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SUMMARY

In vitro gametogenesis is the process of making germline cells from human pluripotent stem cells. 

The foundation of this model is the quality of the first progenitors called primordial germ cells 
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(PGCs), which in vivo are specified during the peri-implantation window of human development. 

Here, we show that human PGC (hPGC) specification begins at day 12 post-fertilization. Using 

single-cell RNA sequencing of hPGC-like cells (hPGCLCs) differentiated from pluripotent stem 

cells, we discovered that hPGCLC specification involves resetting pluripotency toward a 

transitional state with shared characteristics between naive and primed pluripotency, followed by 

differentiation into lineage-primed TFAP2A+ progenitors. Applying the germline trajectory to 

TFAP2C mutants reveals that TFAP2C functions in the TFAP2A+ progenitors upstream of 

PRDM1 to regulate the expression of SOX17. This serves to protect hPGCLCs from crossing the 

Weismann’s barrier to adopt somatic cell fates and, therefore, is an essential mechanism for 

successfully initiating in vitro gametogenesis.

Graphical Abstract

In Brief

Using genetics, genomics, and single-cell RNA-seq, Chen et al. characterize the human germline 

trajectory, revealing two pluripotent cell transitions during primordial germ cell specification. 

They reveal the identity of primordial germ cell progenitors and show that TFAP2C prevents 

gastrulation and amnion-like fate at the point of primordial germ cell specification.

INTRODUCTION

More than a century ago, the German biologist August Weismann proposed the germplasm 

theory of heredity in which he postulated that germ cells of animals contain an essential 

hereditary substance that passes from one generation to the next, now known to be DNA 

(Weismann, 1893). As a part of his theory, the concept of ‘‘Weismann’s barrier’’ was also 

established (Weismann 1893). This is not a physical barrier but a model that proposes that 

hereditary information flows only through germline cells and not somatic cells of the body. 

This is important because without germline specification, the outcome is infertility, a disease 

that affects around 10% of humans of reproductive age. Understanding or possibly 

overcoming infertility requires a human model that recapitulates all stages of germline cell 

development, including how Weismann’s barrier is first established with the specification of 

primordial germ cells (PGCs) and somatic cells in the embryo. Human pluripotent stem cells 

and the differentiation of PGC-like cells (PGCLCs) serve this purpose.
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Specification of PGCs in animals involves two different strategies. One involves pre-

formation, which occurs in the model organisms Xenopus, zebrafish, Drosophila, and 

Caenorhabditis elegans (Extavour and Akam, 2003; Williamson and Lehmann, 1996). In 

these organisms, rare cells of the newly fertilized embryo inherit molecules produced by the 

female germline (oocyte), bestowing upon these embryonic cells the maintenance of 

germline cell identity. In contrast, cells that do not inherit these maternal molecules from the 

oocyte after fertilization become somatic cells, thus irreversibly crossing Weismann’s barrier 

and losing the capacity to contribute to the germline. For animals that specify germ cells, 

each generation by induction, such as mouse, pig, horse, rabbit, and human, Weismann’s 

barrier encompasses an additional step, which involves an initial fate restriction from 

totipotency to pluripotency, and then around the time of embryo implantation and 

gastrulation, PGCs are induced from peri-implantation cell precursors (Magnúsdóttir and 

Surani, 2014; Tang et al., 2016). The identity of these precursors in humans is completely 

unknown. As PGC specification progresses, the remaining embryonic precursors cross 

Weismann’s barrier to become somatic cells. In mouse, where mouse PGC (mPGC) 

induction is well studied, it has been reported that mPGCs are induced at embryonic day 6.5 

(E6.5) by bone morphogenetic protein 4 (BMP4) signaling to the Wnt family member 3 

(WNT3)-primed epiblast cells (Ohinata et al., 2009). The maintenance of germline identity 

downstream of BMP4 signaling involves the transcription factor network, including 

transcription factors (TFs) PRDM14, PRDM1 (also known as BLIMP1), and TFAP2C, with 

PRDM1 functioning upstream of TFAP2C to repress somatic cell fate and maintain mPGC 

identity (Magnúsdóttir and Surani, 2014; Magnúsdóttir et al., 2013; Nakaki et al., 2013; 

Ohinata et al., 2005; Weber et al., 2010; Yamaji et al., 2008).

Recent studies using the differentiation of human PGCLCs (hPGCLCs) from human 

pluripotent stem cells have revealed that the TF network required to specify and maintain 

human PGC (hPGC) fate is different from the mouse (Chen et al., 2017; Irie et al., 2015; 

Kojima et al., 2017, Sasaki et al., 2015). For example, SOX17 is required for hPGCLC 

specification, whereas in mouse it is not (Irie et al., 2015). In mPGCs, TFAP2C functions 

downstream of PRDM1 to repress somatic cell differentiation genes (Ohinata et al., 2005). 

However, in hPGCLC differentiation from PRDM1 mutants, TFAP2C expression levels are 

unaffected in the PRDM1 mutant hPGCLCs relative to controls (Sasaki et al., 2015). One 

human-specific role for TFAP2C in hPGCLCs involves the opening of naive-specific 

enhancers and the acquisition of naive-like pluripotency (Chen et al., 2018). An alternate but 

not necessarily mutually exclusive role for TFAP2C is to repress somatic cell gene 

expression in PRDM1-positive hPGCLC precursors and, therefore, to keep cells within 

Weismann’s barrier (Kojima et al., 2017). However, this result is predicated on the 

assumption that PRDM1 is expressed in hPGCLC precursors before TFAP2C, and also that 

PRDM1 is not expressed by the somatic cells of the aggregates. The only way to address this 

is to evaluate the germline and somatic cell trajectories from the pluripotent state through to 

the specification of hPGCLCs. Recently, single-cell RNA sequencing (scRNA-seq) has been 

widely used to map differentiation trajectories and to discover new cell types without known 

markers (Poirion et al., 2016; Stegle et al., 2015). Capitalizing on this approach to identify 

the precursors of hPGCs in the peri-implantation window, we performed scRNA-seq of more 

than 100,000 individual cells during hPGCLC specification to model the molecular events in 
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hPGC specification by using an adapted developmental trajectory detection algorithm named 

time constraint URD (tcURD). Through this work, we uncovered the human germline 

trajectory and discovered the identity of potential peri-implantation progenitors for hPGCs.

RESULTS

Tracing hPGCs during Peri-implantation Embryogenesis and in hESC-based hPGCLC 
Induction

Using human embryo attachment culture (Deglincerti et al., 2016; Shahbazi et al., 2016), we 

evaluated whether ex vivo hPGCs could be identified before primitive streak formation and, 

therefore, the feasibility of using the human embryo attachment culture model to identify 

hPGC progenitors. Under California state law, human embryo attachment culture is legally 

allowed up to day 12 post-fertilization, which is 2 days before the International Consensus 

of day 14 or before primitive streak formation. To trace ex vivo hPGCs, we first confirmed 

the co-expression of NANOG, SOX17, and TFAP2C (N/S/T) as being restricted to hPGCs 

(Gkountela et al., 2015; Guo et al., 2015; Tang et al., 2015) (Figures S1A and S1B). Next, 

we thawed a total of 127 day 5 or day 6 post-fertilization human blastocysts; twenty-four h 

after thawing, these blastocysts were considered day 6 or day 7, respectively. From this 

cohort, we performed whole-mount immunofluorescence followed by confocal imaging and 

3D reconstruction of 78 human embryos from day 6 to day 12 (Figure 1A; Table S1). We 

discovered N/S/T triple-positive putative ex vivo hPGCs at day 12 post-fertilization in 2/26 

embryos (Figures 1B and S1C; Video S1; Table S2). N/S/T triple-positive cells were not 

identified at any of the reminaing 52 embryos at either days 10–11 or days 6–7 (Figures S1D 

and S1E). Instead, in the pre-implantation blastocyst, the TFAP2C protein was expressed in 

all cells, whereas NANOG- and SOX17-positive cells were mutually exclusive, marking the 

pre-implantation epiblast (Pre-EPI) and hypoblast cells, respectively (Figure S1E). Taken 

together, these observations suggest that hPGC specification defined as N/S/T triple-positive 

cells in the peri-implantation embryo begins at around day 12 post-fertilization in humans 

before primitive streak formation.

Given that less than 10% of human blastocysts at day 12 had evidence of N/S/T triple-

positive hPGCs, it would be difficult to discriminate the identity of hPGC precursors in this 

system without using large numbers of intact human embryos consented to research. 

Therefore, we used the differentiation of human embryonic stem cells (hESCs) into 

hPGCLCs by generating disorganized 3D aggregates in the presence of BMP4 and other 

cytokines (Sasaki et al., 2015) (Figure 1C). We used the two-step method of differentiation 

starting from primed pluripotent stem cells and first differentiating through an incipient 

mesoderm-like cell (iMELC) intermediate, as this approach has been successfully used by 

different groups to generate hPGCLCs from primed hESCs and hiPSCs (Sasaki et al.,2015; 

Chen et al., 2017; Chen et al., 2018; Yokobayashi et al., 2017; Kojima et al., 2017). Given 

the known variability in hPGCLC competency between independently derived pluripotent 

stem cell lines (Chen et al., 2017; Yokobayashi et al., 2017), we designed the experiment to 

evaluate hPGCLC specification in a highly germline competent hESC line (UCLA2) and a 

hESC line with significantly lower competency (UCLA1) (Figures 1D and 1E). These hESC 

lines were derived under identical conditions from individual blastocysts that were provided 
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by the same embryo donors (Diaz Perez et al., 2012). We discovered rare and yet 

reproducible N/S/T triple-positive hPGCLCs at day 1 of aggregate differentiation after 

exposure to BMP4 in both cell lines, with an increase in the percentage of triple-positive 

hPGCLCs emerging at day 2 in the highly competent UCLA2 line relative to UCLA1 

(Figure 1F).

To better characterize the dynamics of germline specification, we applied scRNA-seq with 

10x Genomics to hESCs, iMeLCs (incipient mesoderm-like cells), and aggregate cells at 

days 1–4 with two biological replicates for both UCLA1 and UCLA2 cell lines (Zheng et al., 

2017) (Table S3). In total, we sequenced 85,309 cells with high quality to uncover the 

germline trajectory and explored the progenitors involved in establishing germline cell fate 

(Table S4). To identify the cell populations at each time point, we used canonical correlation 

analysis (CCA) for batch correction of the two biological replicates at each time point within 

each cell line and applied uniform manifold approximation and projection (UMAP) to 

visualize the distribution of single cells throughout the entire differentiation time course 

(Figures 1G, 1H, and S1F). Specified hPGCLCs were indicated by the germline-specific 

gene NANOS3 (Gkountela et al., 2013; Butler et al., 2018; McInnes et al., 2018) (Figures 

1G and 1H). Consistently, more NANOS3-positive hPGCLCs were present in UCLA2 than 

UCLA1. Interestingly, we observed clear branches of connected cell clusters following the 

temporal order of PGCLC differentiation in the 2D maps from both UCLA1 and UCLA2 

(Figures 1G and 1H).

Mapping the Human Germline Trajectory by scRNA-seq

To precisely map the human germline trajectory, we first identified cells quadruple-positive 

for NANOG, SOX17, TFAP2C, and the germline-specific gene NANOS3 (with log-

transformed-normalized unique molecular identifier (UMI) counts of >0.5 for NANOG, 

SOX17, TFAP2C, and NANOS3) in UCLA1 and UCLA2 as hPGCLCs (Figures 2A, 2B, 

S2A, and S2B). The emergence of distinct quadruple cells was identified at day 1 and 

persistent during day 2 to day 4 differentiation (Figures 2A and 2B). These observations 

indicate that hPGCLC specification occurs within the first 24–48 h of BMP exposure, and 

UCLA2 responds more rapidly and efficiently relative to UCLA1.

To identify differentiation trajectories unbiasedly without using previously known lineage 

markers, we applied the computational trajectory detection method URD to the scRNA-seq 

data (Farrell et al., 2018). URD is mainly built on connecting cells with nearest neighbors in 

terms of transcriptome similarity under the assumption that the transcriptome of a cell 

changes progressively during differentiation. It has been reported that hPGCs and hPGCLCs 

regain pluripotency after specification (Chen et al., 2018), which may connect the specified 

hPGCLCs to hESCs directly. To avoid these possible artificial connections, we adapted URD 

with a constraint that cells could only be connected to its neighbors from the same, the 

previous, or the next time points (STAR Methods), and we applied this time constraint URD 

(tcURD) to predict germline trajectory (Figuress 2C, 2D, S2A, and S2B). This analysis 

revealed that in the less-competent UCLA1 hESC line, a subset of iMeLCs (yellow) had 

already exited from the branched cellular trajectory, to beome cells equivalent to visceral/

yolk sac endoderm (Figure 2C). However, in UCLA2, all iMeLCs retain competency to 
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differentiate toward either hPGCLCs or somatic cells including endoderm as well as other 

peri-implantation lineages (Figure 2D). Therefore, unlike UCLA1, at the time of BMP4 

exposure, more UCLA2 iMeLCs are still within Weismann’s barrier and are, therefore, 

competent for hPGCLC specification. Notably, PRDM1 is not restricted only to germline 

trajectory but is also present in endoderm cells (Figures S2C and S2D).

To map the somatic lineages differentiating together with the hPGCLCs in the 3D 

disorganized aggregates, we compared our differentiation trajectories to the cynomolgus 

(cyno) macaque per-implantation embryo scRNA-seq datasets (Nakamura et al., 2016) and 

amnion-like cells (AMLCs) from 3D embryo models (Zheng et al., 2019). Basically, we 

identified the signature genes for each annotated cell type in cyno scRNA-seq data and 

AMLCs, followed by calculating the signature score in each human cell across the germline 

trajectory to score the ends of the branches at day 4 (STAR Methods). This analysis revealed 

that the somatic cells in the disorganized aggregates include yolk sac endoderm/primitive 

endoderm and a variety of somatic cell types equivalent to trophoblast (TE), gastrulating 

cells (Gast), amnion, and extra-embryonic mesenchyme (EXMC) (Figures 2C and 2D). This 

result indicates that the 3D disorganized aggregates from independently derived hESC lines 

have the potential to differentiate into a variety of peri-implantation cell types together with 

the germline cells in the presence of BMP4.

Given there was only one germline specification trajectory along with other somatic lineages 

(Figures 2C, 2D, S2C, and S2D) in both UCLA1 and UCLA2, we used the trajectory from 

each cell line to trace the peri-implantation embryonic progenitors to the human germline. 

Figures S2

hPGCLCs Are Specified through a Pluripotent State with Both Naive and Primed 
Characteristics

Next, we focused only on the germline trajectory. Using pseudotime analysis of the cells 

extracted from the germline trajectory, we first explored the dynamics of hPGC specification 

genes (NANOG, SOX17, TFAP2C, and NANOS3) together with the pluripotent TFs SOX2 
and OCT4 (Also known as POU5F1). OCT4 is expressed in all cells of the trajectory. 

NANOG is also expressed throughout the germline trajectory with notable downregulation 

toward the end of day 1, followed by a subsequent upregulation at day 2 during hPGCLC 

specification. SOX2 repression in the germline trajectory begins at the time of iMeLC 

induction and is more pronounced at the end of day 1, concomitant with upregulation of the 

germline specifier SOX17. TFAP2C expression was dynamic in the germline trajectories of 

UCLA1 and UCLA2, being upregulated during day 1 in UCLA1 and UCLA2 (Figures 3A 

and S3A).

To map the in vitro germline trajectory back to in vivo embryogenesis, we again used the 

scRNA-seq data of cyno embryos (Nakamura et al., 2016), with a focus on the pluripotent 

stages of development, including inner cell mass (ICM), Pre-EPIs, post-implantation early 

epiblasts (PostE-EPIs), and post-implantation late epiblasts (PostL-EPIs). As previously 

reported, we discovered that undifferentiated UCLA2 (Figure 3B) and UCLA1 (Figure S3B) 

hESCs highly expressed the signatures of the cyno PostE-EPI and PostL-EPI with primed 

pluripotency (Nakamura et al., 2016). However, to our surprise, the iMeLCs within the 
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germline trajectory of UCLA2 and UCLA1 reset their pluripotency status to a state that 

correlates with both cyno ICM and Pre-EPI (naive) and PostE-EPI and PostL-EPI (primed) 

(Figures 3B and S3B). This result suggests that in 24 h of exposure to the cytokines in 

iMeLC media, the hESCs initiate a partial reversion toward naive-like pluripotency states 

found in the pre-implantation primate embryo while retaining primed state characteristics. 

To confirm the pluripotent state in germline trajectory iMeLCs, we also defined naive and 

primed signatures by using scRNA-seq data of human naive and primed hESCs (Messmer et 

al., 2019). Consistently, iMeLCs in the germline trajectory showed signatures of both naive 

and primed hESCs (Figures 3C and S3C). Thus, we termed the transitional pluripotent state 

of iMeLCs in germline trajectory as a ‘‘germinal pluripotent state,’’ as they are competent to 

give rise to hPGCs in addition to somatic lineages (Figure 2C and 2D). Furthermore, we 

discovered TFs that are enriched in germinal pluripotent cells which are expressed at lower 

levels in naive and primed pluripotent states (Figure 3D). To find the in vivo counterparts of 

embryonic cells in this transitional germinal pluripotent state, we applied scRNA-seq to day 

12 human embryos. We identified 13 cells annotated as epiblasts based on the cyno 

embryonic cells (Nakamura et al., 2016) (Figure 3E). Within these 13 cells, we discovered 4 

cells that show signatures of primed hESCs, naive hESCs, and iMeLCs in germline 

trajectory, indicating they are possible in vivo embryonic cells with germinal pluripoteny 

(Figure 3F).

Human PGC Specification Transitions through a TFAP2A+ Progenitor with Both Amnion 
and Gastrulation Signatures

There are currently two hypotheses for the origin of hPGCs in amniotes with bilaminar 

embryonic discs. Using the non-human primate cyno macaque as a model, cynoPGCs are 

identified in the amnion at E11 (Sasaki et al., 2016). However, in the porcine (p), porcine 

PGCs (pPGCs) were first identified in pre-mesendoderm cells in the region of the posterior 

primitive streak (Kobayashi et al., 2017). To further map the human germline trajectory back 

to in vivo embryogenesis, we next tracked the putative amnion-related genes (TFAP2A, 

GATA3, and CDX2) in the germline trajectory (Shao et al., 2017a, 2017b). Strikingly, 

TFAP2A is upregulated for approximately 24 h during day 1, together with GATA3 and 

CDX2 (Figures 4A and 4B). Repression of TFAP2A, GATA3, and CDX2 genes then mark 

the beginning of hPGCLC specification. Genes related to gastrulation, EOMES and T (also 

known as BRACHYURY), were highly and transiently upregulated at the beginning of day 1 

in the UCLA2 germline trajectory. In contrast, the less-competent UCLA1 line exhibited 

only modest upregulation of EOMES and T (Figures 4A and 4B). Notably, TFAP2A is also 

expressed in gastrulating cells during cyno embryogenesis (Figure S4A). These observations 

suggest that hPGC specification originates from a transient population of TFAP2A-

expressing progenitors that exhibit both amnion- and gastrulation-like TF identity, with cells 

exhibiting more TFAP2A+ gastrulation-like identity in the earlier stages of UCLA2 relative 

to UCLA1 germline trajectories. Given that clear clusters of NANOG/SOX17/TFAP2C/

NANOS3 quadruple-positive cells are first shown at day 2 (Figures 2A and 2B), we termed 

the day 1 cells in germline trajectory as germline progenitors.

To better infer the relationships of the D1 progenitor cells to the peri-implantation embryo, 

we utilized the scRNA-seq dataset of the recently published organized 3D human embryo 
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model, with a focus on the AMLCs and day 2 (D2) hPGCLCs. The 3D embryo model was 

created by exposing the H9 hESC line to BMP4 for 48 h by using microfluidics, which 

results in the generation of posteriorized embryonic-like sacs with AMLCs, pre-gastrula 

cells, and hPGCLCs (Zheng et al., 2019). For gastrulation cell identity, we utilized the 

annotated gastrulating cells from cyno peri-implantation embryo (Sasaki et al., 2016). 

(Figures 4C and S3B). This analysis reveals that TFAP2A+ day 1 progenitors are strongly 

enriched in cells with gastrulation identity throughout day 1 and that AMLC identity is also 

particularly strong at the end of day 1 just prior to N/S/T and NANOS3 positive hPGCLC 

specification (Figures 4C and S4B). Notably the D2 hPGCLCs from the 3D embryo model 

strongly resemble the day 2 to day 3 hPGCLCs in the germline trajectory, whereas the early 

cynoPGCs (ecPGCs) resemble day 4 hPGCLCs generated in the aggregates (Figures 4C and 

S4B). Given that the hPGCLCs from the 3D embryo model at 48 h map the closest to the 

day 2–day 3 hPGCLCs in the germline trajectory from the 3D-disorganized aggregates, this 

result suggests that regardless of whether 3D-modeled embryos or 3D-disorganized 

aggregates are used to generate hPGCLCs, the identity of the hPGCLC 48 h (or 2 days) after 

BMP4 exposure is very similar. Given that the current approach for creating 3D-modeled 

embryos can only be sustained for 48–72 h before the system collapses, the disorganized 

aggregates provide a slightly extended opportunity to consolidate hPGCLC fate to one that is 

closer to ecPGCs found in vivo. (Figures 4D and S4C).

TFAP2C Functions Upstream of SOX17 in Human Germline Specification

Next, we focused on the cells in the germline trajectory to decipher the gene regulatory 

network associated with the establishment of hPGC fate. To do this, we first identified 

germline trajectory differentially expressed genes (gtDEGs) as the union of pseudotime 

correlated genes, and DEGs across stages in the germline trajectory (STAR Methods). About 

3,000 gtDEGs were detected and grouped into 10 and 12 clusters in UCLA1 and UCLA2, 

respectively, based on their expression profiles across the trajectory (Figures 5A and S5A). 

A clear wave of dynamic gene expression was observed in both UCLA1 and UCLA2 from 

undifferentiated hESCs to hPGCLCs at day 4 (Figures 5A and S5A). To understand the 

regulatory mechanism, we predicted TFs based on the motif enrichment at the promoter 

regions of genes in each cluster as upstream regulators (Figures 5A and S5A; STAR 

Methods). From this analysis, we identified expected TFs known to be responsible for 

hPGCLC specification, including SOX17, TFAP2C, PRDM1, and EOMES (Figures 5A and 

S5A). In addition, we identified TFAP2A at day 1–2 of aggregate differentiation as well as 

the TFs ID3, ID4, and TBX3 (Figures 5A and S5A) and others. Notably, germline trajectory 

TFs shared by UCLA1 and UCLA2 include germline related (TFAP2C, SOX17, and 

PRDM1), pluripotency related (NANOG, POU5F1, and KLF4), amnion/gastrulation related 

(TFAP2A, CDX2, and GATA3), and BMP4 signaling related (ID1, ID2, ID3, SMAD6, 

MSX1, and MSX2) (Figures 5A and S5A; Table S5).

An analysis of the TF regulatory network at the time of hPGCLC specification indicates that 

SOX17 may be a putative target of TFAP2C (Figures 5B and S5B–S5D). To test this, we 

compared chromatin accessibility measured by ATAC-seq (Chen et al., 2018) and TFAP2C 

binding measured by chromatin immunoprecipitation sequencing (ChIP-seq) in hESCs, 

iMeLCs, and day 4 aggregates. To identify potential distal regulatory elements, we also 
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performed H3K27ac ChIP-seq in day 4 hPGCLCs isolated using ITGA6/EPCAM (Figure 

5C). We discovered that TFAP2C is bound to the SOX17 promoter in hESCs, iMeLCs, and 

day 4 cells. However, SOX17 mRNA is only upregulated in hPGCLCs (Figure 5C). This 

observation suggests that the TFAP2C promoter binding at the SOX17 locus is not sufficient 

to induce the dynamic upregulation of SOX17 at the time of hPGCLC specification. 

Integrating the H3K27ac and TFAP2C ChIP-seq data, we propose that although TFAP2C is 

always bound to the SOX17 promoter, it is the binding of TFAP2C to distal regulatory sites 

that are also coordinately enriched in H3K27ac in hPGCLCs to enable SOX17 expression at 

the point of hPGCLC specification (Figure 5C).

TFAP2C Safeguards Germ Cell Fate in the Germline Trajectory

TFAP2C is critical for hPGCLC formation but is not necessary for hESC self-renewal or the 

differentiation of iMeLCs (Chen et al., 2018; Kojima et al., 2017). To evaluate the role of 

TFAP2C in the germline trajectory, we performed scRNA-seq of TFAP2C −/− cells at 6 time 

points (hESCs, iMeLCs, aggregates at days 1 to 4, 19,808 cells sequenced) and compared 

this to the single cells from UCLA1 wild-type cells, which is the genetic background used to 

make the TFAP2C mutant (Figure 6A). As shown in UMAP, most of cells from TFAP2C−/− 

are aligned with wild-type cells across the six differentiation time points (Figures 6B and 

6C). In contrast, the germline cluster marked by NANOS3 is composed almost entirely of 

wild-type cells (Figure 6C and 6D). The rare TFAP2C−/− cells in the hPGCLC cluster 

defined by UMAP were analyzed further and compared to wild-type UCLA1 hPGCLCs. 

This analysis showed that TFAP2C−/− hPGCLCs failed to repress genes associated with 

somatic cell embryonic morphogenesis (Figure S6A), suggesting that TFAP2C functions as 

predicted in specified hPGCLCs to prevent cells from exiting the germline to adopt a 

somatic cell fate (Kojima et al., 2017).

To evaluate whether TFAP2C functions earlier in the germline trajectory, we applied tcURD 

analysis to the merged wild-type and TFAP2C−/− data to identify blades that were highly 

enriched in wild-type cells (blue) or mutant cells (red) (Figures 6E and 6F). These data show 

a very distinct blade (red dashed line box in Figure 6F) composed of mostly TFAP2C−/− 

cells, that branches from the common day 1 progenitor (blue dashed line box in Figure 6F) 

to hPGCLCs (labeled as hPGCLC in Figure 6F). This TFAP2C−/− blade is negative for the 

hPGCLC markers NANOS3 and SOX17 (Figures 6G and 6H) and instead expresses somatic 

genes consistent with posterior primitive streak progenitors, including MIXL1, T, HOXB5, 
HAND1, GATA6, FOXF1, and MESP2. (Figures 6I, 6J, and S6C). To determine the 

consequence of failing to express TFAP2C in the TFAP2A common progenitors, we 

identified differentially expressed genes between wild-type and the TFAP2C mutant cells in 

the progenitor population, and discovered that TFAP2C−/− cells fail to upregulate SOX17 
and downregulate SOX2 (Figure S6D). In contrast, the endoderm trajectory was composed 

of equivalent percentages of both wild-type and TFAP2C mutant cells, and these cells 

expressesed SOX17, indicating that the regulation of SOX17 expression by TFAP2C is 

unique to the germline at this stage in development (Figure 6H). To examine pluripotency 

and hPGC identity in wild-type and TFAP2C−/− cells, we evaluated the signatures from cyno 

Pre-EPI, PostL-EPI, and ecPGCs in day 1 to day 4 cells of the germline trajectory. No 

difference was detected in day 1 wild-type and TFAP2C−/− cells; however, starting from day 
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2, TFAP2C−/− cells were lower in pre-EPI pluripotency and ePGC identity but higher in 

PostL-EPI identity (Figure 6K). Collectively, our data indicate that TFAP2C functions to 

repress somatic cell fate in the newly specified hPGCLCs as first shown by (Kojima et al., 

2017). In addition, we uncovered new roles, including preventing the TFAP2A+ common 

progenitor cells from crossing Weismann’s barrier to become somatic cells, uniquely 

regulating SOX17 expression at the point of hPGCLC specification from the TFAP2A+ 

progenitors, and finally re-wiring pluripotency in the newly specified hPGCLCs at day 2 of 

aggregate differentiation to a naive-like state similar to primate pre-EPI pluripotency.

DISCUSSION

Specification of hPGCs in the embryo is critical for the generation of functional gametes in 

adults. Therefore, understanding the origin and specification of human germline cells is one 

of the most important events in our fundamental understanding of life, as it defines our 

ability to have children. The Weissman’s barrier was coined to explain DNA transmission 

exclusively through germline cells (Weismann 1893). However, in species that differentiate 

PGCs by induction, the immediate progenitors of the germline differ across the species, and 

as a result, the TF network required for PGC specification has also diverged.

Human embryo attachment culture starting with intact human embryos donated to research 

suggests that hPGC specification, although rare, begins around day 12 of embryo 

development prior to the formation of primitive streak and gastrulation. This is consistent 

with a recent study using OCT4 and SOX17 as hPGC markers (Popovic et al., 2019). Using 

a different approach, we identified hPGCs/hPGCLCs as being triple positive for N/S/T, and 

by using the in vitro differentiation of hPGCLCs from hESCs, we showed that when cells 

co-express N/S/T, they also express the hPGC gene NANOS3. In contrast to the identity of 

specified hPGCs/hPGCLCs that have well-characterized molecular markers, nothing is 

known for the peri-implantation progenitor cells in the germline trajectory. In this study, we 

overcame the challenge by taking advantage of the differentiation time course of hPGCLC 

specification with scRNA-seq and tcURD-based trajectory analysis to trace the trajectory 

from hESCs to hPGCLCs. Different from most single-cell genomics trajectory tracing 

studies, we also managed to compare the trajectories from three genetically different cell 

lines, namely, high germline competency UCLA2, low germline competency UCLA1, and 

TFAP2C−/−UCLA1,which provides us a unique opportunity not only to trace germ cell 

development and characterize the progenitors before germ cell fate is determined but also to 

compare trajectories from different cell lines to pinpoint the potential regulatory circuits 

shared and specific from three scenarios in a stage-specific manner. Our strategy could be 

applied to other complicated biological trajectories without known markers for each stage

Within the germline trajectory after hESCs are induced to differentiate, our data indicate that 

the immediate pluripotent cell precursors exhibit an identity that can be annotated as 

simultaneously pre-implantation (naive) and post-implantation (primed) pluripotency. 

Indeed, transitional pre-implantation embryonic cellular states were recently reported with 

the re-analysis of the scRNA-seq data from Petropoulos et al. (2016) that identified cells 

containing both pre-EPI and primitive endoderm identity (Stirparo et al., 2018). Similarly, 

there is remarkable similarity between ICM and pre-EPI, with only a small number of genes 
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discriminating these different cell types (Blakeley et al., 2015; Petropoulos et al., 2016; 

Stirparo et al., 2018). Therefore, it could be conceivable that along the germline trajectory 

previously unannotated transitional states of pluripotency exist, that share pluripotent 

identities with both naive and primed pluripotent states. Given that this state has not been 

annotated before, we are calling this transitional naive/primed state of pluripotency 

‘‘germinal pluripotency,’’ which is conducive to hPGC specification, amnion differentiation, 

and posterior primitive streak/mesoderm/extra embryonic mesenchyme and trophoblast 

development. This is critical because hPGCLCs are induced from primed state pluripotent 

stem cells, but our data indicate that these primed cells are reverted to a transitional state of 

pluripotency to initiate hPGCLC induction.

With the exposure to BMP4, progenitors for hPGCLCs are specified from germinal 

pluripotent cells. The lineage-primed progenitors transiently expressed amnion and 

gastrulation markers, such as TFAP2A, GATA3, EOMES, and T. In the cyno, the earliest 

cynoPGCs are identified before primitive streak formation at day 11 in the amnion (Sasaki et 

al., 2016). Using microfluidics to create posteriorized 3D-modeled embryos, we could 

identify nascent hPGCLCs in both the amnion as well as the pre-gastrula region 48 h after 

BMP4 exposure (Zheng et al., 2019). BMP4 was essential to create the posteriorized 3D-

modeled embryos with competency to specify hPGCLCs, and similarly, BMP4 is also 

essential to hPGC specification in the 3D-disorganized aggregates used in the current study 

(Sasaki et al., 2015). The tcURD analysis of the 3D-disorganized aggregates suggests that in 

addition to hPGCLCs, BMP4 stimulation creates cells with amnion, gastrulating trophoblast 

and extra embryonic mesenchyme cell identity in the aggregate. Interestingly, 48 h of BMP4 

exposure in the posteriorized 3D embryo models leads to the differentiation of hPGCLCs 

with the highest similarity to the day 2–day 3 hPGCLCs from the disorganized aggregates. 

In contrast, the day 4 hPGCLCs from the disorganized aggregates were more closely related 

to the fully specified ecPGCs from the cyno embryo. Given that this relationship appeared to 

be time dependent, once the technology for maintaining organized 3D embryo models for 

longer periods of time is achieved, it will be valuable to determine whether the hPGCLCs 

from the 3D embryo models progresses closer to fully specified cynoPGC or day 4 

hPGCLCs.

The advantage of the organized 3D embryo models over the disorganized 3D aggregate is 

that the site of nascent hPGCLC specification can be evaluated. In the 3D embryo models, 

hPGCLCs are identified in both the amnion as well as in the pre-gastrula region 48 h after 

BMP4 exposure. Whether hPGCLCs are first specified in the amnion before migrating into 

the pre-gastrula regions of the 3D embryo models remains to be determined. In the porcine 

and mouse peri-implantation embryos, PGCs are identified in the pre-mesendoderm around 

the time of primitive streak formation (Kobayashi et al., 2017), arguing for a pre-gastrula 

origin in these species. Without positional information, our germline trajectory using the 

disorganized aggregates argues for two sites of specification (amnion and gastrula), with 

hPGCLCs being specified from a flexible TFAP2A-positive embryonic progenitor that has 

the potential to give rise to multiple somatic fates.

Specification of hPGCs requires TFAP2C and SOX17 (Chen et al., 2018; Irie et al., 2015; 

Kobayashi et al., 2017; Kojima et al., 2017). However, of these two TFs, only SOX17 can 
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induce hPGCLC fate from pre-mesendoderm cells in the absence of growth factor signaling 

(Kobayashi et al., 2017). SOX17 is also a master regulator of endoderm differentiation. 

Therefore, the mechanism of action for SOX17 in hPGC specification verses endoderm 

identity must be controlled by a germline determinant. Our study demonstrates that prior to 

SOX17 upregulation in the germline trajectory, the immediate progenitors are restrained 

under Weismann’s barrier and that TFAP2C acts at the point of hPGCLC specification to 

upregulate SOX17 in the hPGCLCs. Therefore, without TFAP2C to protect the germline 

integrity, the TFAP2A-positive progenitors ‘‘cross’’ Weismann’s barrier to differentiate into 

gastrulating cells. In contrast, the formation of amnion is unaffected in the absence of 

TFAP2C. Thus, our data illustrate that the first role for TFAP2C in the germline is not to 

induce PGC fate per se but rather to safeguard Weismann’s barrier at the point of hPGC 

specification and to induce SOX17 in the response to BMP4 from a TFAP2A-positive 

progenitor and to establish naive-like pluripotency in the germline (Figure 7).

STAR★METHODS

LEAD CONTACT AND MATERIALS AVAILABILITY

Further information and requests for resources and reagents should be directed to and will be 

fulfilled by the Lead Contact, Amander Clark (clarka@ucla.edu). All unique/stable reagents 

generated in this study are available from the Lead Contact with a completed Materials 

Transfer Agreement.

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Human pre-implantation embryo samples—Use of human embryos in this research 

project followed California State law. This requires review by the Institutional Review Board 

(IRB) and the human embryonic stem cell research oversight committee (ESCRO). These 

committees approve the process of informed consent, and experiments using human 

embryos for research purposes. Patients were not paid for participation, and all donors were 

informed that the embryos would be destroyed as part of the research study and that the 

donated embryos would not be used to make a baby. All research with human embryos in 

this study complied with the principles laid out in the International Society for Stem Cell 

Research. Human blastocysts at day (D6), D7 and D8 post fertilization were used in this 

study (See Table S1). The human blastocysts were thawed using Vit Kit-Thaw (Irvine 

Scientific) according to manufacturer protocol. After thawing, embryos were cultured 

overnight in 5%O2, 6% CO2 at 37oC, and the zona pellucida was removed with Tyrode’s 

acidified solution (Irvine Scientific). Human embryo attachment culture was performed 

following the procedures of (Deglincerti et al., 2016; Shahbazi et al., 2016) using the 

commercially available medias IVC1 (In Vitro Culture 1) and IVC2 from Cell Guidance 

Systems.

Human Fetal Gonad samples—Use of human fetal tissue in this research project was 

reviewed by the UCLA IRB and the project was determined as being exempt under 45 CRF 

46.102(f). Prenatal gonads were obtained from the University of Washington Birth Defects 

Research Laboratory (BDRL), under the regulatory oversight of the University of 

Washington IRB approved Human Subjects protocol combined with a Certificate of 
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Confidentiality from the Federal Government. Human genital ridges were obtained from 

Professor Katja-Layland, Fraunhofer Institute for Interfacial Engineering and Biotechnology, 

Stuttgart, Germany, and Department of Women’s Health, Research Institute for Women’s 

Health, Tubingen, Germany. All consented material was donated anonymously and carried 

no personal identifiers. Developmental age was documented by BDRL as days post 

fertilization using a combination of prenatal intakes, foot length, Streeter’s Stages and 

crown-rump length. All prenatal gonads documented with birth defect or chromosomal 

abnormality were excluded from this study. The human gonad samples used in this study 

include week 4 female and week 5 male conceptus, and a day 53 female fetal ovary and a 

day 59 male fetal testis.

Human ESC culture—hESCs were cultured on mitomycin C-inactivated mouse 

embryonic fibroblasts (MEFs) in hESC media, which is composed of 20% knockout serum 

replacement (KSR) (GIBCO, 10828-028), 100mM L-Glutamine (GIBCO, 25030-081), 1x 

MEM Non-Essential Amino Acids (NEAA) (GIBCO, 11140-050), 55mM 2-

Mercaptoethanol (GIBCO, 21985-023), 10ng/mL recombinant human FGF basic (R&D 

systems, 233-FB), 1x Penicillin-Streptomycin (GIBCO, 15140-122), and 50ng/mL primocin 

(InvivoGen, ant-pm-2) in DMEM/F12 media (GIBCO, 11330-032). The hESCs were split 

every 7 days using Collagenase type IV (GIBCO, 17104-019). All hESC lines used in this 

study are registered with the National Institute of Health Human Embryonic Stem Cell 

Registry and are available for research use with NIH funds. Mycoplasma test (Lonza, 

LT07-418) was performed every month. All experiments were approved by the UCLA 

Embryonic Stem Cell Research Oversight Committee.

METHOD DETAILS

hPGCLC induction—hESCs were dissociated into single cells with 0.05% Trypsin-EDTA 

(GIBCO, 25300-054) and plated onto Human Plasma Fibronectin (Invitrogen, 33016-015)-

coated 12-well-plates at the density of 200,000 cells/well in 2mL/well of iMeLC media, 

which is composed of 15% KSR (GIBCO, 10828-028), 1x NEAA (GIBCO, 11140-050), 

0.1mM 2-Mercaptoethanol (GIBCO, 21985-023), 1x Penicillin-Strep-tomycin-Glutamine 

(GIBCO, 10378-016), 1mM sodium pyruvate (GIBCO, 11360-070), 50ng/mL Activin A 

(Peprotech, AF-120-14E), 3mM CHIR99021 (Stemgent,04-0004), 10mM of ROCKi 

(Y27632, Stemgent, 04-0012-10), and 50ng/mL primocin in Glasgow’s MEM (GMEM) 

(GIBCO, 11710-035). After 24 hr, iMeLCs were dissociated into single cells with 0.05% 

Trypsin-EDTA and plated into ultralow cell attachment U-bottom 96-well plates (Corning, 

7007) at the density of 3,000 cells/well in 200ml/well of hPGCLC media, which is 

composed of 15% KSR (GIBCO, 10828-028), 1x NEAA (GIBCO, 11140-050), 0.1mM 2-

Mercaptoethanol (GIBCO, 21985-023), 1x Penicillin-Streptomycin-Glutamine (GIBCO, 

10378-016), 1mM sodium pyruvate (GIBCO, 11360-070), 10ng/mL human LIF (Millipore, 

LIF1005), 200ng/mL human BMP4 (R&D systems, 314-BP), 50ng/mL human EGF (R&D 

systems, 236-EG), 10mM of ROCKi (Y27632, Stemgent, 04-0012-10), and 50ng/mL 

primocin in Glasgow’s MEM (GMEM) (GIBCO, 11710-035).

Flow cytometry and fluorescence activated cell sorting—Aggregates were 

dissociated with 0.25% trypsin (GIBCO, 25200-056) for 5 min or 0.05% Trypsin-EDTA 
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(GIBCO, 25300-054) for 10 min at 37°C. The dissociated cells were stained with conjugated 

antibodies, washed with FACS buffer (1% BSA in PBS) and resuspended in FACS buffer 

with 7-AAD (BD PharMingen, 559925) as viability dye. The single cell suspension was 

analyzed or sorted for further experiments. The conjugated antibodies used in this study 

include: ITGA6 conjugated with BV421 (BioLegend, 313624, 1:60), ITGA6 conjugated 

with 488 (BioLegend, 313608, 1:60), EPCAM conjugated with 488 (BioLegend, 324210, 

1:60), EPCAM conjugated with APC (BioLegend, 324208, 1:60).

Immunofluorescence—Slides of paraffin-embedded sections were deparaffinized by 

successive treatment with xylene and 100%, 95%, 70% and 50% ethanol. Antigen retrieval 

was performed by incubation with 10mM Tris pH 9.0, 1mM EDTA, 0.05% Tween at 95C for 

40 min. The slides were cooled and washed with 1xPBS (phosphate buffered saline) and 

1xTBS (PBS + 0.2% Tween). The samples were permeabilized with 0.5% Triton X-100 in 

1xPBS, then washed with 1xTBS and blocked with 10% donkey serum in 1xTBS. Primary 

antibody incubation was conducted overnight in 10% donkey serum. Samples were again 

washed with 1xTBS-tween and incubated with fluorescent secondary antibodies at 1:200 for 

45 min, then washed and mounted using with ProLong Gold Antifade Mountant with DAPI 

(ThermoFisher).

For staining of human embryos, attachment cultures were washed once with PBS and fixed 

in 4% PFA (Electron Microscopy Sciences) at room temperature for 20 min followed by 2 

washes in PBS. Attachments were permeabilized in 0.5% Triton-X (Sigma) in PBS for 20 

min at room temperature and then washed once in wash buffer 0.1% Tween-20 (Sigma) in 

PBS. Samples were blocked in 10% normal donkey serum (Jackson ImmunoResearch) in 

0.1% Tween-20/PBS at room temperature and incubated with primary antibody diluted in 

block overnight at 4°C.

Images were taken using LSM 780 Confocal Instrument (Zeiss). The primary antibodies 

used for immunofluorescence in this study include: rabbit-anti-NANOG (Cell Signaling 

Technology, 4903, 1:100), mouse-anti-TFAP2C (Santa Cruz Biotechnology, sc12762, 

1:100), goat-anti-SOX17 (Neuromics, GT15094, 1:100). The secondary antibodies used in 

this study were from Jackson ImmunoResearch Laboratories and Invitrogen. Samples were 

covered in drops of SlowFade Diamond Antifade mountant with DAPI (Invitrogen) and 

imaged on an LSM780 or LSM880 confocal microscope (Zeiss). All images were processed 

by Imaris software.

Single cell RNA-sequencing—Single cell suspension was made from hESCs, iMeLCs, 

day 1 to day 4 aggregates after trypsin treatment. Single cells were washed three to five 

times in PBS supplemented with 0.04% BSA. Single cell suspension was sequenced using 

10X Genomics.

ChIP-sequencing—ChIP-seq of hESCs, iMeLCs, and day 4 aggregates with anti-

TFAP2C antibodies was performed as previously described (Pastor et al., 2018). Two 

biological replicates were performed using about 500k cells. hESCs and iMeLCs were 

dissociated with 0.05% Trypsin-EDTA (GIBCO, 25300-054) for 5 minutes at 37°C, and 

aggregates were dissociated with 0.05% Trypsin-EDTA (GIBCO, 25300-054) for 10 minutes 
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at 37°C, followed by washing twice with PBS, fixed in 1% formaldehyde and flash frozen. 

After thawing, the cells were resuspended in 1 mL of Buffer 1 (10mM Tris-HCl pH8.0, 

0.25% Triton X-100, 10mM EDTA, 0.5mM EGTA, 1x Protease Inhibitors (Roche), 1mM 

PMSF) and incubated at room temperature for 15 min on a rotator. Samples were spun at 

4000 rpm for 5 min and the pellets were wash with 1 mL of Buffer 2 (10mM Tris-HCl 

pH8.0, 200mM NaCl, 10mM EDTA, 0.5mM EGTA, 1x Protease Inhibitors (Roche), 1mM 

PMSF) and resuspended in 650 uL Buffer 3 (10mM Tris-HCl pH8.0, 10mM EDTA, 0.5mM 

EGTA, 1x Protease Inhibitors (Roche), 1mM PMSF) and sonicated with Covaris S2 with the 

following program: Intensity = 5; Cycles/burst = 200; Duty Cycle = 5%; 4 x (30’’ on/30’’ 

off/30’’ on/30’’ off). Sonicated lysate was centrifuged at 14,000rpm for 10 min at 4°C and 

the supernatant was collected into a new tube. 65 µL of the supernatant was saved as input. 

30 µL Protein A Dynabeads (Invitrogen, 10001D) was washed with Dilution Buffer (16.7 

mM Tris-HCl pH8.0, 0.01% SDS, 1.1% Triton X-100, 1.2mM EDTA, 167mM NaCl) three 

times and resuspended in 650 mL Dilution Buffer and added to the samples. The samples 

with beads were rotated for 2 hours at 4°C and the beads were removed by magnetic rack. 

Each sample was split into two parts: one half for Rabbit-anti-TFAP2C (Santa Cruz 

Biotechnology, sc-8977), and the other half for Rabbit-IgG as control. Samples were 

incubated at 4°C overnight. On the second day, 60uL of pre-washed Protein A Dynabeads 

was added to each sample and incubated at 4○C for 2 hours. Samples were placed on 

magnetic rack to remove supernatant and the beads were washed twice with Buffer A 

(50mM HEPES pH7.9, 1% Triton X-100, 0.1% Deoxycholate, 1mM EDTA, 140mM NaCl), 

Buffer B (50mM HEPES pH7.9, 0.1% SDS, 1% Triton X-100, 0.1% Deoxycholate, 1mM 

EDTA, 500mM NaCl), TE and eluted with 150 µL of Elution Buffer (50mM Tris-Cl pH8, 

1mM EDTA, 1% SDS) and incubated at 65○C for 10 min. Samples were placed on magnetic 

rack and ChIP-samples were collected. Both ChIP-samples and input samples were heated 

overnight at 65°C. On the third day, samples were treated with 1.5uL of 10mg/mL RNaseA 

(PureLink RNase A, Invitrogen 12091-021) for 30 min at 65°C and then with 10ul of 

10mg/mL Proteinase K for 2 hours at 56°C. Samples were purified with MinElute PCR 

Purification Kit (QIAGEN, 28006). ChIP-seq libraries were made using Ovation Ultralow 

Systems V2 (NuGEN, 0344) according the instruction. For ChIP-seq of sorted day4 

hPGCLCs using anti-H3K27ac antibodies, about 5000 sorted hPGCLCs were collected and 

ChIP was performed using Low Cell ChIP-Seq Kit (ACTIVE MOTIF, 53084).

QUANTIFICATION AND STATISTICAL ANALYSIS

Experimental design—Single cell RNA-seq libraries were made from tow biological 

replicates of UCLA1, UCLA2 and TFAP2C mutant hESCs, iMeLCs, and day 1 to day 4 

aggregates. ChIP-seq libraries were made from two biological replicates of UCLA1 hESCs, 

iMeLCs, day4 aggregates with anti-TFAP2C antibodies and sorted hPGCLCs with anti-

H3K27ac antibodies. No statistical calculation was used to estimate the sample size. 

Randomization/stratification/blinding were not applicable to these experiments. For flow 

cytometry, at least ten biological replicates were performed. For statistical analysis, mean 

and standard error of the mean and t test were calculated using Graphpad Prism software
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Replicates and data pooling—To call ChIP-seq peaks or display ChIP-seq data in 

Figure 5, all reads from same condition were merged to increase coverage. For single cell 

RNA-seq, two biological replicates were merged after batch correction.

Single-cell RNA-seq data analysis—The reads from single cell RNA-seq were aligned 

to the GRCh38 human reference genome using the Cell Range v.2.2.0 pipeline with default 

parameters (10x Genomes). The generated cell-by-gene unique molecular identifier (UMI) 

count matrix was analyzed using the Seurat R package v.2.3.4. We only kept the cells 

expressing at least 200 genes and genes with expression in at least 3 cells. The cells were 

also filtered by the maximum of 8000 expressed genes and of 20% mitochondrial genes. The 

UMI counts were then normalized for each cell by the total expression, multiplied by 10000, 

and log-transformed. We used Seurat’s default method to identify highly variable genes and 

scale data for regressing out variation from UMI and mitochondrial genes. The scaled data 

with variable genes was used to perform principal component analysis (PCA). The top 50 

principal components were chosen for further analysis, including clustering to identify cell 

populations. UMAPs were calculated by RunUMAP function in Seurat package using top 50 

PCs and min_dist = 0.75.

To do batch correction between two biological replicates, we used Seurat’s canonical 

correlation analysis procedure with default parameter. Briefly, this analysis identifies vectors 

with correlation between datasets and then aligns values along these vectors to reduce the 

variation from batch. The top 30 canonical correlation vectors were used further for 

clustering and UMAP visualization.

Prediction of developmental trajectories using tcURD—The matrix of cell X top 

30 CCA components after batch correction was used to build the tree of lineages by tcURD, 

which is based on URD package (v.1.0.2) in R (Farrell et al., 2018) and do pseudotime 

analysis afterward. We modified URD as tcURD where the diffusion map is calculated by 

destiny package from a sparse distance matrix, with 0 for most of element except those from 

nearest neighbors. Instead of calculating distance from top K nearest neighbors for each cell 

among all other cells, we put a time constraint that nearest neighbors could only come from 

samples at the same or nearby time point for this time series experiment so that we could 

avoid artificial connections of two cells from samples far away from each other in temporal 

order. The pipeline can be found on GitHub (https://github.com/kdyhl/singleCell_tcURD).

Annotation of cell lineage—We re-processed the single cell RNA-seq data in 390 single 

cells of cynomolgus embryos across 13 cell types (GEO: GSE74767). Specifically, we 

identified differentially expressed genes (DEGs) across 13 cell types and generated the 

average expression profiles for 13 cell types based on these DEGs. The average profiles for 

cells at the stage of hPGCLC day4 were also generated in the same way across the segments 

in the URD tree. We next calculated the Pearson Correlation Coefficient (PCC) to evaluate 

the similarity between each lineage in the URD tree and cell type in cyno embryo. The 

similar analysis was carried out to define the cell identity of clusters in ex vivo single cell 

data.
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Signature analysis—We downloaded the processed single cell RNA-seq data of 

cynomolgus (cyno) embryos (GEO: GSE74767, GSE76267) and identified the highly 

expressed genes as signature for each cell type annotated in the original paper compared 

with cells from all different cell identities. Next, we calculated the average expression level 

of each signature set in single cells of germline trajectory and visualized by heatmap. We 

also downloaded the processed single cell RNA-seq data from naive and primed hESCs 

(GEO: GSE76970) and did the similar analysis. Similar analysis was performed in single 

cell RNA-seq data of human synthetic amnion-like cells (hsAM) and PGCLCs (hsPGCLC) 

derived by exposing the H9 hESC line to BMP4 for 48 hours using the synthetic embryonic-

like sac model.

Identification of germline trajectory differentially expressed genes (gtDEGs)—
We defined germline trajectory differentially expressed genes (gtDEGs) as below: (1) we 

identified the pseudotime correlation genes with absolute Pearson correlation coefficient 

(PCC) > 0.2 between pseudotime and gene expression level. (2) we called the differentially 

expression genes between any two time points across germline trajectory using 

FindAllMarkers function in Seurat package with default parameters. (3) the union of geneset 

(1) or (2) were defined as gtDEGs for further analysis.

Motif analysis—To predict the upstream regulators of gtDEGs, we identified the 

enrichment of transcription factor binding motifs in the promoter region (500bp upstream to 

100bp downstream of transcription start site) using findMotifs.pl function in HOMER v4.9 

software with default parameters. Those transcription factors were then filtered by gtDEGs.

Transcription factor (TF) network analysis—Among gtDEGs, we focused on the 

regulatory relationship between transcription factors. We build a TF-TF regulatory network 

based on the presence of transcription factor binding motif at promoter regions (500bp 

upstream to 100bp downstream of transcription start site). The network was visualized in 

Cytoscape v.3.7.1(Shannon et al., 2003). We annotated nodes and edges. The color of node 

represents the pseudotime of its highest expression levels from red to yellow. The size of 

node represents the degree (number of edges). The shape of node represents whether it 

belongs to upstream regulator (triangle: regulator; circle: non-regulator). The arrow of edge 

represents the direction of regulation.

ChIP-seq analysis—FastQC were used to check the quality of the sequencing reads. Then 

reads were mapped to the reference hg19 genome using bowtie by allowing maximal two 

mismatches per reads and take one best hit when the reads can be mapped to multiple places. 

PCR duplciates were removed using SAMtools and ChIPseq tracks were generated with 

deeptools.

Code Availability—Custom scripts used for demultiplexing NGS reads, calculating count 

matrix, visualization for single cell maps, generating differentiation trajectory and 

annotating cell lineages will be made available upon request.
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DATA AND CODE AVAILABILITY

The accession number for the single cell RNA-seq data and ChIP-seq data of key cell types 

including hESCs, iMeLCs, day 1 to day4 aggregates, and sorted hPGCLCs reported in this 

paper is GEO: GSE140021. The pipeline for tcURD can be found on GitHub (https://

github.com/kdyhl/singleCell_tcURD).

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Highlights

• Human germline cell specification begins from a transitional pluripotent state

• Human primordial germ cells are specified from lineage-primed progenitors

• Lineage-primed TFAP2A progenitors have gastrulating and amnion cell 

identity

• TFAP2C regulates SOX17 at the point of human primordial germ cell 

specification
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Figure 1. Tracking the Specification of Human PGCs
(A) Schematic illustration of human embryos used in this study. Frozen embryos at day 5 or 

day 6 post-fertilization were thawed and allowed to recover for 24 h to become day 6 or day 

7, staining or culturing until day 12 as human embryo attachment cultures. Human embryos 

at weeks 4–5 were stained as positive controls for identifying hPGCs.

(B) Human embryo attachment culture at day 12 stained for TFAP2C (purple), SOX17 

(yellow), and NANOG (cyan). Two TFAP2C/SOX17/NANOG triple-positive cells are 

highlighted by a white arrowhead, one of which is enlarged in inset. The number in the 4′,6-

diamidino-2-phenylindole (DAPI) (gray) panel indicates triple-positive cells were identified 

in two day 12 embryos from a total of 26 embryos examined at this time point.

(C) Schematic illustration of hPGCLC differentiation. The UCLA1 and UCLA2 hESC lines 

are induced to differentiate into iMeLCs for 24 h, followed by differentiation as 3D 
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disorganized aggregates for 4 days. Samples were collected at all six time points from each 

hESC line in biological duplicate for 10x Genomics scRNA-seq.

(D) Identification of ITGA6/EPCAM double-positive hPGCLCs by flow cytometry from 

UCLA1 and UCLA2.

(E) Percentage of ITGA6/EPCAM double-positive hPGCLCs isolated from UCLA1 and 

UCLA2 at day 4 of differentiation. ***, indicates statistically significant difference 

comparing more than 10 biological replicates of UCLA1 and UCLA2 at day 4 of 

differentiation (shown is mean and SEM)

(F) Immunofluorescence of TFAP2C (purple), SOX17 (yellow), and NANOG (cyan) in day 

1–4 aggregates from UCLA1 (top) and UCLA2 (bottom). The percentage of TFAP2C/

SOX17/NANOG triple-positive cells at each day is shown. Percentages were calculated from 

five or more biological replicates at each day.

(G and H) UMAP display of all cells in the UCLA1 (G) and UCLA2 (H) dataset in 

biological duplicate (n = 12 samples for each cell line). The expression of NANOS3 
indicates hPGCLCs.

Scale bars: 50 μM. See also Figure S1.
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Figure 2. Highly Germline-Competent hESC Lines Specify More hPGCs within 48 h of BMP4 
Exposure
(A and B) The emergence of TFAP2C/SOX17/NANOG/NANOS3 quadruple-positive cells 

in UCLA1 (A) and UCLA2 (B) by scRNA-seq. UMAP was applied to visualize all single 

cells at each stage. The percentage of TFAP2C/SOX17/NANOG/NANOS3 quadruple-

positive cells (red) is shown. Cutoff: log-transformed-normalized UMI counts of >0.5 for 

TFAP2C, SOX17, NANOG, and NANOS3.

(C and D) URD tree showing the developmental trajectories from hESC and iMeLCs 

through 4 days of aggregate differentiation from UCLA1 (C) and UCLA2 (D). The 

expression of NANOS3 marks the end of the germline trajectory and establishment of 

hPGCLCs in (C) and (D). Cells with endoderm (Endo) identity are outside of the germline 

trajectory, indicating hPGCLCs do not originate from SOX17-positive endoderm. VE/YE, 

visceral/yolk-sac endoderm; EXMC, extra-embryonic mesenchyme; Pre-EPIs, pre-

implantation epiblasts; PostE-EPI, post-implantation early epiblasts; Post-TE, post-

implantation trophectoderm; Gast, gastrulating cells; AMLCs, amnion-like cells (Nakamura 

et al., 2016; Zheng et al., 2019).

See also Figure S2.
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Figure 3. hPGCLC Specification through a Translational Germinal Pluripotent State
(A) The expression patterns of TFAP2C, NANOG, SOX2, POU5F1(OCT4), SOX17, and 

NANOS3 within the germline trajectory of UCLA2. Dash lines outline iMeLCs in germline 

trajectory in (A)–(C).

(B) Relative average expression of signature genes from cynomolgus ICM (inner cell mass), 

Pre-EPIs, PostE-EPIs, and PostL-EPI (post-implantation late epiblast) (Nakamura et al., 

2016) in germline trajectory of UCLA2.

(C) Relative average expression of signature genes from primed and naive hESCs (Messmer 

et al., 2019) in germline trajectory of UCLA2. Signature score bar is same as (B).

(D) Heatmap showing the expression of differentially expressed genes in naive, primed, and 

transitional germinal pluripotent cells.

(E) UMAP displaying the single cells from day 12 human embryonic cells.

(F) Relative expression of signature genes in the 13 epiblasts cells from (E) compared to 

primed and naive hESCs (Messmer et al., 2019) and cells from iMeLCs, day 1 to day 4 cells 

in germline trajectory.

See also Figure S3.
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Figure 4. hPGCLC Specification Involves a Trajectory through a Transient TFAP2A-Positive 
State with a Signature of Both Amnion and Gastrulating Cell Fates
(A and B) The expression patterns of EMOES, T, CDX2, GATA3, and TFAP2A within 

germline trajectory of UCLA1 (A) and UCLA2 (B).

(C) Relative average expression of signature genes from cynomolgus Gast (gastrulating 

cells), ePGC (early PGCs) (Nakamura et al., 2016) and human AMLCs and hPGCLC at day 

2 (Zheng et al., 2019) in germline trajectory of UCLA2.

(D) Expression of TFAP2A, T, EOMES, and MIXL1 in day 1 progenitor population from 

UCLA2.

See also Figure S4.
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Figure 5. TFAP2C Acts Upstream of SOX17
(A) Heatmap showing the differentially expressed genes in the UCLA2 germline trajectory. 

Signature transcription factors (TFs) and predicted regulators are shown for each cluster.

(B) Network showing the regulatory role of TFAP2C and its putative targets in the germline 

trajectory of UCLA2. Red arrows highlight the predicted direct regulation of SOX17 by 

TFAP2C.

(C) Tracks showing the ATAC-seq, TFAP2C ChIP-seq, H3K27ac ChIP-seq, and RNA-seq 

peaks around SOX17 site at each stage.

See also Figure S5.
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Figure 6. TFAP2C Mutant Cells Exit the Germline Trajectory to Become Primitive Streak or 
Amnion-like Somatic Cells
(A) Experimental design comparing scRNA-seq libraries of TFAP2C mutant (T2C−/−) 

hESCs, iMeLCs, day 1, day 2, day 3, and day 4 to wild-type cells of the same genetic 

background (UCLA1).

(B) UMAP showing wild-type and T2C−/− single cells.

(C) Overlay from wild-type UCLA1 (blue) and T2C−/− cells (pink) from each of the six time 

points. Clusters that are largely pink are enriched in mutant cells; clusters that are largely 

blue are enriched in wild-type cells.

(D) NANOS3 expression indicates hPGCLCs.

(E) URD trees showing the differentiation trajectories of all cells combined (wild-type and 

T2C−/− mutant).

(F) Overlay of TFAP2C−/− cells (pink) and wild-type UCLA1 (blue) cells in the URD trees 

illustrates cell trajectories enriched in either mutant (pink) or control cells (blue) cells. 

Percentages of TFAP2C −/− cells in each of the blades of the trajectories.
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(G and H) NANOS3 (G) and SOX17 (H) highlight the germline trajectory ending in 

hPGCLCs (G) and hPGCLCs and VE/YE (H) Red box indicates the mutant-enriched 

trajectory that originates from the common progenitor with hPGCLCs.

(I and J) URD tree showing the expression of somatic (primitive-streak or early amnion 

genes) MIXL1 (I) and T (J), in the TFAP2C−/− enriched blade.

(K) Comparison of cynomolgus Pre-EPI, PostL-EPI, and ePGCs (Nakamura et al., 2016) 

signatures in germline trajectory between wild-type and TFAP2C mutant cells.

See also Figure S5.
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Figure 7. Proposed Model
Human PGCs are specified beginning at day 12. Based on the in vitro germline trajectory, 

we propose that hPGCs originate from a lineage-primed TFAP2A+ progenitor at around day 

11 which is specified from a transitional pluripotent state that shares characteristics with pre- 

and post-implantation epiblasts that we have called ‘‘germinal pluripotency.’’ TFAP2A+ 

progenitors have the potential for hPGC specification and also for differentiation of somatic 

cells, including amnion and gastrulating cells. TFAP2C functions at the critical point of 

hPGC specification to directly regulate expression of the human germ cell fate determinant 

SOX17, while simultaneously preventing germline cells from crossing Weismann’s barrier 

to become somatic cells.
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KEY RESOURCES TABLE

REAGENT or RESOURCE SOURCE IDENTIFIER

Antibodies

Rabbit polyclonal anti-human TFAP2C Santa Cruz Biotechnology Cat#sc-8977; RRID: 
AB_2286995

Mouse monoclonal anti-TFAP2C Santa Cruz Biotechnology Cat#sc-12762; RRID: 
AB_667770

Goat anti-human SOX17 Neuromics Cat#GT15094; RRID: 
AB_2195648

Rabbit anti-human NANOG Cell Signaling Technology Cat#4903; RRID: AB_10829232

Rabbit anti-human-H3K27ac Abcam Cat#ab4729; RRID: 
AB_2118291

BV421 conjugated anti-human/mouse CD49f (ITGA6) BioLegend Cat#313624; RRID: 
AB_2562244

488 conjugated anti-human/mouse CD49f (ITGA6) BioLegend Cat#313608; RRID: AB_493635

Alexa Fluor 488-conjugated anti-human CD326 (EPCAM) BioLegend Cat#324210; RRID: AB_756084

APC-conjugated anti-human CD326 (EPCAM) BioLegend Cat#324208; RRID: AB_756082

Biological Samples

Human pre-implantation embryos at day 6, day 7 and day 8 
post-fertilization

Surplus embryos from in vitro fertilization 
clinics in the United States.

N.A.

Human week 4 female and week 5 male genital ridges Fraunhofer Institute for Interfacial 
Engineering and Biotechnology, Germany

N.A.

Human day 53 female fetal ovary and day 59 male fetal 
testis

University of Washington Birth Defects 
Research Laboratory

N.A.

Chemicals, Peptides, and Recombinant Proteins

CHIR99021 Stemgent Cat# 04-0004

Y27632 Stemgent Cat# 04-0012-10

Recombinant Human FGF basic Protein R&D systems Cat#233-FB

Recombinant Activin A Peprotech Cat# AF-120-14E

Recombinant human LIF Millipore Cat# LIF1005

Recombinant human BMP4 R&D systems Cat#314-BP

Recombinant human EGF R&D systems Cat#236-EG

Critical Commercial Assays

Ovation Ultralow System V2 NuGEN Cat#0344

Low Cell ChIP-Seq Kit ACITVE MOTIF Cat#53084

VIT KIT Thaw Irvine Scientific Cat#90137-SO

IVC medium Cell Guidance Systems Cat #M11-6

IVC medium Cell Guidance Systems Cat# M12-6

Deposited Data

Single cell RNA-seq data This paper GSE140021

ChIP-seq data This paper GSE140021
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REAGENT or RESOURCE SOURCE IDENTIFIER

Single cell RNA-seq data Zheng et al., 2019 GSE134571

Single cell RNA-seq data Nakamura et al., 2016 GSE74767

Single cell RNA-seq data Sasaki et al., 2016 GSE76267

ATAC-seq data Chen et al., 2018 GSE120648

ChIP-seq data Pastor et al., 2018 GSE101074

Experimental Models: Cell Lines

UCLA1 Diaz Perez et al., 2012 N/A

UCLA2 Diaz Perez et al., 2012 N/A

UCLA1 TFAP2C−/− line 1 Pastor et al., 2018 N/A

Software and Algorithms

BD FACSDIVA software BD Biosciences N/A

FLOWJO software FLOWJO N/A

GraphPad Prism software GraphPad N/A

Photoshop software Adobe N/A

Illustrator software Adobe N/A

R https://www.R-project.org N/A

HOMER Motif Analysis http://homer.ucsd.edu/homer/motif/ N/A
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