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Abstract

Temporal language grounding (TLG) aims to localize query-
related events in videos, which explores how to cognize rela-
tionships of video content with language descriptions. Accord-
ing to selective visual attention mechanism in cognitive sci-
ence, people’s cognition and understanding of what happens
often rely on dynamic foreground information in the video.
Nonetheless, background usually predominates the scenes so
that query-related visual features and irrelevant ones are con-
fused. Thus, we propose a Foreground Enhanced Network
(FEN) to diminish the background effect from two aspects.
FEN at first in spatial dimension explicitly models the evolv-
ing foreground in video features by removing relatively un-
changed background content. Besides, we propose a progres-
sive contrastive sample generation module to gradually learn
the differences between the predicted proposal and its elon-
gated proposals that include the former as a portion, thereby
distinguishing similar neighborhood frames. Experiments on
two common-used datasets show the efficacy of our model.

Keywords: selective visual attention mechanism, temporal
language grounding, multi modal, visual perception

Introduction
With the aim of enabling machines to cognize and understand
video content and language like the humans, temporal lan-
guage grounding (TLG) is a multi-modal task that focuses on
predicting the start and end time of the specific video segment
in an untrimmed video that matches a given natural language
query. This needs a model to perceive visual information as
well as to understand natural language. In this field, several
approaches (G. J., C., Z., & R., 2017; A. et al., 2017; G. S.,
A., Z., & A., 2019; W. J., L., & W., 2019; L. Z., Z., Z., Z.,
& D., 2020; K., D., & M., 2021; X. et al., 2022) focus on the
fully-supervised setting, where the start time and end time
of the matching video segment are annotated manually. An-
notating the temporal boundaries to match video segments is
expensive and time-consuming. Alternatively, some works
start to consider weakly supervised setting in TLG, where
only video-sentence pairs are used for training without any
temporal annotations. For lack of temporal supervision, most
existing respective approaches (C., S., & K., 2019; Z. Z., Z.,
Z., J., & X., 2020; G. M., S., R., & C., 2019; T. R., H., K., &
A., 2021; W., T., Y., & F., 2021; W. Y., J., W., & H., 2021)
treat this task as a multiple instance learning (MIL) problem.
They consider each video as a bag of segments, where at least
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Figure 1: (a) The room (background) is stable in all video
frames while the human (foreground) burdens appearance
variations. (b) The relative activation scores of the back-
ground and foreground have the foresaid same analogy. So
background subtraction for foreground enhancement is feasi-
ble.

one segment within the bag may match the query. The sim-
ilarity between video segments and the query then acts as a
measure signal to identify the matched segment. Recently,
another cousin is born by using video segments to reconstruct
the masked queries. The typical works like (L. Z., Z., Z.,
Q., & H., 2020; Z. M., Y., Q., & Y., 2022) compare the re-
constructed queries with the original queries to identify the
matched segments. However, they mostly ignore the role of
foreground information in temporal language grounding.

According to the selective visual attention mechanism in
cognitive science, humans will selectively attend certain in-
formation and cope with it in complex visual scenes. When
people understand a video and recognize different events, the
human eye often has a higher sensitivity to the dynamic fore-
ground information, such as human actions, object interac-
tions and changes. By contrast, the background contains rel-
atively static information with little variation over evolving
time, which is improper for action recognition. Thus, the
foreground is often closely related to queries and thus plays
a crucial role in TGL task. Recall that video data can be de-
composed into evolving foreground part and the relatively un-
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Figure 2: The overall architecture of our approach, including four components: a foreground perception module, a moment
prediction module, a progressive contrastive sample generation module (PCSG) and a reconstruction module.

changed background part (See Figure 1). That is, the back-
ground is low-rank. This property helps us to remove the
background from visual features because the background al-
ways predominates visual features in the whole representa-
tion and is almost harmful.

Inspired by the human selective visual attention mecha-
nism, we develop a Foreground Enhanced Network (FEN) to
lessen the negative impact of the background on visual fea-
tures in both spatial and temporal dimensions. We at first ex-
plicitly induce foreground information of events by removing
the background features with the nuclear norm for the low-
rankness. Then we employ the mixup-based reconstruction
strategy on the separated foreground features to achieve better
cross-modal alignment between the foreground features and
queries. Since the clear foreground features are more easily
aligned with the query, foreground enhanced video features
can greatly improve the cross-modal interaction, which ben-
efits to the following reconstruction goal. We also note that
RTBPN (Z. Z. et al., 2020) models semantic enhancement
and semantic suppression in the temporal dimension. How-
ever, they lack explicit semantic guidance. In contrast, ours
directly separates foreground and background in the spatial
dimension for all video frames. This is still unused by previ-
ous siblings.

Besides, no temporal annotations makes the cross-modal
alignment more challenging. To distinguish similar neigh-
borhood frames, we further improve temporal representation
of the foreground enforced visual features via a progressive
contrastive sample generation module. This enlogates the
moment of the predicted proposal to gradually improve the
discriminability of foreground features in the temporal di-
mension. Our model follows CNM (Z. M. et al., 2022) but
improves it by perceiving the foreground information in both
spatial and temporal dimensions.

In summary, the contributions of our work are:

• We propose a novel weakly supervised TLG model called
Foreground Enhanced Network (FEN) to boost the cross-
modal interaction via explicit foreground modeling.

• We devise a progressive contrastive sample generation

module to generates contrastive samples which gradually
approach the predicted temporal proposal from the longer
size of the moment.

• Experiments on two widely-used datasets demonstrate the
effectiveness of our approach.

Related Work
Temporal language grounding
TLG aims to identify and localize the event, which is closely
related to the nature language query, in a given video. Pre-
vious fully supervised works relies on temporal annotations
during training. In contrast, weakly supervised TLG exploit
video-sentence pairs for training. Most approaches in this re-
spect are based on multi-instance learning (MIL) paradigm to
learn cross-modal alignment. Recently, reconstruction-based
methods are introduced for this field. SCN generates tem-
poral proposals by sliding windows and choose the best one
on reconstructing the masked words in the given query. In
the CNM approach, gaussian masks are utilized to formulate
temporal proposals, enabling an end-to-end training manner.
However, the aforementioned methods are unaware of the im-
portance of foreground, which represents the dynamic ele-
ments and closely related to the query.

Compared to previous methods, our approach has special
advantages in that we explicitly model the dynamic fore-
ground features in video features that are more relevant to
the query by drawing inspiration from human visual atten-
tion mechanisms. We enhance the foreground in both spatial
and temporal dimensions, thereby obtaining more discrimina-
tive cross-modal features, which is advantageous for achiev-
ing more accurate temporal localization.

Selective visual attention mechanism
Selective visual attention mechanism is one of the most fun-
damental cognitive functions in humans. It describes the ten-
dency of visual processing to be primarily focused on stim-
uli that are relevant to behavior. When individuals engage
in cognitive activities, the brain’s selective attention mech-
anism amplifies behaviorally relevant sensory information
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Figure 3: The weight mask of the generated contrast sam-
ples progressively aligns with the predicted proposal, promot-
ing the model to learn the subtle differences between event
boundaries and neighboring frames. α denotes the ratio of
current training process to the total epochs.

while suppressing interference from distractors, thereby aid-
ing in the rapid and accurate cognition . It is worth noting that
the ”attention” in Transformer (Ashish et al., 2017) is differ-
ent from the selective attention mechanism mentioned here.
The former is mainly used for processing sequential data and
can capture long-range dependencies and global contextual
information. In contrast, the human visual selective attention
mechanism refers to the brain’s conscious selection and pro-
cessing of specific visual information during the perception
and cognition process. Inspired by the selective visual atten-
tion mechanism, we explicitly model and process the fore-
ground that is more relevant to the queried events, and reduce
interference from backgrounds.

APPROACH
Overall Architecture
Given an untrimmed video and a sentence of query, our
task aims to predict the moment T of the event matching
to the query. In our task, we focus on weakly supervised
setting for TLG, so we do not use temporal annotations in
training. Figure 2 shows the entire architecture of our ap-
proach. We first use a video encoder to extract visual fea-
tures V = {v1,v2, ...,vNv} ∈ RNv×D, where Nv is the number
of frames, and D denotes feature size. For the query, we ex-
tract word embedding with Glove and feed them to a fully-
connected layer to get sentence features S = {s1,s2, ...,sNw}
where Nw is the number of words. Then visual features will
be divided into background and foreground features in a fore-

ground perception module (FP). Visual features will be en-
hanced by foreground features and interact with sentence fea-
tures to generate the Gaussian mask of the predicted proposal
(moment). Both foreground and visual features serve to re-
construct the masked query to measure our proposal. Besides,
a progressive contrastive sample generation module (PCSG)
is devised to gradually produce the masks of different mo-
ment sizes of contrastive samples.

Feature Extractor
For a given video, a pre-trained visual model are adopted for
extracting visual features V = {v1,v2, ...,vN} ∈RNv×D, where
Nv is the number of frames andD denotes to the feature di-
mension. For a input query, we adopt Glove to extract word
embedding which is fed into a full connected layer to obtain
the sentence feature S = {s1,s2, ...,sN} ∈RNw×D where Nw is
the number of words.

Foreground Perception Module
Visual features across frames can be thought of being pri-
marily influenced by the foreground, because the background
features remains relatively stable. But the background usually
intervenes foreground information. Inspired by background
subtraction, we use the low-rankness of the background to
model the background, then subtract it to induce the fore-
ground. We apply this insight to obtain background features
Vbg by feeding visual features to a fully-connected layer:

Vbg = WbgV +bbg (1)

where Wbg and bbg are learnable parameters. To ensure the
low-rank property of background features, we introduce nu-
clear norm to constrain the background features:

Lbg = tr(
√

Vbg
TVbg), (2)

where tr(·) denotes trace of feature maps. Since the nuclear
norm can serve as a convex approximation to the rank of fea-
ture maps, we can separate the background features by min-
imizing Lbg. Thus, we can obtain the foreground explicitly
by

Vf g =V −Vbg. (3)

Moment Prediction Module
Since foreground features are relatively sparse and easily
aligned with the query, we utilize them to enhance visual fea-
tures in the spatial dimension:

V ′ =V ⊗σ(WfgVf g +b f g), (4)

where W f g, b f g are learnable parameters, σ(·) denotes the
sigmoid function, and ⊗ means the Hadamard product. To
conduct cross-modal interaction, the foreground enhanced vi-
sual features will be fed to a standard transformer with a lo-
calization head to predict the center c and the width w of the
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matched moment. The architecture with a transformer en-
coder Enc(·) and a transformer decoder Dec(·) is:

H = Dec(V ′,Enc(S)) (5)

where H is the hidden features produced by cross-modal fu-
sion, which denotes the semantic-specific visual tokens. Us-
ing the foreground enhanced visual features, we follow CNM
to formulate the matched temporal proposal by a Gaussian
weight mask vector p = N(c,w2) to train the reconstruction
model in an end-to-end manner.

Progressive Contrastive Sample Generation Module
To further improve temporal representation of foreground en-
hanced features, we design a progressive contrastive sample
generation module (PCSG) to generate different sizes of con-
trastive temporal proposals. It initially generates a mask cov-
ering the entire video, and as the training iterations proceed,
the generated mask gradually approaches the predicted tem-
poral proposal by the smooth strategy:

p∗ = θ∗ p+(1−θ)∗1, (6)

where θ represents the ratio of completed training iterations
to the total planned training iterations, and 1 denotes a vector
with all the ones. As shown in Figure 3, the contrastive sam-
ples gradually approach the predicted proposal, which forces
the model put its attention on from the entire video to the
neighbor segments of the predicted segment. This allows for a
better understanding of the differences between the predicted
segment and other segments, thereby improving the discrim-
inative ability of foreground features in different moments.

Reconstruction Module
To evaluate the predicted temporal proposal, we adopt the
mask conditioned transformer in CNM to reconstruct the
masked query Q∗, and calculate the cross-entropy L p

ce, L p∗
ce ,

and Lev
ce with the reconstruction results using the foreground-

enhanced visual features V ′, the mask of the predicted mo-
ment p, the mask of contrastive sample p∗, and the weight
for entire video 1. The reconstruction loss Lr is the sum of
such three cross-entropy losses. Considering the relevance of
the event in predicted proposal is larger than that in the query,
we compared the reconstruction results of different proposals:

Lc = max(L p
ce +L p∗

ce +β1,0)+max(L p
ce +Lev

ce +β2,0), (7)

where β1 and β2 are two hyperparameters to control the mar-
gins. To encourage better cross-modal interaction and gener-
alization, a mixup based foreground feature Vmix is obtained
by a linear interpolation operation on two foreground features
V i

f g and V k
f g in a batch:

Vmix = λV i
f g +(1−λ)V k

f g, (8)

where λ is a random weight from 0 to 1. Then Vmix will be
used to reconstruct the query Si and Sk, which are related

Table 1: Performance comparison on ActivityNet.The best
and second best results in all the tables are highlighted in bold
and underlined

Method IoU = 0.1 IoU = 0.3 IoU = 0.5
MARN - 47.01 29.95
SCN 71.48 47.23 29.22
RTBPN 73.73 49.77 29.63
WSLLN 75.4 42.8 22.7
LCNet 78.58 48.49 26.33
WSTAN 79.78 52.45 30.01
CRM 81.61 55.26 32.19
CNM 78.13 55.68 33.33
Ours 80.86 57.64 33.75

Table 2: Performance comparison on Charades-STA. The
best results are in bold, and the second best are underlined.

Method IoU = 0.3 IoU = 0.5 IoU = 0.7
TGA 32.14 19.94 8.84
SCN 42.96 23.58 9.97
WSTAN 43.39 29.35 12.28
LoGAN 48.04 31.74 13.71
MARN 48.55 31.94 14.81
CRM 53.66 34.76 16.37
LCNet 59.60 39.19 18.87
RTBPN 60.04 32.36 13.24
CNM 60.04 35.15 14.95
Ours 61.43 38.44 18.37

to V i
f g and V k

f g, respectively, and calculate the cross-entropy
L i

ce,Lk
ce, separately. The loss of the mixup based reconstruc-

tion is obtained by the weighted summation between L i
ce and

Lk
ce. Additionally, Lcmix is designed to ensure the reconstruc-

tion results using the original video feature to perform better
than that using the mixup features. They have the following
forms:

Lmix = λL i
ce +(1−λ)Lk

ce, (9)
Lcmix = max(L p

ce −Lmix +β3,0), (10)

where β3 is a marginal parameter. Then, the total loss is cal-
culated as follows:

L = Lr +Lc +Lmix +Lcmix +αLbg, (11)

where α is a weight to balance the impact of different losses.

Experiment
Experimental Settings
To evaluate our method, we conduct the experiments of
temporal language grounding on two benchmark datasets.
An indoor activity dataset Charades-STA contains 12,408
moment-sentence pairs in the training set and 3,720 pairs
in the training set. We report the results on the test set.
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Figure 4: The results with different values of α.

Table 3: The effectiveness of the progressive contrastive sam-
ple generation module on Charades dataset.

Method IoU=0.1 IoU=0.3 IoU=0.5 mIoU
Full Model 61.43 38.44 18.37 40.29

Fixed 60.20 37.59 17.13 39.12
None 58.90 36.73 16.37 38.48

ActivityNet-Captions has more than 70k pairs about open
world activities, which is currently the largest dataset in TLG.
We report the results on val 2 split. All the results are mea-
sured by the evaluation metric ‘IoU > m’, which means the
percentage of the predicted moments when the Intersection
over Union (IoU) is larger than the threshold m. We sepa-
rately use m = {0.1,0.3,0.5} for ActivityNet-Captions, and m
= {0.3,0.5,0.7} for Charades-STA.

Following CNM (Z. M. et al., 2022), we extract visual fea-
tures by I3D for Charades-STA, and CLIP for ActivityNet-
Captions, respectively. Word embeddings are extracted by
Glove with 300 dimensions. For hyperparameters, we set
α = 0.01, β1 = 0.05, β2 = 0.1, and β3 = 0.25 for all datasets.

Experiment Results
Comparison to the baseline. We choose CNM as the base-
line to show the effectiveness of our method, since our re-
construction framework is similar to CNM. In contrast, our
method has substantial improvements across all metrics on
both datasets. Specially, on Charades-STA, when consider-
ing accuracy at IoU=0.3, 0.5, and 0.7, ours achieves large
improvements of 1.41%, 3.29%, and 3.42%, respectively.

Comparison to SOTAs. Table 1 and Table 2 show the re-
sults of our method and previous state-of-the-art methods on
ActivityNet-Captions and Charades-STA. From such tables,
we observe that our model achieves the best performance on
IoU=0.3 for Charades-STA, while LCNet surpasses ours on
IoU=0.5 and IoU =0.7. However, ours outperforms LCNet on
ActivityNet-Captions, which involve more complex scenes.

Table 4: The importance of the foreground perception module
(FP) on Charades dataset.

Method IoU=0.1 IoU=0.3 IoU=0.5 mIoU
Full Model 61.43 38.44 18.37 40.29

w/o. FP 59.12 37.18 17.13 38.16

Although CRM slightly performs better than our method on
IoU=0.1, our method consistently outweighs previous meth-
ods on both IoU=0.3 and IoU=0.5. Importantly, ours behaves
stably, unlike CRM and LCNet that have unstable results on
two datasets, that is, behaves well on one dataset but poorly
on the other. Ours always performs well on both datasets.
This hints the potential of our approach.

Ablation Study
To analyze the effectiveness of the foreground perception
module (FP), and progressive contrastive sample module, we
conduct ablation study on Activity-Captions datasets. We
also introduce the mean Intersection over Union (mIoU) to
report the results.

Effectiveness of foreground perception module. We in-
troduce a ablation model by removing FP. As shown in Table
4, the full model outweighs the ablation model on all the met-
rics. This can be attributed to FP which highlights the fore-
ground in the spatial dimension, improving the cross-modal
alignment.

Effectiveness of progressive contrastive sample gener-
ation module. Besides, we evaluate the different ways to
produce contrastive temporal proposals to highlight the ef-
ficacy of our progressive proposal generation way. As the
results shown in Table 3, where “Fixed” denotes that a fixed
Gaussian mask are provided as a contrastive sample for all
predicted proposals, and “None” means that there is no con-
trastive sample available, our progressive method exhibits
overall superiority over all the other ways. It is worthy not-
ing that the ”Fixed” method surpasses ours on IoU = 0.1,
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Figure 5: The qualitative results on Charades-STA.

while our method is better than it on both IoU = 0.3 and
IoU =0.5, because progressive contrastive samples improves
the discriminative ability of the model to distinguish similar
neighborhood frames.

Sensitivity Analysis
We utilize different values of the weight of the low-rank con-
straint in the background loss α and observe the accuracy con-
sidering IoU > (0.3,0.5,0.7) to analyze the sensitivity while
other hyperparameters are unchanged.

As shown in Figure 4, the performance is stable when α is
between 10−2 to 10−1. This reason may be that the too high
weight α will cause the model to mistakenly identify some
foreground elements as background, consequently discarding
useful dynamic information. Additionally, when this weight
is too low, the results are also unsatisfactory, due to some
background information is considered as foreground, still
causing interference with the perception of the foreground.

Qualitative Result
Figure 5 shows some qualitative results of our approach. The
subfigure (a) and (b) demonstrates that our method is capable
of better cognition and understanding of video content and
the events described in the natural language queries, thereby
enabling more precise localization. This is attributed to our
model’s ability to capture dynamic elements in foreground
by eliminating interference from useless background infor-
mation. Moreover, from Figure 5(c) and (d), our approach

localizes the more precisely moment boundaries than previ-
ous methods, benefiting from gradually learning the differ-
ences on foreground information between event boundaries
and neighboring frames.

Scalability and Future Work

Although the results in Figure 5 only demonstrate the ef-
fective localization of our model in videos containing sin-
gle objects in the foreground, our model remains effective
for videos containing multiple objects, as evidenced by its
good performance on ActivityNet datasets that include com-
plex scenes and multiple objects. In future work, we will
investigate how to extend the foreground enhanced method to
more complex scenarios, such as videos with frequent back-
ground changes due to a large number of scene transitions.

Conclusion

This paper introduces a novel weakly supervised TLG model
named Foreground Enhanced Network (FEN), which is in-
spired by selective visual attention mechanism to explicitly
capture foreground in spatial dimension, promoting better
cross-modal interactions. Besides, a progressive contrastive
sample generation module serves to force the model to grad-
ually learning a more distinguishable foreground representa-
tion in the temporal dimension. Experiments on two popular
datasets verify the effectiveness of our approach.
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