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BOOTSTRAP CALCULATIONS OF nx

SCATTERING USING THE MANDELSTAM ITERATION*

Bryan R. Webber
Lawrence Radiation Laboratory
University of California
Berkeley, California 94720

October 15, 1970

ABSTRACT

The resuits of éome strip model calculations of xn scattering
are preseﬁted. In thése calculations, unitarity is imposed by means of
the Mandélstam itératioﬁ. This procédufe has the ad&antage that the \
odtput trajectories and residues (inclﬁding their imaginary parts) may
be computed above as well as below‘threshold; thié is at present not
feasible in calculations using the N/thechnique. First, a bootstrap
calculation of the op frajectory is carried out, neglecting.Pomeranchuk
exchange. The extra requirement of self-consistency aﬁove threshold is
very striect, but a solution with satisfactory consistency between -1
and +2'GeV2 is -obtained. The scale of energy is established‘by giving

the p resonance the physical mass; the self-consistent p width is

then about 40O MeV. Various dynamical approximations are investigated,

and it is shown explicitly that the pion mass is not a significant

parameter of the dynamics. Finally, a‘bootstrap calculation of Both
the p and Pomeranchuk trajectories is presented. Except for the
Pomeranchuk residue; the results show satisfactory self-consistency
throughout the range -1 to +2 deVg. The self-consistent Pomeranchuk

trajectory has an intercept aP(O) ~ 1 and a slope d%(o) ~ 0.5 Gev °.
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singular, double integrals. TIn spite'of this forbidding numerical
9,10 N

prospect, the technlque has received some attention. It has con-

ceptual, if not mathematical, 51mp11c1ty, and 1t turns out that the i
real and 1mag1nary parts of the leadlng Regge trajectories and their
residues.are easily com@uted above threshold. Some more technical |
problems of the N/D method, such es those associated with repulsive
potentlals ‘1like that due to Pomeranchuk excha.nge,ll also appear to be
01rcumvented These dlfficultles are associated w1th the fact that the
1nput to the N/D equations should in any case be unltarlzed by means
of the Mandelstam 1teratlon. ThlS procedure has also been shown to be
necessery in nongelativistic potential scattez_'ing.l2

It appears, then, that the Mandelstam iteration, es a basis for
bootstrap calculatioﬁs, has languished rather because'of numerical
difficulties than on account of any dynamical inadequacies. Considerable
progress in'the solotion of these numerieal problems was mede by Bali,lo
who showed that results of adequate precision were obtalned from a
computer program that applied the Mandelstam iteration to nonrelat1v1stlc
potential scettering. Bali also found that the method, with a particular
cutoff prescription,l? gave interesting resulte in relativistic
calculations. |

In this paper we report fufther progress in the nﬁmerical . "
implementatioe of the Mandelstam iteration, mede possible by the
development of a new computer program that operates between five and

ten times faster than those used in earlier calculations. This speed

permits the laborious parameter searches inherent in bootstrap
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calculations to be carried out without excessive use of computer time,

and so it has become possible to apply this technique to the controver-

- sial gnx bootstrap problem.

A variety of bootstrap techniques‘have been applied to the prob;
lem of calculating the  xn scattering dmplitude, generally wiﬁh limited
suécess.' If.onl& the I = i nnr  channel is included, then a p-wave.
resonance can be bootstrappéd, but its width is typically two or three ‘
times larger than that of the observed o resonance. This difficulty
has persisted even in the m@st sophisticated single-channel
calculations.3 At the same time, studies of more massive channels,
such as nw, KK*, and Nﬁ, have suggested that thésé channels do make
large contributidns in the formation of‘the p,lu and that this particle
should be regarded as predominantiy an NN bound staﬁe.l5 However,
recent calculations by Collins and Johnsonu’5 have disrupted this
interpretation, since they appear to show that the proper inclusion of
the I =0 ﬁﬁ ~channel suffices to reduce the p width to the observed
value. Their prescription for the I = O scattering involves the

exchange of the Pomeranchuk trajectory, which is treated as an ordinary

Regge trajectory with an intercept aP(O) ~ 1.

Our approach to'thié problem has been, like that of Collins and

~Johnson, within the framéwdfk of the strip approximation. In Sec. II

we set éut the notation and assumptions of this approximation, which we

use in Sec. IIT in a bootstrap calculation of the p trajectory.  The

results are similar to those of earlier calculations, although our

technique allows us to impose strict requirements of self-consistency
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above threshold, ahd in particular to arrive at a self-consistent value
of tﬁe o ‘width. The effects of various approximations are relatively
easy to5interpret in this simple one-trajectory calculation, and we
study thése effects in.some detail. In Sec. IV.Qe include the I =0
nn channel in a bootstrap calculatién of the o and Pomeranchuk
trajectories. We observe no tendency for the p width to be reduced
by the inclusion of Pomeranchuk exchange. In Sec. V we summarize the
results and discuss the disagreement between our observations and those

of Collins and Johnson.
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II. THE STRTP APPROXTMATION
We assﬁme that the reader is faﬁiliar with the‘phenomenological
argumehts_in favor of the strip approximation;6 in this section we
simply set down the equations that défine the model, with}only the
briefest gomments’on.theif plausibility. |

The Bbse-symmetrized s-channel gy scattering amplitude with

isospin I, AéI(s,t,u), may be written in the form

8 (s,5,m) = al(s,t) + (1) aT(s,u), (2)

‘where AI(s,t) is an amplitude of definite signature, having only

right-hend singularities in the t plane. The normalization is such

that the s-channel differential cross section is

dot

dt

= n2 |AS (s,t,u)|%, ) (2.2)

sq_s

oj-

where qq = %(s - hmﬂe) is the s-channel c.m. momentum.

The first assumption of the strip approximation is that an
amplitude of definite signature has double spectral functions that are
nonvanishing only in the strip regions A, B, C, and D of Fig. .l.
Furthermore, it is assumed that the contribution of the shaded region
A 1is given by the following s-channel elastic unitarity equation:

' ‘ K=0 | I* I

: : ‘ D,” (t,ss) D, (t,,s)

I t 1’ t 2!
ol ety - &l at,at, —— 2(2.3)
out = 1 2
. nq ) :
bm

K=(s; t;tl;tg)
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where
| 2 .2 . .2 Ly | 2
K(s; t,t,t5) = t7 + 67+t - g(ttl +th, + tltg) - ttlﬁg/qs ,
R (2.4)
and the t discontinuity_of the amplitude, DtI(t,s), is given by
I ‘ I
, o ope(styt) B o (u'yt)
D I(t,s) =V I(t,s) s | ger 2t + AL gur —QEE——————,
t -t 7 . T .
: s' - s _ u' - u .
| | - (2.5)
- where ) ’
It T
" : Cpr (t,s") I oy (t,u")
v I(";,s) = By L [as 22 G du' —=
t 1T T 'y T ' .
" s' - s u' - u
. J
()T ol (u',t) |
+ > B S faw A (2.6)
TC 1 ' A
I'4T v
Here Br., is an isospin crossing matrix element, and g(s) is a

cutoff fuﬁctionl3 which forces the function pgut(s,t) to vanish above
‘the upper boundary s = s, of the strip A. This is not otherwise
ensured. by the equations, so the cutoff is assumed tovrepresentvsome'
influence of other channels that caﬁses the interibr parts of the

douﬁle spectral functions to bg negligible. The inferpretétion of

Egs. (¢.3) - (2.6) is as follows: one starts with input double spectral
functions pinI(s,t), for I =0, 1, and 2, which specify a potential
according to Eq. (2.6). This poténtiai may be used in Egs. (2.3) and (2.5)
to genzrate the output functions pgut(s,t), by méaqs of the Mandelstam

iterat.on procedure. In principle, one has only to find a set of
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functions pI(s,t) such that

5,t) = (s t) = p'(s,t), - (2.7)

I
( out

Pin

for all 's,jt,band . I, in order to have arrived at a complete solution
of ﬁn SCatterinngithin the limitatibné of the strip approximation.
The amplitude generdted is not simply elastiéally unitary, since for
example the strip B makes a contribufion that represents a cértain
class of multipion unitarify contributions, name;y those that have a
t-channel elastic intermediate state. In this respect the nx strip

model bears a strong resemblance to the type of multiperipheral model

16

. proposed by Amati, Bertocchi, Fubini, Stanghellini, and Tonin.

The goal of satisfying Eq. (2.7) at all s, t, and I 1is at
present too ambitious, and in practice one attempts only to find functions
containing the same léading s-channel Regge poles for some limited -

region of s:

t—o o

I O‘inI(S)
(s t) ~ BABsy (s) ¢
t— '
and : a _ ' ; ’ (2.8)
I
a . (s)|
pdut(s t) A~ A Bout( s) t °“ﬁ Y,

where

o I(s) = (s)

out .
over some limited

‘and ’ ' S ' | | (2.9)

range of s.

(s)

()~Bout '/_
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Here Ag represents the discontinuity across .the cuts assceiated with
the s-channel threshold branch points. If these self-coﬁsistent
trajectories resemble the observed oneé, the amplitude will have the
correc£ principal low-energy resonances and\the correct behavior near
the forward direction at higher energies, which would account for most
of the features of fhe experimental data. However, we can hope to
find sucﬁéa solution only if the dynamics of nnr scattering are
primarilyidetermined in nxn channels, begause the cutoff prescription
is too‘crude to represent in detail any iﬁportant contributions from

other ghannels.
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III. RHO BOOTSTRAP CALCULATION

For our first gux .bobtstrap calculation we perform the
standard singleQChannel calculation of the I = 1 amplitude. The
input potential will involve the exchange of the p Regge trajectory,
which is well known tb providefthe dominaht forces in this systemn.
However, p exchange élso givés fise to stfong forces in the VI = 0
direct channel, so for feal self-consistency one éhould include some
I =0 input, and in Sec. IV we shall do this.

We assume for the input double spectral function p. l(s,t)

in
a simple form that has a leading Regge trajectory a(s) with residue

B(s):
ol (s,8) = 4 {B(s)[(t v 20 2)/5,1% )Y 0 (5 _,a,1), (5.1)

where S0 is the conventional Regge scale factor of 1 GeVg, and

Gl(tc,A,t) is the following continuous "effective threshold function':

6, (t ,8%) = 0 ' | ot st -
. . .
o= "2-[1 + (t - tc)/A] tC A< T < tC + A? (3'2)
= 1 | t >t o+ A

c - /

1 is to approximate the curved .

The effegt of the cutoff function. o
boundary of.the physical doubie’spectral function by a straight
boundary near t =.tc’ as. shown in Fig. 1. We thefefore regard tc

as a free parameter;.represeﬁﬁing the effective inelastic thresheld of
the potential, which méyﬁﬁe varied to improve the self-consistency of

a béotstrap solution. - The. function of the small paraméter AN 1s to

remove a logarithmic singularity that would appear in the potential at
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s = tc if the double spectral function were discontinuous. One finds,
on substituting the form (3.1) in Eq. (2.6), that the potential is
given by _ ' : 4

. O] ‘s 4 2q,2 , :
1 £) T (t’) " - 48 + 2qt oA
Vi (88) = 4y %;l{_;i.o_.] Roz(t){'rc(t) ; Tjﬂ] o 3:3)

t, = A+ 24,62; the function R(;(x; €) is defined by the

where Tc(t)

relation
+, D ) a+ll + x N
R, (s €) = Ry, (0 - R S) - (1 + ) {Ra+l(1——— ) - &, & Q] ,
(3:1)
where
+ a/ 1 1
R, (x) = dyy(y-xiy+x>'_ _ (3.5)
. 1 '

This integral may be prressed in terms of the hypergeometric function

R, (x) = - 27(@, F51-% x) . (5.6)
and ‘ _
Ry(x) = xBo, (x), o G

(3

which permits the definition of the potential through anal&tic

continuation for all s and t. >In the 1imit A -0, we have € =0 e ¥
and Rai(x; €) —aRat(x); the potential is then logarithmically singular

at s = T A finite value of A removes this singularity, and the

potential is then continuous throughout the neighborhood of s = tc.
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We parametrize the leading trajectory a(s) and its residue

8(s) in the following way:

«  afs)

]

2 :
2, + bs + c(hmﬂ - s)p, (3.8)

B(s)

g, <% o (s a8 Mlas)], (5.9)

where GQ(SC,A,S) is a cutoff function with a continuous derivative,

1 | o s £s_ -4, 3\

eg(sc,A,s) = ¢
‘ 2 2 ,
= %{2 + (s = sc)[(s - sc) - BA_]/A;}
| . ) (3.10)
8 -=A<s <8 +4,
c c
= 0 S 2 SC + A. | )

We use this cutoff function, rather than one similar to that in Eq.
(3.2), because the numerical details of the Mandelstam iteration make
it desirable that the potential should be fairly smodth in t. By

chooéing |
e(s) = 6,(s,,0,8) . | (3.11)

in Eq. (2.3), we ensure that'thé-strip width is the same fbr the input
and dutput double Spectrai fuﬁcfions. Apartkfrom this cutoff factor,
the form of fhe‘residne in Eq. (3.9) is just that:givenvby the asymp-
N ‘ | totic form of the Veneziano ermula for s scattering.l7 We take
 cp to be.a free parameter, althbugh onemight supposé that the Veneziano
formula suggests the value. cp = a'so, where o' is the meén

trajectory slope. This would not be correct, because we ought to use
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only the s-ghannel.elastic contribution, ratﬁer than the complete
Veneziano #erm, for the input potential. The value of cp is therefore
expectedlfo Bé iess than a'so, corresponding to an elasticity that 4
decreases with increasing. S,

 Thefe'are eight parémeiers‘to be varied in‘the.search for a

bootstrapvsolutionzb ap, b, ¢, p, gp, cp, s , and tc. We did not

c)
vary the cutoff width pérameter 0, sincerthé dynamics are guite
insensitive to its value, which we fixed at 0.5 GeVg.v For given values
of the parameters, the Mandelstam iteration.is carried ouf and the ¢t
discontinuity DtI(t,s) is computed at successively higher values of

‘t. Eventually the'Regge asymptotic behavior becomes apparent:

( )

out

D, T(t,s) f‘~/ Bout(s)[(t + 2q )/ (3.12)

-— 00
[c.f. Eq. (3.1)], and the leading output trajectory aout(s) and its

residue ) may be found by making least-squares linear fits to

Bou‘c(S v
£Zn DtI as a function of sn[(t + QqSE)/SO]. We find that local
. 18 . v

duality holds in this situation, in the sense that these linear fits,

éxtrapolated downward from very large t, also describe the average

behavior of fn D,* in the intermediate energy range

t
(2 GeV2 < t < 20 GeVz). Conversely, a least-squares linear fit over
an appropriate intermediate ehergy region, where  4n D 1 may still »

T

exhibit pronounced oscillations, gives a good representation of the

L

asymptotic behavior. It is usually possible, therefore, to determine
the output Regge pole parameters in this intermediate t region,

corresponding to 15-25 Mgndélstam iterations, and to avoid making the
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very large number of itef&tions, typically 50-70, ﬁecessary to reach
the truly asymptotic + region.lO An example of:our procedure is
illustrated invFig. 2.

We chose to impose self-consistency on the o trajecﬁory and
regidue in the région of s from -1 GeV2 to +2 GeV2, since one could
not reasonably expect the strip approximation to be valid oﬁtside this
range. In this region, a value of X2 is computed for the consistency
of the inbut and output values of Re(a), Im(a), Re(B), and Im(B).

The X2 conﬁribuﬁions of the trajectory and ﬁhe'residue are weighted
according to ;heir'expected relative numerical precision; it tﬁrns out
that the residue is a good deal lesé accurately determined than the
trajectory, so it receives less weight. A minimization program directs
a parameter séarch that leads to.the soluﬁion with the minimum value of
Xg.

The requirement that-the real and imaginary parts of fhe
trajectory and residue should»be'self—éonsistent above'threshold is a
very sfrict one‘that has not ‘been imposed in any other bootétrap
calculgtion. In the o Bootstrap of Collins and. Johnsoh,3 for example,
the inconSistencyvabove thfeshold must be very great, since the‘widths
of the input and output p resonances differ by a factor of at least
2. It is therefére not clear from earlier calculations that a o)
resonance of any self-consistent width can be generated.

We do in fact find a solution'with fairly good self-consistency
throughout the region of interest, which is shown in Fig. 3. In view
of numerical érrors of about 20% in the calculation of the residue

function, the conéistency is good below 1 GeVg, although above this
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value there is a significanf tendency for the output value of Re B

to decrease less rapidly than the input. There is a carresponding
tendency‘for the output value of Im & to rise rather too rapidly.

| .We do not find any solﬁtion that differs very much from that

in Fig. 3; for example, the intercebﬁ of the self-consistent trajectory
' appearsfto'ﬁe limited to the range 0.60 < a(0) < 0.75. This represents
a conSiderable improvement in uniqueness over earlier é bootstrap
calculations, présumably because of the requifement of consistency
above threshold.

Thé isovector, p-wave cross section, corresponding to the
solution in Fig. 3, is shown in Fig. L. The conéistenpy of input and
output is good, but the o is wider, by a factor of about 3, than the
.experimentally observed resonance. As we discussed in Sec. I, the
large_widfh of the output p resonance has always ﬁeen a problem in
single-channel ﬂﬂ. bootstrap caléulations, and by increasing the
input'width to achieve consistency we have not rectified this.

Our teéhnique of calculation has some disadvantages if.onev
needs to evaluate amplitudes and cross sectioné, because we can at
present identify only thevleading term in the asymptotié behavior of

DtI(t,s), that is, the lgading output Regge pole. In calcqlating the

amplitude,
I
I 1 [ D (es)
A" (s,t) = = at' ———t > _ (3.13)
bm °

b1
it is necessary to know the locations and residues of all poles in the

right half of the angular momentum planc. However, insofar ac the
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amplitude calculated according to Eq. (3.13), taking into account
- only the leading Regge pole, lies on the unitary circle, we may say
that we see no evidence of important secondary pole contributions for

s <.2 GeVg.

Figuré 5 shows ;ow somé répreseﬁtative output quantities depend.
on the cutoff and threshold.paramgters Sa and,itc, when the ofher
input'Pgrameters are held constant. - Since tc_ affects'onlyﬁphe
nonresonant contribution to the potential, which‘is dominaté&lby the
resonant p contribution, there is little sensitivity tb.the value of
thisvparémeter, and in fact wé did not vary it in the search for a
bootstrap solution, but held it consﬁant at the value. 2.73% GeV2

(= 150 mng). |

The sensitivit& to the cutoff parameter S,s on the other hand,
is pronouhced. This is reasonable, because the cutoff represents two
important effects; which are presumably associated in the real world
with inelastic channels not present in oui modei. The first of~these
is the elimination, through the function g(s) in Eq. (2.3), of Regge
_cut‘contributions. This mechanism is discusse& in detail in Ref. 13%,
The seéond effectviS'the decoupling, in Eq. (3.9), of the high-spin
part of the input trajectory, which would otherwise play an unreasonably
large réle in the dynamics, even in the presence of the rapidly
decreasing elasticity factor 'Cgu. One may of course achieve the.same

effect by arranging for the input trajectory to turn over at some small
value of o, but we have not chosen this scheﬁe, because it would

require much more elaborate parametrizations of both the'trajectory

. and residue functions. However, the output trajectory does in fact turn

|
i
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over in the ﬁpper hﬁlf of the sttip, so the output fesidue is not
required to fall rapidly in order to decouple high output ‘spins. Thit-
is probably the source of the dlsagreement of the 1nput and output
residues at high s, which may be seen in Fig. 5

The magnitude of the pion mass is of crucial>importance in the
Mendelstam iteration procédure, since the numbef of iterations requiréd
to.continué the double spectral function to a given value of t 1is |
intersely proportional to this quantity. One might suppose, therefore,
that the scale of energylin our calculationé is set by the pion mass,
which would then be a dynamicai quantity of great si¢nificance. Figure
6 shows that this is not the casel For given input pérameter values,
the output is largely ihsensitive to the pion mass, provided this is
less thén about 0.2 GeV. Of course the Mandelstam iteration become;_
numerically unreliable 1if the tion mass is toé small, owing to the large
number of iterations required to reach the region of large t. The'
apparent varlatlon in the output below m_ ' 0.08 GeV cén be ascribed
to numerical dlfflcultles of thls type. On the.other hand, there does
appear to be an onset of significant variation éround mﬂ = 0.18 GeV,
corresponding to the gn threshold lying one'full width below the o
polé. ‘Presumably a moré realistic éalculation, with a narrower o
resonance, would show no variation up to even larger values of the
pion mass. These considerations suggest that, although the nonzero
pion mass is an important kinematic feature that makes the Mandelstam
iteratioﬁ possible, its neglect does not'lead to any significant

distortion of the dynamics of nn scattering.
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A:direct resulﬁ bf the insensitivity to the plon mass is the
existence of a continuum of bootstfap solutions, related to the one in
Fig. 3 by a change”in the energy scale of the input parameters. We_
have7fixed this scale by setting the input o mass at approximately
the physical value. Whén the resonance width is ldrge;fthis_does not
correspond to the condition Re a(mp2) = l; but to a more éémplicated
condition'given; for example, by'Newton.19

The dyhamical effects of the strip labelled D in Fig. 1 are
expectéd to be small in the region s 2 -1 Gevg, because the potential
contribution of this strip cﬁhtaihs no resonances at low t .and behaves
like ta(_t) at higﬁ t. In a'sihgle-channel calculation, the strip
D contribution enters only as the last term in Eq. (2.5), and in Fig. 7
we show that tﬁe effect of neglecting this term is indeed small. In a
two-channel calculation, with both I =0 and I =1, strip D contri-
butions also occur in Eq. (2.6}, vhere they have to be compﬁted.in terms
of the input double spectral funqtionS' pinI(S’t)', If these contribu-
tions are to be included, our input trajectory parametrization must be

modified, because the form (3.8) gives a(-t) -+ as t — . However,

‘we take the evidence of Fig. 7 to indicate that all strip D contribu-

tions are negligible, and in the tWo-channel calculation of Sec. IV we

shall omit them altogether.
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IV. INCLUSION OF THE POMERANCHUK TRAJECTORY
A simple inspééticn of the gnx 1isospin crossing matrix .reveals

'ﬁhat ‘p,'exchange pfdduéeé'a strong attractive force in the I = O

[ 9

;direbt chaﬁnel, and this force gives rise to a high-lying output traj-
ectory with the qﬁantuﬁ'n&hbers of the vacuum. Wé display in Fig. 8

the position and residue of this Pomeranchuk trajectory for the pure
I-= 1. input of the p bootstrap calculation discussed in the previous
section. The trajectory is roughly pdrallel to the output p trajec-
tory, with very nearly the same imaginary part for s <2 GeVg, and with
an interéept of about 1. The residue function has the‘same form as that
for the p, but is .about twice as large. -

Since the potential is expected to be dominated by p exchange,
the 6utput Pomeranchuk trajectory should be similar to that shown in
Fig. 8 even when Pomeranchuk exchange is included in the input.
Accordingly, we have chosen the following parametrization of the input
Pomeranchuk trajectory and its residue, corresponding to Egs. (3.8) and

(3.9) for the input p:

aP(s) =ap + bs + c(l#m’ﬂ2 - s)?, - (4.1)

)
op(2) = 8p o5 Sp(sprtys)/rlap(s)), (1.2)

where the parameters b, ¢, p, 842 and A are the same as those for
the input p trajectory. Thé I = O contribution to the potential then
has & form similar to that given by Eq. (3.3), with the positive- ,

signature function R;P in the place of 3;.
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There are now 11 input parameters, namely a . aps b, ¢, p, gp,

: , e
gP,'cp, Cps Sé’ and tc’ subject to the single constraint that the o
resonance should have the physicalbmass. Figure 9 shows the most.
consistgnfisolufion tﬁatrwe have found using thi; parsmetrization. The
agreement between inpﬁt'and output - p and Pomeranch x trajectories is
good throughout the rangev -1 GeV2 <s <2 GeVg, and he consistency of
the o residué'is rather better than in the single-c. annel calculation
§f Sec. III. However, even allowing for a 50%‘numeri:al uncertainty in
the Pomeranchuk residue, the self—conéistency of this quantity is
unsatisféctory for s‘zAO.5_GeV2.

The discrepancy between the inputband output ‘omeranchuk
residues above s =~ O.SGéV2 reflects a difficulty cf the strip
dpproximation which we do not believe to be caused by our particular
form of pérametrization. For a wide variety of physically reasonable
input potentials, the output Pomeranchﬁk residue fall: rather slowly at
large s, while the real and imaginary parts of the trajectory rise
sufficiently rapidly thatvthere is a significant f-meson contribution
to thé output cross section, even if the real part of the trajectory
does not reach tﬁé value Ré(aP) = 2. Corréspondingly,.if the input
and oqtput trajectories and residues are to agreé up to s = 2 GeVg,
there must be a largerf-meéon éontribution to the input potential.

As in pqtential écaftering, such'é high-mass exchange_(short—range
potential) génerates output trajectories thaf are much too flat‘to bear

ary resemblarice to those observed experimentally. The f meson must

theréfore be decoupled by an input.residue that falls rapidly at large
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s, and we have the residue discrepancy tﬁat appearé.in Fig. 9. *
Alternati&ely, the f contribution may be removed by naking the input
trajectory turn over at small s, but this leads to a comparable
inconsistency with the output trajectory aBove s =~ 0.9 Gevg. Clearly,
thisviS’another case of fhe problem of decoupliné high-spin input
contributidns, as discussed in Sec. IIi. The problem is more serious
here simply because the f resonance should in fact occur within our
region of ihterest, § <2 GeVE.

The slope of the output. p trajectory near s =0 is similar
to the observed value ag(o) ~ 0.9 GeV-z, but this is largely due to a
threshold effect associated with the rapidly/rising imaginary part of
- the trajecﬁory. AboVe threshoid the slépe remains slightiy greater than
that obtained vhen Pomeraﬁchuk exchange is‘ignored, but the effect of
this on fhe'width of the o resénance is overwhelmed b& the increase
in the imaginary part of the trajectory. The p?wave cross séction,
shown in Fig. 10, reveals that the o width is now about €00 MeV.

In Fig. 11 we exhiﬁit the relevant_behavior of the I =1
output as the amount of input Pomeranchuk exchange is increased from
zero. The tpajectory intgrcept falls steadily, while the value of
Re ap(0.5 GeVQ) is not substantially ch&ngéd, so the real part of the
output trajectory approaches a form with the physical slope and intercept.
But the residue increases rapidly, not only for s =0 (the representa- *
tive-valﬁe shown in Fig. 11) but also for s > 0, where a corresponding

inegrease in [m a  produces the large width of the output resonance.

In contrast to these observations, Colling and Johnson found in their
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N/D calculatioh§h’5 that fhé inclusion of POmeranbhuk exchange led to
a décrease in the o residue and to an associated reduétion of the
resonance width to the experimentally obseived value.

_,Ne#t we turn to a comparison of the self—consiétent Pomeranchuk
trajectory with the experimeﬁtai data. The intercept ~aP(O) ~ 1 and
the slope ’ab ~ 0.5 GeV_2, throughopt the region -0.5 GeV2 <s 0, are
in agreement with the values sﬁggested by the recent Serpukhov pp
scattering déta.go The value of‘the residue at s = O, however,
corresponds [wﬁen we take aP(O) = 1] to an asymptotic nn total cross
section of 46 mb, whereas the estimate by factorization of the P
and pp data is 15-20 mb.

Chew and Sniderel have conjectured, on the basis of their
‘9schizophrehic_pomeron" model, thét a calculation of the type presented
here should give rise to a degenerate leading I = O trajectory, which
will be split in a mére sophisticated scheme (involving small potential
- contributions not confined tq the strip regions of Fig. 1) into two
componénts cbrresponding.to the physical P and P' trajectories. In
order to split inté P and P' components with the observed properties,
the degenerate trajectory should have an intercept of about 0.7, the
normal slope (=0.9 GeVng), aﬁd a larée resi@ue (about twice'that of the
P component). Although we find that the residue has roughly the expected
size, the trajéctory slope and intercept are more like those of an |
already—split P compoﬁent. In view of our'poor results on the
trajéctory, which ia not subject to such effectﬁ. this probably casta~ =

more doubt on the validity of the present form of the strip approximation

than on the conjecture of Chew and Snider.
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Ouf results on the‘intercept and residue of the Pomerénchuk
trajectory are similar to those of Collins and Johnson, but they arrived
at a higher, more normal, value of the slope, aé a:O.9_GeV2. They saw
no sign of a secondéry P’ trajectory, as one wogld expect if their
leading trajectory was degenerate.

As.éxplained in Sec. III, our technique is not directly sensitive
to secondary output tﬁajectories. _ However, if one tries to use Eq.
(3.13) toicompute.the isoscalar amplitude, subtracting out only the
leading Regge pole on the right-ﬁand side, oﬁé obtains an absurd resﬁlt
that appears-to violate unitarity. This suggests the presence of a
secondgry pple with a pésitive inféfcept, and it is possible that further
work along‘these lines will enable us to obtain quantitative.information
on secondéry contributions of this type. In the meantime, we have no
way of'evaluéting‘the isoécalar amblitude and, in particular, we are
not able:to compute an I =0, £ =0 scattering length for comparison
with the encouraging results of Collins and Johnson.h

As in the o vbootstrap calculation of the previous section,
there is in this case only a‘small range of solutions that are roughly
as gqod as the one diéplayed in Fig. 9. We have not found anj self~
consistent trajectories ﬁith intercepfs outside the rénges o
0.55 < ap(O) < 0.70, 0.90 < aP(O) <1.05; for solutions with intercepts
within this range, we find 11 < BP(O) < 17.

We end this séction with a brief discussion of the behavior of
_the p. residue function near the wrong-signature point ap = 0, In
Fig. 12 fhe trajectory and reéidue of Fig. 9 are extended into the

N

8
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region s < -1 GeVg, where no attempt was made to achieve self-consistency.
The numerical errors are large in this region, because ihe asymptotic’
véiué'of D;l(t,s)‘ there is very small compared with values in the strip
region A.v‘However, it is clear that the output trajectory paséeé
through zero somewhere néar s = -1.7 GeVe, while the residue shows no
sign of vanishing or even becoming small around this value of s. 1In
other words, we detect no téndéncy for the dynamics to generate a zero
Ngf the outpﬁt residue, and this of course precludes any possibility éf
 éelf-consis£ency in this region, since we have used an input residue
@arametrization that does contain this zero. One might suppose that

this difficulty causes a reduction of the slope of the self-gonsistent

o) trajeétory, by forcing the point ap =0 to lig outsidé the region

(s > -1 GeV2) in which consistency is demanded. But we find that
ignoriné the residue inconsistency, or reqﬁirihg consistency only for

g > -0.5 GéVE, leads to little change in the trajectory slope,_which is
therefore not seriously constrained by this effecf. Certainly our |
'calculation would be more satisfaétéry.if we could find a simple input

o ?esidue parametrization that does not vénish when ap =0 but does
lead to séme self-consistent bootstrap solution. So far, however, we
v have hot been able to do this, and, in any case, it appears'unlikely that
such-a_modification would rémedy~the basic problem of the large width

of the p resonance.
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V. CONCLUSIONS
In the preceding sections we hope to have shown that the
Mandelstam iteration is a useful techniéue for performing detailed
bootstrap calculations, and that it supplements the N/D method by
providing &aluaﬁle information on Regge trajectories above'threshold.
We have used théftéchnique, in conjunction with the strip approximation,
to carry buﬁ firstna bootstrap calculation of the p trajectory alone,

and then a combin=d bootstrap of the p and Pomeranchuk trajectories.

We begin this section with a summary of the results of these calculations.

In the p Dbootstrap calculation there does exist a solutioﬁ
with satisfactory self—consistency in the regioﬁ -1 GeV2 <s <2 GeVZ,
but the trajectory slope‘is too small and the o resonance is about .
three times too wide. The strip width is an important parameter and
has the value 3.5k GeV2. If the strip width is increased, large contri-

”butions of the High—spin parts of the input trajectory are introducéd.
It does not seem po;sible fo incorporate highly elastic high-spin reson-
ances in the present formulation of the strip model, and problems
associated with ihe existence of such resbnances, like the g(1660),
seem likelj.to occur in a large class of models.22

When Pomeranchuk exchange is ihcluded_in the calculation, both
the‘ o) and Pomecranchuk trajectories.may be made reasonably self-
consistent in the range -1 GeV2 <s<2 GeV2, except for some incon-
sistency in the Poméréndhuk regidue at positive s, which is associated

with the high-spin resonance problem again, this time in connection

with the f-meson contribution. The slope of the p trajectory is

L)
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-slightly gregter than in the calculation without Pomeranchuk exchange,
but thié 1s offset by a more rapid incréase inithe imaginary part above
threshold, which leads fo an even greater width for the o resonance.

.The'slope.and_intercepf ofvthe seif-cdnsistent Pomeranchuk -
tréjgctory afe'iﬁ agreeﬁent.Wifh_é#periﬁent, but the résidue is fod.
iaréé, ana it apfears iikely fhat AIVaiid stfip'approximation shouldiin '
fact generate a leading“ I;% 0 £rajectory~with just such a large
residﬁe, but wifh a normal slope and an intercept of about O.7,vwhich
would'bé 5plit by nénstrip effegts into the observed P and P’
trajectories. We have to conclude that the addition of the I'=0
- channel to our original single-channel calcuiationrhas not signif-
'icantly increased our undérsﬁanding of the details of nﬁ scattering.

‘The most natural conciusion from this rather disappointing
result is tﬁat nn scattering dynamics cannot in fact be understood
in terms of the nn channels alone. The‘large width that is obtained
for the pvsuggestsfhat this particie'is in large'measufe a bouﬁd state
of some channel of higher mass, sﬁch as NN. Fﬁrthermore,‘the rather
unsatisfactory way in which the cﬁtoff prescription deals with the
problem of high—spin.resonancés,suggestnthat at least some of the
inelastiC'effects, which the cutoff'represents, must be handled explicitly
through.the inclusion of inéiastig channels.

.The bootstrap calculafions of Collins and Johnsor15_5 are based
on a formulation of the strip apprbximation that is very similar to ours,
and, apart from some details due to thé different parametrizations and

regions of self-consistency, one would expect our results to be much

' the same as theirs. In the o bootstrap calculation this is indeed
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14 :‘z
the case. ™

However, as ﬁe have pointed out in Sec. IV, on including .
Pomeranchuk exchange_we obtain substantially different results, for their
solution displays many features of the experimental data, and in particu-
lar they find fhat the p resonance width is reduced. to £hé physical
value.

At presept the reasons for:this discrepancy remain obscure.
Lyth2u has argued that certain features-of the results of Collins and
Johnson suggest. that the physical p' should appear as a CDD poie in
their sxn N/D equations. This would support our characterization of
the o as primarily\a'boﬁnd,state of some other channel. quever,
Bali, Chew, and Chulj§ have shown that the type of calculation presented
here should be eéuivalent to an N/D calculation with no CDD parameters.

For:this reason, independent of the true nature of the p, one would

expect the two calculations to give similar results.



o7- | UCRL-201 3k

ACKNOWLEDGMENTS
- It is a great pleasure to acknowledge the innumerable helpful
comments and criticisms of Geoffrey F. Chew. I am also grateful to
Naren F. Bali aﬁd Cfistian Sorensen for wvaluable convefsations, and to

_Daniel P, Lamb for his elegant machine-language brogramming.



lO

2.

-28- | UCRL-2013k

FOOTNOTES AND REFERENCES
This work was supported in part by the U. S. Atomic Energy Commission.

G. F. Chew and S. C. Frautschi, Phys. Rev. Letters 7, 394 (1961).

Attempts to bootstrap Regge trajectories are discussed by P. D. B.

Collins and E. J. Squires, Regge Poles in Particle Physics (Julius

Springer-Verlag, Berlin, 1968); earlier calculations are reviewed

by F. Zachariasen, in Recent Developments in Particle Physics,

eidted by M. J. Moravesik (Gordon and Breach, Science Publishers,

Inc., New York, 1966), p. 86.

'P. D. B. Collins and R. C. Johnson, Phys. Rev. 177, 2k72 (1969).

P. D. B. Collins and R. C. Johnson, Phys. Rev. 182, 1755 (1969).

R. C. Johnson and P. D. B. Collins, Phys. Rev. 185, 2020 (1969). -

 G. F. Chew and S. C. Frautschi, Phys. Rev. 123, 1476 (1961).

G. F. Chew and S. Mandelstam, Phys. Rev. 119, 467 (1960).

S. Mandelstam, Phys. Rev. ;;g, 1344 (1958).

B. M. Bransden, P. G. Burké,'J. W. befatt, R. G. Moorhouse, and
D. Mbrgan,:Nroo Cimento 30, 207 (1963).

N. F. Bali, Phys. Rev. 150, 1358 (1966).

‘G. F. Chew and V. L. Teplitz, Phys. Rev. Eéz, B139 (1965).

P. D. B. Collins and R. C. Johnson, Phys. Rev. 169, 1222 (1968).

N. F. Bali, G. F. Chew, and S.-Y. Chu, Phys. Rev. 150, 1352 (1966).

. J. S. Ball and M. Parkinson, Phys. Rev. 162, 1509 (1967).

S.:Mandelstam, Phys. Rev. 166, 1539 (1968).
D. Amati, S. Fubini, A. Sﬁanghéllini, and M. Tonin, Nuovo Cimento

22, 569 (1961); L. Bertocchi, S. Fubini, and M. Tonin, Nuovo



- 17.
18.
- 19.

20.

21,

22.

23.

2k,

-29- : UCRL-201%k4

Cimento 25, (26 (1962); D. Amati, A. Stanghellini, and S. Fubini,
Nuovo Cimento 26, 896 (1962).
J. A. Shapiro, Phys. Rev. 179, 13k (1909).

R. Dolen, D. Horn, and C. Schmid, Phys. Rev. 166, 1768 (1968).

R. G. Newton, The Complex J-Plane (W.-A. Benjamin, Inc., New York,

1964), p. 9.

G. G. Beznogikh, A. Buyak, K. I. Iovchev, L. F. Kirillova, P. K.

Markov, B. A. Morozov, V. A. Nikitin, P. V. Nomokonov, M. G.

Shafranova, V. A. Sviridov, Trﬁong Bien, V. I. Zayachki, N. K.
Zhidkov, L. S. Zolin, S. B. Nufushev, and V. L. Solovianov, Phys.
Letters 30B, 274 (1969). |

G. F. Chew and D. R. Snider, Phys. Rev. D1, 3453 (1970).

P. D. B. Collins, R. C. Johnson, and E. J. Squires, Phys. Letters
26B, 223 (1968).

One should notice that‘the strip width, in the sense of the width
of the regions outside which the double specﬁral functions aré
negligible, ié determined in the Collins-Johnson calculations by
the parametér they call ta, which has a value of 2-3 GeVg, in
agreement with the Valuevéf our pargmeter S4e ~The parameter 'sl,
which they refer to as the strip boundary, serves mainly as a point
of fransition:frbm'the‘low-energy to the asymptotic fegion..

D. H. Lyth, CERN TH-1143, March 1970.



Fig. 1.

Fig. 2.

Fig. 3.

Fig. 4.

[t}

-30- = S UCRL-20134

" FIGURE CAPTIONS

The regions of the double spectral functions that are taken

into;account in the strip approximation to r 5cattering, and

the cutoff and threshold pafamétéré :Sc and - t .

Examples of the fitting pfoCedure'used to compute_theyparameteré
of the leading output Regge trajectory. Thevdashed liﬁes
indicate the.least-squares fits an¢ the regions of'vt that

were used,'for tﬁe_two cases s = ( énd s =2 GeVe. In this
example the slope and intercept of the lincar fit give>the
values of Re Ob and ﬁnlspl at that valu; of s; The

maximum value of t used in these fits (t = 42 GeVQ) corresponds

to 22 Mandelstam iterations.

The self-consistent p‘ trajectory as) and its residue

. function 5(s). The input is showr by the dashed lines and

the output by the full lines. Input parameter values were

a, =0.63, b= 1.22 GeV 2, ¢ = 0.92 Gev P, p = 1.111,
g, ='63.u, ¢, = 0.091, 5, = 3.6k GeV2,- t, = 2.73 GeVg,
A = 0.5 Geve. |

Inbut (dashed line) and output (fu.l line) isovector p-wave
cross sections, corresponding to the solution shown in Fig. 3.
The input p resonance has m = 0.765 Gev, ‘Fp.: 0.410 Gev;
and the output has m, = 0.720 Gev, Fp = 0.415 Gev.
Dependenc¢ of the output values of the three representative

quantities «@(0), Re a(0.5 GeVE), and R(0) on the parameters

(a) Se» (b) tc. In each case the remaining input parameters



Fiz. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.

s =12.8 Ggev, t, = 2.1 GeV?, L = 0.4 gev©.
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had the values given in the caption to Fig. 3, and the dashed .

- lines indicate the corresponding input trajectory and residue

values.

Dependence of the output values of «a(0), Re (0.5 GeVg),

~and 38(0) -on the pion mass. The input values are shown by

‘the dashed lines, and correspond 1o the input parameter values

giﬁen in the caption to Fig. 3, apart from negligible changes
due to the shift in the gxnx threshold. .
Effects of neglecting the coﬁtribution due to strip D of
Fig. 1. The input was as in Fig. 3; output with strip D
contribution = —, without strip D contribution»ﬁ —_ - — -,
Output Pomeranchuk trajectory and residue generated by the
I =1 input of Fig. 3.~
Self—consisteht o and Pomerancnuk trajectéries and their
residue functions. The input is shown by the dashed lines
and the outbut by the full lines. Input parameter values
were a = 0.59, ap =0.95, b= 1.u5fGev'2, c = 1.15 GeV—Ep,
p=1.1%6, & - 33.2, gp = 101.), c = 0.2, cp = 0.135,
2 2

c
Input (dashed line) and output (£ 11 line) isovector p-wave
vcross sectioﬁs corresponding to tiie p trajectory and{residue
shown in Fig. 9. The‘large width and asymmetrical shapé of
the p resonance make its parameters difficult to determine.

The input has m o~ 0.76 GeV, rp ~ 0.6 GeV, while the output

has m ~0.71 GeV, T = 0.6 GeV.



- Fig. 11.

Fig. 12.
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Behavior of the output quantities..aé(o),"Re ap(0.5 Gevz),.
and BD(O) ‘when ﬁhe amount of Pomeranchuk exchange is varied.
A1l input parameters except gP ware held constantvat the
Vaiuesigiven in the caption to Fig. 9.

Input (dashed ling)‘aﬂd output (full line) o trajecfory and
residue functions in the region of negative sg. The numerical
errors in this region are large, and no attempt was made to
obtain self—consistency there, but the fact that the output

residue remains large when the trejectory passes through zero

‘is significant.
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