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Purpose: To develop a method to measure the rate of glaucomatous visual field (VF)
deterioration and to identify fast progressors.

Methods: Retrospective, longitudinal, observational study of 8486 eyes of 4610
glaucomatous patients with �6 VFs and �3 years of follow-up. A Glaucoma Rate
Index (GRI) was calculated. VF locations were partitioned into exponential decay or
exponential improvement models. A pointwise rate of change (PRC) was estimated
with an exponential fit and expressed as the percent/year change of the age- and
location-matched normal perimetric range, presented as a spatially conserved VF
map. PRCs were summed and normalized with boundary rates set by simulated
decaying and improving VF series on a scale of �100 to þ100, respectively.

Results: A total of 89,704 VF examinations with 425,039 test location series was used.
Median follow-up and number of VFs/eye were 9.7 years and 9 VFs, respectively. Initial
and final mean deviations (6SD) were �4.2 (65.2) and �5.7 (66.4) dB. The
proportions of test locations designated as decayed, improved, and unchanged were
13%, 4%, and 83%, respectively. Mean PRCs for decay, improvement, and no change
were �3.7 (64.7)%/y, 2.5 (62.6)%/y, and �0.5 (62.1)%/y, respectively. The number of
eyes with negative and positive GRIs was 5802 (68%) and 2390 eyes (28%),
respectively. The proportion of eyes defined as fast progressors was 6.8%.

Conclusions: GRI provides a robust measure of glaucomatous VF change, operates
without discontinuity over the entire perimetric range, and can be used to identify
fast progressors.

Translational Relevance: This study describes a novel method that can help the
clinician to determine VF progression.

Introduction

The anticipation of disease progression is the founda-
tion of glaucoma management. An important aspect of

evaluation is the acquisition of serial automated perimet-
ric measurements to characterize a patient’s past visual

field (VF) changes and to extrapolate the findings as a
probability for ongoing VF deterioration. If this is

performed adequately, timely intervention to slow or
stopadditionalworseningmaybeappropriately applied.1

Statistical models of perimetric change have been
developed to support the clinical evaluation of serial
VFs. Methods vary, with the broadest categories
being either trend-based or event-based. Generally,
trend-based algorithms are useful for generating a
rate of VF change that may be used to estimate the
probability of future deterioration. Pointwise linear
regression (PLR) is a widely used trend analysis that
regresses the sensitivities at each test location over
time.2 Critics argue that the linear core of the
regression may not be best suited for biological
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systems; linear models assume a constant additive rate
of VF deterioration, but as the VF deteriorates, the
relative changes that can occur become more clinically
significant and are restricted by a measurement floor
(0 decibels [dB]).3 An alternative trend-based ap-
proach uses an exponential regression to better model
glaucomatous VF measurements.4–6 Although global
trend analysis can be used to determine the overall
rate of change in VF series, it does not model regional
deterioration, which is common in early to moderate
glaucoma.3,7 Existing indices are designed to measure
abnormalities, not rates of change. It has been
repeatedly shown that the global index mean devia-
tion (MD) is nonspecific for glaucoma and insensitive
to localized VF changes, and pattern standard
deviation (PSD) decreases as damage advances in
moderate to advanced disease.8 Visual field index
(VFI) has its own problems with discontinuity at
more advanced stages of loss.9 VFI can also miss early
diffuse VF damage due to a ceiling effect.9 Event-
based analyses are binary algorithms that depend on
defined criteria for progression and alert the user
when these criteria are met. Guided progression
analysis (GPA) of the Humphrey Field Analyzer
(Carl Zeiss Meditec, Inc., Dublin, CA) is the most
widely used event-based analysis; this proprietary tool
identifies significant pointwise progression based on
statistical probabilities estimated from at least three
sequential VFs. Although it has been shown to be
slightly more sensitive than PLR or the use of
Advanced Glaucoma Intervention Study (AGIS)
scores, it lacks information on rates and therefore is
not easily used to predict future change.10 Regardless
of which model is used, the algorithm should take into
account the appropriate age- and location-matched
normal values and aging rates of change.11,12

There is no consensus about which statistical
model is most appropriate for clinical or investigative
use. Efforts to measure and define VF change remain
hampered by several inconvenient realities of VF
progression.1 Glaucomatous VF deterioration is
neither linear nor constant over time, and psycho-
physical measurements are notoriously noisy. These
inherent properties can limit the detection of VF
progression. Different regions of the same VF can
show fast worsening, slow worsening, no change, or
even improvement.5 One can certainly measure the
rate of change of these indices, but the usefulness of
these estimated rates are hindered by their demon-
strated limitations.

We present a method for calculating the Glaucoma
Rate Index (GRI) with serial glaucomatous VFs,

which provides a standardized estimate of the rate of
VF change. We apply this approach in a large
database of serial glaucomatous VFs. GRI offers a
conceptually simple, rapid, and real-time approach to
estimate the rate of VF change. It is accompanied by a
spatially conserved VF map that indicates the status
of each test location, whether worsening, improving,
or without change. The GRI can also be used to
identify fast progressors: those patients whose glau-
coma is worsening at a high rate and who require
appropriately aggressive therapeutic intervention.

Patients and Methods

The database used to develop and test GRI was
compiled from a collection of consecutive VF data of
patients with glaucoma who were treated at the
Glaucoma Division of the Stein Eye Institute,
University of California, Los Angeles (UCLA). This
study was approved by the UCLA Human Research
Protection Program, was performed in accordance
with the tenets set forth in the Declaration of
Helsinki, and complied with Health Insurance Porta-
bility and Accountability Act regulations. All VF
examinations were performed with a Humphrey Field
Analyzer with 24-2 or 30-2 test patterns, with a size
III white stimulus, and with either full threshold or
the Swedish Interactive Thresholding Algorithm
(SITA) standard testing strategies. All VFs in a series
from a particular eye were either all full threshold or
all SITA standard; serial VFs obtained with different
testing algorithms were not mixed. The database used
included a large cohort of glaucoma patients who
were treated by the Glaucoma Division of the Stein
Eye Institute, with a minimum follow-up period of 3
years and a minimum of six VF tests. Since data were
retrospectively collected, patients were tested at
different intervals according to the indications pro-
vided by the glaucoma specialist caring for them.
Since the purpose of the study was to present a
universal method to measure rates of glaucoma
progression, we did not exclude patients based on
type of glaucoma, visual acuity, age, changes in
medical therapy, or execution of laser or surgical
intervention. All VFs that were satisfactorily com-
pleted as judged by a perimetrist were included; no
other reliability criteria were imposed. VF locations
were excluded from the analysis if they were part of
the physiologic blind spot or if any two of the initial
three measurements at a test location had threshold
sensitivities of 0 dB. All statistical analyses were
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performed with the open-source programming lan-
guage R.13

The process of generating a GRI score for each eye
is described as follows:

1. An a priori screening was used to categorize each
pointwise series as either decaying or improving,
according to whether its linear trend was
negative or positive, respectively.

2. Pointwise exponential regression (PER) of each
series was performed. For VF locations with a
negative trend, the decay PER model was
applied, expressed as y ¼ e(aþbx), where y ¼
sensitivity in decibels, a ¼ constant, b ¼
regression coefficient (slope), and x ¼ time in
years. This model had an asymptote as a floor (0
dB). The estimates of a and b were obtained by
regressing ln(y) on x. For VF points with a
positive trend, we used a mirror image approach,
where the exponential function had an asymp-
tote as a ceiling (the normal age-matched value
for that particular test location plus twice its
standard deviation). The function of the im-
provement model is expressed as Y� y¼ e(aþbx),
where y¼ sensitivity (decibels) at time x (years),
Y ¼ the normal age-matched threshold sensitiv-
ity þ 2 SD, a ¼ constant, and b ¼ regression
coefficient (slope).

3. Outliers were removed on the basis of their
Cook’s distance14 and the Studentized residual
test15 (Fig. 1). All threshold values in a pointwise
series for a test location were sequentially
removed with Cook’s distance .1 and a
jStudentized residualj .3. The former method

removes influential points at the extremities able
to leverage the regression slope, while the latter
method removes points with high root mean
squared error away from the ends of the series,
which can affect the y-intercept and the width of
the confidence interval (CI). According to
Weisberg,16 these cutoffs are recommended to
balance removing too many versus too few
influential points.

4. The pointwise rate of change (PRC) of each
series, expressed as a percentage of the entire
normal perimetric range, corrected for age and
location, was calculated.11,12 PRC was calculat-
ed as the change between the initial (y(0)) and
final (y(t)) values of the PER model fit divided
by the age- and location-matched dynamic range
of threshold sensitivity (in dB) for each test
location in the VF. Thus, the rates of change are
expressed as the proportion (%) change per year
of the entire perimetric range, corrected for
location and age. Locations that met the criteria
for change and had a positive PRC were marked
as improving. Locations that met the criteria for
change and had a negative PRC were marked as
decaying. Decaying PRC locations were further
divided into slow and fast decay based on the
distribution of PRC values: the test locations in
the fastest (most negative) quartile of decaying
locations were categorized as ‘‘fast decay.’’ The
PRCs are displayed graphically to show the
spatial relationships of the pointwise rates of
change (Fig. 2) and are used to calculate the
GRI for each eye.

Figure 1. The application of two noise filters to remove outliers. (Left) Raw data are shown. (Middle) Cook’s distance correction is
applied, which tends to remove outliers at the ends of the data series, which unduly affect the slope (blue dot). (Right) The method of
Studentized residuals was next applied, which tends to remove outliers away from the ends of data series (red dot). In this example, the
sequential application of these two filters results in the criteria for decay being met at this test location.
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5. The 90% CI of the exponential regression line
was used to determine whether a VF location
was categorized as no change, decay, or im-
provement. If the rate defined by the slope of the
line joining the points from initial bottom to
final top of the CI bands (Fig. 3) is negative and

the rate exceeded the 95th percentile of the
normal aging rate, then the rate was counted as
significant and was used to define the decay rate
at that location. In the case of an improving
PER, if the rate defined by the line joining the
points from initial top of the CI band to final
bottom of the CI band was positive, then the
rate was counted as significant and was used to
define the improving rate at that location (Fig.
3). This approach required the points to be
within a sufficiently tight fit and to have a
sufficiently negative or positive trend in order to
be considered either decaying or improving. Test
locations that did not meet either of these
criteria were designated as ‘‘no change.’’ These
are presented as a spatially conserved VF map,
which indicates the status of each test location,
whether worsening, improving, or without
change, as shown in Figure 2.

6. A GRI score for each eye was calculated by
summing the PRCs for all test locations that met
the above criteria for change. If none of the 54
test locations analyzed in a VF series had
significant change, then this eye was assigned a
GRI value of ‘‘0.’’ GRI scores were normalized
from �100 to þ100, where �100 represents an
extreme rate of decay and þ100 represents an
extreme rate of improvement. To construct the

Figure 2. Graphical representation of regional VF changes. The
series of sensitivity measurements over time are shown for each
test location. Test locations with immeasurable rates are shown as
white boxes. Gray boxes indicate that those locations do not meet
criteria for change. Orange indicates slow decay, red indicates fast
decay, and green indicates improvement.

Figure 3. (Left) Decay PER of VF series with 90% CI (dotted line). The minimum rate (index rate) was defined by the slope of linear
regression (blue line) joining the points from the initial bottom to the final top of the CI, the index slope. (Right) Improvement PER of VF
series with 90% CI (dotted line). The minimum rate was defined by the slope of the linear regression (blue line) joining the points from the
initial top to the final bottom. If the index rates met additional criteria for change (see text), then the median rates (orange and green lines
in the examples above) were used as the measured rates for that location.
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extreme decay model, we started with location-
matched normal eyes at 60 years of age. Over a
span of 20 years, each starting decibel value was
decreased at a constant (linear) rate so that the
final decibel value would be 0. The PER model
was then fit to this series, and the PRCs were
summed. This value was used for the decay
normalization and was set to �100. The inverse
was performed for improvement, and the sum of
the PRCs was normalized toþ100 (Fig. 4). Eyes
within the fastest decaying decile of GRI values
were designated as fast progressors.

To facilitate a comparison of GRI with other
indices, we estimated a cutoff value for GRI for
changing and stable VF series. For each eye, boot-
strapping, a well-known statistical technique to
account for variance, was performed.17 Briefly, we
randomly selected n VF exams, where n is the total
number of examinations for the eye with replacement
(a VF may appear multiple times in the same sample).
A new GRI was calculated based on the randomly
selected n exams and subtracted from the original
GRI of the eye. This was performed 1000 times, and a
90% CI of GRI for each eye was calculated. Decaying
eyes (GRI , 0) were grouped by GRI values to the
nearest integer. Within each group, we calculated the
percentage of eyes that had a 90% CI upper limit , 0.
The GRI value of the group having 50% of eyes
meeting this criterion was set as the decaying cutoff.
To better estimate the GRI at the 50% cutoff, the
locally weighted scatterplot smoothing (LOWESS) fit
was applied to the scatterplot.18 The same process
also was employed for GRI . 0 to estimate a cutoff
for improvement.

The stability of GRI with regard to the number of

points used in its calculation was evaluated by
measuring the effect of changing the number of VF
visits for each eye in the calculated GRIs through
sequentially removing each of the data points one at a
time and recalculating a new GRI for each instance.
The difference between each of the recalculated GRIs
from the original GRI was calculated. The mean GRI
differences for each eye was plotted against the
number of VFs in each eye to show the magnitude
of GRI variability as a function of the number of VF
visits.

Results

Dataset

A total of 8486 eyes of 4610 patients were included,
with a mean (6SD) baseline age of 64.6 (613.9) years
(Table 1). There were 4239 (49.9%) right eyes and
4247 (50.1%) left eyes. There was a total of 89,704 VF

Figure 4. (Top) The extreme decay model, which shows perimetric decay from age-matched normal values to perimetric blindness (0
dB) in 20 years. This extreme model was assigned a Glaucoma Change Index score of�100. (Bottom) Extreme improvement model, which
shows perimetric improvement from 0 dB to age-matched normal values in 20 years. This extreme model was assigned a Glaucoma
Change Index of þ100.

Table 1. Demographic Data for the VF Database

Total No. of Patients 4,610

Total no. of eyes 8,486
Right eyes 4,239 (49.9%)
Left eyes 4,247 (50.1%)

Mean baseline age, y 64.6 (613.9)
Mean initial MD, dB �4.2 (65.2)
Mean final MD, dB �5.7 (66.4)
Median no. VFs 9
Median follow-up, y 9.5
Total no. of VF exams 89,704

SITA standard 80,503 (90%)
Full threshold 9,201 (10%)

5 TVST j 2018 j Vol. 7 j No. 6 j Article 14

Caprioli et al.



examinations, of which 80,503 (90%) were SITA
standard and 9201 (10%) were full threshold exams.
Median follow-up was 9.5 years, with a median
number of nine VFs. The median time (interquartile
range [IQR]) between two consecutive examinations
was 8.9 (7.1) months. The initial MD was�4.2 (65.2)
dB, and the final MD was�5.7 (66.4) dB. There was
a total of 425,039 test location series. Mean (6SD)
false negative responses, false-positive responses, and
fixation losses per eye were 4.8% (64.7%), 4.8%
(64.9%), and 0.2% (60.2%), respectively.

Application of the Cook’s distance criterion re-
moved 118,251 (2.8%) points from the raw data.
Application of the Studentized residual criterion
removed an additional 13,691 (0.3%) points from the
raw data. The number of measurements removed from
a single test location for a single VF series ranged from
0 to 3. The maximum number of measurements
removed from all test locations for a single VF series
was 92. The mean 6 SD number of measurements
removed from a single examination was 1.5 6 4.9
(range 0–54). Exclusion of �26 measurements (more
than half of the VF test locations) from a single VF
occurred in 1.1% of all examinations. A total of 16,246
(3.2%) locations were excluded from the analysis
because they had threshold sensitivity values of 0 dB
in two out of the first three tests. The median (IQR,
range) number of locations removed from a single eye
was 0 (0, 0–44). Exclusion of .26 locations from a
single eye occurred in 69 (0.8%) eyes.

Pointwise Rates of Change

The percentage of test locations that showed decay
was 13%; 10% were categorized as slow decay and 3%
as fast decay. Fast decay was defined by the fastest
quartile of all decaying rates, which corresponds to a
PRC of less than –5%/y. Improvement was measured
at 4% of the test locations, while 83% displayed no
change (Table 2). The mean PRC for all locations was
�0.8 (63.0)%/y; �3.7 (64.7)%/y for decaying loca-
tions, 2.5 (62.6)%/y for improving locations, and
�0.5 (62.1)%/y for locations designated as no change

(Fig. 5). Pointwise change is graphically represented
with color-coded VF maps, which display all serial
sensitivities for each test location over time (Fig. 2).

Glaucoma Rate Index

The number of eyes with negative GRI values
(worsening) was 5802 (68.4%), and the number of eyes
with positive values (improving) was 2390 (28.2%). A
total of 294 (3.5%) eyes were assigned a GRI value of
0. Progressors were further partitioned into slow and
fast categories: the cutoff for fast progressors,
arbitrarily set as the fastest decay decile of GRI
values, corresponds to a GRI less than�37. The same
process applied to MD rate generated a value of�0.97
dB/y. The total number of fast progressors was 575
eyes (6.8%), as shown in Figure 6.

GRI Stability

The mean GRI difference calculated for stability
was 0.3 (62.2) for the entire group. The range of
variability became narrower as the number of
observations increased in a VF series (Fig. 7). This
SD is about 2% to 10% of the entire GRI scale when
eight or more VFs are used.

Bootstrap and the Relationship of MD Versus
GRI

A scatterplot of the percentage of eyes per GRI bin
that had a 90% CI below 0 and the LOWESS fit
applied to the scatterplot is shown in Figure 8. Based
on the LOWESS fit, a GRI cutoff of approximately
�6 includes 50% of eyes with a GRI 90% CI , 0. As
the GRI decreases, the percentage of eyes with GRI
90% CI , 0 increases (Fig. 8). A scatterplot of MD
rate versus GRI is shown in Figure 9.

Discussion

We propose a novel method to measure VF rate
change that includes a rate index, which we call the
GRI. The technique is based on exponential fits of

Table 2. Number of Test Locations and Mean (6SD) PRC for the Overall, No Change, Decay, Slow Decay, Fast
Decay, and Improvement Categories

Overall No Change Decay Slow Decay Fast Decay Improvement

Number of
locations

425,026 (100%) 352,985 (83%) 55,102 (13%) 42,904 (10%) 12,198 (3%) 16,939 (4%)

PRC mean
(6SD)

�0.8%/y (63.0) �0.5%/y (62.1) �3.7%/y (64.7) �2.1%/y (61.1) �9.0%/y (64.0) 2.5%/y (62.6)
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Figure 6. The frequency distribution of the GRI for all eyes. The cutoff for fast progressors is arbitrarily set as the lowest decile of all the
worsening eyes (GRI , 0), which is GRI ��37. Indices of eyes represented in orange (62% of all eyes) are more slowly progressive, red
indicates fast progressors (6.8%), and those represented in green show improvement (28%); 3% have a GRI value of 0.

Figure 5. The frequency distribution of PRC for all test locations expressed as percentage rate of change per year. Gray indicates test
locations assigned to the category of no change, with a mean value�0.5%/y. Orange indicates test locations designated as slower decay
with a mean value of�2.1%/y. Red indicates test locations designated as fast decay with cutoff at�5%/y and a mean value of�9.4%/y.
Green indicates improvement with a mean value of þ2.5%/y.
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pointwise threshold sensitivities of serial VF tests.
This index might be considered analogous to the VFI,
but it is actually an index for rate of change rather
than for stage of disease. The method also provides a
graphical presentation of spatially conserved, point-
wise rates, in which the change in status of each test
location is shown. The GRI estimates the rate of
change on a normalized scale and can be used to
categorize worsening eyes into fast progressors and
slow progressors (Fig. 10).

GRI is based on PER (rather than linear regres-
sion). Previous papers have described the use of PER
to model VF change. Chen et al.6 compared the
behavior of linear, exponential, and logistic models in
serial VF examinations and found that although
logistic models fit glaucomatous VF behavior well
over a long period of time, an exponential model
provided the best overall predictions. Azarbod et al.4

showed that exponential models are effective across a
wide range of severities and can predict future change
better than can linear models. Exponential approach-
es appear to be better than either linear or other
nonlinear models in patients with moderate to severe
glaucomatous damage because values typically ap-
proach 0 dB in an asymptotic fashion, a property that
cannot be accounted for with linear techniques
without discontinuities.6,19,20 Although it is based on
PERs, GRI uses a linear trend as a first step to
categorize each location as improving or decaying.

The nonlinear exponential regression model exists in
two different, but symmetrical and specular forms:
decaying and improving (Fig. 3). The a priori
categorization with a linear trend is required to select
the appropriate model for a given VF series.

Another feature of the approach reported here is
that it preserves spatial information. The regression of
global indices (e.g., MD, VFI) are insensitive to focal
glaucomatous progression and can be more affected
by those conditions, causing a generalized reduction
of threshold sensitivities, such as cataract progres-
sion.21 Conversely, pointwise approaches can retain
their perimetric spatial relationships and allow the
measurement of the rate of progression at every test
location. Katz and colleagues22 compared regression
of global indices, clusters of locations, and single
locations to identify perimetric progression. In their
study, regression of global indices failed to recognize
localized damage with a rate of ,1 dB/y and an
annual frequency of VF testing. On the other hand,
global indices are generally more specific than
pointwise approaches, since they require a higher
magnitude of change to detect progression.22,23 The
GRI includes only those test locations with significant
change, as it is defined by the method. Other indices,
including permutation analyses of pointwise linear
regression (PoPLR) and GPA, also consider only
locations significantly deteriorating. Global rates of
VF progression, conversely, take into consideration

Figure 7. Plot representing the mean (6 SD) GRI difference for eyes as a function of number of VF visits. By comparing these results to
the mean (6 SD) of the entire group, it shows that the range of variability increases with fewer VF visits (six VFs) as compared to a narrow
range of variability with more VF visits (greater than eight VFs). The SD of GRI has a magnitude of �2 when eight or more VFs are used.
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all test locations, including those points that are stable
throughout the VF series and points with absolute
defects at baseline. Inclusion of these data, however,
has the potential to obscure the signal of clinically
important localized changes.

GRI is presented as a clinical tool to alert the
physician about patients at risk for visual disability.
The standardization to a scale of �100 to þ100
facilitates intuitive interpretation and also allows for
improvement.5 The method presented here allows the
user to choose any number or any group of
consecutive VFs for analysis, so long as there are at
least six. For example, one may choose to analyze the
VFs only after a major change in treatment and
compare this with the GRI before the change if a
sufficient number of VFs are available. A caveat is
that the fewer number of VFs included in a series, the
more the potential error in its estimation. This
variability is reasonable with eight or more VF tests
(1 SD is approximately 2%–10% of the range of GRI);

thus for best results, eight or more VF tests should be
used to improve the accuracy of the index. Although
it can always be mathematically calculated, we
recommend GRI calculation based on an adequate
number of test locations. We suggest a minimum of 26
locations, which corresponds to half of the VF test
locations. This requirement might not be satisfied in
case of far-advanced glaucoma, where multiple
locations can be entirely excluded in case of a
threshold sensitivity value of 0 dB in two out of the
first three tests. This was, however, an uncommon
event in this very large database of all comers and
occurred only in 0.8% of all eyes.

The authors have found that the clinical applica-
tion of this technique to be very helpful and has
allowed us to identify progression more often than
when using a qualitative evaluation of VF series or
GPA printouts, and it has allowed us to make this
judgment much more rapidly. The index is normalized
and does not behave discontinuously in advanced

Figure 8. Plot of the percentage of decaying (red line) and improving (green line) eyes with a GRI 90% CI upper limit ,0 and lower limit
.0 with the locally weighted scatterplot smoothing (LOWESS) fit applied, respectively. For each eye, n random VF examinations were
selected, where n is the total number of examinations. A new GRI was calculated and subtracted from the original GRI. This was
performed 1000 times, and a 90% CI of the GRI was calculated. Decaying eyes (GRI , 0) and improving eyes (GRI . 0) were binned by
integral GRI values, and the percentage of eyes within each bin that had a GRI 90% CI upper limit of ,0 and lower limit of .0 was
calculated, respectively. The bin with 50% of eyes (dotted line) that met this criterion was selected as the cutoff value for decaying and
improving GRI, respectively.
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disease like PSD or VFI; in advanced disease, PSD
actually decreases and VFI becomes quite variable.24

In addition to the numerical generation of GRI, all
test locations are displayed in a spatially conserved,
color-coded VF map (Fig. 2), which allows the
clinician to visualize the degree and pattern of VF
changes in a rapid, user-friendly manner. This
approach is not unique to the GRI. For instance,
the Progressor software (OBF Labs UK Ltd, Wilt-
shire, UK), which is based on PLR, also provides a
similar graphical output.25 In the graphical presenta-
tion of GRI, color codes are based on the PRC values.
Specifically, we require serial sensitivity measure-
ments for each test location to be within a sufficiently
tight fit and to have a sufficiently negative or positive
trend to be categorized as decaying or improving.
Those test locations not meeting either of these
criteria were designated as ‘‘no change.’’ Test loca-
tions decaying at a rate faster than 5%/y were
categorized as fast decay. Thus, all test locations
were categorized as either (1) unmeasurable, (2) fast
decay, (3) slow decay, (4) no change, or (5) improving.

We also derived a cutoff for GRI to distinguish
slowly progressing eyes from more rapidly progress-
ing eyes. While not all eyes that demonstrate visual

loss need aggressive treatment (or in some cases any
treatment), a certain proportion of the fastest
progressing eyes deserve that consideration. Chauhan
et al.26 measured rates of glaucoma progression in a
large clinical population under routine clinical care
and found that 5.8% of patients were fast progressors.
In another study by Baril et al.27 the proportion of
fast progressing eyes was 3.9% and 9.4% for eyes
receiving medical and surgical glaucoma treatments,
respectively. Prevalence of fast progressors, however,
may vary across different populations since it is
dependent on many factors, such as age, stage of
disease, treatment, and subtype of glaucoma.28 In
addition, the way to define and measure fast
progression remains arbitrary. Most of the previous
studies defined fast progression as the rate of MD
decline, usually ranging from�1 dB/y to�2 dB/y. As
discussed earlier, however, MD rate is based on the
entire VF, and it could underestimate profound but
localized changes, delaying the recognition of fast
progressors at risk. VFI rate is similar in this regard
and may additionally suffer from a ceiling effect and
discontinuity in severe stages.29 Event-based ap-
proaches do not provide rates of progression.
Methods based on PLR could be employed; however,

Figure 9. A scatterplot of the GRI versus MD rate.
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they have not been investigated for this purpose, and it
is unclear which criteria should be used to identify fast
progressing eyes. Medeiros and colleagues30 proposed
a model to evaluate rates of progression with an
empirical Bayes estimate of rates of change and

clustered VF progression into four groups, based on
similarities of their trajectories. The authors claimed
that their method was better than simple linear
regression, especially in identifying fast progressors.
In this study, we propose a method for identifying fast

Figure 10. GRI estimates the rate of change on a normalized scale and can be used to categorize worsening eyes into ‘‘fast
progressors’’ (GRI ,�37, examples in right two columns) and slower progressors (�6 , GRI .�37, examples in left two columns).
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progressors. Based on the results of previous studies
regarding the prevalence of fast progressors, we
defined the fastest decile of negative GRI values as
those belonging to fast progressors.26–28,30 The fastest
decile of negative MD rate corresponded to a value of
�0.97 dB/y, which resembles the cutoff of �1 dB/y
adopted by other studies.26,27 The GRI value for fast
progressors is largely arbitrary and is presented as an
example of how this identification might be accom-
plished. Where one draws the cutoff ultimately
depends on many factors, including patient-related
factors (other risk factors, longevity, patients’ desires,
etc.), public health concerns, and resource availability.

Recently published findings reported that VF data
can undergo both short- and long-term improvement
after medical or surgical intervention.5,31–34 We have
included the possibility of improvement in our
method by applying an exponential fit to VF test
locations with an a priori improving trend. An
inverted exponential decay fit with a ceiling asymp-
tote of the age-matched normal þ2 SD value was
applied, as opposed to applying a constant multipli-
cative (linear) rate of improvement to a longitudinal
VF series, which seems to not be physiologically
appropriate.5 In addition, other trend-based and
event-based methods (except for the current version
of GPA) could be used to detect improvement.

VF examination is a subjective test and is
characterized by intrinsic variability. Presence and
stage of glaucoma are well-known contributing
factors.35 Uncorrected refractive error, patient moti-
vation and instruction, fatigue, technician experience,
time of day, season, race, cognitive level, and
percentage of false-positive responses have been
recognized as additional sources of variability.36–40

Large fluctuations are an obstacle to the proper
modeling of VF data, and several strategies have been
employed to reduce the noise.41 A first measure relies
on controlling known causes, such as repetition of
examinations scored as poorly reliable and training
and motivation of both patient and technical staff.
Trend-based methods based on regression of global
indices (i.e., MD, VFI) are less influenced by
pointwise variability since they are averaged mea-
sures. Bryan et al.41 proposed a model called global
visit effects, which takes into account known and
unknown factors affecting all the locations of the
same examination. When applied to longitudinal
data, correction of global visit effects improved the
estimation of true rates of progression and increased
the ability to predict future changes. Interestingly, the
global visit effects model performed better than the

simple correction for established factors of variability,
suggesting a contribution by other, unknown vari-
ables.

We used Cook’s distance and Studentized residuals
to remove outliers that may unduly influence the
model fit and to improve the signal-to-noise ratio.
The former method tends to remove influential
outliers at the extremities of the data series, which
can dramatically change the slope of the regression
line. The latter method tends to exclude outliers away
from the ends of the series with high root mean square
error, which can affect the y-intercept and the width
of the CI. About 3% of all measurements were
removed with this approach. A previous study
showed a difference in results obtained before and
after Cook’s correction.5 In the current study,
exclusion of �26 points (more than half of VF test
locations) from a single examination occurred in only
1.1% of all examinations, suggesting that outlier
removal performed by GRI can omit a large portion
or even an entire examination. This can mitigate the
effect of the aforementioned factors, inducing vari-
ability at every test location at the same visit, and
could represent an alternative to other proposed
methods, such as proposed by the global visit
model.41 Our data indicate, however, that removal
of a large part of an examination is an uncommon
event, and the majority of visits (74.8%) had no points
excluded at all.

As for other algorithms, GRI carries some
assumptions. Table 3 summarizes the assumptions
made by GRI and other algorithms. All methods,
including GRI, assume that VF progression is caused
by glaucoma; this reduces the specificity of all
techniques and remains a clinical issue for the
examiner to differentiate. Although test locations
are spatially correlated and glaucoma damage usually
conforms to the anatomy of the retinal nerve fiber
layer, GRI treats all points equally.42 This represents
an assumption that is not unique to GRI (it is also
found with GPA, algorithms based on PLR, and
PoPLR).2,43,44 Data derived from pointwise linear or
exponential regressions can be postprocessed with
spatial filters, and this can improve the prediction
ability of both models.7 Spatial correlation among
test locations is taken into account by very few
algorithms, such as ANSWERS, recently proposed by
Zhu and colleagues.45 Although such an index seems
to perform better than MD regression and PoPLR,
further testing is required for validation. GRI is based
on PER, and therefore it assumes that VF decay
follows an exponential model over time. As linear

12 TVST j 2018 j Vol. 7 j No. 6 j Article 14

Caprioli et al.



regression is vulnerable to both left and right
censoring effects, exponential regression is vulnerable
to left censoring effects since the backward extrapo-
lation of a series could lead to unfeasibly high or low
sensitivities in the case of decay or growth exponential
models, respectively. In this regard, GRI assumes that
there is a time at which a discontinuity in the series
occurred and glaucomatous VF damage ‘‘began’’ for
an eye. Backward extrapolation, however, is not
clinically relevant, whereas forward extrapolation is
useful for prediction. GRI treats locations with a
threshold sensitivity of 0 dB in any two of the initial
three examinations as locations of perimetric blind-
ness, and progression or improvement cannot be
established at such locations. This assumption is not
unique to GRI since other approaches (e.g., GPA)
omit locations with low sensitivities at baseline.

The limitations of this study should be reviewed.
There is no gold standard by which the specificity and
sensitivity of GRI can be objectively evaluated; there
is an inherent deficiency of external validation to
evaluate perimetric progression, given the changing
relationship between structural and functional corre-
lates as a function of the severity of disease.46

Computer-simulated VF sequences with predeter-
mined rates and patterns of progression may help in
this regard. GRI may miss early diffuse loss from
glaucoma, since GRI includes only test locations that
meet criteria for change. While early glaucoma may
cause a mild generalized reduction of whole-field
sensitivity, such changes are not common or specific
for glaucoma. Application of the method requires

extra time and resources to export data and apply
external calculations and display. This could be
remedied easily by incorporation of the algorithm
into standard VF software. The cutoff for fast
progressors was set arbitrarily. This could be modi-
fied, depending on the goals of recognizing and
treating such patients in the particular population
being treated and the treatment resources available to
that population. The utility of GRI in clinical
research regarding progression and treatment effects
would need further study. Studies are underway to
test this method in a separate database and to
evaluate its predictive results compared to those of
other established indices.

In summary, we present a GRI to summarily
estimate visual change rates in patients with glauco-
ma. It is expected to be more sensitive to localized
glaucomatous damage compared to global indices,
and it is able to model improvement, which has
recently been shown to be a potentially important
clinical scenario in glaucoma after significant reduc-
tion of the intraocular pressure. The GRI operates
across a wide range of VF severities. Use of the
accompanying presentation of spatially preserved
pointwise rates improves the utility of the technique
for individual patients.5 We believe that these
properties are complementary and that their presence
in a single model would be useful for clinicians and
investigators. Finally, GRI has the ability to flag eyes
as fast progressors and can be used to help guide the
appropriate use of resources to improve the outcomes
of patients at high risk for visual disability.

Table 3. List of Assumptions Made by Some Algorithms to Assess Glaucomatous VF Progression

Assumption Algorithms

Perimetric changes are related to glaucoma All
VF decay follows an exponential model over time GRI
VF decay follows a linear model over time Simple PLR, PoPLR
VF sequence is not right-censored (data can be extrapolated forward

below 0 dB)
Simple PLR

VF sequence is not left-censored (data can be extrapolated infinitely
backward)

Simple PLR, GRI

Rate of change of nonprogressing eyes is null PoPLR
Eyes can either progress or remain stable, and no difference exists

among eyes in the same category
Event-based methods (e.g.,

GPA, AGIS, CIGTS)
Locations with 0 dB at baseline are perimetrically blind GRI, GPA
Eyes with severe VF damage do not progress further All
VF does not improve GPA

CIGTS, Collaborative Initial Glaucoma Treatment Study.
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