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Abstract 

Humans are uniquely adept at extracting structure from the 
world around them. It is well known that people often form 
hierarchical task representations during learning, even when a 
task does not explicitly necessitate a hierarchical 
representation. Still, how individuals capitalize on this 
structure to facilitate behavior is an open question. In the 
present study, we address this question by carefully examining 
patterns of response time switch costs in a hierarchically 
structured visuomotor association learning task, to adjudicate 
between multiple models of behavior. We find evidence that 
participants do appear to navigate through a hierarchical 
representation of stimulus-response associations as they 
prepare responses, rather than maintaining a non-hierarchical, 
flat model or being primarily affected by changes in stimulus 
features. These results establish the existence of hierarchical 
mental representations even for static visuomotor mappings, 
and imply that such representations are internally navigated in 
an orderly manner during action selection. 

Keywords: hierarchy; structure learning; action selection; 
cognitive control; cognitive map 

Introduction 
An impressive aspect of human cognition is the ease with 

which we provide structure to our mental representations. For 
example, previous research demonstrates that humans tend to 
organize mental representations hierarchically. This has 
been observed in several domains of cognition, ranging from 
spatial reasoning (McNamara, 1986) and cognitive control 
(Badre et al., 2010), to object categorization (Theves et al., 
2021; Collins & Quillian, 1969) and reinforcement learning 
(Collins & Frank, 2013). Moreover, individuals often 
spontaneously extract hierarchical representations from tasks 
even when hierarchy is not essential, or even beneficial, for 
accomplishing a task (Collins, 2017), further supporting its 
fundamental role in the organization of human behavior. 

Hierarchies are especially useful when people learn about 
sequences of events that have a predictable temporal 
structure, as observed in decades of studies involving cued 
motor sequences (Kahn et al., 2018; Nissen & Bullemer, 
1987), task sequences (Schneider & Logan, 2006; Trach et 
al., 2021), or passive learning of sequences of visual stimuli 
(Mark et al., 2020). Indeed, the abstract structuring of 
information with respect to time is thought to be a 
fundamental aspect of higher-level cognition (Behrens et al., 
2018; Dehaene et al., 2015). Inspired by research on 

temporally abstracted hierarchies, here, using a de novo 
visuomotor learning task with no sequential structure, we 
asked if and how abstract hierarchical representations are 
formed and navigated in “action space.” In particular, this 
study builds on previous work by specifically examining how 
these hierarchical representations are navigated.  

How can hierarchical mental representations be inferred 
from behavior? Previous studies have typically focused on 
“switch costs” at various levels of abstraction to study the 
learning and implementation of hierarchical structures (Korb 
et al., 2017; Mayr & Bryck, 2005; Schneider & Logan, 2006; 
Trach et al., 2021). The term “switch cost” here refers to 
elevated response times (RTs) or error rates when an 
individual must switch tasks or responses on consecutive 
trials, relative to repeating a task or response (for a review, 
see Monsell, 2003). Switch costs can occur at different levels 
of abstraction (i.e., task switch costs versus response switch 
costs; Korb et al., 2017), and are reduced but not eliminated 
with practice (Berryhill & Hughes, 2009; Strobach et al., 
2012). While there has been much debate on what exactly 
drives switch costs and what makes them so robust, they are 
generally assumed to reflect the time needed to “reset” one’s 
cognitive state, offloading a previous task or response and 
preparing for the next task or response, or adjusting to an 
outcome that deviated from one’s expectation (Kahn et al., 
2018; Monsell, 2003; Strobach et al., 2012). 

To illustrate, consider that we store slightly different motor 
programs for Macs versus PCs. Now take the goal of copying 
some text: once you've specified which type of computer 
you're using (the upper level of a putative action hierarchy), 
you then select either 'ctrl-c' or 'command-c' (the lower level). 
Switching from a PC to a Mac should thus infer a "cost" 
relative to switching between two PCs; a previously active 
"PC node" on the putative action hierarchy must be departed 
for the correct "Mac node."  

In the current work, we closely analyzed action switch 
costs to determine if participants form and navigate 
hierarchical representations in real time as they select actions 
from a visuomotor map. Participants performed a simple 
visuomotor learning task where they integrated trial-by-trial 
feedback to determine the correct button press response to 
eight distinct visual stimuli (Figure 1). Stimuli were 
presented in a randomized order, thus removing any temporal 
structure from the task. The stimuli varied along three visual 
feature dimensions – shape, color, and pattern – with two 
potential values at each level. Crucially, each feature 
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dimension was assigned to one distinct level of an intuitive, 
spatially organized motor hierarchy (Figure 1A; top: hand; 
middle: finger “couplets”; bottom: unique finger; Collins & 
Frank, 2016), such that there was a discoverable hierarchical 
rule structure embedded in the task. We examined 
interactions between finger, hand, and couplet switch costs to 
determine if participants learned to represent the hierarchical 
structure of the stimulus-response associations, and, if so, 
how they might be navigating this representation during 
action selection. 
 
Models Considered 
We first specified, a priori, how an agent might represent and 
navigate this visuomotor mapping. We considered three 
general models that yield dissociable predictions about RT 
switch costs. We were particularly interested in how hand 
switch costs interacted with couplet switch costs. We will 
refer to trial types of interest as “hierarchy-
level(switch/repeat).” For example, hand(repeat)/ 
couplet(switch) refers to a trial where participants responded 
with the same hand but a different couplet as the trial before. 

 
Flat Model.  As our task is fundamentally a simple stimulus-
response learning paradigm and participants need not acquire 
any hierarchical rules to perform it well, it is possible that 
participants extract a non-hierarchical cognitive 
representation of the mapping. That is, participants could 
learn the eight correct stimulus-response associations without 
representing any relationships between the feature 
dimensions and levels of the motor hierarchy. In this “flat” 
model, switches from one stimulus to any other stimulus are 
equivalent, and, after correcting for baseline motor switch 
costs (Figure 2C,  described more below), switch costs 
should not be modulated by any particular stimulus features 

(Figure 2). In other words, while we expect responses to 
repeated stimuli to be facilitated (Bertelson, 1963), all trials 
where some form of stimulus change occurs should produce 
comparable RT switch costs. For instance, trials where the 
correct hand or finger couplet switches from the previous trial 
–hand(repeat)/couplet(switch), hand(switch)/couplet(repeat), 
and hand(switch)/couplet (switch) trials – should not show 
significantly different RTs.  
 

Feature Switch Model.  Another possibility is that switch 
costs are modulated by the number of feature dimensions 
(“task sets”) that change across successive trials. The 
fundamental prediction of this model is that RTs will be 
higher on trials where more feature dimensions of the 
stimulus change versus those where fewer dimensions 
change, perhaps reflecting a type of attentional switch cost or 
so-called “task set reconfiguration” (Monsell, 2003). Due to 
our design, various combinations of hand and finger couplet 
switches (or repeats) can be dissociated from the number of 
features that change across trials. For example, on trials 
where there is a hand(switch)/couplet(repeat), one or two 
stimulus features could have changed, whereas 
hand(switch)/couplet(switch) trials can be accompanied by 
two or three feature changes, but never by one. The precise 
switch cost predictions of the Feature Switch model are 
detailed in Figure 2.  We note that while somewhat distinct, 
this model makes the same switch cost predictions as an 
alternative model that considers the number of switches at the 
motor level (e.g., hand(switch)/couplet(repeat) should have a 
similar RT as hand(repeat)/couplet(switch)). We necessarily 
combine these models here.  
 
Tree Model.  Alternatively, participants could form an action 
representation that is isomorphic to the hierarchical rule 

Figure 1. Task figure. (A) Schematic of stimulus-response rule structure, with shape at the top level (hand), color at the 
middle (finger couplets), and pattern at the bottom (fingers within couplets). Assignment of specific feature dimension to 
levels of the motor hierarchy was counterbalanced across participants. (B) Sequence of example trials for the learning task.  
Participants saw shape stimuli and then received trial-by-trial error feedback. Sequences of stimuli were randomized. (C) 
Sequence of example trials for the baseline motor task. 
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structure embedded in the task. In this model, on each trial, 
the participant must “navigate” from the most recent response 
“node” through the hierarchical representation to arrive at the 
response node appropriate for the current trial (Figure 2). 
This model predicts that switch costs are modulated by the 
“distance” between the previous response and the next 
response as determined by the hierarchical map. This distance 
metric can be defined as the number of edges on the graph of 
a tree that one traverses between successive responses. For 
example, a hand(repeat)/couplet(repeat) trial can require 
traversal of either 0 or 2 edges, depending on whether the 
exact stimulus was repeated or not. Further, 
hand(repeat)/couplet(switch) trials are always 4 edges apart, 
and any trial where you switch hands requires traversing 6 
edges. Crucially, in contrast to the feature switch model, the 
tree model predicts no difference in RT between couplet 
repeats versus couplet switches when accompanied by a hand 
switch.  

 Methods 

Participants 
41 participants (N = 13 female; mean age =32.4; range =21-
57) were recruited on the online platform Prolific to 
participate in the study. Participants were screened for normal 

or corrected-to-normal vision and fluency in English to 
ensure that instructions were understood. They were 
compensated $10/hr for their time and were consented via an 
online form before proceeding to the task. To limit our 
analysis to the phenomena of interest (i.e., learned 
representations), we excluded participants who did not show 
reliable evidence of learning (i.e., got fewer than 25% of trials 
correct on at least 4 of the 8 stimulus-response associations), 
leaving us with a functional sample of 26 participants (N = 6 
female; mean age = 32.9; range =22-56). 

Task Design 
The experimental session lasted approximately 30 min and 
consisted of a simple baseline motor task (4 min), instructions 
and practice with the learning task (2 min), and the learning 
task (24 min). 

 
Motor Baseline Task.  The purpose of the motor baseline 
task was to establish intrinsic finger switch costs (i.e., pre-
learning visuomotor switch costs) for each participant. On 
each trial, participants saw eight empty white squares in a row 
on the screen (Figure 1C). One of the squares was then filled 
red while the others stayed white. Participants pressed the key 
that corresponded to the location of the cued red square (left 
hand: A,S,D,F; right hand: H,J,K,L). Once the participant 

Figure 2. (A) Example sequence of two trials. (B) Schematic of the Flat, Feature switch, and Tree models’ predictions for 
response selection on the trial sequence depicted in panel A. (C) Predictions of the pattern of switch costs for hand, couplet, 
and finger switches (and repeats) under each model. 
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made the correct response, all squares turned white for 100 
ms before the next target was cued. Each target remained red 
until the correct response was made. All possible transitions 
between fingers (e.g., right hand pinky to left hand index), 
including finger repeats (e.g., right hand index to right hand 
index) were experienced a minimum of 4 times in the trial 
sequence in order to establish a stable baseline RT for each 
transition. Participants completed 433 trials of the motor 
baseline task before proceeding to a further instruction phase 
and practice with the learning task. The first five trials and 
trials where participants did not make the correct response on 
their first try were excluded for analysis, however the 
subsequent trial was included as participants had to make a 
correct response before proceeding.  

 
Learning Task. After completing the motor task, 
participants were informed that the next task would involve 
using feedback to learn the correct keypress responses to 
eight unique visual stimuli (Figure 1B). On each trial, 

participants had 2.5s to press a key in response to a visual 
stimulus. After they made their response, they received 
binary feedback concerning whether their response was 
correct (1s). Their objective was to learn the correct response 
for each stimulus. They were informed that each stimulus was 
associated with exactly one unique correct response. 

Before proceeding to the main task, participants executed 
a short practice block using three emojis as visual stimuli and 
the H, J, and K keys. They were then reminded to position 
their left hand on the A, S, D, and F keys and their right hand 
on the H, J,  K, and L keys and shown a preview of the stimuli 
that were going to be used in the main task before the task 
began. During the learning task, they responded to each of the 
eight stimuli over 56 iterations per stimulus (448 trials total). 
We chose 56 iterations of each association as we expected 
this to be sufficient exposure for participant learning, while 
also keeping task duration short enough to be reliably run 
online. The trial sequence was randomized.  

The stimuli for the learning task consisted of eight images 
that varied on three dimensions: shape, color, and pattern. For 
each dimension (e.g., shape), there were two possible values 
(e.g., circle, square). The unique combinations of the two 
values for each of the three dimensions thus yielded 8 distinct 
stimuli (e.g., blue striped circle, red dotted square, etc.) that 
were each deterministically associated with one response. To 
embed structure in the task, we assigned each dimension to a 
level of an intuitive motor hierarchy (hand > finger-couplet > 
finger). For example, if shape was assigned to the highest 
level of the hierarchy – hand – then the shape of the stimulus 
determined which hand the correct response was on (Figure 
1). The assignment of which specific dimension 
corresponded to which level of the motor hierarchy was 
counterbalanced across participants. Importantly, 
participants were never explicitly told about the rule structure 
and, further, did not need to learn the structure to perform the 
task effectively. 

Figure 3. (A) Response accuracy (i.e., probability correct) 
over iterations of the stimuli, averaged across the 8 
stimuli. (B) Average RT over iterations of the stimuli. 
Error shading is ±1 SEM. 
 

Figure 4. Heatmaps for pairwise finger transitions in learning task (purple), motor baseline task (red), and the baseline 
corrected RTs (blue) following subtraction. Legends are in ms for each heatmap. 
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Results 
Learning Curves.  Participants showed significant learning 
over the course of the task (Figure 3A; chance accuracy = 
12.5%; mean accuracy = 60.0%, SD = 15.6%; t(25) = 15.55, 
p < .001). Moreover, participants were more likely to respond 
with the correct hand (hand accuracy: M = 84.6%, SD  = 8.8) 
as compared to the correct couplet (couplet accuracy: M = 
79.5%, SD = 10.2;  t(25) = 12.91, p < .001). This latter result 
provides initial evidence that participants may have 
represented the task hierarchically, in that they better 
acquired the top level rule versus the lower level rules 
(Theves et al., 2021). 

 Departing from conventional RT learning curves, the 
shape of the RT curve showed that RTs slowed as participants 
begin to acquire the stimulus-response associations, then 
plateaued, and then got faster once more practice was attained 
(Figure 3B). We speculate that this “inverted” RT learning 
function may reflect the additional cognitive effort required 
for participants to acquire and navigate a hierarchical 
representation.  

 
Motor Baseline Correction.  Our primary analyses focused 
on RT switch costs on correct trials. However, to get reliable 
measures of learning-driven switch cost effects, we first 
removed intrinsic costs associated with switching between 
different fingers/hands in response to visual cues. To 
accomplish this, we used the RTs from the motor baseline 
task. As expected, participants exhibited finger switch costs 
(finger repeat versus finger switch: t(25) = 8.43, p < .001) and 
hand switch costs (hand repeat versus hand switch: t(25) = 
12.41, p < .001) in the motor baseline task (Popp et al., 2020). 
To correct the RTs in the learning task, we calculated the 
average RT for each of the 64 pairwise transition between 
fingers in the motor baseline task (i.e., 82 unique transitions), 
and then subtracted the average RT for each transition from 
RTs in the learning task that corresponded to that same 
transition (Figure 4). This critical baseline correction step 
helps ensure that differences in switch costs are driven by the 
learned rule structure and not confounded by intrinsic motor 
biases. 
 
RT Switch Costs.  We used corrected RTs from the learning 
task as our dependent measure in our primary analyses. We 
excluded trials where participants did not make the correct 
response and categorized trials as hand and couplet switches 
versus repeats based on the correct response the participant 
made on that trial, and the response they made on the 
previous trial. The number of trials of each type included in 
analyses did not differ significantly across participants 
(Fs(1,25) < 2.46, ps > .13).  

We entered the corrected RTs from the learning task (for 
correct trials only) into a repeated measures ANOVA, with 
couplet trial type (repeat versus switch) and hand trial type 
(repeat versus switch) as factors. We found that there was a 
significant main effect of couplet trial type (F1,25 = 51.6, p < 
.001, hp2 = .67), hand trial type (F1,25 = 77.24, p < .001, hp2 = 
.76), and a significant interaction (F1,25 = 76.87, p < .001, hp2 

= .76). Moreover, a switch cost was also observed at the 
lowest level of the hierarchy (i.e., 
couplet(repeat)/finger(switch) trials versus 
couplet(repeat)/finger(repeat) trials; t(25) = 3.25, p = .003). 
In contrast, we did not find differences in accuracy across 
trial types (hand trial type: F1,25 = 1,71, p = .20; couplet trial 
type: F1,25 = 0.07, p = .79; interaction: F1,25 = 3.91, p = .06), 
ruling out the confound of a speed-accuracy tradeoff. 

To better relate these results to the various candidate 
models (Figure 2), we followed this analysis with four 
planned, post-hoc paired t-tests (with Bonferroni correction, 
0.05/4: α = .0125). The results are depicted in Figure 5. We 
found evidence of a couplet switch cost within hand (t(25) = 
10.89, p < .001). In addition, we found that 
hand(switch)/couplet(repeat) trials were significantly slower 
than hand(repeat)/couplet(switch) trials (t(25) = 3.10, p = 
.005) and that hand(repeat)/couplet(switch) trials were 
slower than hand(switch)/couplet(switch) trials (t(25) = 3.32, 
p = .003). Finally, as predicted by the tree model, RT switch 
costs corresponding to hand(switch)/couplet(repeat) versus 
hand(switch)/couplet(switch) trials were not significantly 
different (t(25) = 0.85, p = .405). Taken together, the 
observed switch costs neatly align with the predictions of the 
tree model. 

We note that we also ran this same analysis on correct trials 
only on the second half of the learning task (i.e., 28 iterations 
of each stimulus), when participants have substantial practice 
with the task. The key results aligned with those presented 
above (Fs > 39, ps < .001), though the comparison between 
hand repeat-couplet switch and hand switch-couplet switch 
trials was marginally significant in this case after Bonferroni 
correction (t(25) = 2.12, p = .044). Overall, the orderly 
pattern of results strongly supports the tree model, where RT 
switch costs are modulated by the number of edges separating 
successive responses on a hierarchical graph (Figure 2).  

 
Model Comparisons.  Finally, for completeness, we 
compared linear mixed effects models for each of the three 

Figure 5. Average corrected RT by finger, couplet, and 
hand switches and repeats. Error bars are ±1 SEM. 
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models we considered. For these regressions, we fit baseline-
corrected RTs (on correct trials) with random intercepts for 
subjects. For the flat model, the predictor simply reflected 
whether the response switched or was repeated on any given 
trial. For the feature switch model, the number of feature 
switches between responses was the predictor. Finally, for the 
tree model, we set the number of graph edges that needed to 
be traversed between the previous and current response nodes 
as the predictor. BIC metrics strongly indicated that the tree 
model (BIC = 97954) was a better fit for behavior versus both 
the feature (BIC = 100751; ΔBIC = -2798) and flat (BIC = 
98294; ΔBIC = -340) models, providing further empirical 
support for the tree model. 

Discussion 
It is well known that humans use hierarchical cognitive 
representations to organize behavior. Here, we asked how 
participants navigate these hierarchical representations in real 
time to select actions from an acquired visuomotor mapping. 
We provide evidence that participants can represent learned 
visuomotor associations hierarchically, and that their 
response times (RTs) between successive actions are 
modulated by the distance between those actions on a 
hierarchical tree representation. Speculatively, this latter 
result may indicate that participants navigate internal 
hierarchical representations of action maps in a manner that 
echoes the navigation of actual physical space (Behrens et al., 
2018). 

While we provide initial evidence supporting this model of 
cognitive map navigation during action preparation, we note 
that our results do not perfectly align with a tree model. For 
example, the overall RT switch cost of hand switches was 
slightly smaller than a perfect tree model predicts (see 
Figures 2 and 5). While previous work shows that behavioral 
switch costs are generally larger at superordinate levels of a 
task hierarchy (Collins & Frank, 2013), a phenomenon that 
we also observed here, our tree model appeared to 
overestimate the size of this effect. Discrepancies between a 
“perfect” tree model (i.e., equal edge lengths) and our results 
could be, in part, attributable to other variables like feature 
change costs, interactions between switching and repeating at 
different levels of a hierarchy (Mayr & Bryck, 2005; Trach et 
al., 2021), or other known determinants of RTs, such as the 
urgency to decide (Cisek et al., 2009).  

Another possibility is that aspects of our task design might 
have influenced the alignment of our results with the tree 
model. For one, ideal analyses would include only RTs on 
two consecutively correct trials. We were not able to conduct 
this analysis due to the short duration of our task. Because of 
this and the high exclusion rate of online studies, we plan to 
conduct an extended version of this task to replicate these 
findings. Additionally, it is possible that our correction for 
motor biases did not perfectly remove effects driven by motor 
constraints. We also intend to test a version of the task where 
a hierarchical rule structure cannot be extracted, and compare 
switch costs in the hierarchical versus non-hierarchical tasks 
as a more rigorous control for motor bias.     

Finally, in future work, we plan to use more controlled RT 
paradigms to elicit responses at various imposed latencies, 
allowing us to read out the navigation of a hierarchical 
representation in “real time.”  In this case, we can also use 
error rates to address our central question, potentially 
providing more evidence for navigation through a 
hierarchical representation. 

Our analysis also rests on strong assumptions about 
lingering activation of previous response “nodes” as the 
starting point during putative navigation of the hierarchy 
(Schneider & Logan, 2007). While the existence of switch 
costs necessarily implies that previous responses affect 
current behavior, it is also the case that increasing the interval 
between two responses can diminish switch costs (Altmann, 
2004). In future work we can manipulate these intervals to 
measure the decay of these effects. 

Our results are related to (and partly inspired by) previous 
work on hierarchical rule structure learning in the 
reinforcement learning (RL) literature (Collins, 2017; Collins 
& Frank, 2013, 2016; Eckstein et al., 2019; Eckstein & 
Collins, 2021). Like our paradigm here, in this previous work 
participants learned contextual action rules that could be 
structured hierarchically (although limited to two-level 
hierarchies). Subjects’ behavior in these studies was 
successfully modeled as a form of hierarchical reinforcement 
learning. While we have not used RL models to examine the 
learning process in the current study, we plan to explore this 
option in future studies, preferably with more learning trials. 
Our work builds on these findings, showing how a multi-level 
hierarchy can be abstracted over actions even when future 
planning is not required. Moreover, our study provides 
insight into how hierarchical representations are navigated by 
individuals as they prepare actions; by having more than two 
levels in our hierarchy, we were able to make graded 
predictions about RT switch costs.  

Here we demonstrated how hierarchical representations 
can be abstracted over simple actions, similar to how they are 
abstracted over time (Kahn et al., 2018). We also demonstrate 
how these representations may be navigated in real time 
during action selection. Our study also highlights how simple 
behavioral effects, such as RT switch costs, can help 
elucidate the complex structure of mental representations. 
Looking ahead, our findings can inform future work on 
mental representations of naturalistic visuomotor mappings 
involved in motor skills that require the selection of actions 
among multiple effectors, such as typing, playing musical 
instruments, and dance.  

Acknowledgments 
The authors would like to thank the ACT Lab at Yale 
University for helpful discussions during the preparation of 
this paper. J.E.T. is funded by the NSF’s Graduate Research 
Fellowship Program. 

References  
 Altmann, E. M. (2004). Advance preparation in task 

switching: What work is being done? Psychological 

531



Science, 15(9), 616–622. https://doi.org/10.1111/j.0956-
7976.2004.00729.x 

Badre, D., Kayser, A. S., & D’Esposito, M. (2010). Frontal 
cortex and the discovery of abstract action rules. Neuron, 
66(2), 315–326. https://doi.org/10.1016/j.neuron.2010. 
03.025 

Behrens, T. E. J., Muller, T. H., Whittington, J. C. R., Mark, 
S., Baram, A. B., Stachenfeld, K. L., & Kurth-Nelson, Z. 
(2018). What is a cognitive map? Organizing knowledge 
for flexible behavior. Neuron, 100(2), 490–509. 
https://doi.org/10.1016/j.neuron.2018.10.002 

Berryhill, M. E., & Hughes, H. C. (2009). On the 
minimization of task switch costs following long-term 
training. Attention, Perception, & Psychophysics, 71(3), 
503–514. https://doi.org/10.3758/APP.71.3.503 

Bertelson, P. (1963). S-R relationships and reaction times to 
new versus repeated signals in a serial task. Journal of 
Experimental Psychology, 65(5), 478–484. https://doi.org/ 
10.1037/h0047742 

Cisek, P., Puskas, G. A., & El-Murr, S. (2009). Decisions in 
changing conditions: The urgency-gating model. Journal 
of Neuroscience, 29(37), 11560–11571. https://doi.org/ 
10.1523/JNEUROSCI.1844-09.2009 

Collins, A. G. E. (2017). The cost of structure learning. 
Journal of Cognitive Neuroscience, 29(10), 1646–1655. 
https://doi.org/10.1162/jocn_a_01128 

Collins, A. G. E., & Frank, M. J. (2013). Cognitive control 
over learning: Creating, clustering, and generalizing task-
set structure. Psychological Review, 120(1), 190–229. 
https://doi.org/10.1037/a0030852.supp 

Collins, A. G. E., & Frank, M. J. (2016). Motor demands 
constrain cognitive rule structures. PLOS Computational 
Biology, 12(3), e1004785. https://doi.org/10.1371/ 
journal.pcbi.1004785 

Collins, A. M., & Quillian, M. R. (1969). Retrival time from 
semantic memory (pp. 191–201). 

Dehaene, S., Meyniel, F., Wacongne, C., Wang, L., & Pallier, 
C. (2015). The neural representation of sequences: From 
transition probabilities to algebraic patterns and linguistic 
trees. Neuron, 88(1), 2–19. https://doi.org/ 
10.1016/j.neuron.2015.09.019 

Eckstein, M. K., & Collins, A. G. E. (2021). How the mind 
creates structure: Hierarchical learning of action 
sequences. Proceedings of the Annual Meeting of the 
Cognitive Science Society, 43(43), 8. 

Eckstein, M. K., Starr, A., & Bunge, S. A. (2019). How the 
inference of hierarchical rules unfolds over time. 
Cognition, 185, 151–162. https://doi.org/10.1016/ 
j.cognition.2019.01.009 

Kahn, A. E., Karuza, E. A., Vettel, J. M., & Bassett, D. S. 
(2018). Network constraints on learnability of probabilistic 
motor sequences. Nature Human Behaviour, 2(12), 936–
947. https://doi.org/10.1038/s41562-018-0463-8 

Korb, F. M., Jiang, J., King, J. A., & Egner, T. (2017). 
Hierarchically organized medial frontal cortex-basal 
ganglia loops selectively control task- and response-

selection. The Journal of Neuroscience, 37(33), 7893–
7905. https://doi.org/10.1523/JNEUROSCI.3289-16.2017 

Mark, S., Moran, R., Parr, T., Kennerley, S. W., & Behrens, 
T. E. J. (2020). Transferring structural knowledge across 
cognitive maps in humans and models. Nature 
Communications, 11(1), 4783. https://doi.org/10.1038/ 
s41467-020-18254-6 

Mayr, U., & Bryck, R. L. (2005). Sticky rules: Integration 
between abstract rules and specific actions. Journal of 
Experimental Psychology: Learning, Memory, and 
Cognition, 31(2), 337–350. https://doi.org/10.1037/0278-
7393.31.2.337 

McNamara, T. P. (1986). Mental representations of spatial 
relations. Cognitive Psychology, 18(1), 87–121. 
https://doi.org/10.1016/0010-0285(86)90016-2 

Monsell, S. (2003). Task switching. Trends in Cognitive 
Sciences, 7(3), 134–140. https://doi.org/10.1016/S1364-
6613(03)00028-7 

Nissen, M. J., & Bullemer, P. (1987). Attentional 
requirements of learning: Evidence from performance 
measures. Cognitive Psychology, 19(1), 1–32. 
https://doi.org/10.1016/0010-0285(87)90002-8 

Popp, N. J., Yokoi, A., Gribble, P. L., & Diedrichsen, J. 
(2020). The effect of instruction on motor skill learning. 
Journal of Neurophysiology, 124(5), 1449–1457. 
https://doi.org/10.1152/jn.00271.2020 

Schneider, D. W., & Logan, G. D. (2006). Hierarchical 
control of cognitive processes: Switching tasks in 
sequences. Journal of Experimental Psychology: General, 
135(4), 623–640. https://doi.org/10.1037/0096-3445.1 
35.4.623 

Schneider, D. W., & Logan, G. D. (2007). Retrieving 
information from a hierarchical plan. Journal of 
Experimental Psychology: Learning, Memory, and 
Cognition, 33(6), 1076. https://doi.org/10.1037/0278-
7393.33.6.1076 

Strobach, T., Liepelt, R., Schubert, T., & Kiesel, A. (2012). 
Task switching: Effects of practice on switch and mixing 
costs. Psychological Research, 76(1), 74–83. 
https://doi.org/10.1007/s00426-011-0323-x 

Theves, S., Neville, D. A., Fernández, G., & Doeller, C. F. 
(2021). Learning and representation of hierarchical 
concepts in hippocampus and prefrontal cortex. Journal of 
Neuroscience, 41(36), 7675–7686. https://doi.org/10.1523/ 
JNEUROSCI.0657-21.2021 

 

532




