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ABSTRACT OF THE DISSERTATION
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University of California, Los Angeles, 2022

Professor Karen A. McKinnon, Chair

In the age of global warming, there is a crucial need to accurately assess uncertainty levels

when analyzing observed changes in the climate. For many climate problems, the develop-

ment of statistical methods that appropriately account for uncertainty is challenging due to

the complexity of the underlying climate processes and the various sources of uncertainty

involved. This thesis addresses methodological challenges in modeling uncertainty for two

climate problems with important real-world applications. The first problem is concerned

with quantifying the heat content of the global ocean and its change over time. Under-

standing the trend in ocean heat content is particularly important as it informs estimates

of transient climate sensitivity, a physical parameter that largely determines the amount of

warming that will be expected in the years to come. This problem is nevertheless made

difficult by the challenge of representing the complex covariance structure of the ocean heat

content field, as well as the challenge of quantifying the uncertainty in the estimation of this

structure. The second problem is concerned with separating the influence of warming caused

by human activities from natural variability in the observed climate, a problem that is often

referred to as climate change “detection and attribution”. While various sources of uncer-
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tainty in this problem have been addressed in the literature, recent results have suggested

that commonly-used methods under-estimate uncertainty in their conclusions. Producing

reliable detection and attribution confidence intervals is difficult in part due to the challenge

of modeling the uncertainty in the estimation of the natural variability covariance structure

from limited climate model simulations.

This thesis proposes methods for addressing statistical challenges in these two problems

with respect to three overarching themes. The first theme is the use of spatially-coherent

statistical models to represent the covariance structures of the underlying physical processes.

For the ocean heat content problem, a novel cylindrical kernel-convolution Gaussian process

model is developed to flexibly represent the complex spatial correlation patterns of the global

ocean heat content field. For the detection and attribution problem, a Laplacian basis

vector parameterization of the covariance matrix is proposed to enforce spatially-coherent

correlation patterns. This parameterization is also able to avoid the uncertainty in the

traditional approach of estimating principal component vectors from limited numbers of

climate model runs. The second theme is the use of hierarchical Bayesian models to propagate

the uncertainty in estimating the covariance structure to the final results. In the ocean heat

content problem, the spatially-varying parameter fields describing the kernel-convolution

Gaussian process are themselves modeled as Gaussian processes in a hierarchical framework.

This allows for the uncertainty in estimating these parameters to be propagated to the final

posterior distribution for the ocean heat content trend. In the detection and attribution

problem, the parameters of the Laplacian parameterization of the covariance matrix, as well

as the number of Laplacians to use, are both represented in a Bayesian hierarchical framework

that prioritizes the accurate modeling of uncertainty. Finally, the third theme concerns the

evaluation of the statistical properties of the Bayesian posterior distributions. For the ocean

heat content problem, this is done using cross-validation on the observations with respect to

a metric for evaluating both the mean and uncertainty implied by the posterior predictive

distributions. For the detection and attribution problem, climate model simulations are
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used to evaluate the accuracy of the posterior means and credible intervals produced by the

proposed methods in the context where the true value can be assumed to be known.

Chapter 1 begins by introducing the broader context and implications of the two climate

problems and proceeds to give a brief overview of the three statistical themes. Chapter

2 develops the proposed methodology for the ocean heat content problem in a restricted

context focusing on spatial variability. A cross-validation study is presented showing that the

proposed framework achieves higher accuracy in the predictive posterior distributions than

a commonly-used previous method as well as simpler Bayesian approaches. This framework

is then extended to the full spatio-temporal context in Chapter 3 and is applied to the

quantification of the trend in ocean heat content from 2007 to 2021. The detection and

attribution problem is addressed in Chapter 4, where a climate model validation study

shows that the proposed approach achieves higher accuracy in the posterior mean and more

accurate credible intervals than a traditional approach. While the validation results for each

of these proposed methods show quantitative improvements over previous approaches, the

results suggest several promising opportunities for additional improvements and extensions.

Several of these potential avenues for future research are discussed in Chapter 5.
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CHAPTER 1

Introduction

While there is a long-established scientific consensus that increasingly elevated greenhouse

gas concentrations from human activities have and will continue to warm the Earth’s cli-

mate system [Masson-Delmotte et al., 2021], there is significant uncertainty in understanding

exactly how human activities have influenced the observed climate state and what this im-

plies for future warming. Two examples of climate problems where uncertainty imposes

major challenges are the estimation of equilibrium climate sensitivity and the “detection

and attribution” of the climate change signal. Equilibrium climate sensitivity is defined as

the expected long-term increase in global temperatures in response to a doubling of atmo-

spheric carbon dioxide levels [Knutti et al., 2017]. Since the first approaches in the late

1800s [Arrhenius, 1896], the estimation of this parameter has carried notoriously high levels

of uncertainty, with the current best estimate range of 1.5 °C to 4.5 °C being essentially

unchanged since the 1970s [Charney et al., 1979]. Transient climate response, which is the

parameter analogous to equilibrium climate sensitivity at the more policy-relevant scale of

decades, is slightly more constrained, with a 1 °C to 2.5 °C best-estimate range. Regardless,

the ends of these ranges have vastly different implications for the environment and society

[Adger et al., 2007], and as such there is a crucial need to further incorporate empirical ob-

servations in estimation and uncertainty quantification [Caldwell et al., 2016, Tokarska et al.,

2020]. As 90% of the energy imbalance caused by greenhouse gases is expected to be stored

in the world’s oceans [Trenberth et al., 2014], quantifying how much heat the oceans have

gained in the observational record plays an important role in quantifying equilibrium and

transient climate sensitivities [Knutti and Tomassini, 2008, Meyssignac et al., 2019]. How-
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ever, historically limited observations and the complexity of the ocean temperature field have

rendered the estimation of ocean heat uptake challenging [Cheng et al., 2017a, Resplandy

et al., 2019].

Another important problem where uncertainty plays a key role is in climate change detec-

tion and attribution, the goal of which is to detect the influence of greenhouse gas emissions

in the observed climate and to determine the extent to which human influences, as opposed to

natural variability, are responsible for observed changes. Optimal fingerprinting techniques

within the detection and attribution literature have played a crucial role in establishing the

link between greenhouse gas concentrations and observed changes in global temperatures

[Hegerl et al., 1994, Allen and Tett, 1999]. The concepts of variability and uncertainty

are paramount in optimal fingerprinting methodology, which must take into account uncer-

tainty induced by the natural properties of the climate system itself, from the estimation of

the observed climate state from limited observations, and from estimating key parameters,

including the structure of variability, from climate models.

Iterative improvements have been made over the last two decades to incorporate the

various sources of uncertainty in optimal fingerprinting methodology [Hammerling et al.,

2019]. However, recent research has suggested that established methods under-estimate

the true uncertainty in the problem and as such produce potentially misleading conclusions

[Li et al., 2021, McKitrick, 2022]. Since establishing the responsibility of human activities

for climate impacts has important consequences for mitigation and adaptation efforts, it

is crucial that conclusions are made with reliable uncertainty estimates. While the results

of optimal fingerprinting studies do not play a decisive role in the scientific consensus on

global warming, which is supported by multiple lines of empirical and theoretical evidence,

links between human activities and climate changes at smaller scales, other climate variables

such as precipitation, and climate extremes are less statistically and scientifically obvious

[Christidis et al., 2012, Knutson and Zeng, 2018, Wang et al., 2021]. As policymakers and

the public at large are particularly interested in climate change impacts at local scales,
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the development of accurate and reliable optimal fingerprinting frameworks has significant

real-world consequences.

These two climate problems are important for understanding the anticipated magnitude

of future climate change and the extent to which human activities are responsible for these

changes. However, in both problems, high levels of uncertainty pose a major challenge in

quantifying the evidence from available information. Across these problems, uncertainty can

be thought of as primarily arising from three broad sources. The first is the inherent vari-

ability of the natural climate system. While the global climate system is driven by physical

dynamics, the sensitivity of the equations describing these dynamics to small changes in

initial conditions renders the global ocean and atmospheric systems effectively probabilistic

[Slingo and Palmer, 2011]. The second source of uncertainty is caused by the sampling of

finite numbers of observations from continuous processes. The third source of uncertainty

arises when output from climate model simulations is used to incorporate physical knowledge

into the analysis. Climate models, which produce simulations of key climate variables using

numerical solutions to the underlying dynamical equations, provide an invaluable source of

information for understanding the climate system. These resources are particularly crucial

to the detection and attribution problem given that the forced signal is confounded with

unforced variability in the observations. However, the use of these simulations introduces

uncertainty through errors caused by the numerical approximation of certain climate pro-

cesses, in addition to uncertainty from the finite amount of simulation output [Schneider and

Dickinson, 1974, Washington and Parkinson, 2005, Griffies, 2018].

Statistics, as the science of using the principles of probability and randomness to quan-

tify uncertainty, has the ability to play a fundamental role in understanding these and other

important climate questions. Motivated at a high level by the two important applications

introduced above, this thesis will investigate issues in the development of statistical tech-

niques to model variability and uncertainty in climate science. Improvements to existing

approaches will be developed along three themes. The first theme concerns the development
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of spatially-correlated covariance models on the sphere to represent variability in physical

processes. The second theme is on the development of hierarchical Bayesian frameworks

to integrate multiple sources of uncertainty into a posterior distribution. Finally, the third

theme regards the use of model validation techniques to evaluate both the mean and the

uncertainty in the posterior distributions produced by the statistical methods.

The first theme explored in this thesis regards spatial modeling of the covariance struc-

ture of climate processes. In the spatial statistics literature, Gaussian processes are a well-

established way to assign a probability distribution to continuous fields which vary at least

somewhat smoothly over space [Krige, 1951, Matheron, 1963, Cressie, 1990, Banerjee et al.,

2003, Stein, 1999a, Cressie, 2015]. Despite the attractive theoretical properties of Gaussian

process models, and their suitability for modeling diverse climate phenomena, they have

been very infrequently employed in the climate science literature. This reticence is primar-

ily due to historical difficulties in representing complex processes on the spherical domain

as well as the oftentimes prohibitive computational load encountered when applying Gaus-

sian processes to reasonably sized climate datasets. The development of kernel-convolution

Gaussian processes has allowed for flexible modeling of complex spatially-varying covariance

structures as are often found in climate processes [Higdon, 1998a, Paciorek and Schervish,

2006a, Risser, 2016]. However, such methods are most commonly applied to the Euclidean

domain and encounter additional challenges in computation and interpretation when ex-

tended to the sphere [Jeong and Jun, 2015, Li and Zhu, 2016a, Guinness and Fuentes, 2016].

On the computational side, recent developments in approximating the Gaussian process like-

lihoods have allowed for a viable way to model datasets larger than previously possible. In

particular, Vecchia processes, originally proposed by Vecchia [1988], approximate the full

Gaussian process by restricting conditional dependence relations in the data to subsets of

nearest neighbors. This allows for computation time to be balanced with accuracy by tuning

the maximum size of the conditioning sets. Recent theoretical and methodological advance-

ments have allowed for Vecchia processes to fully substitute Gaussian processes in many
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circumstances [Katzfuss et al., 2020a, Guinness, 2021, Katzfuss and Guinness, 2021, Zilber

and Katzfuss, 2021, Jimenez and Katzfuss, 2022]. Recursive skeletonization factorizations,

which compress numerically-low rank blocks of the Gaussian process covariance matrix, are

another computational technique for the fast computation of Gaussian process likelihoods

with a trade-off between computation time and accuracy [Minden et al., 2017, Baugh and

Stein, 2018]. Despite these developments, Gaussian process models have the general compu-

tational downside in that the entire covariance matrix approximation must be re-computed

for every configuration of the parameters. An alternative technique for representing spatially-

coherent patterns in a covariance structure would be to use fixed basis functions. When the

domain is Euclidean, the Fourier transform can be used to obtain a basis function repre-

sentation of a stationary Gaussian process [Paciorek, 2007]. For the cylindrical domain, an

analogous approach would be to use spherical harmonics, which can be obtained from the

eigenfunctions of the Laplace operator on the sphere [Courant and Hilbert, 2008, DelSole

and Tippett, 2015].

The second theme is the use of hierarchical Bayesian frameworks to propagate multiple

sources of information and uncertainty to the final inference. It should be noted that while

many statisticians and scientists have advocated for the use of Bayesian methods in climate

problems [Berliner et al., 2000, Smith et al., 2009, Mann et al., 2017], historically most

statistical methods employed in climate science have fallen under a frequentist philosophy

[Shepherd, 2021]. This presumes that parameters of interest have true, fixed values that

are unknown to the observer. Statistical methods are then used to quantify the uncertainty

which results from sampling from a distribution with unknown parameters. Generally, to

obtain distributional forms for the estimators, a null hypothesis is assumed, and if the

stochastic estimators have a low probability conditional on this hypothesis then it is rejected

in favor of a conversely defined alternative. This philosophy, while appropriate for scenarios

such as population inference where a “true” value is known to exist, is less justified when

the underlying quantities of interest are better thought of as probabilistic. Arguably, most
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quantities in climate science can be represented as random variables, either by their physical

nature or by the fact that knowledge of their value can be described with an uncertainty

distribution. Under this point of view, Bayesian inference appears more appropriate for

the analysis of climate problems as Bayesian methodology views all unknown quantities as

random variables. Using Bayesian theory and established inference techniques, distributions

can be updated conditional on different sources of variability and uncertainty into a posterior

distribution for the quantity of interest. Furthermore, since Bayesian frameworks allow for

the distributions of the parameters of a statistical model to be treated as random variables,

the uncertainty in their estimation can be propagated to the final result. As such, Bayesian

frameworks are a natural fit for the analysis of climate processes, where multiple sources of

uncertainty are present and nearly all components can be viewed as coming from probabilistic

distributions.

A major challenge in applying Bayesian methods is the number of methodological choices

to be made in constructing an appropriate model [Gelman and Hill, 2006]. The first is choos-

ing the likelihood distribution of the data. In the common case where the distributional form

is taken to be normal, this requires specifying forms for the mean and variance of the process.

The second choice is the prior distribution. The prior distribution can either be “informa-

tive”, in explicitly containing prior information about the quantities under consideration,

or uninformative in not explicitly containing prior information, although from a technical

perspective no prior is truly uninformative [Van Dongen, 2006]. A third set of choices to

be made in conjunction with the above two items is in the development of a hierarchical

structure for the components of the statistical model. The simplest Bayesian hierarchical

models generally assign priors to the hyper-parameters describing the prior distributions of

the parameters, which themselves determine the likelihood of the data. This allows for the

distributions of the parameters themselves to have properties informed by the data. Differ-

ent levels of a Bayesian hierarchical framework can also allow for choices in the likelihood

function to be explicitly quantified while allowing for uncertainty from different sources to
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be incorporated in the inference framework. With appropriate methodological choices, hi-

erarchical Bayesian models provide a powerful technique to quantify uncertainty in climate

problems.

Due to the diverse sources of uncertainty present in climate problems, it is particularly

challenging to assess whether uncertainty estimates correctly represent the true variability

present. This motivates the third theme regarding the use of statistical model validation

techniques to evaluate both the center and the uncertainty levels of posterior distributions.

The continuous-ranked probability scores metric, or CRPS [Matheson and Winkler, 1976],

was popularized within the climate community to evaluate the accuracy of probabilistic

weather predictions [Hersbach, 2000]. In order to apply this metric, the “true” value of the

quantity being estimated or predicted must be known. In the statistics and climate literature,

a common way to evaluate predictions against true values is through cross-validation, where

certain segments of the data are withheld and the model conditioned on the remaining data

is used to predict the withheld value or values [Stone, 1978, Bates et al., 2021]. In certain

contexts, climate model simulation data can be used as a substitute for the observations in

order to evaluate the properties of the statistical model with a known truth determined by

the climate model. Recently there have been increases in the availability and size of initial-

condition ensembles, which are collections of output from a fixed climate model configuration

run under various perturbations of the initial conditions [Kay et al., 2015, Sriver et al., 2015,

O’Neill et al., 2016, Stein, 2020]. These ensembles provide a valuable source of information

for evaluating the properties of statistical methods in view of the “true” variability implied

by the climate models.

These three themes will be explored through the development of statistical methodology

for two climate science problems motivated by the broader questions introduced at the

beginning of this section. The first problem concerns estimating the rate of ocean heat uptake

over the past several years. Because ocean heat uptake is a crucial quantity for understanding

equilibrium and transient climate sensitivity, it is important to not just achieve a reliable
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estimate of this quantity but to accurately estimate the uncertainty in its estimation. Recent

increases in data made available through the Argo program [Riser et al., 2016] have allowed

for an unprecedented view into ocean heat content, however, the complexity of the covariance

structure of the ocean heat content field makes statistical modeling challenging. A statistical

approach needs to account for three sources of uncertainty; the natural variability in the field

itself, the sampling variability induced from finite observations of the underlying process, and

the variability induced from having to estimate the parameters describing the covariance

structure of the process.

In Chapter 2, a Bayesian hierarchical Gaussian process model for quantifying the uncer-

tainty in the ocean heat content field and its trend over time is developed. At the first level

of the hierarchical structure, the heat content field is assumed to be distributed according

to a spatial Gaussian process. To overcome difficulties in modeling the complex spatially-

varying properties of the ocean heat content covariance structure, a key innovation is the

use of a cylindrical kernel-convolution construction for the Gaussian process which allows

for the correlation parameters, namely the process variance, nugget variance, and latitudinal

and longitudinal correlation length scales, to vary over space. On the second level of the

hierarchical model, the parameters that describe the correlation fields, as well as the mean

and trend fields, are themselves assumed to follow spatial Gaussian processes. The behavior

of these prior distributions is determined by hyper-priors whose values are informed by the

data itself. This Gaussian process model is able to account for the process variability in the

ocean heat content field through the estimation of the spatially-varying covariance struc-

ture. Furthermore, the spatial nature of this process allows for the interpolation of the heat

content field to unobserved values using the theory of kriging. Finally, the representation

of the parameter fields as random processes themselves in the second level of the hierarchy

allows for the uncertainty induced from estimating the complex correlation structure to be

explicitly incorporated in the final posterior distribution. These properties are demonstrated

through the application in Chapter 2 to the trend in ocean heat content as gauged by data
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restricted to the month of January, where the data restriction allows for the model to fo-

cus on the spatial aspects of the correlation structure and mean-field. This framework is

extended in Chapter 3 to a spatio-temporal model with a seasonally and spatially varying

mean-field applied to data from all months over the period 2007 to 2021.

The second problem addressed in this thesis is modeling the covariance matrix for the

detection and attribution problem. Similar to the statistical modeling of ocean heat content,

this problem requires estimating the true state of the observed climate from limited obser-

vations. In contrast, the detection and attribution problem requires an additional source of

information, specifically the expected true effect of different forcing patterns. Here, “forc-

ing” is defined as any change which could impact the climate, with the forcing of increasing

greenhouse gas concentrations of primary concern. Since the goal is to distinguish between

changes in the climate caused by the forcing and changes that are caused by natural vari-

ability, there is an imperative need to obtain a physically-informed estimate of the natural

variability structure. Physics-based climate models are used in the literature to estimate the

forced signal and the natural variability structure, generally through “historical” or forced

runs and “pre-industrial” or unforced runs respectively. While climate models have provided

an invaluable source of information for assessing the detection and attribution of climate

change, their inclusion presents another source of uncertainty that needs to be taken into

account within the statistical treatment. These sources of uncertainty include both the “sam-

pling” uncertainty from having only a finite number of model runs to estimate the desired

features of the climate field, and from differences between the climate models and the true

climate system.

Chapter 4 develops a Bayesian hierarchical model for the detection and attribution of

observed climate changes that can take into account the uncertainty from estimating the

structure of internal variability from limited climate model simulations. The first level of

the hierarchy represents the observed state of the climate as the estimated forced signal

plus a residual term following the distribution of unforced natural variability. In the second
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level of the hierarchy, the natural variability covariance matrix is modeled as the distri-

bution of pre-industrial simulation data. To obtain a distributional form for the internal

variability structure that produces reliable detection and attribution inferences, this chapter

introduces two innovations to previous Bayesian approaches. The first is to parameterize the

covariance matrix with Laplacian basis functions in order to enforce spatially-coherent cor-

relation patterns. This provides an advantage over traditional methods, which use principle

components to parameterize the covariance matrix, since such components are calculated

conditional on a set of climate model runs, and as such the uncertainty in their estimation

is not easily incorporated into the inference procedure. The second innovation is the use of

a χ2 re-parameterization of the likelihood function for modeling the number of Laplacian

basis vectors. This allows for the selection of the number of covariance parameters, which is

traditionally done outside of the inference procedure, to be expressed through the top level of

the Bayesian hierarchy. An extensive climate model validation study shows that this method

yields more reliable posterior distributions for the detection and attribution parameter than

other approaches.

The three statistical themes, of spatial covariance modeling, hierarchical Bayesian mod-

eling, and Bayesian model validation are interwoven throughout these two applied problems.

The solutions to both problems involve parameterizations of the covariance structure that

enforce spatial correlation. For the ocean heat content problem this is done through a Gaus-

sian process model, and for the detection and attribution problem this is done through a

Laplacian basis function parameterization. Both problems then propagate the uncertainty in

estimating the covariance structure to the final results with a hierarchical Bayesian frame-

work. While in the ocean heat content problem uncertainty in estimating the covariance

structure comes from the observations alone, the approach for the detection and attribution

problem also incorporates uncertainty from the use of climate model simulations. Finally,

the third theme is expressed through cross-validation in the ocean heat content problem

and through climate model validation in the detection and attribution problem. Results
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using these validation techniques show that the spatial covariance models and the Bayesian

hierarchical frameworks developed for these problems yield quantitative improvements over

previous approaches.

The rest of this thesis will be organized as follows. The spatial-only model for quantifying

ocean heat content will be developed in Chapter 2. This chapter is largely taken from the

paper [Baugh and McKinnon, 2022], which has been accepted for publication by The Annals

of Applied Statistics. Chapter 3 then extends the spatial model to the spatio-temporal setting

and applies the framework to all data between 2007 and 2021. Then, the detection and

attribution framework is developed and applied to changes in near-surface air temperatures

from 1990 to 2015 in Chapter 4. The thesis concludes with a discussion of directions for

future research in Chapter 5.
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CHAPTER 2

Hierarchical Bayesian Modeling of Ocean Heat Content

The accurate quantification of changes in the heat content of the world’s oceans is crucial for

understanding the effects of increasing greenhouse gas concentrations. The Argo program,

consisting of Lagrangian floats that measure vertical temperature profiles throughout the

global ocean, has provided a wealth of data from which to estimate ocean heat content.

However, creating a globally consistent statistical model for ocean heat content remains

challenging due to the need for a globally valid covariance model that can capture complex

nonstationarity. This chapter develops a hierarchical Bayesian Gaussian process model using

kernel convolutions with cylindrical distances to allow for spatial non-stationarity in all

model parameters while using a Vecchia process to remain computationally feasible for large

spatial datasets. This approach can produce valid credible intervals for globally integrated

quantities that would not be possible using previous approaches. These advantages are

demonstrated through the application of the model to Argo data, yielding credible intervals

for the spatially-varying trend in ocean heat content that accounts for both the uncertainty

induced from interpolation and from estimating the mean-field and other parameters. The

proposed model out-performs an out-of-the-box approach as well as other simpler models

in a cross-validation study using continuous ranked probability scores (CRPS) to evaluate

both the mean and uncertainty values of the predictive posterior distributions. The code for

performing this analysis has been developed into an R package BayesianOHC.
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2.1 Introduction

As 90% of the energy imbalance caused by increased greenhouse gas concentrations is ex-

pected to be stored in the world’s oceans [Trenberth et al., 2014], measuring changes in ocean

heat content is essential to the scientific understanding of climate change. However, obtain-

ing accurate estimates of ocean heat content has historically been difficult due to a lack of

data. To help address this problem, since 2002 the Argo program has been coordinating

and maintaining a network of thousands of Lagrangian floats that passively move through-

out the ocean measuring temperature and salinity [Riser et al., 2016]. While Argo floats

achieve dense sampling in the vertical dimension, quantifying ocean heat content remains

challenging since the number of Argo observations is small in comparison to the vastness of

the global ocean. As estimates of ocean heat content inform scientific knowledge about other

climate processes, it is particularly important to not just obtain an estimate of the ocean

heat content trend but to assess the uncertainty in its estimation.

Several techniques have been used in the climate science literature to quantify ocean

heat content using Argo data. One group of techniques is referred to as simple-gridding

[Meyssignac et al., 2019] and includes approaches such as von Schuckmann and Le Traon

[2011] and Gouretski [2018]. These methods compute ocean heat content at each point

of a grid over the ocean’s surface by taking the average value of the observations within

the corresponding grid-box. For grid-boxes with few observations, the heat content value is

assumed to either have an anomaly value of zero or be equal to the global average value of all

observations. Standard errors are obtained by computing the empirical standard deviation of

the observations in each grid-box; for grid-boxes with few observations, the global standard

deviation over all observations is used. A major drawback of this method is that it does

not take advantage of the correlation structure in the data, which will lead to more variable

estimates of the mean-field and precludes a globally consistent estimate of the uncertainty

in heat content.
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Another group of approaches, including Levitus et al. [2012] and Ishii et al. [2017], es-

timate the heat content anomaly at a particular point using values observed at nearby

locations. Levitus et al. [2012] estimate heat content with a weighted sum of observations

within a fixed radius, where the weights decrease with the distance between the observa-

tion locations at a rate determined by a fixed correlation length scale. Ishii et al. [2017]

estimate unobserved values by minimizing a cost function that accounts for the influence

of nearby observations by using an inverse-distance weighting also with a fixed correlation

length scale. A major drawback of these techniques is that the correlation length scales are

not informed by the data and must be chosen in advance of the interpolation. Standard

errors are estimated in these techniques by computing empirical variances and covariances

on the observations partitioned into grid-boxes. While this standard error calculation takes

into account the fact that observations in nearby grid-boxes will be correlated, the standard

errors do not take into account the spatial distribution of observations within each grid-box.

Furthermore, like the simple gridding approach, this method does not produce a consistent

covariance estimate across the global domain.

Other approaches use data from climate models to aid in the estimation of ocean heat

content. The approach of Cheng and Zhu [2016] interpolates the data using covariances

obtained from output of the Coupled Model Intercomparison Project Phase 5. Approaches

such as Balmaseda et al. [2013] interpolate the heat content field using climate model runs

constrained by the observed values. Both of these methods suffer from the drawback that

they are subject to the effect of climate model error on the covariance structure which can

be difficult to assess and correct for [Palmer et al., 2017].

Gaussian processes are a powerful technique for expressing a spatial field with a proba-

bility model. The key assumption of the Gaussian process is that every linear combination

of values in a spatial field follows a multivariate normal distribution. Then the correlation

between each pair of observations is determined by their locations as well as by parameters

that can be estimated from the data. Under the Gaussian process assumption, the value at
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an unobserved location conditioned on a set of observed values has a normal distribution

whose mean is the linear combination of the observations [Stein, 1999b]. The uncertainty in

estimating the value at the unobserved location can then be obtained through the standard

deviation of the conditional normal distribution.

The Gaussian process interpolation is similar to the weighted sum method used in Levitus

et al. [2012] in that the estimates are given by a linear combination of the observations.

However, the Gaussian process imposes a probability model on the spatial field, from which

it can be shown mathematically that the conditional mean at an unobserved location is the

best linear unbiased predictor [Stein, 1999b]. Another advantage of assigning a probability

model to the spatial field is that it allows for the correlation parameters to be determined

through statistical inference, rather than chosen in an ad-hoc fashion. The uncertainty in

the estimation of the parameters can also be assessed using statistical inference techniques.

Recent work in the statistics literature by Kuusela and Stein [2018] uses Gaussian pro-

cesses on the Argo data to assess variability in the temperature fields at fixed depths. One

challenge of applying Gaussian processes is that they were originally developed for fields

whose covariance parameters are constant over the domain. However, the statistical proper-

ties of the ocean temperature field are known to vary substantially between different regions

of the global domain [Cheng et al., 2017b]. Kuusela and Stein [2018] account for non-

stationarity by assuming local stationarity within windows of a fixed size centered around

each point of a grid partitioning the ocean. This allows the model to be fit independently

at each grid-point yielding an estimate and uncertainty range for the value at the center of

each window. However, as ocean heat content is a globally integrated quantity, assessing

its uncertainty cannot be accomplished with this local method. Instead, a covariance model

that is valid over the entire domain is required, which is the focus of this work.

It is easier to model ocean heat content, defined as the integral of the three-dimensional

temperature field at a particular time [Dijkstra, 2008], than modeling the temperature field

directly. Thus, the problem is reduced to fitting a non-stationary model to the surface of
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the sphere. Even so, modeling non-stationary fields on a sphere is a major theoretical and

computational challenge [Jeong et al., 2017]. Kernel-convolution methods introduced by

Higdon [1998b] and further developed by Paciorek and Schervish [2006b] and Risser [2016]

provide a flexible way to construct a Gaussian process with parameters that vary over the

domain. In these methods, each location in the field is assigned a parameterized kernel

function and the global model is obtained by computing convolutions between the kernels at

any two points. When the kernel parameters vary smoothly, they describe the local behavior

of the process at that point, yielding a clear interpretation of their meaning.

While the convolutions have easily expressed forms when the domain is assumed to be

Euclidean, they are more challenging to compute when the domain is spherical. Computing

convolutions using numerical approximation of the integrals as in Jeong and Jun [2015] and

Li and Zhu [2016b] is computationally intensive and even with pre-computation is infea-

sible on the thousands of observations in the Argo dataset. Various other non-stationary

correlation functions have been developed for Gaussian processes on the sphere, such as defor-

mations of the sphere introduced by Sampson and Guttorp [1992], spherical harmonics used

by Hitczenko and Stein [2012], and stochastic partial differential equations used by Lindgren

et al. [2011], however, the parameters of these covariance functions do not have the intuitive

physical interpretation afforded by kernel convolution methods. Recently the BayesNSGP

package (Turek and Risser [2019], Risser and Turek [2020], and Risser [2020]) offers the

ability to use kernel convolutions in a Bayesian framework to model highly non-stationary

processes in a computationally efficient manner. This package allows for non-stationary

anisotropic modeling on the two-dimensional Euclidean domain and non-stationary isotropic

modeling on the spherical domain.

The rest of this chapter develops a kernel-convolution spatial Gaussian process treating

the surface of the ocean as a cylinder to produce a model that has spatially-varying and

interpretable parameters while remaining computationally feasible. The spatially-varying

parameter fields are represented at the second level of the hierarchical model as Gaussian
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processes themselves with hyper-parameters informed by the data. The Gaussian process

prior for the parameters allows for the longitudinal correlation length scale to vary with

respect to the changing radius of the Earth with latitude; this, in combination with the fact

that there are no Argo observations close to the poles, allows for the use of the cylindri-

cal distance rather than more computationally challenging spherical distance metric. The

methodology used in this chapter, including the covariance model, the Bayesian hierarchical

framework, and the MCMC model-fitting procedure is described in detail in Section 2.3. Fit-

ting this highly flexible Bayesian model on the number of points in the Argo dataset is still a

computational challenge, and as such a computationally efficient Vecchia process is used as

an approximation to the full Gaussian process Katzfuss and Guinness [2021]. The accuracy

of the Vecchia approximation for the kernel-convolution framework is demonstrated through

comparison results on subsets of the data in Section 2.5. The results of the model fit to the

Argo data restricted to January are displayed in Section 2.6, demonstrating its ability to

compute confidence and credible intervals for the parameter fields, ocean heat content, and

the heat content trend over time. Section 2.7 shows that the proposed model out-performs

an out-of-the-box method at predicting ocean heat content through cross-validation, and

also shows the relative importance of the various aspects of the model. The functions used

in performing this analysis are available as the R package BayesianOHC.

2.2 Data

After deployment, an Argo float proceeds through four stages. First, the float adjusts its

buoyancy to descend to 1,000m of depth. In the second stage, the float drifts at 1,000m of

depth for an average of nine days, after which it descends further to 2,000m. The float then

ascends from 2,000m to the surface, measuring temperature, salinity, and pressure at depth

intervals averaging between 50 and 100 meters. Once the float surfaces, the measurements

as well as the float’s location and time at surfacing are transmitted via satellite [Riser et al.,
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Figure 2.1: Vertical column ocean heat content values measured by Argo floats during Jan-

uary 2016. The mask used as the domain for interpolating ocean heat content is shaded in

gray.

2016].

For the purposes of developing a Bayesian model for the spatial process without the

additional challenges of modeling spatio-temporal behavior, the analysis here is restricted to

profiles observed during January, although the model developed here will be extended to all

months in Chapter 3. For the purpose of ignoring temporal correlations, each data point is

taken as occurring at the mid-point of the month. Attention is restricted to profiles observed

between 2007 and 2016 as this is the range of years included in the Argo data obtained from

Kuusela and Stein [2018], although data up to 2021 is incorporated in Chapter 3. For

various reasons, some of the observations in the dataset were not recorded to the full depth

of 2,000m, and the percentage of floats with a maximum depth greater than 1,900m ranges

from 50% in 2007 to 70% in 2016. To avoid having to extrapolate the temperature field over

depth, all floats with a maximum recorded depth shallower than 1,900m are excluded from

the analysis. In total, the data under consideration consists of 42,776 profiles, ranging from

2,581 in 2007 to 7,543 in 2016.

For notation, let yr ∈ {2007, . . . , 2016} denote the year, x = (xlat, xlon) ∈ S2 denote
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Figure 2.2: Observed heat content anomaly field, where anomalies are computed with respect

to the spatially-varying mean-field estimated in section 2.6.

spatial location in latitude-longitude coordinates, and z ∈ R+ denote depth from the surface

in meters. Define the three-dimensional temperature field at location x, depth z, and year

yr at mid-January as Tyr(x, z) measured in degrees Celsius. Since the ultimate interest is in

the integrated heat content, the proposed model will be for the two-dimensional spatial field

of heat content values integrated over depth rather than the temperature and/or salinity

fields at fixed depth levels. The vertically integrated heat content field from 0-2,000m depth

is defined as

Hyr(x) =

∫ 2000m

0m

ρcpTyr(x, z) dz (2.1)

where ρ is seawater density in kg/m3 and cp is the specific heat of seawater in J/(kg◦ C)

[Dijkstra, 2008]. The units of Hyr(x) are J/m2. For observed temperature profiles the integral

in Equation (2.1) is computed numerically by summing the values of the observations linearly

interpolated to each meter of the domain [0m,2000m]. The heat content values as observed

in January 2016 are shown in Figure 2.1. Heat content anomalies computed with respect to

the spatially-varying mean-field estimated in Section 2.6 are shown in Figure 2.2.

The main quantity of interest in this work is the total ocean heat content or OHC, which

19



is defined for a given year as the two-dimensional integral of the heat content field:

OHCyr =

∫
x∈Smask

Hyr(x) dx

where Smask ⊂ S2 is the ocean’s surface masked following Roemmich and Gilson [2009]; this

mask excludes regions of the ocean that are hard or impossible to sample with Argo floats,

including regions of the ocean where the depth is less than 2,000m, seasonally ice-covered

regions, and marginal seas such as the Gulf of Mexico and the Mediterranean. The mask

can be seen as the gray background of Figure 2.1. The primary goal of this work is to

estimate the trend in OHCyr, and quantify the uncertainty in those estimates, using the

observed Argo profiles. Let Hobs;yr(x) denote the discrete integral of the temperature profile

observed at location x and year yr. In this proposed modeling framework, the underlying

heat content field Hyr differs from the observed heat content field Hobs;yr in that the latter

contains small-scale variability that will be modeled as a nugget effect; see section 2.3.1

for further details. Denote the vector of observed values for year yr ∈ {2007, . . . , 2016} as

Hobs;yr and the concatenated vector of observed values as Hobs ≡ [Hobs;2007, . . . ,Hobs;2016].

2.3 Model Framework

The proposed approach is to use a hierarchical Bayesian framework for the ocean heat content

model, where at the first level of the hierarchy the ocean heat content field is modeled as

a Gaussian process, and in the second level, the spatially-varying model parameters are

modeled as Gaussian hyper-processes. This approach yields several advantages. First, it

provides a framework for propagating and quantifying uncertainty from both the inferred

parameter fields and the spatial prediction of ocean heat content, thereby allowing us to

determine the relative importance of each type of uncertainty. Second, the parameter fields

are allowed to vary smoothly in space according to a Gaussian process with prescribed

hyperparameters, without the need to choose a functional form. This flexibility is critical

for modeling ocean heat content due to the complex structure of the anomaly field as can
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be seen in Figure 2.1 and Figure 2.2; this will be discussed quantitatively in Section 2.7.

This section will describe the non-stationary covariance model used for the heat content

field, the hierarchical Bayesian framework including Gaussian process priors on the parameter

fields, and the estimation of the posterior distribution of OHC using MCMC sampling with

Metropolis-Hastings-within-Gibbs steps.

2.3.1 Covariance Model for the Heat Content Field

The heat content field is modeled as a Gaussian process with spatially-varying covariance

parameters in order to capture non-stationarity in the data. In the following, the mean-

field will be denoted as µ, the variance field as φ, the nugget variance field as σ2, and the

latitudinal and longitudinal correlation length scale fields as θlat and θlon respectively. For

notation these symbols will refer to the fields as functions of location, so for example the

value of the latitudinal correlation length scale at location x would be θlat(x). The field µ is

defined for any x and year yr as µ(x) = µ2007(x)+β(x)(yr−2007) where µ2007 is a spatially-

varying mean-field centered on 2007 and β is a spatially-varying trend field. Denote the

collection of parameter fields as ρ ≡ {φ, θlat, θlon, σ2, µ2007, β}. The observed and underlying

heat content fields are distributed as

Hobs;yr(x)
i.i.d.∼ N(Hyr(x), σ2(x))

and

Hyr(x) ∼ GP (µ(x), k(x,y;ρ)) (2.2)

respectively where GP is a Gaussian process such that k(x,y;ρ) ≡ cov[Hyr(x), Hyr(y)] for

any pair of locations x and y. Here, for notational simplicity k is written to be dependent

on the entire set of parameter fields ρ, although the value of k between two locations will

depend only on the values of θlat, θlon, and φ at those locations.

The nugget variance σ2 is generally interpreted as measurement error, however as mea-

surement errors in Argo temperature readings are known to be small [Riser et al., 2016]
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it will be used here to represent fine-scaled variation in the underlying field. This can be

induced, for example, by eddies, which have coherent structure but are generally smaller in

spatial and temporal scale than the observation resolution of the Argo profiles [Colling, 2001].

This form of variation is excluded from the kriging-based estimates of ocean heat content

anomaly in Equation (2.2) but is represented in the uncertainty estimates. In practice the

inverse signal-to-noise ratio σ2(x)/φ(x) is used as this field appears to have better sampling

properties, however for simplicity the exposition in this section describes the analogous case

where σ2 is sampled directly.

Kernel convolution methods as introduced by Higdon [1998b] are a straightforward and

intuitive way to integrate a spatially-varying parameter field into a valid covariance model.

The idea behind these methods is to assign a kernel to each point in the domain that gives

the local covariance properties at that location. Then a valid global Gaussian process can

be obtained by computing the convolution of the kernels between every two points. The

correlation between any two points will reflect the local behavior at both of their locations.

Paciorek and Schervish [2006b] demonstrated the use of kernel convolution methods and

find closed-form expressions for the covariance functions when the underlying domain is Eu-

clidean. For modeling the ocean heat content field it would make the most sense to measure

distances between observations using the great-circle distance, which is the shortest distance

between two points over the sphere’s surface. Unfortunately, the kernel convolutions do not

have closed-form expressions when the great-circle distance is used, and the computational

task of performing numerical integration of the convolution terms as done in Li and Zhu

[2016b] is not computationally feasible for the number of observations in the Argo data.

In principle, the spherical domain could be represented as a subset of three-dimensional

Euclidean space and the chord-length distance, which is the shortest line between two points

and is allowed to cross through the interior of the sphere, could be used. However, in R3 the

traditional method of representing anisotropy through scaling and rotating the coordinate

space would not yield parameters that could be interpreted in terms of quantities on the
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Figure 2.3: Visualization of the cylindrical distance metric. Here, dlat is the Euclidean

distance between the latitude coordinates and dlon is the great-circle distance between the

longitude coordinates.

surface. This is a limitation when modeling the ocean heat content field which, as can

be seen in Figure 2.2, exhibits significant anisotropy in the latitudinal and longitudinal

dimensions. To examine the significance of this limitation, the cross-validation study of

Section 2.7 evaluates the ability of isotropic models to predict ocean heat content.

The proposed solution to the problem of modeling anisotropy on the sphere is to represent

the Earth’s surface in latitude-longitude coordinates as a cylinder, or CL = R× S1, and use

a cylindrical distance function for the covariance model that allows for the estimation of

correlation length scales in the latitudinal and longitudinal dimensions. As Argo floats do

not travel close to the poles, the approximation of the Earth’s surface as a cylinder does

not present any modeling problems. In particular, the geometric variation in the radius

of the sphere with latitude can be accounted for in the estimation of the spatially-varying

longitudinal scale parameter. Let deuc(xlat, ylat) denote the Euclidean distance between two

points xlat, ylat ∈ R and let dgc(xlon, ylon) denote the great circle distance between two points

xlon, ylon ∈ S1. Then the shortest path between two locations on the cylinder is given by the

Pythagorean theorem as visualized in Figure 2.3. Latitudinal and longitudinal correlation

length scale parameters can be incorporated in a straightforward way, yielding the following

distance function, where x = [xlat, xlon] and u = [ulat, ulon] are arbitrary locations:

dcyl(x,u; θlat, θlon) =

√
deuc(xlat, ulat)2

θlat(x)
+
dgc(xlon, ulon)2

θlon(x)
.
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Using this distance function in the kernel convolution framework with Gaussian kernels yields

the following covariance function for arbitrary locations x and y:

k(x,y;ρ) =
√
φ(x)φ(y)

∫
u∈CL

exp
(
−dcyl(x,u; θlat, θlon)2 − dcyl(y,u; θlat, θlon)2

)
du. (2.3)

By using Gaussian covariance kernels the integral over CL can be evaluated separately in

the latitudinal and longitudinal dimensions. The integral over the Euclidean (latitudinal)

dimension can then be computed easily through the closed-form expressions of Paciorek

and Schervish [2006b]. The convolutions in the cylindrical dimension can be computed

exactly using Gaussian error functions as derived in Section 2.4.1. Section 2.4.2 presents a

faster Gaussian approximation to the exact spherical convolutions along with a simulation

study demonstrating that the approximation is highly accurate over the correlation length

scales present in the ocean heat content data. As such the approximation to the exact

convolutions is used in the following analysis, although both the approximation and exact

methods are available in the BayesianOHC package as ”cylindrical correlation gaussian”

and ”cylindrical correlation exact” respectively.

What results from Equation (2.3) is a covariance function that can be locally anisotropic

and globally non-stationary, is fast to compute, and is mathematically valid on the domain.

A major advantage of the cylindrical distance model’s anisotropy structure is that the range

parameters are directly interpretable as correlation length scales in the latitudinal and lon-

gitudinal dimensions. To preserve this interpretability the cylindrical distance model does

not allow for rotation of the anisotropy structure.

2.3.2 Hierarchical Bayesian Framework

Having prescribed the structure of the proposed covariance function for ocean heat content,

attention can be shifted to the model for the covariance parameters, which are themselves

modeled as Gaussian processes. Each parameter field has a stationary Gaussian process

prior with mean, variance, and spatial range hyperparameters. Fitting this complex model
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is made computationally feasible through the Vecchia process described in Section 2.5.

In the following, let Σobs,obs;ρ denote the covariance matrix between each pair of observa-

tions as computed by k. Because the construction here only involves data within discrete and

temporally separated months, each year can be treated as independent, and as such Σobs,obs;ρ

is a block diagonal matrix. Future work will incorporate temporal dependence structures in

the covariance matrix. Let ρ ∈ ρ denote an arbitrary parameter field. Then the prior for

each ρ ∈ ρ is a stationary Gaussian process with link function gρ, specifically

g−1ρ (ρ(x)) ∼ GP (µρ, φρ exp(−dcyl(x,y)/θρ))

where µρ, φρ, and θρ are respectively the mean, variance, and range for the parameter field

ρ. The link function gρ is exponential for the variance and correlation parameters in order

to ensure positivity, and is the identity for the mean and trend parameters. To constrain

the number of parameters involved in representing the spatial surfaces, the processes will

be represented by independent normal basis values bρ ∼ N(0, Ik) on a set of knot locations

denoted κ, where nκ refer to the number of knot points. Specifically, for each ρ define the

vector bρ to be such that for any location x the following holds:

ρ(x) = gρ(µρ + φρΣx,κ;θρΣ
−1/2
κ,κ;θρ

bρ) (2.4)

where Σx,κ;θρ is the covariance vector between x and the knot locations κ and Σκ,κ;θρ is the

covariance matrix between points in κ. Intuitively, bρ is a de-meaned and de-correlated

representation of g−1(ρ(x)) evaluated at the knot locations, from which the field can be

re-constructed through kriging. In the model fit in Section 2.6, κ is chosen to contain

knot locations at every 16 degrees in the longitudinal direction and every 8 degrees in the

latitudinal direction. Restricting the knot locations with the data mask expressed in Figure

2.1, this results in nκ = 253 basis values for each parameter field. This knot selection is

somewhat arbitrary, and more principled methods for selecting knot point locations have

been explored, such as Katzfuss [2013] who incorporate the knot locations into the Bayesian
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Stationary GP Hyperparameters

Non-Stationary GP Parameter Fields

Ocean Heat Content Values

Figure 2.4: Diagram of the hierarchical Bayesian model for the ocean heat content field.

hierarchy through a reversible-jump process, however such approaches are not considered

here. The Bayesian hierarchical framework used here is summarized in Figure 2.4.

2.3.3 MCMC Sampling Procedure

To estimate the joint distribution Markov Chain Monte Carlo (MCMC) with Gibbs steps will

be used for each of the parameter fields. The marginal distributions for the correlation length

and variance parameters must be approximated using Metropolis-Hastings steps, however

µ2007 and β can be sampled jointly from their Gibbs marginal distribution given by the

formula

[bµ2007 ,bβ]|Hobs,bρ\{µ2007,β} ∼ N(µµ;post,Σµ;post) (2.5)

where

Σµ;post = (MTΣ−1obs,obs;ρM + I2nκ)−1,

µµ;post = Σµ;post

(
MTΣ−1obs,obs;ρHobs

)
,

and M ∈ Rnobs,2nκ is the design matrix for bµ2007 and bβ. In the conditional distribution of

Equation (2.5), ”\” is the set minus operator and as such bρ\{µ2007,β} denotes the set of basis

parameters for all of the parameter fields excluding µ2007 and β.

Now the MCMC sampling procedure can be outlined. For each iteration t > 1 after

initialization the following steps are performed:
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• For a given ρ ∈ {θlat, θlon, σ2, φ}, propose basis point candidates through independent

perturbations, specifically b(t)
ρ ∼ N

(
b(t−1)
ρ ,

(
σ
(t)
ρ;prop

)2
Inκ

)
where σ

(t)
ρ;prop is the pro-

posal standard deviation at the current iteration. The independent perturbations on

bρ can be viewed as perturbing log ρ(t) by a spatially correlated field that shares the

spatial range of log ρ(t).

• Accept or reject the entire basis vector, which describes the full spatial field, using the

Metropolis-Hastings acceptance ratio on

P (b(t)
ρ |Hobs,bρ\{ρ}) ∝ P (Hobs|ρ(t)(xobs),bρ)P (b(t)

ρ )

where bρ\{ρ} denotes the set of basis points corresponding to all of the fields except for

ρ at their most recent iteration and xobs denotes the full set of observation locations.

The values of ρ at the observation locations can be evaluated through Equation 2.4.

Here, the data likelihood term on the right is multivariate Gaussian with covariance

matrix Σobs,obs;ρ and the prior term P (b(t)
ρ ) is the product of independent standard

normal densities.

• Repeat the previous two steps for sampling b(t)
ρ for each remaining ρ ∈ {θlat, θlon, σ2, φ}.

• Sample b(t)
µ2007

and b
(t)
β jointly from their conditional distribution given in Equation

(2.5).

• Update the variances σ
(t)
ρ;prop using the adaptive MCMC algorithm for Metropolis-

within-Gibbs sampling as described in Roberts and Rosenthal [2009], which updates

the proposal variances to achieve a desired acceptance rate chosen to be .44.

Through this approach, MCMC samples of coherent spatial fields for each model param-

eter can be obtained. In particular, the mean-field parameters are modeled jointly with the

covariance parameters, which will generally lead to improved estimates of both. Further, the

resulting credible intervals will incorporate the uncertainty induced by estimating the mean
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and the spatially-varying trend. Quantifying the trend is particularly valuable as for many

purposes the primary concern is with the trend in ocean heat content anomaly over time

rather than the values of the anomalies themselves.

2.3.4 Posterior Distributions

For a fixed set of parameter values sampled from the posterior, the distribution of the

globally-integrated ocean heat content, OHCyr, is normal and can be denoted OHCyr|ρ,xyr;obs ∼

N(µOHCyr , σ
2
OHCyr

) with values

µOHCyr = Σglobe,obs;ρΣobs,obs;ρHobs;yr and

σ2
OHCyr

= Σglobe,globe;ρ − Σglobe,obs;ρΣ−1obs,obs;ρΣobs,globe;ρ (2.6)

where Σglobe,obs;ρ denotes the covariance vector between the observations locations and the

global integral and Σglobe,globe;ρ denotes the variance of the global integral. When µOHCyr

and σOHCyr are computed from the sampled parameters ρ(t) they will be referred to as

µ
(t)
OHCyr

and σ
(t)
OHCyr

. The entries in these covariance matrices involve integrals over the global

domain which must be computed numerically. Let xgrid denote the grid-points to be used

for numeric integration; then the approximation of ocean heat content can be written as

OHCyr = aTglobeHglobe;yr where Hglobe;yr are the unknown ocean heat content values at the

grid-points and aglobe is the vector of grid-cell areas corresponding to xglobe. Then the above

formulas apply replacing Σglobe,globe with Σgrid,grid. In the results reported in Section 2.6, OHC

posterior distributions are calculated using a grid partitioning the domain with a resolution

of 1◦ × 1◦.

2.4 Cylindrical Kernel Convolutions

This section will outline how the cylindrical kernel convolutions can be computed exactly

using Gaussian error functions in the spherical dimension. Then a simulation study will
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demonstrate that a Gaussian function approximation to the exact convolutions is accurate

over the range of longitudinal correlations present in the Argo data.

2.4.1 Formulas for Exact Convolutions

The kernel convolution covariance described in Equation (2.3) in Section 2.3.1 can be written

as

k(x,y;ρ) = φ(x)φ(y)

∫
u∈CL

exp
(
−dcyl(x,u; θlat, θlon)2 − dcyl(y,u; θlat, θlon)2

)
du

=

∫
R

exp

(
deuc(xlat, ulat)

2

θlat(xlat)
− deuc(ylat, ulat)

2

θlat(ylat)

)
du

∫
S1

exp

(
dgc(xlon, ulon)2

θlon(xlon)
− dgc(ylon, ulon)2

θlon(ylon)

)
du

Let Gb
a(x, y; θx, θy) =

∫ b
a

exp
(
− (u−x)2

θx
− (u−y)2

θy

)
du denote the Gaussian convolution with

generic parameters and limits of integration. Through completing the square it can be seen

that

Gb
a(x, y; θx, θy) = exp

(
(y − x)2

θx + θy

)∫ b

a

u− xθx+yθy
θx+θy

θxθy/(θx + θy)
du

=
√
π
√
θxy exp

(
(y − x)2

θx + θy

)[
Φ

(
b;
xθx + yθy
θx + θy

,
√
θxy

)
− Φ

(
a;
xθx + yθy
θx + θy

,
√
θxy

)]
(2.7)

where θxy = θxθy
θx+θy

and Φ denotes the normal cumulative density function (CDF) with mean

and variance given as the first and second arguments respectively. By taking the limits of

Equation (2.7) it can be seen that the latitudinal dimension term of the kernel convolution

has a simple closed-form expression:∫
R

exp

(
deuc(xlat, ulat)

2

θlat(xlat)
− deuc(ylat, ulat)

2

θlat(ylat)

)
du = G∞−∞(xlat, ylat; θlat(xlat), θlat(ylat))

=
√
π

√
θlat(xlat)θlat(ylat)

θlat(xlat) + θlat(ylat)
exp

(
−1

2

(xlat − ylat)2

θlat(xlat) + θlat(ylat)

)
(2.8)

For the cylindrical integral the locations x and y are first rotated to x′ = 0 and y′ =

dgc(x, y) respectively, a transformation which preserves the great-circle distance between the

two points. Since u ∈ [−π, π] the first distance term becomes dgc(x
′, u) = (x′ − u)2. For
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the second distance term, the integral can be split between u ∈ (y− π, π) where dgc(y
′, u) =

(y′ − u)2 and u ∈ (−π, y − π) where dgc(x
′, u) = (y′ − 2π − u)2. This yields∫ π

−π
exp

(
−dgc(x

′, u)

θx
− dgc(y

′, u)

θy

)
du

=

∫ y′−π

−π
exp

(
−(x′ − u)2

θx
− (y′ − 2π − u)2

θy

)
du+

∫ π

y′−π
exp

(
−(x′ − u)2

θx
− (y′ − u)2

θy

)
du

= Gu′−π
−π (x′, y′ − 2π; θx, θy) +Gπ

y′−π(x′, y′; θx, θy). (2.9)

Then by substituting in xlon and θlon(xlon) into the above equation the spherical convolution

can be computed using two evaluations of Equation (2.7). This is a closed form expression

involving the use of the Gaussian CDF, which has pre-computed evaluation functions in most

programming languages. The G function described above is available in the BayesianOHC

package as the function “gaussian convolution” and the exact convolutions in the longitu-

dinal and latitudinal dimensions are available as “cylindrical correlation exact” and “eu-

clidean correlation convolution” respectively. It should be noted that the implementation

follows Paciorek and Schervish [2006b] and scales the convolutions by
√
2

θlon(xlon)1/4θlon(xlon)1/4
√
π

and
√
2

θlat(xlat)1/4θlat(xlat)1/4
√
π

respectively to ensure that the correlation between a location and

itself evaluates to one.

2.4.2 Simulation Study Justifying the Use of Gaussian Approximation

While Gaussian CDFs are faster to compute than estimating the integrals in the convolu-

tion numerically, evaluating the pre-computed CDF still takes longer to compute than the

latitudinal convolutions using Equation (2.8). One would expect that when the correlation

length scales are small relative to the circumference of the Earth, the circular convolutions

will behave similarly to the Euclidean convolutions and the following alteration of Equation

(2.8) could be used to approximate the convolution:

=
√
π

√
θlon(xlon)θlon(ylon)

θlon(xlon) + θlon(ylon)
exp

(
−1

2

dgc(xlon, ylon)2

θlon(xlon) + θlat(ylon)

)
. (2.10)
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In order to determine the size of the correlation lengths that would be required for

Equation (2.10) to be a sufficient approximation for the exact convolutions, a simulation was

performed to compare the two correlation functions on data randomly generated according

to known parameters. First, one hundred locations x were simulated from the uniform

distribution of the unit circle. Then a dense grid of θ was generated corresponding to an

effective range length between zero and 120◦ degrees, where “effective range” here is the

distance at which the correlation becomes less than 0.05. For each value of θ two types of

correlation structures were simulated: a stationary structure where θ(x) = θ for all locations

x and a non-stationary structure θ(x) = cos(x)θ/2+θ. In the non-stationary structure, local

range parameters vary between θ/2 and 3θ/2 with θ being the mid-point of the parameter

field. For each value of θ one hundred sets of observations were randomly generated using

covariance matrices generated from the exact convolution method for both the stationary

and non-stationary correlation structures. Then for each simulated set of data, maximum

likelihood estimates (MLEs) were computed according to both the exact method and the

approximation method, and the average was computed over the 100 simulations. Finally

fractional errors of the approximation method MLEs over the exact method MLEs where

calculated, specifically θ̂approx−θ̂exact
θ̂exact

where θ̂ refers to the MLEs averaged over the one hundred

simulations. Figure 2.5 shows the fractional errors for the stationary and non-stationary

correlation structures over each value of θ displayed in terms of the effective range in degrees.
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Figure 2.5: Fractional errors of the exact method over the Gaussian approximation. The

horizontal line is at the 99th percentile of the initial condition distribution of θlon.

It can be seen that the approximation is nearly exact for effective range parameters less

than 80◦, beyond which the approximation method begins to yield increasingly larger nega-

tive errors. This trend is the same between the stationary and non-stationary simulations.

The fact that the approximation does increasingly worse at high values of the range parame-

ter is to be expected, as at this point the value of the exact convolution will begin to diverge

from the Gaussian approximation.

The horizontal line in Figure 2.5 shows the 99th percentile of θlon in the fitted fully non-

stationary cylindrical distance model, which corresponds to an effective range of 90.13. At

this value, the stationary and non-stationary fractional errors are −.6% and −.2% respec-

tively. The small error of the approximation at the largest correlation length scales present

in the ocean heat content field demonstrates that the Gaussian approximation to the exact

spherical convolutions is sufficient for modeling ocean heat content. It should be noted that

at the initial configuration used for the MCMC configuration, the 99th quantile of the ef-

fective ranges was 65.40◦ at which point the fractional errors from the simulation are less

than a hundredth of a percent. Due to its sufficiency and computational advantages, the

approximation will be used in the following results, and is available in the BayesianOHC
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package as the function “cylindrical correlation gaussian”.

2.5 Vecchia Processes for Feasible Bayesian Estimation

The most computationally intensive step of the Metropolis-Hastings procedure is computing

the log-likelihood term. The log-likelihood term can be written as

logP (Hobs|ρ) ∝ − (Hobs − µ(xobs))
T Σ−1obs,obs (Hobs − µ(xobs))− log det(Σ−1obs,obs)

where the dependency of Σobs,obs on ρ is omitted for notational simplicity. The usual way to

compute the inverse and log-determinant terms in the above equation is to first compute the

Cholesky decomposition of the covariance matrix, resulting in the upper-triangular Cholesky

factor C which satisfies the property CTC = Σobs,obs. Then the likelihood evaluation becomes

logP (Hobs|ρ) ∝ −
(
C−1(Hobs − µ(xobs)

)T
(C−1(Hobs − µ(xobs)))− 2

n∑
i=1

logCii. (2.11)

Inverting an upper triangular matrix is computationally simple, so the primary burden is

computing the Cholesky factorization. This step has a computational complexity of O(n3),

meaning that the computation time increases cubically with the number of observations. For

example, in a simple experiment on a standard laptop computer, computing the likelihood for

the 2,581 Argo observations in 2007 takes around 7 seconds, while computing the likelihood

for the 7,542 observations in 2016 takes around 183 seconds. While a single likelihood

evaluation is feasible, since each full Metropolis-Hasting step requires four covariance matrix

inversions it would take over five months to compute 20,000 samples using the Cholesky

method even when computing each year’s likelihood in parallel.

2.5.1 Vecchia Approximation

To render Bayesian estimation feasible the Vecchia approximation of Vecchia [1988] is used.

This technique approximates a Gaussian process by writing the likelihood as a series of con-
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ditional likelihoods and then restricting the set of observations used by the conditional likeli-

hoods. Specifically, letHobs,1, . . . , Hobs,nobs
denote the set of observations and let g(1), . . . , g(nobs)

denote sets of integers such that g(1) = ∅ and g(j) ⊆ {1, . . . , j − 1}. When g(j) is more

than one integer, Hobs,g(j) will denote the set of observations corresponding to the indices in

g(j). With this the Vecchia likelihood is defined as

`Vecchia(Hobs) =

nobs∑
j=1

`(Hobs,j|Hobs,g(j)) (2.12)

where `(Hobs,j|Hobs,g(j)) is the conditional log-likelihood of Hobs,j given Hobs,g(j). When g(j) =

{1, . . . , j − 1}, each observation is conditioned on all of the observations preceding it in the

ordering, and the Vecchia log-likelihood is equivalent to the Gaussian process log-likelihood.

When g(j) is a strict subset of the preceding indices, then the Vecchia likelihood is an

approximation. The computation of each `(Hobs,j|Hobs,g(j)) term requires computing the

Cholesky factorization for observations within g(j), so computational gains are achieved

when the g(j) are chosen to be small. Generally, the conditioning sets are chosen to be such

that |g(j)| < m for some m << nobs so that the computation time of the Vecchia likelihood

is O(nm3), as opposed to O(n3) for the full likelihood. The parameter m is tunable, with

larger values yielding a more accurate approximation and smaller values enabling faster

computation times. An additional advantage of the Vecchia likelihood is that the terms in

Equation (2.12) can be computed in parallel whereas parallelization cannot be used directly

when computing the Cholesky factorization for the full covariance matrix.

There are three steps for constructing the Vecchia process for a particular set of obser-

vation locations. The first step is to order the locations, which is important because the

conditioning sets for a particular observation can only include observations that precede it

in the ordering. This step uses the max-min distance ordering advocated for by Guinness

[2018]. The second step is to construct the conditioning sets such that each set has no more

than m observations. The conditioning sets are taken to be the observation’s m-nearest

neighbors under the logic that nearby observations are the most influential and as such will
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yield the closest approximation to the Cholesky likelihood. The third step is to group the

observations whose conditioning sets have substantial overlap. Computing the conditional

likelihoods on the grouped observations has been shown by Guinness [2018] to increase the

accuracy of the approximation while simultaneously decreasing the computation time. These

three steps must be done separately for each year of the Argo data, as the observation lo-

cations differ between the years. However, since the conditioning sets and groups do not

depend on the parameters, the Vecchia construction needs to only be done once before the

beginning of the sampling procedure.

For a particular ordering, conditioning configuration, and grouping, it can be shown that

the Vecchia likelihood induces a valid stochastic process on the domain of observation loca-

tions [Datta et al., 2016]. This ”Vecchia process” can be seen as an approximation of the

full Gaussian process with more computationally efficient likelihood evaluations. Under this

view the Bayesian inference procedure described in Section 2.3 can be used with the Vec-

chia process by simply substituting the full Cholesky likelihood with the Vecchia likelihood.

Furthermore, the inverse Cholesky decomposition of the covariance matrix implied by the

Vecchia process can be constructed directly as a sparse matrix. To see this, following the

notation of Katzfuss and Guinness [2021] the summands in Equation (2.12) can be rewrit-

ten as `(Hobs,j|Hobs,g(j)) = N (Hobs,j|BjHobs,g(j), Dj), where N indicates the normal density,

Bj = k(xobs,j,xobs,g(j))k(xobs,g(j),xobs,g(j))
−1, and Dj = k(xobs,j,xobs,j)− Bjk(xobs,g(j),xobs,j).

Then the elements of the inverse Cholesky factor U ∈ Rnobs×nobs are Ujj = D
−1/2
j for all j,

Uij = −(Bj)
T
i,g(j)D

−1/2
j for i ∈ g(j), and Uij = 0 for i /∈ g(j). The sparse matrix U can be

used in place of C−1 in Equation (2.11) to compute the Vecchia likelihood. This is no more

computationally intensive than computing the sum in Equation (2.12) due to U’s known

sparsity structure determined by the conditioning sets.

It can be seen from the construction of U that for any two observations j < i, when

j /∈ g(i) the partial correlation between Hobs,j and Hobs,i will be zero, or in other words

Hobs,j and Hobs,i will be conditionally independent. As such the Vecchia process can be
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seen as an alteration of the full Gaussian process where some conditional dependencies are

removed. It should be noted that this does not necessarily mean that Hobs,j and Hobs,i are

independent, as there could be a path of conditional dependencies between observations

through the conditioning sets. As such the nearest-neighbors method of constructing the

conditioning sets does not simply eliminate dependencies between distant observations, as

is done with other likelihood approximation methods such as covariance tapering. This is

important to note in the non-stationary cylindrical model since the Vecchia process is used

to estimate spatially-varying correlation length scales, which could potentially be biased if

only dependencies between nearest neighbors were taken into account in the likelihood.

2.5.2 Predictions

As discussed in section 2.3.4, the estimate of globally integrated heat content is calculated as

the area-weighted sum of unobserved ocean heat content values at grid-points along a grid

densely partitioning the domain. This is written as OHCyr = aTglobeHglobe;yr, where Hglobe;yr

are the unknown heat content values at the grid-points and aglobe are the areal weights of the

grid-cells. For sufficiently dense grids, computing the joint conditional distribution over the

grid-points as in Equation (2.6) is computationally infeasible. As such, in order to compute

the posterior distribution of heat content, it is essential to be able to efficiently compute

the joint posterior distribution for a large number of observations. Fortunately, this can

be done by augmenting the Vecchia process described above to include the grid-points at

which the heat content distribution will be predicted. To do this the ”observation-first”

ordering in Katzfuss et al. [2020b] is used, which involves ordering the prediction locations

Hpred,nobs+1, . . . , Hpred,nobs+ngrid
, appending them to the ordering of the observation locations,

and then computing the nearest-neighbor conditioning sets for the entire set of indexed

locations 1, . . . , nobs +ngrid. Since conditioning sets can only contain preceding observations,

the conditioning sets of the observations remain the same while the conditioning sets of

prediction locations can contain any observation location as well as any prediction location
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preceding it in the ordering.

Recall that U is the inverse Cholesky factor for the Vecchia process, and let W =

UT
pred,allUall,pred. Then it can be shown that the distribution of the prediction values con-

ditioned on the observations is Hpred|Hobs = N(−W−1Upred,allUall,obsHobs,W
−1). It follows

that the posterior distribution of ocean heat content given the observations is

OHCyr|Hobs;yr ∼ N(−aTglobeW−1Upred,allUall,obsHobs;yr, a
T
globeW

−1aglobe). (2.13)

As U, and subsequently W, are sparse, the terms µOHCyr ≡ −aglobeW−1Upred,allUall,obsHobs;yr

and σOHCyr ≡ aTglobeW
−1aglobe are both fast to compute. If the full Gaussian process was used

to compute this posterior distribution using Equation (2.6), every element of the dense co-

variance matrix of grid-points would need to be evaluated, which is intractable for sufficiently

dense grids.

Figure 2.6: Basin definitions used for evaluation of the accuracy of the Vecchia approxima-

tion.

2.5.3 Evaluating the Accuracy of the Vecchia Process

The accuracy of the Vecchia likelihood as an approximation to the log-likelihood depends

on the ordering, conditioning sets, and grouping used in the construction. In particular, the

maximum size of the conditioning sets, determined by the parameter m, needs to be chosen

to balance the trade-off between accuracy and computation time. In order to assess the
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accuracy of the Vecchia process for the fully non-stationary cylindrical model for different

values of m, the global ocean is divided into nine basins. These basins are small enough

such that the likelihoods and heat content predictions can be computed easily using the full

Cholesky decomposition so that the results from the Cholesky and Vecchia methods can be

compared. The basins are defined using the latitudinal and longitudinal limits displayed

in Figure 2.6. It should be noted that these basins are for evaluating the approximation

accuracy only and that the results in Section 2.6 are computed on the global ocean.

To evaluate the accuracy of the Vecchia approximation on the ocean heat content field, the

model described in Section 2.3 is fit independently for each of the nine basins using both the

Cholesky method and the Vecchia approximation method for each of m ∈ {10, 25, 50, 100}.

Using the resulting posterior distributions, the mean, trend, and anomaly fields were inter-

polated for each basin independently, and globally integrated values were computed using

the results within each basin. For the Vecchia process with conditioning parameter m the

globally integrated values of the mean, trend, and anomaly fields will be denoted as µ
vecc(m)
2007 ,

βvecc(m), and anom
vecc(m)
yr respectively. Analogously the globally integrated values for the the

Cholesky method will be referred to as µchol
2007, β

chol, and anomchol
yr . By separating the mean,

trend, and anomaly fields the degree to which the Vecchia process accurately approximates

these three components can be evaluated. The error in the mean-field would be expected

to be the smallest, as the mean-field is highly informed by the values in the data and is

not particularly sensitive to the estimated correlation structure. On the other hand, the

anomaly field would be expected to have the largest errors, as the predicted anomaly values

at unobserved locations are highly sensitive to the correlation structure.

Treating the Cholesky values as ”truth”, fractional errors
|µvecc(m)

2007 −µchol2007|
µchol2007

, |β
vecc(m)−βchol|

βchol ,

and
|anomvecc(m)

yr −anomchol
yr |

|anomchol
yr |

are displayed in Table 2.1 for each value of m. For the fractional

error of the anomaly fields the median over years is displayed. For m = 10 and m = 25,

the mean-field has smaller fractional errors than the trend or anomaly fields, as expected.

The accuracy of the mean-field does not improve noticeably when increasing m beyond 25,
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m mean-field trend field anomaly field

10 8.078×10−4 .05029 .7421

25 7.764×10−5 1.400×10−3 .4081

50 2.987×10−5 5.498×10−5 1.665×10−3

100 1.87×10−5 1.963×10−5 1.656×10−6

Table 2.1: Fractional errors for the mean, trend, and anomaly fields of the Vecchia approx-

imation as measured against the analogous values computed using the Cholesky method.

Global fields were constructed from results obtained from fitting the model to each of the

nine basins in Figure 2.6 independently.

however the error at that level is acceptably small. The approximation error of the trend

and anomaly fields are relatively more substantial at m = 10, with fractional errors of 5%

and 74% respectively. They improve only marginally when increasing m to 25 but see a more

substantial improvement when increasing to m = 50, with errors around five one-thousandth

of a percent and a tenth of a percent respectively. When further increasing to m = 100, the

approximation errors for the mean and trend fields do not meaningfully change, although

the error for the anomaly field does noticeably improve. As the fractional error in the trend

field does not decrease after m = 50, and at m = 50 the level of error in the anomaly fields

is acceptable, m = 50 will be used for the Vecchia process in the global model fit.

2.6 Results

2.6.1 Initial Configuration

As the number of parameters involved in the proposed model is large, it is particularly

important to initialize the MCMC sampler at a ”good” initial configuration for the sampler

to converge in a reasonable number of iterations. To obtain a suitable initial configuration,
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a moving-window estimation method was used analogous to that developed by Kuusela and

Stein [2018] to obtain values for the spatially-varying parameter fields. In this approach,

the domain is partitioned according to a grid, and at each grid-point, the observations

within a window centered around that point are considered to follow a stationary Gaussian

process with process variance, nugget variance, latitudinal range, longitudinal range, mean,

and trend parameters. Since each of these windows contains a relatively small number of

observations, the locally stationary parameters can be estimated quickly using maximum

likelihood estimation with Cholesky factorizations.

Parameters were estimated using windows of size 20◦×20◦ centered at each grid-point of a

6◦×6◦ grid. Note that the 6◦×6◦ grid used for the moving window parameter estimates is finer

than the 8◦× 16◦ resolution of knot points used in the global model; this is done so that the

hyperparameters of the parameter fields can be estimated. To estimate the hyperparameters,

stationary and isotropic Gaussian processes were fit to the moving window output for each

of the parameter fields, obtaining an estimate of the hyper range, mean, and variance for

each process. As described in Section 2.3, the correlation length and variance parameters

are assumed to follow a log-normal Gaussian distribution. The hyper-mean of the trend

field β is constrained to be zero to ensure that the estimate is fully informed by the data.

Additionally, the mean and trend fields were assumed to have the same correlation length

scale parameter. The results are shown in Table 2.2, where the hyper-prior distributions

are summarized using quantiles since the log-normally distributed priors are non-symmetric.

The range hyperparameter for each process is shown in the second column as the ”effective

range”, which is defined as the cylindrical distance in degrees at which the correlation is

equal to 0.05, and is denoted as γlat and γlon for effective latitudinal and longitudinal range

respectively.

The initial configuration for the MCMC sampler was obtained by kriging the estimated

parameters from the moving window approach onto the knot locations using the hyperpa-

rameters described in Table 2.2. Figure 2.7 displays the initial configuration interpolated
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(a) Effective longitudinal range γlon

(b) Effective latitudinal range γlat

(c) Process standard deviation
√
φ

(d) Nugget standard deviation σ

Figure 2.7: Initial parameter fields obtained from fitting smooth hyperparameter surfaces to

the parameter fields obtained from a moving-window approach.
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Effective Range q.25 q.5 q.75 Units

γlat 39.97◦ 0.89 2.50 6.98 Degrees

γlon 44.93◦ 0.88 5.07 29.08 Degrees

σ2/φ 36.59◦ .0034 0.04 0.47 Unitless
√
φ 39.24◦ 1.29 2.25 3.92 GJ/m2

µ2007 34.88◦ 19.70 49.24 78.78 GJ/m2

β 34.88◦ -1.53 0.00 1.53 (GJ/m2)/year

Table 2.2: Basis field hyperparameters as estimated using maximum likelihood estimation

on parameter fields obtained from a 20◦ × 20◦ moving window estimation. The range hy-

perparameter and the correlation length scale fields γlat and γlon are reported in terms of

effective range, which is the distance at which the correlation is 0.05. Quantiles are reported

due to the non-symmetric nature of the log-normal distribution used for the covariance pa-

rameters. The mean of the trend parameter field β was manually constrained to be zero to

avoid influencing its estimation in the Bayesian procedure.

over a dense grid for display purposes. Similar to Table 2.2, standard deviations
√
φ and

effective ranges γlon and γlat are shown rather than the actual parameter fields. While this

configuration should not be used to quantify global OHC due to the fact that the estimates

were derived assuming local stationarity, comparisons to the 2016 anomaly field displayed

in Figure 2.2 yield insights regarding the ocean heat content correlation structure. First of

all, it can be seen from the initial configuration that the correlation length scales around

the equatorial regions are much larger than at higher latitudes, and are particularly large in

the equatorial Pacific. This phenomenon can be seen in the heat content anomaly field for

2016 through the coherent structures of positive anomalies particularly visible in the eastern

equatorial Pacific. These anomalies primarily extend in the longitudinal direction and to a

smaller extent in the latitudinal direction. Anisotropy is reflected in the initial configura-

tion, where it can be seen that the scale of the effective longitudinal correlation lengths is
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generally much larger than those in the latitudinal plot, a difference that is particularly stark

in the equatorial Pacific. The phenomenon of latitudinal correlation lengths being generally

smaller than longitudinal correlation lengths makes sense from a physical perspective, as

changes in latitude are associated with changes in climate to a much greater degree than

changes in longitude.

The areas of the ocean that appear to have particularly high variability in the 2016

anomaly field roughly correspond to the areas of high variance in the initial configuration.

Four regions in particular stand out in both of these plots; the North Atlantic east of the

United States, the Pacific Ocean east of Japan, the South Atlantic east of Argentina, and a

large swath of ocean moving towards the south-east from South Africa to South Australia.

It should be noted that most of these regions align with known ocean currents, in particular

the Gulf Stream of the North Atlantic, the Kuroshio Current off the coast of Japan, the

South Atlantic current off of Argentina, and the Arctic circumpolar current in the Southern

Ocean [Colling, 2001]. This is unsurprising, as the currents generate large anomalies of either

positive or negative sign depending on the particular position and behavior of the current

at a given time.

In theory, the choice of initial configuration will not impact the results of the MCMC

sampler if a sufficiently long chain is sampled. However, running the sampler on random

initial configurations did not converge after 10,000 iterations. Starting from this initial

configuration considerably improves the sampler’s convergence properties as will be discussed

in Section 2.6.2. Sampling the parameter fields and the hyperparameters simultaneously is

particularly challenging due to the complexity of the posterior distribution. To avoid this

issue, the hyperparameter values obtained from the moving window approach were treated

as fixed and not sampled. This can be interpreted as imposing an informative prior which

constrains the variability of the parameter fields to reasonable levels.
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(a)
√
φ 5th and 95th percentile samples

(b) γlon 5th and 95th percentile samples

(c) γlat 5th and 95th percentile samples

Figure 2.8: Samples from the posterior distribution with mean values corresponding to the

fifth (left figures) and ninety-fifth (right figures) percentiles of the spatial averages of each

field from the posterior distribution.
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2.6.2 Posterior Distributions

Starting from the initial configuration obtained in the previous section, the MCMC sampler

was run for 20,000 iterations on a desktop computer with 16GB of RAM running Ubuntu

20.04 and using ten cores for the parallel computation of the likelihood evaluations and OHC

estimations. The ocean heat content distribution was computed using Equation (2.13) on

a 1◦ × 1◦ grid every ten iterations. To assess convergence, the Heidelberger and Welch test

[Heidelberger and Welch, 1981] was run on the sequence of log posterior densities, yielding

convergence after a burn-in period of 5,401 iterations. The results that follow are computed

on the posterior samples with the burn-in period removed.

To get a sense for the posterior distribution of the parameter fields, for each parameter

field the average value across space was computed for each sample, and fields corresponding

to the 5th and 95th percentiles of the distribution were identified. These parameter configura-

tions for the standard deviation
√
φ, effective latitudinal range θlat, and effective longitudinal

range θlon are displayed in Figure 2.8. Note that these are not the point-wise 5th and 95th

percentiles of the parameter estimates, which would not retain the spatial structure present

in each sample, but rather spatially coherent members of the posterior distribution. The

most noticeable difference between these samples and the initial configuration displayed in

Figure 2.7 are the higher longitudinal range parameters in the samples, particularly notice-

able in the equatorial West Pacific. This could be due to the fact that the moving-window

parameter method may underestimate high values of the range parameter due to the fact

that its estimates are based on data from only a 20◦ × 20◦ window. Otherwise, the samples

appear to be largely similar to the initial parameter fields, further highlighting the benefit

of starting the MCMC sampler at a plausible initial configuration.

While the 5th and 95th percentile configurations in Figure 2.8 are fairly similar to each

other for each of the parameter fields, the subtle differences between the percentile maps show

that there are regions with higher posterior variability. In the process standard deviation
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Figure 2.9: Estimation of uncertainty in the ocean heat content values for January of each

year. Confidence intervals in solid red correspond to uncertainty arising from the variability

of the heat content field. Credible intervals in dotted blue include the additional uncertainty

incurred from parameter estimation. Intervals and posterior mean are also shown for the

increasing trend.
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maps in Figure 2.8a, differences can be seen in the value and areal extent of the several

highly-variable current regions discussed before, indicating some uncertainty in the marginal

standard deviation values in these areas. For the longitudinal range maps in Figure 2.8b,

variability can be seen in the higher-ranged area in the western Pacific, which is the region

that changes the most between the initial configuration and the posterior samples. It can

also be seen that variability in the distribution of longitudinal ranges in the Southern Ocean,

which is likely due to the fact that parameters in this region are more difficult to estimate

due to the smaller number of observations near the extent of Antarctic sea ice, as well as the

large variability in the data. For the posterior maps for latitudinal range in Figure 2.8c, it

can be seen that variability in the value and extent of the high-ranged area in the equatorial

regions, as well as in smaller areas such as south-east of Argentina and around New Zealand.

Overall, however, the variability in the posterior distribution appears to be small for each

of the parameter fields, indicating that the uncertainty in the ocean heat content and trend

estimations induced by uncertainty in the estimation of the parameters will be relatively

low.

The ocean heat content mean and variance were calculated for each year for every ten

samples after the burn-in period. For each year, the median OHC value over the posterior

samples and the 95% confidence interval µmedian
OHCyr

± 1.96σmedian
OHCyr

were calculated; these are

shown as solid red bars in Figure 2.9. This represents the uncertainty range induced by

the interpolation of the observations to unobserved locations and can be interpreted as a

frequentist confidence interval as it does not account for the priors on the parameters. To

compute the Bayesian credible interval for each year, for each iteration t of the sampler 100

heat content values were re-sampled from the marginal OHC distribution N (µ
(t)
OHCyr

, σ
(t)
OHCyr

).

Then 5th and 95th percentiles were computed from the pooled re-resampled OHC values.

The re-sampling step ensures that the credible intervals accurately take into account both

the interpolation uncertainty from σ
(t)
OHCyr

as well as the parameter uncertainty from the

variability of µ
(t)
OHCyr

over the samples. These intervals are displayed as dotted blue bars
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in Figure 2.9. It can be seen that both of the intervals are wider in earlier years, which

is to be expected since there are fewer data points in those years. The credible intervals

are meaningfully wider than the confidence intervals in earlier years, although the difference

becomes small in later years, which is to be expected since the parameter values have a greater

effect on the interpolation when there are larger gaps in the data. An analogous procedure

was done to obtain uncertainty intervals for the estimated trend; for this parameter, the

entire trend field was re-sampled using the posterior covariance matrix conditioned on the

other parameters at each iteration. The 95% credible interval was obtained by identifying

the 2.5% and 97.5% percentiles of the integrated trend values over the re-sampled fields.

The 95% confidence interval, computed with the configuration corresponding to the median

integrated trend value, is displayed with solid red lines in Figure 2.9, while the 95% credible

interval is displayed as dotted blue lines. The globally integrated trend is positive and highly

significant, with a p-value of .00165 obtained from the credible interval.

Re-sampling not just the globally integrated trend values but the entire field yields addi-

tional information about the spatial variability in the ocean heat content trend. Figure 2.10

displays samples of the trend fields whose globally integrated values equal the 5th (panel a)

and 95th (panel b) percentiles of the re-sampled distribution. It can be seen that variability

in the trend field is higher than that in the correlation and variance parameters in Figure

2.8. Notable features include the cooling trend in the western Pacific and the warming trend

in the eastern Pacific, although there appears to be variability in the intensity and areal

extent of these trends. There is more confidence in a warming trend in the ocean south-east

of Brazil with little apparent variation in the intensity or spatial extent between the two

percentile maps. The North Atlantic, on the other hand, displays variable spatial patterns,

with the 5th percentile field showing a negative trend southeast of the United States that is

not present in the 95th percentile map, and while the two percentile fields agree on a cooling

trend in the far North Atlantic they differ on its intensity. Other regions where the trend

pattern appears largely uncertain are in the Indian Ocean and the Southern Ocean.
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(a) 5th percentile trend field

(b) 95th percentile trend field

(c) Posterior probability of positive trend

Figure 2.10: Sub-figures (a) and (b) show samples of the trend posterior whose integrated

values are the fifth and ninety-fifth values of the posterior distribution, which are 4.660 ×

1021J/year and 16.032×1021J/year respectively. Sub-figure (c) gives the posterior probability

that an ocean pixel is gaining heat; values less than 10% indicate confidence that the trend

is negative.
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These two percentile maps can only give an approximate view of the variability in the

trend field, as there is a high-dimensional space of fields whose globally integrated values

lie at the 5th and 95th percentiles of the posterior distribution. To obtain a better idea of

agreement in the posterior, the percentage of the re-sampled trend fields that agree on the

sign of the trend for each grid-cell of a 1◦× 1◦ grid was calculated. This is equivalent to the

posterior probability of a positive trend value, or P (β(x) > 0|observations), and the results

are displayed in Figure 2.10c. It can be seem that there is agreement on certain spatial

features such as the western Pacific cooling trend and the eastern Pacific warming trend.

As expected, there is high-level agreement on the warming trend in the ocean south-east of

Brazil, and while there is agreement on a positive trend region in the mid-latitude North

Atlantic and on the cooling trend in the high-latitude North Atlantic there is no agreement

on the trend in the area of the ocean south-east of the United States. There is not any

strong agreement on general trends in the Indian and Southern Oceans, however, there are

isolated bubbles of confident warming and cooling scattered throughout these regions. It

would be expected that these small-scale features would no longer be significant if more

years of observations were used to fit the model, which is reserved for Chapter 3.

2.7 Model Validation

Leave-one-float-out (LOFO) cross-validation is used to validate the model. This metric, for

each float, removes the observations corresponding to that float and then uses the remaining

locations to predict the values at the removed locations. The motivation for LOFO valida-

tion is that, in the Argo data, the distance between the three profiles observed by a single

float during a month is generally less than that between observations from different floats.

Removing the entire float’s worth of observations allows the cross-validation results to evalu-

ate how well the model is doing at estimating heat content at unobserved areas of the ocean.

One downside to this approach is that the spatial area from which the floats are removed
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will be variable due to the fact that floats are not equally distributed around the ocean. The

cross-validation performance was evaluated using mean absolute error (MAE), root-mean-

squared error (RMSE), and continuous ranked probability scores (CRPS) [Gneiting et al.,

2005]. While the MAE and RMSE metrics assess the accuracy of the predictions, the CRPS

metric evaluates precision as well by penalizing higher standard errors in the predictions.

These cross-validation methods were evaluated using the maximum posterior density con-

figuration from the global sampler, and Figure 2.11 shows the LOFO CRPS scores averaged

over observations from all years within each cell of a 5◦ × 5◦ grid. The globally-averaged

LOFO scores for the full model are displayed in the first row of Table 2.3. A windowed

cross-validation approach as described in Section 2.8 was also performed, with results show-

ing patterns similar to the LOFO results displayed in Figure 2.12 and Table 2.4. It can be

seen from Figure 2.11 that while the validation errors are low in the equatorial regions where

the variance is low and the spatial correlation is high, the model performs worse in the high

variance and low spatially correlated areas corresponding to the currents.

Due to the variability of these regions, there is a limit to the predictive ability of any

model, and as such the raw validation scores are difficult to put into context without a

reference model for comparison. To compare the proposed model to a commonly cited

approach in the climate community the non-stochastic approach of Levitus et al. [2012]

was implemented to compute predictions and associated uncertainties in the cross-validation

procedures. The Levitus et al. [2012] approach was also used to compare predicted ocean heat

content values and trends, with results presented in Figure 2.12 and Table 2.4 in Section 2.8.

As can see in Table 2.3, the fully non-stationary model produces a 11.2% improvement over

the Levitus et al. [2012] approach in terms of RMSE in the LOFO validation. Following the

logic of Kuusela and Stein [2018], assuming a 1/
√
nobs rate of convergence for the Gaussian

process predictions, these percent improvements can be seen as equivalent to a 24% increase

in the number of observations, or an addition of around 650 floats.

While it is apparent that the fully non-stationary cylindrical model outperforms the
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MAE RMSE CRPS

Fully Non-stationary 1.610 (9.34%) 2.708 (11.19%) 1.330 (8.15%)

Stationary σ2/φ 1.612 (9.24%) 2.699 (11.47%) 1.324 (8.56%)

Non-stationary Isotropic 1.625 (8.50%) 2.731 (10.43%) 1.344 (7.22%)

Stationary θlat 1.633 (8.04%) 2.738 (10.20%) 1.347 (7.03%)

Stationary θlon 1.655 (6.81%) 2.762 (9.42%) 1.364 (5.79%)

Stationary φ 1.667 (6.12%) 2.701 (11.43%) 1.364 (5.85%)

Stationary Spatiotemporal 1.705 (3.98%) 2.850 (6.53%) 1.603 (-10.66%)

Stationary Isotropic 1.718 (3.26%) 2.865 (6.03%) 1.618 (-11.74%)

Fully Stationary 1.742 (1.94%) 2.758 (9.54%) 1.431 (1.19%)

Levitus et al. 1.776 (0.00%) 3.049 (0.00%) 1.448 (0.00%)

Table 2.3: Leave-one-float-out cross-validation scores for the fully non-stationary anisotropic

model, restrictions to stationarity in each of the parameter fields, isotropic models, and a

spatio-temporal model. Percentage improvements over the reference model [Levitus et al.,

2012] are displayed in parentheses. Units are GJ/m2.

reference model in cross-validation, which non-stationary aspects of the proposed model

contribute the most to the improvement is also of interest. To assess this, for each of the

correlation and variance parameter fields, the model was re-fit under the constraint that the

parameter field is spatially constant. These models were fit by running the BayesianOHC

sampler with the stationarity constraint imposed. Initial configurations were obtained by

adjusting the last sample of the full MCMC chain so that the newly stationary field has the

median value of the non-stationary field.

The cross-validation scores with relative improvements over the reference model are shown

in Table 2.3. In terms of mean absolute error, the constrained models have improved cross-

validation scores over the fully non-stationary model, indicating the importance of accounting

for spatial structure in the model parameters for the ocean heat content field. However,
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Figure 2.11: Average LOFO CRPS over all years for each grid-cell of a 5◦ × 5◦ grid.

the stationary inverse signal-to-noise and marginal variance models perform slightly better

than the full model in terms of RMSE scores, with the stationary signal-to-noise model

also having a slightly improved CRPS score. This is likely due to the fact that the fully

non-stationary model has higher average values of these parameters than the corresponding

stationary models, with the stationary signal-to-noise model having a σ2/φ value of .18

versus the average full model value of .24, and the stationary variance model having a
√
φ

value of 2.28 versus the average full model value of 2.41. Unlike MAE, the RMSE and CRPS

values take into account error variance and prediction uncertainty, which can explain why

the stationary models perform slightly better with regard to those metrics. It should be

noted however that non-stationary modeling of the variance parameters is still desirable,

as keeping those parameters stationary will likely underestimate the uncertainty in highly

variable regions. Increases in all three cross-validation metrics are observed when θlat and

then θlon are forced to be stationary, which is as expected given that these parameters,

especially θlon, vary substantially over the domain (Figure 2.8).

The proposed approach involves the use of a cylindrical approximation for the sphere

in order to allow for separate correlation length scales in the latitudinal and longitudinal
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directions, which is important given the anisotropic behavior of ocean heat content. It is

common in the statistics literature to instead treat the sphere as embedded in R3 space and

use the euclidean chord-length distance within an isotropic framework. There are several

existing packages including GpGp [Guinness and Katzfuss, 2018], GPVecchia [Katzfuss

et al., 2020c], and BayesNSGP [Turek and Risser, 2019] that allow for isotropic Gaussian

process modeling using this metric. While there is not a natural way to represent anisotropy

using correlation length-scales with R3 coordinates, it is worthwhile to examine how well

these approaches perform in comparison to ours at cross-validation. To compare against

a stationary model the ”fit model” function from the GpGp package was used with the

”matern sphere” covariance option to fit an isotropic Matérn model to the data in each year

independently. As this package does not immediately allow for a Gaussian process mean-

field as used in the proposed model, a mean-field parameterization consisting of linear and

quadratic terms of latitude and longitude was used instead. The results of this model fit are

displayed in the ”Stationary Isotropic” row of Table 2.3. While this model has an improved

MAE score over the fully stationary anisotropic cylindrical fit, it performs worse in all metrics

than the non-stationary models fit using BayesianOHC. As Guinness [2021] have noted that

isotropic spatio-temporal modeling yields a higher likelihood than non-stationary spatial-only

models, the GpGp package was used to fit a stationary spatio-temporal model to the data,

shown in the ”Stationary Spatiotemporal” row of Table 2.3. While this performs better than

a spatial-only isotropic model, it still underperforms the non-stationary cylindrical models.

To evaluate the difference between the isotropic and anisotropic approaches in the non-

stationary setting, the BayesianOHC package was used to fit a non-stationary isotropic

model using the chord-length distance to the full set of Argo data, with the LOFO cross-

validation results displayed in the third row of Table 2.3. It can be seen that while the non-

stationary isotropic model outperforms most of the other models, the full model achieves

superior cross-validation scores. As the only difference between these two models is the

cylindrical anisotropy component, this improvement shows the value of representing latitude-
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longitude anisotropy when modeling ocean heat content.

2.8 Windowed Cross-Validation Results

In addition to the leave-one-float-out (LOFO) cross-validation study in Table 8, cross-

validation was performed on the same set of models using a windowed approach, where

for each observation the observed locations within a 2◦× 2◦ window around the location are

withheld in order to get a sense for how well the models predict at unobserved locations. The

continuous ranked probability scores (CPRS) averaged over each 5◦× 5◦ grid-box are shown

in Figure 2.12. Similar patterns are seen in the analogous Figure 7 for LOFO cross-validation

although the LOFO MAE scores are 10.9% larger on average.

Figure 2.12: Average windowed cross-validation CRPS values over all years for each grid-cell

of a 5◦ × 5◦ grid.

The windowed cross-validation mean absolute error (MAE), root-mean-squared error

(RMSE), and continuous ranked probability scores (CRPS) are displayed in Table 2.4 along

with percent improvements over the Levitus et al. [2012] reference model. Trends similar to

Table 2.3 can be seen, with the reference model generally under-performing the other models
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and the fully non-stationary anisotropic model generally over-performing the other models.

MAE RMSE CRPS

Fully Non-stationary 1.451 (11.11%) 2.375 (12.09%) 1.174 (12.13%)

Stationary σ2/φ 1.458 (10.63%) 2.357 (12.76%) 1.175 (12.03%)

Stationary θlat 1.471 (9.83%) 2.403 (11.05%) 1.188 (11.03%)

Nonstationary Isotropic 1.475 (9.62%) 2.404 (11.02%) 1.195 (10.54%)

Stationary θlon 1.499 (8.13%) 2.427 (10.18%) 1.212 (9.29%)

Stationary Spatiotemporal 1.534 (6.01%) 2.469 (8.60%) 1.432 (-7.19%)

Stationary φ 1.541 (5.56%) 2.446 (9.48%) 1.246 (6.72%)

Stationary Isotropic 1.544 (5.41%) 2.477 (8.31%) 1.445 (-8.15%)

Fully Stationary 1.610 (1.35%) 2.479 (8.26%) 1.298 (2.80%)

Levitus et al. 1.632 (0.00%) 2.702 (0.00%) 1.336 (0.00%)

Table 2.4: Windowed cross-validation scores for the fully non-stationary cylindrical distance

model, restrictions to stationarity in each of the parameter fields, models using the chord-

length distance, and a stationary spatio-temporal model. Chordal distance models and the

spatio-temporal model are isotropic.

2.9 Comparison with Results Obtained from the Method Described

in Levitus et al.

The approach to interpolating ocean heat content and calculating standard errors used in

Levitus et al. [2012] is commonly cited in the climate community. In this method, the pre-

dicted ocean heat content value at an unobserved point is the weighted sum of observations

within a fixed radius around the point. The weights are determined by an exponential func-

tion of the negative squared distance between the locations. Standard errors are calculated

by computing the weighted standard deviation of observations within the radius with the
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assumption that the errors at different locations are independent.

While Table 2.3 and Table 2.4 show that the fully non-stationary Gaussian process cylin-

drical distance model out-performs the Levitus et al. method at cross-validation, it is of

interest to compare the predicted ocean heat content estimates and uncertainty values be-

tween the two methods. Figure 2.13 displays the predicted global OHC values and 95%

uncertainty intervals obtained using the Levitus et al. [2012] method along with the poste-

rior medians and credible intervals obtained using the BayesianOHC fully non-stationary

cylindrical distance model. After using the Levitus approach to compute global heat con-

tent values for each year, the implied trend was estimated using ordinary least-squares and

the corresponding confidence interval was calculated. The resulting estimated trends and

uncertainty intervals are displayed in Table 2.5.

Figure 2.13: Comparison of predicted ocean heat content values and uncertainty intervals

between the non-stationary cylindrical method and the Levitus et al. method.

It can be seen that both methods are fairly similar in terms of predicting yearly heat

content values, however, the standard errors using the Levitus approach seen in Figure 2.13

are substantially larger than those obtained from BayesianOHC. This is to be expected

as unlike in a Gaussian process framework, the Levitus et al. [2012] approach does not

take into consideration correlations between locations and rather assumes that the errors in

distinct gird-boxes are independent. On the other hand, it can be seen in Table 2.5 that
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the BayesianOHC credible interval is wider than the ordinary least-squares confidence

interval. This is also not surprising due to fact that the uncertainty from fitting ordinary

least-squares to the Levitus predictions does not take into account the uncertainty induced

from the spatial interpolation, and as a result the confidence interval underestimates the

uncertainty in the trend. This is in contrast to the BayesianOHC credible intervals which

are estimated within the context of a hierarchical model, and as such take into account the

uncertainty induced by the interpolation of the heat content field as well as the additional

uncertainty from estimating the other parameters in the model.

Despite the wider uncertainty range in the BayesianOHC estimated trend, the larger

median trend estimate yields a smaller p-value than the Levitus et al. [2012] least-squares fit.

If hypothesis testing was used, the Levitus et al. [2012] approach would fail to reject a null

hypothesis of no trend at a one percent significance threshold whereas the BayesianOHC

method would conclude that there is sufficient evidence that the oceans have gained heat

between 2007 and 2016. This demonstrates the value of using statistical modeling to quan-

tify ocean heat content as the non-stationary cylindrical distance model more accurately

quantifies heat content and its variability with a meaningful impact on the significance of

the trend.

2.5% Median 97.5% Width p-value

Levitus et al. 2.753×1021 9.215×1021 15.677×1021 12.924×1021 0.01105

BayesianOHC 3.537×1021 10.321×1021 17.139×1021 13.601×1021 0.00165

Table 2.5: Estimated trend and associated 95% confidence interval for the ordinary least-

squares trend fit to the heat content predictions computed using the Levitus et al. [2012]

method and the median posterior trend and associated 95% credible interval using the fully

non-stationary BayesianOHC fit. All units are in J/year.
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2.10 Conclusion

The kernel-convolution hierarchical Bayesian Gaussian process model developed in this chap-

ter is able to provide uncertainty quantification in ocean heat content values, as well as in

the heat content trend, that could not be produced using previous methods. The Gaussian

process approach allows us to quantify the uncertainty induced from having to interpolate

the ocean heat content field over the domain using information from limited observations.

The kernel-convolution covariance structure allows us to capture the non-stationary covari-

ance properties of the ocean heat content field through spatially-varying parameter fields.

These convolutions are made possible by using the cylindrical distance, an acceptable dis-

tance metric for this application because the model does not extend to the poles and the

longitudinal correlation length scales can vary with the sphere’s changing radius over lat-

itude. The cylindrical distance metric is a novel approach to representing anisotropy on

the sphere that is not possible using an R3 representation. The resulting fitted covariance

model has been shown to achieve validation scores superior to simpler methods, including a

fully non-stationary isotropic model, which demonstrates the value of using the cylindrical

distance approach to model anisotropy. The hierarchical Bayesian approach yields posterior

distributions for each of the parameter fields which allows us to assess the uncertainty in

their estimation. This additional source of uncertainty is then represented in the posterior

distribution of ocean heat content and its trend. The model’s non-stationary representa-

tion of the mean and trend fields allows for estimating the spatial distribution of certainty

regarding local warming or cooling trends. The models have been fit in a computationally

efficient way using the Vecchia process, which has been shown to yield a sufficiently accurate

approximation to the full Gaussian process. Functionality for analyzing ocean heat content

has been developed as the R package BayesianOHC along with scripts for reproducing the

results presented in this paper. While the BayesianOHC package has many utilities that

are specifically useful for modeling Argo data, many of the model-fitting functions are general

and can be used for fitting non-stationary Bayesian models for a variety of applications.
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The results presented in this Chapter are limited in the amount of data considered,

specifically to January over the years 2007-2016 and for floats whose profiles extend to 1,900m

of depth. The restriction to January was done in order to focus on the spatial components of

the framework. The extension of the framework to the spatio-temporal setting and to data

in all months will be developed in the next chapter.
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CHAPTER 3

Spatio-Temporal and Seasonal Modeling of the Ocean

Heat Content Field
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3.1 Introduction

The previous chapter has introduced a hierarchical Bayesian Gaussian process framework for

modeling the spatially non-stationary correlation structure of the ocean heat content field.

This model was fit to a subset of the data such that seasonal variation in the mean-field

and temporal correlations in the anomalies could be ignored, producing a posterior distri-

bution for the year-to-year trend that takes into account sampling uncertainty, uncertainty

from variability in the process, and uncertainty from parameter estimation. This chapter

extends the spatial-only model to the spatio-temporal setting in order to take advantage of

the information presented by spatial correlation in the data as well as the additional data

from incorporating all months. The treatment begins with updating the notation for rep-

resenting the data in the spatio-temporal setting in Section 3.2. Section 3.3 introduces two

improvements to the spatial-only model to account for temporal properties in the mean and

anomaly fields. The first development in Section 3.3.2 is of a mean-field that models smooth

seasonal variation simultaneously with spatial variation through a spatio-temporal Gaussian

process prior with a “circular” correlation structure over time. Section 3.3.1 introduces a

temporal dimension to the kernel-convolution process with spatially-varying temporal cor-

relation length scale parameters analogous to the latitudinal and longitudinal convolutions

presented in Chapter 2.

This chapter proceeds to apply the spatio-temporal framework to Argo data from all

months over the years 2007-2021. Parameter fields for initializing the MCMC sampler are

derived using an updated moving window approach in Section 3.4. In Section 3.5 the spatial

Vecchia process used in Chapter 2 as a computationally efficient approximation for the full

Gaussian process is augmented to account for the spatio-temporal structure of the data. This

requires a re-evaluation of the size of the conditioning sets needed to obtain a sufficiently

accurate representation, which is done through a study evaluating the accuracy of the pos-

terior distributions of the mean and trend fields for different conditioning set sizes. Finally,
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results from the posterior distribution are presented and discussed in Section 3.6, including

the posterior correlation parameter fields, the spatially and seasonally varying mean-field,

distributions for the ocean heat content values at each month, and the spatially-varying

trend field. The resulting estimates for the trend in ocean heat content are consistent with

the results in the previous chapter but with a much higher level of confidence due to the

increase in data and the information provided by the temporal structure.

3.2 Spatio-Temporal Data

To extend the framework to data from all months, the notation must be adjusted to represent

each location as a spatio-temporal point and to re-define heat content as a field varying

continuously over time. Let x = (xlat, xlon, xtime) ∈ CL × R, where as before CL ≡ R × S

represents latitude and longitude in Euclidean and spherical coordinates respectively, and

xtime represents time in days. Furthermore, let z ∈ R+ denote depth from the surface in

meters. Define the three-dimensional temperature field at spatio-temporal location x and

depth z as T (x, z) as measured in degrees Celsius. Similarly to Chapter 2, the spatio-

temporal field is defined as heat content values integrated over depth as calculated using

following formula:

H(x) =

∫ 2000m

0m

ρcρT (x, z) dz. (3.1)

Here, ρ is seawater density in kg/m3 and cρ is the specific heat of seawater in J/(kg◦ C)

[Dijkstra, 2008]. The units of H(x) are J/m2. The total global ocean heat content or OHC

is a spatially-integrated quantity that varies continuously over time:

OHC(t) =

∫
[xlat,xlon]∈Smask

H([xlat, xlon, t]) dx (3.2)

where Smask is the ocean’s surface masked following Roemmich and Gilson [2009] and dis-

played in Figure 2.1. Again, floats with maximum depths that are not within 100m of 2000m

are excluded to avoid having to interpolate the heat content field over depth.
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(a) The percentage of months containing at least one observation within each 3◦×3◦ grid-cell. Left

panel is averaged over the years between 2007 and 2014, and the right panel is averaged over the

years 2015 to 2021.

(b) The average number of 3◦ × 3◦ grid-cells with at least one observation displayed over months.

Figure 3.1: Spatial distribution of data coverage at the 3◦× 3◦ grid-cell resolution over 2007

to 2014 and 2015 to 2021 (a), and the increase in data coverage over time (b).
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The data under consideration here range from January 2007 to November 2021, and after

applying the mask and depth filters there are 1,111,023 total ocean heat content observations.

These observations are not uniformly distributed over space, with some regions frequently

seeing more floats than others, nor over time, with an increase in the number of floats

deployed over time resulting in more recent years having more observations than earlier years.

To examine the spatial distribution of observations and how data coverage has increased over

recent years, the spatio-temporal domain was partitioned into 3◦×3◦ grid-cells for each month

within the time range. For each grid-cell-month pair, an indicator function was applied for

whether or not it contained at least one observation; this is defined as the 3◦× 3◦ resolution

“data coverage”. To visualize the spatial distribution of the data coverage, the data was

partitioned between subsets occurring between 2007 and 2014 and observations occurring

between 2015 to 2021. For each of these subsets, the data coverage averaged over all months

was calculated for each grid-cell. The resulting spatial distributions of data coverage are

displayed in Figure 3.1a, with data coverage from 2014 and earlier on the left panel and

2015 and later on the right. It can be seen that in each of the time periods, data coverage

is higher in certain areas than others, with the Pacific Ocean east of Japan and the North

Atlantic exhibiting high data coverage over each time period. While these regions have over

80% data coverage in both time periods, grid-cells with less than 20% data coverage can

be observed in most regions in the earlier time period. In the later time period, grid-cells

with less than 20% data coverage occur rarely and most regions have greater than 60% data

coverage. A notable exception is the far Southern Ocean, which exhibits low levels of data

coverage even in the more recent time frame.

To get a further sense of the increase in data coverage over time, coverage was averaged

spatially for each month in the full time period with results displayed in Figure 3.1b. It

can be seen that data coverage increases continuously until about 2018, when it begins to

stabilize at values nearing 70%. Coverage ranges from 30% in the first month of January

2007 to 65.67% to the last month of November 2021. In the dataset under consideration
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here, the number of unique floats with valid ocean heat content profiles ranges from 1,061

in January 2007 to 3,164 in November 2021.

3.3 Model Framework

In this section, the hierarchical Bayesian framework of Chapter 2 is extended to model the

spatio-temporal evolution of the Argo data. Let Hobs(x) denote the observed spatio-temporal

field of heat content values. This differs from the “true” unknown heat content field H(x)

since the former may include measurement error or small-scale variation. Specifically, let

Hobs(x)
i.i.d.∼ N(H(x), σ2(x))

where σ2(x) is the nugget variance. Under this general formulation, σ2(x) can be taken to

be varying in both space and time, however the forthcoming construction will restrict this

and the other correlation parameters to vary only over space.

3.3.1 Temporal Correlation Model

Let θlat(x), θlon(x), and θtime(x) represent spatially-varying latitudinal, longitudinal, and

temporal range parameters respectively; these fields will be collectively referred to as θ =

(θlat, θlon, θtime). At a fixed spatio-temporal location x, the kernel distance between spatio-

temporal points x and u is defined as

dst(x,u;θ) =

√
deuc(xlat, ulat)2

θlat(x)
+
dgc(xlon, ulon)2

θlon(x)
+
deuc(xtime, utime)2

θtime(x)
.

Putting this distance function into the kernel convolution construction of Paciorek and

Schervish [2006b] yields the following covariance function between spatio-temporal points

x and y:

kst(x,y;θ, φ) =
√
φ(x)φ(y)

∫
u∈CL×R

exp
(
−dst(x,u;θ)2 − dst(y,u;θ)

)2
du
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where φ is the spatially-varying variance field. Since the squared distance terms dst can be

decomposed as the additive sum of distance terms in the three dimensions, the convolutions

can be computed in each dimension separately. Specifically, convolutions in the latitudi-

nal and temporal dimensions can be computed exactly using the formulas of Paciorek and

Schervish [2006b], and the convolutions in the longitudinal dimension can be computed using

the Gaussian approximation method described in Section 2.4.

The underlying heat content field H(x) is modeled as a Gaussian process constructed

from the kernel k:

H(x) ∼ GP (µ(x), kst(x,y;θ, φ)) (3.3)

where µ will be defined in Section 3.3.2. Let ρ = {θlat, θlon, θtime, φ, σ} denote the set of

parameter fields excluding the mean-field. For each ρ ∈ ρ, let

log(ρ(x)) ∼ GP (µρ, φρ exp(−dcyl(x,y)/θρ)) (3.4)

where µρ, φρ, and θρ are hyper-parameters which differ for each field. Note that dcyl, defined

in Section 2.3.1, is used as opposed to dst; since this distance metric only takes into account

the spatial components of x and y, Equation (3.4) constrains the parameter fields ρ to

be constant over time. These parameter fields are taken to vary only spatially primarily

to avoid adding additional complexity to the model, particularly given the computational

burden of the MCMC procedure with the large number of observations present here. There

may be reasons to think that some of the parameters would vary seasonally, and if inference

on spatio-temporally varying correlation parameters could be done in an efficient way this

could be a potential extension for future work. However it is likely that such an extension

would only have a minor effect on inference of the trend field.

3.3.2 Seasonally-Varying Mean-field

Unlike the correlation parameters, there is a stronger reason to think that the mean-field

would vary seasonally, and given the stronger relationship between the mean-field and the
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trend field it is important for a spatio-temporal model of ocean heat content to take sea-

sonality into account. Furthermore, the patterns of seasonality would not be expected to be

constant over the domain; in particular one would expect heat content to peak in the late

Northern Hemisphere summer or fall in the higher latitudes and peak in the late Northern

Hemisphere winter or early spring in the Southern Hemisphere. To this aim, the spatially-

varying mean-field of Chapter 2 is extended to a field varying over both space and time,

employing a “circular” correlation model over the temporal dimension in order to produce a

field that is smooth at calendar-year endpoints.

To represent the temporal dimension, let doy(xtime) ∈ [0, 366] denote the “day-of-year”

for a particular time point xtime. Let ddoy(xtime, ytime) = min(|doy(xtime)−doy(ytime)|, |365−

doy(xtime) + doy(ytime)|) denote the “circular” distance over day-of-year. Then, analogously

to dst, the spatio-day-of-year distance can be defined as

ds-doy(x,y; θlat, θlon, θtime) =

√
deuc(xlat, ylat)2

θlat
+
dgc(xlon, ylon)2

θlon
+
ddoy(xtime, ytime)2

θtime

.

where unlike in the definition of dst the spatial dependence on correlation length-scale param-

eters is omitted since this distance function will only be used in the context of a stationary

Gaussian process. Specifically, define the spatio-temporal mean-field as

µst(x) ∼ GP(µµst , φµst exp(−ds-doy(x,y; θµ;space, θµ;space, θµ;time))

where θlat;µ ≡ θlon;µ ≡ θspace;µ produces a process that is spatially isotropic with a separate

correlation length-scale in the temporal dimension. While isotropic Gaussian processes are

used for the parameter fields, the underlying model for the ocean heat content field remains

anisotropic. This prior forces µst to be constant over each calendar year and to vary smoothly

over the calendar-year endpoints.

Similar to Chapter 2, the center of the Gaussian process for ocean heat content will be

the sum of the year-constant mean-field and a spatially-varying trend field. Here, similar to

Chapter 2, the trend-field β is taken to be spatially-varying only:

β(x) ∼ GP (µβ, φβ exp(−dcyl(x,y)/θβ)).
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With these two components, the Gaussian process mean of Equation 3.3 is defined as

µ(x) = µst(x) + β(x)(xtime − xorigin)

where unlike in Chapter 2 the trend parameters are over units of days rather than years.

Here, xorigin is defined as January 1, 2007.

The hyper-parameters in Equation 3.4 and above are estimated through obtaining a

“first-guess” estimate of the parameter fields through a stationary moving-window approach

analogous to the procedure of Section 2.6.1; the results of this procedure are described in

Section 3.4. Also similarly to Chapter 2 these fields will be represented and sampled through

Gaussian process basis functions. Specifically, for each ρ ∈ ρ, let bρ ∼ N(0, Inκ;space) denote

basis values on a set of spatial knot locations denoted κspace ∈ Rnκ×2. Define bβ analogously,

and for the mean-field µst, define bµst ∼ N(0, Inκst ) where κst = κspace × κtime. Here, κst is

taken to consist of 253 knot points evenly spaced over the spatial mask at every 16 degrees in

the longitudinal direction and every 8 degrees in the latitudinal direction, and κtime consists

of time points distributed bi-monthly. For each ρ ∈ ρ let the following hold for each location

x:

ρ(x) = log(µρ + φρΣx,κst;θρΣκspace,κspace;θρbρ). (3.5)

For bβ and bµst , equations analogous to (3.5) hold by removing the logarithmic link function

and substituting κst for µst.

To evaluate the posterior of the parameter fields, Markov Chain Monte Carlo (MCMC)

with Metropolis-Hastings-within-Gibbs steps is used on bρ for each ρ ∈ ρ. The procedure

is analogous to that described in Section 2.3.3 of Chapter 2, to which the reader is directed

for specific details.
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3.4 Initial Configuration of Correlation Parameter Fields

To obtain the initial configuration for the sampler, and to estimate the hyper-priors for the

Gaussian process priors assigned to each of the parameter fields, a moving-window approach

is used to obtain estimated parameter fields to which Gaussian processes can be fit using max-

imum likelihood estimation. Specifically, for each grid-point of a 4◦ × 4◦ latitude-longitude

partition of the domain, parameters of a stationary Gaussian process were estimated from

data within a 20◦ × 20◦ window. This involves estimating parameters θlat, θlon, θtime, φ, σ, β,

and µdoy from the data for each window, where µdoy is an alteration of µst that is spatially

stationary but contains the same structure of seasonal variation. The values of µdoy at the

origin, defined as January 1, 2007, is used to obtain the spatial hyper-parameters for µst.

The temporal hyper-parameter for µst is taken to be fixed at θµ;season ≡ 602, which corre-

sponds to a 0.05 effective correlation of 100 days, in order to achieve realistic smoothness

in the estimated spatial pattern. This procedure yields a spatially-varying field of station-

ary parameter estimates for each of the parameters. To estimate the hyper-parameters

{µρ, φρ, θρ}ρ∈ρ, Gaussian processes were fit to each of the respective gridded fields of log-

transformed parameter estimates. For the mean and trend fields, spatial range parameters

were estimated under the constraint θµ;space ≡ θβ in order to ensure that the two fields that

compose µ have the same spatial range. Furthermore, µβ was constrained to be zero in order

to avoid biasing the value of the overall trend. The estimated hyper-parameters obtained

are displayed in Table 3.1.

The estimated hyper-parameters displayed in Table 3.1 were used along with standard

kriging formulas to obtain the basis values at the spatial knot points κspace. In order to

visualize these configurations, these basis values were then kriged again onto a 1◦×1◦ latitude-

longitude grid on the domain, with results displayed in Figure 3.2. Here it can be seen

longitudinal correlations are larger than latitudinal correlations in most areas, which is to be

expected as the climate processes which influence ocean heat content vary more considerably
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Effective Range q.25 q.5 q.75 Units

γlat 27.09◦ 2.82 3.61 4.61 Degrees

γlon 29.09◦ 4.82 7.74 12.44 Degrees

γtime 37.60◦ 119.48 173.17 250.97 Days

σ2/φ 24.39◦ 0.04 0.07 0.16 Unitless
√
φ 40.16◦ 3.52 4.89 6.80 GJ/m2

µst 44.15◦ 34.20 45.27 56.34 GJ/m2

β 44.15◦ -0.10 0.00 0.10 (GJ/m2)/year

Table 3.1: Hyperparameters obtained from maximum likelihood estimation on fields of sta-

tionary parameters estimated from a 20◦× 20◦ moving window procedure. For each field the

5th, 50th, and 95th quantiles of the respective prior distributions are displayed. The range

hyperparameter and the correlation length scale fields γlat, γlon, and γtime are reported in

terms of effective range, defined as the distance at which the correlation is 0.05.

over latitude than over longitude. Longitudinal, and to a lesser degree latitudinal, correlation

lengths are noticeably larger around the Equatorial regions, particularly in the Pacific. The

process standard deviation field
√
φ displays higher values around the major currents, in

particular the Gulf Stream of the North Atlantic, the Kuroshio Current off the coast of

Japan, the South Atlantic current off of Argentina, and the Arctic circumpolar current in

the Southern Ocean. The nugget standard deviation also exhibits higher values in the area of

these currents as well as noticeably high values in the South Pacific. The temporal effective

correlation lengths are generally on the scale of several months. There is a notable area

of temporal correlation lengths of less than a month in the western equatorial Pacific, and

there are regions in the Northern Pacific and the Southern Pacific where temporal correlation

lengths are more than a year.

This spatio-temporal initial configuration can be compared to the spatial-only initial con-

figuration displayed in Figure 2.7. The pattern of the process variance having higher values
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(a) Effective longitudinal range γlon (b) Effective latitudinal range γlat

(c) Process standard deviation
√
φ (d) Nugget standard deviation σ

(e) Effective temporal range γtime

Figure 3.2: Initial parameter fields obtained from fitting Gaussian processes to estimated

parameter fields obtained from a moving-window approach.
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around major currents is consistent between the spatial-only and spatio-temporal models.

This indicates that the variance in these regions persists when accounting for temporal

correlations and seasonal patterns in the larger dataset. While both models have higher

longitudinal and latitudinal correlation length scales near the equator, the pattern is less

robust in the spatio-temporal case, with the central equatorial Pacific having lower corre-

lation scales than in the spatial-only initial configuration. Longitudinal correlations in the

equatorial regions are even less prominent in the posterior distribution to be seen in Figure

3.3. This could perhaps be caused by climate phenomena with seasonal features that are not

present in the January-only spatial treatment, but are present and modeled in the spatio-

temporal context. An example would be ENSO, which causes spatially-coherent anomalies

in the equatorial Pacific but is known to peak in the Northern Hemisphere winter [Glantz

et al., 2001]. As such, the estimated correlation patterns in the spatial-only treatment may

not be present in other months. Furthermore, such seasonal phenomenon would be mod-

eled more precisely with the seasonally and spatially varying mean-field here, which could

account for some of the correlation in the anomalies and lead to smaller ranges. Another

discrepancy between the spatial-only and spatio-temporal initial conditions can be seen in

the process and nugget variance fields, which exhibit high values in the south-eastern and

south-western Pacific regions in the spatio-temporal configuration. These regions are unre-

markable in the spatial-only configuration. This discrepancy could be caused by the same

dynamics as the differences in the correlation length fields, as it is known that the variance

and range parameters are closely related in Gaussian process likelihoods [Stein, 1999a]. In

other words, it would not be surprising that a change in the properties of the data when

adding additional months would manifest in all of the correlation-length and variance fields.

Precise identification of the climate feature causing this discrepancy may be of independent

interest, and is left here as a suggestion for future research.
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3.5 Selection of Vecchia Process Conditioning Set Size

Similar to Section 2.5, a Vecchia process approximation to the full Gaussian process [Guinness

and Katzfuss, 2018, Katzfuss et al., 2020c,b, Katzfuss and Guinness, 2021] will be used

to render Bayesian inference tractable on the 1,111,023 observations in the dataset. To

achieve a sufficiently accurate Vecchia process, the parameter m, which controls the size

of the conditioning sets, needs to be re-selected within the new spatio-temporal context.

In Chapter 2 a value of m = 50 was justified by fitting Gaussian processes with the full

Cholesky likelihood to each of eleven regions partitioning the domain and then comparing

the resulting integrated values to those obtained from fitting Vecchia processes with varying

values ofm to the same regions. With the spatio-temporal dataset, however, the full Gaussian

process likelihood is too computationally intensive to fit on data restricted to the regions

defined in Figure 2.6. Further restricting the regions would lead to areas that would be

insufficiently large for estimating the non-stationary parameter fields. Instead, to maintain

the full correlation structure of the global model, the study presented here will focus on

evaluating the posterior distributions for the mean and trend parameters conditioned on the

values of the fully non-stationary correlation structure. This has the downside of assuming a

fixed correlation structure rather than re-estimating the parameters, however, given the large

amount of time required to fit the fully non-stationary posterior distribution, re-estimating

the parameter fields for different values of m would not be practical.

Define the posterior mean and standard deviation of the integrated mean-field conditioned

on the set of correlation parameter fields ρ as[∫
xlat,xlon

µst(xlat, xlon, xorigin) dxlat dxlon

∣∣∣∣Hobs,ρ

]
≡ N(µpost, σµ;post)

where xorigin denotes January 1, 2007. For the trend field, analogously define[∫
xlat,xlon

β(xlat, xlon) dxlat dxlon

∣∣∣∣Hobs,ρ

]
≡ N(βpost, σβ;post)

These quantities can be calculated directly using the formulas of Equation (2.5) in Section
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µpost σµ;post βpost σβ;post

5 3.12×10−4 0.049 8.30×10−3 0.046

10 1.84×10−4 0.027 4.53×10−3 0.025

20 1.33×10−4 0.014 6.95×10−3 0.013

30 8.67×10−5 9.76×10−3 5.34×10−3 9.41×10−3

40 7.11×10−5 7.46×10−3 4.36×10−3 7.31×10−3

50 6.85×10−5 5.93×10−3 5.62×10−3 5.89×10−3

60 4.61×10−5 4.95×10−3 3.66×10−3 4.87×10−3

70 3.58×10−5 4.15×10−3 3.10×10−3 4.10×10−3

80 3.05×10−5 3.62×10−3 2.92×10−3 3.55×10−3

90 2.68×10−5 3.20×10−3 3.14×10−3 3.09×10−3

100 2.51×10−5 2.83×10−3 2.73×10−3 2.77×10−3

200 2.40×10−6 1.17×10−3 6.60×10−4 1.12×10−3

Reference: 500 0 0 0 0

Table 3.2: Fractional errors of posterior means and standard deviations for the mean and

trend fields evaluated using Vecchia processes with increasing values of m. Errors are calcu-

lated against reference level of m = 500.

2.3.3. In order to select m before beginning the MCMC sampling procedure, ρ is taken to

be the initial condition parameter fields obtained in Section 3.4.

The posterior distribution parameters defined above will be denoted with super-script

(m) when calculated using the corresponding Vecchia process. Values of µ
(m)
post, σ

(m)
µ;post, β

(m)
post

and σ
(m)
β;post were computed for m ∈ {5, 10, 20, . . . , 100, 200} and m = 500. Since it is not

computationally possible to evaluate the full Cholesky decomposition with over one million

observations, m = 500 was the highest value of m evaluated; with this value, it took over

eight hours with 30 cores on a cluster with 512GB of memory to evaluate the posterior

distributions. For each value of m, fractional errors for the mean and slope fields were
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calculated usingm = 500 as the reference level, yielding
|µ(m)

post−µ
(500)
post |

|µ(500)post |
,
|σ(m)
µ;post−σ

(500)
µ;post|

|σ(500)
µ;post|

,
|β(m)

post−β
(m)
post|

|β(500)
post |

,

and
|σ(m)
β;post−σ

(500)
β;post|

|σ(500)
β;post|

.

The results of this study are displayed in Table 3.2. It can be seen that the errors for the

posterior standard deviation of both the mean and trend fields are higher than the errors

for the posterior means. This is unsurprising as the values of the mean and trend fields are

fairly constrained by the amount of data available, whereas the uncertainty values are more

challenging to estimate accurately. For all four of the evaluated quantities, errors generally

descend as the values of m increase. However, after about m = 50 the fractional errors are

all less than 7.5 × 10−3, with higher values of m seeing decreasing marginal improvements.

As such, m = 50 is used for the MCMC results presented in the following section.

3.6 Posterior Distribution Results

To obtain the posterior distribution of the correlation parameters using MCMC, the sampler

was run for increasing lengths of 1,000 iterations until convergence was achieved as indicated

by the Heidelburger-Welch test applied to posterior densities of the parameter fields [Heidel-

berger and Welch, 1981]. This procedure required 3,000 iterations, of which the first 2,500

iterations were removed as a burn-in period. These 3,000 iterations took 528 hours (around

22 days) running on 30 cores of a compute server with 528GB of memory. This section will

proceed to present the results from the posterior distribution, including the covariance pa-

rameter fields, the spatially and seasonally varying mean-field, the ocean heat content values

by month, and the spatially-varying trend field.

3.6.1 Posterior Parameter Fields

To visualize the posterior distribution, configurations corresponding to the first and ninety-

ninth quantiles of the average parameter values were identified for each parameter field. The
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(a) Effective longitudinal range γlon (degrees longitude).

(b) Effective latitudinal range γlat (degrees latitude).

(c) Effective temporal range γtime (days).

Figure 3.3: Samples corresponding to the first (left) and ninety-ninth (right) posterior quan-

tiles for the effective longitudinal, latitudinal, and temporal ranges.
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(a) Process standard deviation
√
φ (GJ/m2).

(b) Nugget standard deviation σ (GJ/m2).

Figure 3.4: Samples corresponding to the first (left) and ninety-ninth (right) posterior quan-

tiles for the process standard deviation and nugget standard deviation.
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resulting interpolated fields for longitudinal, latitudinal, and temporal ranges are displayed

in Figure 3.3. For longitudinal ranges, it can be seen that the behavior of the high-range

region in the equatorial Pacific has decreased in the center and moved both east and west in

comparison to the initial configuration of Figure 3.2a. Variability in the posterior distribution

for the longitudinal range field can be seen in this equatorial Pacific region, as well as in the

equatorial Atlantic and in the Southern Ocean. For latitudinal ranges, Figure 3.3b exhibits

higher values in the equatorial Atlantic when compared to the initial configuration, as well

as noticeable variability. Variability in latitudinal ranges can also be observed in the eastern

equatorial Pacific and the Southern Ocean. For temporal ranges, values in the posterior

appear to be generally larger than those in the initial condition, with variability particularly

high in the Southern Ocean.

The posterior distributions of process variance and nugget variance are displayed in Figure

3.4. For the process variance, Figure 3.4a shows general patterns similar to the initial

configuration. Larger posterior variability is particularly notable around the location of the

highly variable Antarctic Circumpolar current south-west of Africa. Overall, the process

variance and nugget variance displayed in Figure 3.4 appear to exhibit smaller levels of

posterior variability than the other parameters. This is indicative of the fact that the variance

parameters are fairly constrained by the amount of the data present, although larger posterior

uncertainty is in general larger in the highly variable current regions. It should be noted

that a common feature between all of the posterior distributions is the higher variability in

the Southern ocean. This is not surprising when considering the spatial distribution of floats

in Figure 3.1, where despite the large increase in float coverage over time, the data coverage

rates in the Southern ocean remain low in later years.

3.6.2 Posterior Mean, Trend, and OHC Values

After obtaining the posterior distributions for the correlation parameter fields using MCMC,

the posterior distribution of the spatio-temporal mean and trend fields can be evaluated
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Figure 3.5: Mean-fields for September (a) and the difference between September and March

(b) showing spatially-varying seasonality.

directly using Equation (2.5) in Section 2.3.3. Figure 3.5 shows the mean-field for the MAP

configuration evaluated at September 15. To get a sense of the spatial variation of seasonality,

Figure 3.5(b) displays the difference between the September 15 mean-field minus the mean-

field evaluated at March 15. As the ocean absorbs heat slowly throughout local summer,

the warmest ocean heat content values would be expected to occur around the month of

September in the Northern Hemisphere. Conversely, March would be expected to see the

warmest ocean heat content values in the Southern Hemisphere. This intuition is confirmed

in Figure 3.5(b), where it can be seen that September is generally warmer than March in

the Northern Hemisphere and is generally colder than March in the Southern Hemisphere.

Seasonal differences are most pronounced around currents, and in particular the Kuroshio

current east of Japan and the North Atlantic current east of the United States.
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Figure 3.6: OHC by month with credible intervals. The 95% credible interval for the trend

is (12.59, 13.39)× 1021J/year.

Figure 3.6 displays the posterior distribution for globally-integrated ocean heat content

evaluated at each month of the time range with 95% credible intervals. The distinction

between confidence intervals and credible intervals made in Figure 2.9 are ignored here, as

they are often difficult to distinguish in the full spatio-temporal setting. It can be seen that

the width of the credible intervals for the ocean heat content values decrease over time as the

number of floats increases. Also displayed is the posterior mean of the globally-integrated

mean-field. The seasonal structure of ocean heat content is clearly visible in this figure,

with the warmest values occurring in late March. This is due to the fact that March sees

the warmest ocean heat content values in the Southern Hemisphere, which contains a larger

percentage of the global ocean than the Northern Hemisphere.

Figure 2.9 additionally displays the mean globally-integrated trend over time and its

corresponding 95% credible interval. It can be seen here that the massive increase in data

produces a notably narrower credible interval for the trend than in Figure 2.9. In particular,

here the 95% credible interval for the globally integrated trend is (12.59,13.39) ZJ/year,

whereas in the results of Chapter 2 the interval was (4.66,16.03) ZJ/year. This corresponds

to reduction in the posterior standard error by a factor of 15. This is larger than would be

expected from the increase in the amount of data alone, as if the 1/
√
n convergence rate of
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Figure 3.7: Posterior mean for the trend field β in units of (GJ/m2)/year.

the variance of a standard normal distribution is assumed, increasing the number of data

points from 47,513 to 1,147,710 would suggest a reduction in the standard error by a factor

of 5. This indicates that adding the spatial components to the model is adding additional

confidence to the multi-year trend than would be expected from the amount of data alone.

This can be attributed to three sources. The first and possibly the largest effect is that, with

the addition of the temporal correlation structure, values at locations that may not have

any nearby observations in a particular month now can use information from anomalies in

nearby months. This will reduce the interpolation uncertainty over the single-month version

whenever the effective temporal range is greater than a month, which as seen in Figure 3.3c

is true for most of the ocean heat content domain. The second effect is that the addition

of floats has increased the spatial coverage of the observations as can be seen in Figure 3.1.

This increase in coverage will lead to a reduction of interpolation uncertainties in more recent

years. The third effect is the inclusion of seasonal variation in the mean-field, which will

reduce the values of the anomalies by modeling the albeit small amount of within-month

seasonal variation.

The posterior mean of the spatially-varying trend field is displayed in Figure 3.7. Since
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Figure 3.8: Posterior standard deviations of the trend field β in units of (GJ/m2)/year.

the posterior means are more than three standard deviations away from zero in 84% of

the grid-cells, the posterior probability of a positive trend visualization from Figure 2.10

is omitted in lieu of the map of posterior standard deviations in Figure 3.8. From Figure

3.8 it can be seen that the areas of the trend field with the highest uncertainty generally

correspond to the high-variance regions displayed in Figure 3.4.

When comparing these results to Figure 2.10, some areas such as the Atlantic Ocean east

of North America and south-east of South America have warming trends in both the January-

only fit and in the all-years fit. The clear warming and cooling trends in the equatorial Pacific

in the January-only fit are not as prominent in the all-years fit. This likely is due to the fact

that ENSO’s somewhat seasonal features has given it an outsized influence on the equatorial

Pacific region in the January-only results from Chapter 2.

3.7 Conclusion

The results in this chapter has shown that extending the January-only model from Chapter

2 to all months and to additional years allows for ocean heat content to be estimated with

83



a much higher degree of accuracy. In particular, the incorporation of temporal structure

in the covariance structure of the anomalies and incorporating seasonality in the mean-

field generates results with higher confidence than would be expected just from the increase

in the amount of data alone. Another notable change when extending the model to the

spatio-temporal domain is the change in the posterior distributions for the latitudinal and

longitudinal ranges as well as in the marginal variance and nugget variance parameters in

the central Pacific. This suggests that allowing the correlation parameters to vary seasonally

could present a meaningful improvement to the statistical modeled presented here. Since

the estimation of the posterior distribution of ocean heat content is fairly constrained by the

amount of information present in the data, further improvements in modeling the covariance

structure of the ocean heat content field will likely have only a small effect on the strength

of the ultimate conclusions. It should also be noted that the trend found here is broadly

consistent with other entries in the literature [Cheng et al., 2019, Resplandy et al., 2019],

although a more in-depth analysis of how the mean estimates and uncertainty levels compare

between different approaches, and how these estimations influence estimates of Equilibrium

climate sensitivity, would be an interesting extension in future work.
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CHAPTER 4

Representing Uncertainty in Estimating the the

Covariance Matrix in Optimal Fingerprinting
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The detection of the influence of increasing greenhouse gas concentrations on observed

temperatures requires the estimation of the forced signal as well as the internal variability

covariance matrix in order to distinguish between their contributions. While previous ap-

proaches have taken into account the uncertainty linked to estimation of the forced signal,

there has been less focus on uncertainty in the internal covariance matrix describing nat-

ural variability, despite the fact that the specification of this covariance matrix is known

to meaningfully impact the results. In this chapter, a covariance matrix parameterization

using Laplacian basis functions is proposed. This parameterization, unlike traditional meth-

ods which are based on principal component basis representations, does not require the basis

vectors themselves to be estimated from climate model data. The Laplacian parameteriza-

tion is incorporated into a Bayesian regression approach which allows for the propagation of

uncertainty in estimating the covariance structure to the final results. To select the number

of basis functions, a separate Bayesian model using a χ2 re-parameterization of the like-

lihood is proposed with the aim of more accurately representing the statistical properties

of the covariance matrix. The final proposed statistical approach involves fitting the two

Bayesian models simultaneously in an iterative fashion. A validation study using CMIP6

climate model ensembles shows that the proposed approach achieves better-calibrated cov-

erage rates of the true regression parameter than principal component-based approaches.

When applied to HadCRUT observational data the proposed approach produces higher lev-

els of confidence in detecting anthropogenic warming, with lower variability over the choice

of climate models, than a principal-component based approach.

4.1 Introduction

While it is well-established that increasing greenhouse gas concentrations will lead to warm-

ing surface temperatures [Arrhenius, 1896, Masson-Delmotte et al., 2021], it is difficult to

quantify the extent to which changes throughout the observational record can be attributed
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to human influence. This issue is addressed through climate change detection and attribu-

tion (D&A) research, where a combination of General Circulation Model (GCM) output and

statistical techniques are used to separate the anthropogenic signal from natural variability

in the observational record. “Optimal fingerprinting” is in particular concerned with iden-

tifying the relationship between global “forcing” patterns. Forcing is defined as any change

which influences the radiative balance of the atmosphere, and while the primary forcing

under consideration here is increasing greenhouse gas concentrations, other forcings include

changing aerosol concentrations and changes in solar radiation due to natural cycles. Op-

timal fingerprinting frameworks generally proceed by regressing the observed pattern of a

particular climate variable onto a set of forcings estimated using climate models, with the

residuals attributed to natural variability. Statistical inference on regression coefficients can

then be used to assess the extent to which the forced signal can be “detected” in the ob-

servations and the degree to which observed trends can be “attributed” to the forcing. The

regression framework has formed the conceptual foundation of optimal fingerprinting since

it was introduced by Hegerl et al. [1996], who used generalized least squares (GLS) to give

the residuals a covariance structure that can be informed by GCM simulations of natural

variability.

The reliability of optimal fingerprinting conclusions depends crucially on their ability to

accurately represent uncertainty in the regression coefficient. This is complicated by the

fact that various sources of uncertainty are present in the optimal fingerprinting procedure,

including observational uncertainty, uncertainty in estimating the forced component, and

uncertainty in representing the natural variability covariance matrix. In light of this, while

the GLS framework takes into account the uncertainty induced by natural variability itself,

there have been efforts in the optimal fingerprinting literature to expand the framework and

incorporate additional sources of uncertainty. Allen and Stott [2003] proposed the use of

a total least squares inference approach to take into account the uncertainty induced by

estimating the forced signal from a limited number of climate model runs. These approaches
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assume that the covariance structure is the same under forced and unforced climate scenarios.

This assumption is relaxed in the methodology of Huntingford et al. [2006] and Hannart et al.

[2014] who allow for separate covariance matrices for different forcing patterns.

A particular challenge with the regression approach is choosing how to represent the co-

variance matrix. The standard approach is to use a limited number of principal components

estimated from the empirical covariance matrix of a set of climate model runs. The reason

for truncating the principal components is that, while the first estimated principal compo-

nents will generally correspond to meaningful patterns of variability, higher-number principal

components may not correspond to meaningful patterns and their variances are likely to be

under-estimated. The reason for this is that lower-variability directions of the sub-spaces

are less likely to be represented within a finite number of control runs than higher-variability

components, which leads to under-estimation of the lower-variance eigenvalues [Allen and

Tett, 1999]. Under standard GLS regression formulas, terms are weighted according to the

inverse of their variance, which is often called the “precision”. Under-estimated variances,

or over-estimated precisions, will artificially increase the weight of non-meaningful patterns

in the inference. A commonly used way to choose the number of principal components is the

residual consistency test of Allen and Tett [1999], which rejects components with variances

that are unrealistically small as gauged by residuals from the regression model. Another

approach to minimizing the effect of under-estimated variances is through regularization

techniques. In particular, Ribes et al. [2009] and Ribes et al. [2012] use the Ledoit and

Wolf estimator [Ledoit and Wolf, 2004]. This method can be viewed as obtaining a full-rank

covariance matrix from the empirical covariance matrix by scaling upward the variances

of higher-number components while “shrinking” the variance of lower-number components

under the constraint that the total variance remains the same.

The approaches discussed above have used point estimators of the covariance structure

that are estimated prior to model fitting and treated as fixed from the perspective of infer-

ence. This precludes the uncertainty from estimating the covariance structure from being
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represented in the uncertainty values for the final result. Recent developments have focused

on developing detection and attribution methodology that performs covariance estimation

and regression in an integrated fashion. Hannart [2016] propose a frequentist integrated

inference procedure using Ledoit-Wolf shrinkage of the covariance matrix. Ribes et al. [2017]

develop an error-in-variables approach that is not based on the regression framework and is

motivated by the incorporation of model uncertainty, meaning the uncertainty induced by

the differences between climate models from each other and from reality, as opposed to just

estimation uncertainty, which is a product of the limited number of climate model runs.

The two integrated frameworks discussed above take a frequentist view of the optimal

fingerprinting problem, where point estimators are developed based on observed data and

confidence intervals are constructed based on their sampling distributions. Frequentist frame-

works assume that the underlying quantity is fixed but unknown. However, the underlying

quantities of the climate system could be more naturally thought of as random variables

due to the underlying probabilistic nature of the climate system [Slingo and Palmer, 2011].

A Bayesian philosophy would be a natural way to integrate the various sources of infor-

mation and uncertainty present into a statistical framework. This is the logic motivating

Katzfuss et al. [2017], or KHS17 from here on out, who develop a hierarchical Bayesian ap-

proach for optimal fingerprinting. This framework uses the truncated principal component

parameterization of the covariance matrix where the component variances and the number

of components are treated as variables. In the implementation, the component variances are

estimated along with the regression parameters conditioned on each truncation number using

MCMC. Then Bayesian model averaging (BMA; Hoeting et al. [1999]) is used to marginalize

over the number of components. This allows for the uncertainty in estimating these weights

and the number of components in the covariance matrix to be propagated to the final in-

ference results. A limitation to this method is that the principal components are computed

in advance and treated as fixed in the inference, so only the uncertainty in estimating the

variance coefficients is propagated to the final result.
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The goal of integrated D&A approaches is to correctly propagate the various sources of

uncertainty to the final result. Better modeling of the uncertainty can lead to higher stan-

dard errors than approaches that omit sources of uncertainty or under-estimate component

variances. The reliability of these standard errors can be gauged through coverage rates,

defined as the percentage of the time that an uncertainty interval contains the true value

when the true value is known. Ideally, a 90% confidence interval will contain the true value

90% of the time; if under-coverage is observed it indicates that the model is under-estimating

variance or uncertainty. Fortunately, climate model ensembles provide a wealth of data for

evaluating coverage rates of statistical methods under the assumption that the observations

are truly generated from the appropriate distribution.

Optimal fingerprinting methods have been observed to exhibit under-coverage under var-

ious settings. DelSole et al. [2019] show that confidence intervals are biased in a total least

squares setting similar to those developed by [Allen and Stott, 2003, Hannart et al., 2014],

and propose a bootstrapping method to correct for this bias. Li et al. [2021] demonstrate

under-coverage when using the regularized method of [Ribes et al., 2012], and also propose

to correct the standard errors using a bootstrapping approach. While these methods are able

to achieve coverage rates closer to the nominal values, bootstrapping approaches produce

uncertainty values that are no longer valid from the perspective of a probability model on

the data. Under-coverage in the uncertainty intervals indicates that there are sources of

variability that are not being taken into account, and an ideal approach would identify and

statistically model these factors directly. Furthermore, these two papers are concerned with

the frequentist properties of the detection and attribution regression coefficients, and such

differ from the Bayesian approach considered here.

The chapter aims to develop optimal fingerprinting methodology within a Bayesian frame-

work with improved coverage properties. The proposed approach builds off of the Bayesian

framework of KHS17, with two key innovations. The first is the parameterization of the co-

variance matrix using Laplacian basis functions, rather than principal components, to avoid
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the uncertainty induced by estimating principal components from climate model data and

to better propagate the uncertainty in estimating the covariance matrix to the final result.

In addition, the model-driven component selection approaches using the normal regression

likelihood model, such as the BMA approach of KHS17, are driven towards minimizing the

residuals rather than accurately modeling the covariance matrix. This produces fits that

achieve lower accuracy and misleading coverage when evaluated using climate models. To

this end, the second proposed innovation is a separate Bayesian model for the number of

components which uses a χ2 reparameterization of the likelihood accurate representation of

the variance terms. The overall proposed approach is to fit these two Bayesian models for

the regression and the number of components simultaneously with an iterative process. It

will be shown that this approach achieves higher accuracy and better-calibrated coverage

rates than when using the principal component parameterization or when using the normal

distributional assumption for modeling the number of components.

4.2 Methods

Let y denote a vector of true climate observations. In general, this vector can be spatial or

spatio-temporal, however here it will be assumed that this is a spatial vector giving values of a

climate variable at each of ngrid grid-points on the sphere. In the spatial-only case, changes in

the climate will be represented by taking each point of y to be the linear regression coefficient

of the climate variable of interest over time. The validation study in Section 4.3 and the

application in Section 4.4 will be using trends in near-surface air temperatures, specifically

the CMIP-standard variable “tas”, over the 25-year period 1990-2015. However, optimal

fingerprinting methodology can be applied to other climate variables such as precipitation

[Lambert et al., 2003, Zhang et al., 2007, Min et al., 2011, Wan et al., 2015], zonally-averaged

tropospheric temperatures [Santer et al., 2003, 2013, 2018], precipitable water [Ma et al.,

2017, Zhang et al., 2019], oceanic oxygen levels [Andrews et al., 2013], streamflow timing
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[Hidalgo et al., 2009], vegetation changes [Mao et al., 2016], temperature extremes [Christidis

et al., 2013, Kim et al., 2016, Lu et al., 2016, Seong et al., 2021], and various other climate

indices [Timmermann, 1999, Roberts and Palmer, 2012, Hobbs et al., 2015, Weller et al.,

2016].

In practice, the true vector y will not be exactly known. Let {y1, . . . ,ynobs-ens
} denote

nobs-ens vectors from an ensemble designed to represent observational uncertainty, for example

from the nobs-ens = 200 HadCRUT fields of near-surface air temperatures [Morice et al.,

2021]. For each observational ensemble member yk, let yk ∼ N (y,W ) where the covariance

matrix W represents observational uncertainty as implied by the ensemble. In the following

presentation and results the observational uncertainty matrix W will be ignored in order to

focus on the modeling of the covariance structure of natural variability. For the application

in Section 4.4, the observational ensemble mean 1
nobsens

∑nobsens

k=1 yk will be used as a point-

estimate of y. However, this is not a major limitation of the approach, as if desired the

Bayesian methods discussed can be augmented to include uncertainties obtained from the

observational ensemble using the computationally efficient formulas of KHS17.

Let x denote the true field of climate trends under a “forcing scenario”. This forcing

scenario here will exclusively refer to historical forcings, which include increasing levels of

greenhouse gas concentrations but also aerosals and changes in solar radiation. However,

this methodology would still hold if a different forcing scenario were to be used. It should be

noted that most treatments of optimal fingerprinting allow for multiple forcing patterns to be

included simultaneously, allowing for example greenhouse gas forcing and “natural forcings”

to be treated separately. As natural forcings are relatively minor when trends are taken over

25-year periods, this chapter will treat the historical forcing patterns as representative of

the effect of greenhouse gases, although extending the approach to include multiple distinct

forcings would be straightforward.

Let Pc = {z1, . . . , znPc} and Hf = {x1, . . . ,xnHf } denote sets of Rngrid vectors of trends

under “control” and “forced” simulations respectively, where 1 ≤ c ≤ NP indexes over the
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NP climate models used under pre-industrial forcing and 1 ≤ f ≤ NH indexes over the NH

climate models used under historical forcings. The lower-case values nPc and nHf refer to the

number of fields obtained from the c-th control and f -th sets of pre-industrial and historical

vectors respectively. Intuitively, P stands for “pre-industrial”, H stands for “historical”, c

stands for “control”, and f stands for “forced”. The dependence of x and z on Pc and Hf

will be omitted when clear from context. It will be assumed that natural variability in the

climate system has a multivariate normal distribution, or zi ∼ N(0, CPc) for each 1 ≤ i ≤ nPc

with covariance matrix CPc ∈ Rngrid,ngrid . Let xj ∼ N(xHf , CPc) for each 1 ≤ j ≤ nHf where

xHf is the “true” forced vector for the f -th historical climate model. Note that the natural

variability covariance matrix CPc is assumed to be unchanged by forcing; this assumption

is often made in the literature, although approaches such as Hannart et al. [2014] relax

this assumption. The dependence on the climate model used to generate Pc for covariance

matrix C will be dropped when clear from context. The climate models that will be used for

generating Pc and Hf are displayed in Table 4.1. These will be described in further detail in

Section 4.3.1, but it will be noted here that the simulation data was restricted to cases where

nPc > 5 and nHf > 5 to ensure that there are sufficient numbers of control and historical

fields to be used in the procedure.

With this set-up, the key formula driving optimal fingerprinting methodology is

y ∼ βx + ε where ε ∼ N(0, C). (4.1)

Here the parameter β is interpreted as the “detection and attribution” parameter. Detection

is generally taken to be a rejection of the hypothesis test H0 : β > 0, and attribution is taken

to be, conditional on detection, whether or not β is statistically indistinguishable from one.

In the latter case, β > 0 indicates that the forcing pattern x is meaningfully present in the

observed response. When β is statistically indistinguishable from one, it indicates that the

discrepancy between the observations and the forced pattern is within the range of natural

variability and that there is no evidence that other forcings are needed to explain observed

trends.
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Number piControl Number historical

ACCESS-ESM1-5 36 40
AWI-CM-1-1-MR 13

CanESM5 57 65
CESM2 43

CESM2-FV2 18
CESM2-WACCM 17

CESM2-WACCM-FV2 19
FGOALS-g3 27

FIO-ESM-2-0 20
GISS-E2-1-G 66 46

MIROC6 28
NESM3 16

NorCPM1 48 30
NorESM2-MM 15

SAM0-UNICON 27
UKESM1-0-LL 61

GISS-E2-1-H 25
MIROC-ES2L 31

MPI-ESM1-2-LR 29

Table 4.1: Number of pre-industrial control and historical ensemble members used from
CMIP6 climate models. Missing numbers indicate that either the scenario was not available
for the given climate model or the number of useable 25-year trend fields was not greater
than 5.
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If x and C were known, (4.1) could be fit using (GLS), which is a well-understood

methodology with closed-form frequentist estimators [Aitken, 1936] and was used by the

original approach of Hegerl et al. [1996]. Crucially, however, the fact that these values are not

known adds uncertainty to the inference which needs to be taken into account. Nevertheless,

the following section will proceed with an overview of the frequentist properties of GLS.

While this is different from the proposed Bayesian method where the covariance matrix is

unknown, these properties will give intuition on the relationship between the covariance

parameters and inference on the regression coefficient.

4.2.1 Generalized Least Squares

Let C ∈ Rn×n be a positive semi-definite matrix of rank r for r ≤ n. Let C = PΛP T denote

the principal component or eigen-decomposition of C, where P ∈ Rn×r denotes the column-

matrix of principle component vectors and Λ = diag(λ1, . . . , λr) denotes the diagonal matrix

of non-zero eigenvalues. Let C+ ≡ P TΛ−1P denote the Moore-Penrose pseudo-inverse of

C. Assuming that all components of C and the vectors x and y are known, under the GLS

formulation of Equation (4.1) the maximum likelihood estimator of β is

β̂ =
xTC+y

xTC+x
. (4.2)

This will be proved in the proceeding sub-section. It should be noted that when C is full

rank, or r = n, then C−1 ≡ C+ can be substituted into the relevant equations.

Denote the projection of x and y onto the eigenspace of C as

x∗ = P Tx and y∗ = P Ty.

Then, the numerator of Equation (4.2) becomes xTC+y = xTPΛ−1P Ty = (Λ−1/2x∗)T (Λ−1/2y∗)

and the denominator becomes xTC−1x = xTPΛ−1P Tx = (Λ−1/2x∗)T (Λ−1/2x∗). So, writing

out these inner products as summations it can be seen that the MLE of β is

β̂ =

∑r
i=1 x

∗
i y
∗
i /λi∑r

i=1 (x∗i )
2 /λi

(4.3)
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and it can be seen (see Section 4.2.2) that the standard error is

se(β̂) =

(
r∑
i=1

(x∗i )
2 /λi

)−1/2
. (4.4)

With these equations, the GLS formulation can be viewed as ordinary least squares with

heteroskedastic errors performed on the patterns projected onto the eigenspace of C. In

particular, Equation (4.1) can be rewritten as

y∗ ∼ βx∗ + ε; ∀iεi ∼ N(0, λi). (4.5)

When C is rank deficient, then x∗,y∗ ∈ Rr, and the transformation implied by the basis

vector matrix P is a projection onto a lower-dimensional subspace. When C is full rank,

this projection can be seen as a rotation in a direction where the coordinates of the rotated

vector are statistically independent.

In practice, the covariance matrix C is not known and must be estimated. The empirical

covariance matrix for the pre-industrial trend fields is

Ĉ =
1

nPc

nPc∑
k=1

(zk − z)T (zk − z). (4.6)

The rank of this matrix will be equal to the number of control vectors nPc , which is generally

much less than ngrid; in the case considered here, ngrid = 2592 and the largest value of nPc is

66 (Table 4.1). Let λ̂1, . . . , λ̂ngrid
denote the eigenvalues of the empirical covariance matrix

Ĉ. When nPc < ngrid, λ̂i = 0 for all i > nPc . If the true covariance matrix C is full-rank,

it will have no zero eigenvalues. Ignoring for the moment that the eigenvectors estimated

from Ĉ will be different from the eigenvectors of the true covariance matrix C, the values

λ̂i will be under-estimates of corresponding true non-zero eigenvalues. When Ĉ is treated

as the true covariance matrix, these zero eigenvalues do not pose a mathematical problem

for the GLS estimation in Equation (4.3) as the dimensions orthogonal to the estimated

principal components are effectively removed in the subspace projection. However, λ̂i will

be under-estimated but non-zero for higher values of i which are nevertheless less than nPc ,
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which will affect equations (4.3) and (4.4). The fact that the higher-number eigenvectors

will themselves be inaccurately estimated adds further reason that the inclusion of those

components may yield inaccurate results. This issue will be discussed in further depth

in Section 4.2.6, but motivates the truncated principal component parameterization of the

covariance matrix, which in essence projects the data onto a lower-dimensional subspace

than implied by the rank of the empirical covariance matrix in order to avoid those poorly

estimated components from impactings the reliability of the regression results.

4.2.2 Proof of GLS MLE and Standard Error

This section will briefly sketch the proofs the maximum likelihood estimator (MLE) of the

GLS method and the formula for the standard error:

Proof of Equation (4.2): Let C ∈ Rn×n be a positive semi-definite matrix of rank r ≤ n. Let

y = βx + ε for x,y ∈ Rn and ε ∼ N(0, C). Then the MLE estimator for β of y = βx + ε

is β̂ = xTC+y
xC+x

, where C+ is the Moore-Penrose psuedo-inverse defined as C+ = P TΛ−1P

where Br is the r×n matrix of eigenvectors and Λr = diag(λ1, . . . , λr) is the diagonal matrix

of eigen values of C. Under the Lebesgue measure [Rao, 1973] the density function for a

rank-deficient multivariate normal distribution yields a log-likelihood function of

`(β) = c− 1

2
(y− βx)TC+(y− βx)

where c is a constant not depending on β. Let x∗ = P Tx and y∗ = P Ty. Then the likleihood

is equivalent to

`(β) = c− 1

2
(y∗ − βx∗)TΛ−1(y∗ − βx∗)

Taking the derivative with respect to β yields

∂

∂β
`(β) = c′ − β(x∗)TΛ−1x∗ + (x∗)TΛ−1y∗

whose solution is

β̂ =
(x∗)TΛ−1y∗

(x∗)TΛ−1x∗
=

xTC+y

xTC+x
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Proof of Equation (4.4): Taking the variance of β̂ yields

var[β̂] =
xTC+var[y]C+x

(xTC+x)
=

xTC+CC+x

(xTC+x)2
=

xTC+x

(xTC+x)2
= (xTC + x)−1

=

(
r∑
i=1

(x∗i )
2/λi

)−1/2

4.2.3 Truncated principal Component Parameterization

The eigen-decomposition C = PΛP T can be equivalently written as C =
∑r

i=1 λipip
T
i ,

where pi denote the eigenvector columns of P . The idea behind the truncated eigenvector

representation is to choose an integer 1 ≤ κ ≤ nPc and define the rank-κ covariance matrix

Cκ;PC ≡
κ∑
i=1

λipip
T
i ≡ PκΛκP

T
κ (4.7)

where Pκ is the column matrix of the first κ principal components and Λκ = diag(λ1, . . . , λκ).

Here C is given the subscript “PC” to differentiate it from the Laplacian parameterization

that will be introduced in the next section. This covariance matrix can then be used with

Equation (4.2) and (4.4) to obtain GLS results in the frequentist setting. Traditionally,

the principle component vectors and the integer κ are selected and treated as fixed prior

to inference, and the uncertainty in their estimation are is not propagated to the final

conclusions. The remainder of this sub-section will discuss issues with treating the principal

component vectors pi as fixed, with issues in treating κ as fixed to be discussed in Section

4.2.6.

One issue with treating the principal component vectors are fixed is that these compo-

nents will contain estimation error due to the limited number of available control vectors.

To visualize this error, 13 trend fields were randomly sub-selected from the 66 trend fields

of the GISS-E2-1-G model. Then the first principal component was computed from the

sub-sampled vectors as well as the difference between this component and the first principal

component obtained from using all 66 control vectors. This was repeated for nine random
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sub-samples with the results displayed in Figure 4.1. These patterns can be interpreted

as the error from estimating the first principal component using 13 control vectors if the

covariance matrix implied by the full control vector set is treated as the “truth”. The GISS-

E2-1-G model was chosen as it has the highest number of pre-industrial control vectors and

the number 13 was chosen to correspond to AWI-CM-1-1-MR which has the smallest number

of control vectors (Table 4.1). For reference, the first principal component for the “true”

covariance of the GISS-E2-1-G model is displayed in the second column and third row of

Figure 4.2. It can be seen in Figure 4.1 that even for the first principal component there is

notable error caused by the limited number of control runs. This visualization gives an idea

of the scale and patterns of the error when estimating principal components from a limited

number of control vectors; in reality, the true error for this number of components in this

experiment would be larger due to the error between the covariance matrix implied by the

66 control vectors and the true covariance matrix.

A second issue with the use of principal components is that they rely on the particular

climate model used, and the covariance matrices for different climate models may differ from

each other and from the “true” covariance structure. In particular, the “true” covariance

matrix generating the field of observations can be imagined as being as different from the

covariance matrices implied by the climate models as they are from each other. Under

this conceptual framework, it can be seen that there may be a considerable “mismatch”

between the components of the true, unobserved covariance matrix and those estimated

using climate models, even when the number of principal components is restricted to the

lower-number better-estimated patterns. Furthermore, in the inference procedure, these

components are treated as fixed in advance, and there has not been any way developed to

incorporate the uncertainty in their estimation into the optimal fingerprinting procedure.

To get a sense of the difference between the covariance structures implied by the different

climate models, Figure 4.2 shows the estimated first principal components for each of the 16

models under consideration here (Table 4.1). This shows notable heterogeneity between the
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Figure 4.1: Error in estimating the first principal component of the GISS-E2-1-G pre-

industrial covariance matrix when only 13 control vectors are used. Displayed values are

the difference between the principal components of nine random sub-samplings of the con-

trol vectors minus the first principal component when all 66 vectors are used. The number

13 was chosen to correspond to the minimum value of nPc in Table 4.1. For comparison, the

fully sampled principal component can be seen in Figure 4.2.
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patterns expressed in the first principal components of these different covariance matrices.

The dependence of the principal component vectors on the size and properties of the

climate models used presents a source of variability and uncertainty to the optimal finger-

printing procedure which is not easily represented. A third issue with the use of principal

components is that they are not guaranteed to capture spatially coherent patterns. The first

principal components visualized in Figure 4.2 appear to capture spatially coherent coherent

patterns, however this is a consequence of correlations present in the data as opposed to a

property of the method. While it generally appears to be the case that lower-number prin-

cipal components capture meaningful patterns, higher principal components are more likely

to correspond to patterns that do not exhibit smooth spatial variation. Given the largely

spatial nature of the fields under consideration in optimal fingerprinting, patterns that do

not exhibit smooth spatial variation are likely to represent “noise” rather than meaningful

modes of variability. This highlights the desirability of a basis function parameterization

which enforces spatial correlation.

It may be asked at this point why it is undesirable to have “noise” patterns represented

in the covariance matrix for the residual term, given the fact that residual terms are usually

interpreted as “noise” or error from the GLS perspective. The reason is that the residual

term in (4.1) does not actually represent “noise” or error, but rather represents natural

variability, which is an integral aspect of the climate system. As mentioned in Section 4.2.1,

in the case where the covariance matrix is full-rank, GLS can be viewed as a heteroskedastic

linear regression performed on the vectors projected onto the principal components. In the

case that the covariance matrix is rank-deficient, this projection is onto a lower-dimensional

subspace. In either case, if basis vectors corresponding to “noise” are included, then the

regression will take those components in the data into account for both the regressors and the

response. This would be undesirable, as then the estimate of β will be based on information

from components that do not represent meaningful patterns from a detection and attribution

perspective. This would presumably lead to results that do not optimally recover the true
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Figure 4.2: First principal components, or EOFs, for the 16 pre-industrial climate ensembles

used. Components were calculated using area-weighted fields of temperature trends over

1990-2015.
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value, a presumption which will be empirically verified in the validation study of Section 4.3.

Limited data contributes to this phenomenon in the principal component case since it

makes it more likely that “noise” components are included and assigned unnaturally high

precision values, however, this is not fundamentally an issue of limited data. In the case

where the true full-rank covariance matrix was known exactly, it would be expected that

many or most of the principal components would correspond to “noise” patterns, as in a

full-rank matrix the eigenvectors will by definition span the space of all possible patterns.

In other words, the number of degrees of freedom in the trend fields will be expected to be

much smaller than the grid-cell dimension ngrid. The implications of this issue for inference

can be seen in Equation (4.2), where β is driven by the correspondence between yi and xi

for all of the included components. If these components represent “noise”, such influence

on β would be unwarranted. This issue becomes more severe when component variances are

under-estimated, as is generally the case for higher-number components with limited data,

as the “noise” components in equation (4.2) will be scaled upward to a higher degree than

would be warranted by the true variability structure. This under-estimation issue could also

be present with sufficient information if the estimated covariance matrix diverges from the

“true” covariance matrix due to model error, which would be present even with sufficient

control data.

4.2.4 Laplacian Parameterization

Given the issues with the principal component parameterization, it would be desirable to

have a covariance matrix parameterization that relies on basis functions that do not depend

on data. Ideally, these basis functions would be general enough to capture a wide potential

variety of covariance patterns and would enforce spatial correlation in order to prioritize the

inclusion of meaningful patterns. The eigenfunctions of the Laplace operator on the sphere

yield basis vectors with these properties [Courant and Hilbert, 2008, DelSole and Tippett,
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2015]. Specifically, the Laplace operator on the sphere is defined as

∇2Y =
1

cos2(lat)

[
∂2Y

∂lon2 + cos(lat)
∂

∂lat

∂Y

∂lat

]
on latitudinal and longitudinal coordinates. Let (lati, loni) denote the latitudinal and lon-

gitudinal coordinates of the i-th grid-cell for 1 ≤ i ≤ ngrid. Assuming a grid with equally

spaced latitudinal and longitudinal dimensions, let δlon denote the distance between points in

the longitudinal dimension and let δlat denote the distance between points in the latitudinal

dimension. Let dgc(i, j) denote the great circle distance between the i-th and j-th gridpoints.

Then the discretized Laplacian operator can be represented by the matrix A ∈ Rngrid×ngrid

with elements

Aij =


− 4
π

log(2(sin(dgc(i, j)
2))) δlat δdlon

√
cos(lati) cos(latj) for i 6= j

1
4
ρ2i

(
1− 2 log ρi√

2

)
for i = j

where

ρi =
√
δlat δlon cos(lati)/π

is the area of a circle whose area approximates the area of the i-th grid-cell.

Let A∗ denote A projected onto the orthogonal component of the constant vector; this is

done in order to ensure that the constant vector is an eigenfunction of the discretized Laplace

operator. Let `1, . . . , `ngrid
denote the normalized eigenvectors of the matrix A∗ where the

constant pattern is re-ordered to come first. These vectors will be referred to as “Laplacian

basis vectors”. The reader is directed to DelSole and Tippett [2015] for further details on

their construction. To get a sense for the spatial relationships captured by these functions,

the first nine eigenvectors on the sphere are displayed in Figure 4.3. Here it can be seen that

these basis vectors capture spatially coherent correlation patterns at scales that decrease as

the basis vector number increases.

Let L ∈ Rngrid,ngrid denote the column vector matrix of `1, . . . , `ngrid
. Define the Laplace-

parameterized covariance matrix as CLaplace = LΛLaplaceL
T =

∑ngrid

i=1 λi;Laplace`i`
T
i where
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Figure 4.3: First nine Laplacian basis functions on the sphere.
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Figure 4.4: Empirical standard deviations for the first fifty Laplacian basis functions. Inter-

model means for each coefficient are over the 16 pre-industrial control models of Table 4.1.

Intervals show the maximum and minimum values of the coefficients over the 16 models.

ΛLaplace = diag(λ1;Laplace, . . . , λngrid;Laplace) is a diagonal matrix of variance coefficients for

the Laplace basis vectors. The truncated Laplace covariance matrix is then defined as

Cκ;Laplace ≡
κ∑
i=1

λi;Laplace`i`
T
i ≡ LκΛκ;LaplaceL

T
κ (4.8)

where κ is the truncated number of Laplace components, Lκ is the column vector matrix of

the first κ Laplace eigenfunctions, and Λκ;Laplace = diag(λ1;Laplace, . . . , λκ;Laplace).

As before, let {z1, . . . , znPc} denote a collection of control-run vectors for pre-industrial

climate simulation Pc. Let z∗k = LTz. Then the empirical Lapalacian variance coefficients

are

Λ̂Laplace = diag

(
1

nPc

nPc∑
k=1

(z∗k − z∗)
T

(z∗k − z∗)

)
where z∗k = LTz (4.9)

and z∗ = 1
nPc

∑nPc
k=1 z∗k. The diagonal entries of Λ̂ will be denoted as Λ̂Laplace = (λ̂1;Laplace, . . . , λ̂ngrid;Laplace).

This construction is analagous to the principal component case if L is replaced with P . To see

this, left-multiplying Equation (4.6) by P T and then right-multiplying the result by P yields

P T ĈP = Λ =
(

1
nPc

∑nPc
k=1 (z∗k − z∗)

T
(z∗k − z∗)

)
which is a diagonal matrix by construction.
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To get a sense for the values of the Laplacian variance coefficients, Figure 4.4 displays

the values of
√
λ̂i, which represent the standard deviation for the i-th Laplacian component,

for 1 ≤ i ≤ 50. For each component, means and max-min spreads calculated over the 16

pre-industrial control models are displayed. It can be seen that there remains a noticeable

degree of inter-model heterogeneity; although unlike with the principal components displayed

in Figure 4.2 these differences can be visualized succinctly due to the fact that the underly-

ing basis function representations are the same between models. There also appears to be a

periodic oscillation in the Laplacian coefficients. This is due to the fact that the Laplacian

basis vectors oscillate between primarily longitudinal correlation patterns and primarily lat-

itudinal correlations as can be seen in Figure 4.3. The former correlation patterns are more

prominent in the data since temperature changes are more correlated across longitude than

across latitude.

4.2.5 Bayesian Hierarchical Model

In the previous two sections P has denoted the column matrix of principal component basis

vectors and L has denoted the matrix of Laplacian basis vectors. For the remainder of this

section B will denote a generic set of basis functions standing for either principal components

or Laplacian basis vectors depending on which method is used. Let K denote a random

variable for the number of components with discrete probability distribution P (K = κ) over

1 ≤ κ ≤ nbasis; here nbasis = min(nPc , ngrid) in the principal component case and nbasis = ngrid

in the Laplacian case. Conditioning on K = κ, let Cκ = BT
κ ΛκBκ represent the truncated

covariance matrix with generic basis vectors and coefficients Λ = diag(λ1, . . . , λκ). Let

λ̂1, . . . , λ̂ngrid
refer to either the eigenvalues of the empirical covariance matrix Ĉ defined

in Equation (4.6) when the principal component basis is used or the empirical Laplacian

coefficients defined in Equation (4.9) when the Laplacian basis is used. As in Section 4.2.1,

let y∗ = BTy and let x∗ = BTx.

Conditional on K = κ, the Bayesian optimal fingerpriting model can be defined concisely
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with the following equations:

y∗i − βx∗i ∼ N(0, λi) for 1 < i ≤ κ (4.10)

log λi ∼ N(log λ̂i, 1) for 1 < i ≤ κ

β ∼ Unif(−Inf, Inf)

where regression parameter β is given a dispersed, uninformative prior in order to avoid

biasing the results towards a particular value.

This basic framework is similar to and inspired by the approach of KHS17. One difference

is that the above ignores the fact that y and x come from ensembles and rather take them

to be fixed at the ensemble means. This simplification with regards to the forced ensemble

would not be expected to affect the results, since the approach of KHS17 integrates the

forced variability out of the likelihood function and as such it does not influence the posterior

distributions. Observational uncertainty is likely to be small in the field of 25-year trends

over the time period under consideration. As such this uncertainty is omitted here, although

in principle the likelihood techniques of KHS17 could be used to represent observational

uncertainty in a computationally efficient way.

Another difference between the framework outlined above and that of KHS17 is that

their approach introduced a parameter σ2 > 0 to be added to the diagonal of the covariance

matrix. Conditioning on K = κ, this yields the full-rank Cκ;fr = BT
κ ΛκBκ + σ2Ingrid

, where

the subscript “fr” stands for full-rank, as opposed to the potentially rank-deficient definition.

The rank deficient approach allows for the “noise” components to be eliminated from the

regression. Specifically, say that κ < ngrid and B is the matrix of eigenvectors of C. The rank-

deficient covariance matrix can be written as Cκ = BT
κ ΛκBκ ≡ BT

ngrid
Λngrid

Bngrid
where Bngrid

is equal to B with the addition of ngrid−κ vectors spanning the orthogonal complement of the

κ eigenvectors and Λngrid
= diag(λ1, . . . , λκ, 0, . . . , 0). When σ2 is added to the diagonal, this

becomes Cκ;fr = BT
κ ΛκBκ + σ2Ingrid

= BT
ngrid

Λκ;frBngrid
where Λκ;fr = diag(λ1 + σ2, . . . , λnpi

+

σ2, σ2, . . . , σ2). Then, returning to the formulas in Section 4.2.1, the regression equation
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y∗ − βx∗ ∼ N(0,Λκ;fr) holds with x∗ = Λ−1/2BT
ngrid

x, where x∗ is a vector of length ngrid

rather than κ. The value of κ then determines whether or not the variance for the i-th

component is λi + σ2 or σ2; this contrasts from the rank-deficient version where the i-th

component is removed from the regression if i > κ. In other words, in this version κ no

longer has an interpretation of selecting the number of components as all of the components

will be used. It is desirable to limit the number of components for the reasons discussed at

the end of Section 4.2.3 and justified with empirical results in Section 4.3.3.

While using a rank-deficient covariance matrix in the frequentist context yields the closed-

form estimators presented in Section 4.2.1, there is a slight complication from a Bayesian

perspective as the likelihood for yi−βxi in Equation (4.10) is not defined if i > κ. A way to

get around this is to let 1{i ≤ κ} denote the indicator function for i ≤ κ and write Equation

(4.10) as

(y∗i − 1{i ≤ κ}βκx∗i ) ∼ N(0, λi;κ) for 1 ≤ i ≤ ngrid (4.11)

where κ is added as a subscript to β and λi in order to represent the dependency between

these parameters.

4.2.6 Selecting Covariance Truncation Number

Selection of the number of basis functions in the covariance matrix representation has long

been identified as an important issue whose choice significantly impacts the results of optimal

fingerprinting [Hegerl et al., 1996]. Concerns have primarily been driven by the accuracy of

under-estimating component variances, however as discussed at the end of Section 4.2.3 when

the principal component basis is used there is also concern about estimating the principal

components themselves. In either case, however, inaccurate estimates of the component vari-

ances can lead to inaccurate optimal fingerprinting results and confidence intervals. Recalling

the frequentist MLE β̂ =
∑
i x
∗
i y
∗
i /λi∑

i(x
∗
i )

2/λi
, if λi is unrealistically small, then the i-th components

will be given larger weights thus will have a disproportionate impact on the estimate of β.
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Furthermore, recall from the standard error formula se(β̂) = (
∑

i(x
∗
i )

2/λi)
−1/2

that smaller

values of λi will increase the value of (x∗i )
2/λi. This will decrease the standard error se(β̂)

and lead to over-confident estimates. Conversely, if λi is over-estimated, then it could under-

weight important components and yield less precise detection and attribution results and

overly conservative error bars. As mentioned at the end of Section 4.2.1, under-estimation

of component variances is virtually guaranteed to happen in the principal component repre-

sentation of the covariance matrix when nPc < nbasis. While ngrid Laplacian basis functions

patterns are defined regardless of the value of nPc , higher number Laplacians will exhibit

increasingly small correlation lengths and as such would not likely correspond to meaningful

patterns. This will lead to variances which are poorly estimated from the control vectors,

and as such the Laplacian approach is not immune to the model selection issue. While the

properties of the frequentist estimators were used to drive the intuition presented here, the

logic largely transfers to the Bayesian setting as well.

Within the frequentist framework the most common method employed for selecting the

number of components is the “residual consistency” test originally proposed by [Allen and

Tett, 1999]. This test is also used in the Bayesian framework of KHS17 for post-hoc model

validation. The motivation for the test relies on the observation that when the covariance

structure is being modeled accurately, the squared scaled and projected residuals will be χ2

distributed. To see this, recall that y∗ = BTy and x∗ = BTx are the observed and forced

vectors respectively projected onto the basis functions implied by the covariance matrix

parameterization. Let rκ;i =
y∗i−βx∗i√

λi
denote the normalized residual conditioned on a value

of β. It can be seen from Equation (4.10) that

rκ;i ≡
y∗i − βx∗i√

λi
∼ N(0, 1).

Define the vector of normalized residuals as rκ = [rκ;1, . . . , rκ;κ] = Λ
−1/2
κ BT

κ (y − βx). It

follows that, conditioned on β, (rκ;i)
2 ∼ χ2

1, and that
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rTκ rκ =
κ∑
i=1

(rκ;i)
2 =

κ∑
i=1

(y∗i − βx∗i )2

λi
∼ χ2

k (4.12)

When not conditioning on β, the degrees of freedom are reduced by one, yielding rTκ rκ =

(y − βx)C−1κ (y − βx) ∼ χ2
κ−1 which is the form of the test stated in Equation 18 of Allen

and Tett [1999] when the number of forcing patterns is equal to one.

The residual consistency test is then rejected for a particular κ if rTκ rκ is larger than

an α-significance threshold with respect to the χ2 distribution. Looking at the summands

of Equation (4.12), it can be seen that large values will be achieved when the component

variances λi are small relative to the squared residuals (y∗i − βx∗i )
2. As such, this test is

more likely to reject the number of components if the values of λi under-estimate the true

variance. The motivation for the test rejecting only high values of the test statistic is to

avoid misleading and over-confident conclusions, however in principle a two-sided test could

be used to ensure that the component variances are not over-estimated as well. The number

of components is generally obtained by evaluating the results of the test for increasing values

of κ until the test is rejected, at which point κ is fixed at the previous passing value.

While useful, the residual consistency test carries significant drawbacks. One drawback

is that the significance level α is somewhat arbitrary. A more conceptual difficulty is that

in the hypothesis testing framework there is a difference between failing to reject a test

and the null hypothesis being true. In the case of the residual consistency test, the null

hypothesis is that the squared scaled and de-correlated residuals are χ2 distributed, which

can be viewed as saying that the covariance matrix structure is accurate. A rejection of

this test means that there is sufficient evidence from the observations to show that the

estimated covariance structure is inadequate. Failure to reject the test means that there is

not sufficient evidence to reject, but does not mean that the covariance structure is itself

accurate. A third drawback of this procedure is that it is generally done prior to and

separately from inference, and as such the uncertainty in choosing the number of components

in this way is not incorporated into the model. Finally, concern has been raised that the
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statistical assumptions underlying the validity of the test in a frequentist framework may not

be satisfied in practice [McKitrick, 2022]. Despite these drawbacks, the residual consistency

test remains a well-motivated approach to choosing the number of components to minimize

underestimation of the component variances.

A Bayesian approach that incorporates component selection within the inference proce-

dure has the potential to remedy these drawbacks. This is the motivation for the framework

proposed by KHS17, who estimate the distribution over the number of components by fit-

ting the regression model separately for each value of K = κ. With these fitted models,

Bayesian model averaging [Hoeting et al., 1999] is used to marginalize over K and obtain a

posterior distribution for β that takes the uncertainty in K into account. More specifically,

the posterior distribution of β conditioned on the number of components can be written

as [β|K = κ,y,x]. Once these posterior distributions are obtained through MCMC, the

marginal posterior of β is

[β|y,x] =

nbasis∑
k=1

[β|K = κ,y,x]P (K = κ|y,x) (4.13)

where

P (K = κ|y,x) ∝ [y,x|K = κ]P (K = κ) ∝ [y,x|K = κ]

assuming a flat prior for P (K = κ). The Bayesian modeling averaging formula of Hoeting

et al. [1999] yields

[y,x|K = κ] =

(
1

M

M∑
j=1

1

[y,x|K = κ, θj]

)
(4.14)

where θj denotes the vector of β and λi at the j-th MCMC sample, and M is the total number

of MCMC samples. In other words, the posterior distribution for β as given by (4.13) is the

weighted average of the posteriors for each κ where the weights are the harmonic means

of the likelihoods over the MCMC samples. Assuming a generic parameter sample θ, these

likelihoods can be written as

[y,x|K = κ, θ] = [y,x|K = κ, β, λ1, . . . , λnbasis
][λ1, . . . , λnbasis

|K = κ] =
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nbasis∏
i=1

N (y∗i |1{i ≤ κ}βx∗i , λi)N (log(λi)| log(λ̂i), 1) (4.15)

using Equation (4.11) and assuming flat prior on β. Note that here the dependence of λi

and β on κ is rendered implicit for notational clarity. Regardless, the dependence of λi

on κ is indirect as they do not explicitly interact in Equation (4.15). The value of κ does

directly influence the term
∏ngrid

i=1 N (y∗i |1{i ≤ κ}βx∗i , λi), which in practice ends up being

the predominant factor in driving the distribution over κ. Intuitively, this method will prefer

a number of components that maximizes the regression likelihood between y∗i and x∗i .

The primary issue with the BMA approach to selecting κ is that its credible intervals

tend to yield sub-nominal coverage rates when evaluated using climate model historical runs

as surrogate observations. These results are discussed in detail in Section 4.3.3, but in

summary, it appears that the normal likelihood term which drives Equation (4.15) leads to

“over-fitting” the data and selecting more than an optimal number of components. This

results in suboptimal estimation of β due to the fact that while higher-number components

may increase the strength of the fit from the perspective of the likelihood model, if these

components correspond to non-meaningful “noise” vectors their inclusion will lead to poor

accuracy at recovering the true parameter. At the same time, increasing the number of com-

ponents increases the model’s confidence in its estimation of β, which results in sub-nominal

coverage rates. These observations motivate the proposed model for K in the following

section.

4.2.7 Bayesian Model for Component Selection

The BMA procedure for modeling K uses weights given by Equation (4.15), which prioritizes

better fits of regression likelihood term (y∗i − βx∗i ) ∼ N(0, λi). As discussed in Section 4.2.1,

accurate estimates of the covariance components are essential to producing reliable estimates

and uncertainty intervals. The proposed solution for obtaining a distribution over K that

models the fit of the covariance parameters is through a reparameterization of the data
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distributional assumption of ∀κi=1(y
∗
i − βx∗i ) ∼ N(0, λi) to

∑κ
i=1

(y∗i−βx∗i )2
λi

∼ χ2
κ. This yields

the following conditional likelihood model for K:

P (K = κ|y,x, θ) ∝ [y,x|K = κ, θ] = χ2
(
rTκ rκ|df = κ− 1

)
(4.16)

where the distribution of rκ = Λ
−1/2
κ BT

κ (y−βx) is obtained from Equation (4.12); note here

that the dependence of rκ on the parameter vector θ = (β, λ1, . . . , λκ) is rendered implicit.

This re-parameterization is inspired by the residual consistency test of Allen and Tett [1999]

which yields higher likelihoods when then squared residuals and the component variances

are of similar magnitude.

While this reparameterization is motivated by the need to accurately model K, it would

be misleading to use this likelihood model for β itself since the mode of (4.16) over β would

no longer have a least-squares interpretation. As such, the proposed method of inference is

to fit two inter-dependent Bayesian models, one for K and the other for θ, each of which

is conditioned on the value of the other. Under this separation, there becomes two choices

for the distribution over K, namely the normal regression parameterization and the χ2 repa-

rameterization. The former choice yields the following posterior distribution for K when

conditioned on θ:

P (K = κ|y,x, θ) ∝
ngrid∏
i=1

N (y∗i |1{i ≤ κ}βx∗i , λi). (4.17)

The latter choice yields the posterior distribution in Equation (4.16). In the following, the

first option of Equation (4.16) will be denoted as χ2(rTκ rκ|df = κ) ≡ `χ2(κ, θ) and the second

option of Equation (4.17) will be denoted as
∏ngrid

i=1 N (y∗i |1{i ≤ κ}x∗i , λi) ≡ `N (κ, θ). where

the dependence on y and x is made implicit. These two choices will be generically denoted

as elements of the set ` ∈ {`χ2 ,`N}. The `N case can be viewed as equivalent to the BMA

procedure if a flat prior was to be used for each λi.

In summary, the proposed method involves two Bayesian models each conditioned on

the other; the first is the regression model for θ = (β, λ1, . . . , λκ) conditioned on K = κ

defined by Equation (4.11) and the second is the model for K conditioned on θ defined by
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either Equation (4.17) in the `N case or by Equation (4.16) in the `χ2 case. The posterior

distributions for each of these models can be evaluated simultaneously through the following

iterative procedure. As input, this procedure takes the observational field y, the forced field

x, a set of basis vector B taken to be either principal components or Laplacian eigenfunctions,

empirical variance terms λ̂1, . . . , λ̂nbasis
calculated from control vectors, a choice of likelihood

function for K out of the two choices ` ∈ {`N , `χ2}, a function f which returns a value from

a distribution, and a number of MCMC samples M . The method proceeds as follows:

1. Fix a choice of likelihood function `, which generically denotes either ` ≡ `N or ` ≡ `χ2 .

Let θ(0) = (β(0), λ̂1, . . . , λ̂nbasis
) denote the “first guess” values for the regression param-

eters. Using these values, evaluate the distribution P (K = k|y,x, θ(0)) ∝ `(κ, θ(0)) for

each 1 < κ ≤ nbasis; note that the restriction 1 < κ is imposed to avoid degeneracy in

the estimation of β.

2. Let κ(0) = (g)P (K|y,x, θ)) where g is a function chosen in advanced for providing

a value from a distribution. Using MCMC, obtain M samples from the posterior

distribution [β|K = κ(0),y,x]. These samples will be denoted as {β}Mj=0.

3. Obtain the point estimates β(1) = g{β}Mj=0) and similarly θ(1). Using these values,

repeat step 1 to evaluate the distribution P (K = k|y,x, θ(1)) and obtain κ(1) =

gP (K|y,x, θ)).

4. Iterate steps 2 and 3 until convergence in the posteriors for κ and β.

5. Return posterior samples obtained after convergence.

In the above procedure, each model is fit conditioned on a single value given by the func-

tion g. When g gives a random sample from the given distribution, and the posteriors are

combined using Equation (4.14), this procedure is equivalent to Bayesian model averaging.

While Bayesian model averaging was used in KHS17, such a procedure would not be guar-

anteed to converge when the `χ2 likelihood function is used since the procedure would be
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estimating two inter-dependent posterior distributions simultaneously. This would not be

an issue when the `N likelihood is used due to the fact that in this case the compatibil-

ity between the likelihood functions for κ and the other parameters means that there is a

single posterior target distribution. Nevertheless, in the remainder of the paper g is taken

to give the maximum a-posterior (MAP) estimate from a posterior distribution. This ren-

ders a procedure which nearly always converges quickly due to the fact that convergence in

gP (K|y,x, θ)) implies convergence in the posterior distribution for the other parameters. In

the following, the value of gP (K|y,x, θ)) at convergence will be referred to as κpost.

4.3 Statistical Validation using Climate Models

This section will use climate models to evaluate the statistical properties of the proposed

innovations, namely the difference between using principal component basis functions versus

Laplacian basis functions for parameterizing the covariance matrix and the choice of `N

versus `χ2 when modeling K. The combination of principal component basis functions and

the `N likelihood model for K can be seen as analogous to the BMA approach of KHS17,

with key differences being the lack of an additive diagonal term, the two-fit procedure for

evaluating the posterior as opposed to BMA, and the omission of observational uncertainty.

Since these differences complicate the interpretation in comparing the results, the validation

study only includes the principal component-`N method and not the BMA approach as

described in KHS17. The principal component-`χ2 combination was evaluated to examine

the effect of using the `χ2 likelihood when the covariance matrix parameterization is held

constant. Finally, the proposed approach using Laplacian basis vectors with the `χ2 likelihood

function is evaluated. The combination of Laplacian basis functions with the `N likelihood is

omitted here as this method generally performs worse than the others. This is due to the fact

that the `N likelihood is more likely to select a larger number of components, which when

applied to the Laplacian parameterization leads to the inclusion of components representing
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small correlation length scales which are “noisier” from the perspective of inference.

4.3.1 CMIP6 Data

To evaluate these methods, climate model simulation data was used from the 6th version

of the Climate Model Inter-comparison product (CMIP6) [Eyring et al., 2016]. To estimate

the covariance structure, pre-industrial control (piControl) scenarios were used, and for the

forced component historical simulations were used. The former scenarios are run without

any greenhouse gas forcing present and as such it can be assumed that they are distributed

according to natural variability. The latter scenarios are run with greenhouse gases at

historical concentrations with other forcings such as aerosols, ozone, volcanoes, and solar

cycles also present. Monthly “tas”, or near-surface air-temperature, datasets were used.

When necessary datasets were re-gridded to the uniform 5◦ × 5◦ latitude-longitude grid

over the Earth’s surface. Control runs were broken into 25-year segments, and for each

segment 25-year trend coefficients were computed at each grid-cell using linear regression.

For historical runs regression coefficients were computed over the period 1990-2015.

Denote pre-industrial control and historical climate models as Pc and Hf respectively,

where 1 ≤ c ≤ NP and 1 ≤ f ≤ NH. Processing the climate model data yields trend fields

Pc = {z1, . . . , znPc} and Hf = {x, . . . ,xnHf } for each c and f . Attention has been restricted

to model scenarios where nPc > 5 and nHf > 5 to ensure that there is sufficient data for

testing the inference procedure. Under this restriction NH = 7 and NP = 16 as shown in

Table 4.1. Over the 7 historical models, there is a total of
∑NH

f=1 nHf = 266 trend fields in

total.

Although individual ensemble members will be used in place of the observations in the

validation study described in the next section, ensemble means will be used for estimating

the forced pattern. For a fixed Hf , let x = 1
nHf

∑
i xi denote the ensemble mean and let

x−k = 1
nHf−1

∑
i 6=k xi denote the mean over the ensemble with the k-th member excluded.

Figure 4.5 displays the historical trend fields for each of the seven historical simulations.

117



Figure 4.5: Mean forced signal for each of the 7 historical climate model ensembles.
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The variation between these estimated forcing patterns implies an additional source of un-

certainty arising from error in the climate simulations, which is in addition to the uncertainty

induced by estimating the forced signal from limited runs. As historical ensemble means are

used, the latter source of uncertainty is not accounted for here, although it would be straight-

forward to incorporate this portion into the hierarchical Bayesian model in a way similar

to KHS17. While simulation error is also not accounted for in the proposed approach, it

will be evaluated in the results of this section through intervals over quantities obtained

from applying the statistical frameworks to the different historical models. This is similar

to “simulation error” implied by heterogeneity in the implied covariance structures over Pc

and visualized in Figures 4.2 and 4.4, which will also be evaluated in the following study.

4.3.2 Study Design

For a fixed historical climate modelHf , for any xk ∈ Hf the value of the regression parameter

β in the Equation xk = βxHf + ε is known to be equal to one. This “true value” setting

can be used to evaluate the statistical properties of the Bayesian optimal fingerprinting

procedure using historical vectors as a surrogate for the observations. To ensure that the

true value of β is one, the climate model generating the surrogate observations will be kept

the same as the model used for estimating the forced signal. However, for each historical

model, the climate model generating the pre-industrial control vectors will be alternated over

the 16 choices in Table 4.1. This alternating scheme is done in order to investigate the case

where the covariance matrix implied by the control vectors differs from the “true” covariance

generating the observations. The hypothetical “true” covariance matrix describing the real-

world observations can be thought of as being at least as different from any particular climate

model’s covariance structure as the covariance structure of any two climate models are from

each other. As such, varying the choices of historical and pre-industrial climate models

can yield insight into the statistical properties of applying the method with a particular

pre-industrial control model to real-world observations.
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For the study, statistical properties will be evaluated in terms of coverage rates, root-

mean-squared errors (RMSE), and continuous ranked probability scores (CRPS), where the

CRPS metric evaluates both the accuracy and precision of the predictive distribution [Hers-

bach, 2000]. The validation procedure described below takes as input a choice of either

principal component or Laplacian basis vectors, a choice of likelihood function for K out of

the choices `χ2 or `N , and choices for g and M as required by the two-fit procedure. With

these the study proceeds as follows:

1. Choose set of pre-industrial control vectors Pc for 1 ≤ c ≤ NP .

2. Choose set of historical vectors Hf for 1 ≤ f ≤ NH

3. For each 1 ≤ f ≤ nHf , let y ≡ xk represent the surrogate bservations and let x ≡ x−k,

where x−k is the average of the nHf − 1 ensemble members excluding the k-th. The

vector x−k represents the estimate of the true forced signal x.

4. Given this (c, f, k) pair, use the surrogate observations, estimated forced pattern, and

pre-industrial control runs to fit the posterior distribution [β|x,y, κpost] according to

the two-fit procedure described in Section 4.2.7. Recall that κpost is the MAP value of

the posterior distribution for K at convergence.

5. From the resulting posterior distribution of β, calculate CIc,f,k = 1{1 ∈ [qβ,0.5, qβ,.95]}

where qβ,0.5 and qβ,.95 denote quantiles. This will be equal to 1 if the 90% posterior

credible interval for β includes the true value of β = 1. Additionally, calculate the

posterior mean of β, which will be denoted as βc,f,k, and the CRPS value for the

posterior distribution of β against the true value of β = 1.

6. After fitting the model for each 1 ≤ k ≤ nHf , calculate the coverage rate CIc,f =

1
nHf

∑
k CIc,f,k. Also calculate the RMSE scores over posterior means RMSEij =√

1
nHf

∑
k(βc,f,k − 1)2.
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7. After obtaining CIc,f for each historical model Hf , obtain the distribution of coverage

rates CRc = {CIc,f}j as well as the analogous distributions over CRPS and RMSE

scores.

The above steps are repeated until CRc, as well as distributions over RMSE and CRPS

values, are obtained for each 1 ≤ c ≤ NP .

4.3.3 Validation Study Results

The above-described validation study was run with each MCMC fit having M = 2,000 sam-

ples and burn-in period of 1,000 iterations. The function g was taken to yield maximum

a-posteriori (MAP) point-estimates for the reasons described at the end of Section 4.2.7,

although the same reasoning would also justify the use of posterior medians or means. The

study was run for three sets of modeling choices; principal components and `N , principal

components and `χ2 , and Laplacian components and `χ2 . In reported results, the princi-

pal component basis function approach will be referred to as empirical orthogonal function

(EOF) approaches, EOF being a common name for principal components in the optimal fin-

gerprinting literature. Overall, for each of the three sets of modeling choices, this validation

study required NP ∗
∑

j nHf = 16 ∗ 266 = 4256 two-step model fits over the (c, f, k) tuples.

Figure 4.6 displays the distribution of κpost over the (f, k) tuples for each pre-industrial

climate model 1 ≤ c ≤ NP . Distributions are visualized through means and 5-th and 95-th

intervals calculated over the historical ensemble members plotted on the log2 scale. The

models have been ordered on the x-axis by increasing values of nPc . For the two EOF basis

function fits, the number of pre-industrial control runs is shown with black lines, which form

a cap on the maximum value of κpost. The maximum potential number of Laplacian basis

functions is ngrid = 2592, which is beyond the limit of the y-axis.

It can be seen that the EOF-`N version tends to put weight on a larger number of

components, and there is a clear trend in increasing κpost distributions as nPc increases.
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Figure 4.6: Distribution of κpost plotted on the log2-scale (y-axis) over each pre-industrial

control model (x-axis) for each of the three statistical frameworks described in Section 4.3.2.

Means and 90%-intervals are shown over the set of all historical ensemble members across

the different pre-industrial models. For the EOF basis function approaches, κpost is capped

at nPc , or the number of pre-industrial control vectors, which are shown as black lines.

Pre-industrial models are ordered according to increasing number of control vectors nPc .
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This increasing trend is not the case with the `χ2 versions. It can be seen that in the EOF-

`χ2 version, the number of basis functions is generally quite small, with median values often

less than eight and always less than the median value under the `N selection method. For

each pre-industrial model, the lower-bound on κpost reaches 2, which is the smallest number

of basis functions allowed in the implementation. The Laplace-`χ2 method generally selects

more components on average than the EOF-`χ2 method and either more or less than those

with the EOF-`N method, although it should be noted that since these use different sets

of basis functions the number chosen is not directly comparable. As an example, when

κpost = 2, the EOF method will project on components that differ according to the pre-

industrial control model used, the first of which can be seen in Figure 4.2. When κpost = 2

with Laplacian basis functions the method will project onto the global mean component

and onto the north-south variation component seen in Figure 4.3. In addition, since by

construction the EOF approach will maximize the amount of variance explained by each

successive component, any number of EOFs will explain an amount of variance that would

require a larger number of Laplacians. As such, it is not surprising that a smaller number

of EOFs are selected than Laplacians when the adequacy of the covariance estimation is

prioritized with the `χ2 parameterization.

Figure 4.7 shows the distributions of CRc for each 1 ≤ c ≤ NP , recalling that CRc is

the collection of coverage rates for the 90% Bayesian credible intervals when the “true” β

is known to be one. These are displayed using medians and interquartile ranges over the

distribution implied by the historical models, and a horizontal line shows the desired coverage

rate of 90%. As in Figure 4.6, the control models on the x-axis are ordered by increasing

number of available control vectors.

For the EOF-`N method, it can be seen that coverage rates are almost always less than

90% and that under-coverage continues to worsen as nPc increases. This property of the

EOF-`N method, where the coverage rates decline as the number pre-industrial control

models increase, is undesirable as an ideal method would increase in reliability as more data
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Figure 4.7: Distribution of CRc, or the percentage of 90% credible intervals that contain the

true value of β = 1, for each pre-industrial control model. Coverage rates were calculated

for each historical model separately, and means and 90%-intervals are shown over the set of

all historical ensemble members. Pre-industrial models on the x axis are ordered according

to increasing number of control vectors.
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becomes available. From Figure 4.6 it can be seen that as the number of pre-industrial

control vectors increases, this selection approach is more likely to estimate a larger number

of components. This leads to inaccurate coverage intervals as the `N likelihood function

“over-fits” the number of components. As discussed in Section 4.2 this leads to the selection

of non-meaningful components that, while improving the fit from the perspective of the

likelihood function, leads to over-confidence and sub-optimal accuracy as the number of

components gets larger.

Results for the EOF-`χ2 likelihood often achieve accurate coverage but also appear to have

a slight pattern of over-coverage. However, the Laplace-`χ2 method achieves well-calibrated

coverage rates that do not depend on nPc , with all of the sixteen intervals including 90%.

Recall that the `χ2 distributional assumption for K is intended to prioritize accurate modeling

of the covariance components. This choice produces notably better-calibrated coverage rates,

with the Laplacian basis parameterization providing a smaller additional improvement over

the principal component approach.

Figure 4.8 displays the root mean squared error (RMSE) scores calculated for each his-

torical climate model Hf using the posterior mean values of β from each ensemble member

k. Medians and interquartile ranges over Hf are displayed for each pre-industrial climate

model Pc on the x-axis. It can be seen that, in addition to having well-calibrated coverage

rates, the Laplace-`χ2 method generally has the lowest RMSE scores out of the three model

selection versions, indicating that this method is able to identify a covariance structure that

not only produces accurate recovery of β but also produces accurate uncertainty values. The

EOF-`χ2 has the worst RMSE scores on average and the largest spread both within and

between pre-industrial control models. This is unsurprising as this method will generally

select a small number of components that are not optimal for estimating β due; this will be

discussed in further depth below. The heterogeneity of the first principal components of the

covariance structures for each pre-industrial model explains the larger degree of variability

in the results for the two EOF methods. The EOF-`N method has a somewhat lower spread
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Figure 4.8: Distribution of RMSE scores calculated using the posterior means of β for each

ensemble member. Scores are calculated against a “true” value of β = 1. Medians and

interquartile ranges are shown over the historical climate models for each pre-industrial

control model on the x-axis.

and improved scores over the EOF-`χ2 model. This lower spread is due to the larger number

of components estimated, so the estimated covariance structures are allowed to have a closer

match between the historical model-derived surrogate observations and the control. Both of

the EOF methods also exhibit improving scores as nPc increases, and while it is not surpris-

ing that increasing the amount of data results in improved performance for these methods,

this feature is notably absent in the Laplace results, which exhibit low RMSE scores across

the pre-industrial control models. The Laplacian-`χ2 also has the lowest spread both within

and between pre-industrial control models. This is due to the fact that the use of Laplacian

basis functions removes both the variability induced by the estimation of principal compo-

nents from pre-industrial simulation data and the variability induced by the “mismatch”

between estimated principal components and the unobserved covariance structures implied

by the surrogate observations. CRPS values are displayed in Figure 4.9, which shows the

same general patterns.
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Figure 4.9: Distribution of CRPS values calculated using the posterior means of β for each

ensemble member. Scores are calculated against a “true” value of β = 1. Medians and

interquartile ranges are shown over the historical climate models for each pre-industrial

control model on the x-axis.

The “mismatch” phenomenon, first described in Section 4.2.3, can explain the difference

in performance between the EOF-`χ2 and the Laplace-`χ2 results. Conceptually the obser-

vations can be thought of as being generated from a true covariance matrix that is unknown

to the observer. Furthermore, it can be assumed that this theoretical climate model has a

variability structure that may be at least as different from any particular climate model as

the climate models are from each other. While it has been assumed here that the forced

and unforced variability structures are the same, in application and in the validation study

this mismatch will occur whenever the observations are from a different real or theoretical

covariance structure than the pre-industrial control simulation. This will always occur for

the observations due to simulation error and is represented in the validation study through

all (c, f) pairs where Pc and Hf represent different models. The heterogeneity of the implied

covariance structures between the climate models can be visualized for the EOF approach in

Figure 4.2 and for the Laplace approach in Figure 4.4. This mismatch entails over-estimation
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of the variance for lower-number EOFs, since the most significant patterns represented by

lower-number EOFs will correspond to less significant and less variable patterns in the ob-

servations. This leads to over-coverage when a small number of EOF components are used,

as is often the case in the EOF-`χ2 method (Figure 4.7). Another way to look at this is

that for any two climate models, the first or highest variance EOF of the first model will

correspond to a higher-number and lower variance pattern or combination of patterns in the

second model. This explains why over-coverage is only present in the lower-nPc models in

the EOF-`N results, since selecting higher numbers of components allows for patterns to be

matched between different EOF structures. Conversely, this mismatch phenomenon forces

the EOF-`N method to over-select the number of components, leading to under-coverage as

nPc grows.

The use of Laplacian basis functions, on the other hand, does not suffer from mismatching

in the structure of the components since they are fixed across historical and pre-industrial

models. While under this basis there is still heterogeneity in the component variances as

estimated using different climate models, the estimation and uncertainty of these parameters

are taken into account in the Bayesian regression framework. This generality and ability to

propagate uncertainty in the variance weights yields better-calibrated coverage rates than

the two EOF approaches as well as lower RMSE and CRPS values.

A caveat to the use of the Laplacian basis parameterization is that the displayed results

only use the `χ2 likelihood for the distribution over K. While not reported here, it appears

that when normal likelihood-based component selection methods are used with the Laplacian

basis parameterization, the method tends to over-fit the number of components, resulting in

under-coverage and worse RMSE scores than the other methods. This issue is not unique to

the Laplacian basis parameterization but is due to the larger number of possible components

allowed; as can be seen from Figure 4.7 when the `N method is used with the EOF pa-

rameterization, under-coverage becomes more severe as the number of possible components

increases. When the effective number of components is increased by adding a diagonal term
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to the covariance matrix, coverage appears to decrease dramatically. The proposed two-step

`χ2 approach provides a solution by modeling the number of components with a likelihood

function that prioritizes covariance fit. However, the separation of the model for K from

the regression model is somewhat of an ad-hoc approach that does not have the theoreti-

cal justification of an integrated Bayesian model. Practically the separation of the models

has the undesirable property that it is not able to propagate uncertainty in the number of

components to the final result. Ideally, this two-fit approach will serve as a foundation for

an integrated approach that shares the desirable properties of the `χ2 model for K, however

this extension is left for future work.

In Figures 4.8 and 4.9, the results from the pre-industrial climate model AWI-CM-1-1-

MR have been omitted since its values in several instances exceeded a reasonable range for

the y-axis. The results for this model are reported separately in Table 4.2. For this model

the Laplace-`χ2 method has the lowest median RMSE and CRPS values as well as the lowest

spread in the values, agreeing with the findings of Figure 4.8.

Model Method Metric q.05 q.50 q.95

AWI-CM-1-1-MR EOF-`N RMSE 0.15 0.16 0.17

AWI-CM-1-1-MR EOF-`χ2 RMSE 0.45 0.59 1.05

AWI-CM-1-1-MR Laplace-`χ2 RMSE 0.15 0.15 0.17

AWI-CM-1-1-MR EOF-`N CRPS 0.04 0.08 0.13

AWI-CM-1-1-MR EOF-`χ2 CRPS 0.24 0.33 0.61

AWI-CM-1-1-MR Laplace-`χ2 CRPS 0.05 0.06 0.12

Table 4.2: Summary of validation study results from the AWI-CM-1-1-MR pre-industrial

runs, which were omitted from the figures due to space constraints.
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Figure 4.10: HadCRUT observational ensemble mean of near-surface air temperature trends

over 1990-2015.

4.4 Application to HadCrut Observations

After evaluating the performance of these three methodological choices within a “known

truth” context provided by climate model simulations, these frameworks can be applied to

real observations to evaluate the substantive effect of the methodological choices. For the

observational data, let y be the mean 1990-2015 near-surface air temperature trend field of

the 200-member HadCRUT global temperature ensemble [Osborn et al., 2021, Morice et al.,

2021]. This field is displayed in Figure 4.10. It should be noted that the application presented

here does not consider the uncertainties associated with the observational ensemble in order

to keep the methods unchanged from the validation study where observational uncertainties

were not simulated.

To quantify the effects of heterogeneity in the choice of climate models, the two-step

procedure was applied to the observations with each of the 16 ∗ 7 = 112 pairs of historical

and pre-industrial models. Posterior means βpost are displayed in Figure 4.11. All of the

results tend to have a median values notably less than one. This is somewhat surprising,

but the consistency of this result over climate model pairs and methods indicates that this
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feature is inherent in the data. It can be seen that the Laplace-`χ2 method exhibits smaller

inter-model variability than the other two approaches. An interesting feature is that the

median estimates for the EOF-`N get larger as nPc increases, and appear to get closer to

the fairly consistent median values of the Laplacian results. This is a testament to the fact

that while the accuracy of the EOF-`N methods increases with nPc , the Laplacian method

exhibits consistently accurate results regardless of the number of control vectors.

Figure 4.11: Posterior means of β from the application of the Bayesian optimal fingerprinting

methods to HadCRUT observational data. Medians and 90% intervals over the historical

model runs are displayed. The black horizontal line is at β = 1.

With βpost and posterior standard deviations σβ;post the detection problem can be viewed

in terms of the ratio βpostmean

σβ;post
, or the distance in posterior standard deviations between the

posterior mean of β and zero. Greater values of this statistic indicate further evidence for

detection. In the hypothesis testing framework, the null hypothesis H0 : β = 0 would be

rejected at significance level α if β
σβ
> z1−α, where z1−α is the (1−α) quantile of the normal

distribution. While the displayed results come from a Bayesian framework, similar logic can

be employed to make binary detection and attribution conclusions.
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Figure 4.12: Evidence for “detection” of the historical signal in the HadCRUT observational

data. The y-axis is presented in terms of number of standard deviations above zero, or

βpostmean

σβ;post
. Medians and 90% spreads over the historical models are displayed. The black

line is at z1−0.05 = 1.64; values above this line would be considered “detected” at the 5%

threshold.
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The results for detection are displayed in Figure 4.12. Here, medians and 90% intervals

are displayed over the set of historical models for each of the pre-industrial control models.

The horizontal line at z1−0.05 = 1.64 represents the threshold where the probability of β

being less than or equal to zero falls below 5%. It can be seen that the EOF-`χ2 method

yields substantially different results than the other two methods in that it frequently fails to

find strong evidence for detection. This is due to the fact that this method over-estimates

the variance, as evidenced by the validation study of Section 4.3. The EOF-`N and Laplace-

`χ2 methods both conclude detection over most model pairs, however the Laplacian method

exhibits notably less variability between historical and pre-industrial climate models. The

higher level of inter-model variability in the EOF approaches is not surprising given the

dependence of the EOF representations on the specific control vectors used, and further

highlights this advantage of the Laplacian method.

Figure 4.13: Evidence for the “attribution” of trends in the HadCRUT observational data

to the historical signal. The y-axis is presented in terms of standard deviations away from

one, or |1−βpostmean|
σβ;post

. Medians and 90% spreads over the historical model results are displayed.

The black line is at z0.05/2 = 1.96; values above this line would be considered “attributed”

at the 5% threshold.
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For attribution, the statistic |1−βpost mean|
σβ;post

indicates the distance in posterior standard

deviations between the posterior mean and one. This can be used analogously to the fre-

quentist attribution test, where |1−β|
σβ

would be the test statistic for rejecting or failing to

reject H0 : β = 1 with a two-sided test. The results are shown in Figure 4.13, where it

can be seen that while attribution rates are similar for EOF-`N and Laplace-`χ2 methods,

the inter-model spread is lower for the Laplace-`χ2 approach. The EOF-`χ2 approach rarely

makes attribution conclusions, which is due to the over-estimated variances obtained with

this method.

A numerical summary of the detection and attribution results are displayed in Table 4.3.

Here, “# Detected” refers to the percentage of the 112 historical-control combinations whose

posterior distribution gives less than a 5% probability of β being less than or equal to zero.

This can be seen as analogous to rejecting the null hypothesis of β = 0 at the 5% level within

a frequentist framework. It can be seen here that the Laplace-`χ2 method makes a detection

conclusion for every model pair, a testament to this method’s consistency and accuracy. The

third column shows the percentage of “attribution” conclusions, defined as when the 95%

credible interval of the posterior distribution contains β = 1. The Laplace-`χ2 method also

has the highest percentage of positive attributions, however none of the attribution rates are

particularly high due to the fact that β is generally estimated to be less than one (see Figure

4.11). The third column shows the average value of the detection statistic plotted in Figure

4.12. The Laplace methods has the highest average confidence in a positive trend, with

on average the posterior mean being 6.3 standard deviations greater than zero. This test

statistic is slightly higher than that of the EOF-`N method, and unsurprisingly the EOF-`χ2

method has the lowest value.
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Method # Detected # Attributed Mean
βpost

σβ;post

EOF (`N ) 100 (89.3%) 19 (17%) 5.16

EOF (`χ2) 70 (62.5%) 33 (29.5%) 2.13

Laplace (`χ2) 112 (100%) 34 (30.4%) 6.30

Table 4.3: Summary of results applied to HadCRUT observational data over each of the 112

control-historical climate model combinations. “Detection” and “attribution” results were

determined using a 5% posterior probability cutoff.

4.5 Conclusion

The use of Laplacian basis functions and the novel approach for modeling the number of

components presents a further step forward on the path towards more reliable detection

and attribution results. The proposed approach has been motivated by two drawbacks in

traditional optimal fingerprinting methodology. The first is the use of principal components

or EOFs to parameterize the covariance matrix. The fact that the principal components

vary noticeably between different climate models means that their use introduces substan-

tial variability into the optimal fingerprinting procedure which is not taken into account in

inference. The proposed solution is to use Laplacian basis functions to provide a flexible,

spatially-coherent parameterization of the covariance matrix whose structure does not need

to be estimated from climate simulation data. The second issue is the selection of the num-

ber of components, which substantially affects detection and attribution results when using

either the principal component or Laplacian covariance parameterizations. The validation

study demonstrates that selection approaches based on the normal likelihood parametriza-

tion for the number of components produce results that are over-confident when the potential

number of components is high. The proposed solution is to model the number of compo-

nents with a separate Bayesian model inspired by the χ2 residual consistency test. This

yields inter-dependent models which can be simultaneously fit in an iterative fashion. When
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the normal likelihood is used for both models, the two-fit procedure can be viewed as equiv-

alent to an integrated Bayesian approach. The “true data” climate model study has shown

that the Laplacian parameterization using the χ2 model for the number of components has

better-calibrated coverage rates and lower error scores than the principal component param-

eterization. Finally, these techniques have been demonstrated on observational data, where

the Laplace-χ2 method detects the anthropogenic signal in all but one of the 112 climate

model combinations with an average confidence of 5.16 standard deviations.

A notable drawback to this approach is the ad-hoc nature of the two-fit method. The two

separate but inter-dependent models are each independently able to quantify uncertainty but

do not able to propagate uncertainty through each other. This could be solved through an

integrated Bayesian framework for both model selection and parameter estimation. Such an

approach is taken in the Bayesian framework of KHS17, however in that case the posterior

distribution for the number of principal components is based on the normal likelihood model,

which has been shown in Section 4.3.3 to give sub-optimal coverage rates. Future work will

investigate the potential for a Bayesian framework that can combine the two models proposed

here in an integrated fashion.

Another limitation to the proposed approach is that the model selection technique only

allows for consecutive sets of components to be included. Such an approach is sensible in

the principal component basis parameterization, where successive components have lower

empirical variances. In the Laplacian case, however, the relationship of variance to com-

ponent number is not monotonic as can be seen in Figure 4.4. Intuitively, when looking

at the first nine components in Figure 4.3 it could, for example, be sensible to include the

first, second, and fifth components (the mean, north-south, and pole-equatorial patterns

respectively) while excluding the more longitudinally correlated third and fourth patterns.

One potential future approach to address this would be to have a model selection parameter

for each component, although this would come with the natural difficulty in that the joint

posterior distributions for such parameters would be high-dimensional when the number of
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potential components is large. Another approach could be to re-order the Laplacians prior

to fitting the model, although this would have the undesirable effect of introducing a new

source of variability that would not be accounted for in the framework.

This chapter has focused on quantifying uncertainty in the covariance matrix through the

form and number of basis functions. To this end other important sources of uncertainty that

are accounted for in other optimal fingerprinting approaches have been ignored, including

uncertainty in estimating the forced component and observational uncertainty. Both of these

sources of estimation uncertainty can be incorporated into the Bayesian model presented

here in a straightforward fashion. A more challenging source of uncertainty is climate model

error. In the validation study and application, the methods were applied to only a singular

pair of historical and pre-industrial control climate models at a time, and the results show

a considerable amount of variability across climate model choice. The observations can be

viewed as being generated by a covariance structure which is unknown to us but is assumed to

be a member of the distribution of covariance structures implied by the spread of inter-model

variability. Under this perspective a Bayesian model could be developed which incorporates

data from multiple climate models and is able to simultaneously quantify within-model

estimation uncertainty and between-model structural uncertainty. The Laplacian covariance

matrix parameterization provides a starting point for such a model, as the fact that their

form is constant across climate models means that the covariance structures can be pooled

within the context of a hierarchical Bayesian framework. This extension has the potential

to considerably increase the robustness of the optimal fingerprinting methodology presented

here and is planned to be pursued in future work.
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CHAPTER 5

Discussion and Directions for Future Work

The three statistical themes introduced in Chapter 1 all play a crucial role in the methods

developed over the previous three chapters. The first theme, regarding the use of spatially-

coherent covariance structures to model climate phenomena, was represented in the cylindri-

cal kernel-convolution Gaussian process used in the ocean heat content problem and in the

Laplacian basis parameterization used in the detection and attribution problem. It is worth

noting that a major reason why spatially-coherent covariance structures are infrequently

used in the climate literature is the computational burden often presented by traditional

methods. In the ocean heat content problem, the computational burden of the Gaussian

process is particularly prescient, as computing the Cholesky decomposition of a covariance

matrix on the over one million observations of the full dataset would require on the order

of 1 × 1018 operations. This problem is alleviated through the use of a computationally

efficient Vecchia process, which was shown in Section 2.5 and Section 3.5 to provide an ade-

quate approximation for the full Gaussian process model. In the detection and attribution

problem, the computational difficulty presented by spatial covariance models is alleviated by

using a Laplacian basis structure rather than a Gaussian process structure. While covariance

matrices parameterized using Laplacian basis functions can represent patterns of spatial cor-

relation similar to Gaussian processes, the Laplacian basis functions are not dependent on

an additional range parameter and as such can be computed in advance. Gaussian processes,

even when using the Vecchia approximation, must be re-computed for every configuration

of the parameters, although recent work in non-parametric Vecchia processes for climate

covariance matrices could potentially render these methods suitable for the detection and
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attribution problem in future work [Kidd and Katzfuss, 2021].

The second theme, regarding the use of hierarchical Bayesian models to propagate com-

plex sources of uncertainty to the final results, is used in both problems to represent the

uncertainty in the estimation of the covariance structure. In the ocean heat content problem,

the Bayesian hierarchical model developed in Chapter 2 represents the covariance parameters

as Gaussian processes themselves to allow for the propagation of their uncertainty to the

final results. In the detection and attribution problem, the coefficients of the Laplacian basis

parameterization were incorporated into a Bayesian hierarchical model in order to propagate

the uncertainty in their estimation to the final results. Furthermore, an additional layer was

added to the hierarchy involving a chi-squared reparameterization of the likelihood function

to obtain a more reliable estimation of the number of Laplacian basis functions to use.

The third theme, regarding the statistical evaluation of the posterior distributions, is

exhibited in both the ocean heat content and the detection and attribution problems, where

both proposed frameworks have been shown to achieve better statistical properties than

previously used approaches. For the ocean heat content model, two different types of cross-

validation were used to evaluate how well the posterior distributions represent the process

at unobserved locations. In addition to the commonly used metrics of root-mean-squared

error and mean absolute error, continuous-ranked probability scores were used in order to

evaluate both the mean and spread of the posterior distributions. For the detection and

attribution problem, the framework was evaluated using climate model simulations to eval-

uate the method under the situation where the true parameter is known. This was used in

Section 4.3 to demonstrate that the proposed Laplacian chi-squared framework yields more

accurate coverage intervals than a framework closer to more traditional approaches. The

use of climate models in this validation study presents a valuable source of information for

assessing the statistical properties of the methodology, however, the results from using a

particular climate model do not necessarily guarantee the same statistical properties when

applied to the observations due to potential climate model error. If the difference between
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any particular climate model and the observed climate is assumed to be of similar magnitude

as the difference between any two climate models from each other, then the scale of this error

can be gauged by comparing the results obtained with different climate models. This can

be seen in the validation study of Section 4.3, where distributions of results over pairs of

historical and pre-industrial runs from different climate models are displayed.

The validation results show that the methods developed in this thesis advance the state

of the art in their applied problems. Nevertheless, the results presented here reveal multi-

ple promising avenues for future improvements and extensions. For the ocean heat content

problem, the difference in the correlation structure between the January-only fit and the

full spatio-temporal fit suggests that the correlation properties may themselves vary season-

ally. Potential future work could focus on investigating the degree of statistical evidence for

temporal non-stationarity in the parameter fields. Further insight could be gained by inves-

tigating potential physical reasons for changes in the correlation patterns either seasonally

or over time.

On a broader level, the amount of heat being absorbed by the ocean is an important

quantity for estimating equilibrium climate sensitivity, defined as the expected increase in

global temperatures in response to a doubling of atmospheric carbon dioxide. The value of

this parameter has immense practical importance for understanding the anticipated effects

of anthropogenic climate change, however, the best estimate and the uncertainty in this

estimate are notoriously difficult to quantify [Knutti et al., 2017]. Various work has been

done in the climate literature to estimate and represent uncertainty in equilibrium climate

sensitivity through Bayesian frameworks [Annan, 2015, Bodman and Jones, 2016, Goodwin

and Cael, 2021]. Incorporating the Bayesian model for the trend in ocean heat content into

these frameworks for climate sensitivity would be a promising direction for future research.

The Bayesian model for ocean heat content would also benefit from an extension of the

data under consideration to additional portions of the ocean. In the applications of Chapter

2 and Chapter 3 only ocean heat content values integrated up to 2,000 meters of depth
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within the mask displayed in Figure 2.1 were used. An even more accurate picture of ocean

heat content could be obtained by extending the methodology to incorporate areas outside

of the mask, heat content profiles with shallower maximum depths, and ocean heat content

at deeper depths. In particular, the recent introduction of the deep Argo program [Jayne

et al., 2017, Gasparin et al., 2020] allows for the analysis of ocean heat content up to 6,000

meters of depth in some areas of the ocean.

The Bayesian detection and attribution approach proposed in Chapter 4 prioritizes the

representation of uncertainty in the covariance matrix, and as such does not incorporate

several other important sources of uncertainty. In particular, observational uncertainty and

uncertainty from estimating the forced signal have been major focuses of previous entries

in the literature [Hammerling et al., 2019]. Such sources of uncertainty could be incorpo-

rated into the Bayesian framework presented here using established approaches. A more

challenging source of uncertainty to incorporate is the uncertainty induced by climate model

heterogeneity or error. One possibility for representing this uncertainty in the covariance

matrix would be to add a level to the Bayesian hierarchy to “pool” the covariance parameters

between different climate models. Such a direction would take advantage of fact that the

Laplacian basis functions are the same between different models, a feature that is not present

in principle component based approaches. Future research could also aim to incorporate het-

erogeneity in estimating the forced signal from historical runs with different climate models.

As can be seen in the validation study of Section 4.3, these sources of uncertainty could be

meaningful in magnitude and their representation would lead to more reliable detection and

attribution results.

This proposed method is intended for the detection and attribution of climate changes

at the global scale. While reliable detection and attribution methodology is important for

emphasizing the benefit of reducing emissions, results from these methods have only a minor

effect on the scientific consensus on the relationship between greenhouse gas concentrations

and warming temperatures due to multiple supporting lines of evidence. However, establish-
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Figure 5.1: Power of the detection hypothesis test applied independently to each grid-cell

without correcting for multiple testing (top panel) and with the application of the multiple

testing correction of Benjamini and Yekutieli [2001] (bottom panel). Power is computed at

the 5% level by averaging over the 47-member GISS ensemble [Miller et al., 2021].
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Pre-Industrial

Runs (zj)

zj ∼ N(0, C)

Historical

Runs (xk)

xk ∼ N(x, C)
Observations

(y)

y = β � x + ε

ε ∼ N(0, C)
β ∼ GP (·, ·;θ)

Figure 5.2: Diagram of a Bayesian hierarchical framework for representing detection and attri-

bution parameters at the local level. Data is in red and distributional assumptions are in green.

Indices j index over pre-industrial runs zj and k index over historical runs xk. Here the symbol �

refers to pointwise vector multiplication. The vector θ represents the parameters of the Gaussian

process (GP ) for β.

ing the relationship between greenhouse gases and climate changes at smaller scales is more

scientifically challenging. Furthermore, detection and attribution results for global trends

are less relevant to policymakers and the public at large, who are generally more concerned

with climate change impacts at their local level. Local detection and attribution approaches

in the literature often employ statistical methods to each location independently [Knutson

et al., 2013, Knutson and Zeng, 2018]. This runs into issues with the large number of hy-

potheses to be tested, and as demonstrated in Figure 5.1, correcting for multiple testing

results in a substantial decrease in the power of successfully detecting the signal. This power

could ostensibly be improved by taking into account the covariance structure describing

the variability of the underlying climate process, as is done in the Bayesian detection and

attribution framework for the global signal proposed in Chapter 4.

As such, extending the Bayesian detection and attribution framework to local scales is

a highly motivated direction for future research. A potential approach would be to model

the regression parameter as a spatially-varying field within the hierarchy. Then the value of

this parameter field at any particular location would indicate the strength of the evidence
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for detection and attribution while taking the global covariance structure into account. This

idea, where the detection and attribution parameter is given a Gaussian process prior, is

demonstrated in the diagram of Figure 5.2. The model in this diagram also incorporates

observational uncertainty and uncertainty in the estimation of the forced signal as mentioned

earlier in this section. The long-term goal of this line of research is to develop a Bayesian

hierarchical model which takes into account all of the meaningful sources of uncertainty and

can present the strength of evidence for a causal connection between climate forcings and

effects at local scales.

The statistical methods developed in this thesis present quantitative improvements in

their respective problems while illuminating promising directions for future research in the

intersection of statistics and climate. Accurate quantification of uncertainty in climate prob-

lems is particularly important given the impacts of global warming on the environment, soci-

ety, and daily life. As such, statistical methodology plays an important role in understanding

the consequences of human activities on the climate. As greenhouse gas concentrations con-

tinue to increase, this role will become increasingly valuable in the years to come.
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