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Abstract 

 

Association genetics of drought tolerance in ponderosa pine (Pinus ponderosa) 

 

by 

 

Mengjun Shu 

 

Doctor of Philosophy in Environmental Systems 

 

University of California, Merced 

2020 

 

Professor Stephen C. Hart, Chair 

Professor Emily V. Moran, Research Advisor 

 

Drought stress is a major cause of tree mortality in Mediterranean coniferous 

forests. This study aims to investigate the genetics of drought tolerance in ponderosa pine 

(Pinus ponderosa), a highly valuable species in the western United States. Genotype-to-

environment (G2E) association investigates the statistical association between genetic 

variation at individual loci and the environment, while genotype-to-phenotype (G2P) 

association identifies loci linked to a particular phenotype by correlating genotypes at 

SNPs with the variation in certain traits. By combining G2E and G2P association genetics, 

this study can identify both the loci and traits that may explain variation in drought 

tolerance in this pine species. Single Nucleotide Polymorphism (SNP) markers have 

rapidly gained popularity due to their abundance in most genomes and their amenability 

to high-throughput genotyping techniques. Genotyping-by-sequencing (GBS) has been 

demonstrated to be a robust and cost-effective genotyping method. We first compared the 

performance of four GBS bioinformatics pipelines, two of which require a reference 

genome (TASSEL-GBS V2 and Stacks), two of which are de novo pipelines (UNEAK 

and Stacks), on this large-genome non-model organism. Stacks with a reference genome 

produced the highest number of SNPs with lowest proportion of paralogs. Over 4 million 

SNPs were identified with 223 ponderosa pine individuals using this method and the 

reference genome of loblolly pine (Pinus taeda). Then I ran a G2E analysis with these 

SNPs and five chosen climatic variables using LFMM2, which controls for the effects of 

demographic processes and population structure on the distribution of genetic variation. I 

found 213 SNPs strongly associated with mean maximum temperature of summer, 335 

with mean minimum temperature of winter, 1798 with April 1st snow pack, and 120 SNPs 

with mean climatic water deficit. Protein functions linked to associated SNPs include 

ubiquitination, the abscisic acid (ABA) signaling pathway, cell division or growth of 



 

 

 xiv 

roots or shoots, cell wall organization, seed dormancy. The G2P analysis was carried out 

based on greenhouse experiment data. Seeds from 48 genotyped mother trees were 

planted in both dry and wet treatments. Eight phenotypic traits were measured during or 

after the greenhouse experiment. Six were drought-responsive, including root length, 

root-shoot dry mass ratio, stomata density on adaxial side, and number of stomatal rows 

on abaxial side (all higher in dry treatment), as well as shoot weight and height growth 

(lower). I found 153 SNPs strongly associated with root length, 80 with shoot weight, 

145 with height growth, 42 with adaxial stomatal density, 85 with abaxial stomatal rows, 

and 1530 with root-to-shoot ratio. The identified SNPs reside in genes with a wide 

variety of functions, including ubiquitination, abscisic acid (ABA) signaling pathway, 

cell division or growth of roots or shoots, cell wall organization, which overlap with most 

of the identified protein functions in the G2E analysis. Potentially, future studies can 

develop molecular tools based on the associated genetic markers to assist breeders and 

gene resource managers in developing and managing adapted populations. 
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Chapter 1: 

Introduction 

 

1.1 Climate change and forest health 

High rates of tree mortality caused by drought are occurring in many regions of 

the world (Loarie et al. 2009, Pereira et al. 2010, Allen et al. 2010). Global climate 

change over the next century is predicted to result in higher evaporative demand, 

changing amount and type of precipitation, and earlier snowmelt, which will result in 

warmer, longer, and more frequent drought in already arid and semi-arid environments 

(Ryan 2011, IPCC 2014, Pachauri et al. 2014). Risks from hot drought are particularly 

relevant to California, the Mediterranean climate of which is characterized by winter 

precipitation and a hot dry summer (Royce and Barbour 2001, Giorgi and Lionello 2008). 

For example, the California drought of 2012-2016 was the most severe drought in the 

past millennium, leading to an estimated 130 million standing dead trees in the Sierra 

Nevada and negatively impacting the sustainability of conifer forests (Williams et al. 

2015, Schultz 2017, Fettig et al. 2019).  

Given the projected increases in temperature due to climate change, California’s 

2012–2016 drought may represent an increasingly common condition in which warmer 

temperatures coincide with periodically occurring dry years (Berg and Hall 2015). Such 

conditions would lead to increased water stress in Mediterranean trees species under 

changing climate (Allen et al. 2010, Williams et al. 2015). Drought affects tree responses 

from the molecular level to the forest stand level, and is a major cause of tree mortality 

(Newton et al. 1991, van Mantgem et al. 2009, Allen et al. 2010, Hamanishi and 

Campbell 2011, Goulden and Bales 2014). Due to their long life span and lack of 

mobility, trees are especially susceptible to the effects of climate. Forest trees play a 

critical role in terrestrial ecosystems, offering major ecological benefits in terms of 

carbon fixation, soil retention, and wildlife habitats. Understanding how forest trees 

respond to the drought is critical for forest management and sustainability. 

 

1.2 Drought tolerance and the genes underlying it 

The ability of a tree to survive or grow under dry conditions is defined as drought 

tolerance. There are three categories of drought tolerance. Drought avoidance strategies 

reduce exposure to drought stress by adjusting physiological traits, such as by growing 

deep roots or controlling stomatal openings (McDowell et al. 2008). Drought resistance is 

the ability of a tree to resist growth loss due to drought (Montwé et al. 2016), while 

drought resilience quantifies how quickly a tree can recover to normal growth when 

conditions improve (Lloret et al. 2011, Eilmann and Rigling 2012).  

A long history of studies in forestry have clearly demonstrated the existence of 

local adaptation in tree populations (Langlet 1971, Ying and Liang 1994, Kitzmiller 2005, 

Wright 2007). However, locally adapted tree populations with long life cycles may 

become maladapted if climate-induced environmental shifts outpace range shifts, plastic 

responses, or evolutionary adaptation (Aitken et al. 2008, Anderson et al. 2012, Alberto 

et al. 2013). Adaptive genetic variation, which represents adaptation within species and 
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populations via changes in allele frequencies or genotypic recombination, is therefore 

important for local species persistence under environmental change (Bell and Gonzalez 

2009). This intraspecific genetic variation represents the potential for further adaptive 

change in response to new selective challenges such as the global warming (Rice and 

Emery 2003). Thus, understanding the adaptive genetic variation related to the hot 

drought may help us better predict and manage forests in a changing climate (Neale and 

Kremer 2011, Oney et al. 2013). 

Many researchers have investigated drought-tolerant physiological traits of 

conifers trees (Teskey et al. 1987, Cregg and Zhang 2001, McDowell et al. 2008, 

McDowell 2011). Multiple traits can affect the drought responses of conifer trees, such as 

root-to-shoot ratio, root biomass and length, specific leaf area (SLA, the ratio of leaf area 

to dry mass), stomatal conductance, and water use efficiency (WUE, ratio between CO2 

assimilation and transpiration; Picon et al. 1996, Cregg and Zhang 2001, de Miguel et al. 

2012, Olmo et al. 2014, Moran et al. 2017). Stomatal regulation and structural 

adjustments in leaf area minimize water loss, while deep root systems maximize the 

potential for water uptake. However, which traits are most important for drought 

tolerance in which species or circumstances remains largely unknown. 

 Most recent research on drought stress has focused on aboveground tree parts 

(McDowell et al. 2008, Ryan 2011, Hamanishi and Campbell 2011), while belowground 

traits are largely missing due to the difficulties in observing and studying roots 

(McDowell et al. 2008, Hamanishi and Campbell 2011, Brunner et al. 2015). For adult 

trees in the field, retrieval of all roots, or measurement of their maximum length, is a 

challenge (Robinson 2004). Tree roots are not only responsible for water uptake, but also 

act as sensors for water-deficit conditions, sending signals to shoots (Brunner and 

Godbold 2007, Hamanishi and Campbell 2011). Studies have shown the critical role of 

roots in drought responses of both adult trees and seedlings. For example, under severe 

drought conditions, studies showed that trees in the field tend to increase root-to-shoot 

ratios and root biomass at the expense of stems (Mokany et al. 2006, Poorter et al. 2012). 

Seedlings of trees also increase allocation of biomass to roots to augment water 

acquisition during drought (Markesteijn and Poorter 2009). This allocation allows the 

plants to increase water uptake, while reducing potential water loss from transpiration 

that can occur when more leaves are produced. However, extended drought can lead to 

root die-back, and reduced capability for water uptake (Eldhuset et al. 2013, Plaut et al. 

2013). Thus, incorporating the traits of roots is necessary to understand the drought 

tolerance of forest trees.  

Multiple provenance studies have identified patterns consistent with local 

adaptation to drought (Moran et al. 2017). For example, trees from drier climates often 

exhibit slower height or needle growth (de la Mata et al. 2014), less aboveground 

biomass or a shorter growing season (Kerr et al. 2015). Moreover, seedlings from dry 

environments often exhibit more root growth, higher drought survival (Cregg and Zhang 

2001, Kolb et al. 2016), and higher WUE (Cregg et al. 2000, Voltas et al. 2008). Genetic 

differences are likely to play an important role in geographical variation in these drought-

tolerance traits (McDowell et al. 2008). However, the genes underlying these drought-

tolerance traits are mostly unknown. Several studies have investigated changes in gene 

expression in drought-stressed conifer seedlings (e.g., Ralph et al. 2006, Hamanishi and 
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Campbell 2011). Some genes may relate to drought tolerance, such as those involved in 

late-embryogenesis-abundant (LEA) proteins, abscissic acid (ABA) signaling pathways, 

and carbohydrate and lipid metabolism (Ralph et al. 2006, Hamanishi and Campbell 

2011). However, most of the gene expression changes return to normal after re-watering 

the drought-stressed seedlings. Such changes are responsible for plastic environmental 

responses, rather than locally adaptive differences in mean traits (Bräutigam et al. 2013). 

Some fundamental questions are still largely unresolved, including the nature and number 

of genes involved in adaptation to drought (Barton and Keightley 2002, Prunier et al. 

2011). 

 

1.3 Focal species 

 I chose P. ponderosa as the focal species for four reasons. First, it is a major 

source of timber that covers 27 million acres in western North America (Schubert 1974, 

Oliver and Ryker 1990), and provides important ecosystem services (e.g., habitat for 

wildlife) (Burns and Honkala 1990). Second, this species tolerates a wide range of 

temperatures and precipitation (Conkle and Critchfield 1988), and is regarded as one of 

the most drought-tolerant trees in North America (Kolb and Robberecht 1996). Third, 

genetic resources are fairly well developed in conifers compared to other woody plants 

(Pavy et al. 2016), meaning that this study can use the available methods of sequencing 

and data analysis, as well as the available reference genome of loblolly pine (Zimin et al. 

2014). Despite the importance of P. ponderosa, no previous study has investigated the 

genetic basis of drought tolerance in this species. 

 In the 1970s, the Forest Service's Pacific Southwest Regional Genetic Resources 

Program planted clones of 302 wild ponderosa pine genotypes in Chico, California. They 

came from diverse climate conditions in the central portion of California's Sierra Nevada 

mountains and are now reproductively mature, thus presenting an excellent resource for 

genetic studies (Figure 1.1). For this study, I chose 223 individual P. ponderosa 

genotypes from the orchard collection. The source locations of these 223 genotypes are 

shown in Figure 1.2. These locations likely fall within just one of the several genetic 

subdivisions previously identified in ponderosa pine (Conkle and Critchfield 1988, 

Willyard et al. 2009, Potter et al. 2015).  

 

1.4 Genetic association techniques 

Recently, there has been an increase in the use of genetic association techniques 

to identify genes underlying quantitative traits in forest trees (Eckert et al. 2010a, Riordan 

et al. 2016, Di Pierro et al. 2017). A quantitative trait is a phenotype that exhibits 

continuous variation due to the cumulative actions of many genes. In an association 

analysis, regression is used to identify variable genetic markers statistically associated 

with either a phenotype of interest or an environment. In species with large genomes 

and/or low linkage disequilibrium like conifers, large number of markers distributed over 

the genome are required in order to identify all or most of the important genes 

(Schlötterer 2004). Single nucleotide polymorphisms (SNPs), meaning sites where 

individual sequences differ by a single base pair, are the most abundant type of 

polymorphism and are often used as genetic markers in association studies (Schlötterer 

2004). With the dropping cost of sequencing, approaches that generate thousands of 
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SNPs are increasingly being used. For instance, Genotyping-by-Sequencing (GBS), 

which involves the use of restriction enzymes to cut and sequence a small subset of the 

genome (Elshire et al. 2011, Andrews et al. 2016), can produce tens of thousands of 

SNPs with high coverage (Chen et al. 2013a, Pan et al. 2015). In addition, GBS can 

genotype tree species with or without the availability of a reference genome (Chen et al. 

2013a). Thus, GBS is an efficient and affordable approach to obtain SNP data. 

Uncovering the genetic basis of adaptation hinges on the ability to detect loci 

under selection. There are two types of genetic association techniques. Genotype-to-

environment (G2E) association investigates the statistical association between genetic 

variation at individual loci and the environment, which can be useful in the search for 

genes responsible for local adaptation (Eckert et al. 2010b, 2010a). For example, an 

association between a SNP and aridity may indicate that the gene or its regulatory region 

affects trees performance in dry versus wet environments. However, G2E studies do not 

reveal how SNPs are connected to phenotypic differences, and thus what traits are under 

selection in a given environment. This is where Genotype-to-Phenotype (G2P) 

association studies are useful. G2P association identifies loci linked to a particular 

phenotype by correlating genotypes at SNPs with the variation in certain traits (Eckert et 

al. 2009, Holliday et al. 2010). To eliminate the effects of environment on phenotypes, 

traits must be measured in a common environment, such as a greenhouse. However, G2P 

association study does not reveal how or if the trait affects the fitness of trees in the field. 

G2E and G2P association are thus complementary (Figure 1.3).  Although the 

combination of these two approaches can help to identify genes and traits under selection 

in natural settings, very few studies have combined them (Eckert et al. 2009, 2015, 

Moran et al. 2017). By combining G2E and G2P association genetics, this study can 

identify both the loci and traits under selection of ponderosa pine in nature.  

 

1.5 Objectives of this study 

The main purpose of this study is to understand the adaptive genetic variation as 

well as the genetic basis of adaptive phenotypes of a non-model tree species, P. 

ponderosa. Three types of data were necessary to conduct this research. First, I obtained 

the raw genetic data from GBS. Second, I obtained a 30-year (1951-1980) averages of 

climate data from the 270 m resolution California Basin Characterization Model (BCM) 

(Flint et al. 2013). Third, I obtained the phenotypic data by conducting a greenhouse 

experiment.  

In Chapter 2, I present a comparison of multiple pipelines for SNP calling in pine. 

Genotyping and identifying SNPs is a challenge in most conifer species due to their 

extremely large (19-32 Gb) and highly repetitive genomes (Birol et al. 2013, Zimin et al. 

2014, Neale et al. 2014, Stevens et al. 2016). Before I ran GBS, it was beneficial to 

determine which enzyme produces the most fragments within the desired size range (100-

400 bp). For optimization of the GBS protocol, 1000 ng samples of P. ponderosa 

genomic DNA were digested separately with ApeKI, PstI, and EcoT22I. ApeKI yielded a 

high smooth curve of fragment sizes between 150 and 500, which indicates good 

performance for GBS. GBS has been tested for conifers on small numbers of individuals 

(<10) and has been found produce tens of thousands of SNPs with high coverage (Chen 

et al. 2013b, Pan et al. 2015). However, the use of GBS on conifers species is still largely 
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limited by the difficulty of genome-wide SNP calling from the massively parallel short-

read sequences (Glenn 2011, Goto et al. 2017). Even though GBS only sequences a 

fraction of the genome, conifer genomes are so large and repetitive the datasets produced 

still present a computational challenge. I compared four GBS bioinformatics pipelines, 

two of which require a reference genome (TASSEL-GBS V2 and Stacks), two of which 

are de novo pipelines (UNEAK and Stacks). I used Illumina sequence data from 94 

ponderosa pines, with loblolly pine as the reference genome. The number of SNPs called 

was much lower without a reference genome (62 -196 thousand vs. 2.1 - 2.7 million 

SNPs). UNEAK was the fastest overall and identified more SNPs than Stacks de novo. 

Stacks with a reference genome produced the highest number of SNPs with lowest 

proportion of paralogs, while SNPs identified by TASSEL-GBS V2 exhibited the highest 

heterozygosity, minor allele frequency, and proportion of paralogs. More SNPs were 

uniquely identified by Stacks than TASSEL, though there was high overlap between 

methods. Researchers studying other conifer species should be prepared to analyze very 

large numbers of SNPs, and to consider the benefits and limitations of different pipelines.  

Chapter 3 focuses on the adaptive genetic variation of P. ponderosa by running 

G2E association analysis using the SNPs produced from the Stacks reference-based 

pipeline, as well as gene annotation of the significantly environmentally associated SNPs. 

The Stacks reference-based pipeline identified 4,155,896 SNPs (Chapter 2). I selected 

five variables for G2E analysis with generally low-to-moderate correlations between 

them (Figure 1.4). These five variables include: mean climatic water deficit (CWD, a 

measure of evaporative demand exceeding soil moisture); mean minimum temperature of 

winter (TMIN), calculated as the average minimum temperature over the coldest months 

(December–February); mean maximum temperature of summer (TMAX), calculated as 

the average maximum temperature over the hottest months (June–August); mean monthly 

precipitation of winter (PPTW), calculated as the average monthly precipitation over the 

coldest months (December–February); and April 1st snow pack (PCK4). There are 

several models available for G2E, such as BAYENV (Günther and Coop 2013), 

BAYPASS (Gautier 2015), BAYESCENV (Villemereuil and Gaggiotti 2015), and latent 

factor mixed model (LFMM; Frichot et al. 2013, Frichot and François 2015). These 

models can effectively account for population structure, but can be computationally 

intensive and slow with Markov chain Monte Carlo algorithms or Bayesian bootstrap 

methods. To conduct G2E analysis with the 4,155,896 SNPs and five chosen climatic 

variables, we chose LFMM2, which was developed for G2E association and has been 

shown to outperform other similar approaches with several orders-of-magnitude faster 

computing (Caye et al. 2019). I found 213 SNPs strongly associated with mean maximum 

temperature of summer (TMAX), 335 with mean minimum temperature of winter 

(TMIN), 1798 with April 1st snow pack (PCK4), and 120 SNPs with mean climatic water 

deficit (CWD), but no SNP with mean monthly precipitation of winter (PPTW). Different 

protein functions have been annotated underlying the genetic associations, including 

ubiquitination, abscisic acid (ABA) signaling pathway, cell division or growth of roots or 

shoots, cell wall organization, and seed dormancy. 

Chapter 4 focuses on the adaptive phenotype of P. ponderosa by running the G2P 

association analysis as well as gene annotation of the significantly phenotypically 

associated SNPs. To obtain the phenotypic data, I conducted a greenhouse experiment 
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with seeds from 48 already genotyped mother trees. In the greenhouse experiment, 10 

seedlings for each mother trees were planted in both dry and wet treatment. Eight 

phenotypic traits were measured during or after the greenhouse experiment. Based on 

ANOVA analysis with these phenotypic data from wet and dry treatments while 

accounting for block (planting box-level) differences, six drought responsive traits were 

identified, including: treatment, RL (root length), SW (shoot weight), R2S (root-shoot 

dry mass ratio), SDAD (stomatal density on adaxial side), NRAB (number of stomatal 

rows on abaxial side), and GR (growth). In the drought treatment, seedlings present larger 

RL, R2S, SDAD, NRAB, and lower GR and SW. Then, I ran a G2P analysis with 

previous genotype (chapter 3) and these 6 traits using LFMM2. I found 153 SNPs 

strongly associated with RL, 80 with SW, 145 with GR, 42 with SDAD, 85 with NRAB, 

and 1530 with R2S. The identified SNPs reside in genes with a wide variety of functions, 

including ubiquitination, abscisic acid (ABA) signaling pathway, cell division or growth 

of roots or shoots, and cell wall organization. Potentially, the identified genes and alleles 

are valuable resources for pine trees breeding through marker assisted selection and 

genomic selection, specifically under the rapid changing climate scenarios. In addition, 

roots play a critical role in both the drought responsive traits and the function of 

correlated genes in our study. Future studies may need to incorporate the root traits to 

understand the response of pine trees to changing climate. 

 

1.6 Significance 

Understanding the genetic basis of local adaptation to climate in the context of 

global change poses one of the greatest challenges of this century (Manel et al. 2010). 

Some studies have begun to explore the molecular basis of phenotypic traits associated 

with local adaptation in model species with available whole genome sequences (Umina et 

al. 2005, Begun et al. 2007). However, for most non-model species, the genetic basis of 

adaptation is unknown (Eckert et al. 2009).   

This dissertation evaluated how different traits contribute to overall drought 

tolerance in seedlings, identified genetic loci associated with the measured traits and 

individual growth and survival, and identified what genes were responsible for local 

adaptation. This dissertation focused on multiple drought response traits, several climate 

variables, and a large number of SNPs, which can help to identify genes that have 

variation associated with both environmental gradients, drought tolerance traits, or both. 

This work has direct implications for forest management and conservation, such as 

identifying seed sources with drought-tolerance related genes for restoration and 

plantations. Such seedlings may have a higher survival and growth rate compared to other 

seed sources (Goodrich et al. 2016). Also, this association genetics study in ponderosa 

pine greatly enhances our understanding of the adaptation of other conifers and plants 

under changing climate. In addition, this study provides clues for what genes or traits 

might be important for drought tolerance in other species. 
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Figure 1.1 CWD (mm) and July maximum temperature (C) for 302 P. ponderosa in the 

Chico orchard. The orange dots represent the 223 genotypes from which we collected 

needles. The blue dots represent all the 302 genotypes in the Chico orchard 
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Figure 1.2 Geographic distribution of the 223 samples. The black dots represent original 

genotype source locations. 
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Figure 1.3 Genetic association techniques: type of data involved and types of association. 

G2E represents genotype-to-environment association. G2P represents genotype-to-

phenotype association.  
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Figure 1.4 PCA analysis of 30-year averages (1951-1980) of all the 18 environmental 

variables from BCM model. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 18 

 

 

Chapter 2: 

Testing pipelines for genome-wide SNP calling from Genotyping-By-Sequencing 

(GBS) data for Pinus ponderosa 

 

2.0 Abstract 

 Single Nucleotide Polymorphism (SNP) markers have rapidly gained popularity 

due to their abundance in most genomes and their amenability to high-throughput 

genotyping techniques. Genotyping-by-sequencing (GBS) has been demonstrated to be a 

robust and cost-effective genotyping method. While previous studies have shown that 

alignment of the short-read fragments to a genome sequence results in better SNP calling 

than de novo approaches, only a few tree species - and few conifers in particular - have an 

annotated sequence. While these could be used to align sequence fragments from related 

species, sequence divergence might result in SNPs being missed if they are in fragments 

that do not align properly. Producing a new annotated genome sequence for every conifer 

species before SNP analyses are conducted is still prohibitive, as many conifer genomes 

are huge (>19 GB) and include a large proportion of repeat sequences, making assembly 

difficult. Here we compare four GBS bioinformatics pipelines, and two of which require 

a reference genome (TASSEL-GBS V2 and Stacks), two of which are de novo pipelines 

(UNEAK and Stacks). We used Illumina sequence data from 94 ponderosa pines, with 

loblolly pine as the reference genome. The number of SNPs called was much lower 

without a reference genome (62 -196 thousand vs. 2.1 - 2.7 million SNPs). UNEAK was 

the fastest overall and identified more SNPs than Stacks de novo. Stacks with a reference 

genome produced the highest number of SNPs with lowest proportion of paralogs, while 

SNPs identified by TASSEL-GBS V2 exhibited the highest heterozygosity, minor allele 

frequency, and proportion of paralogs. More SNPs were uniquely identified by Stacks 

than TASSEL, though there was high overlap between methods. Researchers studying 

other conifer species should be prepared to analyze very large numbers of SNPs, and to 

consider the benefits and limitations of different pipelines. 

 

2.1 Introduction 

 Single Nucleotide Polymorphisms (SNPs) have been widely used for plant 

genomic studies, including genome-wide association studies, marker-assisted breeding 

and genomic selection, because of their abundance in the genomes and amenability to 

high-throughput, cost effective genotyping technologies (Eckert et al. 2009, Hufford et al. 

2012, Morris et al. 2013). Genotyping-by-Sequencing (GBS), which can generate tens of 

thousands of SNP markers without the need for a reference genome, has emerged as a 

cost-effective strategy for genome-wide SNP discovery and genotyping (Elshire et al. 

2011, Andrews et al. 2016). By combining the power of multiplexed next-generation 

sequencing (NGS) with restriction enzyme based genome complexity reduction, GBS is 

able to genotype large populations of individuals for many thousands of SNPs in an 

increasingly rapid and inexpensive way (Poland et al. 2012, Poland and Rife 2012). 

Moreover, GBS has the potential to reach regions of the genome involved in transcription 
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regulation that are inaccessible to sequence capture approaches that target coding 

sequences (Mammadov et al. 2012).  

 However, genotyping and identifying SNPs is a challenge in most conifer species, 

due to their extremely large (19-32 Gb) and highly repetitive genomes. GBS has been 

tested for conifers on small numbers of individuals (<10) and has been found to produce 

tens of thousands of SNPs with high coverage (Chen et al. 2013, Pan et al. 2015). 

However, the use of GBS on conifers species is still largely limited by the difficulty of 

genome-wide SNP calling from the massively parallel short-read sequences (Glenn 2011, 

Goto et al. 2017). Even though GBS only sequences a fraction of the genome, because 

conifer genomes are so large and repetitive the datasets produced still present a 

computational challenge.   

 Studies now commonly use advanced analysis pipelines to filter, sort, and align 

the GBS raw data to get SNP data. There are two general types of pipelines for handling 

GBS data: reference-based and de novo approaches. Reference-based pipelines require an 

available reference genome, and call SNPs by mapping the raw GBS data to the reference 

genome to identify the position of sequences and compare the sequences from the same 

position to call SNPs (Nielsen et al. 2011). Several reference-based pipelines have been 

widely used, including: TASSEL-GBS (v1 and v2), Stacks, IGST, and Fast-GBS (Sonah 

et al. 2013, Catchen et al. 2013, Glaubitz et al. 2014, Torkamaneh et al. 2017). In the 

absence of a reference genome, de novo pipelines identify pairs of nearly identical reads 

(presumed to represent alternative alleles of a locus) to call SNPs. Two de novo pipelines 

are commonly used: the Universal Network Enabled Analysis Kit (UNEAK) (Lu et al. 

2013), and Stacks (Catchen et al. 2013).   

 Previous studies have generally found that alignment to a reference genome from 

the same species increases the number of identifiable SNPs compared to the de novo 

pipelines (Torkamaneh et al. 2016). However, it is unknown which pipeline is best for 

SNP calling in species that lack a sequenced genome. This includes conifer species, most 

of which have as yet no available sequenced genome (Birol et al. 2013, Zimin et al. 2014, 

Stevens et al. 2016). Though aligning sequences to the reference genome of a closely 

related species could allow for more SNPs to be identified if sequences are fairly 

conserved, it could also result in many sequence fragments being rejected (and therefore 

SNPs in these fragments not being identified) if this is not the case.  

 No reference genome is available for ponderosa pine (Pinus ponderosa), but one 

does exist for loblolly pine (Pinus taeda) (Zimin et al. 2014, Neale et al. 2014). Of the 

conifers that have been sequenced to date, P. taeda is the most closely related to P. 

ponderosa; both are classified in the subgenus Pinus as opposed to Strobus (Gernandt et 

al. 2009, Willyard et al. 2009), which contains the other sequenced pine, P. lambertiana 

(Stevens et al. 2016). Furthermore, the P. taeda reference genome was successfully used 

to design probes for sequence capture in P. contorta (Suren et al. 2016, Yeaman et al. 

2016). Recent studies show that within this subgenus, P. taeda and P. ponderosa 

diverged more recently from each other than either did from lodgepole pine (P. contorta) 

(Gernandt et al. 2005, Eckert and Hall 2006), suggesting that there is likely substantial 

sequence similarity between P. taeda and P. ponderosa as well. Previous studies have 

used de novo pipelines such as UNEAK to identify >10,000 SNP loci in conifers that lack 

a full genome sequence (Chen et al. 2013, Pan et al. 2015). However, these earlier studies 
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were based on a small number of samples, usually six individuals. Inclusion of more 

individuals will likely increase the number of SNPs identified – but by how much, and 

will the inclusion of more individual-level variation change the relative efficiency of 

different pipelines?  

 Despite the many advantages of GBS data, its reliability for SNP calling is 

compromised by the presence of paralogous genomic regions. Especially for the large 

genomes of conifers, involving both polyploidy and repetitive element activity (Li et al. 

2015), it is challenging to separate multiple copies in a genome (e.g. paralogs) from 

variants at a single locus due to sequence similarity and the short sequences obtained. 

Moreover, it is largely unknown which pipeline does a better job at filtering out the 

paralogs. 

 In this study, we sequenced 94 individual P. ponderosa using GBS and compared 

four pipelines for SNP calling, including two reference based pipelines (TASSEL-GBS 

V2, Stacks), and two de novo pipelines (UNEAK, Stacks). We first tested the 

performance of various restriction enzymes for fragmentation of P. ponderosa genome, 

and then used the best for GBS library construction. Then we applied the TASSEL-GBS 

V2 (Glaubitz et al. 2014) and Stacks (Liu and Stützel 2004, Catchen et al. 2013) pipelines 

using the reference genome of P. taeda, as well as the Stacks and UNEAK (Lu et al. 2013) 

pipelines without a reference genome. Our aim was to determine which method produced 

the most SNPs, which produced the least amount of missing data for the SNPs identified, 

and how much overlap there is in the SNPs called between methods, as well as the 

proportion of paralogs among the SNPs called by different pipelines.  

 

2.2 Materials and methods 

2.2.1 Sample preparation 

 In the 1970s, the Forest Service's Pacific Southwest Regional Genetic Resources 

Program planted clones of 302 wild ponderosa pines in Chico, California. They came 

from diverse climate conditions in the central portion of California's Sierra Nevada 

mountains and are now reproductively mature, thus presenting an excellent resource for 

genetic studies. Although P. ponderosa contains multiple subdivisions, with the most 

important being between the Pacific and Rocky Mountain groups, based on their source 

locations the trees within the orchard likely do not cross any subdivision boundaries 

(Conkle and Critchfield 1988, Burns and Honkala 1990, Willyard et al. 2009, Potter et al. 

2015). 

 For this study, we chose 94 individual P. ponderosa genotypes from the orchard 

collection. The source locations of these 94 genotypes are shown in Figure 2.1. The 

sample preparation includes three steps: dry needle preparation, DNA extraction, and 

quantification. Fresh needles were collected and dried with silica gel desiccant. Total 

genomic DNA was extracted from the dried needle tissue using DNeasy Plant Mini Kit 

(250) following the protocol from the manufacturer (Qiagen, Hilden, Germany) with two 

main modifications. First, to reduce protein contamination, for the step of grinding 

needles we added 1.5 ul of Proteinase K (20mg/ml) along with the Buffer AP and RNase 

A. The MiniG 1600 from SPEX SampePrep (Metuchen, NJ, USA) was used to grind 

needles with automated mechanical disruption through bead beating. Second, at the very 

last step, the amount of AE elution buffer was changed from 100 µl to 50 µl to get a 
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higher concentration of DNA (averagely 200 ng/µl). The DNA concentration was 

quantified using an Eppendorf BioSpectrometer (Eppendorf, AG, Germany).  

 

2.2.2 Restriction enzyme selection 

 When working on a new species, it is beneficial to determine which enzyme 

produces the most fragments within the desired size range (100-400 bp). For optimization 

of the GBS protocol, 1000 ng samples of P. ponderosa genomic DNA were digested 

separately with ApeKI, PstI, and EcoT22I, and with a combination of PstI and EcoT22I 

(double digest) following the instructions of the enzyme manufacturer (New England 

Biolabs). These three restriction enzymes are methylation sensitive and have been 

previously used for construction of reduced complexity GBS libraries in conifers (Chen 

et al. 2013, Pan et al. 2015). Fragment size distributions of each test library were 

visualized using an Agilent BioAnalyzer 2100 (Agilent Technologies, Santa Clara, CA) 

with the High Sensitivity DNA Kit for quantification. For each test library, we have three 

samples with the same DNA concentration (50 ng/ul). We selected the enzyme based on 

the smoothness of the distribution and the size of the fragment sequences produced. Once 

this was done, all of the post-extraction steps were carried out at the UC Davis Genome 

Center.   

 

2.2.3 Illumina libraries preparation and sequencing 

 For Pinus contorta and Picea glauca 47-plex GBS libraries yielded good results 

(Chen et al. 2013). Therefore, a 48-plex GBS library consisting of 47 DNA samples and a 

negative control (no DNA) was prepared in our study. The GBS protocol was slightly 

modified from the standard protocol (Elshire et al. 2011) and that of Chen et al. (2013). 

The library preparation and sequencing includes 6 steps: digestion, ligation, pooling 

samples, PCR, clean-up, and single-end read sequencing. DNA extracts (100 ng) were 

digested with the restriction enzyme ApeKI at 75 °C for 2 hours. Each of the 47 

ponderosa pine DNA samples was tagged with a unique barcode. Sequences for the 

ApeKI barcode adapters and the common adapters, and the temperature cycles, were as 

described in Chen et al. (2013). After the digestion, the samples were cooled to 4 °C, and 

then adapters were ligated onto restriction fragments. This was done using T4 DNA 

Ligase (Life Technologies, Burlington, ON, Canada) at 16 °C for 1 hour, after which 

samples were "heat killed" at 65 °C for 20 minutes. The pool was quantified via qPCR 

using the KAPA Library Quantification Kit (Kapa Biosystems, Wilmington, MA, USA) 

for Illumina sequencing platforms, with 0.9X bead cleanup to remove small fragments 

(<250 bp). Additional DNA purification using the Zymo DNA Clean & Concentrator kit 

(Zymo Research, Irvine, CA) was performed to further increase the purity of the 

extracted DNA. The fragments from all 47 samples were then sequenced (single-end read 

90 bp) on one lane of an Illumina HiSeq 4000 (Illumina, San Diego, CA). The same 

procedure was repeated for the other 47 samples (single-end read 100 bp). We then 

assessed the sequence quality of the raw reads using FastQC analysis (Simon 2010). 

 

2.2.4 SNP calling 

 We used the reference genome of loblolly pine v2.0 

(https://treegenesdb.org/FTP/Genomes/Pita/) for the reference-based pipelines. TASSEL-

https://treegenesdb.org/FTP/Genomes/Pita/
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GBS V2 is implemented in TASSEL V5.0, a program originally developed for maize to 

facilitate genotype-phenotype comparisons (https://bitbucket.org/tasseladmin/tassel-5-

source/wiki/Tassel5GBSv2Pipeline). This pipeline requires a reference genome to call 

SNPs. The steps involved are illustrated on the left side of Figure 2.2. The raw sequence 

data in FASTQ file are first trimmed to same length (64 bp) and then identical reads are 

assembled into tags (unique DNA sequences). These distinctive tags are saved into 

FASTQ file. Then alignment program bowtie2 (Langmead and Salzberg 2012) is used to 

align these tags with the reference genome of loblolly pine. Based on the position of the 

tags against the reference genome, SNPs are produced by identifying tags aligned in the 

same position that have a 1 bp mismatch. Finally, the SNP information within each tag 

for each sample are output as a VCF file. Each step is performed internally with 

TASSEL-GBS V2 plugins except for alignment, which is carried out externally with 

bowtie2. We used the default parameter settings for our analysis except that the minimum 

quality score was set to 20 to make the base call accuracy more than 99%.  

 Stacks is a software package developed for restriction site-associated DNA 

sequencing that identifies SNPs and calculates population statistics from any restriction 

enzyme-based, reduced-representation sequence data with short-read sequences 

(http://catchenlab.life.illinois.edu/stacks/). It was developed with population genomics in 

mind, and so aims to assemble loci in large numbers of individuals and read haplotypes 

from them. Stacks allows for SNP calling with or without a reference genome; we chose 

to do both. The details steps of Stacks reference pipeline are represented on the right side 

of Figure 2.2. There are two main differences with the TASSEL-GBS V2 pipeline. First, 

Stacks reference pipeline aligns the reads directly against the reference genome, while 

TASSEL-GBS V2 pipeline assembles the same reads into tags and then performs the 

alignment. Second, the BWA alignment program (Li and Durbin 2009) is used instead of 

bowtie2. Each step in the Stacks reference pipeline is performed internally in Stacks 

algorithms except alignment with BWA and the SAMtools (Li 2011) step used to get read 

position.  

 The steps involved in the Stacks de novo pipeline are shown on the right side of 

Figure 2.3. First, reads are demultiplexed, cleaned and trimmed to 64 bp, and identical 

reads are assembled as "stacks". The stacks in each sample are merged as catalogs, which 

then are grouped together across samples. Third, SNPs are identified by matching reads 

to the catalogs and assigning SNPs to each sample when there is a 1 bp mismatch. SNP 

information is saved in a VCF file. Optional additional steps include the creation of 

genetic maps and calculation of population statistics. Every step in Stacks de novo 

pipeline uses the Stacks internal algorithms. For both Stacks reference and de novo 

pipeline, we used the default parameter settings except that the quality score limit was set 

to 20 instead of 15, for greater accuracy and to be consistent with TASSEL-GBS V2. 

 The UNEAK (Universal Network Enabled Analysis Kit) pipeline can be 

implemented in TASSEL V3.0 (https://tassel.bitbucket.io/TasselArchived.html), but it is 

not available in V5.0. UNEAK is a de novo pipeline that can call SNPs without a 

reference genome. The steps in the UNEAK pipeline are on the left side of Figure 2.2. 

The general design of UNEAK is as follows: 1) raw Illumina DNA sequence data were 

first trimmed to 64-bp; 2) identical 64-bp reads for each individual are collapsed into tags; 

3) pair-wise alignment identifies tag pairs having a single base pair mismatch. These 

https://bitbucket.org/tasseladmin/tassel-5-source/wiki/Tassel5GBSv2Pipeline
https://bitbucket.org/tasseladmin/tassel-5-source/wiki/Tassel5GBSv2Pipeline
http://catchenlab.life.illinois.edu/stacks/
https://tassel.bitbucket.io/TasselArchived.html
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single base pair mismatches are candidate SNPs, which are then assigned to each sample 

and saved as VCF file. As in the Stacks de novo pipeline, every step in UNEAK pipeline 

uses the internal algorithms. We again used the default parameter settings except that the 

base call accuracy is changed from 0.03 to 0.01, which is equivalent to the first two 

methods.  

Due to the large genome size of pines, the raw data for each of the two sets of 47 

samples was over 19 GB after compression. Large computing resources are needed to run 

these pipelines. We ran most of the steps on the Multi-Environment Research Computer 

for Exploration and Discovery (MERCED) cluster, a shared resource for UC Merced 

researchers, which has 128 GB RAM in each compute node. The exception was the step 

cstacks (Figure 2.3, merge stacks as catalogs) in the Stacks de novo pipeline, which 

requires a very large memory and RAM. For this, we used the XSEDE supercomputing 

resource (Towns et al. 2014), which has 3000 GB RAM in each computer node.  

 

2.2.5 SNP quality and comparison 

 To evaluate the quality of the SNPs in each VCF output file, six parameters were 

chosen: good reads, the missing genotype rate, minor allele frequency (MAF), 

heterozygosity, read depth, and the proportion of paralogs. We used PLINK 1.9 (Purcell 

and Chang 2015), a widely used open-source C/C++ toolset in population genetics, to 

calculate the missing genotype rate, MAF, and heterozygosity. Whole-genome 

duplications have occurred in conifers (Li et al. 2015, Prunier et al. 2016), resulting in 

multiple paralogs. Such paralogs could yield false SNPs if incorrectly identified as a 

single locus based on short GBS sequence reads. To address this issue and distinguish 

real allelic variation from paralogs, we tested for deviations in ratio of read depth for each 

allele within heterozygotes in the GBS data (McKinney et al. 2017). The deviation of this 

ratio from its expected value (1:1) is expressed as a Z-score with a binomial distribution 

(P = 0.5). Based on these Z-scores, we declare likely paralog variants using a 

conservative threshold of |Z| > 5.  

Besides the quality of the SNPs, we were also interested in how many SNPs were 

identified by more than one pipeline. In our study, the comparison of SNP overlap was 

done using VCFtools (Danecek et al. 2011).  

 

2.3 Results  

2.3.1 Restriction enzyme selection 

Figure 2.4 shows the amplified fragment size distributions of libraries from 

ponderosa pine DNA digested with different restriction enzymes. ApeKI yielded a high 

smooth curve of fragment sizes between 150 and 500, which indicates good performance 

for GBS. PstI performed similarly, though the curve was more jagged. EcoT22I produced 

a lower, more jagged curve, while EcoT22I + PstI had the worst performance of all. We 

therefore selected ApeKI. This enzyme does not cut CpG methylated sequences (Castel et 

al. 2011), and therefore tends to avoid stably silenced portions of the genome, hopefully 

increasing the proportion of SNPs from more actively transcribed regions.  

 

2.3.2 Sequence quality of raw reads 



 

 24 

Quality control for the raw reads involves the analysis of sequence quality, GC 

content, sequence length distribution, the presence of adaptors, overrepresented 

sequences, sequence duplication levels in order to detect sequencing errors, PCR artifacts, 

or contamination. Reducing the error rate of base calls and improving the accuracy of the 

per-base quality score are integral to having reliable GBS raw data (Nielsen et al. 2011). 

The sequence quality of the raw reads was high, with the per base sequence quality score 

over 32 and the most frequently observed mean quality score per sequence over 40. This 

indicates that the sequencing error is less than 0.1%.  

The per base GC content module measures the GC content across the whole 

length of each sequence in a file and compares it to a modeled normal distribution of GC 

content. For the raw data of our study, the per base GC content is a roughly normal 

distribution with both the shape and peak corresponding to the distribution of GC content 

of the underlying genome, which indicates a normal random library without any bias.  

According to the sequence length distribution plot, the length for all the sequences 

is, as expected, 90 bp for one set of samples and 100 bp for the other. The duplicate 

sequences analysis issues an error since non-unique sequences make up more than 50% 

of the total, which is in line with the high proportions of repetitive sequences in conifers 

(Morse et al. 2009, Kovach et al. 2010). This is a feature that could be problematic for 

SNP calling; however, each pipeline has its own method for cleaning the data that can be 

more or less effective at removing repetitive sequences. No sequence represented more 

than 0.1% of the total, indicating that the library was not contaminated. 

 

2.3.3 Comparison of four SNP-calling pipelines 

The four SNP-calling pipelines differed in many respects (Table 2.1). Of the two 

de novo pipelines, Stacks identified fewer SNPs than UNEAK (62,882 vs. 196,698) and 

took much longer to run than any of the other three pipelines. Of the two reference-based 

analyses, Stacks identified 25% more SNPs than TASSEL-GBS V2 and took about 57% 

longer to run. The two reference-based pipelines identified over an order of magnitude 

more SNPs than the two de novo pipelines. For the Stacks pipeline, the reference-based 

version identified over forty times as many SNPs as the de novo one with a shorter run 

time.  

 The SNP quality data includes good reads, missing data, average MAF, and 

average observed and expected heterozygosity, average read depth per individual, and the 

proportion of paralogs. There were 7.8 billion total reads for the 94 samples. All the five 

pipelines used the same quality score (20) and same length (64 bp) to clean and trim the 

raw data. However, the number of reads considered "good" differed between pipelines, 

with TASSEL-GBS V2 keeping only 76.9% of reads, while the others kept at least 93.6% 

(Table 2.1). This resulted in TASSEL-GBS V2 having a much lower missing genotype 

rate (47.4% vs >72%). The TASSEL-GBS V2 pipeline produced the largest average read 

depth per individual (22.5 vs. < 5). The relatively low read depth of Stacks reference-

based pipeline (5.8) and Stacks de novo pipeline (4.6) is consistent with their high 

percentages of missing genotype calls. 

 The UNEAK pipeline produced a much smaller average MAF than the other 

pipelines (0.093 vs. > 0.21). This is likely due to UNEAK employing a network filter to 

discard repeats and paralogs. Accordingly, UNEAK produced a small proportion of 
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paralogs (1.1%). The proportion of paralogs of TASSEL-GBS V2 pipeline is much 

higher than the other pipelines (18.5% vs. < 1.5%). The higher numbers of SNPs 

identified by TASSEL-GBS V2 pipeline is partly due to paralogs. 

Interestingly, reference-based Stacks identified a very low average observed 

heterozygosity despite having SNPs with a relatively high minor allele frequency. Stacks 

de novo and TASSEL-GBS V2 had similar minor allele frequencies and expected 

heterozygosity, but the observed heterozygosity was higher for TASSEL-GBS V2. For all 

pipelines, the average observed heterozygosity is lower than expected heterozygosity, 

which suggests that at least some loci are out of Hardy Weinberg equilibrium. This may 

be due to selection or genetic drift operating across the Sierra Nevada mountains, as the 

sampled individuals are widely distributed and do not represent a single random-mating 

population. 

There are 1,888,913 overlapping SNPs identified by the two reference-based 

pipelines (Figure 2.5). Of the SNPs identified by TASSEL-GBS V2 11.4% were unique, 

while of those identified by the Stacks reference pipeline 30.2% were unique. The vcf-

compare function compares SNPs based on their position relative to the loblolly pine 

genome. Because the positions of SNPs were identified based on the reference genome, 

we were only able to compare the SNPs found using the two reference-based pipelines. 

Efforts to map SNPs identified by the de-novo approaches to the genome were stymied 

by the fact that the loblolly genome has not been fully assembled into chromosomes, and 

we were not able to develop a work-around for this that would enable software like 

VCFtools to be used. 

 

2.4 Discussion 

The repetitive DNA content in conifers affects the efficiency of SNP calling (Pan 

et al. 2015) and requires strategies for reducing the complexity and repetitive DNA 

content of GBS libraries. Selection of a restriction enzyme (RE) is one of the critical 

steps in GBS (Elshire et al. 2011, Peterson et al. 2012). In our study, the commonly-used 

restriction enzyme ApeKI performed well for ponderosa pine, with PstI offering a decent 

second choice. As shown in Figure 2.3, there were no discrete peaks suggesting repetitive 

DNA fragments present in ApeKI library, while the other three REs had a few discrete 

peaks. GBS libraries derived from ApeKI also had a higher proportion of fragments 

within the sequencing size range (<500bp). Similarly, for lodgepole pine (Pinus contorta) 

and white spruce (Picea glauca), Chen et al. (2013) found that the size distribution curve 

was smoothest for ApeKI compared to PstI and EcoT22I. ApeKI was also used for other 

conifers such as interior spruce, a hybrid complex of white spruce (Picea glauca) and 

Engelmann spruce (Picea engelmannii) (Gamal El-Dien et al. 2015). Thus, ApeKI seems 

to be a good choice for conifers in general. 

As Table 2.2 indicates, no one pipeline was superior in all categories that might 

be of concern for a researcher. Both the reference based and de novo SNP calling 

approaches work for ponderosa pine, but the reference based pipelines using the loblolly 

pine genome identified more SNPs with a reasonable level of coding complexity and 

computing resources (Table 2.1). This suggests that for other non-model species without 

available genome sequences, SNP calling using a reference genome from closely related 

species can be an effective option. This difference can be explained by their alignment 
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methods. All these pipelines assemble identical reads as tags/stacks before the alignment. 

The reference-based pipelines then align the tags/stacks with the reference genome to 

find their position, and then compare the tags/stacks in the same positions to identify 

SNPs with 1 bp mismatch (Figure 2.1). Thus, the reference genome helps to ensure that 

tags from the same position are compared to identify SNPs. The de novo pipelines 

directly compare the tags/stacks with each other to identify SNPs with 1 bp mismatch 

(Figure 2.3). In this situation, some of the reads from the same general position may not 

be identified as pairs because not enough of their short sequences overlap, and therefore 

some of the SNPs are missed. Torkamaneh et al. (2016) conducted a comparison between 

different SNP calling pipelines on soybean (Glycine max) and found that four reference-

based pipelines (TASSEL-GBS V1, IGST, TASSEL-GBSV2, Fast-GBS) identified more 

SNPs than either of two de novo pipelines (Stacks, UNEAK). However, the differences 

between the methods were much smaller than the differences found in our study. 

Even within the two de novo pipelines, the number of SNPs identified were very 

different. Torkamaneh et al. (2016) also found that the UNEAK pipeline identified more 

SNPs than the Stacks de novo pipeline. One possible explanation for this difference is the 

different way of assembling the identical reads as tags/stacks. For Stacks, the default 

setting for the maximum number of stacks at a single de novo locus in the program 

ustacks is three. If there are over three stacks in the same locus, it will be blacklisted, 

meaning that locus will not be available for insertion into, or matching against, the 

catalogue. This is done as a means of rejecting repetitive sequences.  However, the 

UNEAK merges the identical reads as tags without this limit. As a result, UNEAK 

pipeline can potentially identify most of SNPs because fewer stacks are rejected, but 

could also have more errors involving not properly separating paralogs. However, as 

discussed below, this did not appear to be the case; the percentage of paralogs was similar. 

Given this, and the more efficient identification of SNPs, we would recommend UNEAK 

over Stacks for de novo SNP identification.  

The different number of SNPs identified by the two reference-based pipelines is 

likely caused by a difference in how they assemble tags/stacks. TASSEL-GBS V2 

assembles the identical reads as tags first, and then align the tags to the reference genome. 

Stacks aligns the trimmed reads directly to the reference genome, which may lead to 

more alignments and a greater number of SNPs identified. The Stacks reference pipeline 

ran slower but identified more SNPs than TASSEL-GBS V2. All the steps in TASSEL-

GBS V2 could deal with all the 94 samples together and assign the SNPs data into each 

sample in the final VCF file. However, some steps in Stacks (e.g. ustacks, SAMtools) 

need to have separate codes for each sample instead of the one code for 47 samples 

together as a group, which takes more effort. TASSEL-GBS V2 rejected a higher 

proportion of reads initially (lower % considered "good") but produced a much lower 

percentage of missing data by either locus or individual than the other methods, which 

would mean less imputation will be needed at later steps in an association or genetic 

structure analysis. However, despite this thinning of reads, TASSEL-GBS V2 appears to 

be more likely to incorrectly identify SNPs from paralogs than the other three methods. 

Thus, for reference-based assembly, we would again recommend Stacks based on lower 

paralog percentages and higher SNP number, with the caveat that it is somewhat less 

user-friendly.  
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There are 1,888,931 SNPs identified by both of the reference-based methods. 

These SNPs comprised most (88.6%) of those identified by TASSEL-GBS V2. This 

pipeline exhibited the highest heterozygosity, MAF and proportion of paralogs, so some 

of the loci identified that did not overlap (11.4%) likely had unusually high 

heterozygosity. Stacks, which produced the highest number of loci, did so in part by 

identifying 816,107 SNPs that were not identified by TASSEL-GBS V2.  

 Finally, while earlier studies making use of <10 individual conifers identified 

<20,000 SNPs (Chen et al. 2013, Pan et al. 2015), this study identified between 62,882 

and 2,705,038 SNPs from 94 individuals. This indicates the high degree of genetic 

variation that is present in ponderosa pine (Potter et al. 2015) and within other 

widespread conifer species (Potter et al. 2012). While these individuals came from 

multiple populations within the Sierra Nevada, this represents only a tiny fraction of the 

total range of this species, which extends from northern Mexico to southern Canada and 

from the Pacific to the Rocky Mountains. Future studies, especially those considering 

range-wide variation, should be prepared to analyze very high numbers of SNPs. 
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Table 2.1 Comparison of different SNP-calling approaches.  

Approach de novo reference-based 

Pipeline Stacks UNEAK TASSEL-GBS V2 Stacks 

Run time (hours: min) 53:26 2:17 21:8 33:45 

Number of good reads (billion) 7.5 7.3 6.0 7.5 

Percent of good reads (%) 96.2 93.6 76.9 96.2 

Total SNPs 62,882 196,698 2,131,362 2,705,038 

Missing data (%) 72.3 73.9 47.4 76.0 

Average MAF 0.275 0.093 0.273 0.217 

Observed heterozygosity  0.258 0.044 0.306 0.066 

Expected heterozygosity  0.334 0.147 0.348 0.288 

Average read depth per 

individual (Standard Deviation) 

13.2 

(2.2) 

4.6 

(0.6) 

22.5  

(5.5) 

5.8 

(1.0) 

Paralogs (%) 1.5 1.1  18.5 1.0 
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Table 2.2 SNP-calling approaches ranked  

Approach de novo reference-based 

Pipeline Stacks UNEAK 
TASSEL-GBS 

V2 
Stacks 

Run time  Highest Lowest Medium Medium 

Ease of use Poor Best Medium Poor 

# of SNPs 

identified 
Lowest Low High Highest 

Missing data  High High Lowest High 

% paralogs Low (good) Low (good) Highest (poor) Lowest (best) 
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Figure 2.1 Geographic distribution of the 94 samples. The black dots represent original 

genotype source locations. 
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Figure 2.2 Comparison of the two reference-based pipelines. The horizontal boxes on the 

left side represent the programs in GBS V2. The horizontal boxes on the right side 

represent the programs in the Stacks reference pipeline. The yellow boxes in the middle 

represent potential program functions, while the yellow dotted lines specify the main 

function for each program in the two pipelines. 
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Figure 2.3 Comparison between two de novo pipelines. The horizontal boxes on the left 

side represent the programs in UNEAK de novo. The horizontal boxes on the right side 

represent the programs in Stacks de novo. The yellow boxes in the middle represent the 

functions of the program, while the yellow dotted lines specify the main function for each 

program in the two pipelines. 
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Figure 2.4 Fragment size distribution of GBS libraries with different restriction enzymes. 

The y-axis shows fluorescence units, indicating amount of DNA. Numbers below hatch 

marks on the x-axis indicate fragment size (bp). 
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Figure 2.5 Venn diagram comparing SNPs overlap between the two reference-based 

pipelines. The circle on the left side represents the SNPs produced by TASSEL-GBS V2 

pipeline. The circle on the right side represents the SNPs produced by Stacks reference-

based pipeline. 
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Chapter 3: 

Identifying environmentally associated genetic variation in ponderosa pine 

 

3.0 Abstract 

A fundamental goal of evolutionary biology is to understand adaptive genetic 

variation and the concomitant evolutionary potential of a species. Genotype-to-

environment (G2E) association analysis has enormous potential to discover genes 

responsible for local adaptation. In non-model species, genotyping by sequencing (GBS), 

a reduced representation sequencing approach, generates large numbers of single 

nucleotide polymorphisms (SNPs) in an efficient and inexpensive way. Sequences from 

223 Pinus ponderosa (ponderosa pine) individuals were aligned to the reference genome 

of Pinus taeda (loblolly pine), a closely related species, to identify SNPs. We ran a G2E 

analysis with these SNPs and five chosen climatic variables using LFMM2, which 

controls for the effects of demographic processes and population structure on the 

distribution of genetic variation. We found 213 SNPs strongly associated with mean 

maximum summer temperature (TMAX), 335 with mean minimum winter temperature 

(TMIN), 1798 with April 1st snow pack (PCK4), and 120 SNPs with mean climatic water 

deficit (CWD). No SNPs were associated with mean monthly winter precipitation 

(PPTW). Different protein functions have been annotated underlying the genetic 

associations, including ubiquitination, abscisic acid (ABA) signaling pathway, cell 

division or growth of roots or shoots, cell wall organization, seed dormancy. Potentially, 

future studies can develop molecular tools based on the associated genetic markers, 

which are necessary to understand trees' adaptative responses to environmental variation, 

to assist breeders and gene resource managers in developing and managing adapted 

populations.  

 

3.1 Introduction 

Understanding adaptive genetic variation and the concomitant evolutionary 

potential of a species is a central aim in conservation and evolutionary biology 

(Hoffmann and Sgrò 2011, Savolainen et al. 2013, Harrisson et al. 2014). Microevolution 

– that is, adaptation within species and populations via changes in allele frequencies or 

genotypic recombination – can be important for local species persistence under 

environmental change (Bell and Gonzalez 2009). Intraspecific genetic variation 

represents the potential for further adaptive change in response to new selective 

challenges such as global warming (Rice and Emery 2003). A long history of studies in 

forestry have clearly demonstrated the existence of local adaptation in tree populations 

(Langlet 1971, Ying and Liang 1994, Kitzmiller 2005, Wright 2007). However, locally 

adapted tree populations with long life cycles may become maladapted if climate-induced 

environmental shifts outpace range shifts, plastic responses, or evolutionary adaptation 

(Aitken et al. 2008, Anderson et al. 2012, Alberto et al. 2013). Studies examining species 

distribution models indicate that not accounting for regional adaptive genetic variation 

could result in downward-biased predictions of species distribution areas under climate 
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change (Garzón et al. 2011). Understanding the distribution of genetic variation related to 

environmental responses may help us better predict and manage forests in a changing 

climate (Neale and Kremer 2011, Oney et al. 2013). 

Landscape genomics, which investigates the statistical association between 

genetic variation at individual loci and environmental gradients, offers enormous 

potential to discover genes responsible for local adaptation (Eckert et al. 2010, 2015, 

Sork et al. 2013, Lu et al. 2019). This approach is sometimes known as genotype-to-

environment (G2E) association analysis (Chapter 1). However, the investigation of local 

adaptation at a genetic level is still limited in non-model species, especially for forest 

trees (Neale and Kremer 2011, Bragg et al. 2015). Most of the studies that have taken this 

approach in trees focused on a modest number of candidate genes (Holliday et al. 2010, 

Hamilton et al. 2013, Dillon et al. 2014). Though targeted sequencing for candidate genes 

is efficient, they may miss other important genes or regulatory regions with previously 

unsuspected roles in local adaptation. The sequencing of a large number of genome-wide 

genetic markers can help to uncover such missing genes. To achieve this, several 

approaches based on next generation sequencing (NGS) have been proposed in recent 

years (Davey et al. 2011, Poland and Rife 2012). Genotyping-by-Sequencing (GBS), 

which can generate tens of thousands of SNP markers (Single Nucleotide Polymorphisms) 

without the need for a reference genome, has emerged as a cost-effective strategy (Elshire 

et al. 2011, Andrews et al. 2016). By combining the power of multiplexed NGS with 

restriction enzyme based genome complexity reduction, GBS is able to genotype large 

populations of individuals for many thousands of SNPs in an increasingly rapid and 

inexpensive way (Poland et al. 2012, Poland and Rife 2012). GBS has been found 

produce tens of thousands of SNPs with high coverage in conifers from 10 or fewer 

individuals (Chen et al. 2013, Pan et al. 2015). 

When conducting G2E studies, it is important to control for the effects of 

demographic processes and population structure on the distribution of genetic variation 

(Wang et al. 2017). Approaches to deal with this include BAYENV (Günther and Coop 

2013), BAYPASS (Gautier 2015), BAYESCENV (Villemereuil and Gaggiotti 2015), and 

latent factor mixed model (LFMM) (Frichot et al. 2013, Frichot and François 2015). 

These models can effectively account for population structure and can accommodate 

large SNP data sets. However, these methods rely on Markov chain Monte Carlo 

algorithms or Bayesian bootstrap methods to perform parameter inference and statistical 

testing, which can be computationally intensive and slow. One method, LFMM2, was 

developed for G2E association and has been shown to outperform other similar 

approaches with several orders-of-magnitude faster computing (Caye et al. 2019).  

Despite the high economic and ecological importance of ponderosa pine (Pinus 

ponderosa) in the western United States, no previous study has investigated the genetics 

of drought tolerance in this species, or conducted a G2E analysis. Some studies have 

investigated P. ponderosa evolutionary history and phylogeography using mitochondrial 

DNA markers; these reflect long-term biogeographical process (e.g. glacial isolation) 

contributed to the modern distribution of the evolutionary lineage, but have little adaptive 

significance in themselves (Johansen and Latta 2003, Potter et al. 2013). Other studies 

have emphasized the importance of intraspecific variation of P. ponderosa in adaptation 

to climate change, but mainly focus on the phenotypic variation within and among 
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populations without identifying the underlying genetic variation (Kolb et al. 2016b, 

Maguire et al. 2018).  

For California, regional climate change models predict an increase in temperature 

and summer drought periods (IPCC 2014). California’s historic 2012–2016 drought may 

represent an increasingly common condition in which high temperatures coincide with a 

series of dry years (Griffin and Anchukaitis 2014, Berg and Hall 2015). One of the most 

prominent effects of this hot drought has been an increase in conifer mortality in the 

Sierra Nevada, which may negatively impact the sustainability of conifer forests (Fettig 

et al. 2019). A deep understanding of the genetic basis of adaptation in ponderosa pine is 

critical for successful reforestation, for conservation and restoration programs, and for 

managing or predicting climate-induced species range changes. 

In this study, we use SNPs derived from GBS of widely distributed individuals of 

ponderosa pine from the Sierra Nevada to run a G2E analysis in combination with gene 

annotation. We dissect the genetic variants associated with different climate variables to 

identify loci potentially related to local adaptation to environmental conditions in 

ponderosa pine.  

 

3.2 Materials and Methods 

3.2.1 Sampling and sequencing 

In the 1970s, the Forest Service's Pacific Southwest Regional Genetic Resources 

Program planted clones of 302 wild ponderosa pines in Chico, California. They came 

from diverse climate conditions in the central portion of California's Sierra Nevada and 

are now reproductively mature, thus presenting an excellent resource for genetic studies. 

For this study, we chose 223 individual P. ponderosa genotypes from the orchard 

collection. The source locations of these 223 genotypes are shown in Figure 3.1. These 

locations likely fall within just one of the several genetic subdivisions previously 

identified in ponderosa pine (Conkle and Critchfield 1988, Willyard et al. 2009b, Potter 

et al. 2015).  

The sample preparation includes dry needle preparation, DNA extraction, and 

quantification (Chapter 2). After the DNA extraction, four sets of a 48-plex GBS library 

consisting of 47 DNA samples and a negative control (no DNA) and one set of a 36-plex 

GBS library consisting of 35 DNA samples and a negative control were prepared by the 

UC Davis Genome Center, with the methods described in Chapter 2. The pool was 

quantified via qPCR using the KAPA Library Quantification Kit (Kapa Biosystems, 

Wilmington, MA, USA) for Illumina sequencing platforms, with 0.9X bead cleanup to 

remove small fragments (<250 bp). Additional DNA purification using the Zymo DNA 

Clean & Concentrator kit (Zymo Research, Irvine, CA) was performed to further increase 

the purity of the extracted DNA. The fragments from 47 samples at a time were then 

sequenced (single-end read 90 bp or 100 bp) on one lane of an Illumina HiSeq 4000 

(Illumina, San Diego, CA).  

 

3.2.2 SNP calling 

No reference genome is available for ponderosa pine (Pinus ponderosa), but one 

does exist for loblolly pine (Pinus taeda) (Zimin et al. 2014, Neale et al. 2014). Of the 

conifers that have been sequenced to date, P. taeda is the most closely related to P. 
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ponderosa (Gernandt et al. 2009, Willyard et al. 2009a). Furthermore, the P. taeda 

reference genome was successfully used to design probes for sequence capture in P. 

contorta (Suren et al. 2016, Yeaman et al. 2016). Based on the analyses in Chapter 2, we 

selected the Stack v.2.2 pipeline (Rochette and Catchen 2017) with this reference genome 

(https://treegenesdb.org/FTP/Genomes/Pita/) for SNP calling. Each step in the Stacks 

reference pipeline is performed internally in Stacks algorithms except alignment with 

BWA v.0.7.17 (Li and Durbin 2009) and the Samtools v.1.9 (Li 2011) step used to get 

read position. Default settings were used in Stacks, BWA and Samtools.  

 

3.2.3 Climate data 

We obtained 30-year (1951–1980) averages of climate data from the 270 m 

resolution California Basin Characterization Model (BCM) (Flint et al. 2013). We 

selected five variables for G2E analysis that had low-to-moderate correlations with each 

other (Chapter 1). These five variables include: mean climatic water deficit (CWD, a 

measure of evaporative demand exceeding soil moisture); mean minimum winter 

temperature (TMIN; December–February); mean maximum summer temperature 

(TMAX; June–August); mean monthly winter precipitation (PPTW;December–February); 

and April 1st snow pack (PCK4). Temperature and precipitation are among the major 

ecological variables that determine plants’ natural distribution and drive their adaptation 

(Berry and Bjorkman 1980). 

 

3.2.4 Environmental associations  

In this study, we choose LFMM 2 (Caye et al. 2019) to run the genotype to 

environment association analysis. LFMM2 regression models combine fixed and latent 

effects with the following equation:  

Y=XBT+W+E. 

where Y is a matrix of genetic information measured from p genetic markers for n 

individuals, and the variables of interest (environment variables), X, measured for d 

environmental variables and n individuals. The fixed effect sizes are recorded in the B 

matrix, which has dimension p * d. The E matrix represents residual errors with the same 

dimensions as the response matrix. The matrix W is a latent matrix of rank K, defined by 

K latent factors where K can be determined by model choice procedures. The K latent 

factors represent unobserved confounders - usually geographical structure in the 

genotypes of the samples - which are modeled through a n*K matrix, U. V is a p × K 

matrix of loadings. The matrix U is obtained from a singular value decomposition (SVD) 

of the matrix.  

W=UVT 

 

To determine K, we used principal component analysis (PCA) and admixture 

analysis as implemented in the LEA v.2.6.0 R package (Frichot et al. 2013, Frichot and 

François 2015). First, we ran the LEA function pca to compute the scores of a PCA and 

select the number of significant components by computing Tracy-Widom tests with the 

LEA function tracy.widom (Patterson et al. 2006). Second, we ran the LEA function 

snmf for each K value between 1 and 5 with 10 repetitions. By comparing the cross-

entropies as described in the snmf manual (Frichot & Francois, 2014), the most likely K 

https://treegenesdb.org/FTP/Genomes/Pita/
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value was identified by minimizing the cross-validation error evaluated in the 10-fold 

cross-validation procedure. After we run LFMM2, we then chose significant associations 

based on a false rate of 5% (q⩽0.05) using the R package QVALUE (Storey and 

Tibshirani 2003).  

LFMM approaches are robust to high amounts of missing data, such as GBS 

sequencing tends to produce, when sample sizes are >100 (Xuereb et al. 2017). For this 

analysis, we chose to focus on a subset of raw environmental variables (eg. maximum 

summer temperature) rather than environmental PCA axes, as a number of previous 

studies have done (eg. Eckert et al. 2010, 2015). We did this because PCA associations 

can be difficult to interpret if, for example, both PCA axes include temperature and 

moisture variables, and because we were able to identify five environmental variables 

that had low to moderate correlation with each other and which might be associated with 

different adaptive responses.  

 

3.2.5 Gene annotation 

After we got the significantly associated SNPs, we ran SnpEff (Cingolani et al. 

2012) for SNP annotation. We built the data base with the annotated genome and the 

reference genome of loblolly pine v.2.01 in TreeGenes 

(http://treegenesdb.org/FTP/Genomes/Pita/v2.01/). Then we aligned the gene sequence 

against the nonredundant protein sequences database using UniProt to identify the gene 

and protein with the implemented Blastx (V2.9.0, e < 1e−10). The Gene Ontology 

Annotation Database (“UniProt” 2015, Bateman et al. 2017) was used to further identify 

the potential functions of the genes.  

 

3.3 Results 

3.3.1 Genetic diversity and population structure 

After SNP calling and filtering, a total of 4,155,896 SNPs remained for PCA and 

LFMM2 analysis. According to the PCA results with all SNPs, two principle components 

explained the genetic variation between our samples (Table 3.1). The best K value based 

on LEA snmf is one (Figure 3.2). We also plotted the admixture of each individual tree 

using the snmf results and found no signal of two populations (Figures 3.3 & 3.4). Thus, 

we assumed that these 223 individuals belong to one interbreeding population and ran 

LFMM 2.0 using K = 1.  

 

3.3.2 Environmental associations at individual loci 

After the running of LFMM2 (q≤ 0.05), we found many significant associations 

between SNPs and the environmental variables. There are 213 SNPs strongly associated 

with TMAX, 335 with TMIN, 1798 with PCK4, and 120 SNPs with CWD. However, no 

SNP was found to be significantly with PPTW. There were 62 SNPs associated with both 

PCK4 and TMIN, 45 associated with both CWD and TMIN, 7 SNPs associated with both 

TMAX and PCK4, and 1 SNP associated with both PCK4 and CWD (Figure 3.5). 

 

3.3.3 Gene annotation 

 The location of each SNP is listed in the output file of SnpEff. Accordingly, there 

are mainly six location categories, including intragenic variants, intergenic variants, 

http://treegenesdb.org/FTP/Genomes/Pita/v2.01/
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upstream SNPs, downstream SNPs, synonymous, and missense variants in the gene 

coding sequence. In SnpEff, "intragenic" refers to SNPs in introns rather than exons of 

genes, while "missense" refers to any non-synonymous mutation in the transcribed region. 

As shown in Table 3.2, most of the SNPs are between genes (in the intergenic regions) 

and likely have no direct effect on gene expression.  

 For the gene annotation, we focused on the other five types of SNP variant. We 

found several protein types that are likely relevant to drought tolerance and other 

environmental responses (Table 3.3). Some of the SNPs associated with TMAX 

(maximum summer temperature), TMIN (minimum winter temperature), CWD (climatic 

water deficit), and PCK4 (April snowpack) are in or near genes in the jasmonic acid 

synthesis or response pathways and the protein ubiquitination pathway, both of which are 

associated with responses to biotic or abiotic stress. Climatic water deficit and snowpack 

were also associated with SNPs in or near genes involved in seed dormancy and the 

abscisic acid (ABA) signaling pathway, both of which have been previously linked to 

drought responses in trees (Moran et al. 2017). Genes involved in reproduction, including 

pollen and ovule formation, were associated with TMAX, TMIN, and PCK4. CWD and 

PCK4 were associated with genes involved in cell wall organization. Both TMAX and 

PCK4 were associated with genes involved in xylem and phloem formation, and growth 

regulation and stress responses, while TMIN and PCK4 were associated with genes 

involved in stomatal regulation and pathogen responses. Further biotic and abiotic stress 

response genes were associated with PCK4, as were genes involved in nutrient transport, 

photosynthesis, respiration, sugar synthesis, and light responses. 

 For many of the other loci associated with environmental gradients, gene ontology 

results were too vague to draw many conclusions about their function or why the 

association might exist. However, some of these genes have been previously associated 

with stress, including Ras-related protein RABC1 to drought responses (Khassanova et al. 

2019), and pentatricopeptide repeat-containing protein to cold stress (Xing et al. 2018). 

Two of the SNPs associated with minimum temperature are found in the intragenic 

region of CGS1 and RE2, genes known to be upregulated during cold stress (Dinari et al. 

2013) and heat stress (Traylor-Knowles et al. 2017), respectively. Most of the others are 

involved in gene expression (RNA or DNA binding, transcription factors, helicase 

activity, ribosome components, methylation) or ATP binding.  

 

3.4 Discussion 

Based on the gene ontology and protein function annotation of climate-associated 

SNPs, we found many linked to genes implicated in abiotic or biotic stress responses. We 

also identified several SNPs in or near genes with previously unsuspected roles in local 

adaptation. Our findings suggest the efficiency of G2E analysis with GBS to uncover the 

adaptive genetic variation in ponderosa pine as well as the important genes and proteins 

involved, thus provide new insights on the adaptive potential of ponderosa pine. 

Over half (1729) of the SNPs identified as being associated with climate were 

only associated with PCK4. This may reflect the importance of snow affecting the 

distribution of ponderosa pine in the Sierra Nevada mountains. In this Mediterranean 

climate region, most of the annual precipitation occurs during the winter, and the spring 

and early summer discharge of its major rivers is supplied mostly by melting of winter 
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snow accumulation at high elevations (Serreze et al. 1999). However, a heavy snowpack 

may also delay the start of the growing season for juvenile trees. Consistent with this, at 

least one of the associated SNPs was linked to light response. The number of SNPs 

associated with more than one climatic variable was surprisingly low, but this may 

simply indicate that we were successful in selecting climatic variables that are not 

strongly correlated with one another and which require different genetic adaptations in P. 

ponderosa. The highest degree of overlap was between PCK4 and TMIN (62 SNPs) and 

between CWD and TMIN (45 SNPs). The former might be related to adaptation to cold 

versus heat and/or winter precipitation, while the latter might be related to how quickly 

the site warms up, drying out the soil. 

Most of the environmentally associated SNPs were identified as being intergenic 

and so their function, if any, is unclear. Of the remaining SNPs, most of them are in 

introns, which are not transcribed. There are also many synonymous mutations, which do 

not result in an amino acid change and are assumed to be neutral with respect to fitness. 

Either intragenic or synonymous variants might also be in linkage disequilibrium with a 

causal variant outside of the sequenced area. There were also quite a few upstream and 

downstream SNPs that could affect gene expression. Finally, non-synonymous variants 

may directly affect phenotype as they alter which amino acid is coded for; 53 of the 

climate-associated SNPs fell into this category.  

The prevalence of genetic associations related to ubiquitination and abscisic acid-

signaling pathways is consistent with prior studies of drought response in conifers 

(Moran et al. 2017). Increasing abscisic acid (ABA) concentrations are used as a signal to 

keep stomata closed during dry conditions, reducing water loss (Brodribb et al. 2014). In 

addition, ABA signaling can also affect shoot growth and water uptake (Buckley 2005, 

Hamanishi and Campbell 2011). Ubiquitin has been found to be involved in drought 

responses in model species by playing a role in ABA-mediated dehydration stress 

responses (Ryu et al. 2010, Kim et al. 2012), or through the downregulation of plasma 

membrane aquaporin levels (Lee et al. 2009). The study of the role of ubiquitin in conifer 

drought response is still somewhat limited.  

Quite a few genes involved with cell division or growth of roots or shoots were 

found to be associated with April snowpack and maximum temperature, which are 

consistent with the conifer growth patterns. The main burst of growth in Sierra Nevada 

conifers begins with the melting of the snowpack in the spring while the soil is moist 

from winter precipitation (Royce and Barbour 2001). Thus, April snowpack can act as a 

selective force for the genes involved in cell division or growth in conifers. Moreover, 

root and shoot morphology may also strongly affect how ponderosa pine access and use 

water during the summer hot and dry period (Kolb et al. 2016a). Summer temperatures 

are relevant for drought stress, as higher temperatures mean faster evaporation of water 

from the soil. In seedlings of Sierra Nevada conifers, maximum summer temperature has 

a strong effect on growth and survival (Moran et al. 2019). Many of the same genes 

associated with these climatic factors have also been linked to various biotic and abiotic 

stress responses. These stresses can interact with, for example, drought stress being 

associated with greater risk of bark beetle attack in pines (Kane and Kolb 2010, Fettig et 

al. 2019). 
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SNPs in or around genes involved in vascular tissue formation were found to be 

associated with maximum temperature or snowpack, which may be related to managing 

water transport in hotter and drier versus wetter and colder environments. We 

hypothesize that the genes involved in cell wall organization and associated with CWD or 

snowpack might also be involved in xylem formation, as the degree of cell expansion 

during xylem formation can have a strong effect on the drought resistance of that xylem 

(Anfodillo et al. 2012, Bryukhanova and Fonti 2013). Various genes linked to 

reproduction were associated with April snowpack and maximum and minimum 

temperatures. Pines release their pollen in early spring, and so early spring temperatures 

could affect reproductive success, while summer stress could impede cone growth. 

signaling can affect shoot growth and water uptake. 

To conclude, by investigating adaptive genetic variation in ponderosa pine with 

G2E association analysis, our study has found numerous genomic variants distributed 

across the genome with gene function associated with response to climate. With the 

identified associations, it is possible to develop molecular tools based on the associated 

genetic markers to assist breeders and gene resource managers in developing and 

managing adapted populations, which have been lacking to date. These tools may thus 

contribute to a way to shorten the long periods of time that tree breeders need to assess 

adaptation; this effort is especially important given the current rapidly changing climate. 

In addition, our results should open up new opportunities for functional studies to 

determine the molecular roles of the genes underlying these associated genetic makers in 

influencing trees adaptation. 
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Table 3.1 Principal component analysis on allele frequencies with a total of 4,155,896 

SNPs for 223 individuals of Pinus ponderosa. 

 

K 
proportion explained 

variation 
p-valuea 

PC1 0.7813 8.00e-09 *** 

PC2 0.7420 8.00e-09 *** 

PC3 0.6934 0.5001 

Tracy-Widom test: * = p < 0.05; ** = p < 0.01; *** 

=p < 0.001. 
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Table 3.2 SNP annotation with SnpEFF for SNPs significantly associated with Mean 

maximum temperature of summer (TMAX), April 1st snow pack (PCK4), Mean climatic 

water deficit (CWD), and Mean minimum temperature of winter (TMIN). 

 

Variant type TMAX PCK4 CWD TMIN 

intergenic 172 1505 103 286 

downstream 2 29 4 6 

intragenic 11 142 4 31 

synonymous 5 27 6 5 

upstream 12 53 3 5 

missense 10 41 0 2 

other 1 1 0 0 

Total 213 1798 120 335 
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Table 3.3 Gene ontology for selected environmentally-associated SNPs 

 

SNP Variant type Function Climatic 

variables 

V500239 downstream (UPL6) Ubiquitination CWD, 

TMIN 

V2200849 upstream (CKAN 

_00899300) 

Ubiquitination/ 

deubiquitination 

CWD, 

TMIN 

V20216 upstream (LOC101490788) Ubiquitination PCK4 

V188 intragenic 

(POPTR_012G114000) 

Ubiquitination PCK4 

V236215 intragenic 

(POPTR_018G017000) 

Deubiquitination PCK4 

V4149648 upstream 

(CISIN_1g0374611mg) 

Deubiquitination TMAX 

V1706945 synonymous (DOG1) ABA-signaling, seed 

dormancy 

CWD 

V226436 upstream (PED1) Regulation of ABA signaling 

pathway, jasmonic acid 

biosynthesis, acetyl-CoA C-

acyltransferase 

PCK4 

V827507 upstream (At2g30020) ABA signaling pathway, 

fungal defense, wounding 

response 

PCK4 

V874448 upstream (ADH1) Alcohol dehydrogenase; 

ABA response, abiotic stress 

responses 

PCK4 

V2430900 missense (CRRSP38) ABA response PCK4 

V2860171 missense (ASPG2) aspartic-type endopeptidase; 

may be involved in ABA 

response 

PCK4 

V2580017 synonymous (Expansis-A8) Cell wall organization CWD, 

TMIN 

V977622 upstream (DVH24_020216) Pectinesterase, cell wall 

modification 

PCK4 

V936328 synonymous (CET1) Reproductive structure 

initiation 

PCK4 

V2497819 intragenic (NPY3) Flower development; 

gravitropism; ubiquitination 

PCK4 

V1475638 upstream (JGB) Negatively regulates pollen 

germination 

PCK4 

V252751 downstream (OVA5) Isoleucine--tRNA ligase TMAX 
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Ovule development; 

mitochondrial translation 

V3376786 intragenic (CYP94B3) Anther, stigma, pollen, and 

fruit development; Jasmonic 

acid metabolism; wounding 

and insect defense 

TMIN 

V544191 missense (VCC) Vascular tissue histogenesis; 

cotyledon/leaf development 

PCK4 

V794961 missense (ERF1A) Vascular tissue histogenesis; 

cell division; ethylene-

activated signaling pathway; 

defense 

PCK4 

V871503 missense 

(AMTR_s00029p00093020) 

Xylem and phloem pattern 

formation; wounding 

responses 

PCK4 

V205892 upstream 

(AMTR_s00050p00190920) 

Uncharacterized protein 

linked to RNA binding and 

vascular histogenesis 

TMAX 

V26357/ 

V26294 

synonymous/upstream 

(RCN11) 

Shoot development, 

xylosyltransferase activity, 

involved in seed germination 

PCK4 

V361321 upstream (PSP) Embryo, pollen, and root 

development 

PCK4 

V2104 intragenic 

(AMTR_s00086p00155510) 

Uncharacterized protein 

linked to cell division 

PCK4 

V355233 missense (CYCU1-1) Cell division TMAX 

V3495148 upstream (DRP3A) Cell division TMAX 

V2606140 missense (SMAX1) Seed germination and 

seedling development 

PCK4 

V2871460 downstream (BTAF1) Positive regulation of shoot 

apical meristem development 

PCK4 

V2900744 missense (BHLH140) DNA replication/repair; 

regulation of secondary shoot 

formation 

TMAX 

V1869244 synonymous (CYCA2-3) Cell division, lateral root 

formation, stomatal 

development 

TMAX 

V3052564 synonymous (SBT1.2) Cell division, stomatal 

complex morphogenesis 

TMIN 

V3160030 synonymous (RPD1) lateral root morphogenesis, 

cell division 

TMAX 

V58925 upstream (GSH2) Jasmonic acid response 

(biotic & abiotic stress 

response) 

TMAX 
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V2423550 missense (FDH) cuticular wax and suberin 

biosynthesis; response to 

cold and light stimulus 

PCK4 

V1193343 upstream 

(SELMODRAFT_444240) 

Growth regulation and 

abiotic stress response 

PCK4 

V3861133 synonymous (4CL) 4-coumarate-CoA ligase, 

involved in phenylpropanoid 

pathway (anthocyanins, 

flavonoids, lignin) 

PCK4 

V1847064 downstream (4CL1) 4-coumarate-CoA ligase, 

involved in phenylpropanoid 

pathway (anthocyanins, 

flavonoids, lignin) 

TMAX 

V3946851 upstream (ASD2) Alpha-L-

arabinofuranosidase; 

Possibly involved in 

secondary wall formation & 

leaf abscission 

PCK4 

V3278803/ 

V3278802 

synonymous/missense 

(BIG) 

Auxin transport protein 

connected to lateral root 

formation and fungal 

pathogen defense 

PCK4 

V360205 missense (CAMTA1) Calmodulin-binding 

transcription activator 

involved in response to 

auxin, freezing, & drought 

PCK4 

V3689405 downstream (CPK29) Stomatal regulation, fungal 

pathogen defense, salt 

tolerance 

PCK4 

V1961287 synonymous (PBL10) Stomatal regulation, 

pathogen defense 

PCK4 

V1291321 intragenic (LOC104587219) Regulation of stomata and 

mitotic cell division 

TMIN 

V182112 synonymous (HSP70-1) Heat-shock protein linked to 

biotic & abiotic stress 

response 

PCK4 

V2562111 synonymous (RLK5) Protein kinase linked to 

biotic & abiotic stress 

response 

PCK4 

V1030420 synonymous (RPA2-6) Ethylene-responsive 

transcription factor involved 

in biotic & abiotic stress 

response 

PCK4 

V1197299 synonymous 

(LOC103718892) 

Zinc-ion binding, linked to 

biotic & abiotic stress 

PCK4 
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response 

V2371749 synonymous 

(PCMP-H24) 

Zinc-ion binding, linked to 

biotic & abiotic stress 

response 

PCK4 

V1939429 synonymous (PCMP-H43) Zinc-ion binding, linked to 

biotic & abiotic stress 

response 

PCK4 

V1676572 synonymous (TAO1) Bacterial pathogen response PCK4 

V2688536 upstream (NQR) NADPH:quinone 

oxidoreductase; Bacterial 

pathogen defense 

PCK4 

V260166 downstream (AMC1) Defense/ programmed cell 

death 

PCK4 

V2288200 synonymous 

(LOC107818721) 

disease resistance, signal 

transduction 

PCK4 

V2968038 intragenic (L484_022527) Terpenoid (defensive 

chemical) biosynthesis 

PCK4 

V2157327 missense (At4g10780) Defense response TMIN 

V2918743 synonymous (PHO1-3) Phosphate transport PCK4 

V2269173 upstream (NPF2.13) Nitrate transport PCK4 

V2881124 downstream 

(CTI12_AA142310) 

PEP carboxylase activity 

(photosynthesis) 

PCK4 

V3663893 downstream 

(CKAN_00949400) 

Pyruvate dehydrogenase 

component (glycolysis) 

PCK4 

V300383 upstream 

(AMTR_s00106p00019920) 

Sucrose synthesis PCK4 

V3032541 upstream (TPS6) Trehalose synthesis (can be 

involved in cold/drought 

response) 

PCK4 

V2862091 missense (MST3/STP1) Glucose import (cell wall 

formation?) 

TMAX 

V2433948 upstream (FRO6) Ferric reduction oxidase; 

Response to light stimulus 

PCK4 
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Figure 3.1 Geographic distribution of the 223 ponderosa pine individuals. The black dots 

represent original genotype source locations. 
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Figure 3.2 Plot of Cross-validation (CV) error of 223 ponderosa pine individuals based 

on a total of 4,155,896 SNPs at K=1, 2, 3, 4, 5, 6. K represents the number of populations. 
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Figure 3.3 Admixture analysis of 223 individuals based on a total of 4,155,896 SNPs at 

K=2. K represents the number of populations. 
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Figure 3.4 Population structure of the 223 individuals based on a total of 4,155,896 SNPs. 

Genetic assignments under K = 2 based on admixture results. K represents the number of 

populations. The circle represents the location of each individual. The proportion of 

yellow and green in the circle represents genetic contribution of each of the two 

populations to each individual. 
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Figure 3.5 Venn diagram comparing SNPs overlap between the ones significantly (q ≤ 

0.05) associated with Mean maximum temperature of summer (TMAX), April 1st snow 

pack (PCK4),  Mean climatic water deficit (CWD), and Mean minimum temperature of 

winter (TMIN).  
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Chapter 4 

Seedling drought response physiology associated with genetic variation in ponderosa 

pine 

 

 

4.0 Abstract 

Drought stress is a major cause of tree mortality in Mediterranean coniferous 

forest in western United States. This study dissects the genetics of drought tolerance traits 

in ponderosa pine (Pinus ponderosa) by combining genotype-to-phenotype (G2P) 

association analysis with a greenhouse experiment. We collected seeds from 48 

genotyped mother trees and planted seeds from each maternal family into 10 tubular pots 

in both dry and wet water treatments. Eight phenotypic traits were measured during or 

after the greenhouse experiment. Six drought-responsive traits were identified, including 

RL (root length), GR (height growth), SW (shoot weight), R2S (root-shoot dry mass 

ratio), SDAD (stomata density on adaxial side), NRAB (number of stomatal rows on 

abaxial side). Seedlings exposed to drought exhibit larger RL, R2S, SDAD, NRAB, and 

lower GR and SW. We ran a G2P analysis using maternal genotype (chapter 3) and the 

breeding values for these 6 traits using LFMM2. We found 153 SNPs strongly associated 

with RL, 80 with SW, 145 with GR, 42 with SDAD, 85 with NRAB, and 1530 with R2S. 

The identified SNPs reside in or near genes with a wide variety of functions, including 

ubiquitination, abscisic acid (ABA) signaling pathway, cell division or growth of roots or 

shoots, and cell wall organization. Roots play a critical role in both the drought 

responsive traits and the function of correlated genes, which need to be incorporated to 

understand the response of pine trees to climate change in future studies. 

 

4.1 Introduction 

Under the on-going anthropogenic climate change, longer, more frequent and 

more intense drought periods are predicted in California, which already has a summer-

dry Mediterranean climate (Giorgi and Lionello 2008, IPCC 2014). Water stress will 

therefore be a leading constrain on plant survival and productivity and has already been 

driving drought-induced mortality in California and other dry forests around the world 

(Loarie et al. 2009, Pereira et al. 2010, Allen et al. 2010). The potential to adapt to the 

new environmental conditions can be achieved by phenotypic plasticity at the individual 

level, and either genetic adaptation or range shift at the population level (Aitken et al. 

2008, Anderson et al. 2012, Alberto et al. 2013). A better understanding of adaptive 

genetic variation can help clarify to what extent Mediterranean trees are adapted to 

current moisture gradients and can help us better predict and manage forests in a 

changing climate (White et al. 2007, Neale and Kremer 2011). In particular, the first-year 

seedling stage is a bottleneck for the establishment and growth of forest species because 

seedlings are highly susceptible to resource limitations and have much higher mortality 

than established individuals (Grubb 1977, Leck et al. 2008).  

Some traits thought to be involved in drought tolerance of conifer trees include 

root-to-shoot ratio, root biomass and length, specific leaf area (SLA, the ratio of leaf area 

to dry mass), stomatal conductance, and water use efficiency (WUE, the ratio of CO2 

assimilation to transpiration) (Picon et al. 1996, Cregg and Zhang 2001, de Miguel et al. 
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2012, Olmo et al. 2014, Moran et al. 2017). Most recent research on drought stress has 

focused on aboveground tree parts (McDowell et al. 2008, Ryan 2011, Hamanishi and 

Campbell 2011) due to the difficulties in observing and studying roots (Brunner et al. 

2015). However, roots play an important role in drought responses of trees by being 

responsible for water uptake and acting as sensors for water-deficit conditions (Brunner 

and Godbold 2007, Hamanishi and Campbell 2011). For example, studies show that 

seedlings of trees also increase allocation of biomass to roots to augment water 

acquisition during drought (Markesteijn and Poorter 2009). Thus, a better understanding 

of the physiology and genetics of root traits would improve our understanding of drought 

tolerance in forest trees.  

Multiple provenance studies have shown that genetic differences are likely to play 

an important role in drought-tolerance (McDowell et al. 2008, Moran et al. 2017). For 

example, seedlings from dry environments often exhibit more root growth, higher 

drought survival (Cregg and Zhang 2001), and higher WUE (Cregg et al. 2000, Voltas et 

al. 2008). Moreover, several studies have investigated changes in gene expression in 

drought-stressed conifer seedlings (Ralph et al. 2006, Hamanishi and Campbell 2011). 

Some of the genes identified include late-embryogenesis-abundant (LEA) proteins - 

involved in seed dormancy, which also requires tolerance of dry conditions - and 

abscissic acid (ABA) signaling pathways, which are involved in stomatal regulation. 

(Ralph et al. 2006, Hamanishi and Campbell 2011). Most of the gene expression changes 

return to normal after re-watering the drought-stressed seedlings; such changes are likely 

responsible for plastic environmental responses, rather than locally adaptive differences 

in mean trait values (Bräutigam et al. 2013).  

Some fundamental questions are still largely unresolved, including the nature and 

number of genes involved in drought-tolerance traits (Barton and Keightley 2002, Prunier 

et al. 2011). Recently, there has been an increase in the use of genetic association 

techniques to identify genes underlying quantitative traits in forest trees (Eckert et al. 

2010a). A quantitative trait is a phenotype that exhibits continuous variation due to the 

cumulative actions of many genes. Genotype-to-Phenotype (G2P) association, which 

identifies loci linked to a particular quantitative trait by correlating genotypes at SNPs 

with the variation in certain traits (Eckert et al. 2009, Holliday et al. 2010), can help to 

identify the genes underlying the drought response traits of trees. To reduce or eliminate 

the effects of environmental differences on phenotypes, traits must be measured in a 

common environment, such as a greenhouse or common garden.  

Ponderosa pine (Pinus ponderosa) is a highly valuable Mediterranean coniferous 

species in the western United States, where it is a widely adapted and ubiquitous conifer 

(Conkle and Critchfield 1988). However, the genetics of drought tolerance traits in this 

species are largely unknown. Some studies have emphasized the importance of 

intraspecific variation of P. ponderosa for responses to climate change, but mainly focus 

on the phenotypic variation within and among populations rather than the genetic basis of 

this variation (Kitzmiller 2005, Kolb et al. 2016). A deep understanding of the genetic 

basis of drought tolerance traits in ponderosa pine is critical for successful reforestation, 

for conservation and restoration programs, and for potentially coping with climate-

induced species range changes. 
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The main objective of this work was to unravel the genetic basis of different 

physiological traits in response to drought for P. ponderosa seedlings. For this purpose, a 

greenhouse experiment together with a G2P association analysis was employed. We used 

SNPs derived from GBS of widely distributed individuals of ponderosa pine from the 

Sierra Nevada. Our specific research objectives were the identification of: 1) 

physiological traits in response to drought in the greenhouse experiment with 48 maternal 

families of seedlings grown under both dry and wet conditions; 2) identification of loci 

and genomic regions underlying these traits through G2P analysis; and 3) identification 

of a set of promising candidate genes and the annotated function involved with these loci.  

 

4.2 Materials and method 

4.2.1 Common garden procedure  

In the 1970’s, the Forest Service's Pacific Southwest Regional Genetic Resources 

Program planted clones of 302 wild ponderosa pines in Chico, California. They came 

from diverse climate conditions in the central portion of California's Sierra Nevada 

mountains (Chapter 1). For this study, wind-pollinated seed was collected from 50 parent 

trees of P. ponderosa among those already genotyped (Chapter 3). For each family, I 

collected two to three cones during summer 2018 and put them into paper bags. Because 

pines are wind-pollinated outcrossing species (Williams 2009), seeds from the same tree 

are mostly half-siblings, occasionally full-sibs.  

Once the cones were dry, I collected all the seeds from each individual and stored 

them in the refrigerator. During winter 2018, the collected seeds were stratified to break 

dormancy. Seeds were place in an open tank with water, which was shaken several times 

to aerate the water, for 48 hours. After soaking, seeds were surface-dried and then placed 

in plastic bags in the refrigerator (~1.7°C) for 6 weeks. Only 48 families had enough 

seeds for the greenhouse experiment. 

 We aimed to have 10 seedlings from each maternal family in both wet and dry 

treatments, 1000 seedlings in total. We used plastic tubes 8-cm in diameter and 120-cm 

long for planting, because the maximum root length in a pilot experiment conducted in 

2017 was more than 110 cm. We used PVC pipes to also build 10 frames with 100 tubes 

in each frame. The planting soil was a mixture of 70% sand, 20% vermiculite, and 10% 

organic-rich potting mix to mimic the coarse texture of the soil of Sierra Nevada conifer 

forests (Bales et al. 2011).  

Seeds were planted in February 2019. Two seeds from each family were planted 

into each tube to allow for failed germination, with two tubes from each family per frame 

(20 seedlings per family total). Tubes were labeled with family ID and randomly placed 

within each frame. In April 2019, we replanted more seeds in any tubes without seedlings. 

All the tubes were watered every other day during the germination and seedling 

establishment period (February through June).  

At the end of June 2019, extra seedlings were removed, and alternating frames 

were assigned to the wet treatment and the dry treatment (five frames containing up to 

500 seedlings per treatment) (Figure 4.1). The wet treatment group was watered twice 

every week and the drought treatment group was watered once every three weeks until 

mid-October (3.5 months). While wild ponderosa pine seedlings would receive little to no 

precipitation during the summer months, this occasional watering was necessary in the 
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greenhouse environment even in the dry treatment to prevent complete mortality. 

Temperatures inside the greenhouse in the low-elevation environment of Merced, CA 

could reach as high as 37 °C on the hottest days and the soil volume of the tubes was 

limited, with no access to groundwater, both of which could make evaporation and 

drought stress more intense than the no-precipitation condition in the wild.   

 

4.2.2 Phenotypic measurements and analysis  

Several phenotypic traits were measured during and after the greenhouse 

experiment. Before implementing the drought treatment, we recorded the initial shoot 

height of each seedling. We also measured the final height of the seedlings before they 

were harvested in October. Thus, we calculated shoot growth as final height minus initial 

height. Immediately after the harvesting (to avoid shrinkage), the length of fresh roots 

was measured from soil surface to taproot tip. Following harvest, needles, fresh stem and 

fresh roots of all the seedlings were separately put into paper lunch bags and dried in the 

oven at 75 °C for 48 hours. We measured root dry mass (RW) as well as shoot weight 

(SW, total of stem and needles). We then calculated root-shoot ratio (R2S) as RW/SW. 

Specific Root length (SRL) was calculated as root length/root weight. 

Before harvest, we also collected 3-4 fresh needles for each living seedling to 

calculate stomatal density. In pines, stomata are arranged into longitudinal rows. We put 

each needle on a slide and photographed it at 100x magnification using a Leica DME 

compound microscope equipped with a Leica DFC290 digital camera. All counts were 

conducted near the middle of the needle to avoid variation that might occur at the base 

and at the tip. Approximately 1.96 mm lengths of needle randomly placed along its 

adaxial (upper) and abaxial (lower) surfaces were surveyed for number of stomata and 

stomatal rows. Needle width was measured in magnified images using the line measure 

tool in the Leica software. Then we calculated the stomata density on each side as the 

number of stomata divided by 1.96 times needle width. Individual seedling means were 

calculated by averaging abaxial (AB) stomatal density of AB and number of stomatal 

rows on both sides (AB & AD) across sampled needles.  

In summary, the following eight traits were recorded in the greenhouse 

experiment: height growth (GR; cm), root length (RL; cm), dry shoot weight (SW; g), dry 

root weight (RW; g), the ratio of root to shoot dry mass (R2S), specific root length (SRL; 

cm/g), stomata density of adaxial side (SDAB; /mm2), number of stomatal rows on 

abaxial side (NRAB), and the number of stomatal rows on abaxial side (NRAD). Only 42 

out of 48 mother trees had enough germination to carry out these measurements across 

both treatments. After obtaining the these phenotypic data, we ran analyses of variance 

(ANOVA) in R (www.rproject.org) to test which phenotypic traits are significantly 

related to drought treatment by comparing the data from wet and dry treatment while 

accounting for block (planting box-level) differences. 

 

4.2.3 Genotype-phenotype association analysis 

The 42 individual mother trees had already been genotyped for over 4 million 

SNPs using GBS (Chapter 3). We used these same SNPs for the G2P association analysis, 

focusing on the traits significantly associated with drought treatments. The breeding 

value (BV) of a tree for a given trait (that is, biomass production or height) accounts for 
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the sum of gene effects that contribute to that trait. An individual with a high BV for root 

length, for instance, tends to produce offspring with long roots. The BV of an individual 

is estimated by measuring the relatives (Meuwissen et al. 2001, Isik 2014), in this case as 

the average trait value for the 10 offspring in the wet treatment. We used LFMM 2 (Caye 

et al. 2019) (details in Chapter 3) to run the genotype to phenotype association analysis, 

and then identified associations based on p (<10-5) value.  

 

4.2.4 Gene annotation 

After we identified the significantly associated SNPs, we ran SnpEff (Cingolani et 

al. 2012) for SNP annotation. We built the data base with the annotated genome and the 

reference genome of loblolly pine v.2.01 in TreeGenes 

(http://treegenesdb.org/FTP/Genomes/Pita/v2.01/). Then we aligned the gene sequence 

against the nonredundant protein sequences database using UniProt to identify the gene 

and protein with the implemented Blastx (2.9.0+, e < 1e−10). The Gene Ontology 

Annotation Database (“UniProt” 2015, Bateman et al. 2017) was used to further identify 

the potential functions of the genes.  

 

4.3 Results 

4.3.1 Drought responsive traits  

 As shown in Table 4.1 and Figure 4.1, six out of the eight measured phenotypic 

traits were significantly different in the drought treatment versus the wet treatment, 

including RL (root length), GR (height growth), SW (shoot weight), R2S (root-shoot dry 

mass ratio), and SDAD (stomatal density on adaxial side), NRAB (number of stomatal 

rows on abaxial side). In the drought treatment, seedlings grew longer roots, gained less 

dry shoot height and mass, had higher stomatal density on adaxial side of the needle and 

more stomatal rows on abaxial side, and had a higher root to shoot dry mass ratio (Figure 

4.2).  

 

4.3.2 Phenotypic associations at individual loci 

After the running of LFMM2, we found many significant associations between 

SNPs and the six phenotypic variables. There are 153 SNPs strongly associated with root 

length, 80 with shoot weight, 145 with height growth, 42 with stomata density on adaxial 

side, 85 with number of stomatal rows on abaxial side, and 1530 with root-shoot ratio. 

Only a few SNPs overlapped among these six traits. There are 21 SNPs associated with 

both root length and root-shoot ratio, and 26 SNPs associated with both root-shoot ratio 

and height growth, but no overlapping among these two sets of SNPs.  

 

4.3.3 Gene annotation 

 Table 4.2 shows locations of SNPs relative to genes according to SnpEFF. 

Catagories intragenic (intron) variants, intergenic variants, upstream SNPs, downstream 

SNPs, and synonymous or missense variants in the gene coding sequence. According to 

the user manual of SnpEFF, missense variant is defined as non-synonymous variant. 

Most of the SNPs are between genes (in the intergenic regions) and likely have no direct 

effect on gene expression. For the gene annotation, we focused on the other five types of 

SNP variant.  

http://treegenesdb.org/FTP/Genomes/Pita/v2.01/
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Table 4.3 shows selected phenotypically associated SNPs. We found several 

protein types that are likely relevant to the drought responses. Some of the SNPs 

associated with RL, GR, R2S and SDAD are in or near genes in the protein ubiquitination 

pathway. Some SNPs associated with RL are linked to the jasmonic acid synthesis 

pathway. NRAB (number of stomatal rows of abaxial side) and R2S were associated with 

SNPs in the abscissic acid (ABA) signaling pathway. The ABA pathway is involved in 

stomatal closure in response to drought stress, while protein ubiquitination and jasmonic 

acid signaling are involved in both biotic and abiotic stress responses (Moran et al. 2017). 

Only GR was associated with SNPs in near genes involved in seed dormancy, which can 

also be involved in drought responses (Moran et al. 2017). NRAB and R2S were also 

associated with genes involved in cell wall organization and pectin synthesis. Genes 

involved in auxin biosynthesis in roots, root hair and lateral root formation, were 

associated with R2S, SW (shoot weight), and NRAB. All of these processes are related to 

plant cell division and root and shoot growth. GR was associated with genes involved in 

stomatal development and cell division. 

 For many of the other loci associated with phenotypic variables, gene ontology 

results were too vague to draw many conclusions about their function or why the 

association might exist. However, some of these genes have been previously associated 

with plant stress, including leucine-rich protein with stress responses in roots (Park et al. 

2014), Inosine-uridine preferring nucleoside hydrolase with drought responses in roots 

(Micheletto et al. 2007), pentatricopeptide repeat-containing protein to abiotic and biotic 

stress (Xing et al. 2018), Metallophos protein to drought (Gugger et al. 2017), and 

Retrovirus-related Pol polyprotein from transposon TNT 1-9 related to biotic and abiotic 

stress (Huang et al. 2018). Most of the others are involved in gene expression (RNA or 

DNA binding, mRNA process, helicase activity, ribosome components, methylation) or 

ATP binding.  

 

4.4 Discussion 

Six drought-response-related traits were found in this study, including RL (root 

length), SW (shoot weight), R2S (root-shoot dry mass ratio), SDAD (stomata density on 

adaxial side), NRAB (number of stomatal rows on abaxial side), and GR (growth). Our 

study shows that drought-stressed ponderosa pine seedlings allocate more investment to 

their root system than to shoots, with longer root length, higher root to shoot dry mass 

ratio, less dry shoot mass and less height growth. Other studies have found a similar 

pattern in pines. For example Taeger et al. (2015) and Cregg and Zhang (2001) both 

identified a plastic response to drought by increased taproot length and root–shoot ratios 

in Scots pine (Pinus sylvestris) seedlings. Root growth of loblolly pine (Pinus taed 

seedlings was affected more than shoot growth by water stress, causing a higher root-

shoot ratio (Seiler and Johnson 1988, Cregg and Zhang 2001). Shoot and needle growth 

were significantly reduced in drought-treatment in P. sylvestris (Irvine et al. 1998). This 

may indicate acclimation to at the cost of overall low growth of aboveground structures 

in pines in response to dry soil. 

A positive relationship was identified between drought and both stomata density 

on the adaxial side and number of stomatal rows on abaxial side. Studies of different tree 

species have yielded conflicting results concerning how stomatal traits respond to 
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drought stress. Some studies have showed evidences of increasing stomatal density and a 

reduction in stomata size as a response to drought, interpreted as an adaptive response 

allowing for more sensitive stomatal regulation (Dunlap and Stettler 2001, Pearce et al. 

2006). However, other studies showed contradictory results. For example, Schoettle and 

Rochelle (2000) identified a significant decrease in stomatal density in limber pine (Pinus 

flexilis) with increasing elevation. Higher elevations in this case were drier than lower 

ones, suggesting that changes may be related to conserving water. In our study, a high 

stomatal density and number of stomatal rows, which can lead to a higher leaf gas 

interchange in short favorable periods and more control of water loss and gas exchange 

under drought stress (Afas et al. 2007), may be advantageous for ponderosa pine 

seedlings growing in harsh dry environments. Other studies have found a higher stomatal 

density and/or number of stomatal rows under drought in other Mediterranean pines, such 

as P. canariensis (López et al. 2008), P. brutia (Dangasuk and Panetsos 2004) and P. 

pinaster (Wahid et al. 2006). 

Most (1530) of the environmentally-associated SNPs were linked to R2S while 

only 80 were linked to SW, which may reflect the importance of biomass allocation to 

roots instead of shoots in response to drought. Consistently, some of the SNPs associated 

with R2S were in or near genes responsible for root hair formation, lateral root 

development, drought response in roots, and ABA signaling. The upstream SNP 

associated with NRAB was also linked to lateral root formation. Though no overlapping 

SNPs were found between R2S and SW, an overlapping function (auxin biosynthesis in 

roots) of related genes was found. Studies have identified the critical role of auxin in root 

development and ABA signaling under water stress, mostly in model species. For 

example, Xu et al. (2013) found that moderate water stress increased ABA accumulation 

and auxin transport in the root apex in rice and Arabidopsis thaliana plants, which 

enhanced proton secretion for maintaining primary root elongation and root hair 

development. Moreover, auxin also positively modulated the lateral root number and 

ABA-responsive genes expression in Arabidopsis under drought stress condition (Shi et 

al. 2014). Many plants use ABA concentrations as a signal to keep stomata closed 

(Brodribb et al. 2014) and affect shoot growth and water uptake (Buckley 2005, 

Hamanishi and Campbell 2011), thus affect the drought response. However, how auxin 

regulates roots and ABA is largely unknown in conifers. Our study may indicate the 

critical role of auxin and its regulation on roots and ABA in pines trees under drought 

condition. 

The prevalence of genetic associations related to ubiquitination, including SNPs 

associated with RL, GR, R2S and SDAD is consistent with prior studies of drought 

response in conifers (Moran et al. 2017). Ubiquitin has been found to be involved in 

drought responses in model species by playing a role in ABA-mediated dehydration 

stress responses (Ryu et al. 2010) or by the downregulation of plasma membrane 

aquaporin levels (Lee et al. 2009). For example, Kim et al. (2012) found that ubiquitin 

protein was induced in developing lateral roots, root tips and the vascular tissues of tap 

roots in ABA-mediated dehydration stress responses in Arabidopsis. However, the study 

of ubiquitin in relation to the drought response in conifer species is limited. One study in 

black spruce (Picea mariana) identified 16 out 313 candidate genes correlated with 

precipitation, including the genes in the ubiquitin protein handling pathway, but the 
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related traits were unknown (Prunier et al. 2011). The association between ubiquitin 

protein and roots and stomatal density may indicate the potential role of ubiquitin protein 

in roots and stomata responses in conifer species under water stress.  

Quite a few genes involved with cell wall organization and pectin catabolic 

processes were found to be associated with R2S and NRAB. Studies have identified the 

critical role of cell wall components, such as pectin, in stress response in different plant 

species (Jarvis 2009, Seifert and Blaukopf 2010, Wolf and Greiner 2012, Le Gall et al. 

2015). In conifers, Pattathil et al. (2016) found that the loosening of cell wall pectic 

components might trigger stress-signaling responses and thus initiate a cascade of stress-

mitigating processes in loblolly pine. Another study in Pinus radiata found that increases 

in cell wall elasticity may be related to drought tolerance (De Diego et al. 2013). In 

addition, the genes involved in cell wall organization might also be involved in xylem 

formation, as the degree of cell expansion during xylem formation can have a strong 

effect on the drought resistance of that xylem (Anfodillo et al. 2012, Bryukhanova and 

Fonti 2013). However, how the cell wall organization and pectin catabolic process differs 

between organs under drought conditions in trees is still largely unknown. Our study may 

indicate that changes cell wall composition and pectin catabolic process in response to 

drought are different in shoots and roots. 

To conclude, our study represents a first step in understanding and dissecting the 

genetic architecture of drought responsive traits in ponderosa pine using G2P association 

analysis combined with a greenhouse experiment. We identified a total of 1839 SNPs 

associated with 6 drought responsive traits. The identified SNPs locate in genes with a 

wide variety of functions. Potentially, the identified genes and alleles are valuable 

resources for pine breeding through marker assisted selection and genomic selection, 

specifically under the rapid changing climate scenarios. In addition, roots play a critical 

role in both the drought responsive traits and the function of correlated genes in our study. 

Future studies may need to incorporate the roots traits to understand the response of pine 

trees to changing climate.  
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Table 4.1 Definition of 9 phenotypic traits and the ANOVA analysis results for them 

between wet and dry treatment, including RL, SW, RW, SRL, R2S, SDAD, NRAD, 

NRAB, and GR. 

 

Trait Definition p_value 

RL Root length (cm) 4.58e-08 *** 

SW Shoot weight (g) 2.18e-08 *** 

RW Root weight (g) 0.48846 

SRL Specific root length (cm/g) 0.0514 

R2S Root shoot dry mass ratio 1.12e-11 *** 

SDAD Stomata density on adaxial side  2.00e-14 *** 

NRAD Number of stomata row on adaxial side 0.1841 

NRAB Number of stomata row on abaxial side 0.0225 * 

GR Height growth (cm) 2e-16 *** 

* = p < 0.05; ** = p < 0.01; *** =p < 0.001.  
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Table 4.2 SNP annotation with SnpEFF for SNPs significantly associated with Root 

Length (RL), Shoot Weight (SW), Stomata density on adaxial side (SDAD), Number of 

stomata row on abaxial side (NRAB), Root shoot dry mass (R2S), and Height growth 

(GR). 

 

Variant type RL SW SDAD NRAB R2S GR 

intergenic 104 67 27 70 1317 113 

downstream 3 4 1 1 21 7 

intragenic 35 9 5 9 131 12 

synonymous 3 0 2 1 12 1 

upstream 5 0 4 4 35 8 

missense 3 0 3 0 14 4 

Total 153 80 42 85 1530 145 
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Table 4.3 Gene ontology for selected phenotypic-associated SNPs 

 

SNP Variant type (gene ID) Function 

Associated 

phenotypic 

variables 

V162712 intragenic (PHYPA_023122) Ubiquitination RL 

V3237504  

upstream 

(C4D60_Mb07t09060) Ubiquitination RL 

V3229603 upstream (LOC104592768) Ubiquitination R2S 

V75426 intragenic (UPL1) Ubiquitination GR 

V604584 intragenic (UBC23) Ubiquitination R2S 

V1267599 intragenic (RPN7) Deubiquitination SDAD 

V3880001 intragenic (RPN2A) Deubiquitination SDAD 

V3678861 

missense 

(CEY00_Acc20295) 

embryo development 

ending in seed dormancy GR 

V381864 downstream (ALDH7B4) 

ABA response; desiccation 

response NRAB 

V2990435 missense (WRKY51) ABA response R2S 

V979582 upstream (CRK2) ABA signaling R2S 

V114623 intragenic (DRP2B) 

ABA reponse; root hair 

initiation R2S 

V2262698 

downstream 

(RchiOBHm_Chr6g0256501) 

transferase activity ( UDP-

glucosyltransferase protein 

involved in water stress 

response through IBA) R2S 

V2183716 synonymous (ERF094) 

ethylene-activated 

signaling pathway; 

response to ethylene and 

jasmonic acid RL 

V765589 downstream (CSN5A) 

COP9 signalosome 

assembly (COP9 involved 

in auxin and jasmonate 

responses) R2S 
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V1290603 

synonymous 

(MIMGU_mgv1a012336mg) Cell wall organization NRAB 

V1412402 missense (TBR) Cell wall modification R2S 

V193982 intragenic (PME53) 

Cell wall modification; 

pectin catabolic process R2S 

V268065 intragenic (PAE6) 

Cell wall modification; 

pectin acetylesterase 

activity R2S 

V1766242 intragenic (ABCB4) 

transport of auxin in roots; 

root hair elongation R2S 

V1335792 intragenic (YUC9) auxin biosynthesis in roots SW 

V3570404 missense (TRN1) 

auxin-activated signaling 

pathway; leaf development R2S 

V4107103 upstream (LBD18) 

lateral root formation; 

xylem development NRAB 

V328590 downstream (MKK6) 

lateral root formation; 

stress-activated protein 

kinase signaling cascade; 

signal transduction by 

protein phosphorylation R2S 

V148025 upstream (KEU) 

vesicle trafficking 

(involved in root hair 

development); regulation 

of defense response R2S 

V1906092 missense (At5g63930) 

protein serine/threonine 

kinase activity (leucine-

rich protein involved in 

stress in roots) R2S 

V701195 synonymous (At1g33600) 

hormone-mediated 

signaling pathway 

(leucine-rich protein 

involved in stress in roots) R2S 

V113920 upstream (BVC80_9003g22) 

hydrolase activity (protein 

Inosine-uridine preferring 

nucleoside hydrolase 

response to drought in 

roots) R2S 

V296113 upstream (ACMD2_00993) 

hydrolase activity 

(expression of Metallophos 

protein during drought) R2S 
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V1479332 intragenic (NA) 

zinc ion binding 

(Retrovirus-related Pol 

polyprotein from 

transposon TNT 1-9 

related to biotic and abiotic 

stress) R2S 

V1601722 intragenic (PCMP-E76) 

zinc ion binding 

(Pentatricopeptide repeat-

containing protein linked 

to abiotic and biotic stress) R2S 

V2674615 

missense 

(AMTR_s00060p00214220) signal transduction SDAD 

V3159668 missense (TIR) 

defense response; signal 

transduction R2S 

V1862744 downstream (CPK34) pollen tube growth R2S 

V1647269 intragenic (PCMP-E76) 

lignin biosynthetic process; 

zinc ion binding  R2S 

V4145513 upstream (CYCA2-2) 

cell division;  stomatal 

complex development GR 
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Figure 4.1 Greenhouse setup for 10 boxes of tubes, including five wet and five drought 

ones. There are 100 seedling tubes in each of the box.  
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Figure 4.2 Boxplot of 6 traits in wet and dry treatment, including Root Length (RL), 

Shoot Weight (SW), Stomata density on adaxial side (SDAD), Root shoot dry mass 

(R2S), Number of stomata row on abaxial side (NRAB), and Height growth (GR).  
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