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Accelerating phase field simulations
through a hybrid adaptive Fourier neural
operator with U-net backbone
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Christophe Bonneville1 , Nathan Bieberdorf 2,3, Arun Hegde1, Mark Asta 2,3, Habib N. Najm1,
Laurent Capolungo 4 & Cosmin Safta1

Prolonged contact between a corrosive liquid and metal alloys can cause progressive dealloying. For
one such process as liquid-metal dealloying (LMD), phase field models have been developed to
understand the mechanisms leading to complex morphologies. However, the LMD governing
equations in these models often involve coupled non-linear partial differential equations (PDE), which
are challenging to solve numerically. In particular, numerical stiffness in the PDEs requires an
extremely refined time step size (on the order of 10−12s or smaller). This computational bottleneck is
especially problematic when running LMD simulation until a late time horizon is required. This
motivates the development of surrogate models capable of leaping forward in time, by skipping
several consecutive time steps at-once. In this paper, we propose aU-shaped adaptive Fourier neural
operator (U-AFNO), a machine learning (ML) based model inspired by recent advances in neural
operator learning. U-AFNO employs U-Nets for extracting and reconstructing local features within the
physical fields, and passes the latent space through a vision transformer (ViT) implemented in the
Fourier space (AFNO). We use U-AFNOs to learn the dynamics of mapping the field at a current time
step into a later time step. We also identify global quantities of interest (QoI) describing the corrosion
process (e.g., the deformation of the liquid-metal interface, lost metal, etc.) and show that our
proposedU-AFNOmodel is able to accurately predict the field dynamics, in spite of the chaotic nature
of LMD.Most notably, our model reproduces the keymicrostructure statistics and QoIs with a level of
accuracy on par with the high-fidelity numerical solver, while achieving a significant 11, 200 × speed-
uponahigh-resolutiongridwhencomparing the computational expenseper time step. Finally,wealso
investigate the opportunity of using hybrid simulations, in which we alternate forward leaps in time
using theU-AFNOwith high-fidelity time stepping.Wedemonstrate that while advantageous for some
surrogate model design choices, our proposed U-AFNO model in fully auto-regressive settings
consistently outperforms hybrid schemes.

Phase fieldmodeling is a powerful tool for simulating themicrostructure and
morphological evolution of material systems subjected to various driving
forces (e.g., chemical,mechanical, andelectrical).Thephasefieldmethoduses
a “diffuse-interface” approach to track phases, interfaces, as well as conserved
quantities (e.g., mole fraction of an element). This allows for the temporal
evolutionof the system tobe defined everywhere by a set of partial differential
equations (PDEs) representingwell-knowncontinuumand interfacial kinetic

processes1–3. While this avoids the numerical complexity associated with
explicitly tracking and updating a sharp interface in addition to providing a
route to describing interface reactions, phasefieldmodeling can still require a
high-resolution spatial discretization to accurately resolve nano-scale inter-
facial phenomena. This can render large length- and time-scale phase field
simulations prohibitively computationally expensive, thereby limiting the use
of phase field modeling to coarse grain microstructure evolution.

1Sandia National Laboratories, Livermore, CA, 94550, USA. 2Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA.
3Department ofMaterials Science and Engineering, University of California, Berkeley, CA, 94720, USA. 4Los AlamosNational Laboratory, Los Alamos, NM, 87544,
USA. e-mail: cpbonne@sandia.gov

npj Computational Materials |           (2025) 11:14 1

12
34

56
78

90
():
,;

12
34

56
78

90
():
,;

http://crossmark.crossref.org/dialog/?doi=10.1038/s41524-024-01488-z&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41524-024-01488-z&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41524-024-01488-z&domain=pdf
http://orcid.org/0000-0003-4732-3045
http://orcid.org/0000-0003-4732-3045
http://orcid.org/0000-0003-4732-3045
http://orcid.org/0000-0003-4732-3045
http://orcid.org/0000-0003-4732-3045
http://orcid.org/0000-0002-8968-321X
http://orcid.org/0000-0002-8968-321X
http://orcid.org/0000-0002-8968-321X
http://orcid.org/0000-0002-8968-321X
http://orcid.org/0000-0002-8968-321X
http://orcid.org/0000-0001-8079-7790
http://orcid.org/0000-0001-8079-7790
http://orcid.org/0000-0001-8079-7790
http://orcid.org/0000-0001-8079-7790
http://orcid.org/0000-0001-8079-7790
mailto:cpbonne@sandia.gov
www.nature.com/npjcompumats


Several approaches have been developed to circumvent the computa-
tional expense of phase field simulations. One approach is to use adaptive
meshing to set the spatial discretization to be veryfine near the interface and
much coarser in the bulk phases where longer-range transport processes
take place4. However, this is not guaranteed to be advantageous in situations
where the interface morphology is rapidly changing, since frequent re-
initialization of the adaptive mesh would be required. Another approach is
to artificially broaden interfaces—from thenanometer-scale to, for example,
the micron-scale—and thereby resolve the system with a relatively coarse
mesh at interfaces as well as within bulk phases. In this approach, transport
equations and effective kinetic parameters are rederived to ensure the phase
field simulations evolve consistently with a realistic thin-interface system5–7.
But any approach using a micron-scale interface is inherently limited in its
ability to resolve morphological features that initiate at the nano-scale. And
so, while these approaches are valuable for a wide variety of phase field
simulations, they are not necessarily suitable for situations with fine-scale,
dynamic morphologies.

One such example is the dealloying corrosion of metals, where the
infiltration of a corrosive agent into the alloy can rapidly lead to morpho-
logically complex metal structures8–13. Understanding corrosion-induced
dealloying is particularly critical in energetic applications, such as next-
generation molten-salt nuclear reactor design14,15. In these aforementioned
metal structures, preferential dissolution of the alloy precedes an instability
that initiates nano-scale, compositionally heterogeneous features along the
interface9. In a coupled manner, these features grow while the corrosive
agent infiltrates as individual channels into the alloy. The reemergenceof the
nano-scale interfacial instability can cause these channels to bifurcate and
advance tortuously into the alloy, increasing the alloy’s topological
complexity16. Simultaneously, capillary forces act to coarsen the dealloyed
structure and reduce local curvatures and overall topological complexity17.
Competition among these processes sets up a dynamic morphology that
underlies the rate of corrosion into the base metal. Phase field simulations
for dealloying corrosion, specifically for liquid-metal dealloying, have suc-
cessfully reproduced the experimentally observed morphologies and
uncovered the key mechanisms by which these structures evolve16,18–20. To
simulate representative domains and time-scales with high resolution, these
phase field simulations have generally relied on using high-performance
computing resources and advanced time-integration schemes16,20. However,
the length- and time-scales of such simulations are several orders of mag-
nitude below experiments, so that validation requires extrapolation using
scaling laws.

The computational cost of numerical simulations such as the ones
involved in liquid-metal dealloying is amajor bottleneck. This is particularly
true when a large number of forward simulations are required, like in
uncertainty quantification21,22, inverse problems21,23–25, and design
optimization26–28 applications. This computational challenge has historically
motivated the development of surrogate models that are faster than the
high-fidelity simulations, albeit being less accurate. This drop in accuracy
can be an acceptable compromise when the time gain is significant. A
particular class of surrogate models for PDEs, such as reduced-order-
models (ROMs) aim to decrease computational cost by reducing the
dimensionality of the problem. This can be done by projecting snapshots of
high-fidelity simulations into a lower-dimensional latent space. Linear
projection methods, such as proper-orthogonal decomposition (POD), are
widely used for building accurate ROMs29–33, and have been successfully
applied to a variety of problems, e.g., in fluid mechanics34–39, structural
dynamics40–42, and control systems43–45. More recently, employing machine
learning (ML) approaches to compress high-fidelity data snapshots has
gained significant interest. Indeed, non-linear mappings, such as neural
networks, can yield better performance, especially in advection-dominated
problems46–49.

With recent advances in deep learning and computer vision, a second
class of surrogate models for PDEs has emerged, namely neural
operators50–52. Neural operators learn mappings between function spaces
through a resolution-invariant tensor-to-tensor regression. Popular neural

operator architectures include Fourier neural operator (FNO)51,
DeepONets52, and more recently, Laplace neural operator (LNO)53 and
convolutional neural operator (CNO)54 constructions. In time-dependent
problems, neural operators can be employed to predict the physical state at a
future time step, given the current state. Often, this strategy is used auto-
regressively, i.e., the operator output becomes its own input, allowing for
predicting consecutive time steps. This strategy (sometimes referred to as
auto-regressive roll-out) is analogous to conventional explicit time inte-
grators. Auto-regressive neural operator roll-outs have the convenient
advantage of being naturally well suited for non-parametric initial condi-
tions (e.g., random initial field), unlike more traditional ROM approaches.
As such, neural operators have been applied to a variety of problems,
including fluid dynamics51,55,56, electromagnetics and electro-convection57,58,
fracture mechanics59, weather prediction60,61, phase field modeling62,63, and
plasma physics64.

While neural operators have shown great accuracy in the aforemen-
tioned papers, recent work suggests that this accuracy can be increased
furtherby combiningkeyneural operator building blockswithU-Nets65 and
Vision transformers (ViTs)66. Recent papers proposed to employ the
encoder-decoder architecture of aU-Net as a feature extractionmechanism,
in combination with a neural operator bottleneck63,67,68. Building on this
work, ViTO69 and DiTTO70 proposed a neural operator architecture based
on ViTs to capture interdependence relations within the input field com-
pressed features, where the compression is obtained by a U-Net. In this
paper, we propose to build on these ideas by strategically placing an adaptive
Fourierneural operator (AFNO)71 at the intermediate bottleneckof aU-Net.
An AFNO is a special implementation of a ViT, where the attention
mechanism specific to transformer architectures is computed in the Fourier
space. This idea, initially introduced with FNO51, allows for significant
computational efficiency gains during training.We call our proposedmodel
U-AFNO, and show that it is able to capture the phase field predictions of
dealloying morphology and rate with excellent accuracy, in spite of the
highly chaotic underlying physics.

LMD phase fields can be used to extract local and global quantities of
interest (QoIs). Such QoIs, describing, for example, the topology of cor-
roded/dealloyed metal interfaces or the chemical composition within the
alloy, may be crucial for decision-making, optimization, or uncertainty
quantification purposes. In the present study, we employ several physically
relevant QoIs to describe the dealloying process at both local and global
scales. Furthermore, we show that our proposed U-AFNO model is accu-
rate, not only according to state-of-the-art error metrics50–52,72,73, but also in
correctly reproducing the aforementioned QoIs, unlike other commonly
used neural operator models. Lastly, we also investigate the performance of
blending our proposed surrogate model with high-fidelity simulations. In a
recent ML-based phase field surrogate study73, Oommen et al. proposed to
augment a U-Net-based model with alternate high-fidelity solver time
stepping. After each leap in time through a U-Net forward pass, several of
the following time steps are computed with the high-fidelity solver. This
hybrid approach still partially relies on the high-fidelity solver, and is con-
sequently significantly slower than fully auto-regressive roll-outs, but allows
for greater (and tunable) accuracy. In this paper, we investigate the per-
formance ofU-AFNOswith andwithout hybrid high-fidelity time stepping.
In particular, we show that even without hybrid time stepping augmenta-
tion, our proposed U-AFNO model can outperform other augmented
models, such as U-Nets.

The contributions of this paper are, therefore, twofold: (1) a novel
surrogatemodel for LMDphasefield simulation to accurately reproduce the
microstructure dynamics and the QoIs describing dealloying processes and
(2) a thorough performance analysis of hybridML surrogates blended with
high-fidelity solvers. Note that we employ the term high-fidelity to refer to
simulations obtained fromtraditionalPDEsolvers (sometimes referred to as
full-order models in the literature), as opposed to surrogate models. In the
section “Results and discussion”, we first present and discuss the perfor-
mance of our proposed model in auto-regressive settings (section “Perfor-
mance of the fully auto-regressive U-AFNOsurrogate”), and investigate the
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effects of hybrid time stepping (section “Investigating the effects of hybrid
time stepping”). Then, in the section “High-fidelity phase field model for
liquid-metal dealloying”, we describe the mathematical model for LMD
processes and provide brief details of our high-fidelity solver implementa-
tion. In section “Leaping forward in time with U-AFNO”, we introduce key
technical details of our proposed U-AFNO surrogate model, and in section
“Phase field quantities of interest”, we present methods for computing the
various local and global QoIs employed in the paper.

Results and discussion
Training
The training set comprises 87 high-fidelity simulations, each containing 100
field snapshots spanning from time t =1 μs to t =6 μs. Our proposedmodel,
the U-AFNO is trained to leap 50,000 (high-fidelity) time steps ahead, i.e.,
Δτ = 5 ⋅ 104 × Δt = 0.05 μs every forward pass (where Δt is the time step
employed in the high-fidelity solver). The test set comprises 20 high-fidelity
simulations of similar form. The model is trained for 20 epochs, using the
Adam optimizer74 with a learning rate of 10−4. The code is implemented
with Pytorch75, and the AFNO bottleneck is based on the FourCastNet
implementation60. For a baseline comparison, we also train a standard U-
Net, an AFNO (with noU-Net backbone), and an FNO. Thus, the effects of
using a U-Net with and without an AFNO bottleneck, and using an AFNO
with and without a U-Net encoder/decoder can be carefully investigated in
an ablation study. The high-idelity training, validation, and testing dataset is
generatedusing 128 coreson aLinux cluster (32-socket Intel XeonPlatinum
8176, 2.10 GHz, 12TB DDR4). Each simulation took, on average, 43 h to
complete, and generating all the datasets took us about 2 months. All our
models are trained on a single Nvidia A100 80GB GPU. The U-AFNO
training took 35 h. All the models are trained using a standard ℓ

2 relative
error loss50, averaged across the phase and species field.

In this paper, we run test surrogate simulations for up to time step 6 ×
106 (i.e., tmax ¼ 6μs). We initialize the surrogate simulations with time
integration of the high-fidelity model (in the following sections,
nin = 1,000,000 steps). This allows for the instabilities at the interface
between the phases to grow and be sufficiently distinguishable across dif-
ferent initial conditions. We note that these instabilities reemerge at later
stages of the simulation, and so the surrogate simulationswill still see, andbe
required to emulate these morphological instabilities that can rapidly
change the simulation trajectories.

Extracting informative quantities of interest
An essential motivation for developing physical simulations (whether high-
fidelityor surrogate ones) is that it is oftenanecessaryfirst step for extracting
informative quantities of interest (QoIs) from the physical fields. These
QoIs, computed locally and/or globally across the spatialfield andover time,
may be crucial for optimization or uncertainty quantification and decision-
making purposes. In some applications, the extracted QoIs may be more
important than the simulated physical field itself. In dealloying corrosion,
some QoIs are particularly informative, such as the local curvature10,12,16,17,76

and the extent (perimeter)77 of the solid-liquid interface, the penetration
depthof the corrosive liquid into themetal11,19, and the amount of remaining
metal alloy, and species throughout the corrosion process. In the following
subsections, we evaluate the performance of our model not just for pre-
dicting physically consistent phase and species fields over time, but also in
recovering the correct QoI dynamics (and associated uncertainty envelope
across different initial conditions).

Error metrics
Weconsider several errormetrics to assess the accuracy of ourmodel.While
the relative error between the ground truth (i.e., high-fidelity simulation)
and the predicted field is a common error metric in the neural operator
literature50–52, it is not directly applicable here due to the chaotic nature of
LMD simulations. In chaotic systems, comparing invariant statistical
properties, such as field auto-correlations, is more meaningful and
informative72. In phase field simulations, the field spatial auto-correlation is

equivalent to the probability that two points in the field will be part of the
same phase78. As such, the spatial auto-correlation relative error has been
shown to be more relevant for describing the microstructure statistics than
other relative error metrics, and has been recently used in neural operator-
based phase field models73. The spatial auto-correlation relative error is
defined as:

eACðu; û; tÞ ¼
jjSûûðr; tÞ � Suuðr; tÞjj2

jjSuuðr; tÞjj2
ð1Þ

where u can represent either a ground truth species mole fraction or phase
field variable at time t, and û represents the corresponding surrogate pre-
diction. S is the corresponding spatial auto-correlation function and r is a
vector connecting any two points in the spatial field. Note that, for baseline
comparison, we also compute the average auto-correlation relative
discrepancy between each pair of ground truth simulations contained in
the test set. In this later case, equation (1) is used as well, but we employ the
term discrepancy rather than error since we only compare ground truth
simulations together. This discrepancy metric allows for meaningful
judgment of the difference between ground truth dynamics and our
surrogate, compared to a high-fidelity simulation with a different random
initial condition. To assess the ability of our model to predict the key QoIs
described in section “Phase field quantities of interest”, we also consider a
second set of error metrics, the relative error of each QoI across all time
steps. For example, we define the mean-curvature relative error as:

eðμk; μ̂kÞ ¼
jjμ̂k � μkjj2

jjμkjj2
ð2Þ

where μk is the vector of ground truth mean-curvature at each time step:
μk ¼ ðμkðt0Þ; . . . ; μkðtmaxÞÞ (and μ̂k is the equivalent vector for the
surrogate prediction). In the results shown shortly, t0 = 0 μs and
tmax ¼ 6μs. In a similar fashion, we define the relative error for the
curvature standard deviation, the interface perimeter, the maximum
penetration depth, the mean ligament height, and the remaining
metal mass.

Performance of the fully auto-regressive U-AFNO surrogate
We first investigate the performance of our model in a fully auto-regressive
setting. That is, the U-AFNO is called in a recurrent fashion, where the
output at any time is immediately re-used as input to predict the field at a
later time (without further processing).

uðt þ ΔτÞ � GðuðtÞÞ; 8t; ð3Þ

Where u represents the physical field and includes the phase field ϕ and the
two species field cA and cB. G represents the machine learning surrogate.
Figure 1 shows the solid phase ϕ and species A and B predicted with a U-
AFNO-B/1 surrogate (where B/1 refers to a 1 × 1 patch size), at different
moments in time from t = 0 μs to t = 6 μs. The total number of auto-
regressive forward passes through the U-AFNO is 100. The LMDphysics is
chaotic, and contaminating the initial species fields with white noise may
lead to widely different microstructure topologies at the end of the
simulation (as shown in Fig. 2). Given such chaotic behavior, the surrogate
model cannot reproduce the exact ligament shapes, but it captures patterns
that are visually consistent with them. Specifically, based on visual
inspection, the ligaments of the solid phase exhibit satisfactory thickness,
height, and size. Further, the liquid phase penetrates into the metal in a
manner consistent with the ground truth results, making its way steadily
toward the bottom boundary. The dynamics of both species are similarly
consistent; especially at the solid-liquid interface where species A tends to
segregate to the growing ligaments while species B is dissolved into the
liquid. This behavior, consistent with dealloying phenomena, is correctly
reproduced here. This empirical observation can be confirmed by looking at
the associated auto-correlation maps, represented in Fig. 3. The predicted
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Fig. 1 | U-AFNO-B/1 field predictions in the fully auto-regressive case.The predicted and ground truth fields are shown at t = (0, 1, 2, 3, 4, 5, 6)μs. Since the initial 106 time
steps are computed with the high-fidelity solver, time t = 0−1 μs for the U-AFNO and the ground truth are identical.

Fig. 2 | Liquid-metal dealloying with two sets of initial conditions. The initial
species fields (cA and cB at t= 0) are contaminatedwith low-amplitude randomwhite
noise (left fields). Given the chaotic nature of the dealloying process, the initial noise

perturbation eventually leads to widely different solid phase fields at late time (e.g.,
right fields, at t = 6 μs, after 6 million time steps).
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auto-correlations closely match the ground truth, indicating that the
U-AFNO reproduces invariant field statistics well.

The auto-correlation relative error metrics for each surrogate model
are represented in Fig. 4. The auto-correlation error for the solid phase, and
species A and B are shown every 500,000 time steps. For each field, the
U-AFNO-B/1 clearly outperforms all the baseline models. At the end of the
simulation, the relative error forϕ and cAdoesnot exceed 15%,while that for
cB does not exceed 20%. Hence, even after 100 forward pass through the

U-AFNO model, the error remains remarkably well controlled. Note that
monotonic error growth is often expectedwith neural operators, since these
models are inherently explicit (similar to explicit time integrators such as
forward Euler). Fully eliminating error growth is still an open research
question. Strategies to prevent error build-up, such as physics-informed loss
functions, have been proposed79, but they offer little guarantees and are not
feasible here since we are leaping between non-consecutive time steps
(making time derivative computations unreliable). When employing a

Fig. 3 | U-AFNO field auto-correlation maps in the fully auto-regressive case. The auto-correlationmaps correspond to the fields shown in Fig. 1. The error maps are the
absolute error between the predicted and ground truth auto-correlation.
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larger patch size (2 × 2 and 4 × 4), the errors slightly deteriorate, which is
expected since larger transformer patch sizes generally yieldworse accuracy.
Yet, each U-AFNO model outperforms the other baseline models. In par-
ticular, they are more accurate than both U-Nets and vanilla AFNOs,
confirming that combining these two model architectures can significantly
improve prediction accuracy. TheU-AFNO-B/1 relative error is onparwith
the average discrepancy between distinct pairs of ground truth simulation
(shown in hatched black). This is significant: in practice, it means that, on
the auto-correlation relative error metric, and considering a given high-
fidelity simulation, our surrogate will reproduce the dynamics equally well
as any other high-fidelity run (on perturbatively different initial condition).

The QoI relative errors are provided in Table 1, and the predicted
dynamics of each QoI are shown in Figs. 5, 6 for the U-AFNO-B/1 and the
U-Net, respectively. Note that the QoIs and error metrics are all computed
across 20 test simulations, therefore the values in Table 1 and curves in Figs.
5, 6 are mean values (with standard deviations). The U-AFNO clearly
outperforms thebaselinemodels andpredicts the evolutionof eachQoIwith
very reasonable accuracy, as it rarely exceeds 5 to 10% relative error (except
for the mean ligament height, with a mean relative error of 36.5%). As
shown in Fig. 5, our proposed model reproduces the mean curvature and
mass envelopes with remarkable accuracy, and is also able to capture the
curvature standard deviation, interface perimeter and maximum penetra-
tion depth true patterns very well. Conversely, in Fig. 6, the U-Net under-
estimates the mean curvature and mass envelope values, while

overestimating the curvature standard-deviation, interface perimeter and
maximum penetration depth. Most notably, with the U-Net, the liquid
penetrates into the solid exceedingly fast and reaches the bottom boundary
much earlier then it should (the maximum penetration depth steeply rises
after 2 μs). This is due to the fact that with the U-Net, the liquid-solid
interface tends to collapse at both the right and left edges of the domain. It is
not clear why this phenomena occurs, but a possible explanation is that the
U-Net fails to accurately capture the effects of the boundary conditions on
the field dynamics.

Investigating the effects of hybrid time stepping
Neural operators and adjacent regressionmodels have been extensively used
with an auto-regressive roll-out to predict PDE dynamics over time50–52,60.
While this approach (employed in the section “Performance of the fully
auto-regressiveU-AFNOsurrogate”) is simple and fast, errors can growand
be potentially unbounded. This is in part because the outputs of neural
operators are generally not guaranteed to lie within the correct manifold of
physical fields (especially with fully data-driven operators). In order to slow
down error growth, a recently proposed approach62,73 alternates forward
passes through the neural operator (forward leap in time) with high-fidelity
time stepping (relaxation steps). This strategy allows for greater flexibility in
balancing the trade-off of speed-up vs. accuracy. More relaxation steps
means greater reliance on the high-fidelity solver and fewer neural operator
forward passes, which is expected to mitigate error build-up (as each new

Fig. 4 | Auto-correlation relative errors for fully auto-regressive simulations.
Each model is trained to skip 50,000 time steps at a time, but for simplicity we only
show the error values every 500,000 steps. The hatched gray regions represent the

initial 106 time steps computed with the high-fidelity solver. The cross-hatched black
lines in each plot represent the average auto-correlation discrepancy between each
distinct pair of ground truth simulations in the test set.
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operator forwardpass inevitably introduces someerror), but also takesmore
time. Conversely, fewer relaxation steps mean faster surrogate predictions
but potentially larger error accumulation in the long term. In this section,we
investigate the performance of U-AFNOs and baseline models with and
without these high-fidelity relaxation steps (in the former case, we employ
the termhybrid simulation) tounderstandbetterwhenhybrid time stepping
may be beneficial.

We use the same trained models as in the fully auto-regressive case
(leaping 50,000 time steps at a time), but after each forward pass through the
surrogate model, we now employ the high-fidelity solver to advance in time
for a limited number of relaxation time steps. For both theU-AFNOand the

baseline models, we run test simulations for 1000, 10,000, and 50,000
relaxation time steps. Figures 7, 8 show the auto-correlation relative errors
with and without relaxation steps, for the U-AFNO and the U-Net,
respectively. With the U-AFNO, the accuracy of the surrogate simulation
does not significantly improve when using high-fidelity relaxation time
stepping. While this may seem surprising, it is, in fact, reasonable since the
margin for improvement is limited. Indeed, as seen in the fully auto-
regressive case, theU-AFNOaverage error is alreadyonparwith the average
auto-correlation discrepancy between distinct ground truth simulations.
Thus, reducing the error further with a model that still relies on surrogate
modeling (whether moderately or not) is unlikely to succeed.

Table 1 | QoIs relative errors with fully auto-regressive roll-out

Model Mean
curvature

Curvature standard
deviation

Interface
perimeter

Total mass cA mass cB mass Maximum
penetration depth

Mean ligament
height

U-AFNO-B/
1 (Ours)

0.057 ± 0.019 0.117 ± 0.032 0.068 ± 0.029 0.011 ± 0.006 0.023 ± 0.011 0.007 ± 0.003 0.040 ± 0.017 0.358 ± 0.238

U-AFNO-B/
2 (Ours)

0.082 ± 0.030 0.128 ± 0.044 0.182 ± 0.038 0.032 ± 0.009 0.057 ± 0.017 0.014 ± 0.004 0.055 ± 0.023 0.345 ± 0.096

U-AFNO-B/
4 (Ours)

0.058 ± 0.017 0.122 ± 0.030 0.073 ± 0.033 0.036 ± 0.012 0.055 ± 0.019 0.029 ± 0.004 0.052 ± 0.022 0.328 ± 0.150

U-Net 0.069 ± 0.022 0.144 ± 0.043 0.202 ± 0.076 0.096 ± 0.015 0.119 ± 0.026 0.033 ± 0.006 0.364 ± 0.037 0.368 ± 0.165

FNO 1.862 ± 0.290 3.798 ± 0.310 0.282 ± 0.073 0.107 ± 0.021 0.164 ± 0.031 0.054 ± 0.019 0.326 ± 0.107 0.841 ± 0.047

AFNO-B/16 0.790 ± 0.092 1.895 ± 0.173 0.132 ± 0.053 0.123 ± 0.026 0.106 ± 0.022 0.133 ± 0.036 0.040 ± 0.016 0.366 ± 0.146

AFNO-B/32 0.777 ± 0.081 2.110 ± 0.269 0.286 ± 0.085 0.121 ± 0.035 0.211 ± 0.049 0.045 ± 0.032 0.123 ± 0.059 0.581 ± 0.109

For U-AFNOs and vanilla AFNOs, B/1, B/2, and B/4 indicate a patch size of 1 × 1, 2 × 2, and 4 × 4, respectively. U-AFNOs can employ significantly smaller patch sizes than AFNOs, since theU-Net encoder
architecture downsamples the AFNO input. Note that for fair comparison, every model output is wrapped into the interval [0, 1], as described in section “Leaping forward in time with U-AFNO”.

Fig. 5 | QoI dynamics predicted with the U-AFNO-B/1 (fully auto-
regressive case). For each QoI, the solid blue line is the mean QoI value over time,
taken across all the ground truth simulations in the test set (and the dotted lines are

the corresponding standard deviations). The solid red lines represent the QoI
dynamics predicted by the U-AFNO (averaged over all test surrogate simulations).

Fig. 6 | QoI dynamics predicted with the U-Net (fully auto-regressive case). For
each QoI, the solid blue line is the mean QoI value over time, taken across all the
ground truth simulations in the test set (and the dotted lines are the corresponding

standard deviations). The solid red lines represent the QoI dynamics predicted by
the U-Net (averaged over all test surrogate simulations).
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For the U-Net however, we observe a different trend. As seen in Fig. 8,
the error significantly decreases when employing high-fidelity relaxation
steps, likely because there is more room for improvement (compared to the
fully auto-regressive case). With just 1000 relaxation time steps, the errors
sharply decrease (especially for ϕ and cB), indicating that even just a few
relaxation time steps are sufficient to correct the field physics. When
increasing the number of relaxation time steps, the errors eventually
decrease further, but with diminishing returns. This is expected since (as
discussed in the previous paragraph), it is unlikely for any surrogate model
to achieve significantly lower errors than the average auto-correlation dis-
crepancy between ground truth simulations. The observation that blending
U-Net forward passes with high-fidelity time stepping to improve accuracy
is very consistent with findings in Oommen et al.73. However, as seen with
our proposedU-AFNOmodel and in Fig. 7, the gains fromemploying high-
fidelity time stepping may vary depending on the specific surrogate model
architecture.

Tables 2–4 show the QoI relative errors for 1000, 10,000, and 50,000
high-fidelity relaxation time steps, respectively. While the U-AFNO still
generally outperforms the baselinemodels (in particular with a patch size of
1 × 1), the improvements compared to the fully auto-regressive case are
marginal, and sometimes the accuracy even degrades (as already observed

with the auto-correlation errors in Fig. 7). For example, the relative error for
themass of species B increases from 0.7% in the fully auto-regressive case to
3.2% in the hybrid (1000 relaxation steps) case. With some of the baseline
models, such as the FNO and the vanilla AFNOs, the accuracy slightly
improves between the fully auto-regressive case and the hybrid case (with
1000 relaxation steps), but then significantly deteriorates with 10,000 and
50,000 relaxation steps. In these latter two cases, the metal tends to be
consumed by the corrosive liquid much faster than it normally should, and
fully disappears early on. As a result, the liquid-metal interface is not
properly defined anymore, and the QoIs depending on this interface are
unavailable (e.g., curvature QoIs). Intuitively, the accuracy should improve
when employingmore andmore relaxation time steps, as a larger and larger
portion of the simulation is computed through the high-fidelity solver.
However, as discussed earlier, this assertion does not always hold true.
Except for the vanilla U-Net, the accuracy either remains stable, or worsens.
Additional investigation as to why andwhen accuracymay degrade is left to
future work, but we conjecture that this degradation is linked to the
robustness of the high-fidelity solver to un-physical initial conditions. Since
the neural operator is purely data-driven and no physical constraints are
enforced, the neural operator outputs may violate some underlying
assumptions of the high-fidelity solver, leading to instability or un-physical

Fig. 7 | Auto-correlation relative errors for the U-AFNO-B/1, using either fully
auto-regressive simulations, or hybrid simulationswith 1000, 10,000, and 50,000
relaxation time steps. The cross-hatched black lines in each plot represent the
average auto-correlation discrepancy between each distinct pair of ground truth
simulations in the test set. Note that when using either 1000 or 10,000 relaxation
steps, the timeline of the available snapshot is progressively shifting. For example, in

the fully auto-regressive case (or the 50,000 relaxation steps case), the 1,050,000th

step and the 1,100,000th step will be consecutively available. Conversely, with 10,000
relaxation steps, the 1,050,000th, 1,060,000th, and 1,110,000th steps will be con-
secutively available. This is the reason why the 1000 relaxation steps (green) and
10,000 relaxation step (orange) markers are slightly shifted.
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behavior build-up by the high-fidelity solver itself. For instance, in the high-
fidelity LMD simulations, periodic boundary conditions are enforced
between the left and right edges of the domain. However, these boundary
conditions are not hard-enforced during the neural operator training. Thus,
the neural operator outputs, which serve as initial conditions for the high-
fidelity solver,may not be strictly periodic, leading to unexpected behaviors.

As a general conclusion on hybrid simulations, while our findings are
consistent with early results from Oommen et al.73, it is clear that further
investigations are necessary, as the benefits from hybrid time stepping may
highly depend on the machine learning surrogate architecture, the high-
fidelity solver implementation, and ultimately, the underlying physical
application. We conjecture that this may be particularly true in chaotic
systems.

Speed-up performance
The high-fidelity solver average wall clock run time is 0.026 s per time step
(on 128 CPU cores). That is, 1303 s per 50,000 steps. The average wall clock
run time for a forward pass through theU-AFNO(with a 1 × 1 patch size) is
0.116 s on a singleGPU. Thus, the speed-up to compute 50,000 time steps is
about 11,200×. The U-AFNO run time is quasi-negligible compared to the
high-fidelity solver run time, so the speed-up of a full surrogate simulation
(in the fully auto-regressive case) comes down to the time taken to initialize
the simulation (equivalent to a 6× speed up in the present example). Table 5
shows the parameter count, inference speed (i.e., one forward pass), and

training time of each U-AFNO and baseline model. The U-AFNO models
are slightly slower than the baselines (for both forward pass and training
time), but the difference is negligible, especiallywhen compared to the high-
fidelity numerical solver. Besides, the U-AFNO prediction accuracy is sig-
nificantly better than any of the baseline, which largely outweighs the
(slightly) slower inference time. Note that augmenting the surrogate
simulation with high-fidelity relaxation steps would considerably lower the
speed-up gains, and as discussed in the previous paragraph, the U-AFNO
already achieves excellent accuracy without needing such hybrid time
stepping.

Discussion
We have introduced U-AFNOs, a new ML-based surrogate model for fast
prediction of time-dependent PDEs. This architecture was applied to phase
field simulations, specifically the dealloying corrosion of metals, where the
infiltration of a corrosive liquid into the alloy can rapidly lead to morpho-
logically complexmetal structures. Employedwithin an auto-regressive roll-
out, our proposedmodel is able to reproduce the correct LMDpatterns, and
accurately captures invariant statistics, even in high-chaotic simulations.
Ourwork supports the idea that combiningU-Nets and vision transformers
may provide very promising architectures for operator learning. Further-
more, we have identified meaningful QoIs to accurately describe the LMD
dynamics and showed that they can be accurately predicted by our model.
We have also investigated the relevance of augmenting auto-regressive

Fig. 8 | Auto-correlation relative errors for the U-Net, using either fully auto-regressive simulations, or hybrid simulations with 1000, 10,000, and 50,000 relaxation
time steps.The cross-hatched black lines in each plot represent the average auto-correlation discrepancy between each distinct pair of ground truth simulations in the test set.
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surrogate simulations with hybrid high-fidelity time stepping. We showed
that the potential gains in accuracy are not systematic, and may be depen-
dent on the architecture of the ML surrogate and/or the high-fidelity solver
(i.e., problem-dependent).

Methods
High-fidelity phase field model for liquid-metal dealloying
Consider a model dealloying system, where a binary alloy composed of two
species, denoted as “A” and “B”, is in contact with a liquid dealloying agent

of pure species “C”. The model is parameterized to represent a liquid-metal
dealloying system, following refs. 16,20. The solid and liquid phases are
trackedusing anon-conservedphasefield variableϕ, whereϕ= 1 in the solid
phase, ϕ = 0 in the liquid phase, and 0 < ϕ < 1 represents their diffuse
interface. Conservedphasefield variables are used to track each species, with
cA, cB, and cC representing the mole fraction of species A, B, and C,
respectively. Everywhere in the system, cA + cB + cC = 1.

While the system, in principle, exhibits dynamics in 3-dimensional
(3D) space, we focus here on a 2D context for computational convenience,

Table 2 | QoIs relative errors with a hybrid surrogate/high-fidelity roll-out

Model Mean
curvature

Curvature standard
deviation

Interface
perimeter

Total mass cA mass cB mass Maximum
penetration depth

Mean ligament
height

U-AFNO-B/
1 (Ours)

0.054 ± 0.017 0.114 ± 0.035 0.083 ± 0.045 0.017 ± 0.009 0.028 ± 0.012 0.032 ± 0.006 0.031 ± 0.019 0.317 ± 0.221

U-AFNO-B/
2 (Ours)

0.056 ± 0.017 0.138 ± 0.042 0.139 ± 0.047 0.036 ± 0.011 0.060 ± 0.019 0.015 ± 0.003 0.059 ± 0.024 0.355 ± 0.220

U-AFNO-B/
4 (Ours)

0.060 ± 0.017 0.117 ± 0.037 0.105 ± 0.063 0.019 ± 0.013 0.046 ± 0.021 0.030 ± 0.005 0.036 ± 0.021 0.350 ± 0.201

U-Net 0.066 ± 0.024 0.145 ± 0.052 0.129 ± 0.062 0.040 ± 0.021 0.067 ± 0.032 0.012 ± 0.006 0.104 ± 0.098 0.381 ± 0.202

FNO 0.735 ± 0.077 1.961 ± 0.215 0.342 ± 0.053 0.342 ± 0.062 0.375 ± 0.060 0.320 ± 0.059 0.266 ± 0.104 0.759 ± 0.073

AFNO-B/16 0.137 ± 0.039 0.471 ± 0.105 0.406 ± 0.051 0.250 ± 0.021 0.185 ± 0.033 0.336 ± 0.019 0.054 ± 0.038 0.433 ± 0.167

AFNO-B/32 0.202 ± 0.034 0.651 ± 0.113 0.357 ± 0.080 0.268 ± 0.057 0.229 ± 0.051 0.329 ± 0.066 0.096 ± 0.041 0.400 ± 0.123

Here, 1000 high-fidelity relaxation time steps are employed after each forward pass through the surrogate model. In some cases, the surrogate simulation is too inaccurate to exhibit a properly defined
liquid-metal interface, in which case any QoI depending on this interface is unavailable (listed as N/A).

Table 3 | QoIs relative errors with a hybrid surrogate/high-fidelity roll-out

Model Mean
curvature

Curvature standard
deviation

Interface
perimeter

Total mass cA mass cB mass Maximum
penetration depth

Mean ligament
height

U-AFNO-B/
1 (Ours)

0.056 ± 0.016 0.114 ± 0.038 0.084 ± 0.045 0.013 ± 0.007 0.035 ± 0.015 0.028 ± 0.006 0.042 ± 0.025 0.261 ± 0.129

U-AFNO-B/
2 (Ours)

0.056 ± 0.018 0.116 ± 0.033 0.089 ± 0.047 0.023 ± 0.010 0.045 ± 0.019 0.018 ± 0.004 0.047 ± 0.021 0.270 ± 0.194

U-AFNO-B/
4 (Ours)

0.057 ± 0.015 0.123 ± 0.051 0.110 ± 0.054 0.025 ± 0.014 0.034 ± 0.018 0.029 ± 0.006 0.040 ± 0.027 0.291 ± 0.166

U-Net 0.060 ± 0.018 0.125 ± 0.037 0.087 ± 0.033 0.044 ± 0.030 0.062 ± 0.035 0.021 ± 0.015 0.101 ± 0.109 0.336 ± 0.165

FNO N/A N/A N/A 0.540 ± 0.055 0.540 ± 0.040 0.534 ± 0.079 N/A N/A

AFNO-B/16 N/A N/A N/A 0.580 ± 0.124 0.522 ± 0.117 0.652 ± 0.127 N/A N/A

AFNO-B/32 N/A N/A N/A 0.791 ± 0.020 0.703 ± 0.024 0.843 ± 0.015 N/A N/A

Here, 10,000 high-fidelity relaxation time steps are employed after each forward pass through the surrogate model. In some cases, the surrogate simulation is too inaccurate to exhibit a properly defined
liquid-metal interface, in which case any QoI depending on this interface is unavailable (listed as N/A).

Table 4 | QoIs relative errors with a hybrid surrogate/high-fidelity roll-out

Model Mean
curvature

Curvature standard
deviation

Interface
perimeter

Total mass cA mass cB mass Maximum
penetration depth

Mean ligament
height

U-AFNO-B/
1 (Ours)

0.061 ± 0.018 0.107 ± 0.036 0.092 ± 0.042 0.029 ± 0.013 0.053 ± 0.019 0.014 ± 0.004 0.058 ± 0.028 0.272 ± 0.132

U-AFNO-B/
2 (Ours)

0.051 ± 0.013 0.108 ± 0.037 0.076 ± 0.032 0.034 ± 0.011 0.041 ± 0.016 0.021 ± 0.004 0.059 ± 0.027 0.271 ± 0.151

U-AFNO-B/
4 (Ours)

0.055 ± 0.017 0.107 ± 0.036 0.109 ± 0.051 0.041 ± 0.012 0.048 ± 0.018 0.018 ± 0.005 0.058 ± 0.024 0.263 ± 0.152

U-Net 0.065 ± 0.027 0.110 ± 0.039 0.102 ± 0.064 0.030 ± 0.019 0.039 ± 0.023 0.017 ± 0.006 0.083 ± 0.067 0.266 ± 0.101

FNO N/A N/A N/A 0.400 ± 0.076 0.394 ± 0.073 0.414 ± 0.075 N/A N/A

AFNO-B/16 N/A N/A N/A 0.493 ± 0.108 0.443 ± 0.124 0.635 ± 0.228 N/A N/A

AFNO-B/32 N/A N/A N/A 0.734 ± 0.027 0.669 ± 0.030 0.799 ± 0.020 N/A N/A

Here, 50,000 high-fidelity relaxation time steps are employed after each forward pass through the surrogate model. In some cases, the surrogate simulation is too inaccurate to exhibit a properly defined
liquid-metal interface, in which case any QoI depending on this interface is unavailable (listed as N/A).
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presuming uniformity in the third dimension. The initial condition for the
system is shown in Fig. 2. The spatial domain Ω is defined as a square of
width102.4 nm(Ω = [0, 102.4] × [0, 102.4]). The binary alloy is initialized in
the lower part of the domain, while the liquid phase is on top. The alloy's
initial composition is nominally (cA, cB) = (0.3, 0.7) everywhere, with
superimposed white noise sampled from a uniform distribution in the
interval [−0.025, 0.025] at each grid-point. The liquid is initialized as pure
cC = 1. Dirichlet boundary conditions of ϕ = 0 and cC = 1 are enforced along
the top edgeof the simulation.Neumannboundary conditions (zeronormal
gradient) are enforced along the bottom edge of the simulation. Periodic
boundary conditions are enforced on the left and right edges of the domain.
We discretize the system using a regular 512 × 512 grid, with a grid spacing
of Δx = 0.2 nm.

The evolution of the phase field is defined using

∂ϕ

∂t
¼ � ~Mϕ

π2

8η
δF
δϕ

ð4Þ

where ~Mϕ is the mobility of the solid-liquid interface, η is the diffuse
interface width, and δF/δϕ is the functional derivative of the free energy
functional, F, with respect to the solid phase3,80. Conserved-species mole
fraction evolution is governed by the continuity equation

∂ci
∂t

¼ ∇ �
X
j¼A;B

MijðϕÞ∇
δF
δcj

 !
ð5Þ

with aphase-dependent solutemobilityMij and the functional derivative δF/
δcj. Eq. (5) is solved for speciesA andB evolution,while speciesC can always
be determined by the condition cC = 1− cA− cB. The summation in Eq. (5)
is only accomplished for speciesAandBsince δF/δcj represents thediffusion
potential of species jwith respect to speciesC.The solutemobility is givenby

MijðϕÞ ¼ Dliqð1� ϕÞVa

kT
ciðδij � cjÞ ð6Þ

where the diffusivity is assumed to be negligibly small in the solid phase and
smoothly increases toDliq in the liquidphase.Va is anatomic volume,k is the
Boltzmann constant, and T is temperature.

The free energy function is defined as

F ¼
Z

Ω
ðf phaseðϕÞ þ f chemðϕ; cA; cBÞÞdV ð7Þ

with the free energy density fphase that sets the diffuse interface, defined as

f phase ¼
4σsl
η

η2

π2
ð∇ϕÞ2 þ ϕð1� ϕÞ

� �
ð8Þ

where σsl is the interfacial energy of a pure solid-liquid interface. The
chemical energydensity fchem is givenby a regular solutionmodel,whichhas

an ideal entropy of mixing and non-ideal enthalpy of mixing that depends
quadratically on mole fractions.

f chem ¼
X

i¼A;B;C

kT
Va

ci lnðciÞ
� �

þΩACcAcC þ hðϕÞΔgsl þ
1
2

X
i¼A;B;C

κð∇ciÞ2
� �

ð9Þ

whereΩAC is the excess enthalpy ofmixing between species A andC, h(ϕ) is
an interpolation function, Δgsl is the difference between solid and liquid
reference chemical energies, and κ is the energy penalty for spatial gradients
of each species. The interpolation function, defined to smoothly vary
between h(ϕ = 1) = 1 in the solid and h(ϕ = 0) = 0 in the liquid, is given by

hðϕÞ ¼ 1
2
þ 2

π
ð2ϕ� 1Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ϕð1� ϕÞ

p
þ 1

2
arcsinð2ϕ� 1Þ

� �
ð10Þ

while Δgsl is defined as

Δgsl ¼
X

i¼A;B;C

ciLi
T � Ti

Ti

� �� �
ð11Þ

where Li is the latent heat of melting and Ti is the melting temperature for
each species i.

Theparameters for themodel are given inTable 6, following refs. 16,20.
In this work, species A is assumed to have a very small solubility with the
liquid C bath, which is set by the large, positive excess enthalpy of mixing
ΩAC≫ 0 and the largemelting temperature of species A,TA≫T. This leads
to the dealloying condition where species B is selectively dissolved from the
alloy into the liquidCbath,whileA rearranges laterally along the interface to
form a topologically-complex solid structure. Importantly, diffusion along
the interface (where 0 < ϕ < 1) is significantly fast, according to Eq. (6), to
enable reorganization of species A.We assume the dealloying is rate-limited
by diffusion in the liquid phase (based on refs. 11,16), and therefore set the
interfacemobility ~Mϕ to be very large so that dissolution is fast compared to
diffusion in the liquid.

In the high-fidelity phase field simulations, non-conserved phases are
updated using a simple forward Euler time-integration of Eq. (4). However,
for conserved species, Eq. (5) is numerically very stiff, and using forward
Euler would require prohibitively small time steps to maintain numerical
stability. This is, in part, due to the fine spatial resolution of the numerical
mesh and also the fourth derivative on each speciesfield inEq. (5) that arises
from the square of the gradient in Eq. (9). This species gradient penalty
together with themixing enthalpyΩAC in Eq. (9) are required for capturing
the characteristics of the interfacial composition separation (i.e., spinodal
decomposition) that underlies the dealloying corrosion and morphology
selection19. Instead of using forward Euler, conserved species are updated
using a semi-implicit time-integration of Eq. (5), which is based on the
approach of ref. 81 and uses spectral methods. The reader is referred to
ref. 20 for details of this semi-implicit time-integration scheme and

Table 5 | U-AFNO and baseline models parameter count and
computational efficiency

Model Parameter count Inference speed Training time

U-AFNO (B/1) (Ours) 66.3 ⋅ 106 0.116 s 35 h

U-AFNO (B/2) (Ours) 65.1 ⋅ 106 0.087 s 29 h

U-AFNO (B/4) (Ours) 69.2 ⋅ 106 0.081 s 27 h

U-Net 7.8 ⋅ 106 0.077 s 26 h

FNO 19.1 ⋅ 106 0.049 s 30 h

AFNO (B/16) 60.5 ⋅ 106 0.035 s 26 h

AFNO (B/32) 63.4 ⋅ 106 0.033 s 25 h

Table 6 | Thermodynamic and kinetic parameters used in the
high-fidelity phase field simulations16,20

Parameter Value Parameter Value

T 1775 K σsl 0.2 J ⋅ m−2

η 4 × 10−9 m κ 2.4 × 10−9 J ⋅ m−1

LA 2.82 × 109 J ⋅ m−3 LB 1.89 × 109 J ⋅ m−3

LC 1.84 × 109 J ⋅m−3 TA 3290 K

TB 1941 K TC 1358 K

Va 0.01 × 10−27 m3 ΩAC 1.44 × 1010 J ⋅m−3

~Mϕ
12.0 m ⋅ s−1 ⋅ GPa−1 Dliq 7 × 10−9 m2 ⋅ s−1
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implementation. These high-fidelity phase field simulations use a time-step
size of Δt = 10−12 s.

Leaping forward in time with U-AFNO
In this section,wepresent technical details of ourproposedU-AFNOmodel.
We first cover attention mechanisms and Fourier neural operators, and
further motivate the need for a U-Net backbone augmentation. Vision
transformers (ViT)66 have become widely popular in computer vision82,83,
and recent attempts to use them for operator learning have shown pro-
mising early results69,84–86. Originally introduced for natural language pro-
cessing applications87, the key idea of transformers is to compute a similarity
metric (attention) across sub-samples of the training data (tokenization). In
ViTs, this is done by splitting the input image (denoted X) into N smaller
patches x 2 Rd (each patch is reformatted into a vector of dimension d).
The input image can thus be represented by a tensor X 2 RN × d . The
attention can be computed with the following expression:

Att : RN × d 7!RN × d AttðXÞ ¼ σ
XWqðXWkÞ>ffiffiffi

d
p

 !
XWv ð12Þ

Where σ is an activation function, generally taken as softmax. The query,
key, and valuematrices, respectivelyWq,Wk, andWv are learnable weights.
SinceViTaredesigned for 2D image inputs, Eq. (12) complexity is quadratic
in nature. Thus, the self-attentionmechanismofViTs scales poorly with the
patch size and the resolution of the input image (or, equivalently, in this
paper, the input physical field). This is particularly problematic for two
reasons. First, high-resolution images of physical fields are sometimes
necessary to capture small-scale local features (as is the case in this paper
with LMD). Second, a small patch size is desirable as it generally yields
higher prediction accuracy88. As a result, training ViTs can be computa-
tionally challenging. To alleviate this issue, Adaptive Fourier Neural
Operators (AFNOs)71 have been proposed. The main idea of AFNOs is to
formalize Eq. (12) as a kernel summation. Each row of Att(X) can be re-
written as:

AttðXÞðs; :Þ ¼
XN
t¼1

Xðt; :Þ � Kðs; tÞWv|fflfflfflfflffl{zfflfflfflfflffl}
κðs;tÞ

K ¼ σ
XWqðXWkÞ>ffiffiffi

d
p

 !

ð13Þ
Where t ∈ ⟦1, N⟧ represents a dummy row index (in this section only). By
assuming that the kernel is a Green’s kernel, i.e., κ(s, t) = κ(s − t), self-
attention can be seen as a global convolution operation. Building on an idea
originally introduced with Fourier neural operators (FNOs)51, the attention
operation is performed in the Fourier space, which allows reducing the
convolution to a simpler and computationally faster element-wise matrix
product:

AttðXÞðs; :Þ () F�1ðF ðκÞ � F ðXÞÞðs; :Þ ð14Þ

WhereF refers to the discrete FFT operation. Additional details onAFNOs
can be found in ref. 71. It should be noted that unlike other popular neural
operator models, such as FNOs51 and DeepONets52, AFNOs are not neural
operators in the true sense. Indeed, neural operators are generally con-
sidered to be resolution-independent. While the operation described in Eq.
(14) is resolution-independent by construction, in AFNOs the input image
is processed through an embedding layer before computing attention. This
embedding layer is generally fully connected, with a fixed dimension,
resulting in the loss of resolution invariance.Note that resolution invariance
could, in principle, be restored by adopting a similar strategy as in
DeepOnets52. In particular, theU-AFNOcould be used as a branch network
to processfield quantities, and be connectedwith a trunknetwork to process
Cartesian grid information (using, e.g., a fully connected or convolutional
neural network).

AFNOs have been successfully employed to build surrogates in a
variety of physical simulation problems, such, as andmost notably, weather
forecasting through auto-regressive roll-out60,61. However, AFNOs are
prone to exhibit squared-shape artifacts and mismatches between patch
interfaces in the predictedfield. In our experiments, we have found this to be
particularly true with the binary phase fields describing LMD simulations.
To address this issue and ensure both meaningful feature extraction and
smooth outputs, we propose to combine a simple AFNO with a U-Net
backbone (U-AFNO). U-Nets65 employs an encoder-decoder architecture,
with U-shaped successive convolutions, downsampling, and upsampling
layers, and skipped connections between the encoder and decoder. U-Nets
have proven to be highly successful in image regression tasks, and com-
bining the strengths of U-Nets with neural operators has been recently
found to be useful63,67,68,73. In particular, ViTO69 and DiTTO70 studies have
proposed to use vision transformer blocks within the standard U-Net bot-
tleneck, along with a trunk network for enforcing resolution independence
(as originally introducedwithDeepONets52). In the present study, we adopt
a similar approach but better suited for high-resolution fields by replacing
the U-Net bottleneck with an AFNO. Note that downsampling the input
image through theU-Net encoder has the convenient advantage of allowing
for patch sizes of 1 × 1 (without downsampling, such a small patch size
would be computationally intractable).

The architecture of the U-AFNO is represented in Fig. 9. The input
field has dimensions 3 × 512 × 512 (the three channels correspond to ϕ, cA,
and cB, respectively—note that cC is not needed here since its computation
knowing cA and cB is trivial), and is downsampled to dimensions 256 ×
64 × 64 through the U-Net encoder. The AFNO bottleneck is composed of
12 back-to-back Attention blocks, each of which employs 16 attention
heads, a patch size of 1 × 1, a skipped connection, and two fully connected
layers with 3072 neurons each.We pick these architecture settings based on
the hyperparameters recommended in refs. 65,71. TheAFNOoutput is then
upsampled back into the original dimension through the U-Net decoder.
Both the U-Net and the AFNO layers use GeLU activation functions, and
the final output of the U-AFNO is passed through a sigmoid (logistic)
function. This guarantees that the U-AFNO predictions are bounded
between 0 and 1, and hence consistent with the phase field physics.

Phase field quantities of interest
The first collection of QoIs we consider involves the curvature of the liquid-
metal interface. We formally define the interface in this 2D system as any
spatial coordinate (x, y) ∈ Ω such that ϕ(t, x, y) = 0.5, ∀ t. The interface
coordinates may then be described at any time t as a parameterized curve,
γ(s, t) = (x(s, t), y(s, t)) with s 2 ½0; ‘� � R, and the signed curvature along
the interface is:

kðs; tÞ ¼ x0y00 � y0x00

ðx02 þ y02Þ3=2
x0 � ∂x

∂s
y0 � ∂y

∂s
ð15Þ

The curvature is defined locally, but we can quantify it globally by con-
sidering statistics such as the mean and standard deviation of the absolute
curvature over the entire interface, at any moment in time:

μkðtÞ ¼
Z ‘

0
jkðs; tÞj ds σkðtÞ ¼

Z ‘

0
ðjkðs; tÞj � μkðtÞÞ2dsÞ

� �1=2
ð16Þ

Furthermore, we also define the interface perimeter at any time as:

pðtÞ ¼
Z ‘

0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx0Þ2 þ ðy0Þ2

q
d s ð17Þ

Eqs. (15), (16) and (17) are all computed discretely using finite difference.
Figure 10 represents the general approach to compute the curvature locally
at each time step, and extract statistical quantities to represent more global
curvature dynamics over time. Note that in liquid-metal dealloying, metal
ligaments may fully separate from the rest of the solid phase and form
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islands. Similarly, some metal ligaments may rejoin and close-up, trapping
liquid bubbles inside the metal. In some cases, these features can shrink via
capillary forces until they are eventually eliminated. During such events, the
mean and standard deviation of the curvature is naturally skewed upward,
before sharply dropping once an island or bubble disappears. Such patterns
can be observed in Fig. 10.

The second collection ofQoIs is considered to describe corrosive liquid
penetration within the metal. As the species C-rich liquid progressively
penetrates into the metal, the latter reorganizes to form narrow ligaments
that typically grow as the liquid penetrates further into the bulk metal. We

can quantify the average ligament length over time, as well as themaximum
penetration depth, by considering the local extrema of the parametric curve
representing the interface (along the vertical axis). The set of local minima
and maxima at time t are defined as:

SminðtÞ ¼ fyðs; tÞ j y0 ¼ 0 and y00 > 0g SmaxðtÞ ¼ fyðs; tÞ j y0 ¼ 0 and y00 < 0g
ð18Þ

Each local maximum is representative of a ligament tip y− axis coordinate,
while each local minimum is representative of a ligament base y−axis

Fig. 9 | U-AFNO Architecture. The model takes as input the field at time t and
outputs the field at a future time step t+ Δτ. TheU-Net color scheme is analogous to
the one employed in the original U-Net paper65. The abbreviations in the AFNO

layers are the following: FFT fast Fourier transform, IFFT inverse fast Fourier
transform, MHA multi-head attention, FC fully connected.

Fig. 10 | Curvature QoIs.At each time t, the parametric curve γ(s, t) delineating the
interface between the two phases is computed, fromwhichwe compute the curvature
k(s, t). Histograms of the curvature distribution at two different times (t = 2.5 μs and

t = 3.5 μs) are shown, from which means and standard deviations are estimated and
computed over time (blue and orange plots).
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coordinate. Thus, we approximate the mean ligament height μd as the dif-
ference between themean of the set of local minima and local maxima, thus

μdðtÞ ¼ E½SmaxðtÞ� �E½SminðtÞ�: ð19Þ

We also define the maximum penetration depth as

maxpðtÞ ¼ 1�minðSminðtÞÞ: ð20Þ

The third and last set of QoIs considered describes the dynamics of lost
material throughout the corrosion process. We define the total “mass” of
metal, species A, and species B as the integrals over the spatial domain of ϕ,
cA, and cB, respectively, thus

mϕðtÞ ¼
Z
Ω
ϕðt; x; yÞ dxd y mAðtÞ ¼

Z
Ω
cAðt; x; yÞ dxd y mBðtÞ ¼

Z
Ω
cBðt; x; yÞ dxd y

ð21Þ

The actual masses in proper mass units are related to these quantities with
proportionality constants, these being the metal density in the case of mϕ,
and the molar weights for mA andmB.

Data availability
The datasets used in the current study will be made available from the
corresponding author on reasonable request.

Code availability
The code used in the current study will be made available from the corre-
sponding author on reasonable request.
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