
UC Riverside
UC Riverside Electronic Theses and Dissertations

Title
Managing Mobile Applications in Resource Constrained Settings

Permalink
https://escholarship.org/uc/item/3kr0s5ch

Author
Dao, Tuan Anh

Publication Date
2017

Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/3kr0s5ch
https://escholarship.org
http://www.cdlib.org/

UNIVERSITY OF CALIFORNIA
RIVERSIDE

Managing Mobile Applications in Resource Constrained Settings

A Dissertation submitted in partial satisfaction
of the requirements for the degree of

Doctor of Philosophy

in

Computer Science

by

Tuan Anh Dao

March 2017

Dissertation Committee:

Dr. Srikanth V. Krishnamurthy, Chairperson
Dr. Amit K. Roy-Chowdhury
Dr. Eamonn Keogh
Dr. Jiasi Chen

Copyright by
Tuan Anh Dao

2017

The Dissertation of Tuan Anh Dao is approved:

Committee Chairperson

University of California, Riverside

Acknowledgments

I am grateful to my advisor, Prof. Srikanth Krishnamurthy, for his guidance, understanding

and encouragement. I would not be able to finish my Ph.D. program without him.

I would also like to thank Prof. Harsha Madhyastha, and Prof. Amit K. Roy-Chowdhury,

who have given me many valuable suggestions to finish my research projects. Furthermore,

I am thankful to the contributions of all co-authors of my published conference and journal

papers, whose contents are included in this dissertation. Specifically, chapter 2 and 3 were

published in ACM CoNEXT 2014 and IEEE ICDCS 2015, respectively. The content of

chapter 4 is under submission to IPSN 2017.

I am grateful to the members of my dissertation committee, who have given me many

constructive and directive advices to finish this dissertation.

Finally, I want to express my deepest gratitude to my wife and my parents for their sacrifices,

understanding and support. They have always been the source of my strength to finish this

prolonged Ph.D. journey.

iv

To my wife and my parents for all the support.

v

ABSTRACT OF THE DISSERTATION

Managing Mobile Applications in Resource Constrained Settings

by

Tuan Anh Dao

Doctor of Philosophy, Graduate Program in Computer Science
University of California, Riverside, March 2017
Dr. Srikanth V. Krishnamurthy, Chairperson

Even though wireless and mobile devices have evolved with richer capabilities,

resources in such devices are still limited, and thus in many cases, are insufficient to ac-

complish the tasks entrusted in them. The goal of my work is to improve the efficiencies of

applications on wireless and mobile devices, focusing on resource constrained settings.

First, we develop TIDE, a user-centric framework that helps to identify high energy

consuming applications on users’ smartphones. TIDE identifies energy hungry applications

by looking at the correlation between applications’ activities and high drainage periods on

the smartphones. Experiments on Android smartphones show that TIDE is able to identify

correctly ≈ 90% of the energy hungry applications, while imposing reasonably low energy

overheads.

Subsequently, we develop a framework to identify redundant images uploaded from

multiple wireless devices in bandwidth constrained networks, e.g., the destructed networks

at natural disaster scenes. Our framework intelligently combines state-of-the-art vision

techniques to identify redundant images uploaded to a server. Suppressing the transfer

vi

of redundant contents significantly lowers network load, so that the delay in transferring

unique and important contents in such critical scenarios is reduced up to ≈ 44%.

We then design ACTION, a framework for accurate and timely object (e.g., hu-

man) detection in bandwidth constrained settings. In ACTION, the objects of interest

are effectively detected at individual camera sensors. Metadata of detected objects is then

aggregated at a designated fusion node to improve the detection accuracy. Most accurate

information of each detected object is then chosen to upload to a central controller, while

adhering to the bandwidth constraints. We show that ACTION helps reduce up to three

folds the amount of transferred data, while still delivering important information to the

central node.

Finally, we design EECS, a framework for adaptive detection algorithm selection

in multi-camera settings. In EECS, only a subset of camera sensors is chosen to detect

objects; further, the most energy efficient algorithm is assigned to each camera to reduce

energy consumption, while still ensuring a desired accuracy. We show that EECS can be

tuned to achieve the right trade-offs between energy efficiency and desired accuracy.

vii

Contents

List of Figures xi

List of Tables xiii

1 Introduction 1

2 TIDE: A User-Centric Tool for Identifying Energy Hungry Applications
on Smartphones 7
2.1 Introduction . 7
2.2 Related work . 10
2.3 Showcasing user-centric app behaviors . 13

2.3.1 Impact of network conditions . 13
2.3.2 Impact of user behaviors and phone features 15

2.4 Challenges in designing TIDE . 20
2.4.1 Lack of OS support . 20
2.4.2 Challenges in associating energy consumption to specific apps 23
2.4.3 Multi-modality of apps . 25

2.5 TIDE: Architecture and Implementation . 26
2.5.1 System architecture . 27
2.5.2 Implementation details . 32

2.6 Evaluation . 38
2.6.1 Collection of real user workloads . 38
2.6.2 Building the ground truth . 41
2.6.3 Evaluating TIDE . 44

2.7 Discussion . 56
2.8 Conclusions . 58

3 Managing Redundant Content in Wireless Constrained Settings 59
3.1 Introduction . 59
3.2 Related Work . 64
3.3 Efficient, lightweight detection of redundancies in images 65

3.3.1 Our framework in brief . 65

viii

3.3.2 Phase 1: Use of a coarse-grained global feature 70
3.3.3 Phase 2: Using fine-grained local features 71
3.3.4 Phase 3: Thumbnail feedback . 79
3.3.5 Handling parallel transfers of similar content 79

3.4 System Implementation . 81
3.4.1 Image server . 81
3.4.2 Client application . 85

3.5 Evaluation . 88
3.5.1 Training and test image sets . 88
3.5.2 Experimental setup . 91
3.5.3 Accuracy of detecting similar content 92
3.5.4 Impact of redundant content suppression on network performance . 96
3.5.5 Impact on energy consumption . 101
3.5.6 Overhead due to thumbnails . 102
3.5.7 Improvement in network performance with our framework in practice 102
3.5.8 Evaluations via simulations . 104

3.6 Discussion . 105
3.7 Conclusions . 107

4 ACTION: Accurate and Timely Situation Awareness Retrieval from Band-
width Constrained Wireless Cameras 108
4.1 Introduction . 108
4.2 Related work . 113
4.3 The ACTION framework . 116

4.3.1 Overview . 116
4.3.2 Object detection at individual cameras 118
4.3.3 Putting things together: Jointly considering overlapping views . . . 121
4.3.4 Transferring the most relevant information given bandwidth constraints128

4.4 Implementation . 132
4.5 Evaluations . 136

4.5.1 Training and test datasets . 136
4.5.2 Improving detection accuracy with overlapped camera views 137
4.5.3 Resource usage . 142

4.6 Conclusions . 144

5 Energy Efficient Object Detection in Camera Sensor Networks 146
5.1 Introduction . 146
5.2 Related work . 150
5.3 Video comparison using domain adaptation 152
5.4 EECS system design . 156

5.4.1 Offline training . 158
5.4.2 Resource-aware algorithm selection 159
5.4.3 Global detection accuracy . 162

5.5 Implementation . 165
5.5.1 The camera sensors . 166

ix

5.5.2 The central controller . 167
5.6 Evaluations . 168

5.6.1 Estimating the detection accuracy 171
5.6.2 Evaluating video similarity using domain adaptation 173
5.6.3 Benefit of adaptively choosing the detection algorithms 174
5.6.4 Should the highest accuracy algorithm always be used? 176
5.6.5 Adaptive choice of algorithms in EECS 177

5.7 Discussion . 179
5.8 Conclusions . 180

6 Conclusions 182

Bibliography 184

x

List of Figures

2.1 Network impact on energy . 14
2.2 YouTube’s energy consumption when playing different videos 14
2.3 MusicFolderPlayer’s energy consumption . 16
2.4 TIDE’s energy consumption vs. sampling rates 23
2.5 Number of active apps . 23
2.6 TIDE architecture . 26
2.7 Building ground truth on power consumption of an app 43
2.8 Accuracy of TIDE with user interaction based ground truth 43
2.9 Accuracy of TIDE with resource usage based ground truth 46
2.10 Accuracy of TIDE with different amounts of data 46
2.11 App Classifier’s processing time on different phones 56
2.12 Space used to store Process Monitor’s logs 56

3.1 Our framework for determining and suppressing images that contain similar
(redundant) information . 66

3.2 An example of visual phrases between two images 78
3.3 Search time for different values of k with knn 85
3.4 Percentage of images similar to an incoming image found 85
3.5 Accuracy with different histogram thresholds 92
3.6 Accuracy with different GVP similarity scores 92
3.7 Accuracy with different numbers of image thumbnails 92
3.8 Accuracy with different number of words in the codebook 92
3.9 Impact on network load and image transfer delay (Ideal case with 100%

detection accuracy) . 98
3.10 Varying the proportion of similar images at the server (Ideal case with 100%

detection accuracy) . 98
3.11 Upload delay with different proportions of similar images (Ideal case with

100% detection accuracy.) . 99
3.12 Impact on Energy . 99
3.13 Overheads from thumbnails . 99
3.14 Upload delay with our framework (True Positive rate ≈ 70%) 99
3.15 Uplink Network traffic with our framework (True Positive rate ≈ 70%) . . . 103

xi

3.16 Delay vs load with WiFi (ns3) . 103
3.17 Delay vs load with LTE (ns3) . 104

4.1 Architecture of ACTION . 115
4.2 Camera intrinsic information . 122
4.3 Distances between windows of the same and different humans 139
4.4 Distances between color features of the same and different humans 139
4.5 Average recall values with different numbers of cameras 140
4.6 Accuracy rate when combining data from more than one camera 140
4.7 Image processing time . 140
4.8 Average detection probability under different bandwidth constraints 140
4.9 Bandwidth usage . 143
4.10 Energy overheads . 143

5.1 EECS system for adaptively choosing detection algorithms in a camera network.157
5.2 Interactions between the sensors and central controller 165
5.3 Achieved accuracy with different detection algorithms, dataset #1 and #2 . 175
5.4 Trade-off between accuracy and energy cost to process dataset #1 175
5.5 Detected humans vs. energy consumption for dataset #1, with different

energy budgets . 175
5.6 Detected humans vs. energy consumption for dataset #2 179

xii

List of Tables

2.1 power profile.xml . 16
2.2 An app’s energy consumption varies with network conditions 47
2.3 Comparing TIDE and other approaches . 51

3.1 Summary of techniques combined to form our framework 68
3.2 An example of min-hash functions: Four permutations of label assignments

are shown. 77

5.1 List of symbols used in computing video similarity 153
5.2 Accuracy of different algorithms on dataset #1, camera #1, frame 0→1000,

used as a training video item. 172
5.3 Accuracy of different algorithms on data set #2, camera #1, frame 0→1000,

used as a training video item. 172
5.4 Accuracy of different algorithms on dataset #1, camera #1, frame 1001 →

2950, used as a test item. 173
5.5 Video similarities computed using the manifold distance 174

xiii

Chapter 1

Introduction

Wireless and mobile devices are widely used in many activities in our modern lives.

Even though wireless devices have evolved with richer capabilities, resources in such devices

are still limited, and thus in many cases, are insufficient to accomplish the tasks entrusted in

them. For example, it is not very uncommon for a user to find out her smartphone running

out of battery during a prolonged working day. As another example, in a surveillance

system where wireless camera sensors connect to a central controller via a bandwidth limited

network, the volume of data generated by the sensors might be significantly higher than

the network capacity. In such cases, data cannot be timely and fully transferred back to

the controller to provide situation-aware information about the scene.

Motivated by such concerns, our works have been focusing on improving the ef-

ficiency of mobile/wireless applications, especially in the resource (e.g., energy and band-

width) constrained settings.

1

In our first project, our primary goal is to help normal smartphone users to un-

derstand the energy efficiency of the applications they have been using on the phones, and

then identify the energy hungry applications. There are thousands of mobile applications

currently on the market; however, we believe that normal users are not fully aware of the

energy efficiency of the applications they have installed. For example, if the phone is drain-

ing battery faster than usual, among the running applications, it is not always possible for

the user to tell which applications are the real culprit for such high drainage. For that

reason, we develop TIDE, a framework to efficiently detect energy hungry applications on

smartphones. As our target is the normal smartphone users, our framework does not re-

quire the user to root her device, which might void the phone warranty, or to make any

modifications to the phone operating system (OS). Our user-centric framework is able to

classify an application as energy hungry, or energy efficient, based on the actual usage pat-

tern of the user on her particular phone, without using a crowd sourcing approach [1]. We

conduct a thorough evaluation of our framework by a user-study which involves ≈ 20 An-

droid smartphone users at UCR (IRB HS-13-076). The result shows that, TIDE is able to

correctly identify 225/238 high energy consuming applications, while imposing only 0.5% of

overhead on the average consumption of the phones battery per hour. Our implementation

focuses mainly on Android smartphones, due to the open nature of this platform; however,

the principles of the approach can be applied to other platforms as well.

In our second project, we pay attention to reduce the degree of redundancy in

images/videos uploaded by multiple wireless devices in a bandwidth limited scenario, e.g.,

in a natural disaster rescue mission. Studies have shown that when a disaster happens,

2

people produce and upload a great amount of media contents (images/videos) in order to

report about the situation, or to assist the rescue team. In addition, autonomous robots

could also be deployed to take pictures at the scene and upload those pictures to a central

controller. Unfortunately, in such scenarios, available bandwidth is limited because the

network infrastructure is usually partially destroyed by the disaster [2, 3]. The constraints

in network connectivity, together with the high volume of uploaded data, would hinder

communication, or even worse, cause network outages in such life threatening scenarios.

Prior studies showed that the pictures and videos taken and uploaded in those scenarios

eventually contain a high degree of redundancy, e.g., 50% of the images uploaded during

the San Diego wildfire are nearly identical or similar [4], and thus, are redundant. Our

primary goal is to develop a lightweight, yet powerful, framework that can detect if an

about to be uploaded image has a similar version on the server. If that is the case, the

server should notify the devices to suppress such uploads, or defer until the network is less

congested. Doing so helps save precious bandwidth for unique content, which could be more

useful in assisting the rescue mission. In our approach, only compact meta-data from the

images is used to detect image similarity with a high accuracy rate. In the final phase of

our approach, user feedback is also leverage to boost the true positive rate.

We implement and evaluate our approach on a 20-node Android smartphone

testbed in various conditions with the Kentucky [5], and an US cities image data set that we

put together. We find that our multi-stage approach for uploading images correctly identi-

fies the presence of similar images on the server with ≈70% accuracy, while ensuring a low

false positive rate of 1%. More importantly, our framework’s suppression of uploads of simi-

3

lar content enables the network to tolerate 60% higher load (for target delay requirements),

as compared to a setting without our framework.

In our third project, we focus mainly on the object detection problem, especially

the human detection problem, which has significant meaning in rescue and tactical missions.

Natural disasters usually have a high associated human cost; for example, the recent Nepal

earthquake killed more than 8,000 people, injured more than 14,000 and over 300 people are

still missing [6]. Today, advanced technologies can help in significantly enhancing search

and rescue missions; sensors, often with camera capabilities can be deployed in the field,

to provide situational awareness back to a central controller. However, in such scenarios,

the bandwidth may be limited, and transferring video content from all of the cameras may

not only be wasteful, but may delay the transfer of key information with regards to human

victims. Furthermore, transferring all video may cause an inherent information overload

on a human who mans the central controller. Thus, we seek to design a framework, that

facilitates the transfer of proper situational awareness information from a camera network

to a central controller, when subject to significant bandwidth constraints.

ACTION, our framework for timely and accurate human detection, consists of

three main components: (i) Camera sensors where the actual object (e.g., human) detection

happens, (ii) a fusion node to boost the accuracy and choose the best relevant information

for uploading, and finally (iii) a central controller node where detection information is used

to assist the rescue mission. At the sensor cameras, we leverage state-of-the-art computer

vision techniques to detect the presence of objects (e.g., humans) with low overheads and

high accuracy. Meta data information of detected objects are sent to a designated fusion

4

node to improve accuracy. At the fusion node, detection information of the same humans,

captured from different views/cameras is aggregated by using spatial and color features.

For each detected object, the image frame with the highest confidence values (detection

probabilities) are chosen to transfer to the controller node, adhering to the given bandwidth

constraints.

We implement ACTION on Android devices preloaded with a dataset that consists

of video sequences captured from 4 different cameras [7]. Our evaluations show that by

considering views from multiple cameras, ACTION detects ≈ 20% more humans than using

the video from a single camera. Further, with multiple cameras, it achieves a very high

accuracy rate of ≈ 90% (with a single camera it can be at most ≈ 72 %). In terms of

resource usage, ACTION can reduce the bandwidth usage threefold, compared to uploading

all the detected frames directly to the central controller. In addition, with ACTION, even

though information from 4 cameras is used, the amount of transferred data is only ≈ 1.4

times higher than the amount of data transferred when one camera is used, while providing

a significant higher detection accuracy. The energy overhead with ACTION is 102 J at the

camera node and 39 J for the fusion node to process a video sequence of 3.2 minutes; this

low consumption allows a camera node to last for about 19 hours (assuming a smartphone

battery).

In our latest work, we design and implement EECS, a framework for energy efficient

object detection in camera sensor networks. EECS supports the co-ordination across a set of

camera sensors to achieve a desired object detection accuracy but while achieving significant

energy savings. Specifically, the framework ensures that cameras do not all unnecessarily

5

use highly optimal but energy heavy video processing algorithms for object detection. In

essence, it facilitates the adaptive choice a subset of cameras, and causes some of the chosen

cameras to use sub-optimal detection algorithms to conserve energy while still achieving

the pre-defined desired accuracy. Our evaluations on 3 different datasets show that, EECS

helps save more than 40% of the energy consumed compared to a case where all cameras use

the optimal algorithm for detection and transfer key images relating to detected objects;

however, it still achieves ≈ 86% the accuracy achieved when the best algorithms are used at

all of the camera nodes. EECS can be tuned to achieve the right trade-offs between energy

efficiency and desired accuracy.

The rest of the dissertation is organized as follows. Chapter 2 describes TIDE,

our framework to detect high energy applications on smartphones. Chapter 3 represents

our work on building a lightweight yet effective framework for image similarity detection.

Chapter 4 describes ACTION, our framework for timely and accurate object detection in

bandwidth constraint settings. Chapter 5 presents our latest work, the EECS framework for

energy efficient object detection. Finally, chapter 6 provides the summary and conclusions

of my work.

6

Chapter 2

TIDE: A User-Centric Tool for

Identifying Energy Hungry

Applications on Smartphones

2.1 Introduction

While smartphones are evolving with richer capabilities and more powerful hard-

ware, their batteries are not keeping up. Coupled with the explosion in the number of

applications1 for smartphones, this trend has left users distressed about how long their

phone’s battery lasts even after a full recharge. A report in 2012 [8] says that ”Despite ac-

tivities such as web browsing, watching videos, and using downloadable apps have become

1We use the terms app and application interchangeably.

7

(sic) an everyday part of smartphone use, their impact on battery performance is largely

excluded from the data published by manufacturers.”

Need for a user-centric app profiling tool: While there exist tools that try to

quantify the energy consumption of smartphone apps, they are not user-centric. The target

for these tools are software developers who want to check for power inefficiencies in their

products before release. These tools either require the instrumentation of the smartphone

with specialized external equipment (e.g., a power meter), or require modifications to the

smartphone’s operating system (OS). A typical user cannot perform either. In addition,

these tools need to be run continuously to track an app’s operations, and hence consume

significant energy themselves.

Instead, it is desirable to have a tool that is capable of reporting which apps on a

user’s phone dominate battery consumption. This tool should not simply focus on detecting

apps that have energy bugs [9] or ignore user-specific factors that influence battery drainage

(e.g., as in [1]); for each user, it should identify apps that consume a disproportionate

amount of energy on that user’s phone. When run on a particular user’s phone, one could

envision this tool as roughly categorizing every app as energy-hungry, energy-thrifty, or

energy-moderate, based on how the app is used by the user and the environment in which

it is used. Once energy hungry apps are identified, a user can reduce her use of or cease to

use such apps when needed.

Challenges: Unfortunately, developing such a user-centric tool to detect high

energy apps on smartphones is a hard problem. Since normal users will be reluctant to

install modifications to the smartphone OS (this voids the phone’s warranty), the identi-

8

fication of energy-hungry apps must be based on information exported by the OS to the

application layer. This information is however insufficient for directly measuring the precise

amount of resources, and hence energy, consumed by any specific app. First, the OS only

reports aggregate resource usage metrics to the application layer. Second, at the application

layer, one can only measure the durations between instances when the residual battery life

decreases by 1%. During any one such interval, there are typically several apps running

simultaneously on the phone.

On the other hand, offline calibration of an app’s energy consumption is insuf-

ficient, since the determination as to whether a specific app is energy hungry critically

depends on how and in what setting the app is used. First, battery drainage is affected by a

variety of factors, including the features of the device, the processing invoked by each app,

and network conditions. Thus, the power consumed by the same app can significantly vary

across different settings. In addition, different users may interact with an app in different

ways (e.g., the energy consumed by a video sharing app can differ based on whether the

user views videos of high or low quality). Therefore, an app that is energy hungry on one

user’s phone may not be so on another’s.

Due to all of the above factors, it is a significant challenge to tease out the apps

that are the real culprits with respect to energy drainage on a particular user’s phone.

Our contributions: In this paper, we first undertake an extensive measurement

study on a testbed of 22 Android phones. Our study demonstrates how differing network

conditions, device features, and usage patterns influence the energy consumed by apps. Our

study also highlights the challenges that need to be addressed in building a user-centric tool

9

as described above. These challenges include the need to (a) sample the information ex-

ported by the OS in an effective way, and (b) filter noisy data due to the typical co-existence

of multiple active apps on a smartphone. Finally, as our main contribution, we design, im-

plement, and evaluate TIDE, a user-centric tool that can be readily installed and used by

real users for identifying the energy hungry apps specific to their usage profiles. TIDE is

itself implemented as a smartphone app, which continually performs lightweight monitoring

of a user’s usage of apps and the resources that these apps consume. This information is

then fed to a classifier which efficiently categorizes apps as high, moderate, or low con-

sumers of the phone’s battery. In our evaluation of TIDE, based on a detailed emulation of

traces of usage patterns from 17 volunteer users, we find that it correctly estimates the level

of energy consumption for 225 out of 238 apps. Furthermore, TIDE delivers this level of

accuracy while imposing only 0.5% of overhead on the average consumption of the phone’s

battery per hour.

2.2 Related work

Android provides a battery manager tool [10] which estimates the percentage of

battery consumed by each app. It considers the resource consumption of an app with respect

to the number of CPU ticks, the number of bytes transferred over the network, the time

for which the display was active, etc. It uses a model-based estimate of how much energy

is consumed due to the use of a unit of each specific resource (e.g., per CPU tick, per TCP

byte transferred) and multiplies this value by the number of units of that resource used by

an app. The tool however does not account for several user-specific factors that influence

10

energy consumption per-unit resource, e.g., link quality influences the energy consumed

per byte transferred on the network. In Section 2.3, we show via measurements that these

factors can have a significant impact on an app’s energy consumption.

Prior efforts on estimating application-specific energy/power consumption can be

broadly classified into three major classes.

User-centric tools: Current tools that try to characterize the power consumed

by apps either use offline tests and/or fail to account for one or more factors that affect the

battery drainage due to an app. PowerTutor [11] estimates an app’s power consumption

due to its interactions with different hardware components (e.g., LCD, GPS, WiFi, and 3G

interfaces) based on a regression model. Unlike TIDE, a) PowerTutor itself consumes high

power since it queries the OS at a high sampling rate, b) it depends on per-app resource

consumption information, which is not readily available in newer versions of Android, and

c) it requires offline calibration for every device type.

Carat [1] uses crowdsourcing to estimate the energy impact of an app; it compares

battery drainage statistics with and without the app. This approach however fails to ac-

count for both user-specific app usage and user-specific network conditions, which can affect

battery behavior, as we show later. Further, unlike Carat, TIDE only runs on user’s devices

and performs all analysis locally on any particular device, i.e., there is no need for either

offline calibration or server-side aggregation. Falaki et al. [12] also highlight the impact of

user-specific factors on battery consumption; they suggest that ‘diversity’ across users in

terms of their app interactions can influence battery drainage rates. However, they did not

11

focus on the development of a tool such as TIDE for user-specific estimation of app energy

consumptions.

Determining energy bugs: Another body of work tries to detect energy bugs

in apps. Yoon et al. [13] use Kprobes, a Linux kernel module in Android, to track native

system calls for detecting anomalous behaviors. Pathak et al. [9] design a framework that

needs access to system calls and applications’ native code, in order to detect energy bugs.

However, such tools require an external power meter for energy measurements and/or the

modification of the underlying OS. eDoctor [14] identifies abnormal drain issues on phones

by comparing app behaviors with well known good versions. Their goal is different from

ours; we seek to identify apps consuming energy on individual users’ phones, regardless of

whether the high energy consumption is due to a bug.

Characterizing energy consumption by individual components: Finally,

there are efforts that try to assess the power consumed by smartphone components (as

opposed to apps). Shye et al. [15] build a model which estimates the breakdown of power

consumption in different hardware components, based on a set of apps. However, their

estimation does not work for new apps not present in this set. WattsOn [16] is an energy

emulator that uses power models developed offline for individual smartphone components.

However, to emulate an app’s usage pattern on WattsOn, we would need to capture a user’s

interactions with the apps on her phone, and collecting this information would require

rooting the phone; most users are unlikely to permit this. Most smartphones use battery

models to provide the user with coarse-grained battery usage statistics; Sesame [17] argues

that such models must be generated based on measurements using individual smartphones,

12

rather than offline in a lab setting. Carroll et al. [18] instrument the components of an

Android device offline, and measure the power consumed by each while running various

benchmarks. Balasubramanian et al. [19] focus specifically on the energy consumed by the

network using different technologies. eCalc [20] estimates the energy consumption of the

CPU when an app is executed by profiling the app’s binary. None of these efforts look into

developing a user-centric tool for identifying energy hungry apps.

2.3 Showcasing user-centric app behaviors

In this section, we present an extensive measurement study to demonstrate that

user behaviors, network conditions, and even phone features impact the energy consumption

of apps. These demonstrate that crowdsourcing (e.g., Carat [1]) cannot accurately account

for user-specific app behaviors. We also showcase the limitations of the Android system

tool in capturing energy consumption behaviors of apps.

2.3.1 Impact of network conditions

First, we show that the network types and link qualities significantly affect the

energy consumed by an app. We experiment with four HTC Touch 4G phones, each of

which uses a different network with different qualities. All the phones use the same email

account and we write a script to send emails to the logged in accounts. Emails are sent at

high (every 30 seconds), moderate (every 5 minutes rate) or low (every 10 minutes) rates.

We turn off the display and all background activities to make sure that the network I/O

is the only contributor to battery drain. The phones are notified of new emails via push

13

Strong WiFi
Weak WiFi
Strong 3G
Weak 3G

En
er

gy
 c

on
su

m
ed

 (k
J)

0

0.5

1.0

High Fair Low

Figure 2.1: Network im-
pact on energy

Dev1 Local Dev1 WiFi Dev1 3G Dev2 Local

En
er

gy
 c

on
su

m
ed

 (k
J)

0

0.5

1.0

Clip1 Clip2 Clip3 Clip4

Figure 2.2: YouTube’s energy consumption when
playing different videos

notification messages. These messages wake up the phones if they are in the sleep state. A

pair of phones use 3G connections, while another pair uses WiFi. For the pair of phones on

the same network, we put one phone at a location with good signal strength (between -69

and -55 dBm) and the other at a location with poor signal strength (between -103 and -97

dBm). We fully charge the phones before the experiment and measure the energy consumed

after 1 hour.

Results: Fig. 2.1 shows the battery drainage with each phone in different network

conditions. In poor signal conditions, as one might expect, (i) the amount of energy used

to transfer packets is higher [16], and (ii) the amount of corrupted packets is significantly

higher [21], which causes many packet retransmissions. Thus, the energy consumption is

much higher; for example, with a high volume of data, in 1 hour, the phone with poor

3G signal consumes more than 8% of the battery, while the phone with good 3G signal

consumes only around 5%.

Thus, these experiments show that the energy consumption of an app not only

depends on the amount of network traffic that it sends and receives, but also on the type and

quality of the network connection that the user experiences. We repeated the experiments

14

in this section with different pairs of phone models and different network providers, and we

still observed qualitatively similar results. We do not report the other results here due to

space limitations.

2.3.2 Impact of user behaviors and phone features

Beyond variance in network conditions, different users can potentially use the same

application quite differently, which can in turn affect that app’s energy consumption.

An example with YouTube: To demonstrate the impact of user-specific work-

loads on energy consumption, we perform experiments with YouTube. We play different

videos on a smartphone (Dev 1). Videos 1 and 2 are full screen; however, video 1 is of high

quality (480p) whereas video 2 is of default (360p) quality. Videos 3 and 4 cover 3/4th of

the screen when playing; again, the former is of high (480p) quality and the latter is of

normal (360p) quality. We play these videos on Dev1 when the video files are (a) stored

locally on the smartphone’s memory card, (b) downloaded over WiFi, or (c) downloaded

over 3G. Finally, we repeat case (a) with a different smartphone (Dev2). Dev1 is a Samsung

Galaxy SII and Dev2 is a HTC MyTouch 4G phone.

Results: The results of our experiments are shown in Fig. 2.2. On one hand, with

Dev1, we observe that streaming over 3G always consumes the most energy; streaming

over WiFi consumes slightly more energy than when playing local files. This reaffirms our

previous finding that, depending on the network coverage (3G versus WiFi) enjoyed by the

user, the energy consumption of an app can differ.

On the other hand, we also observe significant differences in the energy consumed

when playing different videos (all playing on the same device); between the two videos,

15

En
er

gy
 c

on
su

m
ed

 (k
J)

0

0.2

Full bright 50% bright Screen off

Figure 2.3: MusicFolder-
Player’s energy consumption

1: <device name=“Android”>
2: <item name=“screen.full”>211.6</item>
3: <item name=“WiFi.on”>1.38</item>
4: <item name=“WiFi.active”>62.09</item>
5: <item name=“WiFi.scan”>52.1</item>
6: <item name=“radio.active”>185.6</item>
(... file content is shortened for clarity...)

Table 2.1: power profile.xml

we see a difference of as much as 20% in terms of the time taken to deplete the battery

by 1%. Thus, depending on the video itself (rate of motion, black and white versus color,

etc.), its resolution (high quality versus low quality), and the display size, the YouTube

app’s energy consumption may vary. As the choice of video, resolution, etcḋepend on user

preferences and choices, the user’s behavior strongly influences the energy consumption of

this application.

Finally, we also observe differences in the energy consumptions across devices when

playing the same video file (from local memory). In fact, the difference is as high as 49%;

this is primarily due to the differences in the hardware on the two phones. Dev1 uses a Super

AMOLED Plus display, which does not require a backlight and is thus, more energy-thrifty

as compared to the LCD display on Dev2.

Other examples: While the above example was with respect to YouTube, other

apps also exhibit such multi-modal energy consumption patterns based on their usage.

MusicFolderPlayer: The MusicFolderPlayer app allows a user to either keep the

screen on or off when playing music. Depending on which option a user chooses to use, the

energy consumed by this app can vary. Fig. 2.3 shows the energy consumed by this app in

16

5 minutes in three different modes. As one might expect, if the screen is on, this app is a

high energy app; else, it behaves as a low energy app.

Angry Birds: We next consider a game app and observe varied energy consumption

depending on the expertise of the user playing the game. Specifically, we have two users

play the Angry Birds game for 10 minutes each. One user, who is well-versed with the

game, plays the game constantly and moves to higher levels of play. The other novice user

progresses through the game at a slower pace as he takes time figuring out how to play at

each level. On a Galaxy SII phone, we observe that the novice user’s usage of the game

consumes 0.72 kJ of energy as compared to the 0.91 kJ consumed by the expert user. This

amounts to a difference of 26.39 % (≈ 4.8 % in terms of the battery percentage consumed)

per hour of play.

The Android system tool does not account for user-centric factors: As

discussed in Section 2.2, the Android system tool attributes energy consumption to an app

based on its usage of specific resources. For each app, the tool records the number of units

of each hardware component used by the app. This number is multiplied with the average

energy consumption of the corresponding component to estimate the energy consumed by

the app due to the use of that component. The sum of these values across all components is

the energy consumed by the app. In an Android device, the average power consumption val-

ues of the various components (in mAh) are stored in the power profile.xml file provided

by the manufacturer; a shortened version of the file is shown in Table 2.1. Note that the

contents of the file are fixed and not updated (the energy information is not re-calibrated)

when the environment changes. We see that the average energy used by the WiFi interface

17

in one time unit is shown on line 4. Similarly, line 6 shows the average power used by the

cellular interface. It is evident that the network link quality is not accounted for by the

Android tool.

Further, from the source code of the tool [10], one can see that while computing

the energy consumption due to an app’s network activities, the tool does not differentiate

between the app’s use of WiFi and cellular networks. If the total amount of data sent and

received by all apps over the cellular and WiFi interfaces are mobileData and wifiData,

respectively, then the Android OS computes the average power consumed per byte as

(3GEnergyPerByte∗3GData+wifiEnergyPerByte∗wifiData)/(3GData+wifiData),

where 3GEnergyPerByte and wifiEnergyPerByte are obtained from the power model

(Table 2.1). For each app, the OS then computes the energy consumed due to network

activities by simply multiplying the average energy per byte computed above with the total

amount of data transferred by the app over all interfaces.

Since network conditions are not taken into account, the tool may not always

yield accurate outputs. To validate this hypothesis, we conduct an experiment wherein

three different applications read the same file in the memory card and send the content to

our server. The apps are run on the same device and use exactly the same source code

but send data in different network settings. We turn off the WiFi connection on the device

and run App1, thus causing it to send data over the 3G network. Subsequently, with WiFi

turned on, we run App2 at a location near an access point such that the device enjoys good

signal strength. Finally, App3 is run at a location with weak WiFi signal strength. The

Android system tool shows App1, App2 and App3 consume 2%, 3% and 3% of the phone’s

18

battery, respectively. These numbers are far from what we get from direct measurement

with a power meter; the measurements show that the three apps consume 6%, 1% and 2.5%

of the battery, respectively.

These experiments show that results from the Android System tool do not capture

changes in the energy due to specifics of the usage environment (the actual conditions) in

which the user applications are executed; in other words, the tool is not user-centric.

Solutions such as Carat [1] cannot be easily extended to account for

user-centric behaviors: By its very nature, crowdsourcing (the basis for Carat [1]) ignores

user-specific characteristics of apps. We downloaded and tested Carat on our own Android

phones for a week. Carat classified two of our appsGoogle Maps and Skypeas energy hogs.

However, we had only used Google Maps for a very short time during the study and it barely

consumed any energy. Further, we used Skype with audio only and over WiFi, because of

which it consumed little energy; Carat classified it as a energy hog since most users used

it with video. Other users of Carat have experienced similar issues [22]. One can think of

extending Carat to check if an app is an energy hog on a particular users phone by comparing

energy consumption on that phone across periods when the app was active/inactive. We did

examine this approach with a rudimentary implementation but found that it mis-classified

low energy apps as high energy ones. This was primarily because such apps often executed

simultaneously with other high energy apps, and it was difficult to isolate their behaviors

in terms of energy consumption. Further, the approach did not account for multi-modal

behaviors of apps (described later in section 2.4.3). We address these challenges in TIDE.

19

Summary: Our experiments show that the energy consumption of an app depends

on several factors: (i) network conditions experienced by the user, (ii) her usage patterns,

and (iii) her device’s characteristics. This highlights the need for user-centric classification

of apps, i.e., it must account for the user’s typical profile in terms of the above factors.

2.4 Challenges in designing TIDE

Having motivated the need for a user-centric tool for identifying high energy apps,

we now highlight the challenges in building such a tool on the Android platform. Based

on our preliminary studies, we believe that iOS has similar limitations and poses similar

challenges.

2.4.1 Lack of OS support

Developing TIDE would be easy if smartphone OSes monitored all the activities

or resource usage of every app and exported this information to all other apps. However,

as one would expect, smartphone OSes either do not record the necessary details for energy

efficiency or hide this information because of security concerns. As a result, smartphone

OSes complicate the development of TIDE in several ways.

Lack of precise energy usage information: In prior work, researchers have

either instrumented smartphones with devices such as the Monsoon meter [23], or plugged

special sense resistors into hardware components on the phone to measure the energy con-

sumed [18]. Such setups were then used to either measure the energy consumption of a single

app in isolation or to build power models of individual hardware components. In contrast,

20

for our goal of developing the TIDE app, smartphone OSes do not provide such precise

measurements of energy consumption. The only energy-related information exported by

the OS is the battery level, which is reported with a 1% granularity.

Thus, TIDE’s estimation of energy consumption by apps has to be based on its

observation of when the phone’s battery level changes, i.e., drops by 1%. Hereafter, we refer

to each time period in which the battery drains by 1% as simply an interval. In Section 2.5.2,

we elaborate on how this information can be captured on the Android platform.

Lack of app-specific resource usage information: A potential approach to

side-step the limitation of the lack of precise energy information is as follows. For each

type of phone, one can construct an accurate power model for every hardware component

(e.g., LCD display, network interfaces, and CPU) in every environment (e.g., LCD power

consumption as a function of brightness and 3G power consumption as a function of signal

strength). Discounting the fact that gathering such a power model will be cumbersome,

TIDE can then estimate the energy consumption of any particular app by 1) monitoring

the environment in which the phone is used and the app’s usage of each of the phone’s

components, 2) for every component, multiplying the app’s usage of that component with

the power coefficient value of the component, and 3) summing up this value across all

components.

Unfortunately, such an approach would be hard to implement on today’s smart-

phone OSes since, for many of the phone’s hardware components (e.g., display, GPS), the

OS only provides aggregate resource usage for the whole phone and not for each individual

app. For example, to track LCD usage, Android permits an app to register for the events

21

corresponding to the screen being turned on or off. While this would enable TIDE to de-

termine the time for which the phone’s LCD was on, it cannot determine how much of this

usage can be attributed to each app on the phone. Thus, when many apps are running

simultaneously, though the OS lets an app query for the list of all other apps active on

the phone, it would be difficult for TIDE to partition the aggregate resource consumption

across these apps.

While the OS does track and export per-app usage of some resources, there are

complications involved even in their use. For example, Android maintains two files—/pro

c/uid stat/[uid]/tcp snd and /proc/uid stat/[uid]/tcp rcv—which list the amount

of TCP traffic sent and received over the network (both 3G and WiFi) by an app; here uid

is the unique identifier of the app on the device. However, this feature is optional and is

disabled in some phone models (e.g., Galaxy Nexus and Sony Ericsson Xperia X10 Mini

Pro); thus, on such phones, a user will have to root the phone and install a new kernel

for the OS to be able to track TCP traffic. Moreover, power consumption of the network

interfaces also depends on packet arrival rates, which determine the energy drainage during

transmission tail periods [24].

The only resource whose usage TIDE can track on a per-app basis is the CPU. On

Android, every running app has a unique process ID (pid) and its CPU usage is provided in

the file /proc/[pid]/stat. The CPU usage time is measured in ‘system ticks’. In Android,

the number of ticks per second is usually set to 100 [25].

Overhead of querying information: One way to cope with the availability of

only aggregate resource usage information would be to have TIDE query the OS frequently

22

0.50%

1.07%

1.60%

3.20%

En
er

gy
 c

on
su

m
ed

 (k
J)

0
1
2
3
4
5
6
7
8

30s 10s 5s 1s

Figure 2.4: TIDE’s energy consumption vs.
sampling rates

0 5 10 15 20
0

0.2

0.4

0.6

0.8

1

Number of applications in an Interval

C
D

F

20 ticks
50 ticks
100 ticks
150 ticks

Figure 2.5: Number of active apps

(e.g., every second). TIDE can then attribute all the resource consumption in the last

second to the app that was actively used in that period. On the Android OS, TIDE can

discover the app currently being used by querying the OS for the foreground app. However,

frequently querying the OS for both the foreground app and the usage of all resources can

itself consume high energy. Fig. 2.4 shows the power consumed over an hour when querying

Android on a Galaxy Nexus phone at different rates; we perform this measurement on a

phone where only our querying application was active and all other apps were disabled. If we

query every second, TIDE would itself consume 3.2% of the battery in an hour on the tested

phone. Consuming over 3% of the phone’s battery every hour would make TIDE prohibitive

for use. On the other hand, if we query every 30 seconds, the querying application only

consumes 0.5% of the battery in an hour; however, this leads to the challenges discussed

next.

2.4.2 Challenges in associating energy consumption to specific apps

It is difficult to tease out app-specific energy consumption from the inherently

noisy data that the OS provides when queried less frequently (e.g., once every 30 seconds).

To show this, we not only perform select experiments on our smartphones, but also rely on

23

measurements from the smartphones of real users. Specifically, we distributed an Android

app to 17 volunteer users with IRB approval (details later in Section 2.6.1).

Co-existence of multiple active applications: A major obstacle in attribut-

ing the energy consumed to a specific (say target) app is that there are many co-existing

active apps when the target app is running; in our measurements, almost all intervals con-

tain multiple concurrently active apps. There are several reasons for this. First, there

are background processes (including system processes) that continuously run on a phone.

Second, users often switch between multiple apps; for example, a user may switch between

checking email, posting on Facebook, and listening to music within a short time. Finally,

to reduce load times for recently used apps, Android keeps an app in memory even after

use; it kills the app only when the phone’s memory has to be devoted for other apps. Thus,

many recently used apps are included in the list of active apps reported by the Android OS.

To determine the apps in the active list that actually contribute to energy con-

sumption, we need to estimate their activity levels. One way to estimate an app’s activity

level is based on the app’s CPU usage (the OS can be queried for this information); note

that an app consumes a non-trivial number of CPU ticks even when it sends/receives data

over the network. Simply eliminating all apps that have consumed zero CPU ticks in the

interval is insufficient because some apps may use a little CPU only to periodically poll for

updates; these apps are unlikely to contribute much to battery drainage in that interval.

Hence, we need to use a threshold to filter out apps that were largely dormant. However,

determining a good threshold for CPU ticks is challenging; this threshold will depend on

the smartphone architecture and on an application’s implementation.

24

In Fig. 2.5, we plot the CDF of the number of simultaneous apps (from the dataset

for one user from our study) with different thresholds for CPU ticks. We see that if a low

threshold is used, we cannot filter out apps that run for short periods. For example, with

a threshold of 20 ticks, 60% of the intervals have more than 5 simultaneously active apps.

However, if the threshold is too high, a majority of apps are filtered out, some of which

may be energy hungry. Note that this profile (how many simultaneous apps are active in

an interval) is user-specific.

Work delegation between apps: Another major hurdle in attributing energy

consumption to specific apps is work delegation, which is possible on Android devices.

Specifically, the functions of one app are delegated to another app. One example of an

app that receives many such delegated functions is the Mediaserver app. Every media app

delegates data retrieval operations to Mediaserver; once Mediaserver has received data over

the network, the data is exported to the appropriate app. For example, when a user is

viewing a video with the YouTube app, the video streaming is delegated to the Mediaserver

app. A naive energy monitoring tool would hold Mediaserver responsible for the energy

consumed due to network transfers. Based on this information, since Mediaserver is a system

application that cannot be completely disabled, the user may continue to use YouTube as

normal and drain her phone’s battery. To be accurate, TIDE must identify YouTube as the

main culprit for energy drainage in this case.

2.4.3 Multi-modality of apps

Finally, the determination of energy hungry apps is complicated by the various

modes in which a single app can function. There are several apps that consume high

25

energy only when they use a high amount of a specific resource(s). As we show later in

Section 2.6.3.2, YouTube and Pandora are two examples of multi-modal apps. YouTube’s

classification as an energy hungry app depends on the network quality, whereas the Pandora

app consumes high energy only while the display is on. Therefore, TIDE must have the

capability to classify apps under different usage scenarios.

2.5 TIDE: Architecture and Implementation

Apps

Operating System

Uses System Reads usage info

for Network & CPU

Process
Monitor

Storage
App Classifier

T

I

D

E

Device Hardware

Notified of

Battery

and LCD info

User Interface

Figure 2.6: TIDE architecture

We next describe

the architecture of TIDE

and provide the details

of our implementation.

Since TIDE seeks to

capture user-centric at-

tributes, it runs on every

user’s own smartphone

and identifies energy hungry apps based on the user’s profile. Specifically, it inspects the cor-

relation of apps’ occurrences and high energy/resource usage periods on the phone. TIDE

seeks to identify the energy-hungry apps by long term profiling; thus, the more the user

invokes an app, the higher the accuracy of TIDE’s classification of the app.

We wish to point out here that when we classify apps with TIDE, we focus on the

energy consumption due to the CPU, the network interfaces, and the display. However, the

framework that we use in TIDE is extensible to account for other resources. For example,

26

one resource whose use is known to lead to high energy consumption is the GPS. Similar to

techniques that we describe in this section, TIDE can identify an app’s energy consumption

due to use of the GPS by correlating periods when the GPS is turned on with intervals in

which the app either has significant CPU activity or is in the foreground.

2.5.1 System architecture

Fig. 2.6 depicts the architecture of TIDE; it consists of two main components:

Process Monitor and App Classifier.

2.5.1.1 Process Monitor

TIDE’s first component profiles app behaviors on the user’s phone. Recall that the

smartphone OS does not provide fine-grained information with regards to energy consump-

tion; the only information that the OS exports are the durations between instances when

the battery level drops by 1% (intervals). The Process Monitor runs in the background and

keeps track of these intervals. At the end of each interval, it queries the OS for the resource

usage information in that interval. Specifically, it obtains information relating to (i) the

duration for which the screen was on during the interval, and (ii) the aggregate network

usage in that interval (in bytes). Within each interval, the Process Monitor also queries the

OS periodically (once every τ seconds) for a list of the running apps and the CPU usage of

each app in the preceding τ seconds. The information collected is stored in the phone’s SD

card and is later processed by the App Classifier.

Adaptive sampling: In TIDE’s querying of the OS once every τ seconds for a

list of active apps, there is an inherent trade-off in choosing a value for τ . On one hand,

27

the larger the value of τ , the more coarse grained the information obtained from the OS.

As a result, the query returns co-existing apps more often than not. Further, it cannot

accurately map resource usage to apps; this makes it especially difficult to capture multi-

modal behaviors. On the other hand, Process Monitor can query the OS more often (e.g.,

τ = 1 second), but this increases the energy overhead imposed by TIDE2.

To address this trade-off in TIDE, we use an adaptive sampling approach. Specif-

ically, Process Monitor queries the OS more often when the battery drainage is heavy (i.e.,

when it observes short intervals) and less often when battery drainage is minimal (long

intervals). The basis for this is that, in order to identify energy hungry apps, fine grained

information is required only during those periods when the rate of energy consumption is

high. In more detail, after a high-drainage interval is seen, the Process Monitor switches to

fine-grained sampling, and τ is set to 1 second. Typically, during high usage periods, short

intervals appear in bursts (we observe this in our experiments) and thus, the next interval

is also likely to be a short one. On the other hand, after k long (short-drainage) intervals,

the Process Monitor returns to coarse-grained sampling; in our implementation (described

later), we find that k = 1 works well and we set τ to 30 seconds for coarse-grained sampling.

We evaluate the overhead and efficiency with adaptive sampling in Section 2.6.

2.5.1.2 App Classifier

The output of the Process Monitor contains the set of co-existing apps detected

with each query, as well as the resource usage (screen/network) during an interval. The

2Note that the number of co-existing apps with τ = 1 sec is drastically lower than when τ = 30 secs, but
apps may still co-exist.

28

App Classifier takes this as an input and tries to identify the high-energy apps from this

noisy data. It performs this classification in three phases (summarized in Algorithm 1).

Phase 1: Using interval lengths to categorize apps: First, we observe that

longer intervals correspond to slower battery drainage and shorter intervals correspond to

faster battery drainage. Therefore, a long interval serves as evidence that all of the apps

observed in that interval have low energy consumption during the interval. If any of the

apps used in a particular interval consumed high energy, then that interval would be short.

On the other hand, if a single app was active in a short interval, then that app was definitely

the cause for the fast battery drainage in that interval.

Based on these observations, our first phase of app classification works as follows.

For any app X, we consider all the intervals in which this app is seen to be active (details

in section 2.5.2). Among these intervals, if the fraction of intervals that are short and have

no other concurrent app with X is greater than a threshold fH , then we mark X as an

energy hungry application. Similarly, among the intervals in which an app Y occurs, if the

fraction of long intervals is greater than a second threshold fL, then we consider Y to be a

battery-thrifty application.

However, the above procedure by itself is insufficient to classify all apps. This

is because, as discussed earlier in Section 2.4, many intervals include several concurrently

active apps. Hence, if a short interval includes many active apps, we cannot attribute the

high energy consumption in that interval to any one app with certainty.

Phase 2: A greedy algorithm to handle co-existing apps: To account for

multiple active apps in short intervals, we use a greedy algorithm in the second phase of the

29

App Classifier’s execution. In a nutshell, the larger the fraction of short intervals among

the intervals in which an app is active, we can have greater confidence in declaring the

app as energy hungry. The algorithm identifies energy hungry apps in the decreasing order

of associated confidence. Once a particular app is marked as energy hungry, we greedily

attribute all the energy consumption on the phone to this app in all the short intervals in

which the app is active.

In more detail, let us define the confidence value for an application X being energy

hungry, conf(X), to be the probability that an interval which contains X is also a high

battery drainage interval. The App Classifier deems an application X as energy hungry

if conf(X) is more than a threshold (say γ). Once app X is marked as energy hungry,

the classifier discards all high battery drainage intervals that contain the app from future

consideration; this essentially attributes the high battery consumption in these intervals to

app X. The classifier thereafter repeats the procedure of identifying the app with the next

highest confidence value (≥ γ) based on the intervals that have not yet been discarded. We

repeat this process until no apps with a confidence value ≥ γ remain.

In the above algorithm, one can envision cases where a high energy app Y gets

filtered out simply because it also appears with another high energy app X. However, first

we argue that these cases are rare in practice (as also seen in our experiments). When

a high energy app is being executed, the phone drains energy very quickly (in less than

2 minutes in our setting). In such a short interval, the likelihood that the user uses and

switches between several high energy apps (such as games, video streaming apps, etc.) is

30

really low; such apps usually require user involvement. This decreases the likelihood that

such cases happen to begin with.

Second, TIDE fails to identify Y from being a high energy app only if Y is not

frequently used by the user. In such cases, Y may not be executed in isolation by the user

in the near future; if the user uses app Y frequently, in the long run (say, 1 week), there

will be intervals in which Y does not co-occur with other high energy apps (e.g., X) and

will thus be correctly classified. We show this later in section 2.6.

Finally, one might expect the user to stop the usage of app X because of TIDEs

classification. This then precludes the simultaneous execution of X and Y and thus, the

high energy usage of Y will be discovered by TIDE much more quickly and efficiently.

To improve the effectiveness of TIDE in such cases, viz., when app X and app Y

are almost always executed together, they can be considered as a tuple {X,Y } that causes

high drainage on the phone. We defer such optimizations to future work.

Phase 3: Dealing with multi-modal apps: Multi-modal apps that exhibit

different energy consumption rates in different execution modes may however have a low

confidence value, since intervals containing an app X combine data from all of X’s modes.

To handle such cases, in App Classifier’s final phase, we also define the confidence value

for a tuple of application X and resource R, conf(X,R), to be the probability that an

interval which contains X and has high utilization of R is a high battery drainage interval.

Using conf(X,R), TIDE is able to detect apps that are energy hungry only in execution

modes where a specific resource (e.g., network, screen) is intensively used. This information

will allow a user to decide how to (or rather how not to) use certain apps, e.g., the user

31

may decide against uploading videos to Facebook if TIDE determines that Facebook’s high

energy consumption is correlated with heavy network usage.

In TIDE, the environmental factors and user behaviors are fully captured when

classifying apps. Specifically, it detects high energy apps by capturing the correlation be-

tween app activities and the energy drainage rate on the phone. The drainage rate implicitly

accounts for how the user interacts with the apps, as well as how much and in what condi-

tions resources are consumed. If the same “amount of” resource is consumed in “favorable”

conditions (e.g., good network, low quality video), the drainage rate would be lower, and

vice versa. Thus, even though we only provide coarse grained classification information, the

results are fully user-centric and accurately capture energy consumption of the apps on the

specific user’s phone.

2.5.2 Implementation details

Next, we describe our Java-based implementation of TIDE for Android phones3

Process Monitor: TIDE captures a phone’s battery usage by monitoring what

are called “Intent” messages on the Android platform. The Android OS broadcasts no-

tifications about important system events to apps (with the right permissions) through

Intents. TIDE registers for the ACTION BATTERY CHANGED event, and by means of

the associated Intent message that it receives, determines when the residual battery level

drops by a percent. TIDE also registers for the ACTION POWER CONNECTED and

ACTION POWER DISCONNECTED events; with these, it is notified when the phone is

3We are working towards releasing TIDE on the Google Play store; a preliminary version can be found
at http://bit.ly/1lnp51f.

32

Algorithm 1 TIDE’s algorithm for app classification

1: //Phase 1

2: for all app x do

3: s := Fraction of intervals containing only x that are short

4: l := Fraction of intervals with x that are long

5: if s ≥ fH then

6: Mark x as HIGH

7: else if l ≥ fL then

8: Mark x as LOW

9: end if

10: end for

11: //Phase 2

12: ∀ unclassified app x, calculate conf(x)

13: while ∃ unclassified app x with conf(x) ≥ γ do

14: Find app x that has the highest confidence

15: Mark x as HIGH

16: Remove all short intervals that contain app x

17: Recalculate confidence values of unclassified apps

18: end while

19: //Phase 3

20: Multi-mode candidates = apps classified in phase 1 ∪ all unclassified apps

21: for all multi-mode candidate app x do

22: Calculate conf(x, r) for app x and resource r

23: end for

24: while ∃ tuple (x, r) with conf(x, r) ≥ γ do

25: Find tuple (x, r) that has the highest confidence

26: Mark app x as HIGH when it intensively uses resource r

27: Remove short intervals with app x and high utilization of r

28: Recalculate confidence values of remaining tuples

29: end while

30: Mark all unclassified apps as MODERATE

33

plugged in or unplugged from the power outlet. Lastly, TIDE registers to be notified of the

ACTION SCREEN ON and ACTION SCREEN OFF events; it can thus determine when

the display (screen) is turned on or off.

At the end of each interval, TIDE reads the system files in the folder /sys/class/net

for aggregate network usage information; for example, /sys/class/net/wlan0/statistics

/tx bytes and /sys/class/net/wlan0/statistics/rx bytes provide information about

the number of bytes sent or received through the WiFi interface. In each interval, TIDE

periodically queries the Android OS for a list of running apps, and for each app, it reads

the system file /proc/[pid]/stat (where pid is the process identifier of the app) for the

number of CPU ticks consumed by the app. All the aforementioned files reflect the resources

consumed from the time that the phone was last booted.

In addition, Process Monitor identifies work delegations by tracking the corre-

sponding Intent messages that are invoked. However, these Intent messages can be trans-

parent to the application layer if the delegation is to a system process (e.g., Mediaserver).

We believe that such cases are extremely small in number, and hence, identify such cases

manually. Among all of the apps we considered, we found that the Mediaserver app was

the system-level app to which work was often delegated.

App Classifier: The App Classifier first filters out inactive apps or apps that

do not significantly contribute to the energy consumption in each considered interval. It

primarily considers an app to be active if it consumes more CPU ticks than a predefined

threshold. In some outlier cases, an app may use the LCD but not the CPU; to account for

such cases, TIDE also looks at whether an app is a foreground app in high energy intervals.

34

If so, the app’s energy consumption due to the display can be directly computed, and thus,

TIDE can determine if it is energy hungry in this mode.

Choosing a CPU threshold: We classify an app as active only if it uses more than

a threshold number of CPU ticks; even if the app uses other resources (e.g. to render

graphics on the screen, to stream data, etc.), it requires a significant number of CPU cycles.

To establish the right threshold, we installed many popular apps from the Android market

on a Galaxy SII phone and monitored their CPU usage with a real user’s usage pattern

(recall our study from section 2.6.1). With this, we determined when the apps were actually

being executed and when they were idle in memory. We considered two types of apps: one

set which have high CPU usage (e.g., Skype, Angry Birds), and another set with low CPU

usage (e.g., MusicFolderPlayer, Advanced Task Manager). We found that a threshold of

150 CPU ticks when τ = 30, works well to ensure that we do not filter active periods of

low CPU usage apps but do filter dormant periods of high CPU usage apps. For τ = 1, a

threshold of 5 CPU ticks accurately assigns the resource usage to an active app. We repeated

the experiment with three other users’ traces and obtained almost identical results. This

leads us to believe that these thresholds on the Galaxy SII phone are appropriate for use in

TIDE to identify active apps. When TIDE is used on other phone models, we apply a linear

scaling between the CPU frequency of the new model and the reference model (Galaxy SII)

to determine the CPU ticks threshold for the new model. We find that this approximation

works well in practice. We also observe that minor variations in the CPU ticks threshold

do not affect TIDE’s accuracy.

35

Detecting app LCD usage: Detecting active apps by just using a CPU threshold

however is not enough, because an app can keep the screen on without using the CPU.

Hence, we consider active apps in an interval to be the ones which either consume CPU

or run in the foreground. By using adaptive sampling, in high energy intervals, we sample

for the foreground app every second and thereby capture the LCD usage of apps. In other

intervals, TIDE can only capture the foreground app once every τ=30 secs; thus, we can

miss out on the apps that use the display at other times in between. However, this is not

of consequence since, regardless of whether or not the app uses the display, it consumes low

energy in such long intervals.

Once the active apps are determined as above, the App Classifier executes the

classification algorithm described in Section 2.5.1.2. Here, we need to choose appropriate

thresholds for 1) the long and short intervals in which an app has to appear, in order to be

classified as a low or high consumer of energy (referred to as fL and fH in Section 2.5.1.2),

and 2) the conf(X) or conf(X,R) values associated with any app X. We experiment with

different values for these thresholds with different user workloads and on different types

of phones. To keep the false positive rate low, we find that fL = fH = 1
4 and γ = 0.66

works well. With lower thresholds, false positive rates are high; higher thresholds do not

significantly reduce the false positive rate further, without also increasing the false negative

rate.

Accounting for work delegation: Finally, whenever an app X (e.g., YouTube) ap-

pears in the same interval as another app Y (e.g., Mediaserver) to which X delegates work,

we simply attribute all of Y ’s resource usage in that interval to X. If two apps that del-

36

egate work to Y simultaneously appear in an interval, we attribute each app with half of

Y ’s resource usage. A similar approach can be applied to cases with more than two apps.

However, in our user traces, we never observed any interval wherein more than two different

apps delegated work to the same app within an interval.

Defining high and low drainage intervals: TIDE enables a user to choose the

thresholds that define HIGH and LOW drainage intervals based on the user’s preferences

and expectations. However, for evaluating TIDE’s performance, we define intervals in which

1% of the battery is drained in less than 2 minutes as HIGH and intervals in which 1% of

battery is drained in more than 6 minutes as LOW. This is based on running known high

energy (e.g., Skype) and low energy apps (e.g., MusicFolderPlayer) on our phones and

noting how long they take to consume 1% of the battery; for example, Skype takes 1.8

minutes whereas MusicFolderPlayer takes around 6.5 to 9 minutes.

When is resource usage high? When multi-modalities of apps are considered,

we need to construct tuples of the form {X, R} to represent the presence of an app X

in a high battery drainage interval in which resource R is also heavily utilized. Thus, a

question that needs to be answered is: “when should the usage of resource R be considered

high?” To answer this question, we perform measurements using known resource hungry

applications with respect to each resource. Specifically, for network usage, we measure the

traffic generated by YouTube while watching 20 random video clips of HD quality, and by

Skype during a video conference. We choose these specific apps as they are known to result

in high network usage. We measure the volume of traffic while the apps are executed on

4 different devices and in different network conditions. In all our measurements, the apps

37

generate ≥ 5.5 MB of traffic per minute, and hence, we set this to be the threshold for high

network usage. Similarly, we consider 5 different 3D games (known to be CPU intensive)

to set the benchmark for high CPU activity. We find that all of these games consumed

more than 1000 CPU ticks per minute. Thus, we set this to be the threshold for high CPU

activity. Like with the CPU ticks threshold we use to identify active apps in an interval,

here too we linearly scale this threshold for high CPU usage based on the CPU frequency

of the phone. As discussed earlier, with adaptive sampling we can capture LCD usage of

apps in high energy intervals.

2.6 Evaluation

Next, we present a detailed evaluation of TIDE based on experiments conducted

on a testbed of Android phones. Our experiments are driven by traces gathered from the

phones of several users. We use a Monsoon power meter for all energy measurements on

our testbed.

2.6.1 Collection of real user workloads

To capture user-centric behaviors, we collect data from 17 volunteer users. Our

study has been IRB approved by our institution. Since a phone has to be rooted in order

to gather the data that we need (note that using TIDE itself does not need the rooting of

phones), we handed out rooted smartphones to our volunteers after swapping the phones’

SIM cards with the SIM cards from the users’ own phones; this obviates the need for

volunteers to root their own phones. To ensure consistency, we matched the model of the

38

phone handed out to a user to the user’s own phone. The volunteers used our phones for

their daily use for a week. The collected user traces are used to generate realistic workloads

on our Android testbed for establishing the ground truth (as discussed later in Section 2.6.2).

Furthermore, we run TIDE on these phones to get its output assessments.

2.6.1.1 Capturing user interactions

On every phone handed out to our volunteers, we installed a background process

that captures all of the user’s interactions with her phone. Capturing these interactions in

a manner that allows for accurate replay is however a significant challenge. For example, a

user’s interaction with a web page may be hard to replay since the web page’s content may

vary over time. Moreover, some apps (e.g., Facebook) may require the user to be logged

in, which we cannot emulate during trace replay. To capture interactions in a manner that

enables high fidelity trace replay, we adapt the technique proposed by Gomez et al. [26] to

capture user input events with low overhead. To do so, we poll the smartphone’s system

files for events generated by the user’s interactions.

Apart from storing user input events, we also need to associate these events to

apps. Unfortunately, system files that log user input events do not provide information

about the app with which the user is interacting. Therefore, for every interaction, we also

capture the foreground app on the phone by querying the ActivityManager class. Since the

number of user input events is large (e.g., a simple swipe event on the phone can generate

more than 10 records in the /dev/input/event2 file), in order to minimize overhead, we

query the OS for the foreground app only on “key released” records; these records are

generated when the user releases her fingers from the screen or from a button. Note that,

39

in order to gather the above information, root privilege on the phone is necessary. Hence,

collection of such information is possible only for our purpose of gathering user traces and

not as part of TIDE’s operation.

We store all of this information in a file so that we can later replay on our testbed

all of a user’s interactions with every app used by the user. By emulating different network

conditions, we can build the ground truth information with regards to the “user-centric”

energy consumed by every app.

2.6.1.2 Capturing user-centric resource usage patterns

For privacy reasons, many users were wary of their interactions being captured;

in fact only two of our volunteers allowed us to log these interactions. Thus, we seek a

different way to estimate the app-specific energy consumption on such users’ phones. For

this, we capture the resource usage on the phone when an app is running and mimic these

utilizations on the same phone to represent the app’s execution.

To determine the CPU usage of an app, we read the file /proc/[pid]/stat (pid

is the process ID of the app). To capture network traffic, we run tcpdump on the phone to

captures all packets going through all network interfaces. Periodically, we run a modified

version of netstat (provided by the Busybox tool set [27]) to record all the ports used by

each app. We then correlate tcpdump’s output with the app to port mapping in order to

map every packet to the corresponding app. To measure the time for which an app uses the

screen, we access the system logcat information on the phone to estimate how long an app

stays in the foreground. Again, note that these methods for capturing app-specific usage

40

of the network/display is possible only with root privileges, and hence, such information is

not available to TIDE.

2.6.2 Building the ground truth

To evaluate the accuracy of app classification with TIDE, we first need ground

truth information. Specifically, for every app used by a particular user, we need to determine

whether or not the app is indeed energy hungry from that user’s perspective. Generating

this ground truth is non-trivial in itself. In real user workloads, apps do not run in isolation.

Furthermore, user-centric factors such as the signal strength of the 3G network experienced

at different times are not known. Therefore, to generate the ground truth, for every app

used by one of our users, we run the app in isolation as per that user’s usage pattern of

that app (other apps are turned off), and emulate different network conditions.

Similar to the drainage intervals, we assign one of three labels—HIGH, MODER-

ATE, or LOW—to each app depending on how long it takes the app to consume 1% of the

battery. While thresholds for determining these labels can be defined by user preferences

in practice, we consider what we believe are reasonable thresholds in this study. For the

reasons discussed in section 2.5.2, when replaying apps on a specific phone, we label any

app that consumes 1% of the battery in < 2 minutes as HIGH; if this consumption takes >

6 minutes, the app is labeled LOW. We consider apps which consume 1% of the battery in

a duration that is in between 2 minutes and 6 minutes as MODERATE. In what follows, for

simplicity, we combine both MODERATE and LOW apps and label them as MODERATE,

since from a user’s perspective it is not vital to distinguish between them.

41

2.6.2.1 Replaying user traces

Replaying user interactions: As discussed, only two volunteer users let us

collect their fine-grained interactions with their phones. We replay these interactions with

each app in isolation to quantify the real energy consumed by that app.

Replaying app behaviors based on resource usage: For all volunteer users

in our study, we replay the resource usage of each app in isolation, to estimate its energy

consumption. Currently, we do not consider replaying multiple applications simultaneously,

even though there might be mutual influences between them in terms of power consumption.

This is because (i) if multiple apps consume a specific amount of energy together, it is not

easy to break down the energy consumption due to individual apps, as each app might

consume different resources to different extents, and (ii) when there are multiple apps

requesting resource access, it is extremely challenging to replay the resource usage exactly

in a dependent manner without modifying the Android OS itself. Thus, we defer this to

our future work.

For replaying the network usage of an app, we run a server which generates the

same network traffic as identified by tcpdump in the user trace. We emulate varying network

conditions to generate the ground truth in different scenarios. As network activities also

consume CPU, we record the number of CPU ticks associated with these activities. When

replaying CPU usage of an app, we subtract this number of CPU ticks to preclude network

activities.

For replaying display usage, we keep the screen on for the same amount of time

and with the same brightness level as from the user-trace. One problem with capturing

42

Replay Interactions
Rsrc Util Dark Screen
Rsrc Util Light Screen

En
er

gy
 c

on
su

m
ed

 (k
J)

0

5

10

Youtube Web Browser Angry Birds Music Player

Figure 2.7: Building ground truth on
power consumption of an app

High Apps
False Negative

False Positive
Moderate Apps

N
um

be
r o

f A
pp

lic
at

io
ns

Dataset
0

2

4

6

8

10

12

1 2 3 4 5 6

Figure 2.8: Accuracy of TIDE with user
interaction based ground truth

the display’s usage is that, though we periodically query for the screen’s brightness level

when an application is running, we do not know the exact content on the screen at specific

times. Therefore, in our experiments, we use a static background while replaying an app

(the brightness is as per the user’s behavior). We try two extreme settings: (i) a dark and

(ii) a relatively white background. Note that this limitation with respect to accounting for

the impact of the displayed content on energy consumption is inherent in most of the energy

models derived based on resource usage (e.g., [11, 17, 13]).

2.6.2.2 Can replaying resource usage patterns capture app energy consump-

tion?

Capturing fine-grained user interactions provides high fidelity in the user-centric

classification of apps. However, since we have this detailed information only for two users,

we assess how trace replay based on resource usage patterns compares to that based on

user interactions. For the two users for whom we could capture their interactions with

their phones, we estimate the energy consumed by each app (i) first, by replaying user

interactions, and (ii) again, separately, by replaying the associated resource usage from our

43

traces. For clarity, we only show the results for 4 apps in Fig. 2.7; we see similar results

with the other apps. We observe that simply using the resource usage provides an estimate

of energy consumption that is almost equal to that in the case where we capture user

interactions. The use of a relatively white background provides the best estimate; the dark

background underestimates the power consumption to some extent. This is to be expected

since most apps have bright colored or relatively less dark backgrounds.

2.6.3 Evaluating TIDE

We next evaluate TIDE’s accuracy in classifying apps, and we thereafter assess its

overhead.

2.6.3.1 App classification accuracy

We determine the accuracy of TIDE’s App Classifier first based on ground truth

obtained by replaying fine-grained user interactions, and second, based on resource usage

information. Note that, on each of our volunteers’ phones, TIDE was concurrently running

while we were capturing logs that we later used for trace replay (in order to determine the

ground truth for energy consumption of every app).

Accuracy as compared to ground truth based on user interactions: The

two volunteers, for whom we could capture input events, were seen to use apps under

different network conditions; both of these users used Galaxy SII phones. We separated

the collected data into 3 sets for each user based on their interactions and network usage;

each set contained information spanning at least six hours. Fig. 2.8 shows TIDE’s accuracy

on these datasets, in comparison with the ground truth. Each bar shows the total number

44

of active apps in the respective dataset. The top and bottom parts of each bar show the

number of high energy apps and the number of low/moderate energy apps, which TIDE’s

App Classifier was able to correctly classify. The middle parts of each bar depict false

positive results, wherein LOW or MODERATE apps are mis-labeled as HIGH, and false

negative results, where HIGH apps are mis-labeled as LOW or MODERATE.

False positives typically occur when a low energy app co-exists in many of its

intervals with other high-energy apps. This can happen for apps that are not frequently

used by the user. For example, the one false positive in Fig. 2.8 corresponds to the case

where one of the users was using a music player app for 10 minutes while simultaneously

surfing the web. In this case, we associate the music player with a high confidence value

due to the web browser’s high energy consumption. If TIDE monitors this user’s phone

over a longer period, there are likely to be intervals where the user uses the music player

in isolation or only with other LOW apps. TIDE can then be expected to classify the app

correctly.

Similarly, false negatives occur when a high-energy app X coexists only with other

high-energy apps; when we discard intervals attributing them to these other high-energy

apps (with higher confidence values), app X gets filtered out. TIDE then labels such an app

as MODERATE. As users use applications for extended periods and increased numbers of

times, the coexistence pattern of other apps will vary. As a consequence, the false positive

and negative rates can be expected to be lowered over time. We show experimentally that

this is the case in Section 2.6.3.3.

45

High Apps
False Negative
False Positive
Moderate Apps

N
um

be
r o

f A
pp

lic
at

io
ns

Dataset
0

10

20

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

Figure 2.9: Accuracy of TIDE with re-
source usage based ground truth

High Apps
False Negative
False Positive
Moderate Apps

N
um

be
r o

f A
pp

lic
at

io
ns

Dataset

0

5

10

15

12hrs 1day 3days

Figure 2.10: Accuracy of TIDE with dif-
ferent amounts of data

Accuracy with respect to ground truth based on resource usage: Next,

we examine the larger dataset from our 17 volunteer users, which includes resource usage

information based on their daily smartphone use for a week. Fig. 2.9 shows TIDE’s accuracy

in those 17 datasets, with the results amortized over different network conditions. The

representation of the results are in the same form as in the previous case; each bar represents

results from a different user’s data. In 7 of the datasets, TIDE was able to classify all the

apps correctly. In almost every other dataset, we only obtained either one false positive or

one false negative.

Dataset 10 and 17 are the only exceptions where we had two and three false

positives respectively; however, all the high energy apps were correctly labeled in this user’s

dataset. In summary, TIDE was able to correctly identify 66 out of 70 HIGH energy

apps, and incorrectly classified 9 MODERATE apps as HIGH, from among a total of 168

MODERATE and LOW energy apps.

In the above analysis, we find several cases wherein TIDE correctly identifies the

same app as HIGH for one user and LOW/MODERATE for another user. For example,

TIDE identifies the YouTube app as HIGH for a user who always uses the 3G network on

46

2-minute threshold 3-minute threshold

Application Condition Ground truth Result Ground truth Result

Skype

Strong WiFi H H H H
Weak WiFi H H H H

Strong 3G/4G H H H H
Weak 3G/4G H H H H

Web browser

Strong WiFi M M M M
Weak WiFi M M H H

Strong 3G/4G H H H H
Weak 3G/4G H H H H

Pandora

Strong WiFi M M M M
Weak WiFi M M M M

Strong 3G/4G M M M M
Weak 3G/4G M M H H

YouTube

Strong WiFi M M M M
Weak WiFi M M M M

Strong 3G/4G H H H H
Weak 3G/4G H H H H

Angry Birds

Strong WiFi M M H H
Weak WiFi M M H H

Strong 3G/4G H H H H
Weak 3G/4G H H H H

Note: H - HIGH ; M - MODERATE

Table 2.2: An app’s energy consumption varies with network conditions

his phone. For another user who typically uses WiFi, TIDE correctly identifies YouTube as

a MODERATE app from that user’s perspective. Thus, TIDE is able to accurately account

for user-centric factors that cause differences in an app’s energy consumption across users.

Capturing user-centric app behaviors: Next, we demonstrate TIDE’s ability

to capture the user-centric attributes of apps. Specifically, here we consider apps that

change their behaviors from HIGH to MODERATE or vice versa, depending on network

conditions.

We conduct in house experiments with five popular apps—Skype, YouTube, the

default Android web browser, Angry Birds, and Pandora—on a Galaxy SII smartphone.

47

First, we use each app for at least 15 minutes and capture all of the user’s interactions.

Thereafter, we replay all those apps jointly under 4 different network conditions: strong

WiFi, weak WiFi, strong 3G/4G, and weak 3G/4G. The reported signal strength from the

phone was between -105 and -97 dBm under weak signal conditions, and between -69 and

-55 dBm under good signal conditions.

Table 2.2 shows the ground truth information and the results with TIDE. The

ground truth labels are built by replaying the input events under the appropriate network

conditions. Note that here we also experiment with two different thresholds to label an app

as HIGH; an app is labeled HIGH if it consumes 1% of the battery (i) in less than 2 minutes

in one case, and (ii) in less than 3 minutes in another case. The results demonstrate the

low sensitivity of TIDE to the threshold.

In our experiments, Skype is always labeled HIGH, regardless of network condi-

tions. Other apps, such as YouTube and the web browser, change their energy consumption

profiles under different conditions. TIDE is able to capture these behaviors. In this ex-

periment, we account for work delegation, and assign the resource usage by Mediaserver

to YouTube (or Pandora) when they co-exist in the same interval. Without this, YouTube

will always be labeled LOW.

2.6.3.2 Capturing multi-modal apps

We next conduct an experiment to evaluate TIDE’s ability to classify multi-modal

apps. Here, we first play Pandora for 1 hour using the 3G network while keeping the screen

off. Subsequently, we set the screen at the highest brightness level and continue playing

Pandora for the next 30 minutes. After this, we use YouTube for an hour using WiFi

48

(Pandora is now off). Finally, we continue with YouTube but switch to 3G for the last 30

minutes. We keep the screen at the highest brightness level while using YouTube. During

the entire experiment, we also have other apps (auxiliary apps) that run simultaneously

with Pandora and YouTube. With Pandora, we run an app that executes in the foreground

and simply turns on the display while Pandora runs in the background; here our goal is to

see if Pandora is correctly identified as a low energy app. With YouTube, we run an app

that receives updates from a Twitter account; our goal is to see if TIDE can accurately

capture YouTube’s high energy when the network usage is high. The auxiliary apps are

turned on and off at random. When turned on they remain on for a uniformly chosen

random period between 3 and 5 minutes; when turned off, they remain in that state for a

uniformly chosen period between 7 and 10 minutes. Both of these auxiliary apps continue

to run for 2 hours after the Pandora and YouTube apps are terminated. We find that TIDE

accurately classifies all of the apps above. Specifically, it finds that: (i) Pandora consumes

high energy only when the screen is turned on, (ii) YouTube consumes high energy only if

3G is used, and (iii) both our auxiliary apps consume low energy.

In more detail, the confidence value of Pandora in general, without considering

its different usage patterns, is quite low (20% out of 16 intervals). Thus, TIDE classifies

Pandora as a MODERATE application. However, when TIDE considers Pandora only in

intervals in which the LCD is intensively used, the confidence value of the tuple (Pandora,

LCD) is high (80%) and TIDE identifies Pandora as an energy hungry application. As

for YouTube, the confidence value in general is low (33% out of 24 intervals). However,

49

considered only when the 3G network is used, its confidence value is 100%; TIDE thus

identifies YouTube as a high energy app under high 3G utilization.

2.6.3.3 Accuracy versus dataset size

TIDE monitors user-specific factors (network, screen, CPU ticks) to create a profile

of which apps consume high energy and how often, and what resource usage accompanies

them. As a result, the longer the observation period, the better TIDE’s accuracy. Fig. 2.10

shows the impact of the number of observed intervals on the accuracy of TIDE with one

of our datasets (results with other sets are similar). With the data collected for 12 hours,

there was only one high energy app invoked by the user, and TIDE produced one false

positive result. This is primarily because of the limited volume of data used to build the

profile. With the data collected for a day, the user used more high energy apps and TIDE

was able to detect all 4 of them. The earlier, wrongly classified app is now correctly labeled

as MODERATE; however, a new (previously unseen) app is mis-labeled as HIGH. With the

data collected for 3 days, no more new high energy apps were detected. Importantly, the

mis-labeled app is now correctly labeled as MODERATE. To ensure that the periods are

long, but are not influenced by stale behaviors, we set the monitoring period to one week

by default. However, the user can choose the period over which TIDE should use data to

classify apps (e.g., 1 day, 3 days, or a month).

50

App/ Phone
Component

Android
Tool

Power
Tutor

TIDE Ground truth?

Skype 6% 2.2 KJ 90%-H 4.8 KJ - 14% - H

Youtube (40 mins:
WiFi+3G)

5% 3.2 KJ 47%-M 6.2 KJ - 17.5% - M

Youtube (the last
20 mins: 3G)

N/A N/A 91%-H 3.9 KJ - 10.9% - H

Netflix 2% 1.9 KJ 20%-M 3.0 KJ - 8.5% - M

Pandora (3G) 1% 1.8 KJ 30%-M 3.4 KJ - 9.6% - M

AngryBird 3% 0.9 KJ 50%-M 3.3 KJ - 9.3% - M

Hill Climb 1% 1.6 KJ 73%-H 3.6 KJ - 10.1% - H

System 10% 4.9 KJ

MediaServer 5% 1.3 KJ

Screen 30%
?Ground truth (x KJ - y% - M/H): the app consumes x kilo-Joules ≈ y% of the
battery capacity, and is classified as a Medium or High energy app

Note: Apps use WiFi unless stated otherwise

Table 2.3: Comparing TIDE and other approaches

2.6.3.4 TIDE versus other popular approaches

Next, we compare the efficiency of TIDE in identifying high energy apps with that

of the Android System Tool and the popular PowerTutor [11] tool; the latter has more than

500,000 downloads.

Experimental setup: We run 6 popular Android applications separately on a

Galaxy S4 phone. Each application, apart from Youtube, is executed for 20 minutes; for

each application, either a WiFi connection or a 3G connection is used to transfer data

during the entire time the app is executed. Youtube is the only exception, wherein we use

a WiFi connection for the first 20 minutes and a 3G connection for another 20 minutes

to emulate a multi-modal app. Subsequently, we capture and compare the results from

TIDE and the other tools, as shown in Table 2.3. With respect to the Android Tool and

PowerTutor, we show the total amounts of energy reported to be consumed by each app

51

by the tools. Specifically, for each app, (i) the Android Tool reports the percentage of

energy consumed by the app with respect to the total energy consumption (by all the apps)

on the phone, computed since the last time the battery was fully charged. By knowing

how much energy the phone consumes in total, we convert these values into percentages of

battery capacity and present them in Table 2.3, (ii) PowerTutor reports the total energy

consumption (in kilo Joules) of the app. For TIDE, we show the confidence values with

respect to app classification and include the classification labels (as H or M). We also show

the ground truth information captured by replaying these 6 apps with an external power

meter (the real power consumed). The ground truth information is represented in terms of

the energy consumption (in kilo Joules), corresponding battery percentage and the correct

classification label for each app.

The Android System tool: The tool only reports total energy consumption

but does not capture the average consumption of the apps, which is more important in

identifying energy hungry apps. An app should be identified as a high energy one only if

it consumes a disproportionate amount of energy relative to its runtime, and not because

it is continuously used for a long period of time. Further, the tool does not capture work

delegation between media apps and the MediaServer process for media retrieval; thus, Me-

diaServer is shown to consume a high amount of energy, but eventually, the media apps

should be considered to be the main culprits for the drainage. The System process, which

takes care of network data transfers at the kernel level for all other apps (and thus, has

a high CPU load), is another case for work delegation and identified as a high consuming

app.

52

More importantly, the tool does not breakdown the energy consumed by the screen

to individual apps; in most cases, the screen consumes the highest amount of energy (30%

of the battery). Thus, the energy consumption of all the apps shown by the tool is far from

the ground truth results. For example, as the energy consumed by the screen and media

retrieval is not contributed to the app, the tool shows that Pandora consumes about 1% of

the battery. In reality, it consumes about 10% instead.

Finally, the tool does not capture multi-modal apps. Specifically, the tool does

not differentiate Youtube when it uses (i) a WiFi and (ii) a 3G connections; thus, it only

provides the energy consumption information of Youtube for the entire time the app is

executed. Consequently, the tool does not identify Youtube as a high energy app when it

uses the 3G connection for the last 20 minutes.

PowerTutor: PowerTutor is able to capture the total and the average energy

consumption of apps by recording their runtimes. However, the accuracy of the PowerTutor

is highly device dependent, since the tool estimates the energy consumption of an app

by multiplying the amount of resource utilization with the corresponding average energy

consumption for each of the resources. The average energy consumption information is

calibrated for only a limited number of phone models; thus, when used on an unsupported

phone, the results from PowerTutor might be significantly different from the ground truth

information. For example, the tool reports that Youtube only consumes 3.2 KJ, whereas

it actually consumes 6.2 KJ (when measured with the power meter). Further, the tool is

not able to deal with work delegation or multi-modal apps (similar to the Android System

tool).

53

TIDE: With TIDE, our main goal is to classify an app as HIGH or MODER-

ATE/LOW, the tool relies on the rate of battery drainage reported by the phone and thus,

does not require calibration for each specific phone model, as with PowerTutor. Further,

with TIDE, when an app is the main culprit for high energy drainage, the correlation be-

tween its occurrences and short intervals is high. Therefore, the app is correctly identify

as a high energy one instead of system processes which might be interacting with the app.

Finally, TIDE is the only approach that is able to detect Youtube as a high consuming

app, when the app uses 3G for downloading data. As shown in Table 2.3, TIDE is able to

correctly classifying all the 6 apps.

2.6.3.5 Overheads

We examine TIDE’s overhead along three dimensions: 1) energy consumed due to

TIDE’s periodic querying of the OS, 2) the execution time of TIDE’s greedy algorithm, and

3) the storage space consumed by TIDE’s logs.

Energy overhead: TIDE runs in the background and queries the OS periodically.

We earlier showed in Fig. 2.4 that with a sampling rate of 30 seconds, TIDE consumes about

0.5% of the battery per hour. The power consumed by the App Classifier is negligible

(especially if the processing is done when the phone is being charged). Even otherwise, to

process a data file with 700 intervals, the execution of the App Classifier consumes roughly

192 Joules (≈ 0.78% of the battery capacity on a Galaxy SII phone).

Overhead with adaptive sampling: To quantify the energy costs with adaptive

sampling, we perform the following experiment. We use the gathered data from one of our

volunteers with a Galaxy Nexus phone; this was the phone on which we previously measured

54

the energy consumed due to the monitoring process (see Section 2.4) with different sampling

intervals. In this dataset, for each day, we pick the period from 9 AM to 5 PM (this is the

time when the user uses her phone the most). We consider energy-heavy intervals to be

of duration 2 minutes or less; in such periods, we assume that we query the OS every

second. For other intervals (considered low energy periods), we only sample once every

30 seconds. We measure the energy consumed with three different sampling schemes: (a)

sampling periodically every second, (b) sampling periodically every 30 seconds, and (c)

adaptive sampling as above. The mean values of the energy consumed by the three schemes

(based on a 5 day user activity) are 3.20%, 0.50%, and 0.76% of the phone’s battery per

hour, respectively. It is apparent that while adaptive sampling does increase TIDE’s energy

overhead, the increase is not exorbitant and thus, the approach is viable.

One can claim adaptive sampling makes the phone consume more energy when the

battery drain is already high, which will possibly affect user experience. To show otherwise,

we do an experiment to measure additional overhead caused by adaptive sampling during

high usage intervals. Specifically, we measure the energy overhead with adaptive sampling

during a video conference using Skype. In those intervals, the phone consumes 1% of the

battery on average in 108 seconds without having any sampling. With adaptive sampling

enabled, the phone consumes 1% in 101 seconds. In other words, the penalty is ≈ 7%. This

indicates that adaptive sampling is unlikely to significantly degrade user experience during

high activity periods.

Processing time of the greedy algorithm: Fig. 2.11 shows the execution times

of the App Classifier with data collected over different numbers of intervals. We see that,

55

 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

50 80 100 200 300 700

P
ro

ce
ss

in
g
 t

im
e
 (

se
co

n
d
s)

Number of intervals

Galaxy S2
Galaxy Note1

HTC MyTouch 4G

Figure 2.11: App Classifier’s pro-
cessing time on different phones

30 secs
5 secs
Adaptive rate

Sp
ac

e
U

sa
ge

 (k
B)

0
1000
2000
3000
4000
5000
6000
7000

50 ints 100 ints 150 ints 200 ints 300 ints 700 ints

Figure 2.12: Space used to store Process Monitor’s
logs

even if the data in the input file spans 700 intervals (≈ a week of data), the processing time

is ≤ 7 minutes. This processing can be done offline when the user is not using the phone

(e.g., when it is plugged into a power outlet for charging at night).

Storage space: Fig. 2.12 shows the average storage space used to store the input

data collected by the Process Monitor, for different sampling rates. We see that, even when

the collected input data spans 700 intervals, TIDE uses less than 6.5MB. Note that old

data is purged as new data is accumulated, and hence, TIDE’s storage overhead does not

continuously grow over time.

2.7 Discussion

In this section, we discuss issues that may need further attention as TIDE is revised

and improved in the future.

Availability of resource usage information: TIDE directly reads system files

exported by the OS in order to capture resource usage information of apps. It is possible that

smartphone OSes may limit access to these system files in the future, for security purposes.

However, since many popular user-space tools (e.g., System Monitor, Task Manager) depend

56

on access to this data, it is our belief that future releases of the Android OS will still permit

user-level apps to access the system files used by TIDE.

Determining usage thresholds: As evident from prior discussions, TIDE uses

a few thresholds for classification purposes; these thresholds are determined by measure-

ments from the usage traces of several users. Note that, our goal is not to determine exactly

how much energy each application consumes, but to classify apps into coarse-grained cat-

egories (specifically, HIGH and MODERATE energy apps); thus, our thresholds are not

very sensitive to user behaviors or phone models. The chosen thresholds work well for all

the users and devices in our collected dataset. While an alternative approach based on

machine learning could be used to learn the appropriate values for these thresholds, the

training process required by such an approach can potentially consume high energy. This

requires more careful consideration in the future. In contrast, our simple approach offers

high classification accuracy while being energy thrifty.

Low activity background apps: We do not focus on short-lived apps that are

executed in very short periods (e.g., a few seconds). In each interval, these apps are typically

not the main culprits for energy drainage. However, periodically executing a short-lived task

(e.g., the network keepalive activity in many apps) may potentially consume high energy

over a long duration. We examine the popular apps that synchronize data periodically (e.g.,

Facebook and Twitter) and find that these apps are taken into account by TIDE. Since the

default sync intervals for such apps are typically set at around 30 minutes, network keepalive

activity does not consume high energy (< 2.5% of the battery per day [28]) and TIDE is

able to infer this. Further, if a short-lived app synchronizes its state more frequently, it

57

consumes high CPU or network, and is treated as other normal apps by TIDE. In such

cases, the app could be classified as a high energy app.

Consistent coexistent apps: TIDE’s identification of energy-hungry apps de-

pends on correlations between an app’s occurrences and periods of high energy/resource

usage. Thus, if two or more apps are always used simultaneously, TIDE cannot identify

which of the two apps is energy hungry. However, over long usage periods (e.g., a week), we

observe that this situation rarely occurs. As soon as the user invokes the apps separately,

the real culprit will be associated with a higher confidence value and will thus be correctly

classified.

2.8 Conclusions

In this chapter, we argue that there is a need for a user-centric tool to identify

energy hungry apps on a users smartphone. We design and implement such a tool, TIDE.

The key challenges addressed in TIDE are (a) it provides a lightweight way to determine

active apps based on adaptive sampling and (b) it uses a novel greedy algorithm to filter

out the real energy hungry apps from multiple simultaneously running apps on the users

phone. It also effectively captures multi-modal energy behaviors. We show via both in

house experiments and user- trace driven emulations that TIDE classifies apps as energy

hungry (or not) with very high accuracy and low overhead.

58

Chapter 3

Managing Redundant Content in

Wireless Constrained Settings

3.1 Introduction

A recent report estimates that there were around 350 million photos uploaded

to Facebook and more than 50 million photos uploaded to Instagram on a daily basis in

2013 [29]. While new technologies attempt to increase wireless capacity (e.g., MIMO),

users still find wireless networks to be a significant bottleneck in crowded settings, e.g., at

football games [30]. Moreover, the demand for wireless capacity is likely to be exacerbated

when unforeseen events such as natural disasters occur. In such scenarios, the network

further gets overwhelmed due to a combination of the physical destruction of the underly-

ing infrastructure (which severely impacts both network capacity and coverage) [31][3] and

users generating more content than usual [32]. For example, there was a sudden increase

59

in the number of images related to the hurricane Sandy that were uploaded to Flickr dur-

ing the hour when the hurricane made landfall in New Jersey [33]. Even disaster rescue

teams may upload images/videos to a control center, to allow the center to appropriately

distribute resources/help. The higher traffic demands combined with the strapped wireless

infrastructure can significantly hinder information delivery in such scenarios [4].

The large volume of images/videos that users attempt to transfer during such

events is likely to have significant redundancies in information (photos of the same event

taken by different users). For example, Weinsberg et al. [4] study the images taken by people

in the San Diego fire disaster in 2007 and the Haiti earthquake disaster in 2010. They found

that 53% of the images in the San Diego set and 22% of the images in the Haiti set were

similar to each other (and in essence contained redundant content). Suppressing transfers

of such redundant content can ease the load on the network, and allow unique1 information

(possibly critical) to be transferred with low latency. Subsequently, the redundant content

can be lazily uploaded when the network conditions are more benign. Content suppression

and lazy uploading can also benefit users in more generic settings (e.g., a flash crowd scenario

during a sporting event); users can save on their cellular data plans, as well as the energy

on their smartphones. These are likely to be taxed when the available bandwidth is low.

Arguably, the biggest challenge in suppressing the transfer of redundant content is

to determine whether or not content generated by disparate clients are similar (e.g., photos

of the same event, captured almost at the same time). This is inherently hard since the

service to which clients are uploading images (e.g., Flickr or a server at a disaster control

1In the context of this chapter, unique information refers to content in dissimilar images, which contain
objects or surroundings that are not covered in other images.

60

center) must make this determination before a client uploads the image content. Even if

any one among a set of similar photos has been previously uploaded, the service has to

determine if a second photo 2 that is being considered for upload is similar to the one that

has already been transferred; if the transfer of the first photo is underway, the process is

even harder.

The computer vision community has studied the problem of identifying simi-

lar images largely in the setting where the two images being compared are at the same

client/server. However, requiring clients to upload images before the service can check for

similarity with previously uploaded images nullifies the utility of our framework. Therefore,

to suppress the uploads of redundant image content, we leverage the metadata used by the

computer vision techniques that detect image similarity. Specifically, we have the client

first extract metadata from the image it wishes to upload, and upload this metadata to the

service. The client then uploads the image content only if the service is unable find any

similar images using the uploaded metadata.

This approach however presents a fundamental trade-off. On the one hand, the

more fine-grained the metadata extracted by the client from its image, the better the ser-

vice’s ability to correctly identify whether similar images have been previously uploaded. It

is important to ensure not only a low false positive rate so that clients do not miss uploading

critical images but also a high true positive rate to reduce as much of the redundant content

as possible. On the other hand, it is vital that the metadata extraction at the client, the

metadata exchange between the client and the service, and the metadata-based lookup by

the service all be lightweight. If not, high processing overheads at the client-side or server-

2We use the terms image and photo interchangeably.

61

side, or large delays incurred in transferring the metadata over the network, can render

moot our goal of reducing image upload times by suppressing the uploads of redundant

content; the same time can instead be spent to simply upload the image.

To address this trade-off between minimizing the metadata-related overhead and

maximizing the accuracy of suppressing redundant content, we break up the photo uploading

process into multiple phases. Our goal here is that, when a client is attempting to upload a

photo, if no similar image was previously uploaded to the service, we seek to determine this

with the least amount of metadata exchange, so that the upload of the image’s content can

begin at the earliest. For this, the first phase involves the exchange of a very small amount

of coarse level metadata between the client trying to upload the photo and the service,

which allows us to determine if a more careful comparison is even necessary; if there are

no images that match the candidate image to be uploaded even at this level, the client can

simply proceed with the upload.

If matches are found in the first phase, we employ a series of vision algorithms and

exchange fine-grained metadata to increase the fidelity of the comparison. We first seek to

minimize the amount of metadata/processing needed (we combine [34] and [35]). However,

this does not adequately ensure that false positives are rare. Hence, we slightly increase

the overhead by adding additional metadata using the approach in [36]. While this allows

us to bring down the false positive rate, we are still unable to reach a reasonably high true

positive rate. Hence, we incorporate a third phase which involves human feedback based on

thumbnails (again, we increase the metadata by a small amount) returned from the service;

this drives up the true positive rate without introducing additional false positives. In

62

combination, these three phases are able to significantly reduce the amount of redundancy

in transferred content and thereby the congestion, while ensuring very low false positive

rates and low processing overheads at the client and the server.

Our contributions: In this paper, we propose a framework for identifying and

suppressing the transfer of redundant image content in bandwidth constrained wireless

networks. A key component of our framework is the aforementioned three-phase approach

for metadata exchange between the generators of content (smartphones) and the service

which receives the images. The framework allows a client to estimate if the service is

already in possession of content that is similar to that in an image being considered for

upload. If the estimation suggests that this is the case, the image upload is suppressed

and deferred for a lazy transfer at a later time when conditions are more benign; else the

transfer proceeds.

We implement and evaluate our approach on a 20-node Android smartphone

testbed in various conditions with the Kentucky [5], and an US cities image data set that

we put together. We find that our multi-stage approach for uploading images correctly

identifies the presence of similar images on the service with ≈70% accuracy, while ensuring

a low false positive rate of 1%. More importantly, our framework’s suppression of uploads

of similar content enables the network to tolerate 60% higher load (for target delay require-

ments), as compared to a setting without our framework. We obtain similar results even at

scale, when using ns-3 based simulations. Finally, we also show that the overheads imposed

by our framework in terms of bandwidth and energy are very small, therefore making it

viable for use.

63

3.2 Related Work

Improving network performance and reliability during disasters or flash-

crowd events: There has been research on the impact of flash-crowd events [37, 38] and

natural disasters [31, 3] on network performance and connectivity. Proposed solutions allow

the network to adapt and survive in such scenarios [39, 40]. From among these, the work

that is closest to ours is CARE [4], which is a framework for image redundancy elimination

to improve content delivery in challenged, capacity-limited networks. While the premise

is similar, our work differs in terms of how image similarity is detected. In CARE, it

is assumed that central infrastructure is unavailable and thus, content is transferred in a

peer-to-peer fashion. Similarity detection takes place locally at a chosen node, where the

images to be compared are first made available. This node transfers unique images when

a DTN (delay tolerant network) relay with infrastructure connectivity is available. In our

system, we assume that users have access to central infrastructure; only metadata that is

extracted from the images is used for similarity detection. Our goal is to preemptively

suppress the uploading of similar images on the bandwidth constrained wireless network.

We acknowledge that the authors of CARE were the first to suggest the use of similarity

detection in images to reduce content; we believe that our proposed work is complementary

to CARE, both in terms of the setting considered and the actual approach itself.

Data deduplication in network services: Orthogonal to our work, data dedu-

plication has been used to reduce storage capacity [41] and bandwidth [42, 43] requirements

in systems which involve storing and moving large amounts of data. However, these efforts

do not consider content semantics as we do here.

64

Image similarity detection: Our work leverages state-of-the-art approaches in

computer vision for image feature extraction and object matching. Over the last decade,

many algorithms have been proposed for robust extraction of global [35, 44] and local

key-point [34, 45] features. The bag-of-words (BoW) approach, which had been originally

used in text document classification, was applied in computer vision for image classification

and matching by building a visual codebook from image local key-points [46]. The min-

hash technique was proposed by Chum et al. [35, 47] to effectively estimate similarity

between images represented in the BoW format. Recent work has been focusing on geometry

verification to improve similarity detection accuracy [36, 48]. In section 3.3, we describe

in detail how we effectively combine these techniques to create a lightweight, yet accurate

image similarity detection system.

3.3 Efficient, lightweight detection of redundancies in images

Our goal is to determine if there are similarities between images that are to be

uploaded by a plurality of spatially disparate uncoordinated clients. We seek to do so with

a very low overhead while still sustaining a high accuracy for detecting similar images. We

envision that these images are to be transferred over a wireless network to a central server.

The server has access to all the images that were previously uploaded to it.

3.3.1 Our framework in brief

Figure 3.1 presents an overview of our framework, which can be adopted by any

service to which users uploads photos, such as Flickr or Facebook, or even a server at a

65

1: Upload coarse grained metadata of
a new image

2: Compare coarse
grained meta data

3: Send resultFound
match?

Proceed to
PHASE 2

Upload the
image

NO YES

(a) Phase 1: Coarse grained metadata matching

4: Extract and upload fine grained local
features

5: Combine state-of-the-art vision
approaches to derive high accuracy

with low overhead detection
6: Send resultFound

match?

Suppress/Defer
Upload

Move to
PHASE 3

NO YES

(b) Phase 2: Fine grained feature matching

7: Return image thumbnails8: The user visually
compares image thumbnails

9: Send feedback Found
match?

Suppress/Defer
Upload

Upload the
image

NO YES

(c) Phase 3: Thumbnail feedback

Figure 3.1: Our framework for determining and suppressing images that contain similar

(redundant) information

disaster response control center. When a new image is considered for upload to the server,

a small amount of metadata is first extracted from the image and transmitted to the server.

The server compares this metadata with that from images that were previously uploaded,

and determines if a similar photo is already available. If this determination yields a positive

outcome, the photo upload is suppressed for the time being; else the device seeking to

upload the image proceeds to do so.

This seemingly simple high-level approach has three phases, with the aim of re-

ducing the overhead associated with identifying similar images. The first two phases form a

hierarchical, automated approach for image similarity detection. First, when a client seeks

to upload an image, it extracts certain coarse-grained global features and sends these to the

server. If the server finds that there is (are) a previously uploaded image(s) with similar

66

features, it invokes the second phase. In this phase, the client intelligently combines state of

the art vision algorithms to extract fine-grained local features from the image. A compact

representation of these features is then sent to the server. The server performs a further

comparison of these features with those in its pre-existing set of images. If there is a further

match, it is deemed that similar content exists, and the upload of the candidate image is

suppressed.

For all images that pass the first check but fail the second check, the server sends

back thumbnails of a small set of the closest matching images in its pre-existing set to the

client. In fact, in the scenarios of interest, a small set of pre-existing images may turn

out be the closest matching ones to multiple images (being uploaded by disparate users)

that are being considered for transfer; in such cases, the server can simply broadcast these

thumbnails. If a client device is in the possession of a human user (e.g., a smartphone),

the user can look at the thumbnail and then make a final decision on whether or not to

continue with the image upload.

Table 3.1 provides a summary of the techniques used in our framework. In the

subsequent subsections, we elaborate on how these techniques are combined to efficiently

detect image similarity.

Scope of our work: While our approach is applicable to different forms of rich

content, we limit ourselves to image/photo uploads/transfers in this work. Extension of

the work to video is possible [49] but will be considered in the future. Further, our focus

is the identification/suppression of redundant content in this work. In scenarios such as

disasters, it is conceivable that some images are more important than others (e.g., a human

67

Technique Usage Goal Section

OCS color
histogram

In Phase 1: Compare Eu-
clidean distance between color
histograms to determine server
has candidate similar images

Lightweight, but coarse-
grained similarity detec-
tion

3.3.2

ORB local
key-points

In Phase 2: Capture distinctive
patches on an image; these can
be matched to find similar im-
ages

Facilitate highly accurate
similarity detection; uses
image local features

3.3.3.1

BoW repre-
sentation

In Phase 2: Compute the Bag
of Visual Words (BoW) represen-
tation of an image by mapping
its key-points into pre-computed
clusters

Provide the inputs for com-
puting the min-hash values

3.3.3.2

Image min-
hash values

In Phase 2: Convert a BoW rep-
resentation into a fixed number
of hash values

Reduce communication
and processing overhead

3.3.3.3

Geometry
visual
phrases

In Phase 2: Add geometry in-
formation to reduce false visual
word matches

Reduce false positive rate 3.3.3.4

Thumbnail
feedback

In Phase 3: Feedback image
thumbnails

Use user input to increase
true positive rates

3.3.4

Table 3.1: Summary of techniques combined to form our framework

in need of rescue versus a damaged uninhabited vehicle). Thus, one could conceivably target

prioritizing image uploads based on content; however, we defer studies of such possibilities

to the future.

In this work, we assume that if there is no prior image that is similar to the one that

is considered for transfer, the image is transferred; else it is suppressed. We do not take into

account things like the quality of the image (e.g., resolution), or the coverage (e.g., close up

versus wide angle) as criteria for the above determination. Accounting for these factors is a

harder challenge; the service will need to delay image transfers, compare all metadata from

images that are being considered for uploaded and explicitly pull images from a chosen client

68

based on some criteria (e.g., HD quality image with a close up of a house). Furthermore,

the vision algorithms that we use here will not provide such assessments.

Our work primarily targets public services that require the transfer of images (e.g.

photos transferred during a disaster to facilitate rescue operations). Our approach can be

potentially leveraged in flash crowd scenarios where bandwidth is scarce; for example, an

image sharing service can use our approach to provide mobile users an option to temporarily

point to a similar version of an image (that they seek to upload), which is already available

on the server side. A seamless upload and replacement with the user’s own image could

be done lazily when the network is under less duress; from the user’s perspective, such an

approach would save both on the data usage (if WiFi was used instead of 4G later) and

energy costs that could be heavy due to retransmissions when the bandwidth is poor.

Finally, we do not leverage device features (e.g., GPS location, geotags, camera

orientation) to assess if two images could be similar; these features could be useful in

reducing the search space at the server side (e.g., it can compare images that are taken by

cameras in close proximity only). Leveraging such features is orthogonal to, and can be

used in conjunction with our framework.

How do you determine if content in two images is similar?: Whether or

not the content in one image is similar to that in another is a subjective matter; different

human users may perceive things differently and with respect to different images as well.

Moreover, a general user may choose to upload his image regardless of whether or not

someone else has uploaded a similar image. We assume that (i) savings in terms of data

usage and energy will incentivize users to suppress their image transfers, especially when the

69

network is congested and, (ii) in scenarios such as disaster recovery, smartphones could be

used by the relief crew, who will want to suppress redundant content to reduce congestion

and thus, aid relief operations.

In this work, we seek to ensure that if it is highly likely that a typical human

does not perceive that two images are similar, they are classified as dissimilar. In other

words, our framework must minimize false positives when classifying images as similar.

Keeping this primary goal of a very low false positive rate, we seek to eliminate redundancies

via such similarity detection to the extent possible, using state-of-the-art computer vision

algorithms. We use known data sets (discussed later) to get objective evaluations of our

framework; these evaluations show that our framework is extremely effective in decreasing

network congestion.

3.3.2 Phase 1: Use of a coarse-grained global feature

Global features capture the entire content in an image. Examples include the color

pattern or the scene pattern in the image. A global feature is represented by a single feature

vector. As color is an important image attribute, a histogram of the color distribution in

an image is widely used as a global feature for determining if two images are similar.

To construct such a histogram, we use the opponent color space (OCS) [35] to

determine image similarity. We use the OCS color space, since it is not very sensitive

to illumination (brightness) variations, unlike the RGB space. In brief, there are three

components in the OCS space: an intensity component and two opponent colors. The

components in the RGB color space can be used to compute the OCS color components

70

using the following equation.

I = (R+G+B)/3

O1 = (R+G− 2B)/4 + 0.5

O2 = (R− 2G+B)/4 + 0.5

(3.1)

The intensity component is quantized into 64 bins, while the other two components are

quantized into 32 bins. The histogram vector is normalized so as to represent each compo-

nent with 1 byte; thus, 128 bytes are used overall to represent the histogram. Once these

128 bytes are sent to the server, the server compares the bin values with those of the images

that it has in its data set (previously uploaded). If the Euclidean distance of the histogram

of any image on the server side and the histogram of the image about to be uploaded is less

than a threshold τ1, the system enters the second phase for similarity detection; otherwise,

the client uploads the new image.

3.3.3 Phase 2: Using fine-grained local features

In the first phase, only the global distribution of colors and intensity were ex-

amined. If the server finds matching histograms, in the second phase, finer grained local

features are extracted from the image and uploaded as metadata for further comparisons.

Contrary to global features, local features are extracted from small patches in the image.

When combined together, such local features (called key-points) represent the characteris-

tics of the entire image. Fine-grained local features can be used to detect image similarity

with high accuracy. Our approach for using local features consists of the following steps.

71

3.3.3.1 Extraction of key-points from an image

As mentioned above, the local features that we compare in order to assess the

similarity of images are key-points. Key-points are small patches of an image that differ

significantly from the surrounding areas (in the image). In computer vision, SIFT (Scale

Invariant Feature Transform) is the most widely used algorithm for determining the key-

points in images [45]. However, SIFT typically imposes a very high processing complexity

and is thus, not a viable solution for resource (battery) limited devices like smart-phones.

In our experiments, extracting key-points of a high resolution scenery image (approximately

2 MB of data) with SIFT requires about 30 seconds or even more.

Hence, we choose ORB [34] as our algorithm to extract image key-points, instead

of SIFT. Experiments from other research groups have shown that ORB is about two orders

of magnitude faster than SIFT while offering comparable results in many situations [50][51].

Each ORB key-point is described by 256 binary digits, whereas with SIFT, each key-point

is described by a 128-dimensional vector. The number of key-points depends on the image

size, the image resolution and the number of objects in the image. Normally, the amount

of data associated with the key-points in an image is far greater than the size of the image

itself! Therefore, directly comparing and matching key-points of images is not an option for

our framework; this would violate our goal of exchanging a very limited amount of metadata

for determining the similarity across disparate images.

72

3.3.3.2 Bag of Words (BoW) representation

Instead of directly working with image key-points, we use the bag-of-words (BoW)

approach [46] to build what is called a “visual codebook.” Any image can be represented as

a bag of visual words, which is much more compact than simply representing the image via

key-points. We describe below how the visual words are determined. For now, we point out

that a visual word in the ORB representation is simply described by a 256 bit-vector; each

element of the vector is called a dimension. A comparison of the visual words representing

two images could be used to determine if the two images are similar. Representing an image

by a bag of visual words is performed as follows.

Determining the visual words: First, the ORB key-points of a large set of

representative images are extracted. These key-points are all grouped into a pre-defined

number of clusters using any good clustering algorithm. In our approach, we use a modified

version of the k-means clustering algorithm to partition and group binary vectors [52].

With this algorithm, the input key-points are mapped onto k different clusters based on the

Euclidean distance between the key points and the cluster centroids. However, the Euclidean

distance is not suitable for binary data such as the ORB key-point descriptors. Therefore,

in our framework, we use the Hamming distance instead of the Euclidean distance. The

Hamming distance between two binary vectors is simply the number of bits that are different

in the two vectors.

The centroid of each cluster is randomly chosen first but is iteratively refined, as

key points are added to the cluster; details are available in [53]. With the binary vector

representation, in order to determine the centroid of a cluster, we count the number of

73

zeroes and ones in each of the 256 dimensions, for all the data points (key points) that are

associated with the cluster. If the number of zeroes is greater than the number of ones, the

value of the corresponding dimension for the centroid is a zero, else it is a one. If there is a

tie between the number of zeroes and ones, the value of the that dimension for the centroid

is randomly assigned as either a “0” or a “1”. Each such cluster centroid is then considered

to be a visual word in the aforementioned codebook.

When an image is considered for transfer, each ORB key-point in the image is

mapped on to the closest cluster centroid in terms of the Hamming distance. With such

a mapping, each image is now represented by a histogram of visual words; the number of

key-points mapped on to a cluster reflects the value of the corresponding visual word in the

histogram.

We wish to point out here that the codebook can be pre-loaded onto the clients

when our software framework is installed (under benign conditions of connectivity); thus,

there is no need to exchange it each time a comparison is to be done across images. In the

BoW approach, the number of clusters is generally chosen between tens of thousands to

hundreds of thousands.

3.3.3.3 Reducing detection overhead using min-hashes

Transferring the histogram of visual words constructed as above will incur signifi-

cant overhead since it would require at least n ∗k bytes if each component in the histogram

can be represented by n bytes and we have k such components. For example, even with

n = 2 and k = 50000, this corresponds to 100 KB. To adhere to our goal of having very

74

little overhead of exchanging metadata, we use the min-hash approach proposed by Chum

et al. [35, 47] in conjunction with the BoW representation.

To define the min-hash function of an image in the BoW representation we do the

following. First, if the value associated with a visual word in the histogram is greater than

0, the word is simply considered to be included in a set that is associated with the image.

Simply accounting for whether or not a visual word is present in an image (as above) is

a weaker representation of the BoW vector, since the number of occurrences of a word is

not taken into account. Now that each image is simply represented by a set of words, the

similarity of two images with sets of visual words I1 and I2 respectively, is defined by the

following equation.

sim(I1, I2) =
|I1 ∩ I2|

|I1 ∪ I2|
(3.2)

The min-hash function approximates the similarity in Equation 3.2 between two images as

follows. Let h be a hash function that maps all members (visual words) of set I (or I’) into

distinct integer numbers (called labels). The min-hash value of an image I is the minimum

from all the hash values associated with the visual words in that image. Formally, for each

visual word X, a unique hash value h(X) is assigned. The min-hash value of image I is

H(I) = min{h(X), X ∈ I}. The client uses M different assignments of labels to the visual

words. Specifically, let us say there are N visual words; each is assigned a unique label

value ∈ {1, N} at random. This is referred as one assignment or permutation. The client

can perform M (different) such permutations and compute the min-hash value in each case.

The number of identical min-hash values between two images can be used to assess the

similarity level between the two.

75

We use an example from [35] to demonstrate how the min-hash approach works.

Consider a vocabulary of six visual words A, B, C, D, E and F and three different images.

Each image contains three of these visual words, specifically, I1 = {A,B,C}, I2 = {B,C,D}

and I3 = {A,E,F}. For each image, 4 min-hash functions are generated by using different

permutations as shown in Table 3.2. For example, the min-hash of I1, corresponding to the

first permutation (row 1) is the value associated with C and is thus equal to 2. As I1 and

I2 have 3 identical min-hash values out of 4, their similarity is 3
4=75%; for the same reason,

the similarity between I1 and I3 is 1
4=25%.

Proof sketch: The skeleton of a simple proof for why min-hash approach yields the

similarity between two images is as follows. Let π(S) be a random permutation on a set S,

and let X be the element which has the minimum hash value in π(I1 ∪ I2). Because π is a

random permutation, the probability that X is any element in the set I1 ∪ I2 is equal for all

elements. If X ∈ (I1 ∩ I2), then obviously, H(I1) = H(I2) = h(X). Otherwise, without loss

of generality, assume X ∈ I1 \ I2; then, H(I1) < H(I2). To summarize, two images have the

same min-hash value if and only if the element X, which has the minimum hash value, is

included in both of them. It is easy to see that, as a consequence, the probability that two

images I1 and I2 have the same min hash value is equal to their similarity, i.e., sim(I1, I2),

as defined in Equation 3.2.

3.3.3.4 Improving detection accuracy by using geometry visual phrases (GVPs)

In the bag of words representation and the inferred min-hash information, the

geometry information of each key-point (for example, the location of a key-point in the

76

p
er

m
u

ta
ti

on
s A B C D E F I1=ABC I2=BCD I3=AEF

3 6 2 5 4 1 2 2 1
1 2 6 3 5 4 1 2 1
3 2 1 6 4 5 1 1 3
4 3 5 6 1 2 3 3 1

Label assignments Min-hash values

Table 3.2: An example of min-hash functions: Four permutations of label assignments are
shown.

image) is lost. To reduce the likelihood of false matches because of the above, we use

geometry visual phrases (GVP) in combination with the min-hash values. This reduces the

false positive rates significantly.

We describe in brief how GVPs are computed and used; more details are in [36].

Towards determining the GVPs between two images, each image is divided into a fixed

number of bins (same for both images regardless of the size of the image). In each image,

each key-point corresponding to a visual word is then mapped into this offset space and

is represented by the co-ordinates {x, y}, of the bin index to which it belongs; this is

referred to as the geometry information. Each pair of equal min-hash functions identify a

visual word that occurs in both images. For each of these visual words, the differences in

geometry information of the key-points (denoted by ∆x and ∆y) are computed. If these

“difference” values for say L visual words are the same, this implies that these L key-points

are likely to be mapped onto the same (corresponding) objects in the two images and thus,

are said to form a co-occurring GVP of length L. To illustrate, let us consider the example

in Figure 3.2, which shows two different images of a house (found online) that was damaged

due to hurricane Sandy. The ∆x and ∆y values for the key points A, B and C are all {0, 0}.

Thus, these three points together could potentially map onto something common in the two

77

A B

A B

C

C

Δy
 =

 y
’ -

 y

Δx = x’ - x
Offset space

3

2

1

0

-1

-2

-3

-4
-2 -1 0 1 2 3 4

A B
C

GH

GH

H G

I

I’

I

I

I

Figure 3.2: An example of visual phrases between two images

images and this forms a GVP of length 3. Similarly, for the two key points G and H, the

∆x and ∆y values are 0 and -1 respectively; thus, these two key points could potentially

map on to identical constructs in the two images. This is a GVP of length 2.

Given two images I and I ′, the similarity score based on visual phrases of length

L is defined in equation 3.3.

simL(I, I ′) =
∑
s

(
Ms

L

)(
M
L

) , (3.3)

In equation 3.3, Ms is the number of key-points in bin s of the offset space, and thus
(
Ms

L

)
is the number of GVPs of length L in that bin. For example, in bin {0,0}, there are 3 key-

points viz., A, B and C; if L = 2, the number of length-2 GVPs in the bin is 3, corresponding

to AB, AC and BC. Thus, the numerator on the RHS of equation 3.3 is simply the total

number of GVPs of length L between two images. The denominator,
(
M
L

)
, corresponds to

the maximum possible number of GVPs of length L that can be formed between the two

78

images, given that M min-hash functions are used. Hence, the similarity score between two

images is the number of GVPs of length L that are common between them, normalized by

the maximum possible number of GVPs length L that can be created by using M min-hash

functions.

If the similarity scores between the user’s image and a candidate image is greater

than a threshold (say τ2), the images are deemed similar.

3.3.4 Phase 3: Thumbnail feedback

If at the end of phase 2, if the server finds no matches for the image considered

for upload, it invokes an optional phase 3, seeking user input for finally making a decision

on whether or not to have the image uploaded.

Upon failing to find a match in phase 2, the server rank orders the images in the

candidate set based on the similarity scores with respect to the image being considered for

upload. For each of the top k images in this ordered list, a small thumbnail is sent back to

the client device; photo sharing services typically generate a thumbnail for every image at

the time it is uploaded [54]. The user of the client device can visually compare her image

with the received thumbnails and assess whether or not similar images are already available

at the server; based on this, she can decide whether or not to transfer the image.

3.3.5 Handling parallel transfers of similar content

Thus far, we implicitly assumed that an image being considered for upload is

compared with images that were already uploaded previously and stored in the server

database. However, it is quite possible that in our scenarios of interest, multiple user

79

devices attempt to upload similar images almost at the same time (close to when the event

is occurring). Due to the shared access to the wireless medium, these attempts could be

proceeding in parallel. If bandwidth is limited, it becomes important to reduce the load

especially in such settings; for example, multiple such critical events (people needing to be

rescued) could be ongoing at the same time and it is desirable to have (unique) information

associated with all such events. The challenge here is to essentially compare such parallel

uploads and determine if such attempts are towards transferring similar content.

When a client sends an OCS histogram of a new image, the server inserts an entry

(with this information) for the image, into a queue. When there are other parallel uploads,

the server not only compares the histogram of a candidate image with that of the images

in its database, but also with the histograms of entries in this queue. If there are similar

histograms (in either the database or in the above queue), the client is instructed to upload

the local features as before. When the server receives the local features of an image, it

associates them with the proper entry in the queue. It then compares these local features

with the images from the database that were classified to be likely candidates with similar

content as well as the local features of entries in the queue that are already available (with

matching histograms). If there is a match with either, the image transfer is suppressed and

the corresponding entry is deleted from the queue; else, the client is instructed to upload

the image. After an image is completely received, the corresponding entry is deleted from

the queue and the image is added to the server database. We point out that we only

use the first two phases in determining if images that are considered for upload almost

simultaneously, are similar. When this determination is taking place, only metadata of the

80

images is available at the server side (the thumbnails of such images are not yet available).

Since we desire that the decisions on whether or not to upload be quick, we avoid waiting

for the complete information towards generating thumbnails and providing subsequent user

feedback; this would cause delays and affect user experience. However, recall that the

thumbnail feedback in phase 3 is mainly to help increase the true positive rate; thus, for the

images considered for upload almost simultaneously, our system still achieves a low false

positive rate.

3.4 System Implementation

In this section, we describe the prototype implementation of our framework. Our

prototype consists of a central server which accesses a database where a set of previously

uploaded images are stored. A number of mobile client devices generate new images and

attempt to upload them to the server. We use the Kentucky image data set (described later

in Section 3.5) to learn the appropriate values for the parameters in our implementation.

3.4.1 Image server

The server stores the images that it receives in a central database. For each image,

it extracts and stores the image’s 128-byte OCS histogram and the image’s min-hash values

as described in Section 3.3. At the server side, we choose to construct 512 permutations

(recall Section 3.3.3) and determine the corresponding hash values for each image; each hash

value is stored using 2 bytes. As one might expect, the larger the number of permutations,

the higher the accuracy in similarity determination. However, Zhang et al. [36] showed

81

that when more than 512 hash functions are used, the gain in accuracy is at a point of

diminishing returns due to an increase in the imposed processing overhead.

For each hash value, the server also stores the geometry information of the visual

word that corresponds to that min-hash function (the visual word which is assigned the

minimum value by the hash function). Specifically, for each visual word, we store the

x,y indices of the bin to which the key-point associated with that visual word belongs,

as described in Section 3.3.3. For each image, we use a 10x10 bin-space as in [36]; thus,

the geometry information of a min-hash value consists of 1 byte, including 4 bits for the

horizontal bin index and 4 bits for the vertical bin index. Therefore, the total byte count

to capture the local features of an image is 1536; this includes 1024 bytes for the min-hash

values and 512 bytes for the geometry information. In total, we impose only 1664 bytes

overhead for each image, together for both the global and local features. This is less than

1% of the size of a normal quality image taken with a modern smartphone. Our server

application is implemented in C++ and uses the OpenCV library [55] to extract global and

local features of the images.

Server operations: When a client application is about to upload an image, it

sends the OCS histogram of the image first. The server searches its database to find images

with similar histograms (the component values are within a threshold τ1 of the incoming

image’s histogram) based on Euclidean distance. If such similar histograms are found, the

corresponding images are considered as candidates for containing the content in the image

to be uploaded; then, the client is asked to transfer min-hash values and the geometry

82

information of its image. If no similar histograms are found, the client is instructed to

upload its image.

In the next phase, when the local features of the image are received, the server

calculates the geometry similarity score of that image with respect to each of the images in

the candidate set according to Equation 3.3. Here, the scores are based on GVPs of length

2; it has been shown that this provides a good enough detection accuracy when compared

to using GVPs of other lengths [36]. If any of these similarity scores is ≥ τ2, the server

deems that the content is similar and notifies the client application to suppress the image

upload.

Otherwise, the server chooses those images that have the highest similarity scores

and sends back thumbnails of these, to the client (a delayed multicast is possible to reach

a plurality of clients, but we don’t implement this). The human user of the client device

can then check to see if the images are similar, and only choose to upload the image if she

feels that they are not. We assume that users are objective and suppress an upload if a

thumbnail is indeed of a similar image (we discuss our data sets and their objective usability

for determining the similarity of images in Section 3.5).

Fast histogram matching in Phase 1: For each OCS histogram that is received

(from the clients), the server needs to find the set of images in its database with similar

histograms. The database could potentially contain a large set of images, and brute-force

checks are thus not viable. To achieve an efficient search, we utilize the fast “k nearest

neighbor” search (knn) to find a good approximate set of the candidate images. We use

the FLANN library [56] which is freely available for knn search. The histograms of all

83

the images on the server side are grouped into hierarchical clusters. Specifically, based

on the histograms, all the images are first grouped into N clusters; each such cluster in

turn is recursively partitioned into N sub-clusters and so on, up to a maximum number of

iterations. Here, we choose a default value of N=32, as suggested by the FLANN library.

Choosing the key parameter for the knn search: One important parameter when

using knn search is the value of k, the maximum number of nearest neighbors the library

should return. The higher the value of k, the library explores a larger number of branches

in the cluster-tree and is thus able to find a larger set of similar images. However, the search

time also increases.

To determine a good value for k, we conduct an experiment using the Kentucky

image set with 10200 images. This set contains groups of images that are similar; each

group contains four images (ground truth). We build a test set that consists of 500 images,

such that no image is similar to any other image in the set. For each image, we execute

FLANN with different values for k, and record the processing times and the number of

similar images found on the server. Figure 3.3 shows the search time (for query processing)

for different values of k, and Figure 3.4 shows the accuracy of the search results in terms

of the percentage of similar images that are found for a candidate image (as compared to

the ground truth). These graphs show that, if we set k=500, we are able find over 90% of

similar images with an expected processing delay of only about 33ms. Thus, we choose this

to be the default value in our server implementation.

84

6.83 11 17 33 68
151

355

784
Pr

oc
es

si
ng

 ti
m

e
(m

ill
is

ec
on

ds
)

0

500

Values of k
50 100 200 500 1000 2000 4000 8000

Figure 3.3: Search time for different values
of k with knn

Tr
ue

 P
os

iti
ve

 ra
te

0.65
0.70

0.80

0.90

1.00

Values of k
50 100 200 500 1000 2000 4000 8000

Figure 3.4: Percentage of images similar to
an incoming image found

3.4.2 Client application

The client app is implemented on Android smart-phones using Java and native

C++ code (JNI). Upon capturing an image, our client app is invoked for attempting an

upload of the image to the server. The Java code is only for the graphical interface; the

image processing code is written in C++ and is linked with the OpenCV library for feature

extraction.

Client operations: First, the client application extracts the OCS histogram of

the image and sends it to the server. It then awaits a server notification with regards

to whether or not there are images with similar histograms in the server’s database. If

such candidate images exist, the client app extracts the local features, i.e., the min-hash

values and their corresponding geometry information, from the image. To calculate the

min-hash values, first the ORB key-points of the images are extracted. Next, the client

application converts the image into the BoW presentation by mapping the key-points into

visual words based on a vocabulary file. The vocabulary file contains the book of visual

words (codebook) that is pre-built and preloaded from a set of training images (these are

also available to the server). We choose to use a codebook of 20000 clusters. With this, the

85

processing time at the client for each image is approximately 1.2 seconds. With a larger

codebook, (e.g., with 50000 clusters) the processing time is around 3.5 seconds. Thus,

choosing this larger codebook will degrade the performance of our framework (increased

latencies). Furthermore, with 20000 visual words, we only need to use 2 bytes to represent

each cluster and this limits the metadata overhead; larger numbers of clusters will increase

these overhead costs.

Next, the client reads 512 different hash values (permutations) from a pre-built

data file; for each permutation, a unique label is assigned to a hash value and thus, each

visual word. It identifies the label of the visual word with the min-hash value for each

permutation, and computes the geometry information for the visual word associated with

that value. It sends both the min-hash values and the geometry information back to the

server (local features).

Pre-installed data on client side: We pre-install a vocabulary file for the BoW

processing and a permutation file for determining the min-hash labels for images on the

client side. Thus, this information does not need to be exchanged for each image. With

20000 clusters, the size of the vocabulary file is only 640 KB; each cluster centroid of an ORB

key-point is just 256 bits (32 bytes). The permutation file contains 512 permutations; each

permutation in turn contains 20000 assignments which map each cluster on to a unique

2-byte label value. To reiterate, each permutation essentially reorders the identification

labels to be assigned to the clusters. Thus, the size of the permutation file is ≈ 20MB.

These files are also available to the server (which essentially provides the software at install

86

to each client). The only time that these files need to be rebuilt is if there are large changes

to the image database maintained by the server.

An alternative approach using SIFT key-points [45]: In addition to the

ORB-based approach, we implement an alternative approach which leverages the SIFT

key-points, as SIFT is the most widely used key-point extraction technique in image sim-

ilarity detection [47][36]. We also use the OpenCV library (with the default parameters

described by the author of SIFT in [45]) to extract key-points of the images. Each SIFT

key-point is represented by a 128-dimensional vector, we use the k-mean technique to clus-

ter the key-points and build a vocabulary (codebook) including of 20000 visual words. The

SIFT key-points in each image are then mapped into the nearest cluster center by using

the Euclidean distance, instead of the Hamming distance as in the ORB-based approach.

After the vocabulary is built, the remaining steps in this approach, including building the

BoW representation, computing min-hash and geometry distances are exactly the same as

described in section 3.3, when ORB key-points are used. Be noted that the biggest concern

when SIFT is used is its high processing overhead, as shown in [34][51]. Specifically, the

average times to process one image in our dataset (described in section 3.5.1) on a Google

Nexus 4 phone are 0.8 seconds and 13 seconds when ORB and SIFT are used, respectively.

The impact of using SIFT instead of ORB on detection accuracy and transfer delay is

discussed later in section 3.5.

87

3.5 Evaluation

In this section, we describe the evaluations of our framework. We perform exper-

iments on a testbed of Android phones, as well as simulations using ns3 to showcase the

performance as well as the benefits of our approach.

3.5.1 Training and test image sets

We begin with describing our image data sets and how we use them to evaluate the

accuracy with which our framework can identify similar images. We use the Kentucky image

set, which has been widely used in computer vision, primarily because of the availability of

ground-truth information. We also use an image set of US cities that we collected on the

Internet as described below.

The Kentucky image set [5]: The image set consists of 10200 images forming

2550 groups. In each group, there are 4 images of the same object taken from different

angles; such images match our requirement/definition of similar images.

The city image set: We use the Bing image search service to find one image

each for 5000 popular US cities. As these pictures are taken from different cities, there are

no pairs of similar images in the entire image set.

We change the format and increase the file size of all the images to ≈ 700 KB using

ImageMagick [57] in order to ensure that the evaluations are consistent across the different

datasets that we consider. The tool converts the image to a different format (e.g., JPEG to

BMP) in order to change the file size; thus the image is practically unchanged but the file

size is now different. This size reflects the average size of normal-quality images taken by

88

smartphones today3. Further, robust image key-points (such as SIFT or ORB, which we

used in our approach) are scale-invariant; in other words, the key-points are stable even if

the images are resized to some extent.

Building the training and test data sets: We evaluate the accuracy of our

framework by partitioning our image data sets into a training set and a test set. We pre-

upload images in the training set to the server and evaluate the accuracy with which our

framework is able to identify images in the test set (when we try to upload these images)

as having corresponding similar images on the server.

We randomly pick 2000 images from the US cities set and 2000 images from the

Kentucky set to create a test set of 4000 images. Though images from the Kentucky data

set are chosen randomly, we ensure that no more than 2 images are taken from the same

group (the aforementioned 4 images of the same object). The remaining images from the

Kentucky data set and the US cities data set are used as our training set; this set is used

to build the codebook for the BoW representation and stored at the server.

To eliminate biases with a specific test set, we construct 5 different test sets (by

randomly choosing images from the Kentucky and US Cities data sets) and the correspond-

ing training sets. By default, the results reported are the average from our experiments

with these 5 different sets. Note that by adopting the process above, we essentially ensure

that for each image in our test set that is taken from the Kentucky set, there are at least 2

similar versions of the image in the server database; this can be used as ground truth while

estimating our true positive rates in identifying similar/redundant content. For each image

3With modern smartphones, the average file size of high quality images can be between 2 and 2.5 MB [58].

89

taken from the US cities set, there is no similar version in the server database; thus, this

set is useful in estimating the false positive rates with our framework.

Remarks: We do recognize that the Kentucky and the US cities data sets contain

largely dissimilar images. We tried to perform experiments with a large set of images from

a disaster scenario (Hurricane Sandy) but had difficulty in establishing the ground truth

for the purposes of quantifying true and false positive rates. While we believe that our

framework works well in such cases (based on some limited experiments where we tried to

upload about a 100 photos and manually checked for similarity), we need a set of volunteer

users to categorize whether the images are similar or not; for a large set of images, this

was difficult to do. Using the Kentucky and US cities data sets allowed us to evaluate the

accuracy of our framework without human involvement in an objective way.

When emulating human feedback based on thumbnails, we again rely on the ob-

jectivity possible with the above data sets. If two images are indeed similar (based on the

ground truth), we assume that the user will correctly classify it to be the case; if the images

aren’t, we assume that the user will correctly decide to upload her image.

A training set of images (and a corresponding codebook) for a specific disaster

location, can be built by using images of the same location before the disaster and images

of the same kind of disaster (for example, an earthquake or a wildfire) that had previously

occurred at other locations. A codebook built based on the two image sets is likely to contain

key points that are similar to the key points in the images captured at the disaster scene.

This determination is based on results from prior research on disaster images; specifically,

90

Yang et al. [59] found that images of the same kind of disaster have many similar local

features.

3.5.2 Experimental setup

Our experimental system consists of a server with an associated database; all the

images in the training set and their global and local features are stored in the database.

We have 20 Android-based smartphones as our client devices; the test images are divided

equally among these phones. The smartphones connect to an access point (AP) on a WiFi

network; the server is also connected directly to the AP via a 100 Mbps Ethernet cable.

To emulate bandwidth constrained settings, we set the network bitrate to 6 Mbps. We

experiment with different workloads (upload rates) from our smartphones. Note that we

vary the network bandwidth in our simulations in Section 3.5.8; we also consider uploads

using the cellular infrastructure in those studies.

Remark: Unfortunately, we were unable to showcase the performance of our frame-

work via real experiments on cellular networks. Specifically, we do not have a sufficiently

large set of phones to create enough load that strained the network bandwidth. Further,

we were unable to determine the bit rate on the LTE links and could not accurately char-

acterize the network load; thus, it was difficult to objectively quantify the benefits from our

framework. However, in the scenarios of interest (e.g., disasters), we expect that there will

be sufficiently large user activity that will strain the capacity of the network [4, 60].

91

True Positive
False Positive

Tr
ue

/F
al

se
 P

os
iti

ve
 ra

te

0

0.2

0.4

0.6

0.8

1.0

Histogram distance threshold (τ1)
0 10000 20000 30000 40000 50000 60000 70000

Figure 3.5: Accuracy with different his-
togram thresholds

True Positive rate (ORB)
False Positive rate (ORB)
True Positive rate (SIFT)
False Positive rate (SIFT)Tr

ue
/F

al
se

 p
os

iti
ve

 ra
te

0

0.2

0.4

0.6

0.8

GVP similarity score threshold (τ2)
0 1 2 3 4 5×10−4

Figure 3.6: Accuracy with different GVP
similarity scores

TP rate without thumbnails
False Positive rate
TP rate using 1 thumbnail
TP rate using 3 thumbnails
TP rate using 5 thumbnails
TP rate using 10 thumbnails

TP: True Positive

Tr
ue

/F
al

se
 p

os
iti

ve
 ra

te

0

0.2

0.4

0.6

0.8

GVP similarity score threshold (τ2)
0 1 2 3 4 5×10−4

Figure 3.7: Accuracy with different num-
bers of image thumbnails

True Positive (20k)
False Positive (20k)
True Positive (30k)
False Positive (30k)
True Positive (10k)
False Positive (10k)

Tr
ue

/F
al

se
 p

os
iti

ve
 ra

te
0

0.2

0.4

0.6

0.8

GVP similarity score threshold (τ2)
0 1 2 3 4 5×10−4

Figure 3.8: Accuracy with different num-
ber of words in the codebook

3.5.3 Accuracy of detecting similar content

Detection accuracy with global features only. First, we examine the accu-

racy with which Phase 1 of our framework determines if or not the server is in possession

of a similar image as compared to one being considered for upload. Recall that image

similarity is determined here only by comparing the global OCS histogram associated with

two images. Figure 3.5 shows the true positive rates (correctly detecting similar content)

and the false positive rates (wrongly classifying images as containing similar content) with

different histogram distance thresholds. If we set a very low threshold (meaning that the

Euclidean distance between the histogram of the image to be uploaded and a candidate

image in the server database should be very small), we will end up not identifying any

similar images; here, the true positive rate will be very low. To increase the true positive

92

rate, we will need to increase the threshold so that we have a bigger likelihood of identifying

candidate images in the server database, but this will have the undesired effect of increasing

the false positive rate, since some wrong images in the database will also be classified as

candidates for similarity checks. Based on Figure 3.5, we choose a threshold of τ1=14000

towards achieving ≈ 80% true positive rate; however, this results in a 63% false positive

rate, which we seek to drastically decrease with Phase 2.

An alternate distance measure: We did experiments with the Earth Mover distance

(EMD) and we observed a very slight difference compared to using Euclidean distance.

When using EMD, we are able to achieve a true positive rate of 80% but we encounter

a false positive rate of ≈ 60% (compared to 80% and 63% respectively when using the

Euclidean distance). The reason was that while color features are good at identifying

similar images, they are not distinctive enough to identify dissimilar images. Since the

complexity of computing EMD distance is also significantly higher (O(N3logN) [61]), we

use the Euclidean distance. In our experiments using the OpenCV library, we found that

computing the EMD distance is 500 to 1000 times slower than computing the Euclidean

distance with a 128-bin histogram.

Improving detection accuracy with local features. In Phase 2 of our ap-

proach, the assessment of image similarity is refined by calculating the similarity scores

based on GVPs (see Equation 3.3). Figure 3.6 depicts the true and false positive rates

after this phase, when different similarity score thresholds are used. We show results for

two different approaches, (i) one which uses ORB key-points and (ii) the other using SIFT

key-points. For both approaches, we observe that with a very low threshold, the false pos-

93

itive rate is very high (images are wrongly classified as similar) but then drops drastically

as we increase the threshold. However, increasing the threshold decreases the true positive

rate as well, since similar images are discarded for “not being good enough”. To avoid

missing critical image uploads, a very low false positive rate (≈ 1%) is desirable. If we set a

threshold to achieve this, the true positive rate is ≈ 47% and ≈ 51% with the ORB-based

and SIFT-based approaches, respectively; this implies that approximately half of the im-

ages which have redundant content are detected and are subsequently suppressed at the

end of this phase. These results also show that using SIFT only offers a slightly better

detection accuracy while imposing a significant higher processing overhead (more than 15

times higher compared to using ORB, as described in section 3.4.2). Because of its high

processing time, the SIFT-based approach has a noticeably undesirable impact on image

transfer delays, which we show later in section 3.5.4.1. Thus, using ORB is a more viable

option for resource-constrained wireless devices. Hereafter, we only focus on and show the

evaluation results for our efficient ORB-based approach.

Feeding back image thumbnails to further increase the true positive

rate. To further improve the detection of similar images, in Phase 3, the server sends back

thumbnails to the user for visual inspection (Section 3.3.4). In our experiments, the size of

an image’s thumbnail is ≈ 11 KB; we believe that this a reasonably small volume of data

needed for improving accuracy.4 Figure 3.7 shows the increase in accuracy when different

numbers of thumbnails are fed back to the user. With 3 to 5 image thumbnails, we find that

the true positive rate increases to about 68% (from 47% with the ORB-based approach at

the end of Phase 2). Beyond that, we find that we hit a point of diminishing returns; for

4The overheads due thumbnails are discussed later.

94

example, with 10 thumbnails, the true positive rate increases to just over 70%. Note here

that the false positive rates do not change after Phase 3 (the human accurately determines

if the content is similar or not).

Detection accuracy with parallel uploads. Next, we consider the case where

multiple client devices are attempting uploads of similar content in parallel (almost simulta-

neously). Specifically, we conduct an experiment where three smartphones attempt parallel

uploads of an ordered set of 500 images to the server. The database on the server side does

not contain any images that are similar to the test images. We manually ensure that the

images at the same position in the ordered sets at the three clients are similar; for example,

the first image on the first client is similar to the first image on the second and the third

client and so on.

First, we conduct the experiment without performing any similarity detection; as a

result, all the 1500 images from the clients are uploaded to the server. Next, we implement

similarity detection using the process described in Section 3.3.5. Here, we observe that only

585 images are uploaded to the server. Specifically, 500 images with unique content and 85

images with redundant content are uploaded; this corresponds to a 17% contribution from

redundant information.

Impact of system parameters on accuracy. We vary each of the system

parameters (e.g., the number of words in the codebook, number of histogram bins), and

report the values that work best with our data set. Due to constraints on page count,

we only show the impact of changing the number of visual words used in building the

vocabulary (described in section 3.3.3.2). In Figure 3.8, we show the true positive and

95

false positive rates with our system, when 10000, 20000, and 30000 words are used in the

codebook. When 10000 words are used, the system gets a high true positive rate but suffers

from a relatively high false positive rate. Since the number of words is relatively lower,

similar key-points have a higher likelihood of being grouped in the same clusters; however,

in some cases, dissimilar key-points end up in the same clusters as well. When 20000 or

30000 words are used, both the true positive and false positive rates drop. The figure shows

that, when choosing a high GVP threshold to keep to false positive rate of ≈ 1%, using

20000 or 30000 words allow the system to achieve higher true positive rates. There are

no further significant improvements when the number of words is increased from 20000 to

30000; thus, we choose to use 20000 words to build the vocabulary. Note that a similar

process is used to learn the best values for the other parameters. We discuss how to choose

the parameters in dynamic settings in section 3.6.

3.5.4 Impact of redundant content suppression on network performance

In this section, we seek to understand the impact of redundant content reduction

on network performance. Specifically, we seek to quantify the impact on (i) the delay

experienced during image uploads (where we can expect a decrease) and (ii) the total

sustainable load (where we can expect an increase). We also quantify the overheads due to

our approach.

For the experiments in this section, each smartphone sends a test set of 50 images,

back to back to the server. The test set consists of 25 images from the Kentucky data set

with similar versions on the server, and 25 images from the US cities set. The total size

of the test set is ≈ 32 Megabytes. Subsequently, we vary the proportion of the redundant

96

content in the test set and quantify the impact on network performance. First, we show the

results in an ideal case wherein all redundant content is correctly detected and suppressed;

in other words, we assume a 100% detection accuracy unlike what we expect in practice.

With our framework, the proportional improvements are reduced by a factor equal to the

complement of the true positive rate; we show this later in Section 3.5.7.

3.5.4.1 Delays under different network loads

The normalized network load (also referred to as simply network load) is defined

as nλ
µ , where n is the number of devices in the network, and λ is the load generated per

device, and µ is the rate achievable on the transfer link. To vary load, we first fix λ, but vary

the number of clients that are attempting image transfers per unit time (n). Each client

transfers/suppresses one image completely, before attempting the next transfer. Specifically,

we assume that a new image is generated every t seconds. We set t = 6 seconds (we have

other results but do not report them as they are similar), which implies that a client device

(given the 32 MB content volume consisting of 50 images) generates an average load of λ =

0.85 Mbps. With the wireless bandwidth of 6 Mbps (µ), this corresponds to each client

generating a normalized load of 14% (0.85/6), on average.

Figure 3.9 demonstrates the reduction in the delay experienced under different

normalized network loads, due to similarity detection/redundancy elimination. The delay

experienced by an image is defined as the duration between when the image is generated and

when it reaches the server; the delay is computed for only those images that are transferred

to the server. We show the average upload delay values in three scenarios: (i) No similarity

97

Without similarity detection
With similarity detection (ORB)
With similarity detection (SIFT)

Av
er

ag
e

Im
ag

e
U

pl
oa

d
D

el
ay

 (s
ec

on
ds

)

0

20

40

60

80

100

Normalized Uplink Load
0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8

Figure 3.9: Impact on network load
and image transfer delay (Ideal case
with 100% detection accuracy)

692

20

342

10

517

15

593

17

694

20

No similarity detection
50% similar images
25% similar images
15% similar images
0% similar images

N
et

w
or

k
Tr

af
fic

 (M
B

)

0

200

400

600

Uplink Downlink

Figure 3.10: Varying the proportion of similar
images at the server (Ideal case with 100% de-
tection accuracy)

detection is employed (ii) Similar images are detected by using ORB key-points (iii) Similar

images are detected by using SIFT key-points. Under light network load (e.g., below 40%),

sending the images directly without any similarity detection/redundancy suppression is

faster! This is because in these regimes, there is no congestion and it is possible to transfer

images without much delay; the process of similarity detection adds processing/metadata

exchange delays but does not contribute to a reduction in congestion.

However, when the load > 50%, the network transitions into a congested state;

this is the regime where redundant content reduction will benefit performance. The figure

demonstrates that similarity detection (using ORB key-points) and redundancy suppression

allow us to tolerate up to a 100% increase in load. Similarly, at high loads (e.g., at loads >

1.0), more than a 100% reduction in the experienced delay is possible.

On the other hand, the SIFT-based approach imposes high computational over-

heads and increases the upload delay with all network loads. The time taken to process

images becomes the bottleneck and dominates the upload delay (instead of network transfer

time). In all cases, the upload delay is much higher than sending the images directly! These

98

8.41

3.85
5.19

6.48

9.12

Av
er

ag
e

D
el

ay
 (s

ec
on

ds
)

0

5

10

Similarity Proportion
No detection 50% 25% 15% 0%

Figure 3.11: Upload delay with different propor-
tions of similar images (Ideal case with 100% de-
tection accuracy.)

WiFi energy CPU energy

En
er

gy
 c

on
su

m
ed

 (J
ou

le
s)

0

100

200

300

Similarity Proportion
No detection 50% 25% 15% 0%

Figure 3.12: Impact on Energy

1 thumbnail
3 thumbnails
5 thumbnails

N
or

m
al

iz
ed

 D
ow

nl
in

k
lo

ad
 (k

bp
s)

0

200

400

600

Normalized Uplink load (kbps)
870 1740 2610 3480 4350 5220 6090 6960

Figure 3.13: Overheads from thumbnails

Without similarity detection
With similarity detection

Av
er

ag
e

Im
ag

e
U

pl
oa

d
D

el
ay

 (s
ec

on
ds

)

0

20

40

60

80

Normalized Uplink Load
0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8

Figure 3.14: Upload delay with our
framework (True Positive rate ≈ 70%)

results show that using ORB key-points, as in our approach, is an essential part for ensuring

the effectiveness of our framework.

Note that these results are based on about 50% of the images to be uploaded

having similar counterparts at the server.

3.5.4.2 Varying the proportion of similar images available at the server

Next, we vary the fraction of uploaded images that have similar counterparts at

the server. In these experiments, we use tcpdump to capture network traffic transferred over

the wireless network. We show the results when the normalized load is 0.6; the behavioral

results are similar at other loads. The results are shown in Figure 3.10.

99

First, the figure depicts a case where the server does not contain any image that

is similar to any image being considered for upload. In this case, there is an overhead

associated with each image due to the metadata, but this overhead serves no purpose

(images are ultimately uploaded). In this extreme case, we find that the performance

with our framework is only slightly worse than in the case without it; the upload data

volume increases from 692 MB to 694 MB. Second, as one might expect, as the likelihood

of the server finding a similar image increases (the proportion of similar images present is

increased), the performance with our framework improves in terms of a drastic reduction

in network load. The figure shows that when the redundancy in content is about 50%, the

decrease in network traffic (because of redundancy elimination) is in fact slightly higher than

50%. The main reason for this artifact is that the reduction in network load also reduces

the overheads due to retransmissions of corrupted packets that are typically incurred, if

an image is in fact uploaded. These experiments also inherently account for the uplink

overheads with our framework; the results suggest that these overheads are extremely low

(because the gains are as expected in an ideal setting with no overhead). Finally, the

metadata overhead consumed in the reverse direction (from the server to the smartphones)

is also depicted; this corresponds to a very small fraction of the upload content volume (≈

3%).

We also examine the delays incurred in transferring images, while varying the

proportion of similar images available to the server. The results are shown in Figure 3.11.

Again, if no similar images are present at the server for any of the images being considered

for upload, there is a very slight increase in delay (from 8.41 seconds to 9.12 seconds) due

100

to the metadata exchange and processing. This demonstrates the extremely low overheads

with our approach. As the proportion of similar images increase, drastic reductions (54%

when this proportion is 50%) in image transfer delays are realized with our framework as

depicted in the figure.

3.5.5 Impact on energy consumption

Our next set of experiments capture the impact of our framework on the energy

consumption on the client devices. Specifically, we pay particular attention to the (i) energy

consumed due to processing, towards extracting local and global features, and (ii) the energy

consumed by the network interfaces due to content/metadata transfers. We compare the

energy consumed on smartphones with and without our framework.

We use the PowerTutor tool [11] to capture the energy usage on our smartphones.

For clarity, we only show the results with a Sony Ericsson Xperia Arc phone in our test

bed. However, we observe similar results on different phones from different vendors as

well. Figure 3.12 shows total energy consumed and the energy breakdown when a set of

50 images is uploaded from the phone. It is observed that our approach only induces a

very small energy overhead on client devices when the similarity detection fails in all cases

(server does not have any similar images to the ones considered for upload). As the volume

of the transferred data is reduced, the energy consumed by the WiFi connection is also

reduced. However, the energy consumed due to processing increases (due to the computation

of global/local features of the images). The highest difference in energy consumption is

between when no similarity detection is deployed and when there are no images with similar

versions on the server side; this is about 40 Joules. On today’s modern smartphones, the

101

battery capacity is around 1800mAh with a voltage of 3.7 Volts; the above energy overhead

only corresponds to about 0.2% of the battery capacity. Given the large number of image

transfers considered from each phone here, the overhead is likely to be even lower in practice

and thus, will not adversely affect user experience.

3.5.6 Overhead due to thumbnails

As our final experiment on our Android testbed, we seek to quantify the overheads

incurred in sending different numbers of thumbnails from the server to the smartphone

clients. In this experiment, 50% of the images that are considered for uploads have similar

versions on the server side. Figure 3.13 shows the normalized (upload) load and the cor-

responding overhead in terms of download load if 1, 3 and 5 thumbnails are generated for

those images for which the server comes up with a negative result at the end of Phase 2, in

our system. It is observed that when the upload rate is increases, the overhead of generating

thumbnails also increases. However, even when the generated upload load is higher than

the capacity of our link (6Mbps), the overhead of generating 5 thumbnails is still less than

10% of the link capacity. This demonstrates that Phase 3 of our framework is lightweight

and is a viable option in practice.

3.5.7 Improvement in network performance with our framework in prac-

tice

Thus far, we have shown the improvements on network performance in an idealized

setting where we assume that similarity detection can be performed with 100% accuracy.

Next we show the impact on network performance with our framework, using our test set

102

692

444

568
622

694 No similarity detection
50% similar images
25% similar images
15% similar images
0% similar images

N
et

w
or

k
Tr

af
fic

 (M
B

)

0

200

400

600

Figure 3.15: Uplink Network traffic with
our framework (True Positive rate ≈ 70%)

Without similarity detection
With similarity detection

Av
er

ag
e

Im
ag

e
U

pl
oa

d
D

el
ay

 (s
ec

on
ds

)

0

20

40

60

Normalized Uplink load
0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8

Figure 3.16: Delay vs load with WiFi
(ns3)

of images. Here, the true positive rate is approximately 70% (as described in Section 3.5.1).

Figure 3.14 shows the reduction in upload delay if the proportion of redundant content is

50%. Unlike in an ideal case, our framework is able to eliminate ≈70% of the redundant

content (given the true positive rate achieved). The figure shows that when the load is

high, the upload delay without similarity detection is about ≈44% higher (even though

only ≈35% of the data considered for upload gets suppressed). The reason for this higher

than expected delay reduction is the same as that in the ideal case. The retransmission

overheads due to corrupted packets decrease (to significant extents in cases where the link

quality is poor) as compared to a case without similarity detection (when the images actually

get uploaded); this in turn further reduces the aggregate network load and thus decreases

delay. The elimination in redundant content also allows the network to sustain a higher

load. For a target expected delay of 30 seconds, the sustainable load increases by about

60% as seen in the figure.

Figure 3.15 shows the uplink network traffic when different amounts of redundant

content are present. For the same reason as above (fewer retransmissions), the reduction in

the total (uplink) traffic is typically higher than the proportion of redundant content that is

103

suppressed except in the case where there are no similar images at all (0% of similar images).

In this extreme case, all images are uploaded, and there are slight overhead penalties due

to our framework.

3.5.8 Evaluations via simulations

Finally, we examine the impact of our framework on network performance using

ns-3 based simulations, which allow us to experiment with different network set-ups and

scales.

Simulation set-up: We evaluate the network performance with both WiFi and

LTE: (i) In the WiFi set-up, all the mobile devices connect to the same wireless access point

(AP) through an 802.11 link5, which in turn connects to a server node through a dedicated

link of 100 Mbps. All the clients are initially distributed evenly in a square area of 50x50

meters; the AP is positioned at the center of the area. We use a random walk mobility

model for the clients; each client moves at a random speed in a random direction inside

the area. The WiFi channel is characterized by a distance based loss propagation model.

Without similarity detection
With similarity detection

Av
er

ag
e

Im
ag

e
U

pl
oa

d
D

el
ay

 (s
ec

on
ds

)

0

20

40

Normalized Uplink load
0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6

Figure 3.17: Delay vs load with LTE (ns3)

The channel bit rate is kept constant (but

varied in different experiments) to allow us

to compute the normalized load. (ii) In our

LTE set-up, all the smartphones connect to

the same base station (regarded to as an enb

node in ns-3) through a LTE network; the

base station is connected to a LTE gateway, which in turns connects to the server node via

5We experiment with different 802.11 standards and observe similar results.

104

a dedicated link of 100 Mbps. In this set-up, all the LTE clients are initially distributed

evenly in a square area of 100x100 meters; the base station is also positioned at the center of

this area. We again use the random walk mobility model. The LTE channel is characterized

by the default Friis path loss model. Again, the channel rate is kept at a constant value

(but varied across experiments) in order to be able to characterize the normalized load.

Impact on image delay time: We examine the impact of our framework with

different loads and with different numbers of mobile devices when 50% of the content to

be uploaded is redundant, and is correctly eliminated. In all our experiments, under the

same load, we observe consistent and very similar results even if the number of devices

and data rates are changed. For simplicity, we only show one sample result from our WiFi

experiments and one result from our LTE experiments. Figure 3.16 shows the results with

a 54 Mbps WiFi network and 200 smartphones. Figure 3.17 shows the results with a 15

Mbps LTE network and 50 smartphones. In both experiments, a new image is generated

every 10 seconds. These results match those obtained from the real experiments with our

20-phone Android testbed (shown in Figure 3.9); more than a 100 % improvement in the

average network delay is achieved at high loads (> 0.8).

3.6 Discussion

Leveraging location and time metadata: Images taken from different places

might exhibit high levels of similarity. For example, images of street corners which have

similar high rise buildings, cars, and street signs may be classified to be similar. In such

cases, one can leverage embedded GPS and timestamp information to reduce the false

105

positive rate. In this work, we assume that the images are taken at approximately the

same times by humans or devices, in the same geographical region; thus, image content is

the primary material used for comparison in our approach. Extending this to exploit other

sensors will be considered in future work.

Images are uploaded to different servers: Our approach requires the meta-

data associated with the images to be available to a server that performs similarity detection.

In image sharing services (e.g., Flickr), we assume that requests from the same geographical

region will be served by the same servers. We also assume that the databases of servers in

nearby proximity will be synchronized within a short period. Such synchronization is needed

to ensure consistency across the databases and we expect content providers to implement

algorithms for ensuring that this will be the case.

Scenarios of relevance: We target image-sharing services in cases such as dis-

asters wherein the network is congested. We expect the users to be altruistic and provide

access to the images they upload to search and rescue personnel or others. Since users may

not all be able to upload heavy media content (videos/images) due to losses in infrastruc-

ture, we expect that they will approve of suppressing their uploads if needed. The user can

upload her images when the network is less congested. This altruistic assumption has also

been made in CARE [4]. Services such as CNN’s iReport where users share stories about

an event are apt use cases for our system.

Choosing system parameters: It is extremely challenging to come up with a

set of parameters that will work well with different (variable) input data; thus, we conduct

experiments and choose the best parameters for our dataset. An alternative approach

106

would be to have multiple training data sets (subsets of the training set) and learn the best

parameters for each such subset. When input data changes, the system can compare and

identify the subset that is most similar to the new input data. Subsequently, the system

can apply the parameters that work well with that subset to the new input data. We defer

such possibilities to future work.

3.7 Conclusions

In this paper, we propose a framework for detecting similar content in a distributed

manner, and suppressing the transfer of such content in bandwidth constrained wireless

networks. Such constraints are likely to be imposed on networks during events such as

disasters. With our framework, we seek to enable the timely delivery of every unique piece

(possibly critical in some cases) of information. In building our framework we tackle several

challenges, primary among which is the lightweight decentralized detection of redundancies

in image content. We leverage, but intelligently combine, a plurality of state-of-the-art

vision algorithms in tackling this challenge. We perform both experiments on a 20-node

Android smartphone testbed and ns-3 simulations to demonstrate the effectiveness of our

approach in decreasing network congestion, and thereby ensuring the timely delivery of

unique content.

107

Chapter 4

ACTION: Accurate and Timely

Situation Awareness Retrieval

from Bandwidth Constrained

Wireless Cameras

4.1 Introduction

Natural disasters usually have a high associated human cost; for example, the

recent Nepal earthquake resulted in the death of more than 8,000 people, injury to more

than 14,000, and over 300 people are still missing [6]. Today, advanced technologies can help

in significantly enhancing search and rescue missions; sensors, often with camera capabilities

can be deployed in the field, to provide situation awareness back to a central operations

108

center or controller. Specifically, this is information with regards to particular objects of

interest (e.g., distressed or injured humans, or animals) that would be critical in aiding

search and rescue. In other situations (e.g., Boston marathon bombing), being able to

quickly detect unattended objects such as luggage or backpacks using such cameras could

help prevent tragic disasters from happening.

Unfortunately, in many such scenarios, in the aftermath of disasters the bandwidth

is likely to be limited1. Blindly sending the video feeds from camera nodes in the field is

likely to be unfeasible because of bandwidth limitations. As information collected from

multiple cameras with overlapping views tends to contain content with a high level of

redundancy, transferring all raw video content from all of the cameras is also likely to be

wasteful. Doing so may also delay the transfer of key information with regards to some

of the objects of interest. Finally, having to look at large volumes of video may cause an

inherent information overload on humans who man the central controller.

In this work, “we seek to extract accurate situation awareness information from the

camera feeds from a set of wireless cameras, and deliver it in a timely way to an operations

center that handles search and rescue, when presented with bandwidth constraints.” Before

we describe the challenges in addressing this overarching objective and our contributions, we

first formally define our view of how the situation awareness information is gathered and sent

to the operations center. We envision that multiple autonomous camera-equipped sensors

with possibly overlapping views, are deployed in the field and are used towards searching

for particular objects of interest. The camera nodes possess processing capabilities and can

1Natural disasters come with at least some destruction of physical network infrastructure [2] and this
impacts communications [62].

109

locally extract situational information about the objects of interest from captured video

feeds. They can then report information extracted from the videos (e.g., frames or parts

of a frame) to a central controller via a wireless network with limited available bandwidth.

The controller sends a queries which seek for example, to determine whether there was an

object of interest (e.g., a human, a vehicle, or a backpack) present at a specified location

at a specified time.

Challenges: In order to achieve our overarching goal, we need to tackle some

key challenges. First, we need to identify those videos that contain the “same” object of

interest (at a given location and at a given time) autonomously; in essence an object needs

to be re-identified across the cameras. This is critical in elimination of redundant content

(only if the camera views are capturing the same object can they be considered redundant).

Depending on the location of the object relative to the camera, today’s vision algorithms

might not be able to categorically determine if there is a real object in view. They can

only provide an assessment of the accuracy of their detection. Thus, a challenge we need to

address is “how to effectively aggregate information sent from multiple cameras to improve

the quality of object detection?” Finally, the transfer of all of the raw data with respect

to all the detected objects may still be beyond the network capacity. Thus, how can we

identify redundant content, and choose only the most relevant sub-set of this content and

transfer this information back to the central node?

Our framework in brief: Towards addressing the above challenges and provid-

ing accurate and timely situational awareness with regards to objects of interest in the field,

we design and implement a framework that we call ACTION. ACTION has the following

110

component modules: (i) each individual camera has a module that aids lightweight object

detection from the video collected; here we leverage state of the art computer vision algo-

rithms (ii) a novel module that facilitates coordination across multiple cameras to aggregate

information towards (a) re-identification of an object across multiple cameras and (b) using

the joint camera views of the object to improve the quality of detection, and finally, (iii)

a module that, based on the previous step, selects a sub-set of the video feeds for transfer

to the central controller, that provide the highest accuracy given a bandwidth constraint.

In what follows, we briefly describe the functions of each of the three modules. To keep

the narrative clean, we focus on human detection; with minor modifications, ACTION is

applicable for the detection of other types of objects (e.g., animals or luggage).

ACTION in action: To facilitate effective object detection at each camera node

locally, we leverage state-of-the-art detection algorithms from the computer vision commu-

nity. In brief, a sliding window (covering a block of pixels) is used on key frames to detect

whether or not an object of interest is present in that block. Unfortunately, even these al-

gorithms may suffer from false positives or false negatives due to occluded views where the

objects are partially covered by other objects. Thus, as discussed below ACTION combines

the information from multiple camera views to significantly enhance accuracy.

Object reidentification across cameras: The first challenge ACTION resolves

is to determine if what is classified as an object of interest by one camera is also perceived

to be the same object by another camera (or cameras) with an overlapping view. This

is referred to as the re-identification problem (objects are re-identified across cameras).

ACTION uses a novel method that maps the 2D view to a 3D location. This 3D location

111

as perceived by the different cameras, is used jointly with the color features of the object

to perform the re-identification.

Maximizing accuracy using multiple camera views given bandwidth con-

straints: Given the bandwidth constraints, ACTION does not exchange raw videos among

the cameras. Instead, all nodes with overlapping views extract metadata with respect

to detected objects, and send this metadata to a common node (called the fusion node).

The fusion node jointly examines the metadata and first resolves the aforementioned re-

identification problem. Next, the ACTION software at the fusion node identifies the combi-

nation of camera views of a particular object that yield highest associated detection accuracy

(lower false positive and false negative rates) while adhering to a timeliness constraint (that

is determined by the bandwidth available for transferring the information). It essentially

models the network as a knapsack, and the gain associated with each frame is dictated by

the probability that an object is correctly detected in that frame. It then uses a greedy

approach to select and send those frames that either satisfy the detection criterion, or fill

the knapsack (sends all the frames that the bandwidth permits). It relays this information

back to the cameras which transfer the actual frames.

Evaluations: We consider human detection (i.e., humans are the objects of in-

terest) and evaluate ACTION’s performance. Specifically, we emulate our scenario by im-

plementing ACTION on Android devices preloaded with a dataset that consists of video

sequences captured from 4 different cameras [7]. Our evaluations show that by considering

views from multiple cameras, ACTION can detect ≈ 20% more humans than when using

the video from a single camera. Further, it achieves a very high accuracy rate of ≈ 90%, if

112

an object is detected by at least 2 cameras (with a single camera it can be at most ≈ 72 %).

In terms of resource usage, ACTION can reduce the bandwidth usage threefold, compared

to uploading all the detected frames directly to the central controller. In addition, with

ACTION, even though information from 4 cameras is used, the amount of transferred data

is only ≈ 1.4 times higher than the amount of data transferred when one camera is used,

while providing a significant higher detection accuracy.

As an auxiliary result we show that the energy overhead with ACTION is 102 J at

the camera node and 39 J for the fusion node to process a video sequence of 3.2 minutes; this

low consumption allows a camera node to last for about 19 hours (assuming a smartphone

like battery).

4.2 Related work

We divide relevant related work into 4 main categories:

Object detection: We leverage state-of-the-art human detection algorithms from

the computer vision community. These algorithms can be easily applied to detect other

types of objects (e.g., vehicle, animals) with appropriate datasets. For human detection,

different features [63][64][65][66] and machine learning techniques for building the detection

model [67][68][69][70] have been proposed. We leverage the technique described in [68] to

effectively detect humans in videos at individual camera nodes, in ACTION. Details on how

we do so will be provided in Section 4.3.2.

Object association across camera views: Object association refers to the

identification of the same objects (e.g., humans) captured from overlapping camera views.

113

In [71], people are assumed to stand on the ground; human positions are then computed

by projecting the detected positions onto the ground-plane. Positions that are within a

distance threshold on this plane, are considered as being associated with the same human.

Implicitly they assume that the ground co-ordinate is known. However, we do not assume

that this will be the case in ACTION; humans can stand on objects or on uneven ground. We

provide a novel association mechanism (we call it re-identification) in such cases. In [72] and

[73], color features of detected regions are leveraged (compared across cameras) to identify

images of the same human. In ACTION, we jointly consider such color information with the

3D position information (obtained using our approach), relating to each human detected

from different camera views, to achieve a high association or re-identification accuracy.

Detecting and tracking objects in multi-camera networks: In [74], multiple

cameras collaborate to detect human heads; for each detected head position in an image,

the associated 3D position of the head is estimated. Nearby head locations are identified

and combined by comparing their Euclidean distances. Other efforts on object tracking

[75][7][76] build complicated 2D to 3D mapping models which require high computational

overheads. Since we seek to ensure low energy consumption, these cannot be applied in

our framework. Further, data communications between the nodes is not a concern in these

designs; in ACTION we seek to limit the amount of data transferred to a central controller.

Redundancy reduction in video transfers over networks: Recent related

work considers the reduction of redundancy of content transferred over networks [4, 77]. In

these efforts, metadata (or the entire video/image content) is exchanged between nodes and

the controller to detect and suppress redundant content. However, they do not eliminate

114

Fusion
node

Central
controller

(2) Extract
features

Object (human)
detection at multiple

resolutions

Data inquiry

Bandwidth
constraints

Object re-
identification &

aggregation

Camera nodes

(3) Send
metadata of

detection
windows

(4) Aggregates
detection

windows of the
same objects

(humans)

(6) Send image
frames of

detected objects
(humans)

(1) Sends
queries

Bandwidth-aware
data selection

(5) Selects
best relevant

windows
and notifies

chosen
cameras

Figure 4.1: Architecture of ACTION

unnecessary content (e.g., views that do not contain relevant objects). They are also un-

concerned about the accuracy of detection of such objects (as is the case with ACTION);

in fact, some redundant content may be transferred in ACTION to improve the accuracy

of object detection.

Zhang et al. [78] build a multi-camera surveillance system. In their system, if an

object is detected by multiple cameras, only a single view containing the object is uploaded;

all other views that contain the same object are treated as redundant and suppressed.

They only consider sufficiently high resolution input video feeds; and thus, all objects

are considered correctly detected. In ACTION, information from overlapped cameras is

“aggregated” to improve the detection accuracy and views are chosen depending on the

bandwidth constraints.

115

4.3 The ACTION framework

In this section, we describe our framework, ACTION, for extracting and reporting

situational-awareness information in bandwidth constrained multi-camera networks. To aid

the narrative, we use human detection as a specific use case. In some parts of ACTION,

therefore, we leverage state-of-the-art techniques in human detection from the computer

vision community to identify the presence of humans from the video feeds. However, the

same or very similar techniques can be used to detect other types of objects (e.g., vehicles,

suitcases, animals)2. We begin with an overview and then, describe each of ACTION’s

modules in detail. Figure 4.1 depicts the architecture of ACTION.

4.3.1 Overview

The ACTION software is housed on three main components: camera nodes, a

fusion node and a central controller. The camera nodes are deployed in the field. They may

have overlapping views, i.e., a location on the field could be covered by multiple camera

nodes. We assume that the camera nodes communicate with the central controller using

either a cellular (i.e., 4G/LTE) connection, or a WiFi connection. The communications

between individual camera nodes, and one of these chosen to be a fusion node is via a

wireless channel (using 802.11 ad hoc connection temporarily set up at the scene).

We assume that a user who mans the central controller sends queries to the camera

nodes. The queries seek the images of humans (the objects of interest in our use case) who

appeared in the field of view within a specified period of time. Each camera node extracts

2This is because these techniques are based on machine learning and are trained using appropriate datasets
collected in such settings; if an appropriate dataset with regard to the different types of objects are used to
train the system, the algorithms can be used in these other cases.

116

features from the video sequences that it has captured towards detecting the presence of

humans. When a human is found, metadata associated with the position of the human (we

call this the detection window), is computed and sent to a fusion node. The content in the

metadata includes information such as the timestamp, the probability (or confidence) that

the detected object is a human, and location of the human in the snapshot image, etc.;

more details are provided later in the section.

Upon receiving all the metadata from the camera nodes sharing overlapping views,

the fusion node first performs re-identification of the human object across the cameras (to

determine which camera views correspond to the same human). We simply assume that

the fusion node is one of the camera nodes which share overlapping views (this set can

be determined by transmission of beacons). We arbitrarily select one of these nodes for

collecting and aggregating the metadata; more intelligent algorithms can be used to choose

the fusion node [79, 80], but that is not the focus of this work.

After re-identification, the fusion node runs a greedy algorithm to identify the

“most relevant” detection windows from the plurality of camera views. In brief, we formulate

the problem as a variant of the classical Knapsack problem [81] and design an efficient greed

algorithm to solve it. The available bandwidth is equally shared between among all detected

humans. Thus, for each human, the bandwidth allocated dictates the size of the knapsack

and the accuracy requirements determines which video frames are inserted into the knapsack

(chosen for transfer). The fusion node notifies all the cameras about the windows that are

selected for transfer by the greedy algorithm. Upon receiving this notification, the chosen

camera nodes send the relevant frames directly to the central controller. We wish to point

117

out that the fusion node only receives the lightweight metadata information; we avoid

transferring the actual video data between nodes.

4.3.2 Object detection at individual cameras

Upon receiving a query from the central controller, the camera nodes process their

locally stored media source (videos/ images) to locate images of humans to respond to the

query. If the media source is a video sequence, in order to reduce the processing overhead,

only the key frames or video frames at pre-specified intervals are processed for human

detection. This interval typically should be chosen based on the dynamics of the setting.

We do not design new computer vision algorithms for object detection in ACTION.

Rather, we leverage a state-of-the-art human detection technique proposed by Dollar et

al. [68]. With this technique, a detection window of size 128x64 pixels is slid across the

input image to check for the presence of humans (at different positions within the image).

A detection model based on such a fixed size detection window, is only effective in detecting

humans whose sizes are similar to that window size. However, humans that appear in a

frame could vary in size depending on the distance between the camera and each such

human. To overcome this problem, each input frame is scaled to different sizes (so that

humans in the view are also scaled up and down by different factors) to try to match the

size of the detection window. The sliding detection window is then applied to all sizes of

the input image. A detection hit on a “resized” version of the image will be mapped onto

the corresponding position in the original sized frame.

When the sliding window is moved to a new position, the pixel values inside the

window are computed and used as features for the human detection process. Specifically,

118

the image is transformed into 10 different representations (called image channels). These

include 3 color channels in the LUV color space, 1 gradient magnitude channel and 6

gradient orientation channels (for more details refer to [64]). Each pixel in each channel

is used as a feature associated with the detection window; therefore there is a total of

128x64x10 features (corresponding to the window size chosen). To reduce this high number

of features, the Adaboost algorithm [82] is used (discussed below).

First, a training set which includes “positive” image windows (those with humans)

and negative image windows (non-human images) is built offline. All the samples in this

training set are resized to 128x64 pixels and have the same number of features. Subsequently,

the Adaboost algorithm is applied to learn the classification rule as briefly captured in Alg. 2.

The number of learning steps T is pre-defined. In each step t, a weak classifier h is learnt.

Thus, at the end of T steps, we have T weak classifiers. The final strong classifier H is

constructed as a linear combination of these T weak classifiers.

In its simplest form, a weak classifier hj is a classification rule (for a detection

window x) defined based on a single feature fj . It is defined based on whether or not fj

(a positive value) is higher or lower than an associated (prespecified) threshold τj and a

polarity (θj = ±1, chosen to reflect the correct inequality), as:

hj(x) =


1 fj(x).θj ≤ τj .θj

−1 otherwise

(4.1)

where, hi(x) = 1 indicates that x is a positive window and a negative window otherwise.

The polarity θi is used to determine the correct inequality i.e., whether the value of fi ≤ τi

indicates a positive window, or otherwise.

119

Algorithm 2 Adaboost learning process

Inputs:

• Training samples {x1, y1}, ..., {xn, yn} where yi = {−1, 1} indicates a negative and a

positive sample, respectively

• T: number of learning steps

• N , N ′: number of positive and negative training samples, respectively

Initialize: For each item xi, set weight w0,i=
1
2N , 1

2N ′ for positive and negative samples

respectively

1: for t = 1 to T do

2: Normalize weights: For each item xi, set wt,i =
wt,i∑
i wt,i

3: for each feature fj do

4: Train a weak classifier hj as in Eq (4.1)

5: Compute the error rate ξj =
∑

iwt,iI(hj(xi) 6= yi), where I is the identity function

6: end for

7: Choose the weak classifier which has the lowest error rate ξt

8: Set βt = ξt
1−ξt , and αt = −logβt

9: for each learning sample xi do

10: Update its weight: wt+1,i = wt,iβ
1−ei
t ; where ei = 0 if sample xi is classified

correctly, otherwise ei = 1

11: end for

12: end for

Output: The final strong classifier H(x) =
∑T

t=1 αtht(x)

Let N ′ and N be the number of negative (no human) and positive (with human)

learning samples, respectively. Initially, all the positive samples x, are assigned the same

weight, 1
2N . The weights of the negative samples, x′ are set to 1

2N ′ . At each step t, the

feature which produces the lowest error rate ξt (discussed below) is chosen as the weak

classifier.

For each feature, the error rate is the sum of the weights of all the samples x for

which hi(x) 6= y(x), where y(x) = ±1 is the label of training sample x. At each learning

120

step, the key idea of Adaboost is to decrease the weights of those samples that are correctly

classified. Specifically, the weight of sample xi is is kept unchanged if it is incorrectly

classified. If xi is correctly classified, its weight is reduced (adjusted down) by a factor of βt

that is a function of the error (line 8 in Alg. 2). Thus, the weights of incorrectly classified

samples are higher than those samples that are correctly classified.

The strong classifier H will be distributed to the camera nodes to detect humans

in their captured videos/images.

4.3.3 Putting things together: Jointly considering overlapping views

When an individual camera believes that it has detected a human, it extracts

metadata pertaining to the detection window in which the human is detected. It then

sends this metadata to a fusion node. The fusion node is simply one of the camera nodes

which share the overlapping views as described earlier. The metadata associated with each

detection window includes (i) A timestamp which indicates when the human appears in the

field of view, (ii) The location of the detected human in a 2D image coordinate system (as

discussed later this location is converted to a location in the real 3D world using a novel

approach as discussed later), (iii) The probability that the human is actually captured in

that window Pi; we refer to this as the detection probability. Pi is computed from the value

of the strong classifier H (described in section 4.3.2), (iv) a compact color feature of the

detection window, and finally, (v) the size of the detection window.

At the fusion node, the goal is to combine the information from the detection

windows obtained from the different cameras that are associated with the same human. In

order to do so, the fusion node converts the 2D locations from the detection windows in

121

the image coordinate system to a location in the 3D real world coordinate system. These

locations with respect to the plurality of cameras are then compared towards re-identifying

the human in different camera views. If the locations of two windows are within a threshold

Tp, we consider that the two windows are most probably associated with the same human.

In many cases, there could be several people standing close to each other; in order

to verify and reduce the false matches in such situations, we also compare the color features

from the detected windows. If the distance associated with their color features are also

within a threshold (Tc), the fusion node concludes that the two windows depict the same

human.

In the following, we provide details on how ACTION computes the 3D location in

the real world and uses the color features in association.

Pc
(xc,yc,zc)

PI
(xI,yI)

O

Image plane

center of
projection

f

D

h
H

Figure 4.2: Camera intrinsic information

Estimation of the 3D location

of the detected human: We use the

camera calibration information of an indi-

vidual camera to estimate a 3D location

Pw(xw, yw, zw) of a human in the real world

coordinate system (with a pre-defined ori-

gin agreed upon by all cameras) from its 2D

location PI(xI , yI) in the image coordinate

system. The camera calibration information consists of the intrinsic information K, the

rotation information R and the translation information T of the camera [83]. R provides

information with regards to the angle the camera is tilted with respect to the three axes in

122

the real world coordinate system. T provides information about the location of the camera

itself in the real world coordinate system. R and T form the extrinsic information of the

camera. Note here that R and T are matrices.

In the default setting, the three axes in the real world and in the camera coordinate

system are the same. When the camera makes a rotation of α about the z-axis, then a

rotation of β about the y-axis, and finally a rotation of γ about the x-axis, it can be shown

that R(α,β,γ) is given by (more detail in [84]):


cosαcosβ cosαsinβsinγ − sinαcosγ cosαsinβcosγ + sinαsinγ

sinαcosβ sinαsinβsinγ + cosαcosγ sinαsinβcosγ − cosαsinγ

−sinβ cosβsinγ cosβcosγ



If the camera is also translated by distances of (TX ,TY ,TZ) from the origin along

the three axes (with respect to the rotated camera coordinate system), it is easy to see that

T is [−TX − TY − TZ]T (the point {TX ,TY ,TZ} now becomes the new origin of the camera

coordinate system).

The R and the T matrices are used to convert the 3D location Pw(xw, yw, zw) of

a human in the real world coordinate system to a 3D location PC(xC , yC , zC) (of the same

human) in the camera coordinate system where, the camera itself is the origin and the axes

are tilted or rotated in conjunction with the camera. This is captured in Eq 4.2:

PC = R ∗ Pw + T (4.2)

where, “∗” represents the product operation (of the matrices).

The intrinsic matrix K, which contains information about the camera “projection

point” and the focal length, helps convert the 3D location PC into a 2D location PI in the

123

image plane, as shown in Fig. 4.2. In essence, it is simply a projection of the 3D object

onto the 2D plane in the camera’s view.

The task of converting the position of the detected human in the image plane to a

position in the real world coordinate system consists of the following steps: (i) convert the

2D location PI in the image plane to a 3D location PC in the camera coordinate system, and

(ii) convert the 3D location PC to the 3D location Pw in the real world coordinate system.

It is a challenge to accurately compute PC because of the lack of the third dimensional

information when converting a point from a 2D world to one in a 3D world. As evident

from Fig. 4.2, multiple 3D objects can project to the same 2D object in the image coordinate

system (e.g., any point along the line connecting PI and PC is projected onto the same point

PI in the image plane). Note here that the distance D between the detected human and

the camera is not known.

In ACTION, we estimate the value of PC by considering a plurality of human

or object heights and determining whether or not two camera views converge in their 3D

location estimates for any of these heights.. In more detail, let h be the height of the

detected human in the image coordinate system (the height of the detection window). Let

H be the height of the human in real world. D is computed as:

D

f
=
H

h
(4.3)

where f is the distance between the center of projection (see Fig.4.2) of the camera to

the image plane (this is the camera’s focal length and is provided in the camera’s intrinsic

information K). Once D is known, PC can be computed from PI easily.

124

We assume a set of possible values of the height of the detected human, H =

{H1, H2, ...Hn} (e.g., from 3ft to 6ft, etc.)3, and come up with the corresponding values

of Dj using Eq 4.3 (for each Hj , j ∈ {1, n}). The values of PI (the 2D location) and

each Dj (distance to the camera) are then used to compute the possible values of PC =

{PC1, PC2, ..., PCn}, as depicted in Fig. 4.2. Finally, the corresponding values of Pw are

computed for each PCj , using Eq 4.2.

Each camera node sends its intrinsic information (including the focal length),

location and orientation computed based on the reference world coordinate system (which

are used to calculate R and T [83]) to the fusion node4. The camera nodes update the

fusion node if the positions or orientations of the cameras change. With respect to each

detection window, its size and the coordinates PI of the center point of the window are

are also included as metadata. This allows the fusion node to compute Pw, with respect to

the window for each considered Hj , j ∈ {1, n}. Subsequently, the fusion node groups the

“nearby” windows (if the Euclidean distance between the Pw values, for any j, is less than

a pre-defined threshold Tp) from multiple cameras, together into candidate sets. Note that

this requires a pairwise comparison of the Pws from each camera for all values of j.

Using color and texture features: Unfortunately, humans in the field can

stand close to the others and this can lead to false matches, i.e., wrong inferences can be

made with respect to re-identification, if only the Euclidean distances were considered (as

computed in the above discussion). Therefore, ACTION also compares the color and

3If ACTION is used to detect other types of objects, appropriate heights of the objects (e.g., 4ft to 6ft
for sedan cars) should be used.

4Camera calibration information for distributed fixed camera networks can be effectively obtained using
prior approaches on computer vision (e.g.,[85, 86]).

125

texture features in the detected windows of the candidate sets to reduce the number of false

matches.

We use the “Mean Color” feature proposed by Hirzer et al. [87], which is extracted

from each detection window in the above step. An input image is divided into small 8x16

patches and the patches are arranged such that there is a 50% overlap between the neighbor-

ing patches in both dimensions (x and y). Each patch is converted into the HSV and LAB

color spaces (see [87]). The sum of all values of the pixels in the HSV representation, and

the sum of all values of the pixels in the LAB representation of each patch are computed;

these two values are concatenated and used as the color feature of the patch. In addition,

the 256-byte LBP histogram [88] of the patch is computed and used as its texture feature.

The color feature and texture features of a patch are finally concatenated to form

its local feature. The local features from all the patches are then again concatenated into a

single global feature of the whole detection window.

The mean color feature of a 64x128 image is a 55,000-dimensional vector and

therefore, here, Euclidean distance is not an effective measure for comparing the feature

vectors between detection windows. First, we use principal component analysis (PCA) to

reduce the dimensionality of the color features. Subsequently, we use the Mahalanobis

distance (proposed in [89]) to compare the features. The Mahalanobis distance between

two vectors xi and xj is defined as:

d(xi, xj) =
√

(xi − xj)TA(xi − xj) (4.4)

where (xi−xj)T is a transposed matrix, and A is called the Mahalanobis matrix and is learnt

from a training set. Our training set consists of two subsets. The first subset S, contains

126

Algorithm 3 Greedy algorithm for choosing detection windows for a detected human

Inputs:

τ : Transfer time for this human

1: Remove detection windows Wi whose size(Wi)
Bi

> τ

2: Sort remaining detection windows (in descending order) by “profit densities” PDi =

| logFi|Bi

size(Wi)

3: Compute k=min{j∈1,...,n}:
∑j

i=1
size(Wi)

Bi
> τ

4: Compute V k−1
1 =

∑k−1
i=1 | logFi| and Vk = | logFk|

5: if V k−1
1 > Vk then

6: Choose {W1, ...,Wk−1}

7: else

8: Choose Wk

9: end if

images of the same humans (with the same timestamp) collected from different cameras; the

second subset D contains images of different humans (with the same timestamp) collected

from different cameras. Matrix A is trained to minimize the distances between the elements

in S while maximizing the distances between the elements in D. The problem is formulated

as a constrained optimization problem, and an iterative framework based on a binary search

is used to find an optimal matrix A (see [89]). If the Mahalanobis distance between the

color features of two detection windows (which have been already matched up with respect

to position) is less than or equal Tc, we assume that the humans in the two windows are

the same.

127

4.3.4 Transferring the most relevant information given bandwidth con-

straints

We assume that the bandwidth from each camera node to the central controller is

known (Tools such as iPerf can be used for short durations for determining this [90]). We

assume that the bandwidth information is also conveyed to the fusion node as part of the

metadata. For each detected human, we seek to select and transfer the most relevant camera

views sufficient to achieve a desired detection probability P (e.g., P = 0.9), within a pre-

specified delay. However, achieving the detection probability and this delay simultaneously

may be impossible depending on the available bandwidth. Thus, we modify our objective

to maximizing the detection probability (of humans), subject to an available bandwidth

constraint, which is formalized in Eq 4.5.

maximizePi∈{0,1} P = 1−
∏
i

(1− Pi) = 1−
∏
i

Fi (4.5)

subject to
∑
i

size(Wi)

Bi
≤ τ.

In Eq (4.5), Pi, Fi = 1 − Pi, and size(Wi) are the detection probability, false detection

probability and size of a detection window Wi (in bytes) from each detected human, respec-

tively; the index i varies over all views of that human. τ is the delay requirement specified

in seconds and Bi bytes/second is the bandwidth from camera i to the central controller

(note that the channel conditions and contention would dictate this bandwidth). The value

of P is computed based on detection probabilities associated with the windows considered

for transfer. Specifically, if multiple detection windows Wi agree on a human presence at a

given place, at the query specified time, the probability of a false detection at that location

(when all cameras yield incorrect results) is F =
∏
i(1 − Pi) =

∏
i Fi; thus, P = (1 − F).

128

Thus, those windows which maximize P , are chosen for transfer, while adhering to the

bandwidth allocated.

Algorithm 4 Algorithm for sending best relevant detection information to the central

controller
Inputs:

N : Number of humans present in the field

Bj : Available bandwidth of each camera j

P : Desired detection probability for each human

τ : Delay requirement //for all detected humans

Initialize: Remaining humans, n = N

for each human Hi, i = 1 to N do

2: Available transmission time τi = τ
n

False detection rate FHi = 1

4: Select detection windows using the Greedy algorithm (Al. 3) with corresponding τi

for each selected windows Wij do

6: Send Wij //view j for human i

τi = τi − size(Wij)
Bj

8: FHi = FHi(1− Pij) //update false detection rate

if FHi ≤ (1− P) then

10: break; move to next human;

end if

12: end for

τ = τ − (τn − τi) //share leftover time for other humans

14: n = n− 1 //number of humans need to send data

end for

The objective in Eq (4.5) is equivalent to the minimization of
∏
i Fi, Fi ∈ (0, 1]

which in turn, is equivalent to the minimization of
∑

i logFi, for all Fi ∈ (0, 1], with the

same bandwidth constraint as before. Since logFi ≤ 0 for all possible values of Fi (Fi

129

values are less than 1 since they represent probabilities), the minimization of
∑

i logFi is

equivalent to the maximization of
∑

i | logFi| (logFi is negative and monotonic). Thus, the

optimization problem in Eq (4.5) is equivalent to the following problem in Eq 4.6.

maximize V =
∑
i

| logFi| (4.6)

subject to
∑
i

size(Wi)

Bi
≤ τ

The above problem can be mapped onto a Knapsack problem [81]. The maxi-

mum tolerable delay (specified) for transferring the information pertaining to each user,

to the central controller, corresponds to the knapsack size. The goal of the fusion node

then, is to choose the views that maximize the sum of the utilities (| logFi|) of the objects

(camera views) that are placed into the knapsack. Unfortunately, the problem as defined

above is known to be NP hard [81]. Therefore, ACTION uses a well known greedy algo-

rithm (detailed in [91]) to fill the knapsack. As the name suggests, the algorithm greedily

chooses the most relevant windows from the multiple cameras for being sent back to the

central controller in response to its query, while adhering to the delay constraint given the

bandwidth.

With the greedy algorithm, the detection windows are sorted (in descending order)

at the fusion node, in terms of their “profit densities” which are defined as PDi = | logFi|Bi

size(Wi)
.

Here, note that in the general case, the the detection windows from the different cam-

era nodes vary in terms of the number of bytes. The knapsack is filled from this sorted

list; the view with the highest profit density is inserted first and so on. Let Wk be

the first window (as the list is traversed) that causes a violation to the bandwidth con-

straint; here, k=min{j∈1,...,n} such that
∑j

i=1
size(Wi)

Bi
> τ . The greedy algorithm then

130

chooses either the set of windows {Wi, ..., Wk−1} or the single window Wk, depending

on whether the value V k−1
1 =

∑k−1
i=1 | logFi| is higher or lower than Vk = | logFk|, re-

spectively. It is shown in [91] that the profit VG obtained using the greedy algorithm

(VG = max{V k−1
1 =

∑k−1
i=1 | logFi|, Vk = | logFk|}) is guaranteed to be ≥ 1

2VOPT , where

VOPT is value of the Knapsack when filled optimally [91]. The pseudocode for the greedy

algorithm is shown in Algorithm 3.

Operations in Practice: The pseudocode of our bandwidth-aware data selection

process at the fusion node is presented in Algorithm 4. Specifically, we divide the available

time equally among all of the humans that are detected5. For example, if a 1 second period

is available to transfer the information and there are 3 humans detected, we allocate 0.33

seconds to transfer the detection windows associated with each human. For each human Hi,

we apply the greedy algorithm (Algorithm 3) with available transfer time τi of that human

to select best relevant windows to fill the knapsack. The relevant detection windows are

transferred in order (we assume that the fusion node tells each camera node when and what

frames to transmit) until one of two conditions is met (i) the duration for sending data with

respect to that human expires, or (ii) the required detection accuracy with respect to this

human has been met.

We modify the Knapsack problem to ensure that we do not waste bandwidth if

the detection probability is higher than a sufficient (desired) value. In other words, if a

desired P is achieved (i.e., the detection accuracy is met) but there is leftover bandwidth

(time) after the associated, “sufficient” set of detection windows relating to the human are

5In ACTION, a record with respect to a human is put into a queue when all the information related to
that human is available at the fusion node. Information relating to the human whose associated record has
the earliest time stamp is considered first for transfer. Other policies are possible (prioritization of records
as per other criteria) but we do not consider this.

131

transferred, the residual time (bandwidth) is equally shared for the transfer of windows

with respect to the other humans, as shown on line 13 of the algorithm.

4.4 Implementation

In this section, we describe the implementation of ACTION. Our implementation

consists of a fusion application, a detection application and a server application. The

fusion application runs on a pre-specified Android phone and receives metadata relating

to the detection windows, from multiple instances of the detection application that are in

turn running on Android smartphones. The detection applications interact with the fusion

application, receive fusion decisions from the fusion node and finally upload chosen detection

windows to a server application which represents the central controller.

The detection application: We implement our detection application on Asus

ZenFone II smartphones with Android 5.0 OS. These are used as the camera nodes in our

prototype. The application was written in both Java and native C++ (JNI). We partly use

the source code provided by the authors of [68], to convert the input image into different

channels and to extract its features for human detection (as described in 4.3.2). We use the

OpenCV library for all other image processing tasks.

Note here that we use smartphones, as they are popularly used for video capture

today [92], to emulate camera nodes with local processing capabilities. In a real scenario,

one could envision static, programmable cameras (e.g., Pixy [93]) that are mounted on

ceilings or walls are used. Such cameras could capture higher resolution videos; however,

we believe that today’s smartphones already offer very high resolutions and devices that

132

are similar architecturally can be used for this purpose. However, we acknowledge that

with other platforms, the results could differ from those that we present in Section 4.5. For

example, other platforms may have more powerful batteries.

An input image is scaled into 23 different sizes for human detection. In order to

reduce the computational overheads, we only compute image features at 3 specific base

scales; image features at other sizes are estimated based on the features determined at the

base scales, as described in [94].

Camera node operations: Upon receiving a query from the server application, our

detection application reads the input video sequence and checks for humans in every 10th

frame (once every 0.5 seconds). In practice, this parameter should be chosen based on the

area of the monitored field, number of deployed cameras and the moving speed of tracked

humans. The value 0.5s chosen in our implementation is based on the availability of the

ground truth information in our data set [7], which is described later in section 4.5. When a

human is found, the application extracts the metadata associated with the detection window

as described in section 4.3.3 and uploads this information to the fusion node.

The output of the human detection algorithm is a detection score of the window.

The higher the score, the higher the probability that the window contains an image of a

human. We convert the detection score to a corresponding detection probability using the

training data as follows. The detection scores are quantized into 20 bins. For each bin value

x, the probability is given by the ratio of the number of correct detection windows (based

on the ground truth information) to all the detection windows that have a detection score

of at least x.

133

To extract the color features from the detection windows, we first resize all the

windows into 64x128 pixels. This ensures that the color features of all detection windows

will have the same length. The extracted mean color feature of each window is a 55,000

dimensional vector. To reduce the communication overhead, we apply PCA to reduce this

size to 40 dimensions, as in [87], before uploading the information to the fusion node.

Further, we compress the detection window (using the jpeg format) and use the compressed

version for transfer.

The fusion application: The fusion application is written in Java and can be

executed on any Android smartphone. Currently, we statically assign one of the camera

nodes to act as the fusion node; however, in practice, nearby camera nodes can be grouped

into clusters, and for each cluster, the fusion node can be chosen based on which of the

nodes has highest computational power or residual energy. In Section 4.5, we conduct

experiments to show that the fusion application is lightweight and does not consume much

energy overhead; thus, ACTION is not sensitive to the choice of the fusion node.

Fusion node operations: The fusion node will receive metadata with regards to

detection windows from multiple surrounding cameras. For each detection window, the

fusion considers a set of of 17 possible heights of common humans (from 120 cm to 200

cm) and converts the 2D location in the image to a set of 17 possible 3D locations of the

detected human. Locations and color features of the detection windows are used to detect

and associate windows that capture the same human. Specifically, we use the threshold

Tp = 1.2m for location, and Tc = 18, 000 for color (Mahalanobis) distance to group detection

windows. We show the effectiveness of using these values in Section 4.5.

134

When the metadata with regards to a new detection window arrives the fusion

node checks to see if it can be correlated with the metadata from that of another camera

node. If it cannot find a correlation with any previously received metadata, the fusion node

considers the window to be the first window of a newly detected human and creates a new

group for it. When metadata associated with other windows corresponding to the same

human arrive, they will be grouped together. Locations of individual windows in a group

are averaged to compute the location of the centroid position, which is used to represent the

whole group. For each group, there are multiple positions Pw of the centroid corresponding

to the considered heights, Hj ; in order to be considered to belong to a group, the newly

received metadata must reflect a position that is within the threshold Tp with respect to one

of the n, Pw values (i.e., corresponding to each of the heights Hj). Further, the distance

between the color feature of the window and that of at least one of the windows in the

group must be within Tc.

In cases when one detection window can be grouped into different groups, the

fusion nodes includes the new window in the group which has the minimum Mahalanobis

color distance to the window, since “color distance” is more distinctive than “position

distance” if people are close to each other (these are the primary reasons for errors in

reidentification based on position alone).

After partitioning the detection windows into groups, the fusion node chooses

the most relevant windows from each group based on the greedy algorithm described in

section 4.3.4, and notifies the camera nodes if they have the chosen windows. Subsequently,

the camera nodes transfer image data directly to the central controller.

135

The server application: The server application runs on a Linux server; its only

duty is to send queries with specific time-stamps, and receive content (parts of frames with

detected humans) from the camera nodes after being instructed to do so by the fusion node.

4.5 Evaluations

In this section, we evaluate both the accuracy as well as the efficiency (in terms

of resource consumption) of ACTION. We begin with a description of the datasets we use

and how we determine the ground truth. Later, we provide our results.

4.5.1 Training and test datasets

4.5.1.1 Data set

We use the “Multi-camera multi-object tracking” data set, made available by the

Computer Graphics and Vision group at Graz University of Technology [7]. The dataset

contains 6 indoor video scenarios. Each scenario has 4 different synchronized video se-

quences, captured by 4 different cameras. In each video, there are about 4 to 6 people

walking around in the same room. At different times in the videos, the people can be sep-

arated spatially or could be closely clustered together. We use the first video sequence as

the training set to calibrate ACTION, and the other sequences as the test data.

The human detection model is built using the Inria pedestrian dataset [63]. This

contains thousands of images of humans in different poses. Thus, the detection model is

not calibrated by the small set of humans that appear in our first data set, and can be used

to detect humans in general cases.

136

4.5.1.2 Obtaining ground-truth information

The data set that we consider is annotated with information that provides ground

truth at a coarse-grained level. Specifically, once every 10 frames, the 3-D, real world

coordinates of the “foot” of each person in the frame, is provided. As discussed earlier, we

can convert these co-ordinates to the 2-D coordinates in the image coordinate system of

each camera (using Eq (4.2)). The data set also provides the identifier of the human the

foot belongs to (human ID).

Each detection window is a rectangular area within the frame as discussed earlier.

We check if the aforementioned 2D coordinates (of the “foot”) fall within each detection

window. Each detection window which contains such coordinates, is associated with a

human ID. In cases where there is more than one human in the detection window, we may

have false positives. To eliminate these, we mark those windows and manually check the

ground truth information (to determine which human is in the detection window).

4.5.2 Improving detection accuracy with overlapped camera views

4.5.2.1 Setting thresholds for accurate detection

Below, we first describe how we determine the thresholds Tp (the Euclidean dis-

tance between the plausible 3D locations of a detected human, from the perspective of

multiple cameras) and Tc (the Mahalanobis distance between the color features that corre-

spond to the same human, from different cameras).

From the training video sequence, we create two different sets: (a) set S contains

pairs of detection windows that show the same human, captured at the same time by differ-

137

ent cameras, and (b) set D contains pairs of windows that show different humans captured

by different cameras. For each detection window, we compute the possible positions of the

human (based on a set of considered heights) as described in section 4.3.3, and compute the

minimum Euclidean distance (with respect to all considered heights) between each pair of

windows in set S and in set D. We show the CDF of the distances in Fig. 4.3. Based on the

results, we set threshold Tp = 1.2m; from the figure we see that this results in the detection

of more than 80% of the windows of the same human with about ≈ 30% false matches. An

increase in this threshold would result in a higher false positive rate; a decrease would reduce

the number of correct detections (true positives). This seems like a reasonable compromise.

Next, we compute the Mahalanobis distance between the color features of each pair in set

S, and in set D. We show the CDF of this distance in Fig. 4.4. Based on the results, we

set threshold Tc = 18, 000. With this threshold, we are able to detect more than 90% of

windows with the same human, with an expense of ≈25% false matches (false positives).

We point out that it is important to achieve a high true positive rate while keeping

the false positive rate low. The former would reduce bandwidth usage as fewer windows of

the same human need to be transferred; however, incorrect matching of different humans

might cause the missing of the transfer of data associated with a particular person. When

both the position and color are combined, we are able to achieve a true positive rate of ≈ 91%

and a false positive rate (when windows containing different humans are incorrectly grouped)

of ≈ 9 %. ACTION classifies a group of detection windows as “correctly matched,” based

on a majority rule. If at least half of the detection windows correspond to the same human

138

Distances of the same humans
Distances of different humans

C
D

F

0

0.5

1.0

Euclidean distance (m)
0 1 2 3 4

Figure 4.3: Distances between windows
of the same and different humans

Distances of the same humans
Distances of different humans

C
D

F

0

0.5

1.0

Mahalanobis Distance
0 50 100×103

Figure 4.4: Distances between color fea-
tures of the same and different humans

(based on the ground truth information), the matching is considered correct; otherwise it

is considered incorrect.

4.5.2.2 Does the use of more cameras yield better performance?

Next, we perform experiments to determine the benefits of using a plurality of

cameras in ACTION. One of the metrics we use is what we call the recall value. This value

is the number of times that a human is correctly identified from among all the times she

appears in the captured videos (transferred to the central controller). It is expressed as a

percentage. If multiple cameras are used, at least one of the cameras needs to correctly

detect the human. We measure how the recall value changes, when different numbers of

cameras are used for human detection.

When only one camera is used, all its detection windows that reflect the presence

of a human are transferred. If multiple cameras are used, we posit a requirement of 0.9

on the detection probability P . In other words, the fusion node requires the transfer of

detection windows until this requirement is met or the time constraint imposed (by the

139

1 camera
2 cameras

3 cameras
4 cameras

R
ec

al
l

0

50

100

Dataset
#1 #2

Figure 4.5: Average recall values with dif-
ferent numbers of cameras

Detected by 1 camera
Detected by at least 2 cameras

Ac
cu

ra
cy

 ra
te

0

50

100

Dataset
#1 #2

Figure 4.6: Accuracy rate when combin-
ing data from more than one camera

C
D

F

0

0.5

1.0

Time to process 1 frame (ms)
450 500 550 600

Figure 4.7: Image processing time

Av
er

ag
e

de
te

ct
io

n
pr

ob
ab

ilit
y

0

0.5

1.0

Bandwidth (Kbps)
512 1024 1536 2048 2560 3072

Figure 4.8: Average detection probability
under different bandwidth constraints

bandwidth requirement) does not allow any additional transfers. In these experiments,

that time constraint is set to 0.5 seconds.

In Fig. 4.5, we show the results from both of our data sets. As one might expect,

the use of a higher number of cameras results in a higher recall value. However, the im-

provements depend on the extent to which humans are occluded from camera views. In the

first data set, humans are separated with little occlusion. Thus, the increase is only modest

as seen in the figure. However, in the second dataset, the people are close to each other and

typically there is higher occlusion. Here, the use of a plurality of cameras with ACTION

results in a significant performance improvement. Specifically, with only one camera, the

recall value is ≈ 64 %. It increases to more than 85 % with four cameras.

We next evaluate ACTION in terms of the precision of detection (aka the accuracy

rate). Specifically, from among all the detection windows reported to detect humans, the

140

accuracy rate represents the fraction that are correct reports. In the case of multiple

cameras, we require that at least two of them correctly identify the (same) human (majority

rule is applied as discussed earlier). We again observe that the use of multiple cameras

significantly improves the accuracy rate. With dataset 1, the improvement is about 15 %

while with dataset 2, the improvement is about 20 %.

4.5.2.3 Impact of bandwidth constraints

In our next experiment, we illustrate how the greedy algorithm for transferring

relevant detection windows in ACTION, performs as we vary the available bandwidth. The

individual nodes process the video sequences and upload metadata to the fusion node once

every 10 frames. The fusion node determines the set of detection windows to be uploaded

(as described in Section 4.3.4). The corresponding cameras are required to transfer the

selected information in 0.5 seconds. For ease of disposition, we assume that the system

is homogeneous i.e., the bandwidth between the controller and each camera node is iden-

tical (we set this in our implementation). However, the results can easily carry over to

heterogeneous settings. We again posit a requirement of 0.9 on the detection probability.

The results, presented in Fig. 4.8, show that under strict bandwidth constraints

only a small fraction of the detection windows associated with each human is transferred.

Thus the detection probability requirement is not met; the achieved detection probabilities

are really low. However, as more bandwidth is available, a higher number of detection

windows associated with each human can be transferred. The detection probability increases

gradually. However, there is a “saturation point,” (available bandwidth = 2048 kbps) after

which there is sufficient bandwidth to transmit enough windows for achieving the required

141

detection probability P ; beyond this point there is a negligible improvement in P (if at all),

even with a bandwidth increase.

4.5.3 Resource usage

In this section, we seek to evaluate ACTION in terms of quantifying the bandwidth

savings that it provides and its processing and energy overheads.

Bandwidth usage: Fig. 4.9 shows the bandwidth usage in three different scenar-

ios: (i) when images of all detection windows from a single camera, are transferred directly

to the command node, (ii) when all 4 cameras transfer images of all detection windows

directly to the command node, and (iii) ACTION is used and a target detection probability

of ≈ 90% is required with regards to each detected human. In the former two scenarios,

ACTION is not used. We show the results for the case where the input video is processed

every (i) 0.5s and (ii) 2s, as in the previous experiment. Without ACTION, the volume of

data transferred by the 4 cameras is around 3 times as compared to when ACTION is used.

With ACTION, typically, only data from the best 1 or 2 cameras need to be transferred;

thus a significant amount of unnecessary data transfers is avoided. Note here that if more

than 4 (overlapping) cameras are available, one could conceivably achieve even a higher

reduction in bandwidth usage. Further, note that with ACTION (since only the most rel-

evant information is transferred), the total amount of transferred data (from 4 cameras) is

only ≈ 1.4 times the data transferred by 1 camera.

Processing times on individual nodes: Fig 4.7 shows the distribution of the

time taken to process 1 frame towards detecting a human on our Android smartphone. The

resolution of our test data is 1024x768 pixels. With this setup, the maximum processing

142

Image data
Metadata

A
m

ou
nt

 o
f d

at
a

(M
B

)

0

20

40

60

80

100

With ACTION

4 cameras (0.5s)

W/out ACTION

1 cam (0.5s)

W/out ACTION

4 cams (0.5s)

With ACTION

4 cameras (2s)

W/out ACTION

1 cam (2s)

W/out ACTION

4 cam (2s)

Figure 4.9: Bandwidth usage

Network
CPU

En
er

gy
 c

on
su

m
pt

io
nn

 (J
)

0

100

200

300

400

Cam node

(0.5s)

Fusion node

(0.5s)
Cam node

(2s)

Fusion node
(2s)

Figure 4.10: Energy overheads

time is 600ms; in other words the local algorithm for human detection on our smartphone-

based individual camera nodes in ACTION, achieves a processing rate of ≈ 1.7frames/sec.

This in turn suggests that a platform such as a smartphone is sufficiently powerful to process

the video in near real-time. Since video frames can be processed well in advance of a query,

we believe that the system is sufficiently responsive and deployable in real contexts.

Energy overhead: Fig. 4.10 depicts the energy consumed due to human detection

on individual phones and due to the fusion operation. We consider a 3.2 minute input video

sequence. We consider two possibilities: (a) every 10th frame or (b) every 40th frame, is

considered for human detection. The detection windows are sent to the fusion node once

every 0.5 seconds in the former case and every 2 seconds in the latter. We use the popular

PowerTutor6 tool [11] to estimate power usage due to the following components: (i) the

CPU usage to extract image features locally on the camera nodes, (ii) the CPU consumed

to combine the metadata and choose detection windows for transfer, at the fusion node, and

(iii) the WiFi network interface towards transferring and receiving the data. Note that we

only report the energy consumed by the operations of our ACTION framework; the energy

6We modify the source code of PowerTutor to allow it to capture the network usage information on the
ZenFone II we use.

143

consumed by unrelated processes and components on the phones (e.g., screen usage, phone

standby energy, system background processes, etc.) is not taken into account.

The result shows that, if the video sequence is processed every 0.5s, the detection

application consumes 369J. The fusion operations consume 133J. On our smartphones,

which have a battery capacity of 3000mAh (and 4.5v), these two values correspond to

0.76% and 0.27% of the battery respectively. If the operations are continuous then, the

energy of the camera node lasts for about 7 hours.

If the processing interval increases, the energy consumption decreases as expected.

The human detection and fusion operations consume 102J and 39J, respectively, if the video

is processed every 2 seconds. Those values correspond to 0.2% and 0.08% of the battery

capacity, respectively. At this rate, the energy of the camera node lasts for 26 hours. Note

that if the camera nodes have batteries that are better than today’s smartphone batteries,

they can last for much longer.

4.6 Conclusions

In this paper, we consider the problem of retrieving situation awareness informa-

tion from a multi-camera network in scenarios such as natural disasters where the band-

width is limited due to compromised infrastructure. In such scenarios, the cameras cannot

all transfer their content to a central controller handling search and rescue operations. Thus,

we seek to only transfer those camera feeds that can provide highly accurate input to the

controller while ensuring the timeliness of the transferred content. Towards this, we design

and implement a framework, ACTION. ACTION (i) uses state of the art computer vision

144

algorithms to detect objects of interest (e.g., humans or animals), (ii) uses novel approaches

to jointly consider views from multiple cameras and determine the views that yield the

best accuracy with respect to an object of interest, and (iii) only transfers the best views

to a controller while adhering to bandwidth constraints. We implement ACTION on a

smartphone based testbed and show that it achieves a high accuracy of ≈ 90 % in terms of

detecting humans who are considered as objects of interest, while reducing the bandwidth

consumption threefold.

145

Chapter 5

Energy Efficient Object Detection

in Camera Sensor Networks

5.1 Introduction

Timely and accurate detection of objects of interest (e.g., humans) is critical in

many scenarios of interest. For example, in rescue and recovery missions following natural

disasters, one might want to detect humans or animals in distress. Homeland security might

be interested in automatically and proactively, tracking unattended baggage in airports

or bus stations. Today, camera sensors equipped with computation capabilities can be

deployed in the field to provide situation awareness information in such scenarios. In fact,

battery operated, low power embedded camera devices (e.g, the CMUcam series [95]) that

can be used for such purposes are already emerging and on the market. Using common

146

programming languages, these devices can be programmed to do multiple types of on-board

processing tasks (e.g., object and face detection).

A network of such camera sensors can significantly improve the accuracy of object

detection. With such a network, objects that might be obstructed or hidden from specific

angles of view, can still be potentially detected. However, simply sending video feeds from

all such camera sensors to a central controller that is responsible for operations (e.g., search

and rescue) might not only be wasteful, but could result in unnecessary energy expenditures

and hurt the longevity of the network. In addition, each camera could be trained to use

highly optimal, domain specific, algorithms to process the captured video. However, the

higher the fidelity of a processing algorithm, the higher the cost in terms of processing

energy. Thus, when a plurality of cameras detect the same object, it might be unnecessary

for all of the cameras to use the optimal (possibly the most energy expensive) algorithm.

Some of the cameras could use sub-optimal processing to save energy while ensuring that

the detection accuracy does not take a big hit.

In this paper, our goal is to design a framework EECS, that can facilitate co-

ordination among the cameras in such a network to realize significant energy savings com-

pared to cases where there is no such co-ordination, and yet, achieve a high detection accu-

racy. The framework determines (a) which cameras are suitable for capturing an object of

interest, (b) what domain specific algorithm to use for processing the captured video and

(c) which cameras views are to be transferred to the central controller that is responsible

for operations.

147

Challenges: In order to achieve our overarching goal, we need to tackle a set of

key challenges. First, since the scenarios are likely to be unknown a priori, the optimal

or the most accurate video processing or detection algorithm for each camera sensor is

not known. The problem is harder if we need to rank order the processing algorithms in

terms of the accuracy they yield and the energy expenditures they incur for the scenario.

This essentially requires the assessment of similarities between the video captured of an

unknown scenario and a set of pre-installed training videos corresponding to a set of (pre-

determined) scenarios; such an online comparison is very challenging for complicated and

high dimensional signals like video feeds. Second, we require EECS to be able to identify a

subset of camera sensors whose detection yields are together sufficient to achieve a desired

accuracy. This ensures that EECS does not unnecessarily invoke all camera sensors (and

thus, helps reduce energy consumption). Third, we need to determine which camera nodes

should utilize sub-optimal (energy efficient) detection algorithms, instead of using the most

accurate (possibly more expensive) algorithm for processing the videos while still adhering

to the accuracy requirements.

EECS in brief: EECS is designed to address the above challenges. To solve

the first challenge, it leverages state-of-the-art video comparison algorithms to identify

the most effective detection algorithm for each individual camera. In brief, each camera

captures a short video feed and compares the feed with pre-loaded training videos to find the

closest match; the algorithm that works best for the matching training video is then chosen.

When the environment changes, the process is repeated. The process which is referred to as

“domain adaptation has been used for efficient video comparisons [96]. Specifically, principle

148

component analysis (PCA) is applied on the captured and training videos to remove the

unimportant features, and to reduce the signal dimensionality; the PCA-processed signals

are then projected onto a subspace called the Grassmannian manifold for comparison. The

manifold is created in a manner that ensures that a small distance between two projected

points in the manifold also indicates a high level of similarity between two associated video

feeds.

The above approach however, only allows each individual camera to dynamically

choose the most accurate algorithm to process the captured video feeds. EECS ranks the

camera nodes based on individual accuracies and applies a novel greedy algorithm to choose

a subset of cameras that jointly can achieve a predefined desired accuracy (thus addressing

the second challenge). This requires EECS to be able to identify and aggregate detection

information of the same objects from different views/cameras, and then assesses the detec-

tion accuracy based on the aggregated information. Subsequently towards addressing the

third challenge, for each chosen camera, EECS determines whether each camera can use

a less energy expensive algorithm that satisfies the desired detection accuracy requirement

and if yes, chooses the less expensive algorithm for processing.

Novelty: To the best of our knowledge, EECS is the first to support co-ordination

across a set of battery operated camera nodes towards reducing energy consumption while

ensuring high accuracy of object detection. While the design of domain adaption for in-

dividual cameras has been studied in the computer vision community, coordination across

cameras to determine the algorithms that different cameras should use to achieve a certain

149

detection accuracy has not been considered before. Finally, energy was not a consideration

in determining the choice of this set of algorithms.

Evaluations: We implement EECS on a testbed of Android phones, which have

pre-installed video feeds captured from overlapping cameras. We implement three different

video processing algorithms on each of the cameras. The algorithms are adaptively chosen by

EECS depending on the environment and requirements. Our evaluations show that EECS

achieves both higher precision (more accurate detection) and recall (more objects/humans

are detected) than using the same algorithm to process all data sets. In addition, EECS’s

resource-aware algorithm selection approach helps to reduce up to 40% of the total energy

consumption while still achieving ≈ 86% of the highest accuracy (achieved when the optimal

algorithms are used at all individual cameras).

5.2 Related work

Object detection algorithms: While our work is applicable to object detection

in general, we focus mainly on the humans as the objects of interest. Different features

(color, gradient, texture) and machine learning techniques (SVM, boosting) have been used

in object detection [63, 68, 97, 98, 64]. However, each algorithm only works well in specific

scenarios and conditions. In this work, we propose a framework for adaptively choosing an

appropriate algorithm depending on the environment/condition.

Domain adaptation: Domain adaptation is used for learning classification rules

for a target (e.g., indoor) dataset from pre-trained source dataset [96, 99]. In EECS, domain

adaptation is used to find the correspondences between features of the two datasets. This

150

correspondence is used to assess video similarity, and identify the most appropriate detection

algorithm for an unknown incoming video feed.

Adaptive algorithm selection: Algorithm selection has been studied in several

recent works for other problems. In [100], a model to predict the performance of different

image segmentation algorithms is developed. In [101], pixels in an image are segmented into

different regions, and different detection algorithms are applied for the different regions. In

these works, the values of the selected features are used to determine which algorithms are

used. In our approach, the similarities between features from different video feeds are used

to select the algorithm (not the values of the features directly). The work in [102] is the

closest to our work; the authors consider using different algorithms to detect humans in

different video feeds. However, they only consider choosing the most efficient algorithm

to process captured video feeds for a single camera. EECS, on the other hand, focuses on

multi-camera settings in which if one camera already chooses the best (yet energy hungry)

algorithms, other cameras might consider choosing sub-optimal algorithms instead to reduce

the total energy consumption.

Object detection using multiple cameras: Works such as [78, 75, 76] focus

on detecting objects of interest using a network of camera sensors. However, they only

employ a specific video processing algorithm to detect objects. On the other hand, EECS

allows changing the detection algorithm adaptively as the environment changes to improve

detection accuracy while ensuring energy efficiency.

Efficient video processing on mobile devices: Li et al. [103] propose data

manipulation techniques to reduce memory access related energy consumption on mobile

151

devices. Lee et al. [104] implement and study the energy consumption of different video

encryption schemes on mobile devices. The authors in [105, 106, 107] study and improve the

energy efficiency of video streaming applications for mobile devices. Improving the efficiency

of object detection or other video processing algorithms is not our focus; we instead design

a framework to choose the most energy efficient algorithm from a set of available algorithms

while ensuring given accuracy requirements.

5.3 Video comparison using domain adaptation

When a video feed is captured, each camera needs to determine which video pro-

cessing algorithm is most effective (in terms of accurately detecting objects of interest) in

the feed. In order to do so, in EECS, the new feed is compared against a training set of

videos that are pre-loaded onto the cameras. To determine matches between the new feed

and the videos in the training set, an efficient video comparison technique is essential. The

process is referred to as domain adaptation i.e., determining which algorithm is best suited

for the domain under consideration (pertaining to the captured scene in the new feed).

Domain adaptation for single cameras has been studied in the computer vision

community [96, 99] and can be used to determine the similarity between videos. In many

cases, directly comparing video features in their original domains does not yield good results;

for example, images taken in different conditions (indoor/outdoor, illumination, variations

in size of an object from different views, etc.) can be quite different, but actually should

be processed using the same algorithm in order to achieve the highest accuracy, as shown

152

Symbol Meaning

α, β Sizes of feature space and PCA subspace

ti Features of the training video item Ti
vj Features of the incoming video item Vj
k1, k2 Number of frames used to represent Ti and Vj
xi, zj Basis of the PCA-projected subspaces of ti and vj
x̃i Orthogonal complement to xi, namely, x̃i

Txi = 0

θ(y) Geodesic flow function

U , V ,
Σ1, Σ2

Matrices used to compute θ(y) and Wij

Wij Geodesic kernel, used to compute distance between
xi and zj

Table 5.1: List of symbols used in computing video similarity

in [102]. In such cases, the similarity between two video feeds1 is much more noticeable if

the features in the feeds are projected on to a common subspace. We use image key-points,

and the histogram of gradient (HOG) as features of the image frames in a video feed for

comparison; the chosen features (to be used in EECS) will be described in detail later, in

section 5.5.

The key idea in domain adaptation, is to project the two video feeds (a training

video and an unknown video feed) onto a common subspace, in which similar patterns

between the videos can be better identified. Here, we choose to project the training and the

incoming videos (also referred to as data items) onto a Grassmannian manifold, as in [96].

The geodesic flow curve is the shortest path that links two projected items on the manifold,

and represents a measure of similarity of the data distributions on the manifold. If two

items have similar distributions on the Grassmannian manifold, the same video processing

or detection algorithm should be applied on the two video feeds [102].

1We use the terms video feed and video item interchangeably.

153

In more detail, we formulate the problem of assessing the similarity between two

videos as follows 2. Let the features to be compared in the training and captured videos, Ti

and Vi be ti ∈ Rk1×α, vj ∈ Rk2×α, respectively. Here, k1, k2 are the number of key frames

(images) chosen in Ti and Vj , respectively, to represent the entire video feeds to reduce

the computational overhead. In addition, α is the dimension of the feature vector of each

chosen key frame (image). In other words, each video feed is represented as a set of images,

where each image is then represented as a feature vector in the Rα space.

Using principal component analysis (PCA), we project all the images in Ti onto

a Rβ subspace in which the variances of data are maximized; typically β < α. The basis

of such a subspace consists of β orthogonal basis vectors of size α (α-dimensional vectors).

Let xi be the basis of the subspace, then xi ∈ Rα×β. Let zj be the basis of the subspace

obtained when applying PCA on vj ; similarly, zj ∈ Rα×β.

Let Gr(β,Rα) be a special space that contains all the subspaces of size β in Rα;

this space is called a Grassmannian manifold of Rα. Then, both the subspaces represented

by xi and vj lie on Gr(β,Rα). Let x̃i ∈ Rα×(α−β) be the orthogonal complement to xi,

namely x̃i
Txi = 0, where xT denotes the transpose of matrix x.

Given the Grassmanian manifold, the geodesic flow connecting xi and zj on the

manifold, is defined as [96]:

∫ 1

0
(θ(y)ti)

T (θ(y)vj)dy = tTi Wijvj . (5.1)

2The list of symbols used in this section is summarized in Table 5.1.

154

The left hand side of (5.1) provides the definition of the geodesic flow, whose value can be

computed using the right side of the equation. θ(y) is the geodesic flow function, parame-

terized by a continuous variable y ∈ [0, 1] [96].

The geodesic flow can be computed by computing the kernel function Wij between

the two feature vectors ti and vj . Wij is defined as:

Wij = [xiU x̃iV]

 Λ1 Λ2

Λ2 Λ3


 UTxTi

V T x̃i
T

 , (5.2)

where U , V are the left singular matrices when applying singular value decomposition

(SVD) to xTi zj and x̃Ti zj , respectively. Further, let Σ1 and Σ2 be the diagonal matrices of

such SVDs; the values of Λ1, Λ2, and Λ3 matrices are computed from both Σ1 and Σ2 [96].

The kernel function Wij provides an effective way to compute the inner product of high

dimensional vectors ti and vj , which is widely used to compute the similarity between the

vectors [108].

The kernel distance between the two video feeds Ti and Vj (i.e., between features

of two sets of images ti and vj) on the manifold is computed based on the geodesic flow

connecting them as [109]:

K(Ti, Vj) = tTi Wijti + vTj Wijvj − 2tTi Wijvj , (5.3)

where K(Ti, Vj) is a k1×k2 matrix, representing the individual distances (on the manifold)

from each image in Ti to each image in Vj .

We define the total distance between the two video feeds on the manifold to be

the mean of all the kernel distances between the individual images from the two feeds:

Md(Ti, Vj) =
1

k1k2

∑
m1

∑
m2

K(m1,m2)(Ti, Vj), (5.4)

155

where m1,m2 are integers in {1, · · · , k1}, {1, · · · , k2}, respectively, and K(m1,m2)(Ti, Vj) is

the element (m1,m2) of the matrix K(Ti, Vj).

Finally, we define the similarity of the two videos Ti, Vi as:

Sim(Ti, Vj) = e−Md(Ti,Vj). (5.5)

Notice that Sim(Ti, Vj) ∈ [0, 1], for Md(Ti, Vj) ≥ 0. A higher distance corresponds to a

lower similarity value; further, the similarity approaches 0 exponentially fast beyond some

certain threshold (e.g., when Md(Ti, Vj) ≥ 4). In such cases, the video feeds are considered

dissimilar.

5.4 EECS system design

In this section, we describe the design of our camera co-ordination framework

EECS, consisting of two main components: camera sensors and a central controller (we

also use the terms cameras and controller). The goal of EECS is to allow the central

controller to collect visual features (discussed later in section 5.5) from the camera sensors

and use these to determine the most effective detection (video processing) algorithm (in

terms of accuracy and energy consumption) for each camera, and what combination of

views yields the desired object detection accuracy, while ensuring that the energy drain at

the camera sensors adheres to a set energy budget. In EECS, video analytics and algorithm

selection happen at the controller to avoid storing information about training video feeds

and executing processing-expensive, domain adaptation at each battery-operated camera

sensor. Here, as typically the case, we assume that the controller does not have energy

constraints and can easily perform these required operations.

156

Algorithm Selection
(2) Assesses video similarities
(3) Rank orders cameras based on
predicted accuracy and energy
cost

Pre-trained data
{Video - Best Alg.}

(4) Assigns
algorithm

(5) Detected
objects

Accuracy
Assessment

(1) Video features,
energy budgets

(6) Invokes
cameras to satisfy

requirements

(7) Environment/
condition changes

Central Controller

Figure 5.1: EECS system for adaptively choosing detection algorithms in a camera network.

Each camera node individually executes a detection (video processing) algorithm

to detect the presence of objects (e.g. humans) in the scene. The detection accuracy of

a certain algorithm depends on how well it matches the environment conditions, which

are dictated by attributes such as brightness and indoor versus outdoor, etc. At the same

time, different algorithms consume different amounts of energy. The controller collects

information relating to the detected objects (details discussed later) as well as residual

energy information from the camera sensors. Based on the assessment of the achieved global

detection accuracy and the energy budgets and expenditures at each camera, the controller

node adaptively invokes different sets of cameras and/or different detection algorithms to

meet both the accuracy and energy requirements. Fig. 5.1 depicts the functional view of

system with its different components. In the following, we describe the details of the EECS

framework.

Let T = {T1, T2, · · · , TN} be the set of training videos at the controller. Let A =

{A1, A2, · · · , AH} be the set of available detection algorithms pre-installed at each individual

camera. Each camera sensor Sj ∈ S of M cameras has an energy budget Bj , which is a

function of the required operation time as well as other processing parameters (such as

157

number of frames processed per second). In addition, each camera has a communication

cost Cj , which depends on the link quality from the camera to the central controller and

is independent of the detection algorithm assigned to the camera3. Let V be the set of

captured video feeds, where Vj ∈ V is the video feed captured at camera Sj . The goal of

EECS is to identify a subset of the camera sensors S ′ ⊆ S and the corresponding video

processing algorithm A′j ∈ A to be used at each camera Sj ∈ S ′ to satisfy a predefined

global accuracy D, while adhering to the energy constraints c(A′j) + Cj ≤ Bj . Here, c(A′j)

represents the computation cost for algorithm A′j .

5.4.1 Offline training

A key task of the controller is to rank order the video processing algorithms based

on their accuracies and identify the most accurate algorithm for the captured video feed Vj

with regards to each individual camera sensor Sj . EECS performs a video comparison of the

incoming video with the training videos using the domain adaptation technique, described

in section 5.3.

First, the controller node applies each available detection algorithm to process

each training item, and measures the detection accuracy achieved and the computational

cost (a total of H × N combinations). Specifically, for each training item, the controller

measures the precision and recall values for each algorithm. The precision value is the

number of correctly identified objects from among the detected objects, while the recall is

the number of detected objects from among the objects actually in the scene. The f score

3Specifically, Cj depends on the resolution of the captured video, and the available bandwidth between
the camera sensor and the central controller. This can be estimated using tools such as iPerf [90], by
transferring some sampled frames and recording the consumed energy.

158

value [110], which is usually used to assess the accuracy of a detection algorithm, is then

computed as f score = 2× recall×precision
recall+precision . For each training item, a ranked list of algorithms

is then constructed based on the f score. For each training video Ti ∈ T , the most accurate

detection algorithm, labeled A∗i ∈ A, is identified.

5.4.2 Resource-aware algorithm selection

In this subsection we describe how the information gathered at the controller node

from the camera sensors is used to adaptively choose the detection algorithm for each camera

sensor.

5.4.2.1 Uploading video features

When the camera sensors start up, or when they detect surrounding environment

changes, each sensor Sj extracts and uploads features (such as image key points and his-

togram of gradient; details discussed in section 5.5) of the captured video feed Vj to the

controller. Further, each camera notifies the controller node about its energy budget Bj ,

as well as the energy cost to process an image frame using each of the available algorithms.

A camera sensor estimates the processing energy costs of the algorithms by applying each

algorithm to a few sampled frames and recording the consumed energy, using tools such as

PowerTutor [11].

5.4.2.2 Rank ordering the detection algorithms

Once the controller node receives video features Vj from camera sensor Sj , it

determines the video similarities between the input and the items in its training set, and

159

identifies the closest training item T ∗i ∈ T that is most similar to Vj using Equation (5.5).

Because EECS uses state-of-the art video comparison techniques, a high similarity between

T ∗i and Vj will indicate that the two videos should be processed by the same algorithm [102].

Thus, the A∗i that is associated with T ∗i , will be the most accurate algorithm that can be

used to process Vj . Further, the process ensures that the rank ordering of the detection

algorithms will also be similar (if not identical) between the videos.

5.4.2.3 Choosing a subset of cameras

Periodically, for a short accuracy assessment duration (e.g., 100 frames), the con-

troller coordinates across all the cameras, so that each uses its most accurate detection

algorithm, whose processing cost, together with the communication cost, are not higher

than the energy budget. Then, metadata4 about detected objects is returned to the con-

troller. This information is then used to estimate the best possible global accuracy that can

be achieved (described later). The cameras are then rank ordered based on their individual

accuracies in the list So = {S1, S2, ..., Sm}.

Next, the controller node sequentially invokes the cameras in the list So, one by

one in order, until the desired global accuracy is satisfied. This set of chosen cameras is

denoted by S ′ ⊂ S. This approach ensures that EECS does not invoke all the camera

sensors unnecessarily, but only invokes a sufficient set of cameras to satisfy the detection

accuracy requirements while conserving energy.

4The metadata consists of features extracted from the video (e.g., color features) and will be defined
formally later in this section.

160

5.4.2.4 Choosing detection algorithms

In the previous step, a set of cameras that sufficiently satisfies the required accu-

racy using the associated “best” detection algorithms A∗j , ∀j ∈ {1, 2, · · · ,M} are chosen.

Here, we further seek to reduce the energy usage at the camera sensors while still satisfying

the detection accuracy requirements.

First, we browse the list S ′ in reverse order to consider the cameras with the

lower accuracies first, towards reducing energy expenses. Then, for each camera, we check

whether a different lower energy algorithm can be used, while still retaining the required

global accuracy D. This reduction in accuracy is a direct consequence of the algorithm

chosen at that camera. In other words, at each step the accuracy with regards to the other

cameras is not affected. Note that, in order to reduce the number of alternatives that need

to be explored, EECS only pays attention to algorithms that have higher f score
energy cost values

compared to the most accurate algorithm. Metadata relating to each object detected by

such algorithms is uploaded to the controller, which in turn determines the algorithm that

consumes the least energy, and yet ensures that the required accuracy is achieved. It selects

this algorithm for the corresponding camera and feeds back this information to the camera

sensor. If such an algorithm is not found, then this process stops. Otherwise, the process

continues with the next camera in S ′.

The set of cameras S ′ are used, along with the selected detection algorithms, until

the next re-calibration interval (e.g., 500 frames), when a new accuracy assessment process

starts, and a new set of camera sensors and detection algorithms might be chosen.

161

5.4.3 Global detection accuracy

In the above discussion, we implicitly assumed that the central controller can

assess the global detection accuracy, given the accuracy assessments from the different

camera sensors. The process is explained in detail as follows.

In order to assess the global accuracy, the controller needs first to identify the same

object (e.g., human) captured from different cameras/views, and estimate the achieved accu-

racy pertaining to that object. Correctly aggregating the same detected areas (representing

objects) from multiple views allow EECS to correctly identify the total number of objects

that has been detected in the scene, since those areas will be counted as a single object.

Otherwise, the same detected human might be counted multiple times, which leads to an

incorrect assessment of the global detection accuracy. However, this re-identification of the

same object from multiple camera views is a challenging in itself; this is because images of

the same object (e.g., human) can be quite different if viewed from different angles.

Aggregating metadata from multiple cameras: For each detected area, the

sensors extract and upload the metadata of that area (representing a potential object), which

is used for object re-identification. Specifically, the metadata includes: (i) the location of

the area in the image, (ii) color features of the area, and finally (iii) a confidence measure

that the detected area is an actual object of interest.

Next, the metadata is extracted and leveraged as follows. For each detected area,

a detection algorithm provides the location (rectangular bounding box) of the area, and

a score reflecting how confident the algorithm is, with regards to the area representing an

162

object of interest (for example, see the detection algorithm in [63]). This score can be

converted into a detection probability via an offline training process.

Next, we discuss how EECS identifies and verifies detected areas from different

views as the same area. First, a set of landmark points on the ground are chosen in the

real world coordinate system. The locations of these landmarks are then identified in the

captured images of each individual cameras. Using the correlation between the locations of

the landmarks in the images captured by two cameras facilitates the building of a mapping

function (called a homography) between the “ground planes” of the two cameras (e.g., by

using RANSAC [111], which produce very accurate results).

Once such a homography is constructed, for each detected area in an image, the

software at the central controller extracts the center of the bottom edge in the frame (which

is supposed to be on the ground), and then projects that center point onto the ground plane

of other camera views to identify detected areas of the same object in the other camera views.

Further, the camera sensors also extract and upload color features (as a part of

the metadata) of the detected area to help the controller reduce the false matches due

to imperfect homography matching. Specifically, in EECS, we extract the Mean Color

feature [87] of a detected area, which is a 55,000-dimensional signal, and then use PCA to

reduce the feature to 40 dimensions (as in [87]). Then, the Mahalanobis distance [89] is used

to compute the distance between the color features of two pre-matched (by homography

mapping) detected areas in different cameras; if the distance is within a certain threshold,

we consider the two detected regions to correspond to the same object.

163

Assessing global detection accuracy: First, we denote the area on the image

for each detected object i, using the algorithm running on camera Sj , by Rij . For each

Rij , a detection probability Pij is learned, as discussed above, representing the detection

precision associated with that area. Thus, Pij indicates the probability that the area Rij is

actually an object of interest.

Once the metadata corresponding to the different objects is collected by the con-

troller, the following quantities can be computed to assess detection accuracy: (i) the num-

ber of objects on the field jointly detected by the cameras (after re-identification), and (ii)

the combined detection probability of each detected object, computed as:

Pi = 1−
∏
j

(1− Pij), (5.6)

where (1−Pij) is thus the false positive probability of object i on camera j. The aggregated

true positive detection probability P is computed as the probability that all cameras Si yield

false positive detections.

The controller periodically triggers each camera Sj to use the best algorithm A∗j

to compute the “baseline” (i.e., best possible) global detection accuracy. This reflects the

number of detected objects, and the average detection probability. If the current detection

accuracy is below such baseline by more than a threshold D, more cameras and/or more

expensive algorithms might be invoked.

Summary: Fig. 5.2 summarizes the operations and interactions between video

sensors and the central controller. The individual camera sensors capture video feeds,

extract specific features and send these features along with their energy residue information,

to the central controller. The central controller does the video analytics to select a sub-set

164

Extract visual
features

Detect objects using
assigned algorithms

Extracting detection
metadata

Report detected objects
(cropped frames in images)

Video comparison via
domain adaptation

Accuracy
Assessment

Camera selection

Algorithm selection

Camera sensors Central controller

Uploads visual
features

Notifies best
algorithm (for

accuracy
assessment)

Upload detection
metadata

Notifies chosen
cameras and

algorithms (for
actual detection)

Upload detected
objects

Leveraged from previous works Our contributions

Figure 5.2: Interactions between the sensors and central controller

of cameras, and the video processing algorithms that must be used at these cameras, to

achieve a good trade-off between detection accuracy and energy expenses.

5.5 Implementation

In this section, we describe the detailed implementation of EECS; as discussed, it

consists of two main components viz., camera sensors and a central controller that gathers

the outputs from these cameras.

Note that, in implementing EECS, we focus on “humans” as objects; this has

significant importance in rescue, tactical and homeland security missions. The techniques

can however, be used to detect other types of objects; only the detection algorithms used

at the camera nodes need to be replaced.

165

5.5.1 The camera sensors

We implement the camera nodes using Asus Zen II Android smartphones. Each

node is pre-installed with 4 different human detection algorithms: HOG5 [63], ACF [68],

C4 [98] and LSVM [97]. We use OpenCV to implement HOG, LSVM, and ACF (based

on the source code provided by the authors). For C4, we use the source code (in C++)

provided by its authors.

First, each captured video feed is represented by 100 image frames. For each frame,

we extract the HOG (histogram of gradient) features [63] and SURF (speeded-up robust

features) key-points6 [112] of the image using OpenCV. The HOG features are represented

by a 3780-dimension feature vector. For the SURF key-points, we use the bag of words

(BoW) approach [46]. Specifically, each SURF key-point is represented by a 64-dimensional

vector, called the key-point descriptor. Once a training set is chosen (more details about

data sets are provided later in section 5.6), key-point descriptors of the training images

are extracted, and then partitioned into predefined k clusters using the k-means clustering

algorithm. Each such cluster centroid is called a visual word in the vocabulary.

In EECS, a vocabulary of 400 words is built from images of 12 training video

feeds. Subsequently, for any given image, the key points of the image are extracted, and

each key point is then mapped to the nearest cluster centroid (visual word). The BoW

representation of an image, regardless of the image size and number of key-points, is thus

a 400-bin histogram, in which the value of each bin is the number of key-points mapped on

5We use the term HOG for both the feature (histogram of gradient) and the algorithm that leverages the
feature.

6Key-points are small patches of an image that differ significantly from the surrounding areas (in the
image).

166

to the associated visual word. Thus, each image frame in a incoming video feed is actually

presented by a fixed 4180-dimension feature vector (combining the HOG feature and the

BoW representation). The camera nodes then upload the features of the set of chosen

image frames of the captured video feed to the central controller for video comparisons and

subsequent, processing (detection) algorithm selection.

Once a detection algorithm is assigned by the central controller, the camera sensors

detect the presence of objects of interest (i.e., humans), and upload the information relating

to the detected areas (the locations and the color features of the objects in the frame) to the

controller for accuracy assessment and re-calibration. We also utilize OpenCV to extract

features from the detected areas on the smartphones (used as camera nodes).

5.5.2 The central controller

The central controller is implemented on a Linux server. It contains a pre-installed

training set consisting of different video items (details in section 5.6). The accuracy

(precision, recall and f score values) of each algorithm on each item in the training set, is

computed. The controller then ranks the algorithms based on the f score values.

Once it receives the uploaded video features, the controller estimates the similarity

of the received video with the training items; the most similar training item to the captured

video feed at each camera is determined. The source code provided by the authors of [96]

is used to compute video distances on the Grassmannian manifold. The controller node

then follows the framework described in section 5.4.2 to select a subset of cameras and the

associated detection algorithms to achieve a desired accuracy.

167

Verifying the desired detection accuracy is met: In reality, ground truth

information may not be available, and involving a human in the loop to manually verify

the detection is assumed to be not possible (or can be expensive or if the human has to

continuously provide feedback on the results). Thus, an important question is how to verify

if a required detection accuracy is satisfied?

In our system, we use the highest possible accuracy, that is, when the most accurate

algorithm is used at each individual camera, as the baseline for comparison. Specifically,

let N∗ and P ∗ are the number of detected objects and the average detection probability (of

all detected objects), respectively, when the best algorithm is used at all the cameras. The

desired accuracy is then defined proportionally to the values of N∗ and P ∗. Specifically,

let Dn and Dp be the desired number of detected objects and the desired mean value for

the detection probability, respectively. Here, the values of P ∗ and Dp are computed as the

average probability across all the detected objects, where the probability for each object is

computed by Equation 5.6. We then require that Dn ≥ (γn × N∗), and Dp ≥ (γp × P ∗);

the values of γn and γp can be changed to influence the desired accuracy. Periodically, the

detection accuracy is reassessed to determine if more cameras or more accurate algorithms

need to be used.

5.6 Evaluations

In this section, we evaluate both the accuracy and energy efficiency of EECS.

168

Training and test datasets: We use the following publicly available datasets

in our evaluation; each of the datasets consists of video feeds captured from 4 overlapping

cameras:

• Dataset #1 is the “lab sequences” dataset, provided by EPFL [113]. This dataset consists

of indoor video feeds in an empty room setting. In each video there are 6 people walking

in the room. The resolution of the video set is 360x288.

• Dataset #2 is the “chap” dataset, provided by Graz University [7]. This dataset also

consists of indoor video feeds in a lab setting, in which there are 4-6 people walking in

the room. There are furniture items in the lab which might cause false positives in terms

of detection; thus this dataset has lower precision than the other datasets. The resolution

of this dataset is 1024x768. Thus the energy cost to process this dataset is expected to

be higher than in the other datasets.

• Dataset #3 is the “terrace sequences” dataset, also provided by EPFL [113]. This dataset

contains outdoor video feeds, with 8 people walking on an empty terrace of a building.

The resolution is 360x288.

Since each set contains video feeds captured simultaneously from 4 overlapping

cameras, there are 12 videos feeds in total. Each of those video feeds is approximately 3000

frames long. We use the first 1000 frames in each video feed as the training video. The

remaining 2000 frames from each video feed are used as test data.

Ground truth information: All the datasets we use contain ground truth in-

formation about human locations in the scene. In particular, the 3D locations (in the

real-world coordinates) of where the humans stood in the scene are marked. Further, for

169

each video feed in the dataset, the homography used to transform coordinates on the ground

plane in the image into real-world coordinates is provided7. Using such homography, those

3D locations are converted to 2D locations in each video frame. This is then compared with

the results of the detection algorithm to estimate accuracy in our evaluation. For datasets

#1 and #3, ground truth information is available every 25 frames, whereas the ground

truth is available every 10 frames for dataset #2.

Re-identifying detected objects across cameras: Using the provided homog-

raphy information described above, EECS can re-identify and aggregate the same objects

detected by different cameras. Color features of the matched objects are then verified to

reduce false positives, as described in section 5.6.1. By using these two techniques, EECS

is able to re-identify objects with a high precision (more than 90%) in all the data sets.

Computing energy costs and budget: For each sensor, we apply each algo-

rithm to each of the videos to learn the processing cost of the algorithm; the process is

repeated over 1000 frames to get the average value. We transfer 1000 frames (we compress

the frame using the “jpeg” format before transferring) using WiFi in good conditions to

estimate the communication cost. In EECS, sensors only transfer cropped image frames

containing the detected objects, to the controller. The amount of transferred data thus

varies across frames (since the number of detected objects and the sizes of the different ob-

jects, also vary). Thus, to estimate the communication cost, we assume the whole frame is

transferred, and monitor the consumed energy. Doing so ensures the actual communication

cost will never be higher than our estimated value.

7Such a homography is built by marking the landmarks in the field and in the images, as described
in 5.4.2.

170

Finally, the energy budget is computed by first defining a expected operation time

(e.g., 6 hours) and an expected frame rate (e.g., image frames are processed every 2 seconds).

Given these, the number of frames need to be processed during the operation time (e.g.,

how often batteries need to be recharged or replaced) can be computed. Subsequently, the

residual energy capacity is divided by the number of frames to compute the energy budget

for each frame. In the evaluations that are presented later, we actually use different budget

values to evaluate how EECS adaptively chooses different algorithms under different given

budget constraints.

5.6.1 Estimating the detection accuracy

Each camera sensor is pre-installed with 4 different detection algorithms. Video

feeds available are split into training segments and test segments. We apply all the algo-

rithms to each of the training video segments to characterize the accuracy of each algorithm

on each training segment. Each object detected is assigned a detection score by the algo-

rithm, reflecting a measure of confidence in detection. We discard areas on a frame with very

low detection score below a cut-off dectection score threshold dt. Different cut-off thresholds

correspond to different values of f score. For example, a higher threshold will disregard

detection areas with lower scores to reduce the false positive rate, but on the other hand,

might also cause correctly detected areas with lower scores to be ignored and thus reduce

the recall (true positive rate). Thus, we choose a threshold dt which maximizes the fscore

value. In other words, for each combination of an algorithm and a training video segment,

we record the highest possible accuracy the algorithm can achieve on that segment.

171

Alg. Threshold Recall Precision F-score Energy
cost/frame(J)

Processing
time/frame (s)

HOG 0.5 0.48 1.0 0.66 1.08 1.5
ACF 2 0.34 0.95 0.505 0.07 0.1
C4 0 0.46 1 0.63 4.92 2.4
LSVM -1.2 0.89 0.9 0.89 3.31 6.2

Table 5.2: Accuracy of different algorithms on dataset #1, camera #1, frame 0→1000, used
as a training video item.

Alg. Threshold Recall Precision F-score Energy
cost/frame(J)

Processing
time/frame (s)

HOG 0.6 0.8 0.42 0.55 9.86 3.4
ACF 20 0.83 0.89 0.86 0.315 0.4
C4 0.5 0.70 0.70 0.70 5.56 6.8
LSVM -0.2 0.84 0.83 0.84 25.06 32.2

Table 5.3: Accuracy of different algorithms on data set #2, camera #1, frame 0→1000,
used as a training video item.

The video feeds are split into two segments. The first segment, 1000 frames, is

used as training items. Tables 5.2 and 5.3 show the efficiencies of the detection algorithms

on the training items extracted from video feeds captured from camera #1, in dataset #1

and in dataset #2, respectively. We also apply the algorithms on the test video segments

using the same threshold values learned from the training segments. Table 5.4 shows the

accuracy of the detection algorithms on the feed captured from camera #1 in dataset #1,

from frame 1001 to 2950. The energy costs shown in these tables include the processing

costs of the corresponding algorithm as well as the algorithm-independent communication

cost to transfer the images of detected objects to the central controller, as described earlier

in this section.

In Tables 5.2 and 5.4, we use two different segments from the same video which is

captured by camera #1 on dataset #1. The tables show that the LSVM algorithm, even

though has a very high f score value, also has very high energy cost and processing time;

172

Alg. Threshold Recall Precision F-score Energy
cost/frame(J)

Processing
time/frame (s)

HOG 0.5 0.6 0.99 0.74 1.07 1.8
ACF 2 0.52 0.91 0.66 0.07 0.1
C4 0 0.534 0.974 0.69 4.82 2.3
LSVM -1.2 0.975 0.892 0.93 3.2 6.4

Table 5.4: Accuracy of different algorithms on dataset #1, camera #1, frame 1001→ 2950,
used as a test item.

thus, it can be expensive for use on a battery driven mobile platform. For that reason, we

will not consider LSVM in the remainder of this section. Thus, for video feeds on dataset

#1, camera #1, HOG will be considered the most accurate detection algorithm.

5.6.2 Evaluating video similarity using domain adaptation

Extracting features from an entire video feed is expensive. Here, we only extract

the features (HOG, and BoW) of a 100 consecutive frames. To reduce the bias, the frames

are randomly selected from each video feed and the process is repeated 5 times. We then

report the average value of the similarity.

Table 5.5 shows the similarities between the training and test video items, com-

puted as described in (5.5). In the table, Tx.y (or Vx.y) indicates the training (or test) video

item is from dataset #x and captured by camera #y. It is shown that, using the manifold

distance, in all the cases, we are able to match a test item to the training item corresponding

to the same dataset and captured by the same camera. This observation is also confirmed

by the results in tables 5.2 and 5.4. These tables show that video items belonging to same

camera and same dataset have the same most accurate detection algorithm as well as the

same “order” of the algorithms in terms of accuracy.

173

Test set/
Train set

V1.1 V1.2 V1.3 V1.4 V2.1 V2.2 V2.3 V2.4 V3.1 V3.2 V3.3 V3.4

T1.1 0.78 0.56 0.53 0.56 0.47 0.49 0.48 0.45 0.46 0.48 0.49 0.44

T1.2 0.55 0.77 0.54 0.60 0.46 0.48 0.48 0.49 0.48 0.49 0.46 0.40

T1.3 0.54 0.54 0.76 0.53 0.45 0.47 0.50 0.45 0.48 0.49 0.49 0.41

T1.4 0.56 0.61 0.54 0.76 0.47 0.50 0.51 0.48 0.48 0.53 0.48 0.40

T2.1 0.39 0.39 0.38 0.38 0.79 0.45 0.48 0.43 0.37 0.37 0.39 0.34

T2.2 0.44 0.47 0.45 0.47 0.48 0.75 0.51 0.45 0.43 0.43 0.46 0.39

T2.3 0.41 0.45 0.43 0.46 0.49 0.51 0.81 0.47 0.45 0.41 0.41 0.37

T2.4 0.38 0.43 0.39 0.41 0.45 0.44 0.47 0.76 0.41 0.36 0.39 0.37

T3.1 0.50 0.54 0.51 0.53 0.43 0.45 0.48 0.49 0.69 0.48 0.46 0.45

T3.2 0.44 0.47 0.44 0.49 0.41 0.41 0.45 0.39 0.40 0.69 0.43 0.38

T3.3 0.48 0.48 0.49 0.49 0.47 0.47 0.44 0.43 0.41 0.46 0.74 0.49

T3.4 0.45 0.43 0.45 0.43 0.42 0.41 0.43 0.42 0.42 0.40 0.51 0.75

Tx.y, Vx.y denote training and test video feed captured by camera #x in dataset #y,
respectively

Table 5.5: Video similarities computed using the manifold distance

5.6.3 Benefit of adaptively choosing the detection algorithms

Next, we show the benefits of adaptively choosing different algorithms to process

different video feeds.

Fig. 5.3 shows the highest detection accuracy when different algorithms are used

to process the video feeds captured by camera #1 in both dataset #1 and dataset #2.

Assuming that the environment changes (from dataset #1 to #2), if the same

algorithm is still used, the highest f score the system can achieve by using one detection

algorithm is 0.70 (using HOG algorithm) for both datasets. However, if the system adap-

tively uses the best algorithm for each dataset (specifically, HOG for dataset #1 and ACF

for dataset #2), the highest f score achieved is 0.81.

More importantly, adaptively choosing the most accurate algorithm helps increase

the recall and precision values simultaneously. Specifically, if HOG algorithm is used, the

174

0.71

0.56
0.52

0.73
0.68

0.89
0.81

0.91

0.70 0.69
0.64

0.81

Recall Precision F-score

D
et

ec
tio

n
Ac

cu
ra

cy

0

0.5

1.0

Algorithm
HOG ACF C4 Adaptive

Figure 5.3: Achieved accuracy with different detection algorithms,
dataset #1 and #2

2HOG

2ACF

HOG+ACF

4HOG

4ACF

2HOG+2ACF

En
er

gy
 (J

)

0

100

200

300

Recall
0.60 0.65 0.70 0.75 0.80 0.85 0.90 0.95

Figure 5.4: Trade-off between accuracy and energy cost to process dataset
#1

achieved recall is 0.71, which is close to 0.73 of the adaptive approach. However, the

precision is much lower, 0.68, compared to 0.91 achieved when the adaptive approach is

used (corresponding to a higher false positive rate compared to the adaptive approach).

Similarly, when ACF is used, the precision is good, however, the recall is significantly

lower than the adaptive approach. In other words, the false negative rate is high. Thus,

Energy Usage Detected Objects

En
er

gy
 C

on
su

m
pt

io
n

(J
)

0

100

200

300

D
etected H

um
ans

0

100

200

300

400

Best Alg.
on All Cams

Best Alg.
on Chosen Cams

Adaptive Alg.
on Chosen Cams

(a) Energy budget ≥ 1.08

Energy Usage Detected Objects

En
er

gy
 C

on
su

m
pt

io
n

(J
)

0

5

10

15

20

25

D
etected H

um
ans

0

100

200

300

Best Alg.
on All Cams

Best Alg.
on Chosen Cams

(b) Energy budget ∈ [0.07, 1.08)

Figure 5.5: Detected humans vs. energy consumption for dataset #1, with different energy
budgets

175

using an adaptive approach helps reduce both the false negative and false positive rates

simultaneously.

5.6.4 Should the highest accuracy algorithm always be used?

Based on video comparison, EECS can identify the most accurate detection algo-

rithm for an incoming video feed. However, should the most accurate algorithms always be

used to process the video feeds?

Fig. 5.4 shows the trade-off between the achieved accuracy (in terms of the number

of correctly detected humans) and energy costs when processing the 4 video feeds in dataset

#1. We show the values when 2 cameras are used: (i) 2HOG: both cameras used HOG (the

most accurate, yet expensive, algorithm), (ii) 2ACF: both cameras used ACF (sub-optimal,

yet energy efficient, algorithm), (iii) HOG+ACF: one camera used HOG and the other used

ACF; and when 4 cameras are used: (iv) 4HOG: all 4 cameras used HOG, (v) 4ACF: all 4

cameras used ACF, and finally, (vi) 2HOG+2ACF: two camera used HOG while the other

two cameras used ACF.

The x-axis shows the recall achieved (the number of humans detected among the

humans appearing in the scene)8, while the y-axis shows the energy consumption for each

case.

It is shown that, depending on the desired accuracy, a sub-optimal solution can

be used to achieve a significantly lower energy consumption, but with a relatively small

accuracy hit. For example, the 2HOG+2ACF option only consumes ≈ 54% of the energy

8For dataset #1, the precision is ≥ 0.95 for all the algorithms (Table 5.2). Thus we only pay attention
to the recall values in this case.

176

consumed by the 4HOG option, while in the former case, 85% of objects actually appeared

in the scene were detected, compared to 92% in the latter case. the difference in the achieved

accuracies was only ≈ 7%.

5.6.5 Adaptive choice of algorithms in EECS

Next, we evaluate EECS for adaptively choosing detection algorithms based on

the energy budgets and desired detection accuracy. For simplicity, we only show the results

for dataset #1 and dataset #2. Similar results are observed in the other dataset.

In this experiment, we choose γn = 0.85 and γp = 0.8, indicating EECS is allowed

to reduce the number of cameras, or assign sub-optimal detection algorithms to the cameras,

as long as: (i) the number of detected objects is at least 85% of N∗, and (ii) the average

detection probability is at least 80% of P ∗, where N∗ and P ∗ are the number of detected

objects, and the average detection probability of all the detected objects, respectively, when

the best algorithms are used by all cameras.

In addition, EECS uses other parameters to control the re-calibration process. In

particular, the accuracy assessment period and the re-calibration interval (see section 5.4.2)

are set to 100 and 500 frames, respectively. In other words, EECS uses the detection

metadata from 100 frames to assess the detection accuracy and decide the set of cameras

and associated detection algorithms. This decision is then used for 500 frames before the

accuracy is reassessed again. Note that, for datasets #1 and #2, the ground truth is

available every 25 frames. To evaluate EECS, we only process frames that have ground truth

information. Thus, EECS actually uses the information from 4 frames to assess the accuracy

and select the cameras and detection algorithms. Such selection is then used to process the

177

next 20 frames before re-calibration. In practice, EECS computes the highest possible

accuracy (by using the most accurate detection algorithms) using detection metadata. This

accuracy measure is then used to calibrate the desired accuracy in place of ground truth

information.

Fig. 5.5 shows the energy consumption and the number of correctly detected hu-

mans when (i) the best algorithm is used in each of the 4 cameras, (ii) EECS only chooses

a smaller set of cameras that is sufficient to achieve the desired accuracy, and finally (iii)

EECS chooses sub-optimal algorithms on selected cameras while adhering to the required

accuracy.

In Fig. 5.5a, the energy budget is relatively high and so that the camera sensors

can choose HOG (the most accurate algorithm) to detect humans. When all cameras use the

best algorithm, the whole system consumes ≈ 333 Joules and correctly detects 373 humans

in total. However, EECS only needs to use 3 cameras to achieve similar accuracy. If all

the selected cameras still use the most accurate algorithm (HOG), the energy consumption

is reduced to ≈ 248 Joules (≈ 75% of the highest consumption), while the number of

detected humans is 341 (≈ 91% of the highest accuracy). Further, EECS assigns sub-

optimal algorithm (ACF) to some of the cameras to further reduce the energy consumption

to ≈ 131 Joules (≈ 59% of the highest consumption energy cost). This energy conservation

is achieved while still detecting 322 humans (≈ 86% of the highest accuracy).

In Fig. 5.5b, the available energy budget is less than the energy costs incurred

with HOG. Thus, the camera sensors can now only use the sub-optimal algorithm ACF to

detect objects. When all the cameras are used, there are 307 correctly detected humans

178

Energy Usage Detected Objects

En
er

gy
 C

on
su

m
pt

io
n

(J
)

0

100

200

300

D
etected H

um
ans

0

500

1000

Best Alg.
on All Cams

Best Alg.
on Chosen Cams

Figure 5.6: Detected humans vs. energy consumption for dataset #2

and the energy consumption is ≈ 22 Joules. EECS, however, uses fewer cameras (2 or 3

cameras) to achieve similar accuracy. Specifically, the framework can detect 269 (≈ 88%

of the highest accuracy) humans with an energy consumption of only 15 Joules (≈ 68% of

the highest consumption). Since ACF is already the most energy efficient algorithm, EECS

cannot further reduce the energy consumption in this case.

In Fig. 5.6, we show the results for dataset #2. For this dataset, ACF is both the

most accurate and most energy efficient algorithm. Thus, the results for this case are similar

to those in Fig. 5.5b. Even though EECS is not able to reduce energy consumption by using

more efficient algorithms, it only uses up to 3 cameras (only 2 cameras are used in some

rounds) to achieve similar accuracy compared to when all 4 cameras are used. Specifically,

EECS is able to correctly detect 1269 humans (≈ 97% of the highest accuracy), while only

consuming 239 Joules (≈ 70% of the highest consumption).

5.7 Discussion

EECS can trade-off the global detection accuracy to some extent (while ensur-

ing a pre-defined accuracy requirement) for energy conservation by assigning sub-optimal

179

algorithms to some of the camera sensors, for certain periods in time. This reduction in

detection accuracy could result in a number of undetected objects. However, EECS can be

tuned to resist such misses. As it is, objects (e.g., human) that are not detected in some

frames are likely to be detected at other frames (e.g., when the objects move to different

locations). In addition, EECS can target energy conservation only in some rounds; thus, a

lower detection accuracy is only experienced in such rounds. EECS would then periodically

enforce higher accuracy requirements in other rounds to catch objects that were possibly

missed earlier; we have done some preliminary studies that suggest that this only results in

slightly increased energy costs. Specifically, if HOG and ACF are the ideal algorithms (as

in our data set #1), and HOG yields a higher accuracy with a higher expense, then HOG

can be used intermittently to increase accuracy in those corresponding rounds.

5.8 Conclusions

In this chapter, we present a framework, EECS, for supporting the co-ordination

across a set of camera sensors to achieve a desired object detection accuracy but while

achieving significant energy savings. Specifically, the framework ensures that cameras do

not all unnecessarily use highly optimal but energy heavy video processing algorithms for

object detection. In essence, it facilitates the adaptive choice a sub-set of cameras, and

causes some of the chosen cameras to use sub-optimal detection algorithms to conserve

energy while still achieving the pre-defined desired accuracy. Our evaluation shows that,

EECS helps save more than 40% of the energy consumed compared to a case where all

cameras use the optimal algorithm for detection and transfer key images relating to detected

180

objects; however, it still achieves ≈ 86% the accuracy achieved when the best algorithms

are used at all of the camera nodes. EECS can be tuned to achieve the right trade-offs

between energy efficiency and desired accuracy.

181

Chapter 6

Conclusions

My works have been focusing on improving the efficiencies of mobile applications,

especially in the resource (e.g., energy and bandwidth) constrained settings. First, we

develop TIDE, a framework to detect high energy consuming applications on smartphones.

TIDE is totally user-centric, the high energy applications are identified based on the actual

usage patterns on the user’s phone. Further, TIDE does not require the users to root the

devices or make any modifications to the mobile OSes. Our experiments show that TIDE

accurately identifies 225/238 high energy applications, while imposing only 0.5% of overhead

on the average consumption of the phone’s battery per hour.

Subsequently, we pay attention to improving the efficiencies of mobile applications

in large-scale scenarios. We propose and implement a framework to detect similarities

in images uploaded my multiple wireless devices in bandwidth-limited settings, such as

in rescue missions at natural disaster scenes, or at flash-crowd events. Our framework

intelligently combines state-of-the-art techniques in computer vision, together with soliciting

182

user feedback to achieve very high accuracy and low overheads. Experiments show that our

framework helps to reduce ≈ 40% network delay in transferring unique and important

contents.

Next, we present ACTION, our framework for accurate and timely object detec-

tion in bandwidth constraint settings. ACTION effectively collects detection information

from multiple overlapping camera, aggregates the detection information at a fusion node to

improve the detection accuracy. Finally, for each detected object, the most relevant (most

accurate) detection information is chosen, based on given bandwidth constraints, to upload

to a central controller to assist humans in rescue missions. Our evaluations show that AC-

TION helps to reduce up to three folds the network load from a testbed with 4 Android

smartphones.

Finally, in chapter 5, we present EECS, an adaptive detection algorithm selection

framework for multi-camera settings. EECS chooses only a subset of camera sensors for

object detection; further, the framework allows each camera to use the most energy efficient

algorithm to conserve energy while still ensuring a global desired detection accuracy. Our

evaluations show that, EECS helps save more than 40% of the energy consumed compared

to a case where all cameras use the optimal algorithm for detection and transfer key images

relating to detected objects; however, it still achieves ≈ 86% the accuracy achieved when

the best algorithms are used at all of the camera nodes. EECS can be tuned to achieve the

right trade-offs between energy efficiency and desired accuracy.

183

Bibliography

[1] A. J. Oliner, A. P. Iyer, I. Stoica, E. Lagerspetz, and S. Tarkoma, “Carat: Collabo-
rative energy diagnosis for mobile devices,” in SenSys, 2013.

[2] A. M. Townsend and M. L. Moss, “Telecommunications infrastructure in disasters:
Preparing cities for crisis communications,” Center for Catastrophe Preparedness and
Response, NYC, 2005.

[3] C. James, , A. Popescu, and T. Underwood, “Impact of Hurricane Katrina on internet
infrastructure,” in Renesys, 2005.

[4] U. Weinsberg, Q. Li, N. Taft, A. Balachandran, V. Sekar, G. Iannaccone, and S. Se-
shan, “CARE: Context aware redundancy elimination in challenged networks,” in
ACM HotNets, 2012.

[5] D. Nistér and H. Stewénius, “Scalable recognition with a vocabulary tree,” in CVPR,
2006.

[6] “Nepal earthquake death toll reaches 8,635, over 300 missing,” Press Trust of India,
2015.

[7] H. Possegger, S. Sternig, T. Mauthner, P. M. Roth, and H. Bischof, “Robust real-time
tracking of multiple objects by volumetric mass densities,” in CVPR, 2013.

[8] “Battery life complaints causing operator headaches.” http://bit.ly/PI5Fnj.

[9] A. Pathak, Y. C. Hu, and M. Zhang, “Where is the energy spent inside my app?:
Fine grained energy accounting on smartphones with Eprof,” in EuroSys, 2012.

[10] “Android battery tool source code.” http://bit.ly/UPV77m.

[11] L. Zhang, B. Tiwana, Z. Qian, Z. Wang, R. P. Dick, Z. M. Mao, and L. Yang,
“Accurate online power estimation and automatic battery behavior based power model
generation for smartphones,” in CODES/ISSS, 2010.

[12] H. Falaki, R. Mahajan, S. Kandula, D. Lymberopoulos, R. Govindan, and D. Estrin,
“Diversity in smartphone usage,” in MobiSys, 2010.

184

[13] C. Yoon, D. Kim, W. Jung, C. Kang, and H. Cha, “AppScope: Application energy
metering framework for Android smartphones using kernel activity monitoring,” in
USENIX ATC, 2012.

[14] X. Ma, P. Huang, X. Jin, P. Wang, S. Park, D. Shen, Y. Zhou, L. K. Saul, and
G. M. Voelker, “eDoctor: Automatically diagnosing abnormal battery drain issues on
smartphones,” in NSDI, 2013.

[15] A. Shye, B. Scholbrock, and G. Memik, “Into the wild: Studying real user activity
patterns to guide power optimizations for mobile architectures,” in MICRO, 2009.

[16] R. Mittal, A. Kansal, and R. Chandra, “Empowering developers to estimate app
energy consumption,” in Mobicom, 2012.

[17] M. Dong and L. Zhong, “Self-constructive high-rate system energy modeling for
battery-powered mobile systems,” in MobiSys, 2011.

[18] A. Carroll and G. Heiser, “An analysis of power consumption in a smartphone,” in
USENIX ATC, 2010.

[19] N. Balasubramanian, A. Balasubramanian, and A. Venkataramani, “Energy consump-
tion in mobile phones: A measurement study and implications for network applica-
tions,” in IMC, 2009.

[20] S. Hao, D. Li, W. Halfond, and R. Govindan, “Estimating Android applications’ CPU
energy usage via bytecode profiling,” in GREENS, 2012.

[21] A. Nikravesh, D. R. Choffnes, E. Katz-Bassett, Z. M. Mao, and M. Welsh, “Mobile
network performance from user devices: A longitudinal, multidimensional analysis,”
in PAM, 2014.

[22] “Carat - Android version.” http://bit.ly/1h5EYGS.

[23] “Monsoon power monitor.” http://bit.ly/p6qNfY.

[24] F. Qian, Z. Wang, A. Gerber, Z. M. Mao, S. Sen, and O. Spatscheck, “Characterizing
radio resource allocation for 3G networks,” in IMC, 2010.

[25] “Android source code.” http://bit.ly/SQNHP7.

[26] L. Gomez, I. Neamtiu, T. Azim, and T. Millstein, “RERAN: timing- and touch-
sensitive record and replay for Android,” in ICSE, 2013.

[27] “Busybox tool set.” http://www.busybox.net/.

[28] “Building push applications for android.” http://bit.ly/1gli69A.

[29] “More photos shared daily on Snapchat than Facebook, Instagram combined.” http:

//bit.ly/1sfog1M, 2013.

[30] “Ars Technica news article.” http://goo.gl/KIjO1e.

185

[31] T. Anthony and M. Moss, “Preparing cities for crisis communication,” in CCPR,
2005.

[32] A. Hughes, L. Palen, J. sutton, S. Liu, and S. Veweg, “Site-seeing in disaster: An
examination of on-line social convergence,” in ISCRAM, 2008.

[33] T. Preis, H. Moat, S. Bishop, P. Treleavan, and E. Stanley, “Quantifying the digital
traces of Hurricane Sandy on Flickr,” in SREP, 2013.

[34] E. Rublee, V. Rabaud, K. Konolige, and G. Bradski, “ORB: An efficient alternative
to SIFT or SURF,” in ICCV, 2011.

[35] O. Chum, J. Philbin, M. Isard, and A. Zisserman, “Scalable near identical image and
shot detection,” in CIVR, 2007.

[36] Y. Zhang, Z. Jia, and T. Chen, “Image retrieval with geometry-preserving visual
phrases,” in CVPR, 2011.

[37] F. Liu, B. Li, L. Zhong, B. Li, H. Jin, and X. Liao, “Flash crowd in P2P live stream-
ing systems: Fundamental characteristics and design implications,” in IEEE Trans.
Parallel Distrib. Syst., 2012.

[38] A. Koehl and H. Wang, “Surviving a search engine overload,” in WWW, 2012.

[39] Q. Tran, K. Nguyen, K. E, and Y. S, “Tree-based disaster recovery multihop access
network,” in APCC, 2013.

[40] S. M. George, W. Zhou, H. Chenji, M. Won, Y. O. Lee, A. Pazarloglou, R. Stoleru,
and T. A, “Topics in situation management distressnet: A wireless ad hoc and sen-
sor network architecture for situation management in disaster response,” in IEEE
Communications Magazine, 2010.

[41] Y. Zhang, Y. Wu, and G. Yang, “Droplet: A distributed solution of data deduplica-
tion.,” in GRID, 2012.

[42] P. Riteau, C. Morin, and T. Priol, “Shrinker: Improving live migration of virtual clus-
ters over WANs with distributed data deduplication and content-based addressing,”
in Euro-Par, 2011.

[43] X. Zhang, Z. Huo, J. Ma, and D. Meng, “Exploiting data deduplication to accelerate
live virtual machine migration,” in CLUSTER, 2010.

[44] M. Douze, H. Jégou, H. Sandhawalia, L. Amsaleg, and C. Schmid, “Evaluation of
GIST descriptors for web-scale image search,” in CIVR, 2009.

[45] D. G. Lowe, “Distinctive image features from scale-invariant keypoints,” Int. J. Com-
put. Vision, 2004.

[46] J. Sivic and A. Zisserman, “Video Google: A text retrieval approach to object match-
ing in videos,” in ICCV, 2003.

186

[47] O. Chum, J. Philbin, and A. Zisserman, “Near duplicate image detection: min-hash
and tf-idf weighting,” in BMVC, 2008.

[48] Z. Wengang, L. Yijuan, L. Houqiang, S. Yibing, and T. Qi, “Spatial coding for large
scale partial-duplicate web image search,” in MM, 2010.

[49] A. Sarkar, P. Ghosh, E. Moxley, and B. S. Manjunath, “Video fingerprinting: features
for duplicate and similar video detection and query-based video retrieval,” in SPIE,
2008.

[50] O. Miksik and K. Mikolajczyk, “Evaluation of local detectors and descriptors for fast
feature matching,” in ICPR, 2012.

[51] J. Heinly, E. Dunn, and J. Frahm, “Comparative evaluation of binary features,” in
ECCV, 2012.

[52] C. Grana, D. Borghesani, M. Manfredi, and R. Cucchiara, “A fast approach for inte-
grating ORB descriptors in the Bag of Words model,” in IS&T/SPIE, 2013.

[53] J. MacQueen, “Some methods for classification and analysis of multivariate observa-
tions,” in Proceedings of the 5th Berkeley Symposium on Mathematical Statistics and
Probability, 1967.

[54] D. Beaver, S. Kumar, H. C. Li, J. Sobel, and P. Vajgel, “Finding a needle in Haystack:
Facebook’s photo storage,” in OSDI, 2010.

[55] “OpenCV library.” http://www.opencv.org.

[56] M. Muja and D. G. Lowe, “Fast approximate nearest neighbors with automatic algo-
rithm configuration,” in VISSAPP, 2009.

[57] “Image Magick.” http://www.imagemagick.org.

[58] “Apple iPhone 5s reviews.” http://bit.ly/TXPtqr, 2013.

[59] Y. Yang, H.-Y. Ha, F. Fleites, S.-C. Chen, and S. Luis, “Hierarchical disaster image
classification for situation report enhancement,” in IRI, 2011.

[60] K. Fall, G. Iannaccone, J. Kannan, F. Silveira, and N. Taft, “A disruption-tolerant
architecture for secure and efficient disaster response communications,” in ISCRAM,
2010.

[61] S. Shirdhonkar and D. W. Jacobs, “Approximate earth movers distance in linear
time,” in CVPR, 2008.

[62] “The federal response to hurricane katrina: Lessons learned,” Office of the Assistant
to the President for Homeland Security and Couter Terrorism, 2006.

[63] N. Dalal and B. Triggs, “Histograms of oriented gradients for human detection,” in
CVPR, 2005.

187

[64] P. Dollar, Z. Tu, P. Perona, and S. Belongie, “Integral channel features,” in BMVC,
2009.

[65] N. Dalal and B. Triggs, “Human detection based on a probabilistic assembly of robust
part detectors,” in ECCV, 2004.

[66] W. R. Schwartz, A. Kembhavi, D. Harwood, and L. S. Davis, “Human detection using
partial least squares analysis,” in ICCV, 2009.

[67] Q. Zhu, S. Avidan, M.-C. Yeh, and K.-T. Cheng, “Fast human detection using a
cascade of histograms of oriented gradients,” in CVPR, 2006.

[68] P. Dollar, R. Appel, S. Belongie, , and P. Perona, “Fast feature pyramids for object
detection,” in PAMI, 2014.

[69] R. Benenson, M. Mathias, R. Timofte, and L. V. Gool, “Pedestrian detection at 100
frames per second,” in CVPR, 2012.

[70] S. Zhang, R. Benenson, and B. Schiele, “Filtered channel features for pedestrian
detection,” in CVPR, 2015.

[71] X. Dai and S. Payandeh, “Geometry-based object association and consistent labeling
in multi-camera surveillance,” in IEEE CAS, 2013.

[72] K. Nummiaro, E. Koller-Meier, T. Svoboda, D. Roth, and L. V. Gool, “Color-based
object tracking in multi-camera environments,” in DAGM, 2003.

[73] M. Tan and S. Ranganath, “Multi-camera people tracking using bayesian networks,”
in ICICS, 2003.

[74] H. Iwaki, G. Srivastava, A. Kosaka, J. Park, and A. Kak, “A novel evidence accumu-
lation framework for robust multi-camera person detection,” in ICDCS, 2008.

[75] C. Zeng and H. Ma, “Human detection using multi-camera and 3D scene knowledge,”
in ICIP, 2011.

[76] H. Possegger, T. Mauthner, P. M. Roth, and H. Bischof, “Occlusion geodesics for
online multi-object tracking,” in CVPR, 2014.

[77] T. Dao, A. K. Roy-Chowdhury, H. V. Madhyastha, S. V. Krishnamurthy, and
T. La Porta, “Managing redundant content in bandwidth constrained wireless net-
works,” in CoNEXT, 2014.

[78] T. Zhang, A. Chowdhery, P. V. Bahl, K. Jamieson, and S. Banerjee, “The design and
implementation of a wireless video surveillance system,” in ACM MobiCom, 2015.

[79] W. R. Heinzelman, A. Chandrakasan, and H. Balakrishnan, “Energy-efficient com-
munication protocol for wireless microsensor networks,” in HICSS, 2000.

[80] Y. Wang, Q. Wang, Z. Jin, and N. Saxena, “Improved cluster heads selection method
in wireless sensor networks,” in IEEE GreenCom, 2010.

188

[81] H. Kellerer, U. Pferschy, and D. Pisinger, “Knapsack problems,” 2010.

[82] P. Viola and M. Jones, “Robust real-time object detection,” in International Journal
of Computer Vision, 2001.

[83] R. Y. TSai, “A versatile camera calibration technique for high-accuracy 3D ma-
chine vision metrology using off-the-shelf tv cameras and lenses,” in IEEE Journal of
Robotics and Automation, 1987.

[84] S. LaValle, “Planning algorithms,” ch. 3, Cambridge University Press, 2006.

[85] E. Elhamifar and R. Vidal, “Distributed calibration of camera sensor networks,” in
ICDSC, 2009.

[86] Z. Zhang, T. Tan, K. Huang, and Y. Wang, “Practical camera calibration from moving
objects for traffic scene surveillance,” IEEE TCSVT, 2013.

[87] M. Hirzer, P. M. Roth, M. Koestinger, and H. Bischof, “Relaxed pairwise learned
metric for person re-identification,” in ECCV, 2012.

[88] A. Porebski, N. Vandenbroucke, and D. Hamad, “LBP histogram selection for super-
vised color texture classification,” in ICIP, 2013.

[89] S. Xiang, F. Nie, and C. Zhang, “Learning a Mahalanobis distance metric for data
clustering and classification,” in PR, 2008.

[90] “iPerf - network bandwidth measurement tool.” http://iperf.fr/.

[91] C. P. Gomes and R. Williams, “Approximation algorithms,” in Search Methodologies,
ch. 18, Springer, 2005.

[92] P. Boutin, “New apps to post videos with ease,” 2011.

[93] “CMU Pixy camera.” http://bit.ly/1UIln1O.

[94] P. Dollar, S. Belongie, and P. Perona, “The fastest pedestrian detector in the west,”
in BMVC, 2010.

[95] “CMUcam: Open source programmable embedded color vision sensors.” http://ww

w.cmucam.org.

[96] B. Gong, Y. Shi, F. Sha, and K. Grauman, “Geodesic flow kernel for unsupervised
domain adaptation,” in CVPR, 2012.

[97] P. F. Felzenszwalb, R. B. Girshick, D. McAllester, and D. Ramanan, “Object detec-
tion with discriminatively trained part based models,” IEEE Transactions on Pattern
Analysis and Machine Intelligence, 2010.

[98] J. Wu, C. Geyer, and J. M. Rehg, “Real-time human detection using contour cues,”
in ICRA, 2011.

189

[99] R. Gopalan, R. Li, and R. Chellappa, “Domain adaptation for object recognition: An
unsupervised approach,” in ICCV, 2011.

[100] X. Yong, D. Feng, Z. Rongchun, and M. Petrou, “Learning-based algorithm selection
for image segmentation,” Pattern Recogn. Lett., vol. 26, no. 8, 2005.

[101] O. Mac Aodha, G. J. Brostow, and M. Pollefeys, “Segmenting video into classes of
algorithm-suitability,” in CVPR, 2010.

[102] S. Zhang, Q. Zhu, and A. K. Roy-Chowdhury, “Adaptive algorithm selection, with
applications in pedestrian detection,” in ICIP, 2016.

[103] Y. Li and T. Zhang, “Reducing dram image data access energy consumption in video
processing,” in IEEE Transactions on Multimedia, 2012.

[104] An Experimental Study on Energy Consumption of Video Encryption for Mobile
Handheld Devices, 2005.

[105] S. Mohapatra, R. Cornea, N. Dutt, A. Nicolau, and N. Venkatasubramanian, “Inte-
grated power management for video streaming to mobile handheld devices,” in Pro-
ceedings of the eleventh ACM international conference on Multimedia, 2003.

[106] M. Tamai, T. Sun, K. Yasumoto, N. Shibata, and M. Ito, “Energy-aware video stream-
ing with qos control for portable computing devices,” in Proceedings of the 14th in-
ternational workshop on Network and operating systems support for digital audio and
video, 2004.

[107] L. Zhou, R. Q. Hu, Y. Qian, and H.-H. Chen, “Energy-spectrum efficiency tradeoff
for video streaming over mobile ad hoc networks,” IEEE Journal on Selected Areas
in Communications, vol. 31, no. 5, pp. 981–991, 2013.

[108] B. Schiilkopf, “The kernel trick for distances,” Advances in neural information pro-
cessing systems, vol. 13, pp. 301–307, 2001.

[109] J. M. Phillips and S. Venkatasubramanian, “A gentle introduction to the kernel dis-
tance,” arXiv preprint arXiv:1103.1625, 2011.

[110] “Precision and recall.” https://en.wikipedia.org/wiki/Precision and recall.

[111] E. Vincent and R. Laganiére, “Detecting planar homographies in an image pair,” in
Proceedings of the 2nd International Symposium on Image and Signal Processing and
Analysis, 2001.

[112] H. Bay, T. Tuytelaars, and L. Van Gool, “Surf: Speeded up robust features,” in
ECCV, 2006.

[113] J. Berclaz, F. Fleuret, E. Turetken, and P. Fua, “Multiple Object Tracking using K-
Shortest Paths Optimization,” IEEE Transactions on Pattern Analysis and Machine
Intelligence, 2011.

190

[114] N. Vallina-Rodriguez, P. Hui, J. Crowcroft, and A. Rice, “Exhausting battery statis-
tics: understanding the energy demands on mobile handsets,” in MobiHeld, 2010.

[115] M. Chuah, W. Luo, and X. Zhang, “Impacts of inactivity timer values on umts system
capacity,” in WCNC, 2002.

[116] “Configuration of fast dormancy in release 8.” 3GPP discussion and decision notes
RP-090960, 2009.

[117] A. M. Corley, “Making smartphones power-smarter.” IEEE Spectrum, 2010.

[118] “Enable GPS programatically like Tasker.” http://bit.ly/1kuNLCT.

[119] “We need better battery life and more storage space before 1080p displays arrive.”
http://bit.ly/S5yUEa.

[120] “Samsung commits to increasing smartphone battery life in 2012, hopes for all-day
use.” http://bit.ly/TuhumD.

[121] “3gpp specification - technical specification, section 8.5.” https://goo.gl/7rXjcw.

[122] J. Huang, F. Qian, A. Gerber, Z. M. Mao, S. Sen, and O. Spatscheck, “A close exam-
ination of performance and power characteristics of 4G LTE networks,” in MobiSys,
2012.

[123] S. Deng and H. Balakrishnan, “Traffic-Aware Techniques to Reduce 3G/LTE Wireless
Energy Consumption,” in CoNEXT, 2012.

[124] A. Pathak, Y. C. Hu, and M. Zhang, “Bootstrapping energy debugging on smart-
phones: A first look at energy bugs in mobile devices,” in HotNets, 2011.

[125] A. Pathak, A. Jindal, Y. C. Hu, and S. P. Midkiff, “What is keeping my phone awake?
characterizing and detecting no-sleep energy bugs in smartphone apps,” in MobiSys,
2012.

[126] J. Han, M. Kamber, and J. Pei, Data Mining - Concepts and Techniques, 3rd ed.
Morgan Kaufmann, 2012.

[127] J. Huang, F. Qian, A. Gerber, Z. M. Mao, S. Sen, and O. Spatscheck, “A close exam-
ination of performance and power characteristics of 4G LTE networks,” in MobiSys,
2012.

[128] F. Qian, Z. Wang, A. Gerber, Z. Mao, S. Sen, and O. Spatscheck, “Profiling resource
usage for mobile applications: A cross-layer approach,” in MobiSys, 2011.

[129] C. Lee, J. Yeh, and J. Chen, “Impact of inactivity timer on energy consumption in
wcdma and cdma2000,” in WTS, 2004.

[130] F. Qian, Z. Wang, A. Gerber, Z. M. Mao, S. Sen, and O. Spatscheck, “Top: Tail
optimization protocol for cellular radio resource allocation,” in ICNP, 2010.

191

[131] P. K. Athivarapu, R. Bhagwan, S. Guha, V. Navda, R. Ramjee, D. Arora, V. N. Pad-
manabhan, and G. Varghese, “Radiojockey: mining program execution to optimize
cellular radio usage,” in Mobicom, 2012.

[132] F. Qian, Z. Wang, Y. Gao, J. Huang, A. Gerber, Z. Mao, S. Sen, and O. Spatscheck,
“Periodic transfers in mobile applications: network-wide origin, impact, and opti-
mization,” in WWW, 2012.

[133] J. Huang, F. Qian, Z. M. Mao, S. Sen, and O. Spatscheck, “Screen-off traffic charac-
terization and optimization in 3g/4g networks,” in IMC, 2012.

[134] T. Dao, I. Singh, H. V. Madhyastha, S. V. Krishnamurthy, G. Cao, and P. Mohapatra,
“TIDE a user-centric tool for identifying energy hungry applications on smartphones,”
in ICDCS, 2015.

[135] W.LeFebvre, “CNN.com: Facing a world crisis,” Invited talk at LISA’01.

[136] O. Chum, M. Perdoch, and J. Matas, “Geometric min-Hashing: Finding a (thick)
needle in a Haystack,” in CIVR, 2009.

[137] D. Nister and H. Stewenius, “Scalable recognition with a vocabulary tree,” in CVPR,
2006.

[138] J. Philbin, O. Chum, M. Isard, J. Sivic, and A. Zisserman, “Lost in quantization:
Improving particular object retrieval in large scale image databases,” in CVPR, 2008.

[139] S. Zhang, Q. Huang, G. Hua, S. Jiang, W. Gao, and Q. Tian, “Building contextual
visual vocabulary for large-scale image applications,” in MM, 2010.

[140] H. Jegou, M. Douze, C. Schmid, and P. Perez, “Aggregating local descriptors into a
compact image representation,” in CVPR, 2010.

[141] X. Zhang, Z. Li, L. Zhang, W. Ma, and H.-Y. Shum, “Efficient indexing for large scale
visual search,” in ICCV, 2009.

[142] M. Perdoch, O. Chum, and J. Matas, “Efficient representation of local geometry for
large scale object retrieval,” in CVPR, 2009.

[143] J. Philbin, O. Chum, M. Isard, J. Sivic, and A. Zisserman, “Object retrieval with
large vocabularies and fast spatial matching,” in CVPR, 2007.

[144] Z. Wu, Q. Ke, M. Isard, and J. Sun, “Bundling features for large scale partial-duplicate
web image search,” in CVPR, 2009.

[145] D. Xu, T. J. Cham, S. Yan, L. Duan, and S.-F. Chang, “Near duplicate identification
with spatially aligned pyramid matching,” in CVPR, 2008.

[146] W. Zhou and D. yi Wang, “A dynamic-resource-allocation based flash crowd mitiga-
tion algorithm for Video-on-Demand network,” in ICCSIT, 2010.

192

[147] C.-H. Chi, S. Xu, F. Li, and K.-Y. Lam, “Selection policy of rescue servers based on
workload characterization of flash crowd,” in SKG, 2010.

[148] H. Wu, K. Xu, M. Zhou, A. Wong, J. Li, and Z. Li, “Multiple-tree topology construc-
tion scheme for P2P live streaming systems under flash crowds,” in WCNC, 2013.

[149] J. Brodkin, “Why your smart device can’t get WiFi in the home team’s sta-
dium.” http://arstechnica.com/features/2012/08/why-your-smart-device-c
ant-get-wifi-in-the-home-teams-stadium/, 2012.

[150] K. Srinivasan, T. Bisson, G. Goodson, and K. Voruganti, “iDedup: Latency-aware,
inline data deduplication for primary storage,” in FAST, 2012.

[151] “Mobile apps overtake pc internet usage in U.S..” http://money.cnn.com/2014/02/
28/technology/mobile/mobile-apps-internet/, 2014.

[152] C. F. Barnes, H. Fritz, and J. Yoo, “Hurricane disaster assessments with image-driven
data mining in high-resolution satellite imagery,” in IEEE Transactions on Geoscience
and Remote Sensing, 2007.

[153] R. Federica and I. Mikio, “Learning from megadisasters: Lessons from the great east
japan earthquake,” in Emergency Communication, World Bank Publications, 2015.

[154] S. Khan and M. Shah, “Consistent labeling of tracked objects in multiple cameras
with overlapping fields of view,” in IEEE TPAMI, 2003.

[155] Q. Zhou and J. Aggarwa, “Object tracking in an outdoor environment using fusion
of features and cameras,” in IEEE TPAMI, 2006.

[156] S. Calderara, R. Cucchiara, and A. Prati, “Bayesian-competitive consistent labeling
for people surveillance,” in IEEE TPAMI, 2008.

[157] L. Bazzani, M. Cristani, and V. Murino, “Symmetry-driven accumulation of local
features for human characterization and re-identification,” in Computer Vision and
Image Understanding 2008, 2012.

[158] N. Martinel, A. Das, C. Micheloni, and A. K. Roy-Chowdhury, “Re-identification in
the function space of feature warps,” in PAMI, 2015.

193

