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ABSTRACT OF THE DISSERTATION 

 

 

 

Hyperbolic Phonon Polaritons in hexagonal boron nitride 

 

 

by 

 

 

Siyuan Dai 

 

 

Doctor of Philosophy in Physics 

 

 

University of California, San Diego, 2017 

 

 

Professor Dimitri N. Basov, Chair 

 

Uniaxial materials whose axial and tangential permittivities have opposite signs 

are referred to as indefinite or hyperbolic media. While hyperbolic responses are 

normally achieved with artificially fabricated nanostructures, hexagonal boron nitride 

(hBN) naturally possesses this property due to the anisotropic phonons in the 

mid-infrared. In this dissertation, we studied polaritonic phenomena in hBN using 

scattering-type scanning near-field optical microscopy (s-SNOM). We performed infrared 

nano-imaging of highly confined and low-loss hyperbolic phonon polaritons (HP2s) in 

hBN. The polariton wavelength was shown to be governed by the hBN thickness 

according to a linear law persisting down to few atomic layers. We have also carried out 



xv 
 

the tunable hyperbolic response in metastructures comprised of a monolayer graphene 

deposited on hBN. Electrostatic gating of the top graphene layer allows for the 

modification of wavelength and intensity of HP2s in bulk hBN. The physics of the 

modification originates from the plasmon-phonon coupling in the hyperbolic medium. 

Furthermore, we demonstrated the “hyperlens” for subdiffractional focusing and imaging 

using a slab of hBN with a record high resolution due to the natural lattice structure in 

hBN. Finally, we have systematically studied the relative efficiency of polariton emission 

in two-dimensional materials in the case of HP2S in hBN. We have observed polariton 

waves launched by various kinds of emitters and compared their relative efficiency and 

analyzed the origins of the efficiency difference. 



 

1 

 

Chapter 1 

Introduction 

 

Nanophotonics and plasmonics constitute the study of nanoscale optical 

phenomena and the interaction between light and matter. Latest research in this field 

usually relates to surface plasmon polaritons (SP2s) – density waves of electrons 

originating from hybridization between light and collective electron oscillation – that 

propagate along metal surfaces like the ripples that spread across the pond surface after a 

stone was dropped therein. The capability of carrying optical energy in SP2s with 

wavelengths smaller than that of free space photons leads to useful applications including 

plasmonic sensing, nano-imaging and bio-medical treatment. However, current 

difficulties, such as relatively poor confinement, significant losses and lack of tunability, 

hinder applications of metal-based plasmonics. One prospective solution to these 

difficulties is to explore nano-plasmonics employing van der Waals (vdW) materials – 

layered nanostructures bonded together by weak vdW forces. Graphene, a representative 

vdW material possessing high electron mobility, is ideal for low-loss nano-plasmonics 
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with extremely high optical confinement since the SP2s are supported in few-atomic-layer 

vdW structures. Alternatively, one could utilize other insulating vdW systems such as 

hexagonal boron nitride (hBN) supporting phonon polaritons – hybrid electromagnetic 

waves between light and phonons (lattice vibrations). Phonon polaritons can play a 

similar role to plasmon polaritons, but suffer less from Ohmic loss due to its insulating 

nature. 

In this dissertation, we utilize infrared (IR) nano-imaging and nano-spectroscopy 

to study phonon polaritons in hBN and its hybridization with SP2s in graphene. 

Specifically, the antenna-based scattering-type scanning near-field optical microscopy 

(s-SNOM) employed in our investigation allows launching, probing and imaging of 

propagating polariton waves in hBN and graphene. The real-space images of the polariton 

waves obtained in these s-SNOM experiments provide fruitful information to reveal the 

intriguing properties of nano-polaritonics. 

In Chapter 2 we report the discovery of phonon polaritons in hexagonal boron 

nitride. By using state-of-the-art IR nano-imaging and nano-spectroscopy technique, we 

show for the first time that vdW crystals can support phonon polaritons. Importantly, the 

layered nature of hBN and other vdW crystals enable the control over polaritonic waves 

by varying the crystal thickness or number of stacking layers through exfoliation 

techniques. Similar to SP2s in metals or graphene, phonon polaritons offer a practical 

means to concentrate electromagnetic energy on lengthscales that are several orders of 
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magnitude shorter than the IR/optical wavelength (IR). Unlike SP2s, such strongly 

confined phonon polaritons are immune to electronic losses and therefore exhibit 

dramatically longer propagation lengths. We directly demonstrate polariton propagation 

lengths as long as several micrometers through IR nano-imaging measurements. 

Furthermore, we present a novel technique for mapping the entire energy-momentum 

dispersion of these modes within a single nano-resolved measurement. Such a remarkably 

efficient nano-optical technique will merit broad applications to investigations of 

polaritonic modes in other materials. 

Chapter 3 provide unambiguous experimental evidence for subdiffraction 

focusing via phonon polaritons in a natural hyperbolic material hBN. We demonstrated 

that anisotropic phonon resonances of hBN result in the hyperbolic response, the highly 

desirable capability most commonly discussed in the context of electromagnetic 

metamaterials but revealed for the first time in our experiment. The phonon polaritons in 

hBN are therefore referred to as hyperbolic phonon polaritons (HP2s) since our 

experimental discovery. Based on the tilted propagation nature of HP2s, we accomplished 

subdiffraction focusing and subsurface image projection using a slab of natural hBN. We 

achieved the subdiffraction focusing with a resolution of IR/33, much smaller than 

previous records (~ IR/10) using metamaterial structures. This superior figure of merit 

originates from the high magnitude of upper momentum cutoff set by the interatomic 

spacing in hBN. At a specified frequency, 1 to 1 image projection from the subsurface 
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was also demonstrated when HP2s propagate along the optical (vertical) axis of hBN. 

In Chapter 4 we complete a study of hybrid polaritons and the tunable hyperbolic 

properties of metastructures of graphene on hexagonal boron nitride (G-hBN). The key 

experimental result in this chapter is that the hybrid polaritons detected in G-hBN 

metastructures are neither purely SP2s of graphene nor entirely HP2s of hBN. Instead, 

these propagating waves possess the combined virtues of both these two nanoscale 

phenomena. In the experiment, we demonstrated these hybrid modes retain the high 

optical confinement and relatively low loss of hBN phonon polaritons, while acquiring 

the electrical tunability of SP2s in graphene. The G-hBN devices can be referred to as 

“metastructures” because the attained electromagnetic properties of these structures are 

not revealed by either of the two constituent elements. 

Finally, Chapter 5 introduces our study of polariton emitters and emission 

efficiency of hyperbolic phonon polaritons in hBN. We report the first systematic 

nano-resolved study of polariton emission efficiency – the ability to convert optical 

photons into propagating polaritons – among various polariton emitters in hBN. In addition 

to the conventional atomic force microscope (AFM) tip emitter, we found that hyperbolic 

phonon polaritons in hBN can be launched by other forms of emitters, such as crystal 

edges, lithographic nanostructures, as well as surface impurities and defects. We compared 

the emission efficiency for these different polariton emitters and analyzed the origins of 

their comparative emission efficiency. The AFM tip emitter was proved to possess the 
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highest efficiency due to the metallic nature and strong coupling with the high-momentum 

polariton waves. 
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Chapter 2 

Infrared nano-imaging of phonon 

polaritons in hexagonal boron nitride 

 

2.1 Abstract 

van der Waals heterostructures assembled from atomically thin crystalline layers of 

diverse two-dimensional solids are emerging as a new paradigm in the physics of materials. 

We use infrared nano-imaging to study the properties of phonon polaritons in a 

representative van der Waals crystal, hexagonal boron nitride. We launched, detected and 

imaged the polaritonic waves in real space and altered their wavelength by varying the 

number of crystal layers in our specimens. The measured dispersion of polaritonic waves 

was shown to be governed by the crystal thickness according to a scaling law that persists 

down to a few atomic layers. Our results are likely to hold true in other polar van der Waals 

crystals and may lead to their new functionalities. 

 

2.2 Introduction 
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Layered van der Waals (vdW) crystals consist of individual atomic planes weakly 

coupled by vdW interaction, similar to graphene monolayers in bulk graphite [1-3]. These 

materials can harbor superconductivity [2] and ferromagnetism [4] with high transition 

temperatures, emit light [5,6] and exhibit topologically protected surface states [7], among 

many other effects [8]. An ambitious practical goal [9] is to exploit atomic planes of van 

der Waals crystals as building blocks of more complex artificially stacked structures where 

each such block will deliver layer-specific attributes for the purpose of their combined 

functionality [3]. Here we explore the behavior of phonon polaritons in hexagonal boron 

nitride (hBN), a representative vdW crystal. The phonon polaritons are collective modes 

that originate from coupling of photons with optical phonons [10] in polar crystals that 

have been investigated in the context of energy transfer [11,12], coherent control of the 

lattice [13], ultra-microscopy [14,15], “superlensing” [16] and metamaterials [17,18]. 

Tunable phonon polaritons that we discovered in hBN by direct infrared (IR) nano-imaging 

set the stage for the implementation of all these appealing concepts in vdW heterostructures. 

Polaritonic effects reported here are most certainly generic to other classes of polar vdW 

solids since these materials commonly show optical phonons. The hBN investigate here 

stands out in view of its light constituent elements yielding the superior strength of phonon 

resonances that span a broad region of technologically important IR band. 

 

2.3 Experimental details 

IR nano-imaging and Fourier transform infrared nano-spectroscopy (nano-FTIR) 

experiments were performed at UCSD using a scattering-type scanning near-field optical 
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microscope (s-SNOM) (see Supplementary Information). The physics of polariton imaging 

using s-SNOM is akin to nano-imaging of surface plasmons [19,20] (Fig. 1a). In short, we 

illuminated the metalized tip of an atomic force microscope (AFM) with an IR beam. We 

used quantum cascade lasers (QCLs) with tunable frequency  = 1/IR, where IR is IR 

beam wavelength and a broad-band difference frequency generation (DFG) laser system 

[21]. Our AFM tip with curvature radius a ≈ 25 nm is polarized by the incident IR beam. 

The light momenta imparted by the tip extend to the typical range of momenta supporting 

phonon polaritons in hBN (Fig. 2e). Therefore, the strong electric field between the tip and 

sample provides the necessary momentum to launch polariton waves of wavelength p that 

propagate radially outward from the tip along the hBN surface. AFM tips exploited in our 

nano-spectroscopy instrument are commonly referred to as “optical antennas” [22]: an 

analogy that is particularly relevant to describe the surface wave launching function of the 

tip. Upon reaching the sample edge, polaritonic waves are reflected back, forming a 

standing wave between the tip and hBN edge. As the tip is scanned towards the edge, the 

scattering signal collected from underneath the tip reveals oscillations with the period of 

p/2. 

 

2.4 Experimental data 

Representative nano-imaging data are displayed in Fig. 2.1(b) and Fig. 2.1(d) – (f) 

where we plot the normalized near-field amplitude s() = shBN ()/sAu () at several IR 

frequencies in the 1550 to 1580 cm-1 range. Here, shBN () and sAu () are the scattering 

amplitudes for, respectively, the sample and the reference (Au-coated wafer) 
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(Supplementary Information). The amplitudes were demodulated at the third or the fourth 

harmonic of the tapping frequency to isolate the genuine near field signal [22]. The images 

in Fig. 2.1(b) – (f) were taken for a tapered hBN crystal of thickness d = 256 nm. They 

reveal a hatched pattern of periodic maxima — fringes — of s() running parallel to the 

edges, with the “hot spots” located where the two or more fringes intersect. We observed 

similar fringe patterns in other hBN samples, including those that are only a few atomic 

layers thick (Fig. 1(g)). Such patterns are readily accounted for (Fig. 1(c)) within a 

phenomenological theory that considers reflections from the tapered edges (Supplementary 

Information). 

Data in Fig. 2.1 allow one to obtain the polariton wavelength p simply by doubling 

the fringe period and the corresponding momentum can be calculated as q = 2/p. We 

used two approaches to determine the dispersion relation q = q() of the polaritons. One 

method [15,19,20] is to analyze the periodicity of fringes at discrete frequencies of the IR 

source (Fig. 1(b), (d) – (g)). We have complemented this procedure with a technique 

capable of capturing the entire dispersion in the course of one single scan of our nanoscope. 

We executed this line scan on an hBN crystal with a large surface area to ensure that the L 

= 0 boundary is the principal reflector for the tip-launched polaritons (Fig. 2.2(a)). Such a 

line scan (Fig. 2.2(a) - (b), (d)) is comprised of a series of broad-band nano-FTIR spectra 

taken at every pixel. Starting in the region of unobscured SiO2 substrate (L < 0) and 

continuing through the hBN crystal (L > 0), we combined the spectra from all pixels along 

the line scan and thus obtained a two-dimensional map s(L, ) shown in Fig. 2.2(b). In the 

plot, we observed a series of resonances that systematically vary with frequency  and the 
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distance from the sample edge L. The nano-FTIR spectra from three representative 

positions are shown in Fig. 2.2(c). Each of the frames in Fig. 2.2(c) and each pixel in Fig. 

2.2(b) unveil phonon polaritons in the frequency domain. The momentum q corresponding 

to each  in this map can be found from the fringe periodicity along the constant cut. 

Therefore, a single line scan is sufficient to extract the complete dispersion profile of any 

surface mode. 

The two approaches for mapping the surface wave dispersion produced consistent 

results (triangles in Fig. 2.2(b) were obtained from monochromic imaging). The broad-

band line scan data (dots in Fig. 2.2(e)) allowed us to probe the dispersion in the − q 

parameter space (1430 to 1530 cm-1) that cannot be investigated through the single-

frequency imaging because of unavailability of proper QCLs. The experimental data for 

phonon polariton dispersion in Fig. 2.2(e) are in excellent agreement with the modeling 

results. Briefly, the surface polaritons correspond to the divergences of the reflectivity rp(q 

+ i, ) of the system at complex momenta q + i. For p « IR, we derived the 

analytical formula for polariton dispersion (Supplementary Information): 

/ /
( ) ( ) arctan arctan ,a sq i l

d i

 
    

      

    
            

    
    (2.1) 

where a(), ( )  ,//() and s() are the dielectric functions of air, hBN (for directions 

perpendicular and parallel to the c-axis), and SiO2 substrate, respectively. The propagating 

modes correspond only to those integer l (if any) for which the loss factor = /q is 

positive and less than unity. Parameter  ± is the sign of the group velocity d/dq 

(Supplementary Information). An instructive way to visualize both the dispersion and the 
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damping is via a false color plot of Im rp(q, ) [23] (Supplementary Information) at real q 

and (Fig. 2.2(e)). Our data line up with the topmost of these curves, which corresponds 

to the principal l = 0 branch (Supplementary) in Eq. 2.1. 

Additional insights into the photonic and polaritonic properties of hBN were 

obtained by analyzing the frequency dependence of the nano-FTIR spectra. We collected 

the spectrum in Fig. 2.2(f) far away from the hBN edges where the surface waves are 

damped and the scattering amplitude signal is solely governed by the local interaction with 

the phonon resonances [24]. Two of these resonances centered around 770 cm-1 and 1370 

cm-1 are due to the c-axis and the in-plane phonon modes of hBN, respectively [25,26]. 

The hump-dip feature around 1100 cm-1 originates from the SiO2 substrate [27]: a 

consequence of a partial transparency of our specimen. The quantitative relation between 

this spectrum, the reflectivity rp(q, ), and the fundamental phonon modes can be 

established by numerical modeling of the tip-sample interaction (Supplementary 

Information). The right plot of Fig. 2.2(f) indicates that our model captures the gross 

features of the data. Moreover, the hBN is an example of a natural hyperbolic material [28]: 

a crystal possessing the in-plane and out-of-plane components of the dielectric tensor 

having the opposite signs so that / /Re Re   < 0. Hyperbolic regions are marked in green 

in Fig. 2.2(f). 

The layered nature of vdW materials, including hBN, facilitates the control of both 

the wavelength and the amplitude of polaritonic waves by varying the thickness d of the 

specimens. Representative line profiles (Fig. 2.3(a)) for specimens with d in the range of 

150 − 250 nm were taken normal to the crystal edge at L = 0. The thickness was measured 
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simultaneously with the scattering amplitude through the AFM topography. All fringe 

profiles share the same line form with a prominent peak close to the edge followed by 

weaker peaks that are gradually suppressed away from the edge. The oscillation period, 

equal to p/2 (arrows in Fig. 2.3(a)), systematically decreases as the samples become 

thinner. This scaling extends down to a few atomic layers (Fig. 2.3(b) – (c)). 

The measured polariton wavelength (Fig. 2.3(e)) agrees with the theoretical 

predictions (Fig. 2.3(d)). For p smaller than about one half of IR = 7.1 m the polariton 

wavelength scales linearly with the crystal thickness d, in agreement with Eq. 2.1; at larger 

p the linear law shows signs of saturation, also in accord with our model (inset of Fig. 

2.3(e)). Experimentally, the phonon polaritons display thickness-tunability persisting down 

to three atomic layers (Fig. 2.3(b) – (c)). We detected polaritons in even thinner samples 

(bilayer and monolayer hBN). However, the quantitative analysis of these latter data is 

complicated because of the increasing role of the substrate in the polaritonic response that 

calls for further experiments on suspended membranes. 

 

2.5 Conclusion and Outlook 

Similar to surface plasmons, the phonon polaritons allow one to confine and control 

electromagnetic energy at the nanoscale [29]. In fact, the line form in Fig. 2.3(a) strongly 

resembles plasmonic standing waves in graphene [19,20]. The confinement factor IR/p 

reaches 25 in hBN, comparable to that of plasmons in graphene [19,20]. Yet these compact 

polaritons in hBN are able to travel at least 5 – 10 m compared to less than 0.5 m for 

graphene plasmons. The corresponding loss factor  = /q is around 0.055, much smaller 
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than a typical  in graphene. The low damping of polaritons in our insulating samples is 

consistent with the absence of the electronic losses, the dominant damping channel in 

plasmonics. The observed losses can likely be further suppressed by improving the 

crystallographic order of the crystals. 

Data in Fig. 2.1 - 2.3 show that phonon polaritons of the desired wavelength and 

confinement can be engineered by varying the number of atomic layers in hBN by, e.g., 

exfoliation techniques. Thus, hBN and likely other polar layered materials can be 

integrated into vdW heterostructures [3] to serve not only as electrically insulating spacers 

but also as waveguides for weakly damped polaritons capable of traveling over 

considerable distances. Additionally, the hyperbolic response of few-layer hBN is 

appealing in the context of unique nano-photonics characteristics of this class of solids [28]. 

 

2.6 Supplementary information 

2.6.1 Preparation and characterization of hBN crystals 

Microcrystals of hBN were exfoliated from bulk samples and then transferred to Si 

wafers capped with 300 nm-thick SiO2 layer. We explored bulk hBN samples from two 

different sources including commersially available samples (www.momentive.com) and 

also specimens synthesized by means of high pressure techniques as described in Ref. [30]. 

We observed reproducible polaritonic effects irrespective of the origin of our microcrystals. 

Raman spectroscopy was applied to characterize the hBN crystals. (Fig. 2.4(b)). These 

Raman spectra were in accord with the literature data for high-quality hBN specimens [31]. 

We note that one can easily distinguish hBN crystals of different thickness by their color 

http://www.momentive.com/
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under the optical microscope (Fig. 2.4(a)) [32]. 

 

2.6.2 Infrared nano-imaging and nano-FTIR 

The nano-imaging and Fourier transform infrared nano-spectroscopy (nano-FTIR) 

data were obtained using a commercial scattering-type scanning near-field optical 

microscope (s-SNOM) (www.neaspec.com) based on a tapping-mode atomic force 

microscope (AFM). The tapping frequency and amplitude of the AFM are about 250 kHz 

and 70 nm, respectively. In Fig. 2.5, we show schematics of our infrared (IR) sources and 

of the s-SNOM system. These IR sources include tunable quantum cascade lasers (QCLs) 

(www.daylightsolutions.com) and a broad-band source based on a difference frequency 

generation (DFG) system (www.lasnix.com). In combination, these sources cover a broad 

frequency range from 700 to 2300 cm-1 (Fig. 2.5). By focusing the IR beam onto the 

metalized AFM tip, we were able to probe the polaritonic effects of hBN. The back-

scattered signal by the tip is registered by pseudoheterodyne interferometric detection and 

then demodulated at the n-th harmonics of the tapping frequency yielding background free 

images. In this work, we chose n = 3 or 4. 

 

2.6.3 Modeling of tip-launched phonon polariton waves 

We start with describing a model that captures the essence of the observed real-

space patterns in Figs. 2.1 - 2.3 on purely phenomenological grounds. This model assumes 

that the near-field contrast detected by the s-SNOM is in the linear response regime and is 

purely local. In other words, the deviation of the s-SNOM signal from the area average is 

http://www.neaspec.com/
http://www.daylightsolutions.com/
http://www.lasnix.com/
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given by some linear functional E(r) of the electric potential (r) directly underneath the 

tip. The qualitative aspects of the results do not depend on the precise relation between (r) 

and E(r) as long as this relation is linear. For definiteness, one can think that E(r) represents 

the deviation of the z-component of the local electric field from its average value, so we 

use the term “field” to refer to it from now on. We further assume that tip-launched 

polaritons are characterized by the radially symmetric field distribution (r = | r |) 

2 2
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 

,        (2.2) 

where we take r0 = p/4 (the diffraction limit), p is the phonon polariton wavelength. Eq. 

2.2 is designed to have the property that E(r) goes to a constant underneath the tip ( 0r  ) 

and behaves as an outgoing cylindrical wave at large distances. The momentum of this 

wave is a complex number 

  
2

(1 ) (1 )p

p

q q i q i i


  


      ,     (2.3) 

where / q   is the loss factor defined above. 

 

2.6.4 Near-field imaging of phonon polaritons 

The observed polariton interference fringes (Figs. 2.1 - 2.3) originate from the 

superposition of tip-launched polariton waves with those reflected back from the edges of 

the hBN crystals. The edge-reflected waves can be approximately calculated using the 

method of images. For a single edge (Fig. 2.6(a)), the total field under the tip (solid red 

arrow) is given by Etot = E(0) + E(2L)rsp, where L is the tip-edge distance, rsp is the complex 

coefficient of reflection off the edge, and function E(r) is given by Eq. 2.2.  
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For the tapered hBN crystal (Fig. 2.1), the polariton waves launched by the tip may 

experience multiple reflections. Therefore, we introduce the index m = 1, 2, … to label the 

waves that are reflected m times by the edges before arriving back to the tip; we refer to 

them as the m-th order waves. The locations of the corresponding image sources are 

obtained by m consecutive mirror reflections of the tip across the alternate edges. We refer 

to them as the m-th order images. In Fig. 2.6(b) we show these multiple tip images (hollow 

dots) for one representative tip position (solid green dot). We use the double index “m,n” 

to label the n-th (n = 1 or 2) possible position of the m-th order images. Let dm,n be the 

distance between the n-th position of the m-th order images and the tip. The total polaritonic 

field underneath the tip can be expressed as: 

tot ,( ) m

m n sp

m n

E E d r .    (2.4) 

Using this formula, we computed Etot for every position within a triangular area 

representing the tapered hBN crystal in Fig. 2.1. For this particular sample geometry only 

m ≤ 3 images contribute to the formation of the interference patterns in the field of view. 

Our simulation results are shown in Fig. 2.1(c). We find a good qualitative 

agreement with the actual data (Fig. 2.1(b)) using the parameters = 0.055 and rsp = —0.2 

+ 0.3i, which are in accord with the phonon polariton line profiles (Fig. 2.3(a)). Simulation 

images for the different choices of  value along with the experimental data are shown in 

Fig. 2.7. The fact that the absolute value of rsp is smaller than unity suggests that either the 

reflection has a strong diffuse component or a significant amount of energy is dissipated 

into degrees of freedom other than the principal polariton branch (l = 0 in the main text). 
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Among the dominant factors reducing the reflectivity of polaritons are the roughness as 

well as canted nature of the edges. 

Besides analyzing the two-dimensional interference patterns, we also examined the 

line profiles (Fig. 2.3(a)). Noticing a marked resemblance between the observed phonon 

polariton fringes and the plasmonic interference fringes in graphene [19,20], we attempted 

to roughly estimate the former using the simulation developed previously for the latter. In 

this way, we again arrived at the estimated range  ≈ 0.04 − 0.07. 

 

2.6.5 Optical constants and infrared reflectivity of hBN 

The infrared reflectivity of boron nitride (BN) has been investigated by several 

groups [25,33-35]. A consensus is that both the in-plane and the out-of-plane dielectric 

function can each be described by a single Lorentzian: 

2 2
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  
//,   (2.5) 

with nearly the same values of the optical phonon frequencies TO,  and LO,  reported by 

all the groups. These values are also in a good agreement with the results of ab initio 

calculations [36,37]. However, we met some difficulty finding reliable experimental data 

in the literature for limiting high-frequency values  ∞ and especially the optical phonon 

broadening . The aforementioned experiments studied boron nitride samples obtained 

by pyrolysis [25], chemical-vapor-deposition (CVD) [33], and magnetron sputtering 

[34,35]. All of these materials were composed of misoriented (angle spread  ~ ±300) 

grains of sub-10 nm size. For such small grain sizes, the linewidth broadening of the 
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phonons can be considerably larger than what is expected in single-crystals, as was shown 

by Raman studies [38,39]. On the other hand,  as small as a few cm-1 was estimated for 

the CVD-grown rhombohedral boron nitride. This material has the same in-plane layer 

structure and nearly the same phonon frequencies as CVD hBN but a much higher degree 

of crystallographic order [33]. For all of the above reasons, in our calculations we used the 

parameters of Cai et al. [36] with the broadening // = 4 cm-1 and   = 5 cm-1 in order to 

reproduce the observed loss factor  ≈ 0.055 at 1550cm-1 (see Fig. 2.3(f)). 

The dielectric function of Eq. 2.5 serves as input into the calculation of the complex 

reflectivity rp(q, ) and therefore of the phonon polariton dispersion. Although our system 

consisted of three layers: hBN, SiO2, and Si, at large q relevant for our experiments, the 

electric field of the polaritons is mostly confined in the first two layers. Therefore, it is 

legitimate to approximate rp(q, ) by the reflectivity of a simpler hBN/SiO2 structure. The 

rp(q, ) can be derived from the Fresnel equations for a three-layer structure shown in Fig. 

2.8: 
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where the subscripts “a”, “ ” and “s” refer to air, hBN (the component normal to the c-

axis), and SiO2, respectively. Functions ra and rs have the meaning of the reflectivity of the 

air/hBN and hBN/SiO2 interfaces, d is the thickness of the hBN crystal and z

ik  represents 
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the z-axis momentum of the photon in layer i. For i = a and s, it is given by 

2
2

2

z

i ik q
c


   with i being the dielectric function. The subscript “e” stands for 

“extraordinary ray” of hBN, which has uniaxial anisotropy. The corresponding momentum 

is 2 2

/ /

( / )z

ek c q


 



   [40]. 

 

2.6.6 The origin of the multiple polariton branches 

At large q we can make the approximation z z

a sk k iq   and 

/ /

,z

e

q
k iq





                                     (2.8) 

in the preceding formulas, which enables us to further simplify the expression for rp. Using 

straightforward algebraic manipulations, one is led to the analytic solution for the poles of 

rp, Eq. 2.1 above. Alternatively, a more physical derivation can be offered as follows. If 

dissipation is neglected, so that both   and / /  are real, the admissible value of 

momentum z

ek  obey the Fabry-Perot quantization condition 

2 2 2 2z

e a sk d m     ,                        (2.9) 

where 2 a  and 2 s  are the phases of the reflection coefficients ra and rs, i.e.,. the phase 

shifts for (inner) reflection of the extraordinary ray at the hBN-air and hBN-substrate 

interfaces. From Eq. 2.6 and Eq. 2.7 we find 

arctan , ,
j

j j a s



 

 
    

 
.                    (2.10) 
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Combining Eq. 2.8 – 2.10 we arrive at 

( )a sq m
d


       .                      (2.11) 

It is convenient to define l = m = 0, 1, … to ensure that Re q > 0. If the losses are now 

included, the in-plane momentum would acquire an imaginary part q q i  . After these 

substitutions, Eq. 2.11 becomes the same as the desired result, Eq. 2.1. 

According to Eq. 2.1, the 0 < < 1 condition can be satisfied within the Reststrahlen 

bands of hBN confined within the transverse  and longitudinal L phonon frequencies 

(Fig. 2.3(d)). Our imaging data probe mainly the band due to the upper Reststrahlen band, 

from ,TO   = 1367 cm-1 to ,LO   = 1610 cm-1 [25] where   is real and negative, whereas 

// is almost real and positive. The polariton branches all start at ,TO   at low q and disperse 

with the positive slope ( +) towards the limiting value of ,LO   = 1610 cm-1 at large q. 

Instead of looking for the poles of rp in the complex plane, one can determine the 

polariton dispersion from the maxima of Im rp at real momenta. This numerical method 

gives results that closely agree with our analytical Eq. 2.1 at large q where the latter 

equation is valid, see Fig. 2.2(e). The positions of high-intensity lines in this plot give q, 

while their apparent widths characterize the dissipation . 

Let us now briefly discuss the multiple branches of the polariton dispersion. As 

explained above, the l > 0 branches have a simple interpretation as the Fabry-Perot 

resonances confined between the two interfaces of the hBN crystal. The same phenomenon 

occurs in planar waveguides, so these modes can be termed “waveguide modes” [28]. In 
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our case the polariton branches are separated from one another by equal increments 
d


 

in the momentum space. It is unusual however that this number is real while 𝑞 itself is 

much larger than the photon momentum. In other words, it is unusual to have propagating 

modes far outside the light-cone. This fact can be traced to parameter   (defined in Eq. 2.1 

or Eq. 2.8) being real, which is unique to hyperbolic materials such as hBN. Unfortunately, 

none of the l > 0 modes has shown evident features in the experiments so far. Observation 

of these “waveguide” modes may have been inhibited by imperfections of the sample edges 

and the current signal/noise ratio limitation. 

Finally, it may be worth commenting on applicability of our continuum-medium 

approach to hBN crystals with just a few atomic layers N. Experimentally, our Eq. 2.1 is 

seen to be in quantitative agreement with the measurements even in the thinnest samples 

reported here, N = 3. On the theory side, the answer can be gleaned from the theoretical 

calculations of Michel and Verberck [41]. They suggest that a qualitatively new effect 

caused by decrease in the number of layers is the character of yet unobserved high-order 

polariton branches. These authors find that the total number of all branches is finite and 

equal to N in each Reststrahlen band. Thus, in monolayer hBN there should be only one 

and in bilayer only two polariton branches in each band. Since we do not see high-order 

branches even in thick crystals, this distinction cannot yet be verified. 

 

2.6.7 Nano-FTIR spectra simulation 
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The near-field scattering amplitude s(ω) shown in Fig. 2.2(f) (right) was computed 

using the expression for the reflectivity, which accounted for all possible layers (hBN, SiO2, 

and Si). It has the same form as Eq. 2.5 except rs is replaced by rsq:  
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 ,          (2.12) 

where ds = 300 nm is the SiO2 thickness and q = 11.7 is the IR dielectric constant of Si. 

The tip-sample interaction was treated within the quasi-static approximation in which the 

AFM tip was modeled as a perfectly conducting prolate spheroid of total length 600 nm 

and the curvature radius 30 nm, as described in our previous work [27]. Figure 2.2(f) 

indicates that the modeling captures all the main features of the observed spectrum. Two 

features arise due to two effects. One is the behavior of the ordinary reflectivity rp at nearly 

zero momentum, i.e., the photonic response of our hBN/SiO2/Si system. The other 

ingredient is the  − dependence of rp at very large momenta q ~ 105 cm-1 set by the 

curvature radius of the tip and its typical distance from the sample, i.e., the polaritonic 

effect. The photonic response causes the deep minima at 820 cm-1 and 1625 cm-1. These 

minima occur near the longitudinal optical (LO) phonon frequencies of hBN, 
,LO  

 and 

,LO 
 at which the far-field reflectivity rp is close to −1, see Eq. 2.12), so that the electric 

field at the surface, proportional to 1 + rp, vanishes. (Note that the far-field reflectivity is a 

very sharp function of frequency near 
,LO 

. It rapidly changes from −1 to 0 as frequency 
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increases, giving the well-known reflectivity minimum.) The far-field reflectivity is also 

responsible for the hump-dip structure near 1100 cm-1, which comes from the optical 

phonon of the SiO2 substrate. On the other hand, the resonances centered around 760 cm-1 

and 1370 cm-1 are to a large extent due to the high near-field reflectivity, the raison d’être 

of the polaritons. The combination of the far- and near-field response functions anchors 

these peaks at the transverse optical (TO) frequencies. 
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Figure 2.1: Real-space imaging of phonon polaritons on hBN. (a) Schematics. Arrows 

denote the incident and back-scattered IR light. Concentric yellow circles illustrate the 

phonon polariton waves launched by the AFM tip and reflected by the two edges of a 

tapered hBN crystal. (b and d-f) Infrared near-field images of the normalized amplitude 

s() defined in the text and taken at different IR frequencies (hBN thickness in (b) – (f) d 

= 256 nm). (c) Simulation of the phonon polariton interference pattern (see Supplementary 

Information). (g) Phonon polaritons probed in a 3 layer (left) and 4 layer (right) hBN 

crystals. White dashed line tracks the hBN edges according to the AFM topography. Scale 

bars: 800 nm.  
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Figure 2.2: The phonon polariton dispersion and nano-FTIR spectra. (a) Schematics of a 

nano-FTIR line scan across the hBN crystal. Arrows denote the incident and back-scattered 

IR beam spanning 1350 − 1600 cm-1. Polaritonic waves are launched (green) by AFM tip 

and then reflected (orange) by hBN edge at L = 0. (b) Polaritonic features detected in a 

single line scan in (a). The normalized scattering amplitude spectra s() is plotted in the 

false color scale. White dashed line at L = 0 marks the edge of the hBN crystal (thickness 

d = 134 nm). Triangles: fringe maxima extracted from monochromatic imaging similar to 

Fig. 1. (c) Nano-FTIR spectra at three representative locations along the line scan marked 

in (b). The peaks marked by the arrows correspond to the dominant polariton interference 

fringe. (d) Phonon polariton features as probed via line scans for ultra-thin hBN crystals 

with d = 3.8 nm (left) and d = 8.8 nm (right). (e) The dispersion relation of phonon 

polaritons in hBN. Triangles: data from monochromatic imaging in Fig. 2.1; dots: the nano-

FTIR results from (b). The data are superimposed on a false color plot of calculated Im rp 

(see Supplementary Information) the black dashed lines are from Eq. 2.1. The straight line 

on the left represents the light line. (f) Nano-FTIR spectrum s() for the hBN crystal (Fig. 

1 (a) – (f)) taken away from the sample edges. The filled (green) part of the data 

corresponds to hBN’s hyperbolic region where 𝑅𝑒𝜖┴ ∙ 𝜀‖ < 0.  
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Figure 2.3: The evolution of the phonon polariton wavelength and amplitude with the 

thickness of hBN crystals. (a) Line profiles of the scattering amplitude s() at 1560 cm-1 

for hBN crystals with d = 154, 237 and 256 nm. Arrows indicate the polariton wavelength. 

(b) Near-field image and (c) phonon polariton line profiles for few-layer hBN crystals. 

White dashed line in (b) tracks the sample boundary. (d) Calculated dispersion relation of 

the l = 0 branch of the phonon polaritons in hBN for various crystal thicknesses. TO and 

LO frequencies are marked with blue dashed lines. (e) Dots: the wavelength of phonon 

polaritons probed at 1560 cm-1 for crystals with different thickness. Red line: calculated 

thickness-dependence relation. Inset: thickness-dependence relation probed at 1400cm-1 

for ultra-thin hBN crystals. See Supplementary Information for details. (f) Calculated loss 

factor for phonon polaritons. Scale bar in (b): 400nm.  
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Figure 2.4: Optical microscope image and Raman spectrum of hBN. (a) hBN crystals of 

different thicknesses under the optical microscope. (b) Raman spectrum of the hBN crystal 

displayed in the inset. Scale bar: 30m.  
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Figure 2.5: Schematics of the UCSD s-SNOM for broad-band nano-imaging and nano-

FTIR experiments. Single frequency IR light (black arrows) is generated by 5 QCLs with 

tunable frequency indicated, in cm-1. A broad-band beam (orange arrow) is generated by 

the DFG system with frequency range indicated. The IR beam enters an asymmetric 

interferometer composed of the elements: BS = ZnSe Beam Splitter, OM = Oscillating 

Mirror, MCT = Mercury Cadmium Telluride detector, PM = Parabolic Mirror, T = 

metallized Tip, S = Sample. Dashed box marks the s-SNOM part.  
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Figure 2.6: Polaritonic waves in tapered crystals. (a) Tip (solid red arrow) and its mirror 

image (dashed red arrow) according to the single hBN edge (grey dashed line). (b) A 

representative tip position (solid green dot, noted as “0”) and its images (hollow dots, 

labeled as “m,n”) for the simulation in Fig. 2.1(c). Orange, red and purple dots mark the 1-

st, 2-nd and 3-rd order images of the tip, respectively. Solid grey lines track the hBN 

crystal’s edges; their extensions are shown with dashed lines. Red and blue dashed lines 

symmetrically connect the tip images with respect to the hBN edges. (c) The beam path 

(solid lines with arrow) of the 1-st order polariton waves. (d) The beam path (solid lines 

with arrow) of one representative 2-nd order polariton wave. L1 to L6 represent the length 

of each part in the solid (or dashed) blue line. Color map of (b) – (d): simulation results 

from Fig. 2.1(c).  
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Figure 2.7: Near-field image and simulation results with different loss factors. (a) Near-

field image of phonon polaritons from Fig. 2.1(b) of the main text. (b) Simulation image 

with the loss factor  = 0.055 (Fig. 2.1(c)). (c) Simulation image with the loss factor  = 

0.01. (d) Simulation image with the loss factor  = 0.13. Scale bar: 800 nm in all panels.  
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Figure 2.8: Layered structure for the Air-hBN-SiO2 system of the dispersion model.  
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Chapter 3 

Natural hyperbolic response in 

hexagonal boron nitride and 

subdiffractional focusing 

 

3.1 Abstract 

Uniaxial materials whose axial and tangential permittivities have opposite signs are 

referred to as indefinite or hyperbolic media. In such materials light propagation is unusual, 

leading to novel and often non-intuitive optical phenomena. Here we report infrared nano-

imaging experiments demonstrating that crystals of hexagonal boron nitride (hBN), a 

natural mid-infrared hyperbolic material, can act as a “hyper-focusing lens” and as a multi-

mode waveguide. The lensing is manifested by subdiffractional focusing of phonon-

polaritons launched by metallic disks underneath the hBN crystal. The waveguiding is 

revealed through the modal analysis of the periodic patterns observed around such 



38 

launchers and near the sample edges. Our work opens new opportunities for anisotropic 

layered insulators in infrared nanophotonics complementing and potentially surpassing 

concurrent artificial hyperbolic materials with lower losses and higher optical localization. 

 

3.2 Introduction 

One of the primary goals of nanophotonics is concentration of light on scales 

shorter than the free-space wavelength λ. According to the general principles of Fourier 

optics, this is only possible provided electromagnetic modes of large tangential 

momenta 𝑘𝑡 > 𝜔/(2𝜋), normally evanescent, are nonetheless able to reach the focal plane 

(the 𝑥-𝑦  plane). Here ω = λ-1 is the measure of frequency common in spectroscopy 

and 𝑘𝑡 = √𝑘𝑥
2 + 𝑘𝑦

2. In devices known as superlenses [1-6], this requirement is realized 

via resonant tunneling between the opposite sides of the structure. However, the tunneling 

is very sensitive to damping, e.g., the magnitude of the imaginary part of the permittivity 

ε of the superlens material [7]. The largest characteristic momentum that can pass through 

a superlens of thickness d can be found from the relation Im 𝜀 ∼ 𝑒−𝑘𝑡𝑑. In this regard, 

hyperbolic media (HM) [8, 9] promise a significant advantage as they support large-k 

extraordinary rays (LakERs) that remain propagating rather than evanescent, so that the 

condition on damping is much softer (see below). The unusual properties of LakERs in 

HM [8-20] stem from the dispersion of these modes that is described by the equation of a 

hyperboloid: 
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 𝜀𝑡
−1𝑘𝑧

2 + 𝜀𝑧
−1(𝑘𝑥

2 + 𝑘𝑦
2) = (2𝜋𝜔)2,    (3.1) 

where 𝜀𝑧 and 𝜀𝑡 ≡ 𝜀𝑥 = 𝜀𝑦 are the axial and tangential permittivities, respectively. The 

hyperboloid is single-sheeted if 𝜀𝑧 > 0, 𝜀𝑡 < 0 (Type II) and two-sheeted if 𝜀𝑧 < 0, 

𝜀𝑡 > 0 (Type I), see Figs. 3.1(a) and 3.1(b), respectively. In both cases the slope of the 

propagation (group velocity) direction, which is orthogonal to the dispersion surface, 

asymptotically approaches 

tan 𝜃(𝜔) = 𝑖
√𝜀𝑡(𝜔)

√𝜀𝑧(𝜔)
 .     (3.2) 

The condition for achieving super-resolution is Im 𝑘𝑧𝑑 = (𝑘𝑡𝑑)Im tan𝜃 ∼ 1. Hence, 

admissible Im 𝜀𝑧 , Im 𝜀𝑡 scale algebraically rather than exponentially with the resolution 

𝑘𝑡
−1. 

Directional propagation of LakERs along “resonance cones” of apex angle θ has 

been observed in a magnetized plasma [21, 22], which behaves as a natural HM in the 

microwave domain. A major resurgence of interest to HM was prompted by their 

discussion in the context of artificial materials (metamaterials) [23, 24]. Examples of such 

hyperbolic metamaterials include microstrip arrays, where directional propagation and 

focusing of LakERs have been experimentally observed [25, 26]. Directional optical beams 

have been studied in planar [25-28] and curved [12, 29] metamaterials made of alternating 

layers of metals and semiconductors. The work on non-planar structures [12, 29] was 

motivated by theoretical proposals of a Hyperlens [30-32], a device in which directional 
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beams outgoing from a subdiffractional source enable optical magnification. However, 

improvement over the diffraction limit has so far been severely impeded by losses in 

constituent metals and imperfections of nanofabrication. 

Recent work [33, 34] identified hBN as a low-loss natural HM in the mid infrared 

(IR) domain. This layered insulator has emerged as a premier substrate or a spacer for van 

der Waals heterostructures [35, 36]. Light atomic masses, strong anisotropy, and the polar 

band between B and N yield prominent optical phonon modes that create two widely 

separated stop-bands – spectral intervals where one of the principal values of the dielectric 

tensor is negative [33, 34, 37]. The upper band comprises   1370 – 1610 cm-1 where the 

real part of 𝜀𝑡 (the in-plane permittivity) is negative while that of 𝜀𝑧 is positive. In the 

lower band spanning   746 – 819 cm-1, the signs of the permittivity components are 

reversed. Thus, the out-of-plane crystal vibrations enable the Type I hyperbolic response, 

whereas the in-plane ones account for the Type II behavior. The momentum-frequency 

dispersion surface for the LakERs of the upper band resembles a “butterfly” (Fig. 3.1(c)) 

composed of individual hyperbolas sketched in Fig. 3.1(a). It can be contrasted with the 

flat dispersion surfaces of longitudinal phonons typical for isotropic materials. Effectively, 

in hBN the longitudinal phonons are hybridized with the transverse ones by quasi-static 

Coulomb interaction mediated by large-k photons. The phonon-polaritons modes that result 

from this coupling are precisely the LakERs, so in the following the terms polaritons and 

LakERs are used synonymously. 
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3.3 Experimental setup 

In our experiments, efficient excitation and detection of LakERs in hBN are 

accomplished with the help of optical antenna structures [38, 39]. The antennas concentrate 

electric field and bridge the large momentum mismatch between the free-space photons 

and the LakERs. In our previous work [33], we used for this purpose a sharp tip of an 

atomic force microscope (AFM) incorporated in our scattering-type scanning near-field 

optical microscopy (s-SNOM) apparatus (Methods). Here we additionally demonstrate the 

antenna and polariton-launching capabilities of Au disks patterned on a SiO2 substrate. The 

AFM topography image in Fig. 3.2(a) depicts Au disks of diameters (top to bottom) 1000, 

500 and 200 nm and thickness of about 50 nm. After the subsequent deposition of hBN 

crystals of thickness d = 100 – 1060 nm and lateral sizes up to 10m, these Au disks 

become encapsulated between hBN and SiO2. The hBN crystal remains essentially flat, as 

verified by AFM. Below we present experimental results demonstrating that interaction of 

these disks with an incident IR beam excites polaritons that travel across hBN and produce 

specific contrast patterns at the other surface. We show that the observed dependence of 

the near-field images on the frequency and hBN thickness is the result of directional 

propagation of the polaritons along conical surfaces with frequency-tunable apex angle 

given by equation (3.2). Thus, hBN may emerge as a new standard bearer for mid-IR 
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nanophotonics by enabling devices for deeply subdiffractional propagation, focusing, and 

imaging with tunable characteristics. 

 

3.4 Experimental results 

3.4.1 Subdiffractional focusing and imaging through hBN 

Representative s-SNOM imaging data are shown in Fig. 3.2. Figure 3.2(b) depicts 

an s-SNOM scan taken at the top surface of hBN of thickness d = 395 nm at frequency  

= 1515 cm-1 ( = 6.6  m). Here we plot the third harmonics of the scattering amplitude s() 

(Methods). In this image, each Au disk is surrounded by a series of concentric “hot rings” 

of strongly enhanced nano-IR contrast. The diameters of all the disks are much smaller 

than  (see also Fig. 3.2(a)), the smallest one being 200 nm = /33. The diameters of the 

hot rings can be larger, smaller, or equal to those of the disks. The spacing between adjacent 

hot rings in the same sample increases with the IR frequency but decreases with the sample 

thickness. We stress that images displayed in Fig. 3.2(b) could only be detected if the IR 

wavelength falls inside the hyperbolic spectral regions. Outside of the hBN stop bands, no 

hot rings can be identified by the s-SNOM. In fact, the entire image is homogeneous, 

comprised of nothing but random noise, as illustrated by Fig. 3.2(d) for  = 1740 cm-1 ( 

= 5.7 m). 

We now elaborate on the formation of images in Fig. 3.2 recorded with our s-

SNOM apparatus with the help of a model of LakERs propagation through a slab of hBN 
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(Figs. 3.3(a), (c) and (d)). Consider a perfectly thin metallic disk sandwiched between a 

slab of a HM of thickness 𝑑 and an isotropic dielectric substrate. The system is subject to 

a uniform electric field of frequency  and amplitude  𝐸0 in the x-direction. An 

approximate solution for the total field in this system can be found analytically 

(Supplementary Information). The corresponding distributions of the z-component of the 

field 𝐸𝑧(𝑥, 𝑦, 𝑧) in the two cross-sections, 𝑦 = 0 (the vertical symmetry plane) and 𝑧 =

𝑑 − 0 (just below the top surface of the hBN slab), are illustrated in Fig. 3.3(c). These 

plots are computed for three representative radii of the disk using permittivity values at  

= 1515 cm-1. The plots demonstrate a series of concentric high-intensity rings on the top 

surface, very similar to the data in Fig. 3.2(b). The interpretation (Figs. 3.3(a), (c)) is 

straightforward: the external field polarizes the disk, which perturbs the adjacent HM (hBN 

in our case) and launches polaritons. The LakERs emission occurs predominantly at disk 

edges due to the high concentration of electric field therein. Polaritonic rays propagate 

across the slab, maintaining a fixed angle θ with respect to the z-axis: the “resonance cone” 

direction [18,21,22,25-28]. Upon reaching the other slab surface, they undergo a total 

internal reflection with the reflected cone extending toward the bottom surface. The process 

repeats until eventually the field vanishes because of radial spreading and/or damping. The 

role of the s-SNOM tip in imaging experiments in Fig. 3.2 is to out-couple LakERs fields 

at the top surface (Fig. 3.3(a)). The observed s-SNOM signal is roughly proportional to the 

amplitude of the electric field immediately above the slab 𝐸𝑧(𝑧 = 𝑑 + 0). (Note that it is 
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related to the field just inside the slab by a constant factor, 𝐸𝑧(𝑧 = 𝑑 + 0) =

𝜀𝑧(𝜔)𝐸𝑧(𝑧 = 𝑑 − 0).) 

The above model of image formations via polaritonic LakERs yields a number of 

quantitative predictions that are in accord with our observations. The scenario of oblique 

propagation implies that upon each roundtrip across the slab, the excitation front returns to 

the same surface displaced radially by the distance 

𝛿 = 2 tan 𝜃(𝜔) 𝑑 .     (3.3) 

Accordingly, the radii of the “hot rings” at the top surface of the slab are given by  

𝑟𝑛 = |𝑎 + (𝑛 −
1

2
) |𝛿|| ,    𝑛 = 0,±1,±2,…  (3.4) 

where 𝑎 is the disk radius. The intensity of the rings is expected to decrease with |𝑛|. 

Consistent with this formula, the smallest rings in Fig. 3c have the radius 𝑟0 = |𝑎 − |𝛿|/2|. 

Particularly interesting is the case where the innermost ring shrinks to a single bright 

spot, 𝑟0 = 0. Experimentally, we observed spots of diameter 200 nm (the full width at half 

maximum, see Supplementary Information), which corresponds to /33 for Fig. 3.2(b) 

(top). Focal spots of similar size 185 – 210 nm were observed in all other hBN crystals, 

with the thickness up to 1050 nm (Supplementary Information). 

A proposal for focusing of electromagnetic radiation via resonance-cone 

propagation in hyperbolic media was theoretically discussed in the context of magneto-

plasmas [21]. Experimental confirmation of this idea in an artificial hyperbolic multi-layer 
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was reported where /6 focusing was deduced from examining the pattern of a polymerized 

photoresist behind a two-slit polaritonic launcher [26]. Here, using a natural hyperbolic 

slab (hBN crystal), we demonstrated the /33 focusing in both spatial directions via out-

coupling of polaritons with the IR nano-probe. We stress that a distinction should be made 

between ‘focusing’ and ‘imaging.’ Focusing devices can be of both imaging and non-

imaging type [40] and both are important in applications. Our hBN device (Fig. 3.3(a)) is 

an example of the latter. 

Continuing with the verifiable predictions of our model, we note that equations (3.3) 

and (3.4) indicate that the slope tan θ of the resonance cone is uniquely related to the radii 

of the hot rings (Fig. 3.3(a)). To test this prediction we analyzed images collected from 

samples of different hBN thicknesses and different Au disk diameters. For each of these, 

we determined the radius 𝑟1 of the 1st-order ring and computed |tan θ | = (𝑟1 − 𝑎)/𝑑 as 

a function of the IR frequency (Fig. 3.3(a)). As shown in Fig. 3.3(b), all the data collapse 

toward a single smooth curve computed from equation (2) using optical constants of hBN 

from ref. [33]. Yet another prediction of the model: the polaritonic rays travel along the z-

axis provided that 𝜀𝑡(𝜔) and therefore 𝜃(𝜔) are vanishingly small. This condition is 

satisfied at  = 1610 cm-1 (Fig. 3.2(c)) where we observe almost 1:1 images of Au disks. 

Similar behavior was observed when instead of the disks more complicated metallic shapes 

were imaged (Supplementary Information). Thus, the totality of our data establishes the 
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notion of directional propagation of LakERs in hBN over macroscopic distances with a 

frequency-tunable slope (Fig. 3.3(b)). 

 

3.4.2 Real-space imaging of multiple guided polaritons in hBN 

The outlined real-space picture has a counterpart in its conjugate momentum space. 

Mathematically, the resonance cones in the real space are coherent superpositions of an 

infinite number of polariton modes of a slab. Such modes are characterized by quantized 

momenta, 𝑘𝑧,𝑙 = (π/𝑑)(𝑙 + 𝛼), labeled by integer index l [33]. Here 𝛼 ∼ 1 (in general, 

ω-dependent) quantifies the phase shift acquired at the total internal reflection from the 

slab surfaces. Per equation (3.1), the tangential momenta of these modes are also quantized, 

𝑘𝑡,𝑙(𝜔) ≃ cot 𝜃(𝜔) 𝑘𝑧,𝑙(𝜔) =
2π

δ(ω)
[𝑙 + 𝛼(𝜔)].    (3.5) 

In the last step, we have applied equation (3.3). For illustration, the dispersion 

curves of such guided modes in the upper stop-band of hBN of thickness 105 nm are shown 

in Fig. 3.1(c), where they are overlaid on the dispersion surface of bulk hBN. The same 

curves are replotted as 𝜔 vs. 𝑘𝑡 in Fig. 3.4(a). In Fig. 3.4(b) the dispersion curves of the 

guided modes of lower stop-band are shown. An intriguing aspect of these curves is that 

their slope 𝜕𝜔/𝜕𝑘𝑡 is positive (negative) in the upper (lower) band. This sign difference 

is a consequence of the opposite direction of the group velocity vector for the Type I and 

Type II cases, cf. Fig. 3.1(a) and 3.1(b). Central to the connection between the resonance 
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cones in the real space and the quantized momenta in the k-space is that these momenta 

form an equidistant sequence of period Δ𝑘𝑡 = 𝑘𝑡,𝑙+1 − 𝑘𝑡,𝑙 = 2𝜋/𝛿. Therefore, if several 

guided modes are excited simultaneously by a source, their superposition would produce 

beats with period 2𝜋/Δ𝑘𝑡 in real space. This is precisely the spacing 𝛿 between periodic 

revivals of the “hot rings” (equation (3.3) and Fig. 3.2). Thus, the multi-ring images and 

the existence of higher-order guided modes are complementary manifestations of the same 

fundamental physics. In our previous work [33] we reported nano-imaging and nano-

spectroscopic study of the lowest-momentum guided mode 𝑙 = 0 in hBN crystals. Below 

we present new results documenting the first observation of the higher-order (up to three) 

guided modes in such materials by direct nano-IR imaging. 

In order to map the dispersion of HP2 we utilized hBN crystals on SiO2 substrate 

without any intervening metallic disks (Methods). Here the sharp tip of the s-SNOM serves 

as both the emitter and the detector of the polariton waves on the open surface of the hBN. 

As the tip is scanned toward the sample edge, distinct variations in the detected scattering 

amplitude s() are observed. Such variations are caused by passing over minima and 

maxima of the standing waves created by interference of the polaritons launched by the tip 

and their reflections off the sample edges (Fig. 3.5(a)). Representative data for the upper 

stop-band (the Type II hyperbolic region) are shown in Figs. 3.5(b)-(f), where we plot s() 

at various IR frequencies. Specifically, the image presented in Fig. 3.5(b) exhibits 

oscillations with the period ~ 1 m extending parallel to the edge of a 31-nm-thick hBN 
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crystal. While these oscillations are similar to those reported previously [33], a high-

resolution scan performed very close to the edge (the olive square) reveals additional 

oscillations occurring on a considerably shorter scale: down to hundreds of nm (Figs. 

3.5(c)-(e)). Similar results have been obtained using many other samples. For example, Fig. 

3.5(f) also shows short-scale oscillations near the edges co-existing with longer-range 

oscillations further away from the edge in the data collected for a thicker hBN crystal (d = 

105 nm). 

To analyze the harmonic content of the measured s() quantitatively we employed 

the spatial Fourier transform (FT). An example shown in Fig. 3.5(h) is the FT of the line 

trace  from Fig. 3.5(g). The three dominant peaks in the FT are marked with ’ (blue), ’ 

(magenta) and ’ (olive). These peaks have been deemed statistically significant and their 

positions k, k and k have been recorded for each of the traces studied. We reasoned that 

including additional weaker peaks into consideration may be unwarranted at this stage. 

Indeed, the gross features in the real-space trace  exceeding the noise level of ~ 1 a.u. are 

accounted for by oscillations in the three partial traces ,  and  which are obtained by 

the inverse FT of the shaded regions in Fig. 3.5(h). 

The remaining step in the analysis is to establish the connection of thus determined 

momenta k, k and k and the momenta kt,l of the guided modes, equation (3.5). This 

requires more care than in prior studies of single-mode waves in 2D materials [33,42-44]. 

The interference patterns near the edge can be created by various combinations of the tip-
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launched waves (labeled by 𝑙 ) and edge-reflected waves (labeled by  𝑟 ). The total 

momentum of a particular combination is 𝑘𝑡,𝑙 + 𝑘𝑡,𝑟. If the mode index is conserved, 𝑙 =

𝑟, the set of possible periods narrows down to 2𝑘𝑡,𝑙 . This is consistent with our data 

obtained for several IR frequencies (Fig. 3.4(a)), where the symbols indicate k, k and k. 

These data are in a quantitative agreement with the calculated dispersion curves for the l = 

0, 1 and 2 polariton guided waves in the upper stop-band. The analysis of polariton 

propagation length [33] shows that the loss factor is as low as γ ~ 0.03 (Fig. 3.9). Dispersion 

mapping in the lower band (746 – 819 cm-1) where no monochromatic lasers are available 

is discussed in Figure 3.8. Broad-band lasers used in an independent study by Li et al. have 

allowed to demonstrate focusing behavior of hBN in this challenging frequency region [45]. 

 

3.5 Discussion 

Data presented in Figs. 3.2-3.5 demonstrate launching, long-distance waveguiding 

transport, and focusing of electromagnetic energy in thin crystals of hBN. These 

phenomena are enabled by directional propagation of large-momentum polariton beams in 

this natural hyperbolic material. The sharpness of the attained focusing, λ/33 at distances 

up to /6 (Fig. 3.5), in units of the free-space wavelength, surpasses all prior realizations 

of superlenses and hyperlenses. Remarkably, a simple addition of a circular metallic 

launcher transforms an hBN crystal into a powerful focusing [19] device! The analysis 

presented in Supplementary Information (Equation 15) indicates that the size of the focal 
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spot in our system is limited by the finite thickness ~50 nm of Au disks. By using thinner 

disks, say 20 nm thick, one should be able to achieve focal spots as small as ~ /102, 

comparable to the spatial resolution of our nano-IR apparatus. A fundamental advantage 

of using natural rather than artificial hyperbolic materials is the magnitude of the upper 

momentum cutoff. In a natural material such as hBN this cutoff is ultimately set by 

interatomic spacing thus immensely enhancing the spatial resolution. Additionally, we 

have shown that hBN can serve as a multi-mode waveguide for polaritons with excellent 

figure of merit: loss factor as small as γ ~ 0.03. These characteristics exceed the 

benchmarks [46-48] of current metal-based plasmonics and metamaterials. The physics 

behind this fundamental advantage of phonon polaritons over plasmons in conducting 

media is in the absence of electronic losses in insulators. Applications of hBN for non-

imaging focusing devices [41], subdiffractional waveguides, and nanoresonators [34] 

readily suggest themselves [45]. Combining such elements together may lead to 

development of sophisticated nanopolaritonic circuits. 

 

3.6 Methods 

3.6.1 Experimental setup 

The nano-imaging and nano-FTIR experiments described in the main text were 

performed at UCSD using a commercial s-SNOM (www.neaspec.com). The s-SNOM is 

based on a tapping-mode AFM illuminated by monochromatic quantum cascade lasers 

http://www.neaspec.com/
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(QCLs) (www.daylightsolutions.com) and a broad-band laser source utilizing the 

difference frequency generation (DFG) (www.lasnix.com) [49]. Together, these lasers 

cover a frequency range of 700 – 2300 cm-1 in the mid-IR. The nanoscale near-field images 

were registered by pseudo-heterodyne interferometric detection module with AFM tapping 

frequency and amplitude around 250 kHz and 60 nm, respectively. To obtain the 

background-free images, the s-SNOM output signal used in this work is the scattering 

amplitude s() demodulated at the nth harmonics of the tapping frequency. We chose n = 3 

in this work. 

 

3.6.2 Sample fabrication 

Silicon wafers with 300-nm-thick SiO2 top layer were used as substrates for all 

samples. The Au patterns of various lateral shapes and 50-nm thickness were fabricated on 

these wafers by electron beam lithography. The hBN microcrystals of various thicknesses 

were exfoliated from bulk samples synthesized under high pressure [50]. Such 

microcrystals were subsequently mechanically transferred onto either patterned or 

unpatterned parts of the substrates. 

 

3.7 Supplementary information 

3.7.1 Theoretical model for focusing by a slab of a hyperbolic 

material 

http://www.daylightsolutions.com/
http://www.lasnix.com/
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The problem we want to solve is computing the distribution of the electric field 𝐸⃗  

inside a hyperbolic medium (HM) slab when a metallic disk is positioned next to its surface 

and the entire system is subject to a uniform in-plane field 𝐸⃗ 0. The schematics of the model 

are shown in Fig. 3.6(a). 

We assume that the slab with the axial permittivity Re 𝜀𝑧 > 0 and the tangential 

permittivity Re 𝜀𝑡 < 0 occupies the region 0 < 𝑧 < 𝑑 and refer to it as medium 1. The 

media above and below the slab have isotropic permittivities 𝜀0 and 𝜀2, respectively. To 

simplify the analysis, we assume that the metallic disk is infinitely thin. Of course, disks 

used in the actual experiments are of a finite thickness. To approximately account for the 

finite thickness, we choose the position of the disk in the model to be some distance 

ℎ away from the bottom surface of the slab, i.e., in the 𝑧 = −ℎ plane, which is inside 

medium 2. We choose the center of the disk to reside on the 𝑧 -axis. The external 

field 𝐸⃗ 0 is taken to be in the 𝑥-direction. 

If the disk radius 𝑎 is much smaller than the free-space photon wavelength, it is 

sufficient to use the quasi-static approximation for the electric field, 

𝐸⃗ = −∇Φ𝑗, (6) 

where the scalar potentials Φ𝑗  obey the following conditions. Potentials Φ0  and 

Φ2 satisfy the Laplace equation in media 0 and 2 while potential Φ1 satisfies the equation 

[ε𝑧𝜕𝑧
2 + ε𝑡(𝜕𝑥

2 + 𝜕𝑦
2)] Φ1 = 0 (7) 
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inside the slab. The boundary conditions are: Φ2 = 0 on the disk, Φ𝑗 ≃ −𝐸0𝑥 at infinity 

for all 𝑗, and 

𝜀𝑧𝜕𝑧Φ1 = 𝜀𝑗𝜕𝑧Φ𝑗 (8) 

at the two interfaces. Although the exact analytical solution of this problem does not seem 

to be possible (cf. ref. [1]), an approximate one can be derived based on the solution for a 

metallic disk inside an infinite isotropic medium: 

ϕ(𝑥, 𝑦, 𝑧) = −
2

π
𝐸0𝑥 (

sinh 𝜂

cosh2 𝜂
+ arctan sinh 𝜂), (9) 

cosh 𝜂 =
1

2𝑎
√(√𝑥2 + 𝑦2 + 𝑎)

2

+ 𝑧2 +
1

2𝑎
√(√𝑥2 + 𝑦2 − 𝑎)

2

+ 𝑧2. (10) 

(Here the center of the disk is at the origin of the coordinate frame.) To verify that ϕ is 

indeed the solution, one can check that ϕ satisfies the Laplace equation, vanishes on the 

disk, and behaves as 

ϕ(𝑥, 𝑦, 𝑧) ≃ −𝐸0𝑥 +
𝑝𝑥𝑥

(𝑥2 + 𝑦2 + 𝑧2)
3
2

 ,      𝑝𝑥 =
4

3π
𝐸0𝑎

3 (11) 

at large distances. Quantity 𝑝𝑥 can be recognized as the dipole moment acquired by the 

disk. At the disk edge potential ϕ has a square-root singularity; hence, the electric field 

has an inverse square-root divergence. These properties are familiar from classical 

electrostatics. 

In order to make use of Equations (9)-(10) our first step is to generalize them for 

the case of an anisotropic uniaxial medium. As obvious from Equation (7), this can be 

achieved by rescaling of the axial coordinate: 𝑧 → (−𝑖 tan 𝜃) 𝑧, where 
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tan θ = 𝑖 
√𝜀𝑡

√𝜀𝑧

=
𝛿

2𝑑
,    𝛿 = 2𝑑 tan 𝜃 (12) 

(cf. equations (2) and (3)). If the imaginary parts of the permittivities are negligibly small, 

the rescaling factor is pure imaginary. This changes the nature of the solution qualitatively. 

It becomes possible for the arguments of the square roots to vanish not only at the edge but 

also at a set of points in space whose coordinates satisfy the equation 

√𝑥2 + 𝑦2 = ±𝑎 ± 𝑧 tan 𝜃 . (13) 

This set of points is a union of two cones of the opening angle |𝜃| coaxial with the disk 

and passing through its edge. The apices of the cones are located at z = ±a cot 𝜃. The 

electric field has the inverse square-root divergence on these cones, which is consistent 

with the physical picture of hyperbolic phonon polaritons (HP2) launched predominantly 

at the disk edge. Similar high field intensity cones have been previously studied in plasma 

physics and dubbed “resonance cones” [2]. The apices of the cones act as focal points 

where the rays launched at the edge intersect. At these points the singularity of the electric 

field is even stronger. From Equations (9)-(10) we deduce that the 𝑧-component of the 

electric field in the “focal plane” behaves as 

𝐸𝑧

𝐸0
∝

𝑖𝑥

𝑥2 + 𝑦2
 (14) 

if the damping is absent and there is no gap between the disk the slab, ℎ = 0. This inverse-

distance divergence does not have an intrinsic scale. However, one can show that if the 

imaginary parts of the permittivities are not neglected and/or ℎ is nonzero, then the 𝑧-
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component of the field vanishes rather than diverges at 𝑥 = 𝑦 = 0 and that it attains its 

maximum at positions (± 𝑥𝑚, 0), where 

𝑥𝑚 = √1 + √5

8
  (2ℎ + Im 𝛿) , (15) 

see Fig. 6(b). Parameter 𝑥𝑚 is one possible measure of the focal spot size. We will discuss 

numerical estimates of this parameter for hexagonal boron nitride (hBN) and compare them 

with our experimental results shortly below. 

Our next step is to use Equation (9) valid for an unbounded medium as a building 

block for constructing a solution for the case of a finite-thickness slab. We follow the 

procedure standard in the method of images and consider an approximate solution as 

follows: 

Φ1 = − ∑ 𝑟0
𝑛𝑟2

𝑛−1ϕ(𝑥, 𝑦, −ℎ −
𝑖δ

2𝑑
𝑧 + 𝑖𝑛δ)

∞

𝑛=1

 + ∑ 𝑟0
𝑛𝑟2

𝑛ϕ(𝑥, 𝑦, ℎ −
𝑖δ

2𝑑
𝑧 − 𝑖𝑛δ)

∞

𝑛=0

 ,

 (16) 

where 

𝑟𝑗 =
ε𝑗 − √ε𝑧 √ε𝑡

ε𝑗 + √ε𝑧 √ε𝑡

  (17) 

is the reflection coefficient at interface of the slab and medium 𝑗 = 0, 2. In the absence of 

damping in the system, these coefficients are complex numbers of unit modulus, i.e., they 

are phase factors. The relation of these phases to the parameter α used in Equation (10) is 
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𝑟0𝑟2 = 𝑒−2𝜋𝑖α. (18) 

The top line in Equation (16) represents the scalar potential created by an infinite series of 

fictitious images above the slab. The sum on the bottom line contains the potential of the 

disk and of another infinite series of images below it. Although the complex amplitudes of 

the consecutive image terms, e.g., 𝑟0
𝑛𝑟2

𝑛 do not decay by the absolute value, images with 

higher 𝑛 are more distant from the slab. As a result, they produce progressively weaker 

potential inside the slab, which ensures convergence of the series. By construction, the 

potential given by Equation (16) meets the boundary conditions at the slab surfaces. The 

image terms modify the asymptotical value of the electric field. However, if we add the 

normalization factor  𝑁 = (1 − 𝑟0𝑟2)/(1 − 𝑟0), we bring it back to  𝐸0 . This way, the 

boundary condition at infinity will also be satisfied. Unfortunately, the potential given by 

Equation (16) violates the equipotential boundary condition on the disk and there is no 

simple way to remedy that. Similar difficulty appears in the classic electrostatic problem 

of a circular parallel-plate capacitor of finite radius [1]. The potential distribution in such 

a capacitor is not equal to the sum of the potentials created by each charged plate in 

isolation. However, it does look qualitatively similar. In particular, the square-root 

singularity at the edge is the universal feature, which must also be exhibited by the exact 

solution. We surmise that in our problem the main inaccuracy of Equation (16) is the 

strength of the square-root edge singularity. Otherwise, our approximate solution for Φ1 

should capture the qualitative aspects of the radiation cones emanating from the edges 
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correctly. Note that the influence of the s-SNOM tip is not considered in our theory since 

its effect is expected to be only quantitative, and not qualitative. As is well established in 

literature, the qualitative features of the near-field contrast are adequately described 

assuming that the near-field signal registered by the tip is proportional to the electric field 

just above the surface of the sample [3-6]. 

To get the desired electric field component 𝐸𝑧, we take the derivative of Φ1 with 

respect to 𝑧, which we can easily do analytically. The results are plotted in the false color 

in Fig. 3c of the main text for different sizes of the disk. These plots depict the case ℎ = 0, 

i.e., no gap between the disk and the slab. The optical constants used in the calculation are 

𝜀0 = 1 , 𝜀𝑡 = −3.50 +  0.15𝑖 , 𝜀𝑧 =  2.80 +  0.0005𝑖 , and 𝜀2 = 1.39 +  0.015𝑖 , 

which is appropriate for hBN slab and SiO2 substrate at frequency  = 1515 cm-1. Using 

Equations (12), (17), and (18), we find tan 𝜃 ≈ −1.12 and α ≈ −0.23 (both are nearly 

pure negative). As one can see from Fig. 3.3(c), the method of images accounts for the 

multiple reflections of HP2 inside the slab that produce the concentric rings of high 

intensity electric field on the top surface. The rings’ radii are given by Equation (4), 

𝑟𝑛 = |𝑎 + (𝑛 −
1

2
) |𝛿|| ,    𝑛 = 0,±1,±2,… (19) 

(The absolute value of δ is taken in this formulas because 𝛿 can and indeed is negative 

in the cited example.) It is clear from the derivation that the described model has a scaling 

property: if 𝑎 and 𝛿 are both multiplied by the same factor, the electric field as a function 

of dimensionless coordinates:  𝑥/𝑎 and  𝑧/|𝛿|  does not change. Accordingly, the 
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qualitative aspects of the electric field distribution are controlled by the dimensionless 

ratio 𝑎/|𝛿|. For example, the 𝑛-index of the smallest ring is the integer closest to 1/2 −

𝑎/|𝛿|. The evolution of the strength and relative arrangement of the hot rings is illustrated 

in Fig. 3b of the main text for several 𝑎/|δ| ratios and also in Fig. 3d of the main text for 

several 𝜃. In all these examples the smallest ring has the radius 𝑟0 = |𝑎 −
1

2
|𝛿||.  

Particularly interesting is the first case where this ring shrinks to a point, 𝑟0 = 0. 

In the other examples, sharp focal points are found inside the crystal, at the intersections 

of the launched and reflected resonance cones. For the quoted above values of the 

permittivities and the slab thickness 𝑑 = 395 nm  we get 𝛿 = 2×395 nm×

𝑖√−3.50 + 0.15𝑖  / √2.80 = (−880 + 19𝑖) nm. Assuming also that the effective disk-

slab separation is ℎ = 25 nm, one half of the disk physical thickness, we get 𝑥𝑚 ≈

70 nm  from Equation (15). Hence, the distance between the maxima of 

Im 𝐸𝑧 occurring on the opposite sides of the focal spot is 2𝑥𝑚 ≈ 140 nm (Fig. 3.6(b)). 

When comparing this estimate with the focal spot size in the experimental images, such as 

Fig. 3.2(b), one has to keep in mind that the measured quantity is not Im 𝐸𝑧 but the 

demodulated scattering amplitude 𝑠(ω), which is a certain functional of 𝐸𝑧. Also, in the 

experiment the incident light has a mixture of different polarizations whereas linear 

polarization is assumed in the model. These are likely reasons for minor differences 

between the experimental images and the Im 𝐸𝑧 curves in Fig. 6(b). For example, the 

calculated Im 𝐸𝑧 vanishes along the line 𝑥 = 0 but the scattering amplitude measured 
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in the experiment does not exactly vanish along any direction. In practice, our procedure 

to extract the focal spot size from the images was to take a linear cut along the direction 

where the signal looked like a simple peak and then take the full width at half-maximum 

(FWHM) of this peak (Fig. 10(b)). The above number 2𝑥𝑚 ≈ 140 nm gives a rough 

theoretical estimate of the focal spot size obtained by this procedure. It is in fact in 

agreement with the FWHM of 185 ~ 210 nm determined for the s-SNOM images 

(Figs. 3.2(b) and 3.5(b)). 

To make connection with the second part of the article we use the fact that the real-

space distribution of the scalar potential can be alternatively represented by a two-

dimensional (2D) Fourier integral. After some lengthy but straightforward calculation, it is 

possible to show that Equation (16) implies that the electric field just above the top surface 

of the slab can be written as 

𝐸𝑧(𝑥, 𝑦, 𝑑 + 0) = 8𝐸0𝑎
3 ∫

𝑑𝑘𝑥

2𝜋
∫

𝑑𝑘𝑦

2𝜋
 𝑒𝑖𝑘𝑥𝑥+𝑖𝑘𝑦𝑦 𝑡(𝑘𝑡)  𝑖𝑘𝑥 [ 

sin 𝑘𝑡𝑎

(𝑘𝑡𝑎)3
−

cos 𝑘𝑡𝑎

(𝑘𝑡𝑎)2
 ] , (20) 

    𝑡(𝑘𝑡) =
sin 𝜋α

sin (𝜋α −
1
2𝑘𝑡𝛿)

 𝑒−𝑘𝑡ℎ ,  𝑘𝑡 = √𝑘𝑥
2 + 𝑘𝑦

2  . (21) 

The product of the last two terms in the integrand of Equation (20) represents the amplitude 

of the Fourier harmonics with momentum  (𝑘𝑥, 𝑘𝑦) . The absolute values of these 

amplitudes exhibit slow power-law decay ∼ 𝑘𝑡
−1. Accordingly, the Fourier spectrum of 

the electric field induced in our system is very broad. The inverse square-root divergence 

of the field at the “hot rings” arises from the constructive interference among the harmonics 
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of this broad spectrum. The dominant contribution comes from the harmonics with 

momenta near the discrete set of values 

𝑘𝑡,𝑙 =
2𝜋

δ
(𝑙 + α) , (22) 

(same as Equation (5)) at which function 𝑡(𝑘𝑡) exhibits pole singularities. These are the 

momenta of the guided modes of the slab. This is why we made a statement in the main 

text that the image formed on the top surface of the slab can be viewed as a coherent 

superposition of multiple guided waves launched by the disk. 

It is worth pointing out that function 𝑡(𝑘𝑡) has the meaning of the transmission 

coefficient of HP2 between the metallic disk and the top surface of the slab. (More precisely, 

𝑡(𝑘𝑡) a transmission coefficient multiplied by the momentum-independent factor  𝑁 , 

mentioned above, that enforces the normalization 𝑡(0) = 1.) This transmission coefficient 

includes the factor 𝑒−𝑘𝑡ℎ due to evanescent decay across the vacuum gap and the Fabry-

Pérot-like resonant transmission factor due to the free propagation of HP2 inside the HM 

slab. If a slab were made from a non-HM, parameters δ, α, and so the guided wave 

momenta 𝑘𝑡,𝑙 defined by Equation (22) would be predominantly imaginary. As a result, 

instead of the resonant transmission HP2 going through the slab would suffer yet another 

exponential decay. 

Finally, let us now discuss another interesting effect, which may perhaps be verified 

by future experiments. The finite thickness of real metallic disks is crudely accounted for 

in our model by choosing a nonzero disk-slab distance h. This parameter enters the last 
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exponential factor in Equation (21) thereby imposing a soft momentum cutoff 𝑘𝑡 ∼ ℎ−1 

in the integral of Equation (20). Accordingly, the characteristic number of the guided 

modes that can effectively contribute to the image formation on the opposite surface of the 

slab becomes limited to 

|𝑙max| ∼
|δ|

2πℎ
 . (23) 

Therefore, as ℎ  increases, the high- 𝑙  guided waves are progressively eliminated. 

Eventually, at ℎ ≫ |δ| , the amplitude of even the lowest-momentum  𝑙 = 0  mode 

becomes exponentially small. However, since the higher-order modes are suppressed even 

more, this mode dominates the spatial oscillations of the field. The corresponding period 

2𝜋/|𝑘𝑡,0| = |𝛿/α| is in general incommensurate with and several times larger than |δ|, 

the repeat distance of the “hot rings” at ℎ = 0. 

In Fig. 3.6(b) we illustrate these trends by numerical simulations of the electric field 

profile in the “surface-focusing” case |𝑎/𝛿|  =  0.5 for several different h, with other 

parameters kept the same as in Fig. 3.3(c). We choose to plot the imaginary part of the 

electric field, i.e., the field component that is 𝜋/2-out of phase with respect to the external 

field 𝐸0. (The real part, i.e., the in-phase component, shows a similar behavior.) Two facts 

that agree with the analytical picture are readily apparent from Fig. 3.6(b). First, at nonzero 

disk-slab separation the magnitude of the field can be much smaller than for disk right next 

to the slab. Actually, to show ℎ > 0 curves clearly, we have to scale them by the factor 

of ten in Fig. 3.6(b). Second, as ℎ grows, the sharply peaked extrema of the electric field 
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producing the equidistant series of “hot rings” separated by |𝛿| gradually transform into 

smooth sinusoidal oscillations of a larger period. This period is approximately four 

times |𝛿|, in agreement with the expected result |𝛿/α|. (Recall that α ≈ −0.23 in this 

example.) 

 

3.7.2 Guided wave dispersion and its thickness dependence 

The thickness dependence of the 𝑙 = 0 guided waves in hBN has been studied in 

our previous work [5]. Here we first summarize the procedure and then apply it to analyze 

the newly discovered 𝑙 ≠ 0 guided wave modes. 

The momenta 𝑘𝑡,𝑙 of the guided waves given by Equation (22) have been defined 

above as the poles of the transmission coefficient 𝑡(𝑘𝑡). These momenta are complex, 

which simply means that the guided waves exhibit finite damping. As usual, the real part 

of each 𝑘𝑡,𝑙  determines the wavelength   𝜆𝑝,𝑙 = 2𝜋 / Re𝑘𝑡,𝑙 , while the ratio of the 

imaginary and real parts specifies the loss factor 𝛾 = Im 𝑘𝑡,𝑙 / Re 𝑘𝑡,𝑙. Instead of the 

transmission coefficient 𝑡(𝑘𝑡), one can examine the surface reflectivity 

𝑟𝑝(𝑘𝑡) =
−𝑟0 + 𝑟2𝑒

𝑖𝛿𝑘𝑡

1 − 𝑟0𝑟2𝑒𝑖𝛿𝑘𝑡
  (24) 

because the poles of the two functions coincide, see Equations (18), (21), and (24). 

However, the reflectivity becomes more useful for the second method of determining the 

mode dispersions. Namely, the imaginary part of the reflectivity as a function or real 



63 

momentum is always positive and if the loss factor is small enough, it has sharp maxima 

at Re 𝑘𝑡,𝑙 . Finding such maxima is easy to implement numerically. For the case 𝑙 =

0 , this method [7] becomes advantageous at low momenta where the quasi-static 

approximation becomes inaccurate and Equation (24) has to be replaced by a more 

complicated expression based on the full Fresnel formulas. However, higher-order modes 

studied here possess rather high momenta, so either method can be used. 

Let us now discuss how this procedure applies specifically to the thickness 

dependence of the guided wave spectra in hBN. The false color plot of Im 𝑟𝑝  at a 

representative IR frequency  = 1400 cm-1 is shown in Fig. 3.7. It has been calculated using 

the permittivity functions of hBN and SiO2 from ref. [55] and [58] as input parameters. The 

bright lines in this plot give  𝜆𝑝,𝑙 . Whereas Equation (22) predicts a strictly linear 

dependence of  𝜆𝑝,𝑙 on crystal thickness 𝑑, the bright lines in Fig. 3.7 exhibit a slight 

curvature at small momenta. Actually, at experimentally relevant momenta the difference 

between the two methods of determining 𝜆𝑝,𝑙 is negligible. These experimental results are 

shown by dots and triangles in Fig. 3.7(a). They have been found using the Fourier-

transform method described in the main text. The measurements were done on several 

different hBN specimens. The thickness 𝑑 for each of the specimen was measured via the 

AFM topography simultaneously with the IR images. Matching the symbols with the 

nearby lines makes it possible to identify the modes as l = 1 for the dots and l = 2 for the 

triangles. Within the shown range of d, the measured wavelengths of these modes scale 
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linearly with the hBN thickness, in accord with the theory. Figure 7(b) shows another set 

of results for the frequency  = 790 cm-1, which belongs to the lower stop-band (Type I 

region). Here the polaritons have a negative group velocity but they obey the same linear 

scaling with 𝑑 as in the upper band, which is again in agreement with the theory. 

 

3.8 Acknowledgements 

 This work is supported by DOE-BES, AFOSR, NASA, Gordon and Betty Moore 

Foundation and University of California Office of the President. 

 Chapter 3, in full, is a reprint of the material as it appears in S. Dai, Q. Ma, T. 

Andersen, A. S. McLeod, Z. Fei, M. K. Liu, M. Wagner, K. Watanabe, T. Taniguchi, M. 

Thiemens, F. Keilmann, P. Jarillo-Herrero, M. M. Fogler & D. N. Basov. “Subdiffractional 

focusing and guiding of polaritonic rays in a natural hyperbolic material”. Nature Comm. 

6, 6963 (2015). The dissertation author was the primary investigator and author of this 

paper.  

http://pubs.acs.org/doi/abs/10.1021/nl202362d?journalCode=nalefd&quickLinkVolume=11&quickLinkPage=4701&volume=11
http://pubs.acs.org/doi/abs/10.1021/nl202362d?journalCode=nalefd&quickLinkVolume=11&quickLinkPage=4701&volume=11


65 

  

Figure 3.1: Hyperbolic dispersion of hBN. (a), A sketch of the isofrequency curves for a 

Type II HM, which is realized in the upper stop-band of hBN. The arrow indicates the 

polariton group velocity. (b), A similar sketch for the Type I case, which is realized in the 

hBN lower stop-band. (c), The calculated dispersion surface of hBN polaritons. The axes 

are the tangential momentum (kt), the axial momentum (kz), and the frequency (ω, ranging 

from 1370 to 1515 cm-1). The color represents the propagation angle θ. The constant-

frequency cut ω = 1515 cm-1 is shown by the red line, to emphasize similarity with (a). The 

dispersion of polaritons in a finite-thickness crystal (d = 105 nm) is shown by the black 

lines, to clarify their relation to (d). (d), The dispersion curves from the previous panel 

replotted as in-plane momenta (kt) vs. frequency (). The symbols are derived from the 

polariton reflection images near the sample edges (Fig. 3.4). (e), Same as (d) for the lower 

hBN stop-band (Fig. 3.7).  



66 

 

Figure 3.2: Sub-diffractional focusing and imaging through an hBN crystal. (a), An AFM 

image of Au disks defined lithographically on SiO2/Si substrate before hBN transfer. (b), 

Near-field amplitude image of the top surface of a 395-nm-thick hBN at IR laser frequency 

 = 1515 cm-1 ( = 6.6 m). The observed “hot rings” are concentric with the Au discs. (c), 

Near-field image of the same sample as in panel (b) at  = 1610 cm-1 ( = 6.2 m) where 

polaritons propagate almost vertically. (d), Near-field image of the same sample at  = 

1740 cm-1 ( = 5.7 m) showing complete homogeneity and lack of any distinct features. 

The color scales for (b) – (d) are indicated in (d). The scale bars in all panels are 1m long.  
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Figure 3.3: The image formation. (a), Imaging schematics. Under IR illumination (green 

arrow), the polaritons were launched by the Au disk edges and propagate towards the hBN 

top surface where the near-field images were recorded via the back-scattered IR beam 

(green arrow). The propagation angle θ can be inferred from the hot ring radius r1, hBN 

thickness d, and disk radius a. (b), The tangent of the propagation angle θ derived from 

imaging data for different hBN samples (symbols) and from equation (3.2) (solid line). “□”, 

“∆”, “×” and “○” indicate data from hBN samples with thickness d = 395, 984, 270 and 

1060 nm, respectively. (c), The distribution of the z-component of the electric field in the 

analytical model (see text). The hot rings on the surfaces appear as a result of multiple 

reflections of polaritons launched at the disk edges. The ratio 𝑎/|𝛿| = 0.5, 0.25, 0.15 

decreases from top to bottom. In the top picture the smallest ring shrinks to a focal point. 

The blue arrow indicates the direction of electric field E0 in simulation. (d), Similar to panel 

(b) for a / d = 1.12 and (top to bottom) |tan θ| = 0.75, 0.375 and 0.01.  
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Figure 3.4: Polariton frequency () – in-plane momentum (kt) dispersion relation for hBN. 

(a), The dispersion curves from Fig. 3.1(c) replotted as frequency () vs. in-plane momenta 

(kt). The experimental data (squares) are obtained from the s-SNOM images near the 

sample edges (Fig. 3.5). (b), Same as (a) for the lower hBN stop-band (Supplementary 

Figure 3.3). Thickness of hBN: 105 nm.  
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Figure 3.5: Imaging of polariton waveguide modes near the hBN edges. (a), Experimental 

schematic is similar to Fig. 3.3(a) except imaging here is performed near the edge of an 

unpatterned sample. (b), Near-field amplitude image measured at 1420 cm-1. The olive 

square indicates the area whose expanded view is shown in (c)-(e). (c)-(e), Near-field 

image of the area marked in (b) at several frequencies. hBN thickness in (b)-(e): 31 nm. (f), 

Near-field image of 105-nm-thick hBN at 1400 cm-1. The cyan dashed lines in (b)-(f) 

indicate the hBN edges. Scale bar in (b)-(f): 300 nm. (g), Line traces perpendicular to the 

hBN edge. Trace  was extracted from the image in panel (f). Traces ,  and  were 

obtained from the Fourier analysis of the trace  as described in the text. (h): The Fourier 

transform of trace  in panel (g).  
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Figure 3.6: Theoretical model and the electric field profile it predicts. (a), The schematics 

of the model. (b), The imaginary part of the 𝑧-component of the electric field just below 

the top surface of the slab along the 𝑥  >  0  semi-axis for fixed 𝑎 = 𝑑 = 0.5𝛿  and 

different ℎ/δ (higher ℎ corresponds to smoother curves; the vertical scale of last three is 

magnified tenfold.)  
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Figure 3.7: Thickness dependence of the guided wave dispersion. (a), The false color plot 

of the imaginary part of the reflectivity at frequency 1400 cm-1 inside the upper (Type II) 

stop-band of hBN. Experimental data for l = 1 and 2 modes are shown by dots and triangles. 

(b), A similar plot for frequency 790 cm-1, which is inside the lower (Type I) stop-band. 

Here only l = 0 mode has been detected.  



72 

 

Figure 3.8: Nano-FTIR study of guided waves in the lower stop-band (Type I spectral 

region,  = 746 – 819 cm-1). Since no monochromatic lasers are available in this spectral 

region, the measurements in the lower stop-band were performed by means of the Fourier 

transform IR nano-spectroscopy (nano-FTIR) technique [55]. (a), Schematic of the 

experiment. A line scan starts from a region of unobscured SiO2 substrate (𝐿 < 0) and 

extends in the region where the hBN crystal resides on SiO2 (𝐿 > 0). The green arrows 

indicate incident and back-scattered broadband IR beam. The black arrows represent the 

polariton guided waves launched by the tip and reflected by the 𝐿 = 0 edge. (b), We took 

near-field spectra at every pixel along the scanning line (a) and then obtained the 2D 

scattering amplitude map 𝑠(𝐿, 𝜔) for a 105-nm-thick hBN crystal on the SiO2 substrate. 

The spectra are normalized to Au reference. The dashed line indicates the edge of the 

crystal. At the hBN side, this map shows the characteristic maxima (interference fringes) 

created by polariton resonances. The distance of the fringes from the edge increases with 

the IR frequency . This trend is exactly opposite to what we observe in the Type II 

hyperbolic spectral region, 1350 – 1550 cm-1 (see Figs. 3.4 and 3.5 and ref. [55]). It implies 

that the group velocity of the guided waves in the lower stop-band is negative, in accord 

with its designation as the Type I hyperbolic region. The data points (squares in Fig. 3.4(b)) 

extracted from  = constant in this panel, are in a good agreement with the calculated 

dispersion of 𝑙 = 0 mode (solid line in Fig. 3.4).  
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Figure 3.9: Estimates of the loss factor. To estimate the loss factor from the imaging data 

shown in from Fig. 3.5(g), we carried out simulations of the damped sinusoidal line traces 

with different trial loss factors 𝛾  following ref. [55]. From these simulations, we 

concluded that the loss factor for the l = 1 mode in Fig. 3.5(g) is roughly ~ 0.03. Red 

trace: contribution of the l = 1 guided wave to the measured scattering amplitude at 

ω = 1400 cm-1 (same as the  trace in Fig. 3.5(g)). Blue traces: results of the simulation 

done following ref. [55] for trial loss factors  = 0.03, 0.08, and 0.15.  
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Figure 3.10: Supplementary s-SNOM images. We achieved small focal spots (FWHM: 

185 ~ 210 nm) in all our devices with hBN thickness up to 1050nm. (a), The AFM image 

of Au disks of diameter 1m (top) and 2m (bottom) on SiO2/Si substrate before the hBN 

transfer. (b), Near-field amplitude image obtained on the top surface of a 1050-nm-thick 

hBN slab after transferred on (a). IR frequency: = 1541 cm-1. Remarkably, this device 

gives a /33 focal spot with a focal distance of /6 (1050 nm, hBN thickness). (c), Line 

profile of taken along the red dotted line in (b). The black double-arrow indicates the 

FWHM measured as the focal spot size. In addition to the Au disks, we have prepared and 

imaged samples with more complicated shapes, for example, in the form of nano-lettered 

logos of our research institutions (d) and (e) at  = 1610 cm-1. We also see an 

approximately 1:1 copy of the pattern underneath hBN, in agreement with the theoretical 

picture of the directional propagation of the polariton rays almost normal to the surface, 

Fig. 3.3(d) (bottom) of the main text. Interestingly, some parts of the image have higher 

intensity than others. The origin of these intensity variations may be studied in future 

experiments. Scale bar: 1m.  
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Chapter 4 

Tunable hyperbolic metamaterial 

based on graphene/hexagonal boron 

nitride heterostructure 

 

4.1 Abstract 

Hexagonal boron nitride (h-BN) is a natural hyperbolic material [1], for which the 

dielectric constants are the same in the basal plane (t ≡ x = y) but have opposite signs 

(tz < 0) from that in the normal plane (z) [1-4]. Due to this property, finite-thickness 

slabs of h-BN act as multimode waveguides for propagating hyperbolic phonon polaritons 

(HPhP, or HP2) [1,2,5] – collective modes originated from the coupling between photons 

and electric dipoles [6] in phonons. However, control of these HP2 modes has remained 

challenging, mostly because their electrodynamic properties are dictated by the crystal 

lattice of h-BN [1,2,7]. Here we show by direct nano-infrared (nano-IR) imaging that these 

hyperbolic polaritons can be effectively modulated in a van der Waals (vdW) 
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heterostructure [8] composed of monolayer graphene on h-BN. Tunability originates from 

the hybridization of surface plasmon polaritons (SPP, or SP2) in graphene [9-13] with HP2 

in h-BN [1,2], so that the eigenmodes of the graphene/h-BN heterostructure are hyperbolic 

plasmon-phonon polaritons (HP3). Remarkably, the HP3 in graphene/h-BN suffer little 

from ohmic losses; In fact, their propagation length is 1.5-2.0 times greater than that of 

HP2 in h-BN. The HP3 possesses the combined virtues of SP2 in graphene and HP2 in h-

BN. Therefore, graphene/h-BN structures can be classified as electromagnetic 

metamaterials [14] since the resulting properties of these devices are not present in its 

constituent elements. 

 

4.2 Introduction 

Van der Waals heterostructures assembled from (one or few) monolayers of 

graphene, h-BN, MoS2 and other atomic crystals in various combinations are emerging as 

a new paradigm to attain the desired electronic [8,15] and optical [16] properties. These 

heterostructures are also of interest in the context of polaritons that are ubiquitous in metals, 

insulators and semiconductors [6,16]. At least two different classes of propagating 

polaritons are firmly established in vdW systems: SP2 in graphene [9-13] and HP2 in h-BN 

[1,2]. In graphene/h-BN meta-structures, coherent oscillations of the electron density in 

graphene and the atomic vibrations in h-BN produce hybridized plasmon-phonon modes. 

Surface plasmon-phonon modes [17] and related energy transfer processes [18] have been 

investigated in structures comprised of graphene with monolayer h-BN or a BN nanotube. 

However, neither monolayers [17] nor nanotubes [18] of BN support hyperbolic response: 
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an exquisite attribute of three-dimensional specimens of this layered anisotropic material 

[1-4]. A remarkable feature of graphene/h-BN heterostructures uncovered in our 

experiments is that monolayer graphene impacts the hyperbolic response of h-BN slabs as 

thick as 99 nm, exceeding 300 atomic layers. We demonstrate that both the wavelength 

and intensity of hyperbolic polaritons can be controlled via electrostatic gating of the top 

graphene layer. 

 

4.3 Experimental results 

Direct experimental access to the tunable hyperbolic response in graphene/h-BN is 

provided by IR nano-spectroscopy and nano-imaging via a scattering-type scanning near-

field optical microscope (s-SNOM) as shown in Fig. 4.1(a) (see also Methods). The same 

technique was utilized in a recent study [19] of h-BN/graphene/h-BN vdW heterostructures; 

however, the hyperbolic spectral regions were not probed therein. In Fig. 4.1(b) we show 

broad-band nano-IR spectra of the normalized (Methods) scattering amplitude s() as a 

function of frequency  = 1 / IR , IR being the IR wavelength, for h-BN, SiO2 substrate, 

and graphene/h-BN meta-structures. The spectra for SiO2 (black) and h-BN (red) display 

resonances due to their mid-IR phonons [1,20]. The two hyperbolic regions of h-BN [1,2] 

are highlighted in Fig. 4.1(b). Type I region where z < 0, t > 0 extends over the frequency 

range  = 746 – 819 cm-1. Type II region where z > 0, t < 0 spans the range  = 1370 – 

1610 cm-1. Both type I and II resonances of h-BN are modified in meta-structures 

incorporating monolayer graphene (the blue spectrum in Fig. 4.1(b)). The impact of 

graphene is particularly prominent in the type I region where the resonance mode is 
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significantly enhanced and blue-shifted by nearly ~ 25 cm-1 compared to the response of a 

standalone h-BN slab.  

The peculiar electrodynamics of graphene/h-BN is vividly illustrated by the 

calculated frequency () – momentum (q) dispersion relations of its polariton modes (Figs. 

4.1(c)-(e), see Supplementary Information for details). Following Ref. [6], we visualize 

these dispersions using a false colour map of the imaginary part of the reflectivity rp. It is 

instructive to first consider the polaritons of the two constituent elements (graphene and h-

BN) separately. In Fig. 4.1(c) we plot the dispersion of SP2 for a freestanding graphene 

layer for three selected values of the Fermi energy EF. These parabolic curves are described 

by the equation [21] 𝑞𝑝(ω) =  
(ℏω)2

2𝑒2𝐸F
. The corresponding plasmon wavelength is 

λp =
2π

𝑞p
=

4𝜋𝑒2𝐸F

(ℏω)2  .              (4.1) 

Next, in Fig. 4.1(d) we plot the dispersion of HP2s in an h-BN slab of thickness d = 58 nm 

on SiO2 (no graphene). In a stark contrast to isotropic crystals where longitudinal optical 

phonons occur at a single degenerate frequency LO, in h-BN, multiple distinct branches of 

HP2 exist [1,2,5]. These different branches correspond to quantized HP2 waveguide modes 

[1,2,5] with a scalar potential oscillating across the slab and having different number of 

nodes [22]. Each waveguide mode disperses between TO and LO (Fig. 4.1(b)). Our 

theoretical results and discussion below are relevant for all these modes; the experimental 

results concern mainly the principal one, the nodeless waveguide mode of the lowest 

momentum. Finally, in Fig. 4.1(e) we display the dispersion of the new collective modes – 

HP3 – that arise from mixing of the SP2 and HP2 in the graphene/h-BN meta-structure. The 
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graphene Fermi energy EF = 0.37 eV was estimated from the surface polariton wavelength 

in Fig. 4.3(d) (see also Ref. [19]). The modification of hyperbolic response by graphene is 

clearly manifested in the blueshift of the HP3 frequencies with respect to those of HP2 (Figs. 

4.1(d)-(e)). The shift of momenta (at a fixed frequency) is opposite in the two hyperbolic 

bands: negative in the Type II band and positive in the Type I band (Supplementary 

Information). This contrasting behavior stems from the fact that the polariton dispersion 

being negative and positive in the Type I and II region, respectively. 

The change of the polariton wavelength induced by graphene is described by the 

formula (Supplementary Information): 

   Δ𝜆(%) =
𝜆

HP3− 𝜆
HP2

 𝜆HP2    
≃

𝜆p

𝜋𝑑
 

𝜀𝑧

 1−𝜀𝑧𝜀t             (4.2) 

In a typical situation where z, t are neither too large nor too small, this formula predicts 

that  is of the order of the ratio of the two length scales: the plasmon wavelengthp 

of graphene and the thickness d of h-BN. This clarifies why the influence of graphene 

remains substantial in h-BN as thick as d = 300 nm (value obtained from calculations in 

Supplementary Information): the length scale over which graphene can exert its influence 

on the electrodynamics of surrounding media is set by its plasmon wavelength. Importantly, 

the plasmon wavelength can be controlled over a wide range through an applied gate 

voltage. Thus, HP3s inherit the hyperbolic nature of HP2s while gaining an important added 

virtue: tunability with applied gate voltage. Outside the two HP3 regions, the plasmonic 

character of the dispersion is largely preserved (Fig. 4.1(e)). The polaritonic mode flattens 

out in the vicinity of TO of either of the two hyperbolic bands: a consequence of mode 
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repulsion [23]. Similar interactions between plasmons and phonons have been studied in 

graphene on other substrates (e.g., SiO2, SiC, ion gel et al.) and monolayer h-BN [9-

13,17,20,23,24], where the hyperbolic response is not supported. Following the 

terminology established there, we refer to the collective modes existing outside the h-BN 

hyperbolic bands as surface plasmon-phonon polaritons (SP3) [17,19]. 

Infrared nano-imaging data (Figs. 4.2 and 4.3) visualizing the propagating 

polaritons in our meta-structures unambiguously support the above theoretical predictions. 

The basic principles of polariton imaging have been detailed elsewhere [1,5,10,11]. In short, 

when illuminated by the IR beam, the s-SNOM tip launches radially propagating polariton 

waves (Fig. 4.1(a)). The tip then registers the interference pattern between launched and 

edge-reflected polaritons, yielding oscillating fringes in the scattered near-field signal. The 

periodicity of the fringes is one-half of the polariton wavelength (denoted generically by , 

with suitable subscripts when needed). 

In Fig. 4.2(a) we present nano-imaging data at a representative frequency  = 

1495 cm-1 for a meta-structure that includes a slab of h-BN (thickness d = 25 nm) partially 

covered by a heavily doped monolayer graphene. We observe polariton fringes in both 

covered (graphene/h-BN) and uncovered (h-BN) areas. In the uncovered h-BN region (the 

bottom half of Fig. 4.2(a)), the fringes originate from the Type II hyperbolic polaritons 

[1,5]. In the graphene/h-BN region (the upper part of the image in the middle of Fig. 4.2(a)) 

we observe fringes that are stronger and have a longer oscillation period. Prominent fringes 

can also be detected along the graphene edge (the dashed green line). Line profiles obtained 

normal to the h-BN edge (Fig. 4.2(b)) help to quantify the nearly 50% increase of both 
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amplitude and wavelength of the fringe oscillations due to the presence of doped graphene. 

This prominent modification is attributed to plasmon-phonon coupling and the formation 

of the type II HP3 band in our meta-structure (Figs. 4.1(e) and 4.2(c)). 

We observe similar enhancement of polaritonic oscillations (Figs. 4.2(a)-(b)) at all 

within the Type II band. The blue dots in Fig. 4.2(c) display these data in the dispersion 

relation:  plotted versus the polariton momentum q that can be read off the line profiles 

as q = 2/ . For comparison, we also measured the HP2 dispersion for pristine h-BN (red 

triangles in Fig. 4.2(c)). Both data sets match the theoretical calculations (false colour and 

white lines, Supplementary Information) for the principle branch of hyperbolic polaritons. 

In addition to the principal mode, polaritons from higher order branches are also enhanced 

in graphene/h-BN (Supplementary Information). The largest experimentally observed 

  in this data set is reached at  = 1545 cm-1. In comparison, the approximate 

equation (4.2) yields 98%, using d = 25 nm, p = 180 nm (equation (4.1)), z = 2.77, and t 

= -1.98. The agreement between the experiment, analytical theory, and numerical 

simulations attests to the validity of the plasmon-phonon coupling approach to account for 

the modified spectrum of hyperbolic modes. We performed measurements for a variety of 

samples, e.g., graphene on h-BN of different thicknesses, graphene obtained by exfoliation 

and chemical vapor deposition (CVD) techniques, all of which produced consistent results. 

The tuning of polaritons in the Type II HP3 region via electrostatic gating (Methods) 

is presented in Figs. 4.3(a)-(b) at another representative frequency  = 1395 cm-1. When 

graphene is close to charge neutrality (Fig. 4.3(a)), the profile of propagating polariton in 

graphene/h-BN is nearly indistinguishable from that of uncovered h-BN. Once graphene is 
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doped by gating (Fig. 4.3(b)), both the intensity and wavelength of the polaritonic features 

were significantly increased. This systematic study of the gate-tunability is summarized in 

Fig. 4.3(c) (blue dots), where the wavelength consistently increases with the absolute value 

of gate voltage at fixed frequency  = 1395 cm-1.  

Here we stress the distinction between the electrodynamics in HP3 and SP3 spectral 

regions (Fig. 4.1(e)). The latter are localized on the sample surface whereas the former 

propagate through the entire graphene/h-BN meta-structure (Fig. 4.3(d), inset) in the form 

of guided waves. We verified the waveguiding character by examining the thickness-

dependence of HP3 wavelength using multiple h-BN slabs covered by a large sheet of CVD 

graphene. The Fermi energy for all the graphene/h-BN samples was about the same, EF = 

0.37 eV. Both in experiment (blue dots) and simulations (green line), the dependence of the 

HP3 wavelength 𝜆HP3   on d is nearly linear with a finite intercept (Fig. 4.3 and 

Supplementary Information), where  ranges from 70% (d = 25 nm) to 18% (d = 99 

nm). This law readily follows from two analytical results:  ~ d1 (equation (4.2)) 

and𝜆HP2 ~ d (Ref. [1]). In contrast, the localized SP3 modes show essentially thickness-

independent behavior of the polariton fringes outside the hyperbolic region (e.g.,  = 882 

and 1617 cm-1). The fundamental difference between HP3 and SP3 is further illustrated by 

polariton field simulations (yellow traces in Fig. 4.3(d), inset). The field distribution of HP3 

in graphene/h-BN is characteristic of a standing wave, whereas that of the SP3 is localized 

at the graphene/h-BN interface and decays evanescently in the interior of the h-BN. 

 

4.4 Conclusion and Outlook 
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We conclude by pointing out that tunable hyperbolic response in graphene/h-BN 

devices does not introduce evident losses (Fig. 4.2(b)). The loss factor of HP3, defined as 

/ q for the complex momentum q + i, can be as small as 0.06 but increases up to ~ 0.10 

in the vicinity of the longitudinal phonon mode. In fact, the propagation length of HP3 in 

graphene/h-BN is factor of 1.5–2.0 longer than HP2 in h-BN (Fig. 4.2). Continuous and 

reversible in-situ tunability of hybrid polaritons in graphene/h-BN meta-structures 

demonstrated here (Fig. 4.3) is a significant advantage over other artificial and natural 

hyperbolic materials [1-4], and is appealing from both the perspective of fundamental 

physics as well as potential applications [3-5,25-29]. Thus, our work uncovers a practical 

approach for nano-photonic meta-structures with intertwined electronic, plasmonic, 

phononic, and/or exciton polaritonic properties [16]. Specifically, vdW polaritonic 

heterostructures with locally tunable properties fulfill the essential prerequisites for the 

implementation of transformation two-dimensional plasmonics [30,31]. The hybridization 

and graphene-induced tunability reported here are expected to be generic for other 

electromagnetic metamaterials [32] and vdW heterostructures [8,16]. A precondition for 

these effects is an overlap between various polaritonic dispersion branches. Finally, we 

remark that it is possible to make an analogy between altering the polariton dispersion by 

graphene and the Goos–Hänchen effect (GHE): a lateral shift of an optical beam upon 

reflection from an interface [33]. Theory of such a polaritonic GHE is reported elsewhere 

[34]. 

 

4.5 Methods 
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4.5.1 Experimental setup 

The infrared (IR) nano-imaging and Fourier transform IR nano-spectroscopy 

(nano-FTIR) experiments introduced in the main text were performed using a scattering-

type scanning near-field optical microscope (s-SNOM). Our s-SNOM is a commercial 

system (www.neaspec.com) based on a tapping-mode atomic force microscope (AFM). In 

the experiments, we use a commercial AFM tip (tip radius ~ 10 nm) with a PtIr5 coating. 

The AFM tip is illuminated by monochromatic quantum cascade lasers (QCLs) 

(www.daylightsolutions.com), CO2 lasers (www.accesslaser.com) and a broad-band laser 

source via difference frequency generation (DFG) (www.lasnix.com). Together, these 

lasers cover a frequency range of 700 – 2300 cm-1 in the mid-IR. The s-SNOM nano-

images were recorded by a pseudo-heterodyne interferometric detection module with an 

AFM tapping frequency 280 kHz and tapping amplitude around 70 nm. With this setup the 

s-SNOM is able to probe the optical signal from sub-surface objects up to a depth of ~ 250 

nm. In order to subtract background signal, the s-SNOM output signal was demodulated at 

the 3rd harmonics of the tapping frequency. In this work, we report our near-field data in 

the form of the normalized scattering amplitude using gold as the reference: s() = 

ssample() / sAu(). 

 

4.5.2 Sample fabrication 

Hexagonal boron nitride (h-BN) crystals were mechanically exfoliated from bulk 

samples and deposited onto Si wafers capped with 300 nm thick SiO2. Graphene was then 

placed onto the h-BN using a PMMA-transfer method. In this work, we use graphene from 

http://www.neaspec.com/
http://www.daylightsolutions.com/
file:///F:/Dropbox/Lab/UC%20San%20Diego/Project/Graphene%20hBN%20hybrid%20modes/Writing/Main%20Text/www.accesslaser.com
http://www.lasnix.com/
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either mechanical exfoliation or chemical vapor deposition (CVD) synthesis and get similar 

results from both techniques. The gold film used as the reference in our measurements was 

lithographically fabricated on the same substrate. Electrostatic back-gating was 

accomplished by applying the voltage between the Si wafer and graphene layer, with SiO2 

and h-BN as the gate dielectrics. 

 

4.6 Supplementary Information 

4.6.1 Response functions and eigenmode dispersion of graphene-

boron nitride heterostructures 

In our theoretical model, we treat graphene/h-BN/SiO2 structure as an infinite 

stratified medium consisting of three regions: 𝑧 > 0 (vacuum, 𝑗 = 0), −𝑑 < 𝑧 < 0 (h-BN, 

𝑗 = 1), and 𝑧 < −𝑑 (SiO2, 𝑗 = 2). We allow for possibility of a uniaxial anisotropy of each 

of the regions and denote by 𝜀𝑗
𝑡 = 𝜀𝑗

𝑡(𝜔) and 𝜀𝑗
𝑧 = 𝜀𝑗

𝑧(𝜔), respectively, their in-plane and 

the 𝑧-axis dielectric functions. (In reality, only the middle region is optically anisotropic.) 

The dielectric functions of h-BN are taken from [35] and those of SiO2 from Ref. [20]. 

Graphene layer is treated as a two-dimensional layer with sheet conductivity 𝜎(𝑞, 𝜔) given 

by (Ref. [36]): 

𝜎 =  −𝑖
𝑒2

4ℏ

ζ

√𝑣2𝑞2 −  ζ2
[1 + 𝐺 (

ℏζ + 2𝐸𝐹

ℏ𝑣𝑞
) −  𝐺 (

ℏζ − 2𝐸𝐹

ℏ𝑣𝑞
)] −

2𝑖

𝜋

𝑒2ω𝐸𝐹

(ℏ𝑣𝑞)2
 ,

𝐺(𝛼) =  −
1

𝜋
(𝛼√1 − 𝛼2 − arccos 𝛼) ,    𝜁 = 𝜔 +

𝑖

𝜏
 .

    (4.3) 
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Here 𝐸𝐹  is the graphene Fermi energy, 𝑣  is the Fermi velocity, and 𝜏−1  is the 

phenomenological relaxation rate. Following the standard procedure, for the case of the 

P-polarization, the in-plane electric field in the system is written as   𝐸𝑥(𝑥, 𝑧) =

𝑒𝑖𝑞𝑥𝑒𝑥(𝑧), where the amplitude function 𝑒𝑥(𝑧)  is the sum of two counter-propagating 

waves: 

𝑒𝑥(𝑧) = 𝐴𝑗𝑒−𝑖𝑘𝑗
𝑧𝑧 + 𝐵𝑗𝑒𝑖𝑘𝑗

𝑧𝑧 ,    𝑘𝑗
𝑧 = √𝜀𝑗

𝑡 (
𝜔2

𝑐2
−

𝑞2

𝜀𝑗
𝑧)  ,    ℑm 𝑘𝑗

𝑧 > 0 .             (4.4) 

The coefficients 𝐴𝑗 and 𝐵𝑗 can be expressed in terms of the reflection coefficients 𝑟𝑖𝑗 at the 

interfaces, defined by 

𝑟01 =
𝑄1 − 𝑄0 + 𝑆

𝑄1 + 𝑄0 + 𝑆
 , 𝑟10 =

𝑄0 − 𝑄1 + 𝑆

𝑄0 + 𝑄1 + 𝑆
 , 𝑟12 =

𝑄2 − 𝑄1

𝑄2 + 𝑄1
 ,

 𝑄𝑗 =
𝜀𝑗

𝑡

𝑘𝑗
𝑧  , 𝑆 =

4𝜋

𝜔
𝜎(𝑞, 𝜔) .

          (4.5)  

For a particular choice of the overall normalization factor, these expressions are 

 
 
 
     

𝐴0 = −𝑟𝑃
−1𝐵0, 𝐵0 = −

𝑟01 + 𝑟12(1 − 𝑟01 − 𝑟10)𝑒2𝑖𝑘1
𝑧𝑑

1 − 𝑟01
,

𝐴1 = 1, 𝐵1 = −𝑟12𝑒2𝑖𝑘1
𝑧𝑑 ,

𝐴2 = (1 − 𝑟12)𝑒𝑖(𝑘1
𝑧−𝑘2

𝑧)𝑑 , 𝐵2 = 0 .

       (4.6) 

The total complex reflectivity 𝑟𝑃 of the structure is given by 

𝑟𝑃 =
𝑟01 + 𝑟12(1 − 𝑟01 − 𝑟10)𝑒2𝑖𝑘1

𝑧𝑑

1 − 𝑟10𝑟12𝑒2𝑖𝑘1
𝑧𝑑

 .                                      (4.7) 

(The subscript “𝑃” in 𝑟𝑃 stands for the 𝑃-polarization. The remaining 𝑆-polarization is not 

important in the near-field limit, 𝑞 ≫ 𝜔/𝑐, we study here.) 
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In an idealized non-dissipative system, 𝑟𝑃(𝑞, 𝜔) can have poles at real 𝜔 and 𝑞. At 

such poles the amplitude 𝐴0 of the incident wave vanishes, so that the field distribution 

described by Eq. (4.6) is self-sustained, i.e., an eigenmode. As one can see from Eq. (4.7), 

the equation for the poles is: 

1 − 𝑟10𝑟12𝑒2𝑖𝑘1
𝑧𝑑 = 0.                                                     (4.8) 

If the frequency 𝜔 belongs to a hyperbolic region, this equation has infinite number 

of solutions 𝑞𝑙  corresponding to different branches of hyperbolic plasmon-phonon 

polaritons (HP3). Here 𝑙 is an integer that labels the branch. In the near-field limit 𝑞 ≫ 𝜔/𝑐, 

which is realized in our experiment, we can use the approximation 

𝑘𝑗
𝑧

𝑞
≃ 𝑖

𝜀𝑗(𝜔)

𝜀𝑗
𝑧(𝜔)

  ,   𝜀𝑗(𝜔) ≡ √𝜀𝑗
𝑡(𝜔) √𝜀𝑗

𝑧(𝜔)  ,                             (4.9) 

to transform the equation 𝑞𝑙 into the form similar to Eq. (1) of Ref. [1]: 

𝑞𝑙(𝜔) =  
𝜋

[−tan 𝜃(𝜔)] 𝑑
 [𝑙 − 𝑓(𝑞𝑙, 𝜔)] , tan 𝜃(𝜔) = 𝑖

𝜀1(𝜔)

𝜀1
𝑧(𝜔)

 .           (4.10) 

Note that the quantity tan 𝜃 is real. It specifies the slope of the polariton 

propagation direction in h-BN with respect to the 𝑧-axis. In the type II hyperbolic band 

where most of our experimental data are taken, we have tan 𝜃 < 0 and 𝑓(𝑞𝑙, 𝜔) < 0 (see 

below), and so the dispersion branches with positive momentum 𝑞𝑙 are obtained choosing 

𝑙 = 0, 1, 2, … Conversely, in the type I band tan 𝜃 > 0 and negative 𝑙 should be chosen. 

Function 𝑓(𝑞, 𝜔) in Eq. (4.10) represent the phase shift (normalized to 2𝜋) of the polariton 

internal reflections off the h-BN surfaces. Since there two such surfaces (top and bottom), 

it is the sum of two terms: 
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𝑓(𝑞𝑙, 𝜔) = −
1

𝜋
arctan [

𝑖𝜀0(𝜔)

𝜀1(𝜔)
(1 −

2𝑞

𝑞𝑝(𝜔)
)] −

1

𝜋
arctan [

𝑖𝜀2(𝜔)

𝜀1(𝜔)
]  ,          (4.11) 

where 

𝑞𝑝(𝜔) ≡
𝑖𝜔𝜀0

2𝜋𝜎(𝑞𝑝, 𝜔)
≃

𝜀0

𝑒2
 
(ℏ𝜔)2

2𝐸𝐹
                                    (4.12) 

has the physical meaning of the plasmon momentum in free-standing graphene. (More 

precisely, it is the plasmon momentum of graphene in a medium with dielectric constant 

𝜀0. Note also that the second equality in Eq. (4.12) is the same as Eq. (4.1) except therein 

we replaced 𝜀0 by unity, to lighten the notations.) 

Upon examination of Eqs. (4.10) and (4.11), we conclude that the HP3 wavelength 

𝜆𝑙 = 2𝜋/𝑞𝑙  must fall into the interval between 𝜆𝑙
ins and 𝜆𝑙

met : 

𝜆𝑙
ins(𝜔) = 2𝑑

[−tan 𝜃(𝜔)]

 𝑙 − 𝑓ins(𝜔)
  ,       𝜆𝑙

met(𝜔) = 2𝑑
[−tan 𝜃(𝜔)]

 𝑙 − 𝑓met(𝜔)
  ,           (4.13) 

where the phase shifts 𝑓ins(𝜔) and 𝑓met(𝜔) are defined by 

𝑓ins(𝜔) = −
1

𝜋
arctan [

𝑖𝜀0(𝜔)

𝜀1(𝜔)
] −

1

𝜋
arctan [

𝑖𝜀2(𝜔)

𝜀1(𝜔)
] , (4.14)

𝑓met(𝜔) =
1

2
−

1

𝜋
arctan [

𝑖𝜀2(𝜔)

𝜀1(𝜔)
] . (4.15)

 

(In our system where 𝜀2 > 𝜀0 = 1 in the hyperbolic spectral regions both 𝑓ins and 𝑓met 

are negative.) The bound  𝜆𝑙
met(𝜔) is reached if the graphene sheet is replaced by a perfect 

metal with infinite conductivity. The other bound  𝜆𝑙
ins(𝜔) is obtained if the graphene sheet 

is treated as a perfect insulator with vanishing conductivity. Obviously, the latter is the 

same as the wavelength of hyperbolic phonon polaritons (HP2) modes in an h-BN crystal 

without graphene [1]. In practice, we deal with an intermediate case, and so to find 𝑞𝑙 we 
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need to solve the transcendental equation Eq. (4.10). An approximate solution can be 

derived as follows. We note that most of our experimental data are taken at frequencies 

where |𝜀1(𝜔)| given by Eq. (4.9) is only modestly large and also 𝜆𝑙 is comparable or larger 

than the plasmon wavelength 𝜆𝑝 ≡ 2𝜋/𝑞𝑝 (which is about 190 nm at 𝐸𝐹 = 0.37 eV, see 

Fig. 4.1). In this regime, it is permissible to expand function 𝑓(𝑞, 𝜔) in Eq. (4.11) to the 

first order in 𝑞. After simple algebra, one can find an analytical expression for the fractional 

change of the polariton wavelength. Interestingly, it is 𝑙-independent and is given by 

𝜆𝑙 −  𝜆𝑙
ins

 𝜆𝑙
ins   

≃
𝜆𝑝

𝜋𝑑
 

𝜀0𝜀1
𝑧

 𝜀0
2 − 𝜀1

𝑧𝜀1
𝑡   ,     

𝜆𝑙

𝜆𝑝
 ≫ min { 

𝜀0

|𝜀1(𝜔)|
 , 2 } .                 (4.16) 

(This is the same as Eq. (4.2) except therein we replaced 𝜀0 by unity and dropped the 

subscripts of 𝜀1
𝑧, 𝜀1

𝑡, to lighten the notations once again.) Equation (4.16) accounts for the 

key experimental observations. First, it shows that at a fixed frequency, addition of 

graphene decreases the polariton wavelength in the type I spectral band and increases it in 

the type II one. This agrees with the experimental results presented in Fig. 4.2 and 

Fig. 4.5(d) below and also with the numerical results shown in Figs. 4.2(c), 4.4, and 4.5(c). 

Next, Eq. (4.16) clarifies which material parameters determine the magnitude of the 

observed wavelength variation. As expected, the fractional change in the wavelength 

decreases with h-BN thickness  𝑑 . The range of 𝑑  where it remains appreciable is 

proportional to the plasmon wavelength 𝜆𝑝 of graphene in vacuum and is approximately 

inversely proportional to the in-plane dielectric function of h-BN 𝜀1
𝑡(𝜔). This explains why 

the influence of monolayer graphene on polaritons in rather thick h-BN crystals is still 

readily observable. For example, at  𝜔 = 1525 cm−1  where  𝜀1
𝑡 = −2.9 ,   𝜀1

𝑧 = 2.8 , 
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Eq. (4.14) predicts a Δ𝜆(%) = 80% wavelength change for 𝑑 = 25 nm (Fig. 4.2(c)) and 

a Δ𝜆(%) = 20% change at 𝑑 = 100 nm (Fig. 4.3(d)). 

If the thickness is fixed, the fractional change in 𝜆𝑙 grows as 𝜔 approaches the top 

of the type II band, where 𝜀1(𝜔) tends to zero. This is again in agreement with the 

numerical results in Fig. 4.4. Note that in this frequency range one eventually enters the 

regime |𝜀1(𝜔)| ≪ 𝜀0 in which the domain of validity of Eq. (4.16) is restricted to 𝜆𝑙 > 2𝜆𝑝. 

At 𝜆𝑙 < 2𝜆𝑝 (or equivalently, at 𝑞 > 𝑞𝑝/2 ) the polariton wavelength 𝜆𝑙 should approach 

the perfect-metal bound 𝜆𝑙
met(𝜔) [Eq. (4.13)]. The crossover to this limiting value is sharp, 

almost step-like if|𝜀1(𝜔)| ≪ 𝜀0. If |𝜀1(𝜔)| ∼ 𝜀0, this crossover is smooth. 

For the absolute change of the wavelength, Eqs. (4.10), (4.13), and (4.16) yield 

𝜆𝑙 ≃ 𝜆𝑙
ins −

2

𝜋
 

𝑖𝜀0𝜀1

 𝜀0
2 − 𝜀1

𝑧𝜀1
𝑡  

𝜆𝑝

 𝑙 − 𝑓ins
   ,       

𝜆𝑙

𝜆𝑝
 ≫ min { 

𝜀0

|𝜀1(𝜔)|
 , 2 } .      (4.17) 

This formula is consistent with the observed linear thickness dependence of the HP3 

wavelength at constant frequency (Fig. 4.3(d)). Indeed, the first term on the right-hand side 

of Eq. (4.17) is linear in 𝑑, while the second term is thickness-independent. If 𝑙 ≠ 0, at very 

small 𝑑 the inequality indicated in Eq. (4.17) can be violated, in which case the dependence 

on 𝑑 should become sublinear and eventually flatten out. For the principal branch 𝑙 = 0, a 

particularly formula for the polariton wavelength can be obtained for frequencies  𝜔 ≃

𝜔TO near the bottom of the hyperbolic bands. Using Eqs. (4.14) and (4.17), we find 

𝜆0 ≃
2

𝜀0 + 𝜀2
(𝜋𝜀1

𝑡𝑑 + 𝜀0𝜆𝑝) ,       |𝜀1(𝜔)| ≫ 𝜀0, 𝜀2 .                      (4.18) 

This equation predicts the linear in thickness behavior of 𝜆0 down to 𝑑 = 0. Note that 𝜀1
𝑧 

does not enter Eq. (4.18); hence, the anisotropy of h-BN does not play much role in this 
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regime. Our experimental data for gated G-h-BN structures shown by the blue circles in 

Fig. 4.3(c) are in a qualitative agreement with Eq. (4.18). 

The foregoing discussion neglected dissipation always present in real materials. 

Because of such dissipation 𝑟𝑃(𝑞, 𝜔) never diverges at any real 𝜔 and 𝑞. As long as the 

dissipation is weak, we can still define eigenmodes dispersions; however, it is convenient 

to get them not from the poles of 𝑟𝑃(𝑞, 𝜔) but from the locations of resonances (sharp 

maxima) of function ℑm 𝑟𝑃(𝑞, 𝜔) at real 𝜔. This function, which in fact is the measure of 

dissipation, is shown as a false color map in Figs. 4.1(d)-(e) and 4.2(c) and Figs. 4.4, 4.5(c) 

below. The bright lines delineate the dispersions of the modes and their widths represent 

the frequency linewidth of the resonances. The maps in Figs. 4.4(a)-(d) were computed for 

h-BN thickness of 50, 100, 150, and 300 nm, respectively. For comparison, the dispersion 

of HP2s of a bare h-BN substrate are shown by the white lines. In agreement with Eq. (4.16), 

the momenta of HP3s in graphene/h-BN meta-structures are shifted to smaller momenta 

(larger wavelengths) compared to HP2s. The effect remains strong for h-BN as thick as 

300 nm (in general, as long as 𝑑 is not much larger than 𝜆𝑝). Outside the Type II hyperbolic 

region, surface plasmon-phonon polaritons (SP3s) exhibit little dependence on the meta-

structure thickness, as discussed above. 

To calculate the electric field profile of the eigenmodes in the presence of damping 

(insets of Fig. 4.3(d)), we used Eqs. (4.5) and (4.6) except we set coefficient 𝐴0 to zero and 

set 𝐵0 to 1 − 𝑟12𝑒2𝑖𝑘1
𝑧𝑑, for continuity. 

 

4.6.2 Tunable polaritons and plasmon-phonon coupling around the 
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Type I region 

Tunable hyperbolic response and plasmon-phonon coupling is also observed in the 

Type I hyperbolic region. Single-wavelength nano-imaging experiments in the Type I 

region are severely restricted by the current availability of monochromatic IR lasers 

necessitating the need for using broadband mid-IR laser for the following measurements. 

Spectroscopic data ( = 600 to 1000 cm-1) were obtained with our nanoscale Fourier 

transform infrared spectroscopy (nano-FTIR) setup and provide a complete experimental 

picture of the polaritonic response in this region (Fig. 4.5(b)). It is instructive to represent 

these broadband data in the form of a single spectroscopic line scan (Figs. 4.5(a)-(b)) 

following Ref. [1]. The line scan is plotted as a false color map of the scattering amplitude 

s(, L) which varies with infrared (IR) frequency () and position (L) along the scanning 

direction. For bare h-BN (L < 0), the out-of-plane phonon generates strong signal near  ~ 

770 cm-1. We can examine experimental results obtained as the tip scans across the 

graphene edge (L = 0) and continues into the interior of the graphene/h-BN (L > 0). The h-

BN phonon resonance is strongly enhanced and blue shifted as a result of the presence of 

monolayer graphene for L > 0, consistent with the spectra displayed in Fig. 1b. These 

findings point to tunable polaritons similar to that in the Type II region (Figs. 4.2-4.3). 

We stress that the phase and group velocity corresponding to the dispersion in the 

Type I region are antiparallel. This negative dispersion underlies subtle but important 

differences related to graphene-induced modification of phonon polaritons of h-BN. 

Specifically, the hybrid HP3 modes in the Type I region reveal an increased q or reduced 
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wavelength  in contrast with the opposite changes observed in the Type II region (Fig. 

4.2).  

Furthermore, we wish to point out that the hybrid polariton in Type I hyperbolic 

region splits the surface plasmon polariton (SP2) (Fig. 4.1(c)) of free standing graphene 

into two SP3s ( < 746 cm-1 and  > 819 cm-1, Fig. 4.5(b)) in graphene/h-BN. The SP3 

fringes were observed close to the graphene edge (Fig. 4.5(b), L > 0). As discussed above, 

these SP3s are localized to the graphene so their dispersion has effectively no dependence 

on the h-BN thickness (Fig. 4.2(d)). At lower frequencies ( = 600 to 1000 cm-1), both the 

HP3 resonance (Fig. 4.5(b)) and SP3s (Fig. 4.5(b)) can be tuned via electrostatic back-gating. 

The HP3 resonance (bright ribbon in Fig. 4.5(b)) peaks at 780 cm-1 (Fig. 2d) when graphene 

is close to charge neutrality. As the back-gate voltage (VBG – VCN) increases (in either 

polarity), the HP3 resonance is blue shifted and until reaching the boundary of Type I region 

(~ 815 cm-1), yet another effect originating from strong plasmon-phonon coupling. 

Propagation of the SP3 can be imaged with the nano-imaging technique introduced in the 

main text. A representative IR image ( = 882 cm-1) of a tapered graphene/h-BN is shown 

as the inset of Fig. 4.5€. The SP3 fringes run parallel to the graphene edges. The fringes 

closest to the edges (white dashed lines) are the strongest and are followed by weaker, 

increasingly damped fringes. Similar to graphene on other substrates [10-13,24], the 

wavelength of SP3 in graphene/h-BN can be tuned by varying the back-gate voltage (Fig. 

4.5(e)). 

 

4.6.3 Higher order hyperbolic polaritons in graphene/h-BN meta-
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structures 

In this work, we provide theoretical analysis for graphene/h-BN polaritons from all 

hyperbolic branches. Yet the majority of experimental results are confined to the principal 

l = 0 branch for the following reason. Higher order (l = 1, 2, 3 …) polaritons are weaker 

and occur at much larger momenta. The increased momentum results in significantly 

smaller wavelengths  as compared to the principal branch. Therefore, these polaritons are 

highly confined and can only be observed in its immediate vicinity of the sample edge, 

leading to a small oscillation (Fig. 4.6(b), 0 < L < 150 nm, overlapped with the green 

background). In spite of this, hybridization for l ≠ 0 polaritons was also observed in our 

experiments, where the small oscillation was enhanced by graphene (Figs. 4.6(a)-(b)). 

However, due to the resolution limit of our nano-IR apparatus and the unknown (possibly, 

complicated) structure of graphene-covered h-BN edges, quantitative results for l ≠ 0 

polaritons may need future experiments. 
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Figure 4.1: An Overview of hybridized hyperbolic response in graphene/h-BN meta-

structure. (a), The experimental schematic showing the IR beams (the black arrows) 

incident on and back-scattered by an AFM tip. The incident beam is generated from 

monochromatic or broad-band laser sources (Methods). The back-scattered light is 

collected for extraction of the near-field signal. (b), Broad-band nano-IR spectra of the 

meta-structure with a representative thickness of h-BN: 58 nm. The blue, red and black 

curves represent the spectra for graphene/h-BN, h-BN, and SiO2, respectively. The spectra 

are collected far away from the sample edges where the impact of edge-reflected 

polaritonic waves is negligible. (c), Calculated dispersion of the surface plasmon polariton 

(SP2) in freestanding graphene with Fermi energy EF = 0.37, 0.15, and 0.08 eV. (d), 

Calculated dispersion of the hyperbolic phonon polariton (HP2) in h-BN of thickness 58 

nm. The dispersion is visualized using the false colour map of the imaginary part of the 

reflection coefficient rp (for the case of P-polarization, see Supplementary Information). 

The black dashed line is a rough estimate of the momentum at which the tip-sample 

coupling is the strongest [20]. The green dashed rectangles surround the regions of 

hyperbolic response. (e), Same as (d) for graphene/h-BN structure with EF = 0.37 eV. The 

false colour map reveals the dispersion of the hyperbolic plasmon-phonon polaritons (HP3) 

and the surface plasmon-phonon polaritons (SP3). Weak resonances around  = 1130cm-1 

in (d) and (e) originate from the SiO2 substrate.  
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Figure 4.2: Modification of type II hyperbolic phonon polaritons in graphene/h-BN meta-

structure. (a), Near-field amplitude image of the graphene/h-BN at frequency  = 

1495 cm-1. With monolayer graphene, the intensity and wavelength of phonon polariton in 

pristine h-BN are increased. White and green dashed lines indicate the edge of h-BN and 

graphene, respectively. Scale bar: 300 nm, d = 25 nm. (b), Line profiles taken along the 

dashed lines in (a). Double arrows indicate the polariton wavelength measured on 

graphene/h-BN (blue) and h-BN (red). (c), Experimental dispersion relation of type II HP2 

in h-BN (red triangles), HP3 (blue dots) and SP3 in graphene/h-BN (pink square) with the 

Fermi energy EF = 0.37 eV. The corresponding simulation results are also provided as the 

white lines and false colour map, respectively.  
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Figure 4.3: Tuning of the graphene/h-BN polariton wavelength by electrostatic gating and 

varying the meta-structure thickness. (a)-(b), Near-field images of graphene/h-BN and h-

BN polaritons at back gate (BG) voltages relative to the charge neutral (CN) state VBG – 

VCN = 0 V (a) and –130 V (b). Scale bar: 300 nm. (c), Gate voltage dependence of the HP3 

wavelength in graphene/h-BN meta-structure (blue dashed line in Figs. 4.3(a)-(b)) and the 

apparent lack of thereof for HP2 in h-BN (red dashed line in Figs. 4.3(a)-(b)) at  = 

1395 cm-1. Thickness of the h-BN in (a)-(c): d = 4 nm. (d), The dependence of HP3s 

wavelength on h-BN thickness at  = 1525 cm-1 (data and simulations are shown with the 

blue dots and green line, respectively). For the SP3, there is no systematic thickness-

dependence (solid and hollow pink squares at  = 882 and 1617 cm-1, respectively. The 

corresponding simulations are plotted as the solid and dashed lines). Inset, the propagation 

schematics for HP3 (top) and SP3 (bottom). Yellow shapes in each inset show the real part 

of the polariton field as a function of z obtained using equation (4.6).  
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Figure 4.4: Frequency () - momentum (q) dispersion of polaritons in graphene/h-BN 

meta-structure with different thicknesses. (a), Dispersion of hyperbolic phonon polaritons 

(HP2s) in h-BN (white lines), hyperbolic plasmon-phonon polaritons (HP3s) and surface 

plasmon-phonon polaritons (SP3s) in graphene/h-BN (false color). The green dashed line 

marks the spectral boundaries of the type II hyperbolic region. h-BN thickness is 50 nm, 

the graphene Fermi energy EF = 0.37 eV. (b)-(d), Same as (a) for h-BN thickness 100, 150 

and 300 nm, respectively.  
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Figure 4.5: Tunable hyperbolic response and hybrid polaritons in the lower frequency 

region ( = 600 – 1000 cm-1). (a), Schematic of the nano-FTIR line scan experiment. Black 

arrows indicate incident and back-scattered IR beam. Green arrows describe the SP3s 

launched from the AFM tip and reflected by graphene edge at L = 0. (b), The polaritonic 

overview from 600 to 1000 cm-1 mapped by the nano-FTIR line scan. The scattering 

amplitude s(L, ) is mapped with the false color. White dashed line marks the L = 0 

graphene edge. (c), The polariton dispersion in the Type I region. The HP2 and HP3 are 

plotted as white lines and false color map. Thickness of h-BN: 50nm, the graphene Fermi 

energy EF = 0.37 eV. (d), The HP3 resonance peak position (bright region in Fig. S3b) as a 

function of the back-gate voltage 𝑽𝐁𝐆 referenced to the graphene charge-neutrality voltage 

𝑽𝐂𝐍. (e), Back-gate voltage dependence of the SP3 wavelength extracted from the near-

field images measured at  = 882 cm-1 using a monochromatic laser source. Inset: a 

representative near-field image of the SP3. Scale bar: 200 nm.  
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Figure 4.6: Supplementary s-SNOM data for hybridization of l ≠ 0 hyperbolic polaritons. 

(a), Near-field amplitude image of the graphene/h-BN at frequency  = 1485 cm-1. A bright 

line (higher near-field signal, indicated by the blue arrows) formed very close to the sample 

edge for the part covered by graphene. Scale bar: 300 nm, d = 25 nm. (b), Line profiles 

taken along the dashed lines in (a). The part with green background shows enhanced 

polaritonic features from l ≠ 0 branches in graphene/h-BN (blue) compared with that in h-

BN (red).  



109 

4.8 Bibliography 

1. Dai, S. et al. Tunable Phonon Polaritons in Atomically Thin van der Waals Crystals of 

Boron Nitride. Science 343, 1125-1129, (2014). 

 

2. Caldwell, J. D. et al. Sub-diffractional volume-confined polaritons in the natural 

hyperbolic material hexagonal boron nitride. Nat Commun 5, (2014). 

 

3. Guo, Y., Newman, W., Cortes, C. L. & Jacob, Z. Applications of Hyperbolic 

Metamaterial Substrates. Advances in OptoElectronics 2012, 9, (2012). 

 

4. Poddubny, A., Iorsh, I., Belov, P. & Kivshar, Y. Hyperbolic metamaterials. Nat Photon 

7, 948-957, (2013). 

 

5. Dai, S. et al. Subdiffractional focusing and guiding of polaritonic rays in a natural 

hyperbolic material. Nat Commun 6, (2015). 

 

6. Novotny, L. & Hecht., B. Principles of Nano-Optics.  (Cambridge University Press, 

Cambridge, 2006). 

 

7. Xu, X. G. et al. One-dimensional surface phonon polaritons in boron nitride nanotubes. 

Nat Commun 5, (2014). 

 

8. Geim, A. K. & Grigorieva, I. V. Van der Waals heterostructures. Nature 499, 419-425, 

(2013). 

 

9. Ju, L. et al. Graphene plasmonics for tunable terahertz metamaterials. Nat Nano 6, 

630-634, (2011). 

 

10. Chen, J. et al. Optical nano-imaging of gate-tunable graphene plasmons. Nature 487, 

77-81, (2012). 

 

11. Fei, Z. et al. Gate-tuning of graphene plasmons revealed by infrared nano-imaging. 

Nature 487, 82-85, (2012). 

 

12. Fang, Z. et al. Active Tunable Absorption Enhancement with Graphene Nanodisk 

Arrays. Nano Letters 14, 299-304, (2014). 

 

13. Gerber, J. A., Berweger, S., O’Callahan, B. T. & Raschke, M. B. Phase-Resolved 

Surface Plasmon Interferometry of Graphene. Physical Review Letters 113, 055502, 

(2014). 

 

14. Cai, W. & Shalaev, V. Optical Metamaterials: Fundamentals and Applications.  

(Springer, New York, 2010). 



110 

 

15. Fiori, G. et al. Electronics based on two-dimensional materials. Nat Nano 9, 768-779, 

(2014). 

 

16. Xia, F., Wang, H., Xiao, D., Dubey, M. & Ramasubramaniam, A. Two-dimensional 

material nanophotonics. Nat Photon 8, 899-907, (2014). 

 

17. Brar, V. W. et al. Hybrid Surface-Phonon-Plasmon Polariton Modes in 

Graphene/Monolayer h-BN Heterostructures. Nano Letters 14, 3876-3880, (2014). 

 

18. Xu, X. G. et al. Mid-infrared Polaritonic Coupling between Boron Nitride Nanotubes 

and Graphene. ACS Nano 8, 11305-11312, (2014). 

 

19. Woessner, A. et al. Highly confined low-loss plasmons in graphene–boron nitride 

heterostructures. Nat Mater 14, 421-425, (2015). 

 

20. Fei, Z. et al. Infrared Nanoscopy of Dirac Plasmons at the Graphene–SiO2 Interface. 

Nano Letters 11, 4701-4705, (2011). 

 

21. Wunsch, B., Stauber, T., Sols, F. & Guinea, F. Dynamical polarization of graphene at 

finite doping. New Journal of Physics 8, 318, (2006). 

 

22. Kumar, A., Low, T., Fung, K. H., Avouris, P. & Fang, N. X. Tunable Light–Matter 

Interaction and the Role of Hyperbolicity in Graphene–hBN System. Nano Letters 

(2015). 

 

23. Hwang, E. H., Sensarma, R. & Das Sarma, S. Plasmon-phonon coupling in graphene. 

Physical Review B 82, 195406, (2010). 

 

24. Yan, H. et al. Damping pathways of mid-infrared plasmons in graphene nanostructures. 

Nat Photon 7, 394-399, (2013). 

 

25. Liu, Z., Lee, H., Xiong, Y., Sun, C. & Zhang, X. Far-Field Optical Hyperlens 

Magnifying Sub-Diffraction-Limited Objects. Science 315, 1686, (2007). 

 

26. Li, P. et al. Hyperbolic phonon-polaritons in boron nitride for near-field optical 

imaging. arXiv:1502.04093 (2015). 

 

27. Hoffman, A. J. et al. Negative refraction in semiconductor metamaterials. Nat Mater 

6, 946-950, (2007). 

 

28. Jacob, Z., Alekseyev, L. V. & Narimanov, E. Optical Hyperlens: Far-field imaging 

beyond the diffraction limit. Opt. Express 14, 8247-8256, (2006). 

 



111 

29. Smith, D. R., Schurig, D., Mock, J. J., Kolinko, P. & Rye, P. Partial focusing of 

radiation by a slab of indefinite media. Applied Physics Letters 84, 2244-2246, (2004). 

 

30. Vakil, A. & Engheta, N. Transformation Optics Using Graphene. Science 332, 1291-

1294, (2011). 

 

31. Kadic, M. et al. Transformation plasmonics. Nanophotonics 1, 51, (2012). 

 

32. Iorsh, I. V., Mukhin, I. S., Shadrivov, I. V., Belov, P. A. & Kivshar, Y. S. Hyperbolic 

metamaterials based on multilayer graphene structures. Physical Review B 87, 075416, 

(2013). 

 

33. Goos, F. & Hänchen, H. Ein neuer und fundamentaler Versuch zur Totalreflexion. 

Annalen der Physik 436, 333-346, (1947). 

 

34. Wu, J.-S., Basov, D. N. & Fogler, M. M. Topological insulator are tunable waveguides 

for hyperbolic polaritons. Physical Review B 92, 205430, (2015). 

 

35. Cai, Y., Zhang, L., Zeng, Q., Cheng, L. & Xu, Y., Infrared reflectance spectrum of BN 

calculated from first principles. Solid State Commun. 141, 262 (2007). 

 

36. Wunsch, B., Stauber, T., Sols, F. & Guinea, F. Dynamical polarization of graphene at 

finite doping. New J. Phys. 8, 318 (2006). 



 

113 

 

Chapter 5 

Emitter and emission efficiency of 

phonon polaritons in hexagonal boron 

nitride 

 

5.1 Abstract 

We investigated emission and propagation of polaritons in a two dimensional van 

der Waals material hexagonal boron nitride (hBN). Our specific emphasis in this work is 

on hyperbolic phonon polariton emission that we investigated by means of scattering-type 

scanning near-field optical microscopy. Real-space nano-images detail how the polaritons 

are launched in several common arrangements including: light scattering by the edges of 

the crystal, metallic nanostructures deposited on the surface of hBN crystals, as well as 

random defects and impurities. Notably, the scanned tip of the near-field microscope is 

itself an efficient polariton launcher. Our analysis reveals that the scanning tips are superior 

to other types of emitters we have investigated. Furthermore, the study of polariton 
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emission and emission efficiency may provide insights for development of polaritonic 

devices and for fundamental studies of collective modes in other van der Waals materials. 

 

5.2 Introduction 

Van der Waals (vdW) materials [1] have emerged as new media for the exploration 

of polaritons, the coupled collective oscillations of field and polarization charges [2-4]. 

Recently studied examples include i) plasmon-polaritons in conductors such as graphene 

[5-12], thin films of high-Tc superconductors [13] and surface states of topological 

insulators (TIs) [14], ii) phonon-polaritons in insulators such as hexagonal boron nitride 

(hBN) [15-22] and bismuth-based TIs [14,23], iii) hybrid plasmon-phonon-polariton 

modes in vdW heterostructures [14,24-27]. The optical permittivity of vdW materials can 

be extremely anisotropic, having the opposite signs along the in- and out-of-plane axes, the 

property known as the hyperbolic response [28-31]. Accordingly, collective modes found 

in these frequency ranges are referred to as the hyperbolic polaritons. Appealing 

characteristics of polaritons in vdW systems include high optical confinement [5,26,32], 

low damping [32] as well as exceptional mechanical, optical, and electrical tunability 

[3,7,8,21,24,25,32,33]. 

Coupling incident light to polaritons requires overcoming their momentum 

mismatch [2,3]. This is possible if the system under study lacks translational invariance, 

for example, if the sample is of small size [15,22], has a periodic patterning [5,9,11], or an 

intrinsic inhomogeneity. Alternatively, light-polariton conversion can be facilitated by 

extrinsic structures brought into the sample’s proximity, such as metallic stripes or plates. 
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Such methods have been utilized for emission of plasmon polaritons in graphene [34]. 

Emission of phonon polaritons by metallic edges have been demonstrated in SiC [35] and 

more recently in a vdW insulator hBN [16]. Below we report on these and other types of 

phonon-polariton emitters in hBN and evaluate their relative efficiency. Our analysis offers 

guidance for the development of nano-optical systems with high-efficiency coupling to 

polaritonic waves. 

 

5.3 Experimental results 

5.3.1 Various polariton emitters 

We focus on the mid-infrared (IR) spectral range  = 1370 – 1610 cm-1 where hBN 

is optically hyperbolic [28-31]. Here  = 1 / IR and IR is the free-space IR wavelength. 

The polaritons existing in this domain are referred to as the hyperbolic phonon-polaritons 

(HP2s) [16,19,21,22,25]. Real-space imaging of polaritons has been carried out using the 

scattering-type scanning near-field optical microscopy (s-SNOM, methods) [7,8,10,16-

21,25,32]. As shown schematically in Fig. 5.1(a), under the illumination of an IR laser, the 

polaritonic standing waves can form and they can be visualized by scanning the sample 

under the tip of the atomic force microscope (AFM) [7,8,21]. A representative s-SNOM 

image (Fig. 5.1(b)) displays an oscillating pattern (or fringes) parallel to the crystal edges 

in a tapered hBN micro-crystal. The line profile (s-SNOM amplitude s() as a function of 

the position L along the blue line) associated with these fringes is plotted in Fig. 5.1(c). 

Close to the hBN edges (white dashed lines), the s-SNOM image exhibits the strongest 

fringe followed by several other peaks with gradually decreasing amplitude (Fig. 5.1(b)-
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(c)). As established in previous studies [17,20,21], propagating HP2s waves are both 

emitted and detected by the s-SNOM tip acting as an optical antenna [36]. These fringe 

patterns originate from interferences between the tip-emitted (solid purple arrow) and hBN 

edge-reflected HP2s (dashed purple arrow). The measured fringe periodicity is equal to 

one-half of the polariton in-plane wavelength (p/2) [16,17,20,21] for the principal HP2 

branch. Interestingly, further away from the hBN edges, the p/2 fringes become damped 

yet fringes with a much longer period persist (Fig. 5.1(b)-(c)). These latter fringes show 

the period of ~ p clearly visible in the line profile (Fig. 5.1(c)) and its Fourier transform 

(FT) (Fig. 5.1(c) inset, bottom). 

We attribute the origin of the period-p fringes to polaritons emitted by the edges 

of hBN crystals marked with white dashed lines in Fig. 5.1(b). The edge emission is 

illustrated by the annotated numerical simulation shown in the inset of Fig. 5.1(a). The 

green arrows in this figure represent the monochromatic IR beam, which illuminates both 

the hBN crystal and the s-SNOM tip. This IR beam carries the momentum kIR = 2 / IR 

arriving at the incidence angle . At the hBN edge, the IR beam excites the HP2 wave 

(cyan arrow) possessing the in-plane momentum of kp = 2 / p. This edge-launched wave 

propagates away from the edge and interferes with the incident IR beam (green arrows) 

forming a standing wave parallel to the edge. The measured s-SNOM signal is in the first 

approximation proportional to the local electric field underneath the tip apex [35]. This 

signal is produced by the field of the IR beam Ei and that of the edge-emitted polaritons Ep: 

Etip = Ei cos  + Ep. The period of the corresponding interference fringes is [35]  = 2/ 

(kp – kIR cos . In the case of highly-confined HP2s in hBN [21,22], kp  is much larger than 
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kIR, and so  is close to 2/ kp = p, in accord with our data (Figs. 5.1(b)-(c)) and numerical 

simulations (Fig. 5.1(a), inset). Clearly, when both edge-emitted and tip-emitted polaritons 

are present, the s-SNOM image may be rather complex. The observed pattern in Fig. 5.1(b) 

and 5.1(c) is the case in point. 

The different amplitudes of the p and p/2 polariton fringes seen in Figs. 5.1(b) 

and 5.1(d) (especially in the interior of hBN) are due to their distinct propagation 

trajectories and travel distances (Fig. 5.1(a)). Indeed, edge-emitted polaritons (fringe 

periodicity p) propagate as plane waves, whereas tip-emitted polaritons (p/2) propagate 

as circular ones. The amplitude of a circular wave decreases with the travel distance even 

in the absence of damping, whereas that of the plane wave does not. Furthermore, the path 

lengths of polaritons forming these p and p/2 fringes are different. The edge-emitted 

polaritons (p) only need to traverse the tip-edge distance L once to become registered in 

our apparatus. The tip-emitted/edge-reflected polaritons (period p/2) have to do a round 

trip. Therefore, the combination of geometric spreading and two-fold travel distance 

account for the faster decrease of period-p/2 oscillations in Figs. 5.1(b)-(c). In the interior 

of the hBN crystal (Fig. 5.1(b)), p-periodic fringes emitted by the  edge (blue solid line 

in Fig. 1c) and  edge (red dashed line in Fig. 5.1(c)) exhibit different intensities. This 

difference is related to the shadowing of the sample by the AFM cantilever in our 

experiment. Once the hBN crystal is rotated by /2, we observed identical p fringe 

intensity (Fig. 5.1(d)) from  and  edges, see Supplementary Information for details. 

In addition to the hBN crystal edge and s-SNOM tip, polaritons in hBN are also 

emitted by metallic nanostructures. The images in Figs. 5.2(a) and 5.2(c) have been 
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obtained from an hBN crystal with Au disks of height 188 nm and diameters 1-2 m 

fabricated on its top surface. The s-SNOM data in Fig. 5.2(a) exhibit two groups of 

interference fringes. The fringes in the first group are parallel to the edge; those of the other 

group are concentric to the Au disk. To estimate the corresponding polariton wavelengths 

we examine the representative line traces (green and blue curves in Fig. 5.2(b)) extracted 

from the s-SNOM image in Fig. 5.2(a) by taking linear cuts along the lines of the same 

color. The green curve extracted from a line scan taken perpendicular to the hBN edge (Fig. 

5.2(a)) again reveals a superposition of fringes with p/2 and p periodicities. One can 

separate these components via the FT analysis [19]. In addition to the tip-emitted (p/2) 

and edge-emitted (p) polariton fringes (Fig. 5.2(a)) parallel to the hBN edges, one can 

witness concentric circular fringes around the Au disks (Fig. 5.2(a) and 5.2(c)). The profile 

for the concentric fringes arising from the gold emitter (blue curve, Fig. 5.2(b)) exhibits 

oscillations with nearly the same period as the edge emitted ones (black curve). Thus, it is 

attributed to polaritons emitted by the disk edges (magenta dashed circles, Fig. 5.2(a)). To 

verify this assertion, we numerically simulated the s-SNOM image following an earlier 

study [35] (Fig. 5.3(d)); these simulations account for our experimental results. 

 

5.3.2 Relative polariton emission efficiency 

Let us discuss the efficiency – the ability to convert incident IR photons into 

propagating polaritons – of different polariton emitters. We can quantify this parameter by 

taking the ratio of either the power 𝑃𝑝  or the intensity 𝐼𝑝  of the polariton wave to the 

incident IR power P0 per unit area. The intensity scales as a square 𝐼𝑝 = |𝑆|2 𝑀⁄  of the 
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amplitude 𝑆  measured by s-SNOM. The proportionality coefficient 𝑀  is unknown but 

constant for a data set obtained for the same experimental conditions (IR frequency, 

illumination intensity, same tip, etc.). The ratio 𝑙 = 𝐼𝑝/𝑃0, which has the units of length, 

defines the scattering length. This parameter is appropriate for an extended line-like emitter, 

such as an hBN edge. However, it is not suitable for a small, point-like emitter. As 

discussed above, such a point emitter generates waves whose intensity would decrease with 

distance 𝑟 (measured from its center) even in the absence of damping. In the latter case, it 

is the total power 𝑃𝑝 = 2𝜋𝑟𝐼𝑝(𝑟) of the wave that remains constant. The proper measure 

of efficiency is therefore the ratio 𝐴 = 𝑃𝑝 𝑃0⁄ , the scattering cross-section, which has the 

units of area. The formula for the s-SNOM amplitude, which applies to both types of 

emitters and includes the phase of the wave and also unavoidable damping can be written 

as 

𝑆(𝑟) = √𝑃0𝑀 𝐺(𝑟)𝑒𝑖(𝑞𝑝𝑟 + 𝜙),                                          (5.1) 

where qp and  are the complex momentum and a phase shift, respectively. The “geometric” 

factor is 𝐺(𝑟) = √𝑙 for a line-like emitter and 𝐺(𝑟) = √𝐴 2𝜋𝑟⁄  for a point-like one. Note 

that a metallic disk of radius 𝑟𝑑𝑖𝑠𝑘 ≫ 𝜆𝑝  is a type of emitter that can be considered a line-

like near its edge, at 𝑟 − 𝑟𝑑𝑖𝑠𝑘 ≪ 𝑟𝑑𝑖𝑠𝑘, and a point-like at 𝑟 ≫ 𝑟𝑑𝑖𝑠𝑘. Accordingly, having 

determined its cross-section, one can also calculate the scattering length of the disk edge 

via 𝑙𝑑𝑖𝑠𝑘 = 𝐴 2𝜋𝑟𝑑𝑖𝑠𝑘⁄ . For polaritons launched by the tip located a distance 𝑥 from the 

edge, one should substitute 2𝑥, the separation between the tip and its image [7,8,21] upon 

reflection, for 𝑟 in Eq. (5.1). 
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We have determined 𝐴 and 𝑙 by fitting the s-SNOM traces in Fig. 5.2(b) to Eq. (5.1). 

The fits are shown by the black dashed curves. Note that all of them have the same polariton 

damping factor  = Im qp / Re qp = 0.055 as in our previous studies [19,21]. For the sake of 

comparing relative efficiency, we choose m to be the unit of length, omit the common 

factor √𝑃0𝑀  in Eq. (5.1), and normalize 𝑆(𝑟) in suitable arbitrary units. From thus 

defined fitting procedure, we have obtained  𝐴 = 61 for the s-SNOM tip, 𝑙 = 0.56 for the 

hBN edge, 𝐴 = 14 and 𝑙 = 1.4 for the 1.5m-radius Au disk (Table 5.1). We conclude that 

in terms of the polariton emission efficiency, the tip is superior to the disk treated as a 

point-like emitter; while as a line-like emitter disk is more efficient than the edge. We 

attribute the higher emission efficiency of the metallic objects (the tip and the disk) to their 

ability to concentrate electric field [36]. The hBN edge lacks this ability, which explains 

its comparatively low photon to polariton conversion efficiency. The higher emission 

efficiency of the tip compared to the disk indicates the former has a stronger coupling to 

high-qp polaritons [7,8,15-17,21]. Note that one possible way to calibrate the scattering 

parameters A and l in absolute units is by comparison to some standard emitters for which 

reliable theoretical calculations are possible. The hBN edge could be a candidate for such 

a standard emitter provided a better understanding of the field singularities at the sharp 

corners is developed, see Fig. 5.1(a) (inset) and Methods. This can be a subject of future 

work. 

Impurities and defects on the sample surface (introduced unintentionally during 

sample fabrication, methods) can play the role of polariton emitters as well. As shown in 

Fig. 5.3(a), surface impurities (marked with magenta asterisks) act as point-like emitters 
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that emit circular polariton waves, whereas a surface protrusion (green arrow) act as a line-

like emitter. The latter one emit plane waves that do not spread much as they travel. As a 

result, the amplitude of these waves decays slowly and remains discernible in almost the 

entire field of view in Fig. 5.3. 

 

5.4 Conclusion and Outlook 

In summary, the imaging data compiled in Figs. 5.1-5.3 demonstrate a variety of 

polariton emitters in hBN of different emission efficiency. Although essentially any 

topographic feature can act as an emitter, their efficiency is inferior to that of a large 

metalized tip. Note that the emitters studied in this work may also be employed for 

scattering polaritons into optical photons detectable by conventional means. The 

methodology presented in this work may be readily extended to collective modes [2-4] in 

other vdW materials including graphene [34], transition metal dichalcogenides, black 

phosphorus, and topological insulators. Our results along with the recent work on grating 

polaritonic couplers [37] present the initial steps towards developing high-efficiency 

polariton emitters and detectors for diverse nanophotonics applications. 

 

5.5 Methods 

5.5.1 Experimental setup 

The nano-imaging experiments described in the main text were performed at UCSD 

using a commercial s-SNOM (www.neaspec.com). The s-SNOM is based on a tapping-

http://www.neaspec.com/
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mode AFM illuminated by monochromatic Quantum Cascade Lasers (QCLs) 

(www.daylightsolutions.com). These lasers cover a frequency range of 900 2300 cm-1 in 

the mid-IR. The nanoscale near-field images were registered by a pseudo-heterodyne 

interferometric detection module with a AFM tapping frequency and amplitude around 280 

kHz and 70 nm respectively. In order to obtain the background-free images, the s-SNOM 

output signal used in this work is the scattering amplitude s() demodulated at the 3rd 

harmonics of the tapping frequency. 

 

5.5.2 Sample fabrication 

Our hBN crystals were exfoliated from bulk samples synthesized with high-

pressure techniques and then transferred onto Si wafers with a 300-nm-thick SiO2 layer. 

The Au patterns were fabricated on the hBN crystals by electron beam lithography. 

 

5.5.3 Simulation of edge-emitted hyperbolic phonon polariton 

fringes 

The numerical simulations shown in Fig. 5.1(a) (inset) were done within the quasi-

static approximation. In this approach the amplitude of the scalar potential Φ(x, z) in the 

system is assumed to satisfy the anisotropic Laplace equation: ∂x(ε
x∂xΦ) + ∂z(ε

z∂zΦ) = 0, 

where the principal values (εx, εz) of the permittivity tensor are functions of frequency . 

To produce the graphic shown in the inset of Fig. 5.1(a) we used the following parameters: 

(1, 1) for vacuum; (-0.5620 + 0.0678i, 2.7782 + 0.0006i) for hBN, and (1.4646 + 0.0104i, 

1.4646 + 0.0104i) for SiO2 substrate, which are representative of frequency  = 1587 cm-1. 

http://www.daylightsolutions.com/
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The 300-nm tall and 2050-nm wide simulation domain surrounded a 100-nm thick hBN 

slab. At the outer boundary of the domain the Φ = -x was imposed to model a uniform unit 

external field in the x-direction. This boundary-value problem was solved using MATLAB 

PDE Toolbox (MATLAB, Inc., Natick, MA; Release 2012b). Shown in Fig. 1a (inset) are 

the results for the absolute value of the electric field |E| = [(∂xΦ)2 + (∂zΦ)2]1/2. As one can 

see, near the corners of the hBN slab, the calculated field distribution exhibits a structure 

of internal criss-crossing rays, which produce “hot lines” on the surface of the slab. Further 

away from the edge, the calculated field distribution morphs into a gradually decaying 

sinusoidal wave. The internal polariton rays and the “hot lines” they produce have the same 

interpretation as the “hot rings” predicted in simulations and subsequently observed on 

sidewalls of hBN nanocones [15] and on the top surfaces of hBN slabs deposited on 

metallic disks [19]. Such high-intensity lines are the beats produced by coherent 

superpositions of multiple guided waves. As detailed in our previous work [15,19,21], the 

guided waves of a slab are discrete eigenmodes characterized by the in-plane momenta 

kl  (l  ) tan  / d, where l  … is the mode number,    is the boundary condition 

dependent phase shift, and d is the slab thickness. Accordingly, the beats pattern has the 

periodicity 2d tanp / 4 while the parameter tan 𝜃 = 𝑖 √𝜀𝑧 √𝜀𝑥⁄   has the meaning of 

the slope of the polariton rays with respect to the z-axis. Unfortunately, the region where 

the beats exist is very narrow and we could not probe it with our experimental resolution. 

On the other hand, the sinusoidal standing waves we have imaged can be identified with 

the principal l   guided waves of wavelength p  k0. 
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5.6 Supplementary Information 

5.6.1 Orientation-dependent nano-imaging data 

The behavior of p-periodic fringes (Fig. 5.1(b)) near two different edges ( and ) 

of the tapered hBN crystal supports their attribution to polaritons emitted from the hBN 

edges. Indeed, these two facets of the hBN crystal are subject to different illumination 

conditions. As shown in Fig. 5.1(a), IR illumination of the  edge is partially blocked by 

the atomic force microscope (AFM) cantilever (Fig. 5.1(a)), whereas the  edge is 

unobscured. These unequal conditions result in different amplitudes for the edge-emitted 

polaritons, apparent from the scattering-type scanning near-field optical microscopy (s-

SNOM) image (Fig. 5.1(b)) and the corresponding line profiles (Fig. 5.1(c)). In the interior 

of hBN (Fig. 5.1(b)), polaritons emitted by the  edge (blue solid line) are prominent while 

those from the  edge (red dashed line) are much weaker (see also the line traces in the 

inset of Fig. 5.1(c), top). We have repeated this experiment with the hBN crystal rotated 

laterally by /2, in which case the two edges experience similar IR illumination conditions 

(Fig. 5.1(d), IR beam and s-SNOM tip are the same as Figs. 5.1(a)-(b)). In this latter 

geometry (Fig. 5.1(d)), the p fringes emitted by  and  edges exhibit nearly equal 

amplitude in the interior of hBN. The s-SNOM imaging data obtained from an hBN disk 

(Fig. 5.4) provides further evidence for the impact of AFM cantilever shadowing on 

polariton amplitudes. The p-periodic fringes propagating from the top-right part of the 

disk appear weaker compared with those elsewhere due to the lower incident field in the 

AFM cantilever shadow. 
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5.6.2 Polariton fringe periods in hBN and in graphene 

It is instructive to compare the phenomenology of the hyperbolic phonon polariton 

(HP2) guided waves we have observed in hBN with that of surface plasmon polaritons 

(SP2s) waves in graphene. The first generation of s-SNOM experiments were carried out 

with modest-quality graphene [7,8]. The imaging data obtained by these experiments were 

consistent with the notion of the tip-launched p/2-period fringes, with p being the SP2 

wavelength. More recent studies of high-quality encapsulated graphene [32,38] have 

revealed fringes with the double-peak structure, implying a coexistence of p/2-periodic 

oscillations with p-period ones. Unlike the p-period polariton fringes observed for hBN, 

those observed in graphene exhibit virtually no dependence on the in-plane polarization of 

the incident field [32,38]. This latter finding indicates that the direct conversion of light 

into SP2 at the graphene edge is not very important. In Ref. [38], Supplementary material, 

it was suggested that these longer-period fringes arise instead due to the long-range 

Coulomb interaction between the tip and the excess charge density induced near the edge 

by the tip-launched plasmon wave. Let us briefly review this argument, which was recently 

rediscovered in Ref. [39]. Let x be the coordinate along the normal to the edge passing 

through the tip (such as the blue line in Fig. 5.1(b)) with the origin at the edge at x  0. Far 

enough from the edge (s-SNOM tip position: x = L) the reflected wave can be described 

by this method of images, as a point source at x L sending out a circular wave:  

𝑠(𝑥) ∝
1

√𝑥+𝐿
𝑒𝑖𝑘𝑝(𝑥+𝐿)+𝑖φ.     (5.2) 
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Here  is the reflection phase shift which depends on the boundary conditions. At the 

tip position x  L, the phase of the reflected wave contains the term kpL, and so the 

superposition of the tip-launched (purple solid arrow) and edge-reflected (purple dashed 

arrow) waves yields the interference fringes of period p. Whereas Eq. (5.3) describes 

the propagating part of the reflected wave, there should also be an evanescent part with the 

large-x asymptotic behavior [38] 

𝑠(𝑥) ∝
1

𝑥𝑎
𝑒𝑖𝑘𝑝𝐿 ,     (5.3) 

where a > 0 is some exponent [38]. Qualitatively, one can think of the evanescent wave as 

composed of non-resonant polariton modes of momenta k x << kp. Note that the phase 

advance of kpL is present in both Eqs. (5.2) and (5.3) because the incident wave has to 

travel the distance L from the tip before it reaches the edge. However, there is no additional 

phase accumulation for the “return trip” as the evanescent wave does not oscillate. Hence, 

the resultant fringes have the period of p, just like the polaritons directly scattered by the 

edge in the absence of any tip. In principle, this alternative mechanism should apply to any 

polariton wave governed by Coulomb interaction, including the HP2s in hBN. 

 One way to discriminate between the two mechanisms of p-fringes is to check the 

dependence of the fringe amplitude on the incident IR beam polarization. The long-range 

edge-tip interaction should be insensitive to in-plane component of the polarization 

whereas the edge-launched wave should vanish if this component is parallel to the edge. 

As we discussed in Section 1, in our experiment the beam-sample orientation dependence 

of fringes is significant. This suggests that in our hBN samples, unlike in graphene, edge-
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emission mechanism dominates over the long-range edge-tip interaction one. The reason 

for this different behavior warrants further investigation. 
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Figure 5.1: Polaritons emitted by the s-SNOM tip and hBN edges. (a), The experimental 

schematic. The s-SNOM tip and a tapered hBN crystal are illuminated by the weakly 

focused IR beam from a Quantum Cascade Laser (QCL). We collect the back-scattered 

near-field signal (green arrow). Inset, the cross-section of the tip-emitted (magenta arrows) 

and edge-emitted (cyan arrow) polaritons registered by the tip. Color map, the simulation 

of the edge-emitted polariton fringes (see Methods). (b), The near-field amplitude image 

of the hBN crystal in (a). (c), Polariton line profiles taken perpendicular to the  edge (blue 

solid line) and  edge (red dashed line) in (b). Insets: top, detailed view of the line profiles 

when L > 2m. Bottom, the Fourier Transform spectra of the line profiles. (d), Near-field 

amplitude image of the same hBN crystal after a clockwise rotation of /2 from (b). White 

dashed lines track the hBN edges. The hBN thickness: 117 nm. IR frequency:  = 1530cm-

1. Scale bar: 2m.  
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Figure 5.2: Polariton emission efficiency. (a), Near-field amplitude image of the hBN 

crystal with artificially fabricated Au disks on top. (b), Profiles of polariton fringes as a 

function of the distance L from the edge of an emitter. The green and blue curves are 

extracted by averaging a series of linear cuts near the dotted lines in (a). The black and red 

curves are obtained by the FT analysis of the green curve. The dashed curves are the fits to 

Eq. (5.1). (c), Near-field amplitude image of Au disks in the interior of the hBN crystal. 

(d), The simulation of s-SNOM image in (c). White and magenta dashed lines track the 

edges of the hBN and Au disks. The hBN thickness: 117 nm. IR frequency:  = 1530cm-1. 

Scale bar: 2m.  
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Table 5.1: Relative scattering cross-sections and/or scattering lengths for three types of 

emitters studied. 
 

  

Scattering 

parameter 

s-SNOM tip hBN edge Au disk 

𝒓𝐝𝐢𝐬𝐤 = 𝟏. 𝟓𝝁𝐦 

l  0.56 1.4 

A 61  14 
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Figure 5.3: Near-field amplitude image of the hBN crystal with impurities (marked with 

magenta asterisks) and protrusion (green arrow) defect on the surface. The hBN thickness: 

253 nm. IR frequency:  = 1550cm-1. Scale bar: 2m.  
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Figure 5.4: Polaritons in hBN disks. Near-field amplitude image of the artificially etched 

hBN disk. The white dashed line tracks the edge of the hBN crystal. The hBN thickness: 

151 nm. Infrared frequency:  = 1519 cm-1. Scale bar: 2 m.  
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