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ARTICLE

Allele-specific binding of RNA-binding proteins
reveals functional genetic variants in the RNA
Ei-Wen Yang1, Jae Hoon Bahn1, Esther Yun-Hua Hsiao1,2, Boon Xin Tan1, Yiwei Sun1, Ting Fu1,3, Bo Zhou 4,

Eric L. Van Nostrand5,6, Gabriel A. Pratt5,6, Peter Freese7, Xintao Wei8, Giovanni Quinones-Valdez 2,

Alexander E. Urban4, Brenton R. Graveley8, Christopher B. Burge 7, Gene W. Yeo5,6,9,10 & Xinshu Xiao 1,2,3,11

Allele-specific protein-RNA binding is an essential aspect that may reveal functional genetic

variants (GVs) mediating post-transcriptional regulation. Recently, genome-wide detection of

in vivo binding of RNA-binding proteins is greatly facilitated by the enhanced crosslinking and

immunoprecipitation (eCLIP) method. We developed a new computational approach, called

BEAPR, to identify allele-specific binding (ASB) events in eCLIP-Seq data. BEAPR takes into

account crosslinking-induced sequence propensity and variations between replicated

experiments. Using simulated and actual data, we show that BEAPR largely outperforms

often-used count analysis methods. Importantly, BEAPR overcomes the inherent over-

dispersion problem of these methods. Complemented by experimental validations, we

demonstrate that the application of BEAPR to ENCODE eCLIP-Seq data of 154 proteins helps

to predict functional GVs that alter splicing or mRNA abundance. Moreover, many GVs with

ASB patterns have known disease relevance. Overall, BEAPR is an effective method that helps

to address the outstanding challenge of functional interpretation of GVs.
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Facilitated by recent technological advances, numerous
human genomes are being sequenced, cataloging an
unprecedented amount of genetic variants (GVs)1. A major

challenge exists in identifying and interpreting potentially func-
tional GVs. Disease-associated GVs often reside in non-coding
regions, such as introns or 3′-untranslated regions (UTRs),
making it especially challenging for functional interpretation2. It
is increasingly appreciated that many GVs in the introns or 3′-
UTRs may affect RNA processing or messenger RNA (mRNA)
turnover3. Thus, methodologies that can effectively capture
functional GVs in these post-transcriptional processes are in great
demand.

RNA-binding proteins (RBPs) are core players in post-
transcriptional gene regulation4,5. A large number of RBPs
exert their function via sequence-specific protein–RNA interac-
tion. The sequence specificity of RBPs implies that GVs may
disrupt RBP recognition of RNA substrates. Specifically, the
alternative alleles of a GV may confer different binding specificity
for an RBP, thus causing allele-specific functional consequences6.

To detect ASB of a specific RBP, one powerful method is to
examine global binding sites of the RBP. If a heterozygous GV is
present within the binding site, allelic bias of the GV in the
protein-bound RNA directly suggests existence of ASB. The
advantage of this analysis is that the alternative alleles of a GV are
examined in the same cellular environment in the same subject.
Thus, the method controls for tissue conditions, trans-acting
factors, global epigenetic effects, and other environmental
influences.

To carry out genome-wide ASB analyses, it is necessary to
capture global protein–RNA interaction in a sequence-specific
manner. Ultraviolet crosslinking and immunoprecipitation fol-
lowed by sequencing (CLIP-Seq) is a most-often used method for
this type of global profiling7. Recently, the enhanced CLIP
(eCLIP) protocol was developed that significantly improves the
efficiency and sensitivity of CLIP8. As a result of the improved
efficiency, multiple biological replicates of eCLIP can be gener-
ated for the same experiment. In addition, each eCLIP assay is
accompanied by a size-matched input (SMInput) sample as a
stringent control for non-specific binding. The ENCODE project
generated hundreds of eCLIP-Seq data sets for 154 RBPs in two
cell lines, HepG2 and K5629. These data sets afford an invaluable
opportunity to examine ASB patterns and shed light on the
functions of GVs in post-transcriptional regulation.

However, ASB analysis is challenging in that it entails accurate
quantification of single nucleotides in sequencing reads, which is
easily confounded by possible inherent biases in the CLIP pro-
tocol and the limited sequencing depth available for most CLIP
data sets. Nevertheless, the unique advantages of eCLIP-Seq, such
as the availability of biological replicates and SMInput samples,
offer an opportunity to accurately identify ASB events. Thus far,
no computational method is available that leverages these unique
features of eCLIP for ASB detection. Here, we present a new
method called BEAPR (Binding Estimation of Allele-specific
Protein–RNA interaction) for this purpose. BEAPR controls for
inherent bias in crosslinking using the SMInput samples, and
tests for significant binding bias by taking into account the
variability in the data as manifested in the biological replicates.
We show that BEAPR outperforms standard methods for allele-
specific analyses of read counts. Importantly, BEAPR is robust to
overdispersion in the sequencing data and its performance is
consistent across different ranges of read coverage. Applied to the
ENCODE eCLIP-Seq data sets, BEAPR identifies thousands of
ASB events. Supported by experimental validations, these ASB
events include many that can potentially cause splicing changes,
alter mRNA abundance, or explain the functional consequences
of disease-associated GVs. Together, our results suggest that

BEAPR is an effective method for ASB detection and can serve as
a fundamental tool to predict functional GVs in post-
transcriptional gene regulation.

Results
Identification of allele-specific binding of RBPs by BEAPR.
BEAPR analyzes eCLIP-Seq data to identify ASB events in
protein–RNA interaction. The standard eCLIP-Seq protocol
generates an input control sample (SMInput) and two biological
replicates of eCLIP samples9. As illustrated in Fig. 1a (see
Methods for details), BEAPR takes as input mapped reads and
peak calls from these data sets. It first identifies heterozygous
single-nucleotide variants (SNVs) that show bi-allelic expression
in the SMInput reads. An optional input is a list of sample-
specific heterozygous SNVs. If provided, this list will be combined
with BEAPR-identified heterozygous SNVs. Although genome-
sequencing or genotyping data may exist for the specific samples,
identification of SNVs using SMInput reads may complement
these data (see below).

A unique feature of BEAPR is the estimation of crosslinking-
induced sequence bias, using the SMInput data of each eCLIP
experiment. As an example, Fig. 1b shows the bias estimation in
the RBFOX2 data generated from HepG2 cells. The enrichment
of uracils at the crosslinking sites is consistent as that reported by
previous CLIP studies10. This bias, specifically estimated for each
eCLIP experiment, is used to normalize the allele-specific read
counts of each SNV. Subsequently, BEAPR employs an
empirical Gaussian distribution to model the normalized read
counts, with the expected variance estimated using a regression
model (Fig. 1c, see Methods). BEAPR tests whether the normal-
ized read counts of the alternative alleles of an SNV are
significantly different (i.e., existence of ASB). The predicted
ASB events were subject to several filters to remove those located
in homopolymeric or repetitive regions, regions with inherent
mapping bias, or event in genes with allele-specific gene
expression identified using RNA-Seq data of the same cell type
(if exist) (see Methods).

Evaluation of BEAPR performance using simulated data. We
first generated simulated data to evaluate the performance of
BEAPR. Specifically, we carried out 1000 simulation experiments.
In each experiment, 5000 heterozygous SNVs were included, each
of which was assigned a total read coverage and read counts for
two alternative alleles, with two simulated biological replicates.
The total read coverage of the SNVs and the variance across
replicates were sampled randomly from the actual read coverage
distributions of SNVs of an ENCODE eCLIP data set (SRSF1 in
K562 cells, Supplementary Figure 1). The read counts for alter-
native alleles of an SNV were determined using a zero-truncated
negative binomial distribution given the simulated total read
coverage and an expected allelic ratio r (read count of major
allele/total read count). The value of r was set to be 0.5 for 90% of
the simulated SNVs in each experiment. The other 10% were
simulated ASB events (i.e., true positives) with an r value of 0.7,
0.8, or 0.9 in different experimental settings. To identify ASB
events, a minimum total read coverage (per replicate) of 10 was
required for all methods.

The performance of BEAPR was compared to those of two
other methods: χ2 test and Fisher’s exact test, both were used to
detect allelic imbalance in read count data11,12. Since these
methods cannot model the variability between biological
replicates, read counts from replicates were combined when
using these methods. It should be noted that crosslinking-induced
sequence bias was not taken into consideration by these methods.
Thus, in the first simulation, no crosslinking-induced sequence
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bias was simulated. Performance was assessed by the precision-
recall curves, sensitivity and specificity (see Methods). As shown
in Supplementary Figure 2, BEAPR achieved the highest area
under the curve (AUC) in the precision-recall curves, and the
highest sensitivity and specificity among the three methods. In
general, ASB identification is challenging if the true allelic ratio is
close to 0.5, given limited read coverage (Supplementary Figure 1).

The performance of the three methods deteriorates at smaller r
values (e.g., 0.7). Next, we included crosslinking-induced bias in
the simulations (see Methods). As expected, the performance of
χ2 test and Fisher’s exact test declined. In contrast, BEAPR’s
performance remained largely unchanged (Fig. 1d, Supplemen-
tary Figure 3). Overall, BEAPR outperformed the other methods
consistently at all tested allelic ratios.
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Fig. 1 Overview of BEAPR (Binding Estimation of Allele-specific Protein–RNA interaction) and its performance. a Overall work flow of BEAPR. See Methods
for details. b Crosslinking-induced bias in the SMInput sample of RBFOX2 (HepG2 cells). Y-axis shows the relative % of each nucleotide observed at each
position relative to the crosslinking site (x= 0). c The square of the coefficient of variation (CV2) plotted as a function of the observed allelic read counts
(mean of the two replicates) in the RBFOX2 enhanced crosslinking and immunoprecipitation (eCLIP) data in HepG2 cells (see Methods). d Performance
comparison of three methods using simulated data (with simulated crosslinking-induced biases) and true allelic ratio of 0.8 for allele-specific binding
(ASB). Data derived from 1000 simulation experiments each encompassing 5000 single-nucleotide variants (SNVs) (10% of which being ASB). FET:
Fisher’s exact test; CHI: χ2 test; AUC: area under the curve of the precision-recall curve. SEN95: sensitivity at 95% specificity; SPE95: specificity at 95%
sensitivity. e Percentage of ASB events among all tested SNVs by the three methods using simulated data as in d. The x-axis shows different read coverage
bins (using average read coverage of each SNV in two simulated replicates). The red dashed line corresponds to the 10% value, that is, the percentage of
true ASB events in the simulation. f Box plots of p values calculated by the three methods at different levels of read coverage. Boxplot center lines indicate
the median and the boxes extend to lower and upper quartiles with whiskers depicting 1.5 interquartile range (IQR). The discrete points are the outliers.
(Source data are provided as a Source Data file)

NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-019-09292-w ARTICLE

NATURE COMMUNICATIONS |         (2019) 10:1338 | https://doi.org/10.1038/s41467-019-09292-w |www.nature.com/naturecommunications 3

www.nature.com/naturecommunications
www.nature.com/naturecommunications


BEAPR accounts for overdispersion in allelic read counts.
Overdispersion exists if the variance of the count data is under-
estimated, which may lead to enrichment of very small p values
and false-positive predictions. In the simulation study, we
examined whether the results of different methods reflected
overdispersion in the data. Considering the fact that other
methods cannot handle crosslinking-induced bias, we used
simulations without such bias. Figure 1e and Supplementary
Figure 2 show that the percentage of predicted ASB events (false
discovery rate (FDR) <10%) among all tested SNVs increased
substantially at higher read coverages based on χ2 test and Fish-
er’s exact test. This overdispersion is largely due to inflated p
values calculated by these methods at higher read coverages
(Fig. 1f, Supplementary Figure 2c, f, i). In contrast, BEAPR
demonstrated a relatively stable percentage of ASB and, con-
sistently, stable p values across different ranges of read coverage.
Next, we examined the performance of the three methods in
handling SNVs with different levels of read count variance (see
Methods). Again, BEAPR outperformed the other methods con-
sistently and its performance is robust given high variance
(compared to moderate variance level, Supplementary Figure 4).
In contrast, Fisher’s exact test and χ2 test performed poorly for
SNVs with high variances (Supplementary Figure 4). The results
suggest that BEAPR is robust to the variance in the input read
count data, which contributed to its superior performance.

Analysis of ENCODE eCLIP-Seq data using BEAPR. We
obtained eCLIP-Seq data of 154 RBPs derived from HepG2 or
K562 cells as part of the ENCODE project9. Each RBP had two
biological replicates of eCLIP and one SMInput control. The
reads were pre-processed and mapped using STAR as described
previously8. eCLIP peaks were identified using CLIPper13. In this
work, eCLIP peaks were retained for subsequent analyses if the
read coverage in at least one replicate is ≥4-fold of that in the
corresponding region in the SMInput. This fold-change cutoff
was chosen by comparing the ASB results using a range of cutoff
values (Supplementary Figure 5).

Given the above-defined eCLIP peak regions, BEAPR proceeds
to identify heterozygous SNVs in these regions, which will be
combined with sample-specific SNVs if provided by the user. For
the ENCODE data sets, we identified heterozygous SNVs in
HepG2 and K562 cells using both the eCLIP data and whole-
genome sequencing data14,15 (see Methods). Within the eCLIP
peak regions, the heterozygous SNVs identified via the two
methods overlapped substantially (Fig. 2a, Supplementary
Figure 5). Around 93.1% of eCLIP-derived SNVs in HepG2
(89.2% in K562) were also identified in the respective whole-
genome sequencing data. About 80.4% of SNVs located in eCLIP
peaks and predicted by whole-genome sequencing of HepG2
(71.9% for K562) were also identified by our method. Thus, if
assuming whole-genome sequencing as the ground truth, eCLIP-
based SNV identification achieved a precision of 93.1 and 89.2%,
and a sensitivity of 80.4 and 71.9%, in HepG2 and K562 cells for
SNVs located in eCLIP peaks, respectively. Furthermore, we
experimentally confirmed five heterozygous SNVs that were
identified in the eCLIP data, but missed by whole-genome
sequencing (Supplementary Figure 6, Supplementary Data 1),
supporting the validity of these SNVs. Our results suggest that
BEAPR can be used to identify heterozygous SNVs using eCLIP
data alone, if genotyping or genome sequencing data are not
available for the specific sample.

Next, we asked whether the prediction of ASB by BEAPR
reflected overdispersion in the ENCODE eCLIP data. To this end,
we examined the percentage of ASB events (%ASB) among all
testable SNVs, with ASB events called by requiring FDR <10%.

This percentage is expected to be independent of read coverage in
the absence of overdispersion. As shown in Fig. 2b, BEAPR
yielded relatively stable %ASB at different levels of read coverage.
Similar to the observations in simulated data, χ2 test and Fisher’s
exact test suffered from overdispersion, as manifested by the
higher %ASB at higher levels of read coverage. The results suggest
that these methods underestimate the variance of allelic read
counts in the eCLIP data and tend to produce false-positive
predictions given high read coverage.

ASB events identified in ENCODE eCLIP-Seq data. For all
RBPs with eCLIP data, a total of 3706 and 3783 ASB events were
identified in the HepG2 and K562 cells, respectively. All events
passed the posterior filers that remove potential artifacts due to
repetitive regions, mapping bias, or allele-specific gene expression
(Supplementary Figure 7a. see Methods). The RBPs with more
than 50 predicted ASB events are illustrated in Fig. 2c and the
results for all RBPs are shown in Supplementary Figure 7 and
Supplementary Data 2. The number of ASB events associated
with different RBPs varied greatly. This variation may be
accounted for by multiple factors, such as sequencing depth,
number of eCLIP peaks, and the binding specificity of the RBP.
The genomic distribution of ASB events often reflects known
functions of the RBPs (Supplementary Figure 8a). For example,
proteins known to regulate RNA stability, such as UPF116,
showed ASB enrichment in the 3′-UTR regions. ASB events of
known splicing regulators17, such as RBFOX2, PTBP1, PRPF8,
U2AF1, and heterogeneous nuclear ribonucleoproteins
(hnRNPs), were enriched in the intronic regions.

In general, consistency was observed between the genomic
distributions of ASB events and eCLIP peaks (Supplementary
Figure 8b). Nonetheless, the existence of an ASB event depends on
two factors: existence of an eCLIP peak and a heterozygous SNV in
the peak. As a result, regions (such as coding exons) with a paucity
of SNVs (Supplementary Figure 8c) had relatively less ASB events
compared to eCLIP peaks (Supplementary Figure 8b). In contrast,
introns were associated with relatively more ASB events than
eCLIP peaks for some RBPs (Supplementary Figure 8b). None-
theless, the occurrence frequency of ASB among all testable SNVs
in each region is relatively constant (Supplementary Figure 8d),
suggesting a similar enrichment of ASB events across regions.

The above ASB events occurred in 2552 and 2385 SNVs in
HepG2 and K562, respectively. As shown in Fig. 2d, 76.9 and
77.6% of these SNVs were associated with ASB of one RBP in
HepG2 and K562, respectively, suggesting that ASB events are
mostly RBP-specific. Nevertheless, multiple RBPs may interact
with each other leading to common eCLIP peaks and ASB events.
In addition, RBPs with similar binding motifs may share eCLIP
peaks and ASB events, the examples of which are shown in
Supplementary Figure 9.

Next, we compared the ASB events between the two cell lines.
A total of 760 heterozygous SNVs were testable for ASB of
common RBPs in both cell lines. Among these SNVs, 123 and 174
were identified with ASB patterns in HepG2 and K562,
respectively, with 50 shared by the two cell lines (Fig. 2e, p=
7.4e− 09, Fisher’s exact test). Thus, these 50 SNVs could function
in a cell-type-independent manner, at least between the two cell
lines tested in this study.

SNVs with ASB patterns disrupt RBP binding motifs. For an
RBP with specific sequence preference, it is expected that ASB
patterns may arise if an SNV disrupts its binding motif. Thus, the
localization of ASB SNVs near known RBP binding motifs serves
as a strong indicator of the validity of the predicted ASB. We
obtained binding motifs identified by the RNA Bind-n-Seq
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(RBNS) assay as part of the ENCODE project9. RBNS quantifies
the binding specificity of an RBP to a k-mer sequence using the R
value18,19. To focus on RBPs with relatively high binding speci-
ficity, we required an RBP to have at least one k-mer sequence
with R ≥ 2. Among all RBPs with at least 50 ASB events and at
least 30 events in annotated genes, five RBPs, hnRNPC, hnRNPK,
hnRNPL, RBFOX2, and TARDBP, had RBNS k-mers that passed
this requirement. For these RBPs, we analyzed the occurrence of
the RBNS k-mers in the flanking regions of ASB SNVs. Com-
pared to control regions (see Methods), the ASB flanking regions
were enriched with RBNS motifs, and, importantly, the ASB loci

were located in close proximity to the k-mer enrichment peaks
(Fig. 3a–f). Interestingly, the fold enrichment of RBNS k-mers in
ASB regions relative to control regions is often higher for proteins
with higher R values. These results strongly support the validity of
the predicted ASB events. Note that the enrichment of RBNS
motifs was lower if no correction for crosslinking-induced bias
was carried out (Supplementary Figure 10), supporting the
importance of this step. We observed that the specific nucleotide
position disrupted by the ASB SNVs varied for different RBPs
(Fig. 3a–f), which may depend on the specific binding property of
the RBPs and the specific allelic sequences of ASB SNVs.
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methods are illustrated. b Percentage of ASB events among all testable SNVs in each read coverage bin. The average read coverage of each SNV in the two
replicated eCLIP experiments is shown here. A minimum read coverage of 10 was required. c Number of ASB events identified for each RNA-binding
protein (RBP) in HepG2 and K562 cells. Only RBPs with ≥50 ASB events are shown. The number of usable eCLIP-Seq reads (in millions (M)) is shown for
each RBP. d Number of ASB SNVs associated with one or more than one RBPs. e The overlap of ASB SNVs between HepG2 and K562. Only heterozygous
SNVs common to the two cell lines are included. P value was calculated by Fisher’s exact test. (Source data are provided as a Source Data file)
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For RBPs with ≥50 ASB events (and ≥30 in annotated genes)
but without specific RBNS motifs, we identified the top five most-
frequent pentamers in the 21-mer region centered at the ASB
SNV of each RBP (Supplementary Figure 11). Most of these
proteins do not have known motifs in the literature, likely due to
low sequence specificity. However, for a small number of RBPs

with known binding preference, such as PTBP1 (CU-rich
motif20), the enriched pentamers are largely consistent with their
known motifs. In addition, the positional distribution of these
enriched pentamers often showed biases relative to the loci of
ASB SNVs. It is expected that proteins with low binding
specificity do not demonstrate strong signals in this analysis,
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which may explain the lack of positional bias for some RBPs.
These results again support that ASB analysis can effectively
capture specific RBP binding sites and allelic biases in
protein–RNA interaction.

Experimental validation of ASB events. To provide direct
experimental support that ASB SNVs alter the binding of RBPs,
we carried out electrophoretic mobility shift assays (EMSA, or gel
shift) on randomly selected ASB events of PTBP1 (Fig. 3g, Sup-
plementary Figure 12, Supplementary Data 1). This protein was
chosen since it is relatively easy to purify. To confirm that the
ASB SNVs alter the binding of PTBP1, two versions of each target
RNA were synthesized harboring the alternative alleles of the
SNV. As shown in Fig. 3g, the binding of PTBP1 to target RNAs
was stronger with increasing protein input. The alternative alleles
of the SNVs demonstrated visible differences in their binding to
PTBP1. Specifically, the alleles with the stronger gel shift signals
were consistent with the alleles that had more eCLIP reads,
supporting the validity of the predicted ASB events.

Together, the above results support the validity of our ASB
identification method. Since ASB serves as a direct indicator of
functional SNVs, it is expected that ASB patterns can inform
functional interpretations of GVs. Next, we examined whether the
above ASB analysis captured functional SNVs in regulating
alternative splicing and mRNA abundance.

SNVs subject to ASB may cause splicing alteration. The func-
tional consequence of the ASB event depends on the function of the
RBP. Since many RBPs in this study are known splicing factors, we
examined whether some ASB events may alter splicing. We col-
lected all ASB events of known splicing factors in each cell line (37
in HepG2 and 31 in K562). First, we examined the distance of
intronic SNVs with ASB by splicing factors to the nearest splice site.
Compared to randomly selected SNVs in the same introns (see
Methods), ASB SNVs were significantly closer to the splice sites
(Fig. 4a). Next, to verify that the ASB events are associated with
regulatory targets of the splicing factors, we analyzed splicing
changes of the associated exons upon knockdown (KD) of the
corresponding RBP using ENCODE RNA-Seq data in HepG2 or
K562 cells9. Compared to random controls (see Methods), ASB-
associated exons had a significantly larger change in the percent
spliced-in (PSI) values upon KD of the splicing factors (Fig. 4b).
This result supports the hypothesis that ASB-associated exons are
bona fide targets of the splicing factors. It should be noted that PSI
changes of the ASB target exons upon splicing factor KD are not
expected to be very large in magnitude because the nature of ASB
implicates that only one of two alleles of the endogenous SNV is
bound strongly by the corresponding RBP.

ASB SNVs overlap genetically modulated splicing events. If an
ASB event is functional, we expect that the associated exon or
gene is under cis-regulation by this SNV. For splicing factors,
such ASB events will lead to allele-specific alternative splicing

(i.e., genetically modulated alternative splicing, GMAS). Using
our previous methods6,21, we identified GMAS events in RNA-
Seq data of control HepG2 and K562 cells generated by the
ENCODE project (see Methods). Using these data, we observed
that SNVs with ASB patterns of splicing factors are significantly
enriched in the GMAS exons or within 500 nt from their
exon–intron boundaries (Fig. 4c). Note that, despite the sig-
nificant p value, the absolute number of overlapping events
between ASB and GMAS is not large, possibly reflecting limited
power in identifying either type of events and existence of many
more ASB or GMAS events than included here.

Similarly, we examined the overlap between ASB and splicing
quantitative trait loci (sQTLs) of GTEx tissues22 or The Cancer
Genome Atlas (TCGA) samples23 (see Methods). Due to genotype
difference between these samples and ENCODE cell lines, for each
GTEx or TCGA sample, we only considered ASB SNVs that were
annotated as heterozygous in its genotype. Other intragenic and
heterozygous SNVs in the same sample were used as controls.
Significant overlaps were observed for all GTEx tissues where
sQTL data were available (Fig. 4d). For the TCGA data, we
focused on samples of liver hepatocellular carcinoma (LIHC) and
acute myeloid leukemia (LAML) to correspond to HepG2 and
K562 cells, respectively. A significant overlap was observed in the
LIHC samples (Supplementary Figure 13), but no ASB SNVs were
observed in sQTL-associated exons or introns in the LAML
samples. This result may be due to the relatively small number of
sQTL-associated exons for LAML (1347, compared to 4387 for
LIHC). Overall, our observations support the hypothesis that
splicing factor-associated ASB imposes cis-regulation to splicing.

Experimental validation of ASB SNVs for splicing regulation.
Based on the above results, it is very likely that ASB SNVs of
splicing factors are causal GVs responsible for genetic regulation
of alternative splicing. To provide experimental support for this
hypothesis, we tested five ASB SNVs regarding their potential
impact on alternative splicing. These events were chosen to
include ASB SNVs located in exons or within 500 nt away from
exons. For each ASB SNV, the relevant exonic and intronic
regions were cloned into a minigene reporter6 (see Methods).
Two minigenes were created for each SNV, harboring the two
alternative alleles, respectively. Upon transfection into HeLa cells,
splicing of the middle exon was analyzed using reverse tran-
scription PCR (RT-PCR) with primers targeting the flanking
exons (Fig. 4e). All five exons were confirmed to have allele-
specific splicing patterns.

The direction of splicing enhancement or repression by each
allele depends on the binding preference and the functional roles
of the associated RBP at specific target sites. For example, U2AF2
is known to enable splicing by recruiting the small nuclear
ribonucleoprotein U2 and interacting with other spliceosomal
components to define the 3′ splice site24–26. In the LARS RNA, we
identified an ASB event of U2AF2 where the protein showed a
binding preference for the C allele. Consistent with the expected

Fig. 3 Bioinformatic and experimental validation of allele-specific binding (ASB). a–f Enrichment of RNA Bind-n-Seq (RBNS) motifs in the regions around
ASB single-nucleotide variants (SNVs) (x= 0) of each RNA-binding protein (RBP) (upper panel). Y-axis shows fold change in the enrichment relative to
randomly chosen control regions (Methods). Ten sets of controls were constructed, with the regression curve and 95% confidence interval of the average
fold change shown in the panel. RBNS motifs used in the analysis are shown (middle panel). The relative frequency of the ASB SNVs overlapping each motif
position is shown in the bar graph (lower panel). g Electrophoretic mobility shift assays (EMSA) results of PTBP1 binding to its ASB targets. Alternative
alleles of the ASB SNVs were synthesized, as labeled above the gel images. Read count (sum of two replicates) for each allele in the enhanced crosslinking
and immunoprecipitation (eCLIP) data of PTBP1 (HepG2 cells) is shown. (Images are cropped, with uncropped images in Supplementary Figure 16.) The
sequences of the synthetic RNA fragments are shown below each gel image, where the ASB SNV is highlighted in red. The arrow indicates RNA–protein
complex. Increasing concentrations of PTBP1 were used in different lanes of the gel image (from left to right: 0, 0.6, 1.2, 2.5, and 5 μg). (Source data are
provided as a Source Data file)
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function of U2AF2, the C allele in the minigene reporter was
found to cause increased exon inclusion than the U allele.
Similarly, both PRPF8 and SF3B4 are important players enabling
spliceosome assembly27,28. Consistently, the preferred alleles of
these proteins were associated with increased splicing (i.e.,
increased exon inclusion in MAP2K3 or reduced intron retention
in OTUB1 and IL17RB). The experimental validations strongly
support the functional roles of these ASB SNVs.

ASB SNVs of UPF1 in 3′-UTRs may regulate RNA abundance.
Many RBPs regulate RNA abundance by binding to cis-regulatory

elements in 3′-UTRs29. Among all RBPs with ASB events in 3′-
UTRs, UPF1 had the highest number of events in both cell
lines (Supplementary Figure 14a). Given UPF1’s well-known
function in RNA degradation16, we asked whether genes with
these ASB events demonstrated expression changes upon UPF1 KD.
Using ENCODE RNA-Seq data sets, we analyzed differential
expression of genes with UPF1 ASB in their 3′-UTRs (see Meth-
ods). Figure 5a shows the fractions of differentially expressed genes
of these UPF1 targets. Compared to random controls, the UPF1
ASB targets are enriched with up-regulated genes upon UPF1 KD.
The results support the hypothesis that UPF1 affects RNA
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abundance of its ASB target genes. Thus, it is likely that these ASB
SNVs are functional variants in mediating RNA abundance through
UPF1.

ASB SNVs are significantly enriched in genes with eQTL. To
further examine the association of ASB with cis-regulation of gene
expression, we analyzed the enrichment of ASB-associated SNVs
in genes with known expression QTL (eQTLs). Similarly as in the
sQTL analysis, we obtained eQTL and genotype data of 376 LIHC
and 200 LAML tumor sampls to correspond to HepG2 and K562
cells, respectively, generated by the TCGA project30. Next, we
asked whether ASB SNVs are more enriched in eQTL genes than
expected by chance. Similarly as in the splicing-related analysis,
we only considered ASB SNVs that were annotated as hetero-
zygous in the genotype of each sample. Other intragenic and
heterozygous SNVs in the same sample were used as controls. As
shown in Fig. 5b, across all samples, the fraction of ASB SNVs
located in eQTL genes is generally higher than that of the control
SNVs. Note that this analysis was not restricted to SNVs in 3′-
UTRs since cis-elements in other regions may also directly or
indirectly affect RNA abundance31,32. Indeed, we observed that
ASB SNVs in eQTL genes are most often located in 5′-UTRs and
introns in LIHC and LAML, respectively (Fig. 5c), the specific
mechanisms of which should be examined in the future.

A similar analysis was carried out using eQTL data generated
by the GTEx project33. For all the tissues included in this analysis,
the occurrence frequency of ASB SNVs in eQTL genes was
significantly higher than that in controls (Fig. 5d). It should be
noted that since ASB patterns were identified in HepG2 and K562
cells, the observed overlap with eQTL genes here may be an
underestimate of the actual overlap, given possible existence of
cell-type specificity for certain ASB events. Therefore, the results
here strongly support that ASB of RBPs likely impose regulation
on mRNA abundance.

Experimental validation of ASB SNVs regulating RNA abun-
dance. To experimentally test the roles of ASB SNVs in regulating
RNA abundance, we carried out reporter assays for three events
randomly chosen from all ASB SNVs that are also eQTL variants
in the GTEx data (Fig. 5e). The reporter has a bi-directional
promoter that drives the expression of mCherry and eYFP (see
Methods). Regions of the 3′-UTRs flanking the ASB SNVs were
cloned as the 3′-UTR of mCherry (Methods), while eYFP serves
as an internal control for gene expression. For each SNV, two
versions of the reporter were constructed carrying each of the two
alternative alleles. Upon transfection to HeLa cells, we measured
mCherry and eYFP expression via real-time quantitative reverse
transcription PCR (qRT-PCR). As shown in Fig. 5e, all three

SNVs were confirmed as causal differential RNA abundance of
the reporter. In addition, the observed allelic bias in expression is
consistent with that observed in eQTL analysis by GTEx. Thus,
these experiments confirmed the functional roles of these ASB
SNVs in modulating RNA abundance.

ASB SNVs overlap disease-associated GVs. To examine
whether ASB by RBPs may explain the functional roles of disease-
related GVs, we compared ASB SNVs in this study with known
disease-associated GVs included in several databases: GWAS
(genome-wide association study), COSMIC, ClinVar, CIViC,
and iGAP. As shown in Fig. 6a, a total of 154 unique ASB SNVs
have known disease relevance according to this analysis. In
addition, we asked whether ASB SNVs were in linkage dis-
equilibrium (LD) with single-nucleotide polymorphisms (SNPs)
reported in GWAS (LD defined as D′ > 0.9 and r2 > 0.8, and
within 200 kb in distance, see Methods for details). A total of 1676
ASB SNVs (34.7% of the 4825 ASB SNVs in total combining data
from HepG2 and K562) were in LD with 1161 GWAS SNPs
(Fig. 6b). This high percentage of ASB SNVs with GWAS asso-
ciation supports the potential functional relevance of ASB.
Among these GWAS SNPs, 29% were in the same genes as the
ASB SNVs (Fig. 6b). The vast majority of the GWAS SNPs were
located in introns whose functional consequence had been hard
to predict.

We experimentally tested the functional impacts of three
disease-associated ASB events. Specifically, two events were
chosen randomly as candidates that may alter splicing by
requiring the SNVs to reside in exons or within 500 nt to
exon–intron boundaries. The splicing reporters were con-
structed similarly as described above. As shown in Fig. 6c, both
SNVs were confirmed as splicing-altering variants. Specifically,
The SNP rs267738 is associated with multiple traits in GWAS,
such as the blood protein level and rhegmatogenous retinal
detachment34,35. It demonstrated ASB pattern in the eCLIP
data of GEMIN5, a small nuclear RNA-binding component of
the survival of motor neurons complex36. This SNP is located in
the gene CERS2 with known functional relevance in cancer37,38.
Interestingly, the SNP was annotated as a missense variant in
the GWAS catalog. Our data demonstrated significant splicing
changes caused by this SNP, suggesting that exonic SNVs that
appear to be nonsynonymous could function by altering
splicing, an aspect that has been largely overlooked. Note that
GEMIN5 may affect splicing in either direction (enhancing or
repressing)39. In our experiment, the GEMIN5-preferred allele
(C) was associated with increased exon skipping compared to
the alternative allele A. Through GEMIN5 KD experiments, we
confirmed that the C allele (but not the A allele) responded to

Fig. 4 Functional relevance of allele-specific binding (ASB) single-nucleotide variants (SNVs) in splicing regulation. a Distance of intronic ASB SNVs to the
nearest splice sites. Controls consist of randomly chosen SNVs in the same introns. A total of 100 sets of controls were constructed, with the average and
standard deviation shown in the plot. b Absolute change in the percent spliced-in (PSI) values of exons associated with ASB events of splicing factors upon
knockdown of the respective splicing factor in HepG2 or K562 cells. Controls were random intronic SNVs in the same introns. P value was calculated by the
Kolmogorov–Smirnov test. c Overlap between ASB SNVs of splicing factors and heterozygous SNVs associated with genetically modulated alternative
splicing (GMAS) events in the genes harboring ASB SNVs. P values were calculated by the hypergeometric test (see Methods). d Fraction of ASB SNVs
located in GTEx splicing quantitative trait loci (sQTL) exons or within 500 nucleotide (nt) in their flanking introns among the union of ASB SNVs of all
splicing factors in the HepG2 or K562 data. This fraction was calculated for each sample individually, with the distribution of all samples in a tissue shown
in the box plots. Control: fraction of randomly chosen heterozygous SNVs within genes in the above regions in each sample. e Splicing reporter validation of
the function of ASB events. Three exon skipping events and two intron retention events are included. The gene names with the ASB events, the associated
RNA-binding proteins (RBPs), RNA alleles of the ASB SNV, and their read counts in enhanced crosslinking and immunoprecipitation (eCLIP) are shown.
(Images are cropped, with uncropped images in Supplementary Figure 16.) The red arrows in the exon–intron diagrams indicate positions of PCR primers.
Inclusion level (three biological replicates) of the exon or intron is shown below each gel image. P values were calculated by Student’s t-test. Note that the
IL17RB minigene had alternative splice sites in the intron, which led to the extra bands (black arrows). Boxplot center lines indicate the median and the
boxes extend to lower and upper quartiles with whiskers depicting 1.5 interquartile range (IQR). (Source data are provided as a Source Data file)
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KD significantly (higher exon inclusion upon KD) (Supple-
mentary Figure 15).

The SNP rs3731896 in the gene DNAJB2 was identified as an
ASB SNV of the RBP SF3B4. It is a known GWAS SNP associated
with educational attainment40. In the reporter assays, we observed
that this SNP alters intron retention of its host intron. SF3B4
encodes for a subunit of the splicing factor SF3B41 that is part of the
spliceosomal complex. It is generally expected that SF3B4 enables
spliceosome formation. However, we observed that the C allele
(preferred binding by SF3B4) is associated with increased intron

retention. The result indicates that the function of SF3B4 may be
more complex than expected, consistent with a previous observa-
tion that reduced expression of this gene was associated with a
predominant reduction in intron retention42.

The SNP rs2293577 is located in the 3′-UTR of the gene
SLC39A13 that is annotated to be associated with Alzheimer’s
disease by the iGAP consortium43. The U allele of this SNP in
the RNA is preferred for UPF1 binding. We chose to validate
the function of this SNP in altering mRNA abundance using the
bi-directional mCherry/eYFP reporters as described above.
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Fig. 5 Functional relevance of allele-specific binding (ASB) single-nucleotide variants (SNVs) in regulating messenger RNA (mRNA) abundance. a Fraction
of differentially expressed genes (up- or down-regulated, false discovery rate (FDR) <10%) upon UPF1 knockdown in HepG2 or K562 cells. n.s.: not
significant. Data for genes with ASB SNVs of UPF1 in their 3′-untranslated regions (3′-UTRs) and control genes are shown, where the controls were chosen
as genes without UPF1 enhanced crosslinking and immunoprecipitation (eCLIP) peaks and with similar expression levels as UPF1 targets (within+/−30%
of RPKM). P values were calculated to test the null hypothesis that UPF1 ASB target genes are not enriched with up-regulated expression upon UPF1
knockdown (KD), compared to controls (binomial test). b Fraction of ASB SNVs located in expression quantitative trait loci (eQTL) genes among the union
of ASB SNVs of all RNA-binding proteins (RBPs) of each cell line. eQTL genes were extracted from the The Cancer Genome Atlas (TCGA) project for liver
hepatocellular carcinoma (LIHC) and acute myeloid leukemia (LAML), respectively, to match the cell type of HepG2 and K562. This fraction was calculated
for each sample individually, with the distribution of all samples shown in the box plots. Control: fraction of control SNVs located in eQTL genes where
control SNVs were randomly chosen from heterozygous SNVs located within genes. P values were calculated by pair-wise t-test. c Genomic context of ASB
SNVs that are heterozygous in TCGA samples and located in the eQTL genes. Exon: coding exons; no non-coding transcripts existed among eQTL genes
included in this analysis. d Similar as (b), for eQTL genes in GTEx tissues. e Expression of minigenes carrying alternative alleles of ASB SNVs in the 3′-UTR
of mCherry. mCherry expression measured via real-time quantitative reverse transcription PCR (qRT-PCR) was normalized by that of eYFP (driven by bi-
directional promoters). Three biological replicates were analyzed. P values were calculated by Student’s t-test. Box plots (top) show the normalized gene
expression values of the host genes in selected GTEx tissues, grouped by genotypes of the ASB SNV (coordinates shown above box plots). The expression
values and eQTL p values were obtained from the GTEx portal33. Boxplot center lines indicate the median and the boxes extend to lower and upper
quartiles with whiskers depicting 1.5 interquartile range (IQR). (Source data are provided as a Source Data file)
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Consistent with the expected function of UPF1 in RNA
degradation and GTEx eQTL results (Fig. 6d), the U allele
was associated with reduced RNA expression. Intriguingly, the
region harboring this SNP is also associated with an intron
retention event (Supplementary Figure 14b). Thus, we also
tested the impact of this SNP on intron retention using the
splicing reporter. The results confirmed that the U allele in the
RNA caused a significant level of retained introns compared to
the C allele (Supplementary Figure 14b). These results suggest
that the SNP likely imposes multiple types of functional
impacts on SLC39A13 expression.

Discussion
In this study, we developed a new method called BEAPR to
identify ASB events using the eCLIP-Seq data. eCLIP-Seq cap-
tures transcriptome-wide protein–RNA interaction profiles.

Compared to previous CLIP methods, eCLIP improves the effi-
ciency and reproducibility in library generation and yields high
usable read percentages across diverse RBPs8. The large number
of eCLIP-Seq data sets made available by the ENCODE project,
with biological replicates and paired size-matched input controls,
affords a unique opportunity to examine protein-RNA interaction
in an allele-specific manner.

Quantitative analysis of SNVs in CLIP reads is challenging in
that the read coverage of a single nucleotide is relatively low
compared to that in an average RNA-Seq data set. In addition,
technical biases, such as those due to crosslinking, may confound
the estimated allelic bias and lead to false-positive ASB predic-
tions. BEAPR addresses these potential issues by modeling read
count variability and crosslinking bias and filtering for other
possible technical biases. Using simulated reads, we demonstrated
that BEAPR outperforms standard methods for read count
comparisons. Importantly, we observed that the other methods
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Fig. 6 Allele-specific binding (ASB) events inform functional interpretation of disease-associated variants. a Numbers of ASB single-nucleotide variants
(SNVs) that are also disease-related SNVs annotated by different databases. b Genomic context of genome-wide association study (GWAS) single-
nucleotide polymorphisms (SNPs) (stacked bars) located in the same or different genes as ASB SNVs. Most GWAS SNPs are located in introns, whose
function was elusive. NC exon: exons in non-coding transcripts. Splicing-related: those located in splice site signals. c Splicing reporter validation of two
ASB SNVs, similar as Fig. 4e. (Images are cropped, with uncropped images in Supplementary Figure 16.) d Minigene reporter validation of one SNP for its
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suffered from overdispersion in both simulated and actual eCLIP
data, which led to their high false-positive rates. In contrast,
BEAPR is robust to the variance in the input read count data and
overcomes the overdispersion issue.

BEAPR identified thousands of ASB events using the ENCODE
eCLIP data. Supported by experimental validations, we demon-
strated that the ASB patterns helped to inform functional pre-
dictions of SNVs in regulating alternative splicing and mRNA
abundance. The majority of these SNVs are located in the introns
or 3′-UTRs. Thus, these results helped to address one of the most
challenging questions in the post-genomic era: the functional
relevance of non-coding variants in human genomes.

It is increasingly appreciated that non-coding variants may
affect post-transcriptional gene regulation and many contribute
to disease-related processes3. For example, it was estimated that
35% of disease-causing point mutations disrupt splicing by
altering splice site signals or auxiliary regulatory elements in the
exons or introns3. Despite the widely recognized importance,
systematic prediction of causal GVs that alter post-transcriptional
gene regulation has been a major challenge. Most methods, such
as splicing or gene eQTL analyses, rely on detection of correlative
relationships without the capacity to pinpoint the exact causal
GVs. ASB of RBPs provides a direct means to examine the
function of SNVs. The ASB-based analyses presented in this study
demonstrated that it is highly feasible to employ this approach for
causal SNV detection in post-transcriptional regulation. None-
theless, it should be clarified that, similarly as the fact that
protein–RNA binding alone does not always lead to a functional
consequence, existence of ASB alone does not always entail allele-
specific function of the protein. The ASB data should be com-
bined with other molecular phenotypes (such as splicing or gene
expression level) to interpret the function of SNVs.

In addition to splicing and mRNA abundance, ASB patterns
may help to identify functional SNVs involved in other aspects of
RNA metabolism, such as RNA localization or RNA secondary
structures. The specific function of SNVs should depend on
the roles of the RBPs demonstrating ASB patterns. Therefore, we
expect that allele-specific analyses of eCLIP will be an essential
approach to deciphering the function of non-coding variants in the
RNA.

Methods
Preprocessing of the ENCODE eCLIP data. eCLIP data sets generated from the
HepG2 and K562 cell lines were downloaded from the ENCODE data portal. Raw
reads were demultiplexed, adapter-trimmed, and mapped according to established
eCLIP data processing procedures of the ENCODE project9. After removal of PCR
duplicates, the remaining uniquely mapped reads were called “usable” reads for
ASB analysis. eCLIP peaks were identified using read 2 (R2) of the paired-end reads
via CLIPper13, with options -s hg19 -o -bonferroni -superlocal-threshold-method
binomial-save-pickle. In this work, eCLIP peaks were retained for subsequent
analyses if the library-normalized read coverage in at least one replicate is ≥4-fold
of that in the corresponding region in the SMInput.

Identification of crosslinking sites in eCLIP peaks. To examine the potential
existence of crosslinking bias, BEAPR first determines crosslinking sites within
eCLIP peaks. In eCLIP assays, reverse transcription of complementary DNA
(cDNA) usually terminates at the protein–RNA crosslinking site8. Thus, a cross-
linking site is expected to coincide with the start position of a significant number of
R2 reads compared to random expectations. It should be noted that if a protein
binds to a cluster of motifs, multiple crosslinking sites may be identified within one
eCLIP peak. This is because that reverse transcription may sometimes read-
through a 3′ crosslinking site and reach the upstream ones.

To identify crosslinking sites, we carried out a similar procedure as in our
previous work8. Specifically, for each eCLIP peak, the 5′ end positions of usable R2
reads within the peak were identified. For each nucleotide position i in the peak, the
number of R2 reads, mi, whose 5′ end coincides with position i was obtained. The
actual mi values were compared to random expectations obtained by permuting the
positions of eCLIP reads within a peak. Empirical FDR was calculated and a
minimum FDR of 0.001 was used to call crosslinking sites.

Normalization of allelic read counts by crosslinking bias. To identify inherent
crosslinking bias for an eCLIP experiment, BEAPR calculates the relative abun-
dance of the four nucleotides at each position flanking the crosslinking sites in the
SMInput sample (Fig. 1b). The observed relative sequence bias in the SMInput is
unlikely resulted from the binding preference of specific RBPs. This bias is thus
referred to as the crosslinking bias, which is estimated for each experiment. It is
used to normalize the observed allele-specific read counts of SNVs in the vicinity of
crosslinking sites.

Prior to read count normalization for each SNV, we removed low-quality read
bases by requiring a minimum Base Alignment Quality score of 1044. After this
procedure, we examined the 51-nt region flanking the crosslinking site in each
eCLIP peak. For each offset position d, −25 ≤ d ≤ 25, relative to the crosslinking
site, the crosslinking bias q(a, d) of the nucleotide a at the offset position d was
calculated as described above. Let yi,a,j be the number of eCLIP reads mapped to the
allele a at the SNV i in the eCLIP replicate j. Rj denotes the total number (in
millions) of eCLIP reads in the replicate. The normalize read count xi,a,j of yi,a,j was

calculated as xi;a;j ¼ yi;a;j ´ q a; dð Þ´Rj

� ��1
. If d > 25 or d <−25, q(a, d) was set to

be 0.25.

Estimation of expected variance of normalized read counts. For each allele r at
a heterozygous SNV i, let the variance of the normalized read counts across the
eCLIP replicates be σ2r;i . Since only a small number of replicates are available, the
sample variance σ2r;i is a poor estimator of the expected variance of the normalized
read counts for the allele r. Hence, we developed the following procedure that
considers allelic read counts from all SNVs to enhance the estimation of the
expected variance. Specifically, for each allele r at an SNV i located in an eCLIP
peak, we calculated the mean μr,i and variance σ2r;i of its normalized read counts
across the CLIP replicates. Using each pair of the mean and variance values, μr,i and
σ2r;i, we calculated the square of the coefficient of variation (CV2) value, ωr,i. Then,
a LOESS regression function was applied to fit all ωr,i and log2(μr,i) values, where
the CV2 was the response variable and the log 2-scaled mean was the explanatory
variable (Fig. 1c). To predict the expected variance of the normalized read counts
for an allele r’, let ω̂r′;i be the CV2 value moderated by the LOESS regression
function. The expected variance σ̂2r′;i for the allele r' at an SNV i was calculated as
σ̂2r′;i ¼ ω̂r′;i ´ μ

2
r′;i.

Identification of ASB events. Let r and a denote the reference and alternative

allele at an SNV site i and XA;i ¼ xA;i;1; :::; xA;i;k
n o

be the normalized read counts

for an allele A at the SNV i in all the k CLIP replicates. Our null hypothesis is that
there is no ASB at the SNP i such that r and a are equivalently represented in the
associated eCLIP peak. To test the null hypothesis, we examined whether μr,i= μa,i
given Xr,i and Xa,i. An alternative method to test the difference of the two mean
values is t-test. However, due to the small sample size of the allelic read counts
from individual genomic features, t-test was shown to be inapplicable to genomic
read counts data derived from a limit number of replicates45. Hence, we derived the
following empirical Gaussian distribution, which can adapt to different types of
read count data with high or low dispersion heterogeneity45, to model the nor-
malized read counts. A novelty of our method is the incorporation of the global
mean-variance relationship moderated by the LOESS regression into the statistical
test for the equivalence of the two mean values.

We assume

XA;i � N μ; σ2
� �

; ð1Þ
where μ is the mean and σ2 the variance of the Gaussian distribution. In addition,
we assume the prior distribution of μ follows a normal distribution:

μ � N μ0; σ
2
0

� �
; ð2Þ

where the mean μ0 and the variance σ20 are hyper-parameters.
At an SNV i, an allele was named the major allele, denoted as M, if its average

allelic read counts across the CLIP replicates was higher than that of the other
allele. Otherwise, the allele was called the minor allele, denoted as m. In BEAPR, we

calculate the empirical probability P μ ¼ μm;ijX ¼ XM;i

� �
that the average read

count of the minor allele, μm,i, was generated from the same distribution from
which the normalized read counts for the major allele M was observed. Thus, the
p value P to reject the null hypothesis was defined as:

P ¼ 2 ´
Z μm;i

�1
P μjXM;i

� �
dμ: ð3Þ

Based on Bayes rule, P μjXM;i

� �
/ P XM;ijμ

� �
PðuÞ. Assume the expected

variance for the allele M is σ̂2M;i, which is estimated as described in the last section.
By combining the empirical probability P(μ|X= XM,i) with the distributions of X
and μ, the empirical probability can be rewritten as a Gaussian distribution such

that P μjX ¼ XM;i

� �
¼ N μj~μ; ~σ2ð Þ, where the mean ~μ is:

~μ ¼ kσ̂�2
M;i σ�2

0 þ kσ̂�2
M;i

� ��1
μM;i þ σ�2

0 σ�2
0 þ kσ̂�2

M;i

� ��1
μ0; ð4Þ
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where k is the number of eCLIP replicates, and the variance ~σ2 is:

~σ2 ¼ σ�2
0 þ kσ̂�2

M;i

� ��1
: ð5Þ

Since the prior probability of μ is unknown, we assumed that σ20 ! 1. Thus, the
posterior probability to observe the mean μm,i for the minor allele m given XM,i is:

P μjXM;i

� �
� N μjμM;i; σ̂

2
M;ik

�1
� �

: ð6Þ
To adjust for multiple testing, FDRs were calculated. A minimum FDR of 10%

was required to call significant ASB events in the ENCODE data sets.

Identification of heterozygous SNVs in eCLIP reads. BEAPR includes a pro-
cedure to call heterozygous SNVs directly from the eCLIP data. As candidate SNVs,
we obtained known SNPs or mutations from various databases, including dbSNP,
GTEx, TCGA, ExAC, and COSMIC. For each cell line, we pooled all the SMInput
data sets together and calculated the allelic read counts at all candidate SNV
locations. A candidate SNV was predicted as a heterozygous SNV in the cell line if
the total read coverage was at least 10 and the allelic ratio of the reference allele
was between 0.25 and 0.75. In addition, we used whole-genome DNA sequencing
data of the two cell lines to identify heterozygous SNVs using the same method as
in our previous work14. It should be noted that in the analysis of ASB SNVs,
heterozygous SNVs outside eCLIP peaks were discarded. However, the identifica-
tion of heterozygous SNVs can be carried out for any region satisfying the above
read coverage requirement. The number of heterozygous SNVs identified in the
two cell lines with or without the eCLIP peak filter is shown in Supplementary
Figure 5b.

Simulation of allele-specific read counts. To simulate allele-specific read counts
that mimic those in actual eCLIP data sets, we used the eCLIP data of SRSF1 in the
K562 cell line generated by ENCODE. eCLIP peaks were identified as described
above. For heterozygous SNPs (dbSNP 144) located in the peaks, we obtained their
total read coverage in each replicate. The empirical total read coverage distributions
were used to generate independent sets of simulated read counts. For each simu-
lated SNP, its total read coverage was sampled from the above distribution. Its
allelic ratio was set to be 0.5, unless it is a simulated ASB SNP (with allelic ratio
being 0.7, 0.8 or 0.9). The allelic read counts for each SNP were determined using a
zero-truncated negative binomial distribution with the expected variance set to be
equivalent to the observed variance between the two replicates of SRSF1 eCLIP as a
function of total read coverage.

To add crosslinking-induced bias, the simulated allelic read counts for each
SNP was rescaled based on the sequence propensity estimated from the SRSF1 data
(similar as Fig. 1b), for SNPs located within 25 nt of crosslinking sites. To simulate
additional SNPs with high variances in their read counts, we required the standard
deviation of the SNP read counts between the two replicates be greater than that of
95% of SNPs in the SRSF1 data.

Evaluation of performance. Using simulated read counts, the overall performance
of ASB prediction was evaluated in terms of precision, TP × (TP+ FP)−1, and
recall, TP × (TP+ FN)−1, where TP is the number of true positives, FP is the
number of false positives, and FN is the number of false negatives. The area under
the precision-recall curve (AUC) was calculated. We used this AUC value instead
of that of a receiver operating characteristic (ROC) curve, because the number of
SNVs with ASB or not were extremely unbalanced. A recent study suggested that
precision-recall curves were more informative than ROC curves on unbalanced
data46. Moreover, we also evaluated the prediction methods by sensitivity (SEN),
TP × (TP+ FN)−1, and specificity (SPE), FP × (TN+ FP)−1, where TN is the
number of true negatives. We reported sensitivity at 95% specificity (SEN95) and
specificity at 95% sensitivity (SPE95) as additional performance metrics to assess
the methods.

Posterior filters for quality control in BEAPR. In applying BEAPR to actual
eCLIP-Seq data, we incorporated a number of posterior filters to ensure the quality
of the predicted ASB events. Note that no such filters were applied to simulated
data. First, since ASB analysis handles single nucleotides in sequencing reads, it
suffers from similar problems as in RNA-editing analysis. Thus, we implemented
posterior filters that are similar as those widely used in identifying RNA-editing
sites47. Specifically, predicted ASB candidates were excluded if they are located in
(1) microsatellites annotated by RepeatMasker48 (downloaded from UCSC genome
browser), (2) homopolymeric pentamers, or (3) regions with mapping ambiguity.
For the last filter, we used BLAT49 to align the 101 nucleotide sequence centered at
each ASB SNV. ASB candidates in sequences with ≥95% similarity with other
genomic regions were discarded. All the above filters are implemented in the
BEPAR pipeline.

Allelic imbalance in eCLIP reads may be observed as a result of allele-specific
expression (ASE) of the host gene, regulated by gene-level control mechanisms,
such as allele-specific transcriptional activation. Such allelic bias may be identified
as ASB in eCLIP data, but does not reflect bona fide allelic binding events of any
RBPs. Using RNA-Seq data of control HepG2 and K562 cells in the ENCODE
project, we identified genes that showed whole-gene level ASE using ASARP21. In

this analysis, we focused on genes that had at least two heterozygous SNVs each
with a minimum of 10 reads (defined as testable SNVs). Genes whose testable
SNVs all demonstrated allelic bias (FDR < 0.05) was deemed as ASE genes. If a gene
was detected as an ASE gene in at least two RNA-Seq data sets (out of 24 total), we
further required that the reference allele frequency of all SNVs in this gene to be
<40% or >60% based on RNA-Seq reads. ASB candidates in such genes were
discarded.

In read alignment of SNVs using a reference genome, it is known that mapping
bias that favors the reference alleles may exist21. To account for such possible bias,
we calculated the distribution of allelic ratios at known heterozygous SNVs in the
SMInput data. The mean θ and standard deviation σ of this distribution were
calculated. For each ASB candidate i whose allelic ratio was θi, we calculated a Z-
score, zi ¼ θik � θk ´ σ�1, to evaluate how likely the ASB observation was due to
reference mapping bias. ASB candidates were discarded if the Z-scores were smaller
than 1.0.

Empirically, we observed high densities of eCLIP peaks from multiple RBPs
exist in a small number of genomic regions. This observation may reflect artifacts
in eCLIP that generated “hotspot” IP regions. To alleviate the impact of this
possible artifact, we binned the genome into non-overlapping windows of 2000
nucleotides and calculated the number of the ASB candidates shared by more than
four RBPs in each window. We identified a small number of windows in the two
cell lines where the ASB candidates shared by more than four RBPs significantly
outnumbered those in the other windows, such as chr14:24,610,000–24,612,000 in
HepG2, chr17:41,466,000-41,468,000 in K562, and chr19:34,882,000–34,884,000 in
both cell lines. We thus discarded ASB candidates in these genomic regions.

The number and percentage of ASB events removed by each stepwise filter are
shown in Supplementary Figure 7a.

Motif analysis. The position-specific motif enrichment plots (Fig. 3) were gen-
erated as follows. Within each peak harboring an ASB event, k-mer occurrence at
each position flanking the ASB SNV was counted. Note that at the ASB SNV, the
sequence of the major allele in eCLIP was used. The k-mers used here are pen-
tamers identified by RBNS for each RBP9. The frequency of the RBNS pentamers in
all ASB regions of an RBP was calculated. As controls, we randomly picked a
genomic sequence to match each region with ASB in terms of the type of region
(e.g., intron, 3′-UTR etc) and GC content (±10%). A total of 10 random sets of
sequences were selected, with each set containing the same number of sequences as
the number of ASB regions of an RBP. The fold enrichment of RBNS pentamers in
ASB regions relative to the random controls was calculated and visualized in Fig. 3.
The location of ASB SNVs relative to the sequence motifs of each RBP (Fig. 3) was
determined using MOODS (p < 0.05)50.

Splicing-related analysis of RNA-Seq data. RNA-Seq data of RBP KD or asso-
ciated controls were obtained from the ENCODE portal. The PSI values of
annotated exons (Gencode (basic v24) annotation) were calculated using inclusion
and exclusion reads of the alternative regions6. GMAS events in HepG2 and K562
cells (with control short hairpin RNA (shRNA) transfections) were identified using
ASARP6,21. To identify overlap between an ASB SNV and a GMAS exon, the ASB
SNV was required to reside in the GMAS exon or within 500 nt from exon–intron
boundaries. We tested the statistical significance of the overlap via the hypergeo-
metric test, where the background is the total number of heterozygous SNVs in
genes harboring ASB SNVs.

Overlap between ASB events and QTL-related exons and genes. In the analysis
of GTEx data, we obtained genotype data for 515 human donors (GTEx v6p
release), from which heterozygous SNPs were identified for each individual. QTL-
related exons were defined as those whose junctions were associated with GVs
significantly (FDR < 0.05), in the GTEx Pilot analysis22. Genes with eQTL were
extracted from GTEx v6p release33.

For the TCGA samples, genotype data of 200 LAML and 376 LIHC tumor
samples were obtained from the TCGA data portal (https://tcga-data.nci.nih.gov/
tcga/). QTL-related exons were defined as those associated with splicing QTL in the
CancerSplicingQTL database23. Genes with eQTL were extracted from the
PancanQTL database30.

Comparison of ASB SNVs and GWAS SNPs. To identify GWAS SNPs in LD
with ASB SNVs, the GWAS catalog was downloaded from the NHGRI GWAS page
at http://www.genome.gov/gwastudies/ on December 17, 2014. LD data of the
CEPH (Utah residents with ancestry from northern and western Europe) popu-
lation were obtained from the International HapMap Project51. In our GWAS LD
analysis, an ASB SNV is defined as in LD with a GWAS SNP if both variants were
located in the same LD block that passed the thresholds D′ > 0.9 and r2 > 0.8.
Additionally, the distance between the GMAS SNV and GWAS SNP was required
to be <200 kb.

RNA-Seq data analysis of UPF1 KD. RNA-Seq data of UPF1 KD and associated
controls were obtained from the ENCODE portal. Differential gene expression
analysis was carried out using DESeq252 with an FDR cutoff of 10%. The Gencode
(basic v24) gene annotation was used for this purpose.
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Minigene reporters for splicing assays. For exon skipping events, the candidate
exon and ~400 nt upstream and downstream flanking introns were amplified using
HeLa or K562 genomic DNA. After double digestion by HindIII and SacII or EcoRI
and SacII, the DNA fragments were sub-cloned into pZW1 splicing reporter
plasmids53. For intron retention events, the candidate intron and its flanking exons
were cloned into the pcDNA3.1 plasmids. Final constructs were sequenced to
ensure that a pair of plasmids containing the two alternative alleles of the SNV was
obtained.

Transfection, RNA extraction, reverse transcription, and PCR. Minigene con-
structs were transfected into >90% confluence HeLa cells (ATCC, CCL-2) using
Lipofectamine 3000 (Thermo Fisher Scientific, L300015). Cells were harvested 24 h
post transfection and total RNA was isolated using TRIzol (Thermo Fisher Sci-
entific, 15596018), followed by Direct-zol RNA Mini prep (Zymo Research,
R2072). cDNA was prepared from 2 μg of total RNA by SuperScript IV First-Strand
Synthesis System (Thermo Fisher Scientific, 18091050) and one-twentieth of the
cDNA was used as template to amplify both inclusion and exclusion of the can-
didate exon by PCR of 28 cycles.

Gel electrophoresis and quantification. Five microliter of PCR product was
loaded onto 5% polyacrylamide gel and electrophoresis at 70 V for one and a half
hours. The gel was then stained with SYBR® Safe DNA Gel Stain (Thermo Fisher
Scientific, S33102) for 30 min before imaging via Syngene SYBRsafe program
(Syngene). The expression level of spliced isoforms was estimated using the ImageJ
software (http://imagej.nih.gov/ij/). Inclusion or intron retention rate (% inclusion)
of the target exon was calculated as the intensity ratio of upper × (upper+ lower)−1

bands.

Bi-directional reporter constructs for 3′-UTR analysis. To test the function of
ASB events in 3′-UTRs, ~700–1000 nt of the 3′-UTR regions including the ASB
SNV were amplified using genomic DNA extracted from HMLE, HeLa, or K562
cells. Site mutations were generated for alternative alleles for each SNV using
overlap-extension PCR. After double digestion by ClaI and SalI-HF, the DNA
fragments were sub-cloned into the 3′-UTR of mCherry in the bi-directional
reporter plasmid pTRE-BI-red/yellow that encodes for both mCherry and eYFP54.
Final constructs were sequenced to ensure that a pair of plasmids containing the
two alternative alleles of the SNV was obtained.

Real-time PCR. The real-time PCR reaction was performed using SsoAdvanced
Universal SYBR Green Supermix (Bio-Rad, 172-5270) and CFX96 Touch Real-Time
PCR detection system (Bio-Rad) according to the manufacturer’s instructions. The
mRNA expression level associated with each allele of the ASB SNV was measured by
the mCherry expression levels, which was normalized against that of eYFP.

Purification of recombinant human PTBP1. The human PTBP1-pET28a
expression vector was a gift from Dr. Douglas Black. It was transformed into BL21
Star (DE3)-competent cells (Thermo Fisher Scientific, C602003). Protein induction
was carried out via 1 mM isopropyl β-D-1-thiogalactopyranoside (IPTG) treatment
in 50 mL cultured cells (OD= 0.8) for 16 h at 215 rpm at 28 °C. Next, cultured cells
were centrifuged at 7000 × g for 5 min at 4 °C and the pellets were resuspended
with ice-cold 5 mL lysis buffer (1× BugBuster, 20 mM sodium phosphate, pH 7.7,
500 mM NaCl, 20 mM imidazole, 1 mM dithiothreitol (DTT), 0.5× protease inhi-
bitor cocktail, 100 μg/mL lysozyme, 100 U DNAse I). After 30 min incubation, the
lysate was disrupted using three times sonication at 30% amplitude for 30 s with 1 s
pulse. Subsequently, the lysate was centrifuged at 15,000 × g for 15 min at 4 °C. The
supernatant was collected and filtered using 0.45 μm syringe filter. The sample was
loaded into the HisTrap HP column (GE Healthcare, 17-5247-01) using Biologic
LP system (Bio-Rad, 7318304) and washed with 20 mL buffer A (20 mM sodium
phosphate, pH 7.7, 500 mM NaCl, 20 mM imidazole, 1 mM DTT). The sample was
eluted with 500 mM imidazole in buffer A. Purity of the recombinant PTBP1
protein was determined by SimplyBlue SafeStain (Thermo Fisher Scientific,
LC6060) and western blot using anti-HIS antibody (Santa Cruz Biotech, sc-8036,
1:500 dilution). Clean fractions (E28 and E33, Supplementary Figure 12) were
combined (~3 mL). Salt and small size of non-specific proteins were removed by
incubating in 20 K Slide-A-Lyzer dialysis cassette (Thermo Fisher Scientific, 66003)
with 1 L Buffer A in a cold room overnight. Protein concentration was measured by
Pierce Coomassie (Bradford) protein assay kit (Thermo Fisher Scientific, 23200)
and Turner spectrophotometer SP-830.

In vitro transcription of PTBP1 target RNA. ASB candidates overlapping with
PTBP1 binding motif were selected and 100 μM of sense and antisense oligos
including T7 promoter were annealed with oligo annealing buffer (10mM Tris-HCl,
pH 8.0, 1 mM EDTA, pH 8.0, 100mM NaCl) at 95 °C for 5 min in a heat block and
then cooled slowly to 28 °C for 2 h. In vitro transcription was performed using 1 μg of
annealed oligos and HiScribe T7 high yield RNA synthesis kit. In vitro synthesized
RNAs were treated with 10 U RNAse-free DNAse I (Thermo Fisher Scientific,
EN0525) at room temperature for 30min, and then purified by RNA Clean &
Concentrator-5 Kit (Zymo Research, R1015). Next, RNA samples were treated with

10U shrimp alkaline phosphatase (NEB, M0371S) at 37 °C for 1 h and then labeled
with 0.4 μL of γ-32P-ATP (7000 Ci/mmol, MP Biomedicals) using 20 U T4 poly-
nucleotide kinase (NEB, M0201S). Subsequently, RNA probes were purified using 5%
urea-PAGE extraction and RNA Clean & Concentrator-5 Kit. RNA concentration
was measured by Qubit 2.0 fluorometer (Thermo Fisher Scientific).

Electrophoretic Mobility Shift Assay. The purified RNA probes (20 pmol)
and recombinant PTBP1 protein (0, 0.6, 1.2, 2.5, and 5 μg) were incubated in 15 μL
of buffer A (20mM sodium phosphate, pH 7.7, 500mM NaCl, 20mM imidazole, 1
mMDTT, 0.1× protease inhibitor cocktail, 10 U RNAse inhibitor) at 28 °C for 30min,
and then loaded onto 5% TBE-PAGE and ran at 75 V for 1.5 h. The gel was
processed without drying, covered with clear folder, and exposed to X-ray film at
−80 °C.

Lentivirus mediated GEMIN5 KD. pLKO1 non-target control-shRNA (SHC016)
and GEMIN5-shRNA (TRCN0000147159, TRCN0000129034, TRCN0000150146,
TRCN0000130416, TRCN0000149925) constructs were used for this experiment.
Lentiviruses were produced as follows:55 pLKO1, pCMV-d8.91 and pVSV-G were
co-transfected into HEK293T cells (ATCC, CRL-11268) using Lipofectamine 3000
(Thermo Fisher Scientific, L3000015). After 48 h co-transfection, viruses were
harvested and used to infect HeLa cells with polybrene (8 μg/mL). After 24 h, cells
were incubated with puromycin (2 μg/mL) for 3–7 days selection.

To examine the efficiency of GEMIN5 KD, cell lysates were prepared with RIPA
buffer and used for Western blot with GEMIN5 (Bethyl Lab, A301-325A, Lot# A301-
325A-1, 1:200 dilution) and β-actin antibody (Santa Cruz, sc-47778, Lot# J2915, 1:500
dilution). The splicing reporter assay for CERS2 was performed as described above.

Reporting Summary. Further information on experimental design is available in
the Nature Research Reporting Summary linked to this article.

Code availability
The BEAPR package is freely available at: https://github.com/gxiaolab/BEAPR/wiki. This
software package was developed and tested on Linux with g++ 4.4.5 and R 3.2.3.

Data availability
All data sets used in this study can be obtained from the ENCODE project website at
http://www.encodeproject.org. The source data underlying the main figures are provided
as a Source Data file. All other relevant data is available upon request.
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