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THE PROBLEM OF THE RELATION 
BETWEEN DOUBLE POMERON EXCHANGE 

IN INCLUSIVE AND EXCLUSIVE EXPERIMENTS 
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Department of  Physics, University o f  California, San Diego, La Jolla, California 92037 

D. S ILVERMAN ** 
Department o f  Physics, University of  California, Irvine, California 92664 

Received 10 October 1972 

Abstract : The pionization region of the inclusive single-particle spectrum is accounted for by 
double pomeron exchange in the absorptive part of a six-point amplitude. In this paper 
a multiperipheral model for the six-point amplitude with double pomeron exchange is 
used for continuation by crossing and analyticity to the physical region of the exclusive 
two particle ~ four particle production process. The cross section for n - p  -~ n-0r+n- )p  
in the double-Regge region is then calculated and compared with the experimental anal- 
ysis of Lipes, Zweig and Robertson which sets an upper bound to the strength of the 
double pomeron exchange coupling. This upper bound, coupled with the model for con- 
tinuation to the inclusive cross section, is shown to give too small a magnitude for the 
double pomeron exchange in the pionization region. Further avenues for investigation 
are discussed. 

1. Introduction 

One of  the fundamenta l  quest ions  about  the nature o f  the pomeron  singularity 

is the strength o f  the coupling o f  two pomerons  to a particle or particles. It is our 
purpose to investigate how current  models  relate the strength o f  this coupling in 

two of  its appearances. One occurence is in the analysis o f  the central  plateau or 

pionizat ion region [ 1 - 3 ]  o f  the inclusive pion single-particle spectrum a + b ~ c + X 

where the observed pion has c.m. m o m e n t u m  Iq i i1< O(s~). The opt ica l - theorem ap- 

proach of  Mueller [4] succintly describes the single-particle spectrum as an absorp- 

tive part in missing mass M 2 = ( p a +  Pb - q)2 o f  the forward three-particle ~ three- 

particle ampl i tudes  in the a + b + c channel.  Pionizat ion occurs at high energy by 

* Supported in part by the United States Atomic Energy Commission. 
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the exchange of  two pomerons to two pions, fig. I. This coupling and the existence 
of  the pionization region was indicated by the n- ac Ins  growth of the average multi- 
plicity [5] and has been confirmed directly by the recent ISR experiments [6]. In a 
sense to be detailed in this paper, the coupling of  two pomerons here is "strong." 

Another occurence of  double pomeron exchange is in the exclusive two-particle 
-+ four particle production process 7r-p ~ 7r-(Tr+Tr-)p, fig. 2, where the (Tr+rr - )  pair 
is at low invariant mass and the subenergies s 12 and s34 are large. This experiment 
was analyzed exclusively in the double-Regge region by Lipes, Zweig and Robertson 
[7] (LZR) and no evidence for double pomeron exchange was found. 

The three-particle ~ three-particle amplitude and the two- particle ~ four-particle 
amplitude are related by crossing to be analytic continuations of  the same six-point 
function into the different physical regions. The program is to take current models 
for the six-point amplitude and continue them between the two-particle ~ four-par- 
ticle production region and the forward three-particle -+ three-particle region where 
we take the M 2 = (Pa + Pb - Pc )2 discontinuity to obtain the pionization spectrum. 
Since both regions have large subenergies in which double pomeron exchange occurs, 
we will be able to relate the strengths of the double pomeron coupling in the two 
regions. 

o 

Ga 

_I A _q/1 

~I -q~- 
.$, + 

b 

Gb 

Fig. 1. Double pomeron exchange in the three-particle ~ three-particle amplitude. The discon- 
tinuity in the ab~ channel gives the pionization spectrum for a + b ~ c + X. 

at 
f/" / r -  
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Fig. 2. 2 4 exc lus ive  r e a c t i o n  a + b -~ a '  + c + c + b '  via d o u b l e  p o m e r o n  e x c h a n g e .  
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In this paper we use a multiperipheral model for the six-point amplitude which 
has a dynamical structure in terms of intermediate states in the M 2 channel. The 
model is an analytic continuation [8] of a model for the single-particle spectrum 
with Regge behavior and exponential damping in momentum transfer previously 
studied by Silverman and Tan [9] and by Caneschi and Pignotti [10]. The model 
incorporates double Regge behavior for the exchanged pomerons and possesses an 
analytic behavior for double Regge coupling which is consistent with the Steinmann 
relations [11-13]. The amplitude can be explicitly continued between the produc- 
tion and pionization regions. The strength of the coupling in the pionization region 
is found by taking the absorptive part in M 2 and fitting to the experimental results 
on pionization. 

The continued amplitude is then used to calculate the cross section for the pro- 
duction experiment and the results are compared with the analysis of LZR. We find 
that the coupling strength from pionization is much too large for the production 
region. By adjusting the coupling to be consistent with the upper bound on double 
pomeron exchange set by the LZR analysis, we find that this coupling strength is 
only about ~ of that observed in pionization. 

In a subsequent paper [14] we will again carry out this continuation and com- 
parison with experiment using a dual resonance model for the six-point amplitude 
with the pomeron exchanges included in a phenomenologically consistent way. 

For comparison with the calculations with the continued amplitudes, we also 
calculate the production cross section using a simple pion-pole exchange in the pro- 
duction amplitude with the strength determined by factorization. The two-particle 

four-particle production cross section from the pion pole is below that obtained 
by LZR. 

In sect. 2 we formulate the general six-point amplitude with double pomeron ex- 
change and discuss the method of analytic continuation between the production and 
pioniza~ion region. In sect. 3 we present the multiperipheral model with exponential 
damping in momentum transfer and use it for the analytic continuation. In sect. 4 
the absorptive part of the amplitude in M 2 is related to the single-particle spectrum 
in the pionization region using the Mueller optical theorem. The strength of the ab- 
sorptive part is found by comparison with the pionization data. In sect. 5 we present 
the method of performing the phase space integration to compute the 
7r-p -+ n-Or+Tr-)p cross section from the continued amplitude. In sect. 6 we present 
the calculated results for the production cross section. We find that a much smaller 
value for double pomeron coupling than that found in pionization is demanded by 
the non-observation of double pomeron exchange in the production experiment. 
Possible sources for this inconsistency are discussed as well as its relation to the 
proofs of pomeron decouplings. 
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2. The six-point amplitude with double pomeron exchange 

The production process, fig. 2, is a function of eight independent invariants 
which we choose as 

pb )2 = (/9' )2 = b s = ( P a +  , Sl 2 a + q l  , s34 (q2+ p )2 ,  

p 

tl = (P ;  Pa )2,  t 2=(P ' a+q  I pa )2,  t 3 = ( P  b Pb )2, 

r/= s12 s34/M2, 

where 

M2 = (Pa + Pb - q2 )2" 

The analytic continuation to the pionization region consists of  taking 

Pa = Pa ' Pb = Pb ' ql  - q ' q2 q ,  (2.2) 

where q is the momentum of the observed pion in the single-particle spectrum. The 
variables describing the subenergies in pionization are chosen to be 

Ul = (Pa q)2,  u2 = (Pb - q)2,  

which are related to M 2 = (Pa + Pb q)2 and s in the pionization region by 

M 2 = s + u  1 +u  2 - m  2 -  m 2 - m  2 
a 

where m is the pion mass. For the continuation to pionization for large s and large 
subenergies u I ~ O(sLXV), u2 ~ O(s 1 - a y )  with 0 < 2xy < 1, the invariants are, 
to leading order in powers of s, 

S l 2 ~ U  l , s34-~ u 2 ,  

t 1 = 0 ,  t 3 = 0 ,  

r~,~uluZ/M2=q2 +m 2.  

s23 = 0 , 

t 2 = m 2 , 

M 2 ~ s ,  

s23 = (ql +q2 )2 

(2.1) 

In constructing our model for the six-point amplitude we are concerned in this 
study mainly with the part which contains the discontinuity of  T in M 2. Additional 
parts which we have, for example, a pion pole in t 2 are much smaller than the part 
with the discontinuity in M 2 and their effects will be discussed in sect 6. 

(2.3) 

(2.4) 
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q~ q2 
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Fig. 3. The four diagrams which produce the signature structure of the six-point amplitude. The 
complete amplitude also includes the diagrams with q] and q2 interchanged. 

The models that we will use are put in the form of  a double pomeron exchange 
amplitude with a function that gives the M 2 discontinuity observed in the pioniza- 
tion region. The double Regge form for T from the diagram, fig. 3a, is 

r ( - - ~  1 + 1) 
T b = aa~3aTr ( t l )  G ( - Sl2/so )c~' 

I'( o~3+1 ) 
X GbfJbn (t3) G ( -  s34/So)a~ ( g p / s o ) F O ? ) ,  (2.5) rr Tf 

where 

r 1 = _ Sl 2 s34 /M 2 • (2.6) 

a 1 = Otp(tl) and a 3 = ~p(t3) are pomeron trajectories; G a, G b and G ,  are the zero- 
momentum transfer couplings of the pomeron to a, b and 7r; and/3aTr(t 1),/3b~r(t3} 
are the Regge residue damping factors normalised to one at zero momentum transfer. 
The explicit occurence of  GTr is for convenience in comparing the coupling strengths 
and does not mean to imply that the pomerons (P) in PP ~ lrTr couple to on-shell 
pions, gp is the intrinsic strength of the double pomeron coupling and will be deter- 
mined in sect. 4. The PP -+ lrTr coupling function F(r/)  may also depend on s23, t 2, 

t 1 and t 3 but  we will suppress this in the notation. 
In an amplitude with double Regge exchange, the M 2 discontinuity occurs through 

the discontinuity in the variable r/ [8, 12, 15-17]  which involvesM 2 (2.6). In the 



82 C.H. Mehta, D. Sih, erman, Double pomeron exchange 

models we will study the function F(r/) ~vill have a cut for r/~> O which occurs in 
the pionization region where r/--- q2 + rn . r/is negative in the production region, 
eq. (2.6). 

The signature factors for the Regge exchanges occur by adding the three diagrams 
with interchanges o f ( p  a ~ -- Pa), (Pb * -  Pb) and (Pa ' ~ -  Pa, Pb ~' p~).  These 
are each computed from the same function Tab, eq. (2.5), but with the appropriate 
subenergy variables resulting from interchanging the momenta  in the definitions of  
slZ, S34andMZ,  e q . ( 2 " l )  : f°rPa ~" Pa, 

S l 2 = ( / 9 ' a + q l ) 2 - + ( - P a  +q l  ) 2 ~ - s 1 2  (2.7) 

t 
and for Pb ¢~ Pb ' 

s34 = (P; +q2 )2 -~( --Pb +q2 )2 ~ s34" 

The interchanges in M 2, however, produce invariants for different channels : 

s 12s34 
fig. 3a (Tab): M2 b = (Pa +Pb - q2 )2 =M2 ~ s,  r/a b - - r / ,  

s12s24 
fig. 3b (Ta,b): M2b = ( p ;  +Pb q2 )2 ~ - s,  r/a, b ~ M 2 , 

a'b 

fig. 3c (Tab,): M 2 = (Pa ' - q2 )2 ~ - s r/ab,_ s12s34 
ab' - Pb ' ~,2 

M ab' 

, . s12s34 
fig. 3d (Ta,b,): --'Mab, = (--P'a - Pb - q2 )2 -~ s ,  r/a, b, ~-- - 

M 2 
a'b' (2.8) 

Adding these four diagrams gives the signature factor in the production region, since 
all of  the four r/s  are approximately numerically equal. Since our choice of  r/is not 
symmetric in ql and q2 '  we must add the same terms with ql  and q2 interchanged. 
The complete six-point amplitude in the production region is then 

T = Ga~alrGr 
(e i,a, + 1) 

7/" 
C ( - - a  l + 1) (Sl2/So)% 

(e irr% + 1) i,(_a3 + 1) (S34/So)% X Gb{JbTrG n zr 

gp 
X - -  F(r?) +(q l  ¢~q2 )" 

s O 
(2.9) 
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Since r/is negative in the production region, it is not necessary to distinguish if it is 
above or below the r/cut  in the various terms. 

In taking the discontinuity in the channel M 2 = M2 b = (Pa + Pb - q2 )2 for pioniza- 
tion, only the first of  the four terms, Tab, contributes since the other r/'s do not con- 
tain M 2, but variables which refer to other channels. In the four additional terms 
obtained from ql ~ q , ,  however, the term arising from T~'h', call it T , h , ,  contains 
M2'b' = (--P'a - Pb - ql )2 from exchangingq2 ¢~ ql in M~b" Now from four-momen. 
turn conservation 

M2b' = (Pa +Pb q2 )2 =M2 ' (2.]o) 

so this term gives an M 2 discontinuity identical to the first term Tab in the pioniza- 
tion region. 

3. The multiperipheral model with exponential damping in momentum transfer 

The model we take for the functional form ofF(??) arises from an analytic con- 
tinuation [8] of the Caneschi-Pignotti [10] model for the single-particle spectrum 
which was studied analytically by Silverman and Tan [9]. It views production of  a 
particle in the central region by the peripheral form, fig. 4, where any number of 
particles may be emitted to the left or right of  the observed particle, it is assumed 
that the sums of  these inclusive particles behave like total cross sections which are 
Regge behaved and pomeron dominated at large s t, s r (fig. 4). In order to obtain 
exponential damping in q2, exponential damping is assumed in the momentum 
transfers t 1 and t r. Using the described form for the amplitude in fig. 4, the single 
particle spectrum is given by 

f 2 do" _ 6_' ds Ids r dt I dt r J [ s~, s~3 e s21tl + ~2rtr I (3.1) 

f 

Q O O  

pt \ 
Fig. 4. Diagram for peripheral production of a particle in the central region. 
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where J is the Jacobian of  the phase space integrals and c is a constant. This has been 
computed for o~ 1 = o~ 3 = 1 in ref. [9], and for arbitrary Ul' c~3 in the three-particle 
-+ three-particle scattering region in ref. [8]. In the pionization region the result is a 
function only o fK  = kr/where k = 2~1~2r/(~21 + f2r). The result is also the absorp- 
tive part in K of  the six-point amplitude in the pionization region. It may be ex- 
tended to an anlytic function in K in a way consistent with the Steinmann relations 
(discussed below). We use the result of the continuation in K (ref. [8] ): 

F ( K )  = ( - K ) - %  U ( - O t l , - o l  1 +~3 + 1 , - K ) ,  (3.2) 

where U is the confluent hypergeometric function [18] (also called qz [ 19] ), as the 
basic model for the K continuation in this paper. It should be noted that the entire 
amplitude is not analytically continued to the production region, but only the K 
dependence is abstracted from the forward three-particle --> three-particle amplitude. 
If the entire amplitude were continued to the production region some of the inter- 
nal momentum transfers can become positive, and the increasing exponential depen- 
dence would be a severe overestimate. 

It is seen that F ( K )  has a cut for K ~> 0 which gives the absorptive part in the 
pionization region. The same function arises in the six-point function in the dual 
resonance model [14, 15] where K is replaced by x = e/q/z(1 - z )  in the pionization 
region and an integration over z is performed. This significantly alters the continua- 
tion and will be discussed in the paper on the dual resonance model [14]. The analy- 
tic structure is directly expressed [18] in terms of the entire function M (also called 
¢, [19] ) :  

7r l( K)-% M( °~1'--°~1 +(~3 + I ' - K )  

F ( K )  = sin re(-  o~ 1 + o~ 3 + 1 ) ~ P-(~- ~3- ) P~(-~ ol 1 + ot 3 + -1 

M(-¢~3, - o l  3 +ol I + 1 , - K )  
(3.3) 

The Steinmann relations state that the double discontinuity of two overlapping 
variables must vanish in the physical region. Considering the three-particle --> three- 
particle scattering in the physical region of  forward a + b + ~- --> a + b + g we have 
u 1 > 0, u 2 > 0 and the double Regge form 

(--Ul)% ( - u 2 ) ~ F ( K )  (3.4) 

from one of the terms in (2.9). Since u 1 and u 2 are overlapping variables, the Stein- 
mann relations state that we cannot have simultaneous singularities in these. So the 
form o f F ( K )  contains ( - K ) - %  or ( - K )  % which gives respectively 
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(--Ul)% (--u2)°% ( - K ) - %  oc(- u2)%-% ( -M2)  °q , 

( - U l ) %  ( - -u2 )% ( - g ) - & 3  a c ( - U l ) % - c %  ( - M 2 ) %  . (3.5) 

The l / F ( -  a3) in the coefficient o f ( - K )  - %  prevents simultaneous poles in the 
amplitude in ot 3 and u 2 since they are overlapping variables, and similarly for the 
1 / F ( -  a 1) term in the coefficient of  ( - K ) - % .  The function F(K)  does not in fact 

contain poles at o~ 1 = ot 3. 
We now perform the continuation to the pionization region eqs. (2.2) and (2.3). 

We recall that the M 2 or r /= r/ab discontinuity is only present in the term Tab in 
(2.8) and the term Ta, b, with ql o q 2 '  Then in the pionization region we have 

ImM2 T =  ImM2 (Tab + Ta'b ')  

= 2 GaGbG2ala3  ( U l / S O )  % (u2/So)% 
7r 2 

(3.6) 

gp 
X ~ P(-Oel) F ( ~ 3 )  ImKF(K)" 

s o 

In taking the discontinuity of Tab it is important  to keep c~ 1 and o~ 3 not equal to 1. 
Tab has a pole at these points and since M 2 is an overlapping variable, T b could not 
have an M 2 discontinuity in a residue of  these poles. It is perhaps simplest for anal- 
ytic purposes to consider the pomeron intercept as slightly less than one, and in the 
later numerical evaluations take a 1 = 1 and a 3 = 1 as a good numerical approxima- 
tion. 

Evaluating lm F ( K )  is simplest from the form (3.3) where the discontinuity r/ 
arises from the terms ( -  K ) - %  and ( -  K ) - % .  After using the Kummer transform- 
ation [18] 

M(a, b, z)  = e z M(b - a, b, - z) , (3.7) 

and rearranging gamma functions we can recombine terms to obtain for K ) 0 

l m K F ( - o ~ I ) F ( - o ~ 3 ) F ( K ) =  7 r e - K K - %  U ( o l 3 + l , - a l  +OC3+l ,K) .  
(3.8) 

The continuation can also be performed and the absorptive part taken when a 1 = a 3 
as occurs at t 1 = t 3 = 0 ,  by using the appropriate form of  the hypergeometric func- 
tion for this case [18, 19]. The results are the same as obtained from (3.8) by setting 

0¢ 1 = o¢ 3. 
Finally, after taking the discontinuity we set o¢ 1 = 1, e¢ 3 = 1 at t I = O, t 3 = O. 

From (3.8) 
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|m K I ' ( O t l )  F(-a3)F(K ) 
c~ ~1 
c~3~ -1 

e - K  
- rr - -  U ( 2 ,  1, K ) .  ( 3 . 9 )  

K 

We can express this in terms of simpler functions by using eq. (13.4.23) of  ref. [ 18] 

U(2, 1 , K ) =  U(1, 1 , K ) + K ~  U(1, 1 , K ) ,  ( 3 . 1 o )  

and also eq. (13.6.30) 

U(I ,  I , K )  = e K E I ( K ) ,  (3.11) 

where E 1 is the exponential integral. We find then 

77 
lm K P ( -  a l )  P ( -  a3)F(K) -+ ~ [(1 + K ) E l ( K )  e - K ]  . (3.12) 

Finally, combining with (3.6) and usingK = ku 1 u2/M2 we find for the M 2 absorp- 
tive part in the pionization region 

2M2 GaGb G2 Jgo\ 
lmM2 - 7rs2 ~ ~ )  [(1 +K)EI(K ) e - K ] .  (3.13) 

o ~ 

This form for the pionization spectrum appears in the previous ce!culations of the 
exponentially damped multiperipheral model with a 1 = 1, o~ 3 = 1 [9]. 

To complete the specification of our amplitude in the production region, we re- 
call that the general pomeron-pomeron to 7rTr amplitude F in (2.5) can also have ad- 
ditional dependence on s23, t 2, t 1 and t 3. Lacking further dynamical knowledge, 
we assume the smoothest behavior possible. First, we assume that the t 1 and t 3 
dependence has been largely removed in the elastic scattering residue factors 
/3a~r(tl),/3b~r(t3) which will be taken to be 

/3a~(t ) = ~3bTr(t ) = e~qt , (3.14) 

with g2 = 5 GeV 2 as given by elastic scattering data. This magnitude of damping is 
consistent with that observed in the production experiment for a single pomeron 
exchange [7]. Second, we assume no explicit dependence in s23 in continuing from 
pionization, s23 = 0, to production, s23 ) 4m 2. Resonance structure would only 
enhance the production amplitude, which is not needed. In the dual resonance mo- 
del [14] we include the effects of resonances in s23. Finally, since all hadron ampli- 
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Fig. 5. The exponentially damped multiperipheral model as a six-point amplitude. 

tudes appear to be damped in momentum transfer, we will estimate the effects of 
possible damping in the variable t 2 by including in the amplitude the form 

e a(t2 - m)2 (3.15) 

This does not affect pionization where t 2 = rn 2. 
In this paper we have abstracted only the K dependence in the pionization region 

from the multiperipheral model with exponential damping. We have also considered 
the subenergy dependence of  the model in the three-particle ~ three-particle non- 
forward region as indicated in fig. 5. The diagram is explicitly symmetric under 
(a ~" g),  (b ~ b)  and (c "~ ~-), and the result of  the calculation is the same function 
F ( K )  used in (3.2) but with K replaced by the symmetric combination 

K '  = k(Sa~ + s~c ) (sb~- + sffc ) 

4M:b~ (3.16) 

Also the Regge powers are now 

2 - . (3.17) 

With this definition f o r K '  and the Regge powers we need to keep only the four 
signature generating interchanges of  a ~' a and b "~ b since the sum is then already 
symmetric under c ¢~ c .  The amplitude in the pionization region is identical to 
(3.13). We also computed the cross section in the production region with these vari- 
ables. The results did not differ significantly from those obtained from (2.9) with 

K = k~. 

4. Comparison of the absorptive part with pionization 

We now relate ImM2 T to the single particle inclusive cross section and evaluate 
gp and k by comparison with the pionization experiment. We use covariant normaliz- 
ation in which 
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(P'IP) =(2rr) 3 2E 63(P - P ' ) ,  (4.1) 

and the density of states is d3p/2E(2rr) 3. The cross section is given by 

(2¢r)4 l~I d4p- 

vt2 V[ (2E)out (2rr) 3 
in 

6+(P 2 - m2)~5 4 ( ~  P - ~ P)I Till 2 , 
in out 

(4.2) 

where at high energy 

o12 1-I (2E) = 2s . 
in 

The S-matrix is 

Sfi = 6fi + i(2g) 4 64(p i -  pf)Tif , (4.3) 

and unitarity for a forward amplitude is 

imTii_(27r)4 n ~ f  if- [ d4pk k=l (2Tr) ~ 6+(/)2 m2) 64(EPk Pi)] Tni[2 " (4.4) 

The single particle inclusive spectrum for a + b ~ c + X is obtained from (4.2) by 
removing the d3q/2E integration for the observed particle c of momentum q • 

do 1 1 S  ~ I  d4pk + 2 
- 6 (Pk rn2)(27r)4 

_q) 2(2703 2s X k (27r) 3 

X 64( ~ Pk - Pa -- Pb + q) [ Ta+b-+c+X 12" (4.5) 
X 

The sum over X includes all states in the a + b + ~- channel with M 2 = (Pa + Pb -- q)2 
Crossing relates Tab cX to T b~ X and we then use the unitarity relation (4~4) for 
the sum over the states in M~ obtaining the optical theorem used by Mueller [4] : 

do 1 
- ImMz T ab~ab~- . (4.6) 

~ E  q) 2s(2rr)3 

Using the M 2 absorptive part of the model (3.13)we find for the behavior of the 
pionization spectrum 
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de 2GaGb G:  

( ~ )  (27r) 4 k S 3 gP f (K) ,  

where 

(4.7) 

f ( K )  = [(1 +K)  E l ( K ) - e  -K]  , (4.8) 

and K = k(q 2 + m2). 
The single particle spectrum for pp ~ n -+ + X has been obtained in the pionization 

region (x = 0) at values of s up to 2820 GeV 2 at ISR by the Saclay/Strasbourg col- 
laboration for the range 0.2 GeV ~< q± ~< 0.8 GeV [6]. The form (4.7) gives an excel- 
lent fit to the data with the parameters [8] 

do mb 
- 5 0  

q) GeV2 
f ( K ) ,  k = 2.7 GeV -2  . (4.9) 

To evaluate gp we now need only Gp and G r, the pomeron residues at zero mo- 
mentum transfer. With the pomeron exchange contributing 

Ta el (S, t) : GaGb~3ab (t) (1 + e -hrctP(t)} /-~s~ aP(t) 
P ( -  c~pjt) + 1) / \ 

b n \So /  ' 
(4.10) 

the optical theorem gives for the total cross section 

otot ab = GaGb/So " 

Taking s O = 1 GeV -2 ,  we find from pp and np total cross sections 

(4.11) 

G r= 6.2,  Gp = 10.0. (4.12) 

The value of  the double pomeron coupling now follows from (4.7), (4.9) and 
7r + (4.12) for pp ~ + X 

(27r) 4 k s 3 X 50 mb/GeV 2 , 

gp - 2G2p G 2 
7T 

(4.13) 

gp = 70 .  (4.14) 

Considering the definition ofgp  as in (2.9), we see that it is the enhancement of the 
pomeron-pomeron to 7rn interaction over the on-shell coupling of  pomerons to 
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pions G2. In this quantitative sense the double pomeron exchange in pionization is 
very strong. 

5. Cross section for two-pion production via double pomeron exchange 

In this section we will evaluate the cross section for two pion production via 
double pomeron exchange using the model for T in sect. 3 with the values of  the 
coupling obtained in sect. 4. In order to carry out the phase space integration for 
the two-particle -+ four-particle cross section and to compare with the experimental 
analysis of  LZR [7], we convert to the subenergies 

t 

St =(P'a +q l  +q2 )2 '  s 2 = ( P b + q l  +q2 )2" (5.1) 

Then by considering the two produced pions as a body of  mass-squared 
s23 = (ql + q2 )2 we can consider the final state as a pseudo-three-body final state 
with subenergies Sl, s 2 and momentum transfer t l ,  t 3. In the limit t 1 ~_ 0, t 3 _~ 0 
enforced by damping of  pomeron exchange the amplitude and phase space will fac- 
torize into a function of(s  1, s2, t l ,  t3) times a function of  (s23, t2). This approxi- 
mation will be used to simplify the calculation. 

Because of  the sharp damping in t I and t 3 (3.14), we calculate the pomeron tra- 
jectories effectively at cq = 1, c~ 3 = 1. We then obtain for F(K) in (3.2) the simple 
form [18] 

1 ! 
U ( - 1 ,  1 - K ) = ~ j + I  . F(K) = - ~  

/ k  
(5.2) 

The Regge powers in (2.9) then combine with this as 

s\-I7 - s - - I  (5.3) 

For converting to Sl, s2, we take the approximation of t 1 = 0, t 3 = 0 in treating 
the term s12s34/s in (5.3). At large s, s12, s34 with fixed s23 we obtain 

s l ( m 2 -  t 2) s 2 ( m 2 -  t 2) 

Sl 2 . . . . . . . .  s23 ' s34 - s23 ' Sl s2 = s23 s .  (5.4) 

Combining these gives for the second term in (5.3) 

s12s34 (m 2 - t2)2 

s s23 
(5.5) 
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For the terms with ql and q2 interchanged we substitute for t 2 the crossed variable 
r 

t 2 which at t l = 0, t 3 0 is related by 

s23 + t2 + t 2 2m2" (5.6) 

The final factorized form is obtained for the amplitude for n - p  -~ n-(n+n-)p by 
using (2.9) and (5 .2 -6 t  : 

: - -  ( ~ 0 ) e  a(tx+t3) T24 G~rGP G2 2gp n SO ~(s23 '  t2) ' (5.71 

where 

1 , (S23, t 2 ) = ~ 0  ( 1 (t2-m2)2 +! t '2 -2212_~ 
4 2s23 2s23 ] . 

(5.8) 

We now examine the phase space integrals and convert the produced (n+~r - )  to a 
body of  momentum Q = ql  + q2 in order to approximately factorize the phase space. 
The production cross section is 

o2~ 4 - _ _  
d4 p i )1 4 , 

- . ~ ( p a + P b + q l  +q2-Pa-Pb) 2s i=1 (s.9) 

X I / '2_412 . 

Converting to the d4Q integration and using T24 in (4.7) and (4.8) we obtain 

6 2 G a (2gp) 2 do _ ~ p 
ds23 2(27r) 8 s 2 1312 , 

(5.~o) 

where 13 is the pseudo-three-body phase-space integration for Pa + Pb ~ P'a + Pb + Q" 

= _ _  d s  1 13 sS f d s 2 f  d4p'ad4p'bd4Q6(Q2 s2316(p'2a -m2a) (5.11) 

- 6 ' 4 , , X 6(/9; 2 m 2 1 6 ( ( p ' a + Q ) 2 - S l  t ( ( P b + Q ) 2 - s 2 ) 8  (pa+Pb+Q-pa-Pb) 

X exp{2~( t  1 + t3)}. 

12 is the two-body phase-space integral for pomeron + pomeron ~ 7rTr : 
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12=fd4q 1 d4q2 6 ( q ~ -  m 2 ) 6 ( q ~ - r n 2 ) 6 4 ( Q - q l -  q2) I ~ [  2 . (5.12) 

In order to complete the factorization of  phase space we have deleted the dependence 
on t I and t 3 in the limits of  integration o f I  2 by making the effective approximation 
o f t  1 = 0, t 3 = 0.12 is then a function only ofs23 : 

t + 

12-- ~ f dt 2 L*(523, t2)l 2 (5.13) 
t 

whe re 
1 

t -+ l + m 2 + _l [s23(s23 - 4m2)] f (5.14) = ~-523 - 2 

In 13 the inner integrals for three-body phase space with exponential momentum 
transfer damping have been performed exactly by Chan, Kajantie and Ranft [20] * 
with the result 

7r2_2 f A sinh X 
13=4s02 ds 1 ds 2e X ' 

(5.15) 

where 

A =f2[s  I +s 2 - 2 s + 3 m  2 + 3 m  2 

l (m2 m2) ( s  2 s 1 m 2 +m2) ]  
S - -  - -  a 

~(s, m 2 mb 2 ) a '  

X 2 - - -  ~22 {X(s, s 1 , m 2) + ~(s, s 2, m 2) 
s 2 

(5.16) 

+ 2 s ( s - s  1 - s  2 -  m 2 -  m2b + 2s23 ) -- 2(s l - mb2)(s 2 -  m2)) a 
(5.17) 

X(x, y ,  z)  = x2  + y 2  + z 2 2 x y  - 2y z  - 2 z x  . (5.18) 

The boundary of integration is given by the Kibble function 

m 2 mb2)=0 G(s  1, s 2, s, s23, a '  (5.19) 

* The integral is, in fact, l o f  the value given in this reference. 
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where 

G ( x ,  y ,  z ,  u ,  o, w ) =  x y ( x  + y - z u - v - w )  + z u ( z  + u - x - y - v - w )  

+ o w ( o  + w  - x -  y - z - u )  + x z w  + y z v  + x u u  + y u w .  (5.20) 

The boundary is also subject to the additional constraints imposed on the data by 
LZR [7] to isolate the multi-Regge region 

Sl ~> 2GeV2 ' s2 >/4GeV2 ' s3 = (P'a + p ; )2  >/4GeV 2 " (5.21) 

LZR also impose cutoffs on the momentum transfers t 1 and t 3 which we have neg- 
lected since they are effectively included by the damping in t 1 and t 3. 

6. Results and conclusions 

Our most striking result is the enormous value of  the cross section o2~ 4 in the 
LZR region (5.21) computed using the continuation function (3.2) with the large 
double pomeron exchange strength gp = 70. Computing 12 and 13 numerically and 
using (5.10) we find for the cross section in the LZR region of  phase space 

2.25 G e V  2 

f do o2~ 4 = ds23 ds23 ~ 30 m b .  (6.1) 
4 m  2 

This is even larger than the total o2__. 4 _~ 5mb and very much larger than the cross 
section in the LZR region of  phase space _LZR 02__. 4 ~ 90 ktb. This is a reflection of the 
occurence of  the large double pomeron exchange strength gp linearly in the pioniza- 
tion region but quadratically in the two-particle -~ two-particle production cross 

a 2 
(t  2 m ) section. Even exponential damping in t 2 like e - in the continuation only re- 

duces o2~ 4 by order 1/a. 
An alternative and perhaps more reasonable way of presenting this result is to 

find what is the largest value ofgp  consistent with the LZR analysis and comparing 
this with the coupling strength found in pionization. The LZR analysis find for 
02 4 in the double Regge region (5.21) integrating over s23 from 4m 2 to 2.25 GeV 2 -~  
the value 02__+ 4 = 90~tb. From studying the distributions in s 1 and s 2 in LZR, which 
show that the cross section comes mainly from (P, P') and (P,o) exchange, we can 
estimate that the double-pomeron contribution is at most a tenth of  this or 10/ab. 
To reduce (5.1) to this value requires gp to decrease to 

gp ~< 1 (6.2) 

for LZR. Thisgp would only give about i of  the observed pionization. 
The continuation and calculation of  the cross section has also been carried out 
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with the symmetrized form (3.16) and (3.17). This form only alters xp from (5.8) to 

= l ( 1  ( ! 2  t;)2_t (6.3) 

SO + 4s23 ] " 

The result for o~a~lc 4 are about 50% higher for this form than for (5.8), which is not 
a significant difference. 

To check that the problem of  reconciling the pionization and production experi- 
ments lies in the continuation model and not in the double Regge structure, we 
have calculated the production cross section in the LZR region from pion pole ex- 
change in the coupling pomeron + pomeron -+ 7r + + 7r-. Since the on-shell pomeron 
- rr - rr coupling has already been exhibited in (2.9), we simply replace gp by 1 and 
replace 1/SoFby the pion propagator l/(t  2 - m 2) to obtain the pion-pole domin- 
ated two-particle -+ two-particle amplitude. With the term ql ~ q2 added, the cal- 
culation is carried out as before but with qs in (5.8) replaced by 

- -  1 

'I, po ~ , ( 6 .4 )  

The resulting cross section for the LZR region (5.21) is o~°~ = 50/~b, which is be- 
low the 90/lb observed by LZR. 

In addition to the model for F(K) studied in this paper, the formalism presented 
above for calculating the magnitude of the six-point amplitude from pionization and 
for computing the two-particle ~ four-particle cross section can be applied to other 
models of  the continuation from pionization to production. In another paper we 
carry out the continuation with the dual resonance model using the formalism of  
this paper. The results of  the dual resonance model also give too large a value for 
o2~ 4 using the magnitude o fgp  from pionization. 

The importance of  the inconsistency presented here is that it uses current dynamic 
al models of  inclusive hadron production which successfully predict the qualitative 
behavior of  those experiments, but it demonstrates that they are still quantitatively 
unsuccessful. Some calculations on the multiperipheral model used in this paper by 
inserting physical cross sections are quantitatively below the observed magnitude of  
pionization by about an order of  magnitude. This is reflective of  our result of ac- 
counting for only 1 of  the observed pionization using gp ~< 1 consistent with LZR. 
A related problem is that using only the physical coupling strength in the multiperi- 
pheral model will not give an output trajectory near 1. 

Another source of  the inconsistency may be the analyticity structure in K used 
to satisfy the Steinmann relations. Dynamically it was the ( - K )  -c~ -+ - 1/K term in 
F(K) that led to the numerically large result for o2~ 4. This analyticity structure has 
been verified for double Regge coupling only in planar graphs and in dual resonance 
models, which are just the type that lead to the inconsistency observed above. Re- 
cently, Brower and Weis [21 ] have shown that this type of  analytic form for double 
Regge coupling would cause a pomeron of  intercept 1 to decouple from total cross 
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sections. Fur ther  investigations of  the analyt ic i ty  structure in K are suggested bo th  

by the Brower  and Weis result and by the numerical  inconsis tency demonst ra ted  in 

this paper. 
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