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Analyzing patient perspectives 
with large language models: a 
cross-sectional study of sentiment 
and thematic classification on 
exception from informed consent
Aaron E. Kornblith 1, Chandan Singh 1,2, Johanna C. Innes 3, Todd P. Chang 4, 
Kathleen M. Adelgais 5, Maija Holsti 6, Joy Kim7, Bradford McClain8,  
Daniel K. Nishijima 9, Steffanie Rodgers10, Manish I. Shah 11, Harold K. Simon12,  
John M. VanBuren 13, Caleb E. Ward 14 & Catherine R. Counts 15

Large language models (LLMs) can improve text analysis efficiency in healthcare. This study explores 
the application of LLMs to analyze patient perspectives within the exception from informed consent 
(EFIC) process, which waives consent in emergency research. Our objective is to assess whether 
LLMs can analyze patient perspectives in EFIC interviews with performance comparable to human 
reviewers. We analyzed 102 EFIC community interviews from 9 sites, each with 46 questions, as part 
of the Pediatric Dose Optimization for Seizures in Emergency Medical Services study. We evaluated 
5 LLMs, including GPT-4, to assess sentiment polarity on a 5-point scale and classify responses into 
predefined thematic classes. Three human reviewers conducted parallel analyses, with agreement 
measured by Cohen’s Kappa and classification accuracy. Polarity scores between LLM and human 
reviewers showed substantial agreement (Cohen’s kappa: 0.69, 95% CI 0.61–0.76), with major 
discrepancies in only 4.7% of responses. LLM achieved high thematic classification accuracy (0.868, 
95% CI 0.853–0.881), comparable to inter-rater agreement among human reviewers (0.867, 95% CI 
0.836–0.901). LLMs enabled large-scale visual analysis, comparing response statistics across sites, 
questions, and classes. LLMs efficiently analyzed patient perspectives in EFIC interviews, showing 
substantial sentiment assessment and thematic classification performance. However, occasional 
underperformance suggests LLMs should complement, not replace, human judgment. Future work 
should evaluate LLM integration in EFIC to enhance efficiency, reduce subjectivity, and support 
accurate patient perspective analysis.

Keywords Large language models, Sentiment analysis, Emergency medical services, Pediatrics, Research 
ethics
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FDA  Food and Drug Administration
IRB  Institutional Review Board
LLMs  Large Language Models
PediDOSE  Pediatric Dose Optimization for Seizures in Emergency Medical Services
STROBE  Strengthening the Reporting of Observational Studies in Epidemiology

Background & significance
Large language models (LLMs) have emerged as powerful tools for generating, summarizing, and analyzing 
complex text with natural language understanding1–3. Recently, LLMs have been applied in healthcare, enhancing 
tools such as diagnostics, decision-making support, and predictive analytics4. While these applications have 
garnered considerable interest, the challenge of using LLMs to summarize and understand patient perspectives 
has received less attention despite its critical importance5,6. This involves analyzing and aggregating large 
volumes of patient narratives, a task for which LLMs are well-suited.

We explore how LLMs can be applied to understand patient perspectives in healthcare, using the exception 
from informed consent (EFIC) process as a use case. The EFIC process allows the enrollment of subjects in clinical 
trials when consent isn’t feasible, e.g., for administering an automated external defibrillator to unconscious 
patients7. Instead of obtaining consent directly from the patient, EFIC requires community-wide interviews 
before starting a trial9. Analyzing these interviews presents a major challenge, requiring extensive manual labor 
and subjective judgment with ambiguous standardization8–11.

Objective
This challenge presents an opportunity for LLMs to efficiently analyze and interpret patient perspectives, 
addressing issues of scale and consistency. In this study, we hypothesized that LLMs would match human 
reviewers in determining patient perspectives, including sentiment (e.g., very positive to very negative), and 
in classifying responses from EFIC interviews into themes. We tested this hypothesis using LLMs to analyze 
sentiment polarity and classify interviews from the Pediatric Dose Optimization for Seizures in Emergency 
Medical Services (PediDOSE) study, comparing their performance with human reviewers.

Results
LLM polarity score analysis
We first used GPT-4 to assign polarity scores to interview responses across the study questions (Fig.  1). Of 
3,692 responses available for analysis, 1,000 were coded “no response.” GPT-4 classified 2.8% (n = 104) of all site 
responses as very negative, 13.1% (n = 482) as negative, 32.7% (n = 1207) as neutral, 32.3% (n = 1191) as positive, 
and 19.2% (n = 708) as very positive. Additionally, visualizing sentiment polarity across sites generally revealed 
consistent trends in responses, while also highlighting specific questions that differed between sites. For example, 
Question 32 on seizure awareness elicited more negative responses from Site A compared to the other two sites.

To compare LLM-generated judgments to human judgments, 5 LLMs and 3 human reviewers assigned 
polarity scores to 123 responses to 9 questions from 3 PediDOSE sites (Fig.  2). The mean human reviewer 
polarity score substantially agreed with GPT-4, the highest-performing LLM of the five LLMs evaluated, yielding 
a Cohen’s kappa k = 0.69 (95% CI 0.61–0.76), Fig. 2. In comparison, individual human reviewer polarity scores 
yielded a slightly higher agreement among the 3 reviewers, ranging from k = 0.78–0.92. Mistral (7B) k = 0.63, 
GPT-3.5 Turbo k = 0.65, and GPT-4 k = 0.69 substantially agreed with mean human reviewer polarity score. The 
highest performing LLMs (GPT-4, GPT 3.5 turbo, Mistral) also had the most substantial agreement with human 
reviewer 2. LLAMA 2 (7B), k = 0.31 and LLAMA (70B) k = 0.44 had the lowest agreement with the mean human 
reviewer polarity score. The lowest performing LLMs (LLAMA (7B) and (70B)) had very poor agreement with 
each other, k = 0.19.

Major discrepancies, in which the GPT-4 and the human reviewer assigned opposite polarity scores (e.g. 
positive vs. negative), were seen in 4.7% of all scores. Human reviewers were 62% less likely to assign extreme 
values (very positive and very negative) than GPT-4. Most questions that generated a positive polarity score 
from LLM were also scored as positive by the human reviewers. For example, LLM and human reviewers scored 
this question as positive, Question 1, “How important do you think it is to do this study in your community?” 
(Table A1, Supplementary File 1). Similarly, questions that yielded a negative polarity score from LLM we also 
scored as negative by the human reviewers. Most negative polarity score questions were about the background 
or are phrased in a manner that they expect negative responses, e.g., Question 46 “Do you have any remaining 
questions about research or informed consent?” A common answer is “nothing else”.

Thematic classification
Up to 15 responses for each question were randomly selected from three study sites. In our text classification 
analysis of GPT-4, we collected 188 responses from 22 free-text questions sorted into classes by each human 
reviewer; an example is shown in Fig. 3. On average, GPT-4 generated 3.24 classes per question. Human reviewers 
categorized responses into the same classes as GPT-4 86.8% (95% CI 86.3–87.3%) of the time, suggesting that 
thematic classification by GPT-4 is similar to that by human reviewers (Table  1). Inter-reviewer thematic 
classification accuracy was 86.7% (95% CI 85.3–88.1%).

Thematic classification accuracy of response classes by human review compared to GPT-4, inter-reviewer 
agreement (% accuracy ± 95% confidence interval).

Scientific Reports |         (2025) 15:6179 2| https://doi.org/10.1038/s41598-025-89996-w

www.nature.com/scientificreports/

http://www.nature.com/scientificreports


Discussion
Our study demonstrates that LLMs assigned sentiment polarity scores and classified responses from EFIC 
community interviews for PediDOSE nearly as well as human reviewers. However, LLMs had less agreement in 
assessing polarity scores compared to human reviewers, highlighting the need for LLMs to complement, rather 
than replace, human oversight. By combining human and LLM evaluations, we achieve a more comprehensive 
quantitative analysis, which enhances our understanding of patient sentiment. LLMs can also provide clear, 
concise class-based summaries, enabling investigators, Institutional Review Board (IRB), and ethics boards 
to rapidly assess overall responses. Sentiment polarity scores offer a quantitative assessment of community 
sentiment, helping stakeholders understand not only overall trends but also variations in participant responses 
to individual questions, which can inform targeted improvements in communication and study design. 
Quantitative plots generated from LLM data, such as those in Fig. 1, facilitate the rapid analysis of large datasets, 
enabling visual interpretation of patterns, including variations and outliers. Our study showed that responses 
to the same question across 3 sites were generally consistent, with few exceptions. These plots helped identify 
trends and outliers between sites. For example, responses to Question 23 (personal experiences with seizures) 
at Site A showed significantly more negative sentiment compared to the other two sites. Such insights help 
understand patient sentiment nuances, enhancing overall analysis.

LLMs were more likely than human reviewers to assign extreme polarity values. One explanation is that LLMs 
may struggle to recognize the subtleties of human language. Another possibility is that the model’s performance 
metric, designed to reward higher confidence, could bias polarity scoring toward extremes. Additionally, LLMs 
may struggle to interpret emotional context, which can result in more extreme classifications based on the text’s 
surface content rather than its deeper emotional nuances12. This underscores the need for sentiment polarity 
assessments to be considered alongside thematic classification for more accurate interpretation.

Our thematic classification process improved our understanding of community feedback and may assist 
Food and Drug Administration (FDA) EFIC procedures related to study protocol approvals, adjustments, or 
disapprovals. Classifying responses into distinct classes provides researchers and regulatory bodies with deeper 
insights into community sentiments, facilitating more comprehensive evaluations of clinical studies. Thematic 

Fig. 1. Large language models (LLM) polarity score across participating sites (n = 3,692 responses). Each row 
represents the mean LLM response polarity score to each question, color indicates assigned polarity. Each 
question is represented by question number and representative domain. All sites represent the mean LLM 
response polarity score from all nine sites, while the subsequent three columns provide a breakdown of the 
response polarity score at three sites, selected for detailed comparison to simplify review.
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Fig. 3. Thematic classification by human reviewers. Human reviewers classified the responses to Question 40 
into GPT-4 generated classes.

 

Fig. 2. Polarity score agreement between mean, individual human reviewers, and large language models 
(LLM) across human reviewed sample (n = 123 responses). Using Cohen’s Kappa, this heatmap shows 
agreement of response polarity scores between human reviewers and LLM classes.
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classification has been applied across various fields, including healthcare. For instance, non-generative LLMs 
have classified patients into health categories from discharge summaries13. In our study, Question 40 highlighted 
a range of community opinions about children’s participation in research, emphasizing the requisite for clear and 
transparent communication about the EFIC process to future participants.

Classifying large volumes of lengthy responses is a complex, time- and resource-intensive process. In our 
study, LLMs performed similarly to human reviewers, offering valuable support in enhancing the efficiency 
of thematic classification, particularly with large datasets. Our findings demonstrate that LLMs can assist in 
assigning responses to predefined thematic classes, a key step in the EFIC process that traditionally requires 
significant human effort. This capability enables investigators and ethics boards to rapidly summarize and 
interpret feedback, potentially streamlining future community consultation workflows and improving the 
consistency of data interpretation. Through prompt engineering, LLMs generate classes and organize responses 
under these classes with corresponding citations. This method helps indicate which responses align with each 
class. LLMs greatly facilitated the work of human reviewers, enabling quick assessment of class validity, while 
reviewers can easily verify the accuracy of classifications by referencing source responses.

LLMs did not match humans in analyzing patient perspectives, but the field is advancing rapidly. Improvements 
in modeling14,15, prompting16,17, and interpretation18will enhance sentiment analysis. “Hallucinations,” or 
fabricated information generated by LLMs, remain a challenge19,20. Investigators are exploring innovative 
methods for LLMs to detect these issues, such as self-verification19. Similarly, as LLMs’ context windows grow, 
they’ll handle larger datasets, improving classification of lengthy interviews.

Further studies are needed to assess whether human reviewers can adjust and refine LLM-generated 
classifications to align with nuanced human judgments. This approach leverages the strengths of both LLMs and 
human oversight for more reliable and accurate text classification. One study noted that analyzing survey data 
for the FDA is challenging due to a lack of standardized formats and raw data21. Our findings suggest that using 
LLMs can improve the efficiency of analyzing community consultation data for EFIC trials and help standardize 
reporting, building trust for future studies. Although this study did not measure workflow metrics, such as the 
time required to create summary reports or IRB review turnaround times, the visual representation of quantified 
sentiment and thematic classifications illustrates how LLM-generated outputs can streamline regulatory 
processes. For example, LLM-generated sentiment polarity plots could help IRBs and ethics committees 
quickly identify trends, such as a notable percentage of participants raising concerns about consent processes or 
reporting confusion about study procedures. This approach reduces the cognitive burden of manually reviewing 
extensive unstructured data and enables more efficient, data-driven decision-making. Future studies should 
consider quantifying time savings and evaluating user feedback to further demonstrate the practical impact of 
LLMs in regulatory workflows.

Limitations
Our study has several limitations. First, we limited our analysis to a manageable number of human reviews. 
Manually reviewing and annotating interviews is labor-intensive, underscoring the challenge of the EFIC process 
and the potential utility of LLMs in facilitating those tasks. Regardless, we conducted ample human annotations 
to reach reliability and meaningful correlation. Second, we limited our human reviewers to investigators. Future 
studies could include other EFIC team members or other stakeholders, such as IRB members, to review and 
modify the data output to suit their needs. Third, although LLMs do not need to analyze yes/no responses, we 
included all question types for sentiment polarity assessment to demonstrate the full range of LLM capabilities 
and to avoid introducing bias through selective exclusion. While some questions may seem binary, participant 
responses often included elaborations that provided valuable sentiment insights. By including all questions, 
we ensured that the analysis captured these nuances and demonstrated the LLM’s ability to handle a wide 
range of input formats. This approach allows future users to tailor their analyses to specific research needs 
while maintaining transparency in how LLMs can be applied. Fourth, our study design limited our ability to 
investigate how demographics such as race, ethnicity, language, and other patient-level experiences influence the 
responses to the interview questions. Fifth, presenting the survey questions in a set order may have introduced 
a bias based on sequence. However, this approach reflects how surveys are done in the real world, offering an 
authentic portrayal of EFIC activities. Similarly, to mitigate bias and ensure that each response from the LLM was 
generated solely based on the text of that response, without undue influence from prior responses, the interface 
was systematically reset after each query. Sixth, another limitation of our study is the absence of demographic 
data linked to individual interview responses, which prevented a detailed analysis of LLM performance across 
different population subgroups. Demographic factors such as language proficiency, cultural norms, and socio-
economic background may influence response patterns and LLM classifications. Future studies should consider 
integrating demographic information to explore whether LLMs perform differently across subgroups and to 
detect potential biases in sentiment classification. Addressing these biases is essential to ensuring that LLM-
based approaches in healthcare research remain equitable and reflective of diverse community perspectives.

Human Reviewer-GPT-4 Accuracy
n = 188 responses Human Reviewer-Human Reviewer Accuracy

Reviewer 1 Reviewer 2 Reviewer 3 Inter-reviewer agreement

86.1 ± 4.9% 86.7 ± 4.9% 87.7 ± 4.7% 86.7% ±2.7%

Table 1. Text classification accuracy.
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Conclusion
Overall, LLMs demonstrated substantial agreement with human reviewers in analyzing patient perspectives, 
including sentiment polarity and thematic classification, using EFIC community interviews. While LLM polarity 
scoring showed lower reliability compared to human reviewers, thematic classification performance closely 
matched human assessments. Our study emphasizes the importance of using LLMs to supplement, rather than 
replace, human oversight. LLMs provide an effective method for rapidly summarizing and visualizing large 
datasets. Future efforts should explore how stakeholders can leverage LLMs to deepen insights into patient 
perspectives across various healthcare settings.

Materials and methods
Setting
PediDOSE is a multicenter EFIC trial (NCT05121324) that seeks to decrease the number of children who 
continue to have seizures upon arrival in the emergency department. Specifically, it evaluates the effectiveness of 
a standardized emergency medical services (EMS) protocol with age-based, paramedic-administered midazolam 
dosing22.

Following the EFIC process, PediDOSE sites conducted EFIC community interviews to obtain IRB approval. 
Specifically, 10–14 community consultation interviews were conducted across 20 centers using an interview 
guide composed of 46 questions (Supplement Table A1, Supplementary File 1).23 These questions were 
grouped into 25 domains preselected by EFIC PediDOSE investigators (Fig. 1). Interviewers were allowed to skip 
questions that seemed irrelevant based on previous responses from the interviewee and to ask unscripted follow-
up questions. Interviews were conducted in English or Spanish, recorded, translated into English by certified 
interpreters, and de-identified for local IRB and investigator approval. Each site archived and transcribed 
interviews, which were submitted to the central IRB for review. All PediDOSE EFIC interview data were collated 
for manual review and final EFIC approval.

Study design
We retrospectively reviewed interview transcripts from the EFIC community interviews in the PediDOSE study. 
This study was approved by the central IRB, the University of Utah, and all participating site IRBs. All methods 
were performed in accordance with relevant guidelines and regulations, including the Declaration of Helsinki. 
Written informed consent was obtained from all interview participants, as applicable. Identifiable information 
was removed to ensure participant anonymity. All actions were part of the PediDOSE EFIC activities, except 
for the post-hoc analysis of the transcripts performed as part of this study. For our analysis, we selected nine 
geographically diverse PediDOSE study sites that were representative of the various regions and patient 
demographics under study (Fig. 4). The University of Utah approved a waiver of written informed consent to 
collect and analyze the interview recordings; no identifiable information was requested during the recorded 
and transcribed interview. The source code used for performing the analyses is available at  h t t p s : / / g i t h u b . c o m / 
c s i n v a / p e d i d o s e - e fi  c - a n a l y s i s     . The study followed the Strengthening the Reporting of Observational Studies in 
Epidemiology (STROBE) reporting guidelines and the JAMA Network Guidance for evaluating and reporting 
LLM research24–26.

Analysis methods
We evaluated two closed-source LLMs: GPT-4 (gpt-4-0613, Open AI)[17] and GPT-3.5 (gpt-3.5-turbo-0613, 
Open AI)27, which were both accessed securely through the Azure OpenAI Application Programming Interface 
(API). We additionally assessed three open-source models: Mistral 7B (Mistral AI), LLaMA-2-7B (Meta), 

Fig. 4. Sampling Data Flow of Interview Responses. A visual overview of the data flow, showing the original 
dataset of Exception From Informed Consent (EFIC) community interviews collected across 20 Pediatric Dose 
Optimization for Seizures in Emergency Medical Services (PediDOSE) study sites, the geographically diverse 
subset annotated by large language models (9 sites), and the final human-annotated samples used for sentiment 
polarity and thematic classification comparisons.
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and LLaMA-2-70B (Meta), which were run locally for secure HIPAA-compliant computing. To minimize 
randomness, each LLM query was run in an independent session with a sampling temperature of 0. Python 
version 3.11 (Python Software Foundation) was used for all statistical analyses.

LLM-based sentiment polarity analysis
We evaluated each LLM’s ability to assess the sentiment polarity for all responses in the studied interviews. 
Specifically, an LLM was prompted to categorize the polarity of a response on a 5-point Likert scale (very 
positive, positive, neutral, negative, or very negative). For example, in response to a question such as Is this study 
important to you?, answers can vary from very positive (indicating it is important) to very negative (suggesting it 
is not important). If a question was not asked or if the respondent did not respond directly, it was coded as no 
response.

LLM-based thematic classification
In our theme classification analysis, we used two-step prompts to categorize participant responses. The first 
prompt listed the 25 predefined classes relevant to the EFIC process (e.g., “concerns about consent,” “clarity of 
study purpose”) and asked GPT-4 to sort responses into one of these classes. The second prompt aggregated 
responses within each class to generate a comprehensive summary of participant feedback. The detailed prompt 
structure can be found in Table A2, Supplementary File 1.

Human reviewer assessments
We evaluated the LLM-based sentiment polarity analysis and the LLM-based thematic classification by comparing 
LLM assessments to those of 3 blinded human reviewers. Human reviewers were made to do the same two 
analyses as the LLM. To allocate human reviewer time effectively, we subsampled each analysis’s responses. For 
sentiment polarity analysis, we selected 15 responses from 9 questions across 3 random sites, stratified to yield 
a uniform range of negative, neutral, and positive answers. For thematic classification, we excluded simple ‘Yes’ 
or ‘No’ responses, as they do not require LLM analysis and would not add complexity to the problem. In cases of 
disagreement among reviewers, the majority opinion was used for analysis.

Evaluation metrics
We hypothesized that there would be a substantial association between the LLMs’ outputs and human reviewers. 
For sentiment polarity scores, we measure the association using Cohen’s Kappa k. For thematic classification, 
we measure the association using classification accuracy. Then, we use the LLMs scores to generate quantitative 
plots that enable understanding sentiment polarity distributions across sites and questions.

Data availability
Partial datasets and data dictionaries for the parent investigation, Pediatric Dose Optimization for Seizures in 
Emergency Medical Services Study (PediDOSE), will be available from the Data Coordinating Center (DCC) of 
the Pediatric Emergency Care Applied Research Network (PECARN) in a de-identified format 3 years after the 
last participant enrollment (anticipated July 2029). However, the qualitative transcripts of this secondary anal-
ysis cannot be made available because they cannot be de-identified. Please contact Dr. Manish Shah, mshah5@
stanford.edu.
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