensures that latency-

sensitive domains such as those 

processing I/O benefit from its PCPU share. 

8.3.2 Dynamic Cache-Aware Scheduling 

The VCPU migration in the current credit scheduler occurs when a VCPU remains 

UNDER for a while and there are other PCPUs that are idle. The scheduler chooses the 

target PCPU with the largest number idling neighbors in its grouping. If more than one 

PCPUs have the same number of idling neighbors, this policy distributes work across 

distinct sockets first and then distinct cores in the same socket. 

 A drawback of the current migration policy is that it does not consider the influence 

of cache behaviors on the multicore system. This policy focuses on load balancing and 

guarantees scheduling fairness, which has been acknowledged to be beneficial to heavy 

workload. However, when there are not enough VCPUs competing for physical 

processors, the selection of migration destination affects the system performance. In this 

Table 8.3 Dynamic VM Migration Policy in Credit Scheduler 

 

IF an event notification occurs THEN 

 IF the target VCPU should preempt the current 

VCPU THEN 

  Find the PCPU in the same cache domain; 

  Move the current VCPU to the new PCPU; 

 ENDIF   

ENDIF 

IF there is a timer interrupt THEN 

 IF the current VCPU is in BOOST THEN 

  Reset priority to UNDER; 

  Find the highest priority VCPU in runqueue; 

  Find the PCPU in the same cache domain; 

  Move the current VCPU to the new PCPU; 

 ENDIF 

ENDIF 
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case, the lack of efficient utilization of the shared cache deteriorates the already limited 

network performance in VM.  

 Based on our core layout of Fig. 4.7, we propose the following VCPU migration 

scheme in Xen Credit Scheduler as shown in Table 8.3: When necessary (same condition 

as original case), the VCPU should be moved to the PCPU that shares the last level cache 

with the source PCPU. E.g. if VCPU is originally running on Core #0, then once 

migration occurs, if Core #2 is idle, it becomes the new vehicle to run this VCPU when it 

is waken up for the next time, otherwise the scheduler picks the core with the largest 

group of idlers in its neighborhood.  

 Essentially, we optimize the original migration policy to be cache-aware. That said, 

the temporal cache locality provided by the shared last level cache reduces cache miss in 

migration. 

8.3.3 Optimization Results for L7-filter and FFmpeg 

We test the efficacy of the dynamic cache-aware scheduling using L7-filter and FFmpeg 

and observe on average a 9.5% improvement for all our previous schedulers compared to 

applying them using the default credit scheduler. As shown in Figure 8.5, while the 

improvement is not as significant as the schedulers achieves in the native system, the 

importance is that it enables schedulers in the userspace in native systems to be 

developed in virtualization and sacrifices minimum performance overhead. 
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8.3.4 Optimization Results for SPECweb2005 

We use two nodes of 8 cores connected back to back with two 10GbE NICs. Connections 

are being made from one such node (with 8 cores) to the other node. The cache-aware 

scheduling is running on one node. The numbers shown in Fig. 8.5 (a) is the number of 

 
(a) 

 
          (b) 

 

Fig.  8.5: Impact of Dynamic Cache Aware Scheduling for (a) L7-filter and  (b) FFmpeg 
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concurrent sessions supported by the server while meeting the QoS requirements of the 

benchmark workload, i.e. error rate. It is analogous to "Throughput" in the Iperf 

measurement. The aggregate throughput numbers can be calculated by Eq. 8.1  

𝑇𝑕𝑟𝑜𝑢𝑔𝑕𝑝𝑢𝑡 =
𝑆𝑖𝑧𝑒  𝑜𝑓  𝑇𝑟𝑎𝑛𝑠𝑚𝑖𝑡𝑡𝑒𝑑  𝑃𝑎𝑐𝑘𝑒𝑡  𝑝𝑒𝑟  𝐶𝑜𝑛𝑛𝑒𝑐𝑡𝑖𝑜𝑛

𝑆𝑦𝑠𝑡𝑒𝑚  𝑈𝑝 𝑇𝑖𝑚𝑒   300 𝑚𝑠 
×  # 𝑜𝑓 𝐶𝑜𝑛𝑐𝑢𝑟𝑟𝑒𝑛𝑡 𝑆𝑒𝑠𝑠𝑖𝑜𝑛𝑠  

                   (8.1) 

 As Fig. 8.6 (a) shows, the number of supported concurrent sessions increases by an 

average of 15%. In order to verify our policy, we redo the experiment in Fig. 5 and 

present the results in Fig. 8.5 (b). In order to make a fair comparison, we tune down the 

performance of our optimized scheduler, so that the original case and the optimized case 

supports the same number of concurrent sessions. We can see that for all the three 

workloads, the fraction of execution time spent in L2 misses has been reduced and a 

proportional improvement is added to normal execution. 

8.4 Summary 

This paper carried out an exhaustive performance evaluation of a virtualized multicore 

server under 10GbE network with Iperf and SPECweb2005 benchmarks. We found that 

virtualization adds significant performance overhead to network packet processing 

especially running heavy network workload that frequently accessing the virtualized 

network stack. We designed a profiling methodology and presented a Life-of-Packet 

analysis and architectural characterization along the packet receive path. Our anatomy of 

life-of-packet provided functional and quantitative explanations of the observed extra 

virtualization overhead in latency. We discovered that the cache topology of the 



145 

 

multicore server is one of the important architectural components for optimization in 

virtualized packet processing. To tackle this problem, we designed a dynamic cache-

aware VCPU migration policy for scheduling virtual machines on physical CPUs under 

heavy workload like SPECweb2005. The results showed that the server performance can 

be improved by an average of 15%. In the future, we would like to further optimize 

packet processing performance by using emerging hardware technology and redesigning 

VMM architecture. 
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             (b) 

 

Fig.  8.6: Impact of Dynamic Cache Aware Scheduling for SPECweb2005: 

(a) Improvement in the # of supported concurrent sessions. 

(b) Reduction of L2 Cache Miss Cycles and Improvement in Normal Execution Cycles 
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Chapter 9  

Conclusion and Future work 

9.1 Conclusion 

The widening spectrum of network applications drives the increasing demand of physical 

resources on both the network infrastructure and the web servers. As the unfolding of 

faster Ethernet shifts the bottleneck of network performance to the server end, both 

software and hardware vendors call for efficient solutions to deploy network applications 

on mainstream multicore web servers. Among many contributors to the network 

performance problem on multicore web servers, a primary concern is the scheduling 

mechanism of multithreaded programs to fully explore the available physical resources. 

In this domain, the scheduling mechanism should consider and balance between different 

influential factors including OS behavior on multicore architecture, network application 

characteristics, load balancing, core/cache topology and QoS requirement. In this 

dissertation, we discussed all the factors above and proposed several schedulers to solve 

the scheduling problem. 

 We broke down the processing of network application at the system level and 

analyzed the problem from both the kernel and the userspace level. Inside the OS kernel, 

we enabled the scheduling of interrupt processing by waking up a kernel thread in the 

process context to replace the original syscall in the interrupt context. This operation 
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solves the starvation problem for the userspace application in the original case, when the 

bottom half of interrupt handler is non-preemptable. To take advantage of the cache 

topology in multicore web servers, the interrupt affinity based scheduler bind the 

interrupt processing on each core done through the kernel threads to one dedicated core, 

and bind the userspace processing to another core that shares the last level cache. 

Realizing the benefit of this scheduler is limited by the partial utilization of the cores, we 

moved to the userspace and investigated different optimization potentials. 

  In the userspace, we first parallelized two important network applications on modern 

web servers, L7-filter, a DPI extension of the Netfilter in Linux, and FFmpeg, a 

multimedia transcoding program. To decouple the performance bottleneck for the 

multithreaded applications from the noises of network stack, we developed a trace driven 

model that reads packet directly from the trace file instead of the network. Based on this 

model, we proposed an affinity based scheduler that schedules all the packets in the same 

connection to be processed on the same core. This scheduler guarantees the best 

utilization of shared data in the cache between packets in the same connection. 

 However, the performance gain from the affinity based scheduler can be offset by 

workload imbalance at different levels. At the connection level, the affinity based 

scheduler can scheduler an arbitrary number of connections to each core, oblivious to the 

per core workload. While this problem can be solved with a hash based scheduler that 

evenly distribute connections across all the cores, workload imbalance at the packet level 

remains unsolved. We therefore proposed AHRW based on HRW to relax connection 

locality to balance the workload at the packet level.  AHRW schedules packets following 
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the runqueue length per core, and guarantees that the workload difference among all the 

cores does not exceed a threshold. In addition, we developed a Hierarchical AHRW, H-

AHRW, to progressively balances the workload corresponding to the topology of the core 

architecture. 

 Due to the variety of multicore architectures, we further generalize H-AHRW to H-

CAHRW to incorporate the difference between inter-core communication costs. In each 

level of H-CAHRW, we adopted a communication matrix to reflect the core topology and 

multiplied it to the results of AHRW. The idea behind the additional multiplication is to 

increase the likelihood of scheduling packets in the same connection to cores in the same 

cache domain. Because of the complication of this matrix, we proposed a bottom-up 

weight calculation algorithm to reflect workload at different multicore levels. 

 We also proposed PS-HRW, a Proportional Share HRW scheduler, to take QoS 

requirement into scheduling consideration. PS-HRW maps connections to cores in three 

steps. It first calculates the weight of each connection by measuring the connection buffer 

size. It then assigns an integral number of cores to the connection according to its weight 

based on H-CAHRW. In the third step, the residual value is assigned following a 

partitioning theory that generates heterogeneous distribution for H-CAHRW. PS-HRW 

provides QoS guarantees and relies on H-CAHRW to balance between connection 

locality, load balancing and core/cache topology. In a cross comparison of all of our 

proposed schedulers implemented using real web servers, PS-HRW achieves the highest 

throughput with only negligible additional performance overhead. 
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 As virtualization has gained resurgent interest since the prevalence of multicore 

servers, a common question is: how to transplant development in native systems to 

virtualization with minimal performance degradation. In order to answer this question, 

we conducted a thorough performance evaluation of a virtualized multicore web server 

running a consolidated network workload. This is the first report in its class that provides 

great potential for future development in VM. From this report, we observed the 

performance bottleneck in the VMM scheduler, and proposed a VCPU migration 

heuristic to reduce the last level cache misses. This scheduler was verified using L7-filter, 

FFmpeg as well as SPECweb2005. The experimental results show that our schedulers 

developed in native systems can be successfully ported onto a virtualized web server. 

9.2 Future Work 

 In this dissertation, we proposed several schedulers in both the OS kernel and the 

userspace to optimize network applications for both native and virtualized multicore web 

servers. Based on the current results, we foresee at least three research directions to 

extend this work. 

 Firstly, multicore scheduling should incorporate power concerns. As DVFS and 

clock gating becomes increasingly popular as part of the on chip module in hardware, we 

see the trend of power-aware multicore chips being widely adopted by web servers. As a 

result, not only should the scheduler consider throughput performance of network 

applications, it should also aim at saving power whenever necessary. Essentially, the 

scheduler should co-exist with the DVFS module and direct network flows to comply 
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with core frequency. The performance metric should be redefined as "throughput per 

watt", and the scheduling objective should be to maximize this value.  

 Secondly, hardware assistance can accelerate the performance of hash based 

schedulers. Although hash function calculation is expensive in software, it has a great 

potential to be deployed using hardware acceleration, such as additional heterogeneous 

assisting cores, FPGA or GPU. While these hardware accelerators can provide significant 

speed up, they also introduce a new area of study - software/hardware partitioning, i.e. 

when and where in the software program should be sent off to the hardware. If successful, 

the scheduler can be offload entirely to a dedicated hardware unit on chip. 

 Thirdly, abstraction of the scheduler can increase the practicality of our research. 

While scheduling problems cannot be perfectly solved as new applications keep calling 

for additional service requirements, i.e. more heuristics, the research in this dissertation 

should aim at an abstraction of the scheduling mechanism irrespective to the chosen 

application. We tend to deploy the proposed schedulers into Cisco routers and switches as 

part of the Cisco appliance. As the data center research is moving towards "cloud" 

computing, the virtualization studies in this dissertation is of great value to future 

development in this domain. 
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