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Abstract

This paper proposes a fugsy evidential model for
commonsense causal reasoning. After an analysis
of the advantages and limitations of existing ac-
counts of causality, a generalized rule-based model
FEL (Fuzzy Evidential Logic) is proposed that takes
into account the inexactness and the cumulative
evidentiality of commonsense reasoning. It corre-
sponds naturally to a neural (connectionist) net-
work. Detailed analyses are performed regarding
how the model handles commonsense causal rea-
soning.

Shoham’s Causal Theory

The issue of causality has recently received a lot of
attentions from various perspectives (cf. Shoham
1987, Iwasaki & Simon 1986, de Kleer & Brown
1986, Pearl 1988, etc.). The issue has wide rang-
ing impact on areas such as learning, control, and
recognition. However, most of these logic based
models are aimed for modeling truth functional as-
pects of causal knowledge, and they tend to ig-
nore some important characteristics of common-
sense causal reasoning, for example, gradeness of
concepts, inexact causal connections, evidentiality
of causal rules, etc., while probabilistically moti-
vated models are mainly concerned with the prob-
abilistic aspect of causal events, and they are more
computationally complex and oftentime have only
marginal cognitive plausibility in terms of mecha-
nisms involved. Connectionism provides a new and
different kind of models that might be of help in
accounting for causality in commonsense reason-
ing; these models entertain a number of interest-
ing properties that other models lack (for exam-
ple, massive parallelism, generalization, fault/noise
tolerence, and adaptability; see Waltz & Feldman
1986, Sun & Waltz 1991) and present a new per-
spective of reasoning as a complex process in a dy-
namic system; it will be worthwhile to look into the
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question of how such models can deal with the issue
of causality.

Let us look into Shoham's account of causality
(Shoham 1987), which is undoubtedly one of the
most notable accounts of causality with rule-based
formalisms. His temporal modal logic formalism
has a close resemblance to Horn clause logic, and
therefore is very suitable for use in rule-based sys-
tems. According to Shoham'’s Causal Theory (CT),
causes are primary conditions which, together with
other conditions, will bring about the effect. These
“other” conditions are somewhat secondary. In rea-
soning, as long as we know that the primary condi-
tions (causes or necessary conditions) are true and
that there is no information that the secondary con-
ditions (enabling conditions or possible conditions)
are false, then we can deduce that effects will fol-
low. The theory is described in terms of modal
logic, with one basic modal operator (O or neces-
sity) for specifying necessary conditions. and one
auxiliary modal operator (< or possibility) for spec-
ifying possible conditions. The formal definition is
as follows:

Definition 1 4 Causal Theory is a set of for-
mulas of the following form

AiOnga;(tin, tia) Aj Ongbj(tir, tj2) — Oc(ty, ta)

where n;’s are either = or nothing, t2 > tiz for all
i’s, t3 > tj3 for all j’s, nia;’s are necessary con-
ditions (causes), and n;b;’s are possible conditions
(enabling conditions). C is concluded iff all nia;’s

are irue and none of njb;’s are known to be false.
1

From the standpoint of modeling commonsense
knowledge, this model has some advantages, such
as that it provides a simple and elegant formalism
with efficient inference algorithms, that it is easily
representable (and implementable), and that it has

'This process is formally described by a minimization

principle in Shoham (1987).



compatibility with philosophical accounts of causal-
ity (Shoham 1987). On the other hand, the model
ignores or discounts many aspects of commonsense
causal reasoning; for example,

1. All propositions in this theory are binary: either

true or false, and there is no sense of graded-
ness. Commonsense knowledge is certainly not
limited to true/false only (Sun 1991, Hink &
Woods 1987).

. Beside the inexactness of individual concepts,
reasoning processes in reality are also inexact and
evidential. Specifically, the evidential combina-
tion process is cumulative (as observed in proto-
col data; Sun 1991, 1991a); that is, it “adds up”
various pieces of evidence to reach a conclusion,
with a confidence that is determined from the
“sum” of the confidences of the different pieces
of evidence. Moreover, different pieces of evi-
dence are weighted, that is, each of them may
have more or less impact, depending on its impor-
tance or saliency, on the reasoning process and
the conclusion reached. We have to find a way of
combining evidence from different sources cumu-
latively and with weights, without incurring too
much computational overhead (such as in prob-
abilistic reasoning or Dempster-Shafer calculus;
cf. Pearl 1988).

. Because of the lack of gradedness, the model will
make projections too far along a chain of reason-
ing (or too far into the future; Sun 1991). An
example from Shoham (1987):

Oalive(to, to)

Oshoot(t,t) — O-alive(t + 1,¢+ 1)
Oalive(t, t)O-shoot(t, t)Ootherwise-killed(1,1)
— Oalive(t + 1,t + 1)

which means that if one is alive at time tp, one
will continue to be alive as long as not being shot
or otherwise killed. So if there is nothing known
about “shoot” and “otherwise-killed”, then ac-
cording to the minimal model approach, we will
predict that

Dalive(t,t) where t — oo

This is certainly not true. The problem is that,
along a chain of inference (as well as in temporal
projections), the confidence for the conclusions
reached should weaken. We can weaken confi-
dence along the way only when gradedness is re-
instated into causal theories.

. The clear-cut necessity and possibility is a prob-
lem, because in reality there is little, if any, qual-
itative difference between causes and enabling

conditions. The difference is more quantitative
(as will be illustrated later), and sometimes the
two are interchangeable; for example, “He is shot
dead” is expressed in CT as

Oshoot(t, t)AO—~wearing-bullet-proof-vest(t,t)......
— Odead(t + 1,t+ 1)

and “His failure to wear the bullet-proof vest
caused his tragic death” is expressed as

O-wearing-bullet-proof-vest(1,t)AOshoot(t, t)......
— Ddea.d(t+ 1,i + l)

So one fact can be both a cause and an enabling
condition.

5. Although the model does distinguish two differ-

ent types of conditions, it does not explain why
some conditions are necessary, and some condi-
tions need only to be possible.

6. According to the model, it is necessary to list

all causes and all enabling conditions, in order
to guarantee correct results. This could be hard
to do, because the number of enabling conditions
could be infinite.

7. The causal connection between events in the left
hand side of an implication and events in the
right-hand side of the same implication may not
be deterministic. It could be probabilistic, or
otherwise uncertain (Suppes 1970).

For reviews of other accounts of causality, see Sun
(1991).

Defining FEL

FEL (Fuzzy Evidential Logic) is aimed at resolv-
ing the problems inherent in existing logical ac-
counts of causality. Like Shoham’s formalism, FEL
is defined around rules; however, FEL encodes rules
with the weighted-sum computation. This formal-
ism is meant to capture, among other things, the
gradedness and evidentiality of commonsense rea-
soning, in a cognitively motivated way. Formal def-
initions follow (cf. Zadeh 1988):

Definition 2 A Fact is an atom or ils negation,
represenied by a letter (with or withoutl a negation
symbol) and having a value between | and u. The
value of an atom is related to the value of ils nega-
tion by a specific method, so that knowing the value
of an atom results in immediately knowing the value
of its negation, or vice versa. ?

Now we can define rules and their related weighting
schemes:

?We will adopt a generic confidence measure as the value
of a fact.
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Definition 3 4 Rule is a structure composed of
two parts: o left-hand side (LHS), which consists
of one or more facts, and o right-hand side (RHS),
which consists of one fact. When facts in LHS get
assigned values, the fact in RHS can be assigned a
value according to a weighting scheme 3.
Definition 4 A Weighting Scheme s a way of
assigning a weight 1o each fact in LHS of a rule,
with the total weights (i.e., the sum of the abso-
lute values of all the weights) less than or equal
to 1, and of determining the value of the fact in
RHS of a rule by thresholded (if thresholds are used)
weighted-sum of the values of the facts in LHS (or
inner-products of weight vectors and vectors of val-
ues of LHS facts). When the range of values is
continuous, then the weighled-sum is passed on if
its absolute value is greater than the threshold, or
0 if otherwise. When the range of values is binary
(or bipolar), then the result will be one or the other
depending on whether the weighied-sum (or the ab-
solute value of it) is greater than the threshold or
not (usually the result will be 1 if the weighted-sum

is greater than the threshold, 0 or -1 if otherwise).
4

Definition 5 A Conclusion in FEL is a value as-
sociated with a fact, calculated from rules and facts
by doing the following:

(1) for each rule having that conclusion in its RHS,
obtain conclusions of all facts in its LHS (if any fact
is unobtainable, assume it to be zero); and then cal-
culate the value of the conclusion in question using
the weighting scheme;

(2) take the MAX of all these values associated with
that conclusion calculated from different rules or
given in initial input.

Definition 6 A rule seil s said to be Hierarchi-
cal, if the graph depicling the rule setl is acyclic;
the graph is constiructed by drawing a unidirectional
link from each fact (atom) in LHS of a rule to the
fact (atom) in RHS of a rule.

Making a rule set hierarchical avoids circular rea-
soning.

Now FEL can be defined as follows:

Definition 7 A Fuzzy Evidential Logic (FEL)
is a 6-tuple: < AR, W, T,1,C >, where A is a
set of facts (the values of which are assumed to be
zero initially), R is a set of rules, W is a weighting

3When the value of a fact in LHS is unknown, assign a

zero as its value.

*This weighting scheme can be generalized, as will be

discussed later on.
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scheme for R, T is a set of thresholds each of which
13 for one rule, I is a sel of elements of the form
(f,v) (where fis a fact, and v is o value associated
with f), and C is a procedure for deriving conclu-
sions (i.e. computing values of facts in RHS of a
rule in R, based on the initial condition I).

We want differentiate FEL into two versions: FEL;
and FEL,, which differ in their respective ranges
for values associated with facts.

Definition 8 FEL, is FEL when the range of val-
ues is restricted o between 0 and 1 (i.e. 1=0 and
u=1), and the way the value of a fact is related to
the value of its negation is:

a=1--a
for any fact a.

Definition 9 FEL; is FEL when the range of val-
ues i3 restricied to between -1 and 1 (i.e. I=-1 and
u=1), and the way the value of a fact related to the
value of its negation is:

a=--a
for any fact a.

As an illustration of its capability and correctness,
we want to show that FEL can implement Horn
clause logic as a special case (we will only deal with
the propositional version here, and extensions to
first order cases is dealt with in Sun 1991). Let
us define Horn clause logic first (cf. Chang & Lee
1973):

Definition 10 Horn clause logic is a logic in
which all formulas are in the forms of

p

or
P1pPa...... Pn — ¢
where p’s and q are propositions.

Definition 11 A Binary FEL is a reduced ver-
sion of FEL (either FELy or FEL;), in which val-
ues associated with facts are binary (or bipolar), to-
tal weights of each rule sum to 1, and all thresholds
are set to 1.

Here is the theorem for the equivalence (see Sun
1991 for proofs):

Theorem 1 The binary FEL is sound and com-
plete with respect to Horn clause logic.

We want to show that FEL can simulate Shoham's
Causal Theory, to further explore the logical ca-
pability of FEL. (We will only consider a non-
temporal version of CT, that is, we strip away all



temporal notations.) We have to find a mapping
between truth values of formulas in Causal Theory
and values of facts in FEL. Since in CT and in FEL,
there is no logical OR and there is only a (implicit)
logical AND in the LHS of a rule, which can be
taken care of by a weighting scheme as will be dis-
cussed later, we do not have to worry about these
two connectives in the mapping now. Therefore,
we can use a mapping as follows, which can be eas-
ily verified to be consistent with regard to logical
equivalence (without AND and OR; for example, O
a =0 a, etc.):

(1) M(a= true ) = ‘a=1

(2) M(— a= true) = ‘a=-1’

(3) M(O a= true) = ‘a=1’

(4) M(O- a= true) = ‘a=-1’

(5) M(© a= true) = ‘a=0’

(6) M(O- a= true) = ‘a=0’

(7) M(-O a= true) = ‘a=0’

(8) M(—O=- a= true) = ‘a=0’

(9) M(—< a= true) = ‘a=-1

(10) M(~O— a= true) = ‘a=1’

With the mapping in hand, we can proceed to find a
weighting scheme to enable FEL to simulate Causal
Theory. The problem is that in FEL we have nodes
only for atoms such as a, b, m, n, etc. but not for
Oa or Ob, etc. We have two ways of dealing with
this:

1. Extending and making more complex the weight-
ing scheme,

2. Adding nodes that can be used to represent
atoms with modal operators.

We will adopt the first approach here (the second
approach will also work — the difference is insignif-
icant). For a formula in Causal Theory

AiOna; Aj Onjb; — One

we can assign arbitrary weights to atoms: a;’s and
b;’s (if there is a negation, the corresponding weight
is negative; otherwise, weights are positive), as long
as their absolute values sum to 1. However, for b;’s,
we will also apply the following function to the link
between b; and c:

1 ifbj:l
= 1 ifb; =0 and n; # -

-1 ifbj=-1

We will call this function the elevation function be-
cause it turns all 0’s into 1's or -1’s. We have thresh-
olds equal to 1 for all rules. We restrict the possible
values of facts to -1 or 1.

Now it is easy to verify that a rule in FEL with this
specific weighting scheme and thresholds is equiva-
lent to a corresponding formula in Causal Theory:
e.g., suppose we have the following formula in CT:

O0a0b0alb — Oe
It can be translated into FEL as follows:
abc'd — e (wlwzwsw..)

where ¢/ = f¢(c) and d’' = f3(d) and ¥, w; = 1, and
the threshold equal to 1 for the rule. The equiva-
lence can be verified case by case.

To find a full correspondence between FEL and
Causal Theory, we also need a proof procedure that
enables the derivation of all correct results (theo-
rems). Here is a proof procedure for CT:

Given a Causal Theory CT, and a set of initial condi-
tions (true events) I:

— For all a € I, infer a, Oa, and <a.

— Repeat:

for AijOn;a; Aj Onjb; — Oc where nia;'s are in-
ferred, and —n;b;'s are non-inferable, ®

infer ¢, Oc, and <c.

It is easy to see the correctness of this procedure
(see Sun 1991 for all the proofs):

Theorem 2 The above proof procedure is sound
and complete for Causal Theory as defined above.
We can have a similar proof procedure for FEL:

Given a FEL theory, and a set of initial conditions
(true facts) I:

— For all (a,v,) € I, infer a with v,.

— Repeat:

for Ainiai — ¢ where each nia; is inferred with a
certain value, or is non-inferable (and therefore
a value gero is assumed), ®

infer ¢ with v., where v, is calculated according to
the weighting scheme used.

It is easy to see the correctness of this procedure
for FEL, and the correspondence between the two
proof procedures:

Theorem 3 The above proof procedure is sound
and complete for hierarchical FEL

EThey are not in the RHS of any rule and not in I, or
in order to infer it, we have to use a rule which has a fact
as a necessary condition in its LHS that is not inferable.
Since CT is hierarchical, this is easy to detect. We can pre-
construct a “dependency graph” which depicts inferability
relations.

8 According to the weighting scheme used to simulate CT,

if a fact is inferred, it must be inferred with a value 1 or -1;
if a fact is non-inferable, then its value is 0. When other
weighting schemes are used, the results will be different.
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Theorem 4 The proof procedure for FEL carries
out ezactly the proof procedure for Causal Theory
when Causal Theory is implemented in FEL in the
aforementioned way.

Therefore,

Theorem 5 For every hierarchical, non-temporal
Causal Theory, there is a FEL such that CT: w |
a iff FEL: ¢ = ‘a=1’, where w is a set of initial
conditions for Causal Theory CT, and c is the set
of initial conditions for FEL mapped over from w
in CT.

Accounting for Commonsense
Causality

Now we are ready to show that FEL extends justifi-
ably Shoham’s Causal Theory and solves the prob-
lems identified earlier. To extend the FEL version
of Shoham's Causal Theory, we first notice that the
causes need not be known with absolute certainty,
i.e. we should allow a confidence measure associ-
ated with each necessary fact (i.e. the one with O),
because of the gradedness, uncertainty and fuzsi-
ness of our knowledge. By the same token, the
conclusions need not be binary either, so that un-
certain causes can generate uncertain effects. More-
over, even facts (causes) of absolutely certainty may
not guarantee the expected effects (i.e. the idea
of uncertain causality; Suppes 1970). Therefore,
we will associate a confidence measure with each
of the causes (i.e. the facts in LHS of a rule) be-
tween -1 and 1, and a confidence measure also with
the effect (i.e. the fact in RHS of a rule). We can
use weights to create a mapping between confidence
measures of causes (i.e. values of the corresponding
facts) and confidence measures of effects (i.e. val-
ues of the corresponding facts), so from a set of
causes and their confidence measures (i.e. a set of
facts and their values) we can deduce a confidence
measure for an effect (or a value for a fact in RHS).
Moreover, the set of weights associated with facts
in LHS of a rule should reflect their relative impor-
tance: more important causes should have a larger
weight associated with them, and since the total
weights sum to 1, the value of a weight for a partic-
ular fact (condition) reflects its relative importance
against a background of all other conditions.

Another issue to consider is how to handle possible
condition facts (i.e. those with ©). As explained
before, there is a special function associated with
them, which elevates 0 to 1 or -1, according to
whether positive or negative forms appear in the
causal rule. Since we now extend the binary (or
bipolar) space for truth values into a graded, con-
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tinuous space, there is no more need for that eleva-
tion function. It follows from the fact that when a
possible condition fact is unknown (i.e. its value is
0), the conclusion can still be reached, albeit with
a smaller value (in confidence level). Now that we
no longer require a binary (or bipolar) outcome, it
is fine to have a smaller value for a conclusion when
some enabling conditions are unknown. When one
of these enabling conditions become known, the
value will become higher; that is, we will have
more confidence in the conclusion. Normally the
weights associated with those enabling conditions
will be relatively small anyway, because they are
non-essential and close to “don’t care” conditions.
So it is advantageous to remove the elevation func-
tions in the FEL version of Shoham's Causal The-
ory and assign weights instead.

An alternative perspective of viewing the extension
is that of “fuzzifying” the necessity function and
the possibility function. Once fuzzified, these new
functions wind up to be identity functions. There-
fore, combining the above two perspectives, causes
are those conditions that have high weights, and
enabling conditions are those conditions that have
low weights.

We can now easily map the FEL terminology into
the causal terminology as follows:

Events are facts in FEL.

Causal Statements are rules in FEL.

Causes are those conditions of a rule that have
high weights associaled with them according
to some particular weighting scheme.

Enabling Conditions are those conditions of
a rule that have low weights associated with
them according to some particular weight-
ing scheme.

Effects are facts in the RHS of a rule.

Let us go back to the issues we raised before:

e The gradedness is readily taken care of in FEL by
the confidence values associated with each fact.

e Because of the introduction of the gradedness
and uncertain rules (i.e. total weights sum to
less than 1), the confidence we have in the con-
clusions will weaken along the way in a chaining.
For example, here is a FEL rule stating that if
one is alive at time t, one will be alive at time
t+1:

alive(t) — alive(t + 1)

Suppose the weight is equal to 0.99, then if
given alive(0)=1, we will have alive(1)=0.99,
alive(2)=0.98, alive(3)=0.97, and so on.

e There is no more need to tell exactly which con-
dition is necessary and which condition is possi-



ble: they are graded and the difference is only
quantitative.

e There is no more need to list all conditions (the
total number of which might be infinite), as long
as we leave room in the weight distribution (by
keeping total weights less than 1). We can list
only those conditions that we care about, and by
doing so, the sum of weights will then be less than
1, accommodating possible roles of other unlisted
conditions in determining the causal outcome.

e The indeterminate or probabilistic nature of
causality is readily captured in the weighting
scheme: the weights do not have to sum to 1,
and not all conditions have to be known for cer-
tain in order to deduce a plausible conclusion.

Let us look back to the shooting example. Instead
of having two separate causal statements in CT as
before,

Oshoot(t,t) A O~ wearing-bullet-proof-vest(i,t)......

— Odead(t + 1,t + 1)
and

O~wearing-bullet-proof-vest(t,1) A Oshoot(t, t)......

— Odead(t + 1,t + 1)

we will have in FEL one single causal statement for
all the situations:

—wearing-bullet-proof-vest A shoot......

— dead (wy,wy,.....)

and weights are assigned to each fact in LHS (Sun
1991). We assume the values of the unknown facts
are zero and calculate the value of the conclusion
by inner-products of the weights and the values of
the facts in the LHS of the rule.

The Neural Net Connection

An implementation of FEL is a network of elements
connected via links, where each element represents
an atom and its negation and links represent rules,
going from elements representing facts in LHS of
a rule to elements representing facts in RHS of a
rule; an element is a structure that has multiple
sites each of which receives a group of links that
represents one single rule, and the weighted-sum
computation is carried out for computing and prop-
agating activations. This implementation of FEL is
clearly a connectionist network (Sun 1989, 1992).
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Concluding Remarks

In this paper, Shoham's modal logic formalism for
causal reasoning is critically analyzed; knowing its
weakness in expressing graded concepts and other
problems resulting from this, we proceed to define
a different formalism, FEL, that utilizes weighted-
sum computation and corresponds directly to neu-
ral net models. We prove that FEL can imple-
ment Shoham's logic as a special case as well as
Horn clause logic, and furthermore that FEL is a
justified extension of Shoham’s logic. This work
serves to justify a particular connectionist archi-
tecture proposed by the author, CONSYDERR, in
its capabilities for coding rules and for performing
commonsense causal reasoning (Sun 1991a).

REFERENCES

Chang, C. and Lee, R.C. 1973. Symbolic Logic and
Mechanical Theorem Proving. Academic Press.

de Kleer, J. and Brown, J. 1986. Theories of Causal
Ordering. Artificial Intelligence, 29:33-61.

Hink, R. and Woods, D. 1987. How Human Process
Uncertain Knowledge. Al Magazine, 8:41-53.
Iwasaki, Y. and Simon, H. 1986. Causality in device
behavior. Artificial Intelligence, 29:3-32.

Pearl, J. 1988. Probabilistic Reasoning in Intelli-
gent Systems. Morgan Kaufman.

Shoham, Y. 1987. Reasoning about Change. Ph.D
Dissertation, Yale University.

Sun, R. 1989. A discrete neural network model for
conceptual representation and reasoning. Proc.11th
Cognitive Science Sociely Conference, 916-923.
Erlbaum.

Sun, R. and Waltz, D. 1991. Neurally Inspired Mas-
sively Parallel Model of Rule-Based Reasoning. in
B. Soucek ed. Neural and Intelligent System Inte-
gration, John Wiley & Sons.

Sun, R. 1991. Integrating Rules and Connectionism
for Robust Reasoning. Ph.D Dissertation, Brandeis
University.

Sun, R. 1991a. Connectionist Models of Rule-Based
Reasoning. Proc.13th Annual Conference of Cogni-
tive Science Sociely, 437-442. Erlbaum.

Sun, R. 1992, Beyond associative memories: Logics
and varaibles in connectionist models. Information
Sciences. forthcoming.

Suppes, P. 1970. A Probabilistic Theory of Causa-
tion. North Holland.

Waltz, D. and Feldman, J. (eds.) 1986. Connec-
tionist Models and Their implications. Ablex.

Zadeh, L. 1988. Fuzzy Logic. Computer, 21:83-93.



	cogsci_1992_1134-1139



