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Editorial

Gene expression signatures as a
therapeutic target for severe
H7N9 influenza -- what do we
know so far?
Juliet Morrison & Michael G Katze†

University of Washington, Seattle, WA, USA

A novel H7N9 avian influenza A virus (IAV) emerged in China in early

2013 causing > 450 cases of respiratory illness and 175 deaths within a

20-month period. Though avian viruses infect humans infrequently, the lack

of human immunity to these viruses raises the possibility of a pandemic if

they were to acquire the ability to transmit efficiently. Despite the fact that

IAV pathogenicity results from the cytopathic effects and tissue damage

caused by both viral replication and an overly robust immune response, cur-

rent IAV therapeutics only target the viral proteins. This has led to the emer-

gence of drug resistance due to the high mutation rates of viruses. The

growing obsolescence of our current influenza therapeutics underscores the

need for alternative treatment strategies. One promising area of research is

the use of drugs that target the host response to IAV infection. This article

describes how gene expression profiling can be used to predict drugs

that reverse the destructive effects of the host response to H7N9 and other

pathogenic influenza viruses.
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In February 2013, a novel H7N9 influenza A virus (IAV) emerged in China causing
an outbreak of > 450 cases of respiratory illness and 175 deaths within a 20-month
period [1]. Though there is evidence that some H7N9 infections resulted in minor
symptoms, most infections resulted in influenza-like symptoms such as coughing
and fever that developed into pneumonia and acute respiratory distress syn-
drome [2,3]. Epidemiological studies suggest that most cases of H7N9 influenza
resulted from contact with infected poultry. Though avian viruses infect humans
infrequently, the lack of immunity to these viruses raises the possibility of a pan-
demic if they acquired the ability to transmit efficiently. Such a scenario arose
when an emergent H1N1 influenza virus killed 50 -- 100 million people during
the 1918 influenza pandemic [4].

H7N9 is less pathogenic than H5N1 in both humans and animal models, but is
more transmissible than H5N1 in both ferret and guinea pig experiments [5]. Addi-
tionally, several isolates of H7N9 contain mutations that are associated with mam-
malian adaptation [5]. In contrast to H5N1, some H7N9 viruses are able to bind
human (a2,6-sialic acid) receptors, though their affinity for human receptors is
lower than that of highly transmissible viruses such as pH1N1. Of the three residues
that are associated with increased human receptor binding (V186, L226, and S228),
H7N9 hemagglutinin contains two (V186 and L226), suggesting that additional
changes to the virus could lead to efficient human-to-human transmission [6,7].
Additionally, the PB2 of many H7N9 isolates contain residue 627K, which is asso-
ciated with increased mammalian adaptation, instead of the typical avian 627E.
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Furthermore, H7N9 isolates that lack PB2 -- 627K contain
residues such as PB2 -- 701N, which also increase mammalian
adaptation [8]. This has generated concern over further
H7N9 mammalian adaptation and acquisition of sustainable
person-to-person transmissibility.
Despite the fact that IAV pathogenicity results from tis-

sue damage caused by both viral replication and an overly
robust immune response, current IAV therapeutics only tar-
get viral proteins instead of targeting the host response.
Unfortunately, IAVs mutate easily and can escape inhibition
by acquiring changes that prevent their proteins from inter-
acting with antiviral drugs. In fact, some isolates of
H7N9 are resistant to some of the current influenza treat-
ments on the market [9,10]. All H7N9 isolates sequenced
thus far contain sequences that render them resistant to
the M2-ion channel blockers, amantadine and rimantadine;
and some H7N9 isolates have also acquired sequences that
provide resistance to neuraminidase inhibitors such as osel-
tamivir and zanamivir.
The growing obsolescence of current influenza therapeu-

tics underscores the need for alternative strategies. One
promising area of research is the use of drugs that target
the host response to infection. Host-targeting drugs could
be used alone or in conjunction with antiviral therapy and
have shown efficacy in mouse models [11]. A striking feature
of severe influenza infections is hypercytokinemia.
H7N9-infected patients have high concentrations of proin-
flammatory cytokines in their blood [12]. Furthermore, the
severity of H7N9 influenza correlates with the intensity of
the hypercytokinemia [13]. It is clear that host responses
can determine disease severity, so understanding the tran-
scriptional programs that drive them can identify host tar-
gets for therapeutic intervention. Gene expression profiles
from H7N9-infected cells and tissues can be utilized to
computationally identify small molecules and FDA-
approved drugs that reverse the host gene expression patterns
that may drive H7N9 pathogenesis. We have characterized
the transcriptional response to H7N9 infection in human
airway epithelial cells, BALB/c mice and cynomolgus maca-
ques to identify host transcriptional signatures that distin-
guish H7N9 from other IAVs and are predictive of
influenza pathogenicity across a range of influenza serotypes
and strains [14-16]. Our host-directed approach to drug dis-
covery has also identified drugs that could potentially be
used to treat severe influenza caused by H7N9 and other
pathogenic IAVs. Several of these drugs are FDA-approved
and could potentially be repurposed as influenza therapeu-
tics. These potential host-targeting drugs would not have
been identified using the virus-targeted approach that is nor-
mally undertaken in traditional influenza labs. We will dis-
cuss the findings of these studies in the next two paragraphs.
When influenza virus enters the respiratory tract of a

human, it initially infects the epithelial cells that line the air-
ways. How these cells first respond to infection drives the
recruitment of different immune cell types to the sites of

infection leading to viral clearance and/or hypercytokinemia
and lung damage. Studies undertaken in polarized human air-
way epithelial cells therefore offer insights into what the initial
host response to IAV entails. When we profiled polarized
Calu3 (human airway epithelial) cells infected with H7N9,
we found transcriptomic evidence of the human adaptation
potential of H7N9; the transcriptomic response to
H7N9 was more similar to the response to human
H3N2 than to responses to the other avian influenza
viruses [14]. Considering the effect of other lung cell types in
addition to epithelial cells on host response and disease pro-
gression can deliver additional targets for host-directed inter-
ventions. To that end, we applied global transcriptomic
profiling to whole lungs from H7N9-infected BALB/c mice.
Transcriptional responses to H7N9 were intermediate to
those caused by pH1N1 and H5N1 early in infection, but
grew to resemble the H5N1 response as infection progressed.
Infection with H5N1, H7N7 and H7N9, which are lethal in
mice, increased transcription of cytokine response genes and
decreased transcription of coagulation and lipid metabolism
genes [15]. The decreased transcription of coagulation and lipid
metabolism genes identified in the mouse study was not iden-
tified in Calu3 cells indicating that it is likely driven by non-
epithelial cell types or by the crosstalk between multiple cell
types in the lung. Strikingly, this gene expression signature
also occurs in the whole lung response to the infamous
1918 H1N1 virus, indicating that it may predict pathogenicity
across different strains [15]. Experiments in cynomolgus maca-
ques confirmed the validity of the pathways and molecules
identified in the H7N9 mouse model [16].

Transcriptome-based antiviral prediction can be accom-
plished by two independent yet complementary methods:
literature-based prediction and data-driven prediction
(Figure 1). Our group used the Ingenuity Knowledge Database,
which curates gene expression signatures from the peer-
reviewed literature, to identify drugs that were predicted to
reverse the gene expression signatures to H7N9 in human
lung airway cells, mice and macaques. We also conducted
data-driven prediction based on the Connectivity Map
(Cmap), a database of > 7,000 gene expression profiles repre-
senting cell lines treated with > 1000 compounds [17]. Human
airway epithelial cell profiling identified several drugs predicted
to reverse the host response to H7N9, including several kinase
inhibitors, as well as FDA-approved drugs such as troglitazone
and minocycline. Mouse experiments identified some of the
same drugs that were associated with the cell line study, but
also found molecules that were unique to that dataset, suggest-
ing they may target non-epithelial cell responses. Several of the
drugs that had been identified in our Calu3 and mouse studies
were also identified in the NHP study suggesting these may be
high-priority candidates for efficacy testing. Importantly, we
showed that minocycline, which was predicted in more than
one study, inhibited H7N9 replication in vitro indicating that
our computational approach holds promise for identifying
novel antivirals [14]. Minocycline’s protective properties may
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be due to its ability to prevent inflammation by inhibiting
matrix metalloproteinases, scavenging reactive oxygen species
and inhibiting apoptosis [18].

Influenza viruses cause 3 -- 5 million cases of severe illness
and 250,000 -- 500,000 deaths per year worldwide [19].
When these enormous numbers are compared to the
5000 deaths caused by the current Ebola outbreak, it is clear

that finding new influenza vaccines and therapeutics is an
important global health issue. We cannot predict when a
new influenza virus will emerge to wreak havoc on the human
population, and human cases of H10N8, H6N1 and
H9N2 influenza have occurred recently. There will always
be a lag between the emergence of a novel virus and the devel-
opment of vaccines and antivirals against it. Increased focus

Infected and
uninfected tissues

Infected and
uninfected organs

Infected and
uninfected cells

Transcriptional
profiling

Literature-based:
Ingenuity pathway

analysis (IPA)

Data-driven:
Connectivity
Map (cMAP)

Drugs that reverse virus-induced
or pathogenecity-associated

signatures

New therapeutic
indication for existing

compounds and drugs

Data analysis
- Infected vs uninfected
- Pathogenic vs nonpathogenic

Identificarion of gene expression signatures

Computational prediction

Figure 1. Prediction of host-targeting drugs for treatment of H7N9 and other severe influenza.
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must be placed on developing therapeutics to treat any new
strain of IAV that arises especially as public distrust for the sci-
entific community has lead to a decrease in vaccination rates.
Targeting the host responses that are elicited in common by
pathogenic IAV will allow us to identify molecules capable
of treating illness caused by any emerging influenza strain.
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