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Abstract. We consider a stochastic differential equation
model for Earth’s axial magnetic dipole field. Our goal is
to estimate the model’s parameters using diverse and inde-
pendent data sources that had previously been treated sepa-
rately, so that the model is a valid representation of an ex-
panded paleomagnetic record on kyr to Myr timescales. We
formulate the estimation problem within the Bayesian frame-
work and define a feature-based posterior distribution that
describes probabilities of model parameters given a set of
features derived from the data. Numerically, we use Markov
chain Monte Carlo (MCMC) to obtain a sample-based rep-
resentation of the posterior distribution. The Bayesian prob-
lem formulation and its MCMC solution allow us to study
the model’s limitations and remaining posterior uncertain-
ties. Another important aspect of our overall approach is that
it reveals inconsistencies between model and data or within
the various data sets. Identifying these shortcomings is a first
and necessary step towards building more sophisticated mod-
els or towards resolving inconsistencies within the data. The
stochastic model we derive represents selected aspects of the
long-term behavior of the geomagnetic dipole field with lim-
itations and errors that are well defined. We believe that such
a model is useful (besides its limitations) for hypothesis test-
ing and give a few examples of how the model can be used
in this context.

1 Introduction

Earth possesses a time-varying magnetic field which is gen-
erated by the turbulent flow of liquid metal alloy in the
core. The field can be approximated as a dipole with north

and south magnetic poles slightly misaligned with the geo-
graphic poles. The dipole field changes over a wide range of
timescales, from years to millions of years, and these changes
are documented by several different sources of data; see, e.g.,
Hulot et al. (2010). Satellite observations reveal changes in
the dipole field over years to decades (Finlay et al., 2016),
while changes on timescales of thousands of years are de-
scribed by paleomagnetic data, including observations of the
dipole field derived from archeological artifacts, young vol-
canics, and lacustrine sediments (Constable et al., 2016).
Variations on even longer timescales of millions of years
are recorded by marine sediments (Valet et al., 2005; Ziegler
et al., 2011) and by magnetic anomalies in the oceanic crust
(Ogg, 2012; Cande and Kent, 1995; Lowrie and Kent, 2004).
On such long timescales, we can observe the intriguing fea-
ture of Earth’s axial magnetic dipole field to reverse its polar-
ity (magnetic North Pole becomes the magnetic South Pole
and vice versa).

Understanding Earth’s dipole field, at any timescale, is dif-
ficult because the underlying magnetohydrodynamic prob-
lem is highly nonlinear. For example, many numerical simu-
lations are far from Earth-like due to severe computational
constraints, and more tractable mean-field models require
questionable parameterizations. An alternative approach is
to use “low-dimensional models” which aim at providing a
simplified but meaningful representation of some aspects of
Earth’s geodynamo. Several such models have been proposed
over the past years. The model of Gissinger (2012), for exam-
ple, describes the Earth’s dipole over millions of years by a
set of three ordinary differential equations, one for the dipole,
one for the non-dipole field and one for velocity variations at
the core. A stochastic model for Earth’s dipole over millions
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of years was proposed by Pétrélis et al. (2009). Other models
have been derived by Rikitake (1958) and Pétrélis and Fauve
(2008).

Following Schmitt et al. (2001) and Hoyng et al. (2001,
2002), we consider a stochastic differential equation (SDE)
model for Earth’s axial dipole. The basic idea is to model
Earth’s dipole field analogously to the motion of a particle
in a double-well potential. Time variations of the dipole field
and dipole reversals then occur as follows. The state of the
SDE is within one of the two wells of the double-well poten-
tial and is pushed around by noise. The pushes and pulls by
the noise process lead to variations of the dipole field around
a typical value. Occasionally, however, the noise builds up to
push the state over the potential well, which causes a change
in its sign. A transition from one well to the other represents a
reversal of Earth’s dipole. The state of the SDE then remains,
for a while, within the opposite well, and the noise leads to
time variations of the dipole field around the negative of the
typical value. Then, the reverse of this process may occur.

A basic version of this model, which we call the “B13
model” for short, was discussed by Buffett et al. (2013). The
drift and diffusion coefficients that define the B13 model are
derived from the PADM2M data (Ziegler et al., 2011) which
describe variations in the strength of Earth’s axial magnetic
dipole field over the past 2 Myr. The PADM2M data are de-
rived from marine sediments, which means that the data are
smoothed by sedimentation processes; see, e.g., Roberts and
Winkhofer (2004). The B13 model, however, does not ac-
count directly for the effects of sedimentation. Buffett and
Puranam (2017) try to mimic the effects of sedimentation by
sending the solution of the SDE through a low-pass filter.
With this extension, the B13 model is more suitable for be-
ing compared to the data record of Earth’s dipole field on a
Myr timescale.

A basic assumption of an SDE model is that the noise pro-
cess within the SDE is uncorrelated in time. This assumption
is reasonable when describing the dipole field on the Myr
timescale, but is not valid on a shorter timescale of thou-
sands of years. Buffett and Matsui (2015) derived an exten-
sion of the B13 model to extend it to timescales of thousands
of years by adding a time-correlated noise process. An ex-
tension of B13 to represent changes in reversal rates over
the past 150 Myr is considered by Morzfeld et al. (2018). Its
use for predicting the probability of an imminent reversal of
Earth’s dipole is described by Morzfeld et al. (2017) and by
Buffett and Davis (2018). The B13 model is also discussed
by Meduri and Wicht (2016), Buffett et al. (2014), and Buf-
fett (2015).

The B13 model and its extensions are constructed with
several data sets in mind that document Earth’s axial dipole
field over the kyr and Myr timescales. The data, however, are
not considered simultaneously: the B13 model is based on
one data source (paleomagnetic data on the Myr timescale)
and some of its modifications are based on other data sources
(the shorter record over the past 10 kyr). Our goal is to con-

struct a comprehensive model for Earth’s axial dipole field
by calibrating the B13 model to several independent data
sources simultaneously, including

i. observations of the strength of the dipole over the past
2 Myr as documented by the PADM2M and Sint-2000
data sets (Ziegler et al., 2011; Valet et al., 2005);

ii. observations of the dipole over the past 10 kyr as docu-
mented by CALS10k.2 (Constable et al., 2016); and

iii. reversals and reversal rates derived from magnetic
anomalies in the oceanic crust (Ogg, 2012).

The approach ultimately leads to a family of SDE models,
valid over Myr and kyr timescales, whose parameters are in-
formed by a comprehensive paleomagnetic record composed
of the above three sources of data. The results we obtain here
are thus markedly different from previous work where data
at different timescales are considered separately. We also
use our framework to assess the effects of the various data
sources on parameter estimates and to discover inconsisten-
cies between model and data.

At the core of our model calibration is the Bayesian
paradigm in which uncertainties in data are converted into
uncertainties in model parameters. The basic idea is to merge
prior information about the model and its parameters, rep-
resented by a prior distribution, with new information from
data, represented by a likelihood; see, e.g., Reich and Cotter
(2015) and Asch et al. (2017). Priors are often assumed to be
“uninformative”, i.e., that only conservative bounds for all
parameters are known, and likelihoods describe point-wise
model–data mismatch. Assumed error models in the data can
control the effects each data set has on the parameter esti-
mates. Since error models describe what “we do not know”,
good error models are notoriously difficult to come by. In
this context, we discover that the “shortness of the paleomag-
netic record,” i.e., the limited amount of data available, is the
main source of uncertainty. For example, PADM2M or Sint-
2000 provide a time series of 2000 consecutive “data points”
(2 Myr sampled once per kyr). Errors in power spectral den-
sities, computed from such a short time series, dominate the
expected errors in these data. Similarly, errors in the rever-
sal rate statistics are likely dominated by the fact that only a
small number of reversals, e.g., those that occurred over the
past 30 Myr, are useful for computing reversal rates. Reliable
error models should thus reflect errors due to the shortness of
the paleomagnetic record, rather than building error models
on assumed errors in the data.

To address these issues we substitute likelihoods based
on point-wise mismatch of model and data by a “feature-
based” likelihood, as discussed by Maclean et al. (2017) and
Morzfeld et al. (2018). Feature-based likelihoods are based
on error in “features” extracted from model outputs and data
rather than the usual point-wise error. The feature-based ap-
proach enables unified contributions from several indepen-
dent data sources in a well-defined sense even if the various
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Table 1. Time-averaged VADM and VADM standard deviation of
PADM2M and Sint-2000.

Time avg. VADM SD of VADM
Data source (1022 Am2) (1022 Am2)

PADM2M 5.23 1.48
Sint-2000 5.81 1.84

data may not be entirely self-consistent and further allows us
to construct error models that reflect uncertainties induced
by the shortness of the paleomagnetic record. In addition, we
perform a suite of numerical experiments to check, in hind-
sight, our a priori assumptions about the error models.

2 Description of the data

Variations in the virtual axial dipole moment (VADM) over
the past 2 Myr can be derived from stacks of marine sed-
iment. Two different compilations are considered in this
study: Sint-2000 (Valet et al., 2005) and PAMD2M (Ziegler
et al., 2011). Both of these data sets are sampled every 1 kyr
and, thus, provide a time series of 2000 consecutive VADM
values. The PADM2M and Sint-2000 data sets are shown in
Fig. 1a.

The CALS10k.2 data set, plotted in Fig. 1b, describes vari-
ations of VADM over the past 10 kyr (Constable et al., 2016).
The time dependence of CALS10k2 is represented using B-
splines so that the model can be sampled at arbitrary time
intervals. We sample CALS10k.2 at an interval of 1 year, al-
though the resolution of CALS10k.2 is nominally 100 years
(Constable et al., 2016). Note that we refer to PADM2M,
Sint-2000 and CALS10k.2 as “data” because we treat these
field reconstructions as such.

Below we use features derived from power spectral den-
sities (PSDs) of the Sint-2000, PADM2M and CALS10k.2
data. The PSDs are computed by the multi-taper spectral es-
timation technique of Constable and Johnson (2005). A re-
stricted range of frequencies is retained in the estimation to
account for data resolution and other complications (see be-
low). We show the resulting PSDs of the three data sets in
Fig. 1c. During parameter estimation we further make use
of the time-averaged VADM and the standard deviation of
VADM over time of the Sint-2000 and PADM2M data sets
listed in Table 1.

Lastly, we make use of reversal rates of the Earth’s dipole
computed from the geomagnetic polarity timescale (Cande
and Kent, 1995; Lowrie and Kent, 2004; Ogg, 2012). Using
the chronology of Ogg (2012), we compute reversal rates for
5 Myr intervals from today up to 30 Myr ago. That is, we
compute the reversal rates for the intervals 0–5, 5–10, . . . ,
25–30 Myr. This leads to the average reversal rate and stan-
dard deviation listed in Table 2.

Table 2. Average reversal rate and standard deviation computed
over the past 30 Myr using the chronology of Ogg (2012).

Average reversal rate SD
Interval length (reversals per Myr) (reversals per Myr)

5 Myr 4.23 1.01
10 Myr 4.23 0.49

Increasing the interval to 10 Myr leads to the same mean
but decreases the standard deviation (see Table 2).

Note that the various data are not all consistent. For ex-
ample, visual inspection of VADM (Fig. 1) as well as com-
parison of the time average and standard deviation (Table 1)
indicate that the PADM2M and Sint-2000 data sets report
different VADMs. These differences can be attributed, at
least in part, to differences in the calibration of the marine
sediment measurements and to differences in the way the
measurements are stacked to recover the dipole component
of the field. There are also notable differences between the
PSDs from CALS10k.2 and those from the lower-resolution
data sets (SINT-2000 and PADM2M) at the overlapping fre-
quencies. Dating uncertainties, smoothing due to sedimen-
tary processes and the finite duration of the records all con-
tribute to these discrepancies. We do not attempt to identify
the source of these discrepancies. Instead, we seek to re-
cover parameter values for a stochastic model by combining
a feature-based approach with realistic estimates of the data
uncertainty (see Sect. 4).

We further note that the amount of data is rather limited:
we have 2 Myr of VADM sampled at 1 per kyr and 10 kyr of
high-frequency VADM, and use a 30 Myr record to compute
reversal rates. The limited amount of data directly affects
how the accuracy of the data should be interpreted. As an ex-
ample, the mean and standard deviation of the reversal rate,
based on a 30 Myr record, may not be accurate; errors in the
PSDs of PADM2M, Sint-2000 or CALS10k.2 are dominated
by the fact that these are computed from relatively short time
series. We address these issues by using the feature-based
approach that allows us to build error models that reflect un-
certainties due to the shortness of the paleomagnetic record.
We further perform extensive numerical tests that allow us
to check, in hindsight, the validity of our assumptions about
errors (see Sect. 6).

3 Description of the model

Our models for variations in the dipole moment on Myr and
kyr timescales are based on a scalar SDE:

dx = v(x)dt +
√

2D(x)dW, (1)

where t is time and where x represents the VADM and
polarity of the dipole; see, e.g., Schmitt et al. (2001),
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Figure 1. Data used in this paper. (a) Sint-2000 (orange) and PADM2M (red): VADM as a function of time over the past 2 Myr.
(b) CALS10k.2: VADM as a function of time over the past 10 kyr. (c) Power spectral densities of the data in (a) and (b), computed by
the multi-taper spectral estimation technique of Constable and Johnson (2005). Orange: Sint-2000. Red: PADM2M. Purple: CALS10k.2.

Hoyng et al. (2001, 2002), and Buffett et al. (2013). A neg-
ative sign of x(t) corresponds to the current polarity, and a
positive sign means reversed polarity.W is Brownian motion,
a stochastic process with the following properties:W(0)= 0,
W(t)−W(t +1T )∼N (0,1t), and W(t) is almost surely
continuous for all t ≥ 0; see, e.g., Chorin and Hald (2013).
Here and below, N (µ,σ 2) denotes a Gaussian random vari-
able with mean µ, standard deviation σ and variance σ 2.
Throughout this paper, we assume that the diffusion, D(x),
is constant, i.e., thatD(x)=D. Modest variations inD have
been reported on the basis of geodynamo simulations (Buf-
fett and Matsui, 2015; Meduri and Wicht, 2016). Represen-
tative variations in D, however, have a small influence on
the statistical properties of solutions of the SDE (Eq. 1); see
Buffett and Matsui (2015).

The function v is called the “drift” and is derived from
a double-well potential, U ′(x)=−v(x). Here, we consider
drift coefficients of the form

v(x)= γ
x

x̄
·

{
(x̄− x), if x ≥ 0
(x+ x̄), if x < 0 , (2)

where x̄ and γ are parameters. The parameter x̄ defines
where the drift coefficient vanishes and also corresponds to
the time average of the associated linear model:

dxl =−γ (xl − x̄)dt +
√
DdW, (3)

which is obtained by Taylor expanding v(x) at x̄. It is now
clear that the parameter γ defines a relaxation time.

Nominal values of the parameters x̄, γ and D are listed in
Table 3.

With the nominal values, the model exhibits “dipole rever-
sals”, which are represented by a change in the sign of x.
This is the “basic” B13 model.

For computations, we discretize the SDE using a fourth-
order Runge–Kutta (RK4) method for the drift and an Euler–
Maruyama method for the diffusion. This results in the

Figure 2. Simulations with nominal parameter values and data on
the Myr and kyr scales. (a) VADM as a function of time on the Myr
timescale. The output of the Myr model, xMyr

j
, is shown in dark

blue (often hidden). The smoothed output, xMyr,s
j

, is shown in light
blue. The signed Sint-2000 and PADM2M are shown in orange and
red with signs (reversal timings) taken from Cande and Kent (1995).
(b) VADM as a function of time on the kyr timescale. The output
of the kyr model with uncorrelated noise is shown in turquoise. The
output of the kyr model with correlated noise is shown in green.
VADM of CALS10k.2 is shown in purple.

discrete-time B13 model

xk = f (xk−1,1t)+
√

2D1t wk, wk ∼N (0,1), iid, (4)

where 1t is the time step, where
√
1t wk is the dis-

cretization of Brownian motion W in Eq. (1) and where
f (xk−1,1t) is the RK4 step. Here, iid stands for “indepen-
dent and identically distributed”; i.e., each random variable
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Table 3. Nominal parameter values and parameter bounds.

x̄ D γ Ts a

(1022 Am2) (1044 A2 m4 kyr−1) (kyr−1) (kyr) (kyr−1)

Nominal value 5.23 0.3403 0.075 2.5 5
Lower bound 0 0.0615 0.0205 1 5
Upper bound 10 2.1 0.7 5 40

wk , for k > 0, has the same Gaussian probability distribution,
N (0,1), andwi andwj are independent for all i 6= j . We dis-
tinguish between variations in the Earth’s dipole over kyr to
Myr timescales and, for that reason, present modifications of
the basic B13 model (Eq. 4).

3.1 Models for the Myr amd kyr timescales

For simulations over Myr timescales we chose a time step
1t = 1kyr, corresponding to the sampling time of the Sint-
2000 and PADM2M data. On a Myr timescale, the primary
sources of paleomagnetic data in Sint-2000 and PADM2M
are affected by gradual acquisition of magnetization due
to sedimentation processes, which amount to an averaging
over a (short) time interval; see, e.g., Roberts and Winkhofer
(2004). We follow Buffett and Puranam (2017) and include
the smoothing effects of sedimentation in the model by con-
volving the solution of Eq. (4) by a Gaussian filter

g(t)=

√
6
πT 2

s
· exp

(
−

6t2

T 2
s

)
, (5)

where Ts defines the duration of smoothing, i.e., the width of
a time window over which we average. The nominal value for
Ts is given in Table 3. The result is a smoothed Myr model
whose state is denoted by xMyr,s. Simulations with the “Myr
model” and the nominal parameters of Table 3 are shown in
Fig. 2a, where we plot the model output xMyr

j in dark blue

and the smoothed model output, xMyr,s
j , in a lighter blue over

a period of 2 Myr.
On a Myr scale, the assumption that the noise is uncorre-

lated in time is reasonable because one focuses on low fre-
quencies and large sample intervals of the dipole, as in Sint-
2000 and PADM2M, whose sampling interval is 1/kyr. On
a shorter timescale, as in CALS10k.2, this assumption is not
valid and a correlated noise is more appropriate (Buffett and
Matsui, 2015). Computationally, this means that we swap the
uncorrelated, iid, noise in Eq. (4) for a noise that has a short
but finite correlation time. This can be done by “filtering”
Brownian motion. The resulting discrete time model for the
kyr timescale is

yk = (1− a1t)yk−1+
√

2a1t wk, wk ∼N (0,1), iid (6)

xk = f (xk−1,1t)+
√
Da1t yk, (7)

where a is the model parameter that defines the correlation
time Tc = 1/a of the noise and 1t = 1yr. A 10 kyr simula-

tion of the kyr models with uncorrelated and correlated noise
using the nominal parameters of Table 3 is shown in Fig. 2b
along with the CALS10k.2 data.

3.2 Approximate power spectral densities

Accurate computation of the PSDs from the time-domain so-
lution of the B13 model requires extremely long simulations.
For example, the PSDs of two (independent) 1 billion year
simulations with the Myr model are still surprisingly differ-
ent. In fact, errors that arise due to “short” simulations sub-
stantially outweigh errors due to linearization. Recall that the
PSD of the linear model (Eq. 3) is easily calculated to be

x̂l(f )=
2D

γ 2+ 4π2f 2 , (8)

where f is the frequency (in 1/kyr). Since the Fourier trans-
form of the Gaussian filter is known analytically, the PSD of
the smoothed linear model is also easy to calculate:

x̂l,s(f )=
2D

γ 2+ 4π2f 2 · exp
(
−

4π2f 2T 2
s

12

)
. (9)

Similarly, an analytic expression for the PSD of the kyr
model with correlated noise in Eqs. (6)–(7) can be obtained
by taking the limit of continuous time (1t→ 0):

x̂l,kyr(f )=
2D

γ 2+ 4π2f 2 ·
a2

a2+ 4π2f 2 . (10)

Here, the first term is as in Eq. (8) and the second term ap-
pears because of the correlated noise.

Figure 3 illustrates a comparison of the PSDs obtained
from simulations of the nonlinear models and their linear ap-
proximations.

Specifically, the PSDs of the (smoothed) Myr scale nonlin-
ear model, computed from a 50 Myr simulation, are shown in
comparison to the approximate PSDs in Eqs. (8)–(9). Note
that the PSD of the smoothed model output, xMyr,s, taking
into account sedimentation processes, rolls off quicker than
the PSD of xMyr

j . For that reason, the PSD of the smoothed
model seems to fit the PSDs of the Sint-2000 and PADM2M
data “better”; i.e., we observe a similarly quick roll-off at
high frequencies in model and data; see also Buffett and Pu-
ranam (2017). The PSD of the kyr model with correlated
noise, computed from a 10 kyr simulation, is also shown in

www.nonlin-processes-geophys.net/26/123/2019/ Nonlin. Processes Geophys., 26, 123–142, 2019



128 M. Morzfeld and B. A. Buffett: Comprehensive dipole model

Figure 3. Power spectral densities of the model with nominal parameter values. (a) Myr model: a PSD of a 50 Myr simulation with the Myr
model is shown as a solid dark blue line. The corresponding theoretical PSD of the linear model is shown as a dashed dark blue line. A PSD
of a 50 Myr simulation with the Myr model and high-frequency roll-off is shown as a solid light blue line. The corresponding theoretical
PSD of the linear model is shown as a dashed light blue line. The PDSs of Sint-2000 and PADM2M are shown in orange and red. (b) kyr
model: a PSD of a 10 kyr simulation of the kyr model with uncorrelated noise is shown as a solid pink line. The corresponding theoretical
spectrum of the linear model is shown as a dashed blue line. A PSD of a 10 kyr simulation of the kyr model with correlated noise is shown
as a solid green line. The corresponding theoretical spectrum is shown as a dashed green line. The PDSs of CALS10k.2 is shown in purple.
All PSDs are computed by the multi-taper spectral estimation technique of Constable and Johnson (2005).

Fig. 3 in comparison with the linear PSD in Eq. (10). The
good agreement between the theoretical spectra of the lin-
ear models and the spectra of the nonlinear models justifies
the use of the linear approximation. We have further noted
in numerical experiments that the agreement between the
nonlinear and linear spectra increases with increasing sim-
ulation time; however, a “perfect” match requires extremely
long simulations of the nonlinear model (hundreds of billions
of years). The approximate PSDs, based on the linear mod-
els, will prove useful in the construction of likelihoods in
Sect. 4.2.

In addition to a good match of the PSDs of the nonlinear
and linear models, we note that the PSDs of the model match,
at least to some extent, the PSDs of the data (Sint-2000,
PADM2M and CALS10k.2). This means that our choice for
the nominal values is “reasonable” because this choice leads
to a reasonable fit to the data. The goal of using a Bayesian
approach to parameter estimation, described in Sect. 4, is to
improve this fit and to equip the (nominal) parameter values
with an error estimate, i.e., to define and compute a distribu-
tion over the model parameters.

3.3 Approximate reversal rate, VADM time average
and VADM standard deviation

The nonlinear SDE model (Eq. 1) and its discretiza-
tion (Eq. 4) exhibit reversals, i.e., a change in the sign of x.
Moreover, the overall “power”, i.e., the area under the PSD
curve, is given by the standard deviation of the absolute value

of x(t) over time. Another important quantity of interest is
the time-averaged value of the absolute value of x(t), which
describes the average strength of the dipole field. In princi-
ple, these quantities (reversal rate, time average and standard
deviation) can be computed from simulations of the Myr and
kyr models in the time domain. Similarly to what we found
in the context of PSD computations and approximations, we
find that estimates of the reversal rate, time average and stan-
dard deviation are subject to large errors unless the simula-
tion time is very long (hundreds of millions of years). Using
the linear model and Kramer’s formula, however, one can
approximate the time average, reversal rate and standard de-
viation without simulating the nonlinear model (see below).
Computing the approximate values is instantaneous (evalua-
tion of simple formulas) and the approximations are compa-
rable to what we obtain from very long simulations with the
nonlinear model. As is the case with the PSD approximations
based on linear models, the below approximations of the re-
versal rate, time average and standard deviation will prove
useful for formulating likelihoods in Sect. 4.2.

Specifically, the parameter x̄ defines the time average of
the linear model (Eq. 3), and it also defines where the drift
term (Eq. 2) vanishes. These values coincide quite closely
with the time average of the nonlinear model which suggests
the approximation

E(x)≈ x̄× 1022 Am2. (11)

Nonlin. Processes Geophys., 26, 123–142, 2019 www.nonlin-processes-geophys.net/26/123/2019/
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The reversal rate can be approximated by Kramer’s formula
(Buffett and Puranam, 2017; Risken, 1996):

r ≈
γ

2π
· exp

(
−
γ x̄2

6D

)
× 103 Myr−1. (12)

The standard deviation is the square root of the area under
the PSD. Using the linear model that incorporates the effects
of smoothing (due to sedimentation), one can approximate
the standard deviation by computing the integral of the PSD
in Eq. (9):

σ ≈

(
D

γ
exp

(
(γ Ts)

2

12

)
erfc

(
γ Ts

2
√

3

))1/2

×1022 Am2, (13)

where erfc(·) is the (Gaussian) error function. Without incor-
porating the smoothing, the standard deviation based on the
linear model would be the integral of the PDS in Eq. (8),
which is σ ≈

√
D/γ . The exponential and error function

terms in Eq. (13) can thus be interpreted as a correction fac-
tor that accounts for the effects of sedimentation. It is easy to
check that this correction factor is always smaller than 1, i.e.,
that the (approximate) standard deviation accounting for sed-
imentation effects is smaller than the (approximate) standard
deviation that does not account for these effects.

For the nominal parameter values in Table 3 we calculate a
time average of x̄ = 5.23×1022 Am2, a standard deviation of
σ ≈ 2.07× 1022 A m2 and a reversal rate of r ≈ 4.37Myr−1.
These should be compared to the corresponding values of
PADM2M and Sint-2000 in Table 1 and to the reversal rate
from the geomagnetic polarity timescale in Table 2. Similar
to what we observed of the model–data fit in terms of (ap-
proximate) PSDs, we find that the nominal parameter values
lead to a “reasonable” fit of the model’s reversal rate, time
average and standard deviation. The Bayesian parameter es-
timation in Sect. 4 will improve this fit and lead to a better
understanding of model uncertainties.

3.4 Parameter bounds

The Bayesian parameter estimation, described in Sect. 4,
makes use of “prior” information about the model parame-
ters. We formulate prior information in terms of parameter
bounds and construct uniform prior distributions with these
bounds. The parameter bounds we use are quite wide; i.e., the
upper bounds are probably too large and the lower bounds are
probably too small, but this is not critical for our purposes,
as we explain in more detail in Sect. 4.

The parameter γ is defined by the inverse of the dipole
decay time (Buffett et al., 2013). An upper bound on the
dipole decay time τdec is given by the slowest decay mode
τdec ≤ R

2/(π2η), where R is the radius of the Earth and η =
0.8m2 s−1 is the magnetic diffusivity. Thus, τdec ≤ 48.6 kyr,
which means that γ ≥ 0.0205kyr−1. This is a fairly strict
lower bound because the dipole may relax on timescales
shorter than the slowest decay mode, and a recent theoret-
ical calculation (Pourovskii et al., 2017) suggests that the

magnetic diffusivity may be slightly larger than 0.8m2 s−1.
Both of these changes would cause the lower bound for γ
to increase. To obtain an upper bound for γ , we note that if
γ is large, the magnetic decay is short, which means that it
becomes increasingly difficult for convection in the core to
maintain the magnetic field. The ratio of dipole decay time
τdec to advection time τadv = L/V , where L= 2259 km is
the width of the fluid shell and V = 0.5 mms−1, needs to
be 10 : 1 or (much) larger. This leads to the upper bound
γ ≤ 0.7kyr−1.

Bounds for the parameter D can be found by consider-
ing the linear Myr timescale model in Eq. (3), which sug-
gests that the variance of the dipole moment is var(x)=
D/γ ; see also Buffett et al. (2013). Thus, we may re-
quire that D ∼ var(x)γ . The average of the variance of Sint-
2000 (var(x)= 3.37×1044 A2 m4) and PADM2M (var(x)=
2.19×1044 A2 m4) is var(x)≈ 2.78×1044 A2 m4. We use the
rounded-up value var(x)≈ 3×1044 A2 m4 and, together with
the lower and upper bounds on γ , this leads to the lower and
upper bounds 0.062× 1044

≤D ≤ 2.1× 1044 A2 m4 kyr−1.
The smoothing time, Ts, due to sedimentation and the cor-

relation parameter for the noise, a, define the roll-off fre-
quency of the power spectra for the Myr and kyr models, re-
spectively. We assume that Ts is within the interval [1,5] kyr
and that the correlation time a−1 is within [0.025,0.2] kyr
(i.e., a within [5,40] kyr−1). These choices enforce that Ts
controls roll-off at lower frequencies (Myr model) and a con-
trols the roll-off at higher frequencies (kyr model). Bounds
for the parameter x̄ are not easy to come by and we assume
wide bounds, x̄ ∈ [0,10]×1022 Am2. Here, x̄ = 0 is the low-
est lower bound we can think of since the average value of
the field is always normalized to be positive. The value of the
upper bound of x̄ ≤ 10 is chosen to be excessively large – the
average field strength over the last 2 Myr is x̄ ≈ 5. Lower and
upper bounds for all five model parameters are summarized
in Table 3.

4 Formulation of the Bayesian parameter estimation
problem and numerical solution

The family of models, describing kyr and Myr timescales and
accounting for sedimentation processes and correlations in
the noise process, has five unknown parameters, x̄,D,γ,Ts,
and a. We summarize the unknown parameters in a “param-
eter vector” θ = (x̄,D,γ,Ts,a)

T . Our goal is to estimate
the parameter vector θ using a Bayesian approach, i.e., to
sharpen prior knowledge about the parameters by using the
data described in Sect. 2. This is done by expressing prior
information about the parameters in a prior probability dis-
tribution p0(θ) and by defining a likelihood pl(y|θ), y being
shorthand notation for the data of Sect. 2. The prior distri-
bution describes information we have about the parameters
independently of the data. The likelihood describes the prob-
ability of the data given the parameters θ and, therefore, con-

www.nonlin-processes-geophys.net/26/123/2019/ Nonlin. Processes Geophys., 26, 123–142, 2019



130 M. Morzfeld and B. A. Buffett: Comprehensive dipole model

nects model output and data. The prior and likelihood define
the posterior distribution

p(θ |y)∝ p0(θ)pl(y|θ). (14)

The posterior distribution combines the prior information
with the information we extract from the data. In particu-
lar, we can estimate parameters based on the posterior dis-
tribution. For example, we can compute the posterior mean
and posterior standard deviation for the various parameters,
and we can also compute correlations between the parame-
ters. The posterior distribution contains all information we
have about the model parameters, given prior knowledge and
information extracted from the data. Thus, the SDE model
with random parameters, whose distribution is the posterior
distribution, represents a comprehensive model of the Earth’s
dipole in view of the data we use.

On the other hand, the posterior distribution depends on
several assumptions: since we define the prior and likelihood,
we also implicitly define the posterior distribution. In partic-
ular, formulations of the likelihood require that one be able to
describe anticipated errors in the data as well as anticipated
model error. Such error models are difficult to come by in
general, but even more so when the amount of data is lim-
ited. We address this issue by first formulating “reasonable”
error models, followed by a set of numerical tests that con-
firm (or disprove) our choices of error models (see Sect. 6).
In our formulation of error models, we focus on errors that
arise due to the shortness of the paleomagnetic record be-
cause these errors dominate.

We solve the Bayesian parameter estimation problem nu-
merically by using a Markov chain Monte Carlo (MCMC)
method. An MCMC method generates a (Markov) chain of
parameter values whose stationary distribution is the pos-
terior distribution. The chain is constructed by proposing a
new parameter vector and then accepting or rejecting this
proposal with a specified probability that takes the poste-
rior probability of the proposed parameter vector into ac-
count. A numerical solution via MCMC thus requires that the
likelihood be evaluated for every proposed parameter vec-
tor. Below we formulate a likelihood that involves comput-
ing the PSDs of the Myr and kyr models, as well as reversal
rates, time averages and standard deviations. As explained
in Sect. 3, obtaining these quantities from simulations with
the nonlinear models requires extremely long simulations.
Long simulations, however, require more substantial compu-
tations. This perhaps would not be an issue if we were to
compute the PDSs, reversal rate and other quantities once,
but the MCMC approach we take requires repeated comput-
ing. For example, we consider Markov chains of length 106,
which requires 106 computations of PSDs, reversal rates,
etc. Moreover, we will repeat these computations in a va-
riety of settings to assess the validity of our error models
(see Sect. 6). To keep the computations feasible (fast), we
thus decided to use the approximations of the PSDs, reversal
rate, time average and standard deviation, based on the linear

models (see Sect. 3), to define the likelihood. Evaluation of
the likelihood is then instantaneous because simulations with
the nonlinear models are replaced by formulas that are sim-
ple to evaluate. Using the approximation is further justified
by the fact that the approximate PDSs, reversal rates, time av-
erages and standard are comparable to what we obtain from
very long simulations with the nonlinear model.

4.1 Prior distribution

The prior distribution describes knowledge about the model
parameters we have before we consider the data. In Sect. 3.4,
we discussed lower and upper bounds for the model parame-
ters and we use these bounds to construct the prior distribu-
tion. This can be achieved by assuming a uniform prior over
a five-dimensional hyper-cube whose corners are defined by
the parameter bounds in Table 1. Note that the bounds we
derived in Sect. 3.4 are fairly wide. Wide bounds are prefer-
able for our purposes, because wide bounds implement mini-
mal prior knowledge about the parameters. With such “unin-
formative priors”, the posterior distribution, which contains
information from the data, reveals how well the parameter
values are constrained by data. More specifically, if the uni-
form prior distribution is morphed into a posterior distribu-
tion that describes a well-defined “bump” of posterior prob-
ability mass in parameter space, then the model parameters
are constrained by the data (to be within the bump of poste-
rior probability “mass”). If the posterior distribution is nearly
equal to the prior distribution, then the data have nearly no
effect on the parameter estimates and, therefore, the data do
not constrain the parameters.

4.2 Feature-based likelihoods

We wish to use a collection of paleomagnetic observations
to calibrate and constrain all five model parameters. For
this purpose, we use the data sets Sint-2000, PADM2M and
CALS10k.2, as well as information about the reversal rate
based on the geomagnetic polarity timescale (see Sect. 2).
The various data sets are not consistent and, for example,
Sint-2000 and PADM2M report different VADM values at
the same time instant (see Fig. 1). Likelihoods that are de-
fined in terms of a point-wise mismatch of model and data
balance the effects of each data set via (assumed) error co-
variances: the data set with smaller error covariances has a
stronger effect on the parameter estimates. Accurate error
models, however, are hard to come by. For this reason, we
use an alternative approach called “feature-based data assim-
ilation” (see Morzfeld et al., 2018; Maclean et al., 2017). The
idea is to extract “features” from the data and to subsequently
define likelihoods that are based on the mismatch of the fea-
tures derived from the data and the model. Below, we formu-
late features that account for discrepancies across the various
data sources and derive error models for the features. The
error models are built to reflect uncertainties that arise due
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to the shortness of the paleomagnetic record. The resulting
feature-based posterior distribution describes the probability
of model parameters in view of the features. Thus, model pa-
rameters with a large feature-based posterior probability lead
to model features that are comparable to the features derived
from the data, within the assumed uncertainties due to the
shortness of the paleomagnetic record.

Specifically, we define likelihoods based on features
derived from PSDs of the Sint-2000, PADM2M and
CALS10k.2 data sets, as well as the reversal rate, time-
averaged VADM and VADM standard deviation. The overall
likelihood consists of three factors:

i. one factor corresponds to the contributions from the re-
versal rate, time-averaged VADM and VADM standard
deviation data, which we summarize as “time-domain
data” from now on for brevity;

ii. one factor describes the contributions from data at low
frequencies of 10−4–0.5 cycles per kyr (PADM2M and
Sint-2000); and

iii. one factor describes the contributions of data at high fre-
quencies of 0.9–9.9 cycles per kyr (CALS10k.2).

In the Bayesian approach, and assuming that errors are inde-
pendent, this means that the likelihood pl(y|θ) in Eq. (14)
can be written as the product of three terms:

pl(y|θ)∝ pl,td(y|θ)pl,lf(y|θ)pl,hf(y|θ), (15)

where pl,td(y|θ), pl,lf(y|θ) and pl,hf(y|θ) represent the con-
tributions from the time-domain data (reversal rate, time-
averaged VADM and VADM standard deviation), the low
frequencies and the high frequencies; recall that y is short-
hand notation for all the data we use. We now describe how
each component of the overall likelihood is constructed.

4.2.1 Reversal rates, time-averaged VADM and VADM
standard deviation

We define the likelihood component of the time-domain data
based on the equations

yrr = hrr(θ)+ εrr, (16)
yx̄ = hx̄(θ)+ εx̄, (17)
yσ = hσ (θ)+ εσ , (18)

where yrr, yx̄ , and yσ are features derived from the time-
domain data, and hrr(θ), hx̄(θ) and hσ (θ) are functions that
connect the model parameters to the features, based on the
approximations described in Sect. 3.3. In addition to assum-
ing independent errors, we further assume that all errors are
Gaussian, i.e., that εrr, εx̄ and εσ are independent Gaussian
error models with mean zero and variances σ 2

rr, σ
2
x̄ , and σ 2

σ .
A Gaussian assumption of errors is widely used. Note that
errors are notoriously difficult to model, which also makes

it difficult to motivate and justify a particular statistical de-
scription. The wide use of Gaussian errors can be explained,
at least in part, by Gaussian errors being numerically easy
to deal with. We use Gaussian errors for these reasons, but
the overall approach we describe can also be extended to be
used along with other assumptions about errors if these were
available.

Taken all together, the likelihood term pl,td(y|θ) in
Eq. (15) is then given by the product of the three likelihoods
defined by Eqs. (16), (17) and (18):

pl,td(y|θ)∝ exp

(
−

1
2

((
yrr−hrr(θ)

σrr

)2

+

(
yx̄ −hx̄(θ)

σx̄

)2

+

(
yσ −hσ (θ)

σσ

)2
))

.

(19)

The reversal rate feature is simply the average reversal
rate we computed from the chronology of Ogg (2012) (see
Sect. 2), i.e., yrr = 4.23 reversals per Myr. The function
hrr(θ) is based on the approximation using Kramer’s formula
in Eq. (20):

hrr(θ)=
γ

2π
exp

(
−
γ x̄2

6D

)
× 103 reversals per Myr. (20)

The time-average feature is the mean of the time averages of
PADM2M and Sint-2000: yx̄ = 5.56× 1022 Am2. The func-
tion hx̄(θ) is based on the linear approximation discussed in
Sect. 3.3, i.e., hx̄(θ)= x̄. The feature for the VADM standard
deviation is the average of the VADM standard deviations of
PADM2M and Sint-2000: yσ = 1.66× 1022 Am2. The func-
tion hσ (θ) uses the linear approximation of the standard de-
viation (Eq. 13):

hσ (θ)=

(
D

γ
exp

(
(γ Ts)

2

12

)
erfc

(
γ Ts/2/

√
(3)
))1/2

× 1022 Am2 kyr2. (21)

Candidate values for these error variances are as follows.
The error variance of the reversal rate, σ 2

rr, can be based on
the standard deviations we computed from the Ogg (2012)
chronology in Table 2. Thus, we might use the standard devi-
ation of the 10 Myr average and take σrr = 0.5. One can also
use the model with nominal parameter values (see Table 3) to
compute candidate values of the standard deviation σrr. We
perform 1000 independent 10 Myr simulations and, for each
simulation, determine the reversal rate. The standard devia-
tion of the reversal rate based on these simulations is 0.69 re-
versals per Myr, which is comparable to the 0.5 reversals per
Myr we computed from the Ogg (2012) chronology using an
interval length of 10 Myr. Similarly, the standard deviation

www.nonlin-processes-geophys.net/26/123/2019/ Nonlin. Processes Geophys., 26, 123–142, 2019



132 M. Morzfeld and B. A. Buffett: Comprehensive dipole model

of the reversal rate of 1000 independent 5 Myr simulations is
0.97, which is also comparable to the standard deviation of
1.01 reversals per Myr, suggested by the Ogg (2012) chronol-
ogy, using an interval length of 5 Myr.

A candidate for the standard deviation of the time-
averaged VADM is the difference of the time averages
of Sint-2000 and PADM2M, which gives σx̄ = 0.48×
1022 Am2. Similarly, one can define the standard deviation
σσ by the difference of VADM standard deviations (over
time) derived from Sint-2000 and PADM2M. This gives
σσ = 0.36× 1022 A m2. We can also derive error covari-
ances using the model with nominal parameters and perform
1000 independent 2 Myr simulations. For each simulation,
we compute the time average and the VADM standard de-
viations, which then allows us to compute standard devi-
ations of these quantities. Specifically, we find a value of
0.26× 1022 Am2 for the standard deviation of the time av-
erage and 0.11× 1022 Am2 for the standard deviation of the
VADM standard deviation. These values are comparable to
what we obtained from the data, especially if we base the
standard deviations on half of the difference of the PADM2M
and Sint-2000 values, i.e., assuming that the data sets are
within 2 standard deviations (rather than within 1, which we
assumed above).

A difficulty with these candidate error covariances is that
we have few time-domain observations compared with the
large number of spectral data in the power spectra (see be-
low). This vast difference in the number of time-domain and
spectral data means that the spectral data can overwhelm the
recovery of model parameters. We address this issue by low-
ering the error variances σrr, σx̄ and σσ by a factor of 100:

σrr = 0.05 reversals per Myr,

σx̄ = 0.048× 1022 Am2,

σσ = 0.036× 1022 Am2. (22)

Decreasing the error variances of the time-domain data in-
creases the relative importance of the time-domain data com-
pared to the spectral data, which in turn leads to an over-
all good fit of the model to all data. This comes at the ex-
pense of not necessarily realistic posterior error covariances
for some or all of the parameters. We discuss these issues in
more detail in Sect. 6. Alternatives to the approach we take
here (reducing error covariances) include reducing the num-
ber of spectral data compared to the number of time-domain
data; see also Bärenzung et al. (2018). The difficulty with
such an approach, however, is that reducing the number of
spectral data is not easy to do and that the consequences such
data reduction may have for posterior estimates is difficult to
anticipate.

4.2.2 Low frequencies

The component pl,lf(y|θ) of the feature-based likeli-
hood (Eq. 15) addresses the behavior of the dipole at low

frequencies of 10−4–0.5 cycles per kyr and is based on the
PSDs of the Sint-2000 and PADM2M data sets. We construct
the likelihood using the equation

ylf = hlf(θ)+ εlf, (23)

where ylf is a feature that represents the PSD of the Earth’s
dipole field at low frequencies, where hlf(θ) maps the model
parameters to the data ylf and where εlf represents the errors
we expect.

We define ylf as the mean of the PSDs of Sint-2000 and
PADM2M. The function hlf(θ) maps the model parame-
ters to the feature ylf and is based on the PSD of the lin-
ear model (Eq. 3). To account for the smoothing introduced
by sedimentation processes, we define hlf(θ) as a function
that computes the PSD of the Myr model by using the “un-
smoothed” spectrum of Eq. (8) for frequencies less than
0.05 cycles per kyr and uses the “smoothed” spectrum of
Eq. (9) for frequencies between 0.05 and 0.5 cycles per kyr:

hlf(θ)=
2D

γ 2+ 4π2f 2

·

{
1 if f ≤ 0.05,
exp

(
−(4π2f 2T 2

s )/12
)

if 0.05< f ≤ 0.5,
(24)

Note that hlf(θ) does not depend on x̄ or a. This also means
that the data regarding low frequencies are not useful for de-
termining these two parameters (see Sect. 6).

The uncertainty introduced by sampling the VADM once
per kyr for only 2 Myr is the dominant source of error in the
power spectral densities. For a Gaussian error model εlf with
zero mean, this means that the error covariance should de-
scribe uncertainties that are induced by the limited amount
of data. We construct such a covariance as follows. We per-
form 104 simulations, each of 2 Myr, with the nonlinear Myr
model (Eq. 4) and its nominal parameters (see Table 1). We
compute the PSD of each simulation and build the covari-
ance matrix of the 104 PSDs. In Fig. 4a we illustrate the er-
ror model by plotting the PSDs of PADM2M (red), Sint-2000
(orange), their mean, ylf (dark blue), and 5× 103 samples of
εlf added to ylf (grey).

Since the PSDs of Sint-2000 and PADM2M are well
within the cloud of PSDs we generated with the error model,
this choice for modeling the expected errors in low-frequency
PSDs seems reasonable to us.

For comparison, we also plot 103 samples of an error
model that only accounts for the reported errors in Sint-2000.
This is done by adding independent Gaussian noise, whose
standard deviation is given by the Sint-2000 data set every
kyr, to the VADM of Sint-2000 and PADM2M. This results
in 103 “perturbed” versions of Sint-2000 or PADM2M. For
each one, we compute the PSD and plot the result in Fig. 4b.
The resulting errors are smaller than the errors induced by the
shortness of the record. In fact, the reported error does not ac-
count for the difference in the Sint-2000 and PADM2M data
sets. This suggests that the reported error is too small.
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Figure 4. (a) Low-frequency data and error model due to shortness of record. Orange: PSD of Sint-2000. Red: PSD of PADM2M. Blue:
mean of PSDs of Sint-2000 and PADM2M (ylf). Grey: 5×103 samples of the error model εlf added to ylf. (b) Error model based on errors in
Sint-2000. Orange: 103 samples of the PSDs computed from “perturbed” Sint-2000 VADMs. Red: 103 samples of the PSDs computed from
“perturbed” PADM2M VADMs.

4.2.3 High frequencies

We now consider the high-frequency behavior of the model
and use the CALS10k.2 data. We focus on frequencies be-
tween 0.9 and 9.9 cycles per kyr, where the upper limit is
set by the resolution of the CALS10k.2 data. The lower limit
is chosen to avoid overlap between the PSDs of CALS10k.2
and Sint-2000/PADM2M. Our choice also acknowledges that
the high-frequency part of the PSD for Sint-2000/PADM2M
may be less reliable than the PSD of CALS10k.2 for these
frequencies. As above, we construct the likelihood pl,hf(y|θ)

from an equation similar to Eq. (23):

yhf = hhf(θ)+ εhf, (25)

where yhf is the PSD of CALS10k.2 in the frequency range
we consider, where hhf(θ) is a function that maps model pa-
rameters to the data and where εhf is the error model.

We base hhf(θ) on the PSD of the linear model (see Eq. 10)
and set

hhf(θ)=
2D

γ 2+ 4π2f 2 ·
a2

a2+ 4π2f 2 , (26)

where f is the frequency in the range we consider here. Re-
call that a−1 defines the correlation time of the noise in the
kyr model.

The error model εhf is Gaussian with mean zero and the
covariance is designed to represent errors due to the short-
ness of the record. This is done, as above, by using 10 kyr
simulations of the nonlinear model (Eqs. 6–7) with nominal
parameter values. We perform 5000 simulations and for each
one compute the PSD over the frequency range we consider
(0.9–9.9 cycles per kyr). The covariance matrix computed
from these PSDs defines the error model εhf, which is illus-
trated along with the low-frequency error model and the data
in Fig. 5.

Figure 5. Data and error models for low and high frequencies. Or-
ange: PSD of Sint-2000. Red: PSD of PADM2M. Blue: mean of
PSDs of Sint-2000 and PADM2M (ylf). Grey (low frequencies):
5× 103 samples of the error model εlf added to ylf. Dashed purple:
PSD of CALS10k.2. Solid purple: PSD of CALS10k.2 at frequen-
cies we consider (yhf). Grey (high frequencies): 5×103 samples of
the error model εhf added to yhf.

This concludes the construction of the likelihood and, to-
gether with the prior (see Sect. 4.1), we have now formulated
the Bayesian formulation of this problem in terms of the pos-
terior distribution (Eq. 14).

4.3 Numerical solution by MCMC

We solve the Bayesian parameter estimation problem numer-
ically by Markov chain Monte Carlo (MCMC). This means
that we use a “MCMC sampler” that generates samples from
the posterior distribution in the sense that averages computed

www.nonlin-processes-geophys.net/26/123/2019/ Nonlin. Processes Geophys., 26, 123–142, 2019



134 M. Morzfeld and B. A. Buffett: Comprehensive dipole model

over the samples are equal to expected values computed over
the posterior distribution in the limit of infinitely many sam-
ples. A (Metropolis–Hastings) MCMC sampler works as fol-
lows: the sampler proposes a sample by drawing from a pro-
posal distribution and the sample is accepted with a proba-
bility to ensure that the stationary distribution of the Markov
chain is the targeted posterior distribution.

We use the affine-invariant ensemble sampler, called the
MCMC Hammer, of Goodman and Weare (2010), imple-
mented in Matlab by Grinsted (2018). The MCMC Hammer
is a general purpose ensemble sampler that is particularly ef-
fective if there are strong correlations among the various pa-
rameters. The Matlab implementation of the method is easy
to use and requires that we provide the sampler with func-
tions that evaluate the prior distribution and the likelihood,
as described above.

In addition, the sampler requires that we define an ini-
tial ensemble of 10 walkers (2 per parameter). This is done
as follows. We draw the initial ensemble from a Gaussian
whose mean is given by the nominal parameters in Table 3
and whose covariance matrix is a diagonal matrix whose di-
agonal elements are 50 % of the nominal values. The Gaus-
sian is constrained by the upper and lower bounds in Table 3.
The precise choice of the initial ensemble, however, is not so
important as the ensemble generated by the MCMC Hammer
quickly spreads out to search the parameter space.

We assess the numerical results by computing integrated
autocorrelation time (IACT) using the definitions and meth-
ods described by Wolff (2004). The IACT is a measure of
how effective the sampler is. We generate an overall num-
ber of 106 samples, but the number of “effective” samples
is 106/IACT. For all MCMC runs we perform (see Sects. 5
and 6), the IACT of the Markov chain is about 100. We dis-
card the first 10 · IACT samples as “burn in”, further reduc-
ing the impact of the distribution of the initial ensemble. We
also ran shorter chains with 105 samples and obtained sim-
ilar results, indicating that the chains of length 106 are well
resolved.

Recall that all MCMC samplers yield the posterior distri-
bution as their stationary distribution, but the specific choice
of MCMC sampler defines “how fast” one approaches the
stationary distribution and how effective the sampling is
(burn-in time and IACT). In view of the fact that likelihood
evaluations are, by our design, computationally inexpensive,
we may run (any) MCMC sampler to generate a long chain
(106 samples). Thus, the precise choice of MCMC sampler is
not so important for our purposes. We found that the MCMC
Hammer solves the problem with sufficient efficiency for our
purposes.

The code we wrote is available on github: https://github.
com/mattimorzfeld/ (last access: 25 June 2019). It can be
used to generate 100 000 samples in a few hours and 106

samples in less than a day. For this reason, we can run the
code in several configurations and with likelihoods that are
missing some of the factors that comprise the overall feature-

based likelihood (Eq. 15). This allows us to study the impact
each individual data set has on the parameter estimates, and it
also allows us to assess the validity of some of our modeling
choices, in particular with respect to error variances which
are notoriously difficult to come by (see Sect. 6).

5 Results

We run the MCMC sampler to generate 106 samples approxi-
mately distributed according to the posterior distribution. We
illustrate the posterior distribution by a corner plot in Fig. 6.

The corner plot shows all one- and two-dimensional
histograms of the posterior samples. We observe that the
four one-dimensional histograms are well-defined “bumps”
whose width is considerably smaller than the assumed pa-
rameter bounds (see Table 3) which define the “uninforma-
tive”, uniform prior. Thus, the posterior probability, which
synthesizes the information from the data via the definition
of the features, is concentrated over a smaller subset of pa-
rameters than the prior probability. In this way, the Bayesian
parameter estimation has sharpened the knowledge about the
parameters by incorporating the data.

The two-dimensional histograms indicate correlations
among the parameters θ = (x̄,D,γ,Ts,a)

T , with strong cor-
relations between x̄,D and γ . These correlations can also be
described by the correlation coefficients.

x̄ D γ Ts a

x̄ 1.00 0.78 0.20 0.02 −0.03
D 0.78 1.00 0.64 0.02 −0.03
γ 0.20 0.64 1.00 −0.01 −0.02
Ts 0.02 0.02 −0.01 1.00 0.00
a −0.03 −0.03 −0.02 0.00 1.00

(27)

The strong correlation between x̄,D and γ is due to the con-
tribution of the reversal rate to the overall likelihood (see
Eq. 20) and the dependence of the spectral data on D and γ
(see Eqs. 9 and 10). From the samples, we can also compute
means and standard deviations of all five parameters, and we
show these values in Table 4.

The table also shows the reversal rate and VADM standard
deviation that we compute from 2000 samples of the poste-
rior distribution followed by evaluation of Eqs. (20) and (13)
for each sample. We note that the reversal rate (4.06 rever-
sals per Myr) is lower than the reversal rate we used in the
likelihood (4.23 reversals per Myr). Since the posterior stan-
dard deviation is 0.049 reversals per Myr, the reversal rate
data are about 4 standard deviations away from the mean we
compute. Similarly, the posterior VADM standard deviation
(mean value of 1.77× 1022 Am2) is also far, as measured by
the posterior standard deviation, from the value we use as
data (1.66× 1022 Am2). These large deviations indicate an
inconsistency between the VADM standard deviation and the
reversal rate. A higher reversal rate could be achieved with a
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Figure 6. One- and two-dimensional histograms of the posterior distribution.

Table 4. Posterior mean and standard deviation (in brackets) of the model parameters and corresponding estimates of the reversal rate and
VADM standard deviation.

x̄ D γ Ts a σ Rev. rate
in 1022 Am2 in 1044 A2 m4 kyr−1 in kyr−1 in kyr in kyr−1 in 1022 Am2 in reversals per Myr

5.23 (0.043) 0.34 (0.0072) 0.10 (0.0033) 1.75 (0.050) 8.56 (1.93) 1.77 (0.024) 4.06 (0.049)

higher VADM standard deviation. The reason is that the re-
versal rate in Eq. (20) can be re-written as

r ≈
γ

2π
· exp

(
−
x̄2

6σ 2

)
× 103 Myr−1, (28)

using σ ≈
√
D/γ , i.e., neglecting the correction factor due

to sedimentation, which has only a minor effect. Using a
time average of x̄ = 5.23× 1022 Am2 and a reversal rate
of r = 4.2 reversals per Myr, setting γ = 0.1kyr−1 (poste-
rior mean value) and solving for the VADM standard devi-
ation result in σ ≈ 1.86× 1022 Am2, which is not compati-
ble with the SINT-2000 and PADM2M data sets (where σ ≈
1.66×1022 Am2). One possible source of discrepancy is that
the low-frequency data sets underestimate the standard devi-
ation and also the time average. For example, Ziegler et al.
(2008) report a time-averaged VADM of 7.64× 1022 Am2

and a standard deviation of σ = 2.72× 1022 Am2 for pale-

ointensity measurements from the past 0.55 Myr. These mea-
surements are unable to provide any constraint on the tempo-
ral evolution of the VADM (in contrast to the SINT-2000 and
PADM2M models). Instead, these measurements represent a
sampling of the steady-state probability distribution for the
dipole moment. The results thus suggest that a larger mean
and standard deviation are permitted by paleointensity ob-
servations. Using the larger values for the time average and
VADM standard deviation, but keeping γ = 0.1kyr−1 (pos-
terior mean value), leads to a reversal rate of r ≈ 4.27 re-
versals per Myr, which is compatible with the reversal rates
based on the past 30 Myr in Table 2. It is, however, also pos-
sible that the model for the reversal rate has shortcomings.
Identifying these shortcomings is a first step in making model
improvements and the Bayesian parameter estimation frame-
work we describe is a mathematically and computationally
sound tool for discovering such inconsistencies.
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The model fit to the spectral data is illustrated in Fig. 7a.
Here, we plot 100 PSDs, computed from 2 Myr and 10 kyr

model runs, and where each model run uses a parameter set
drawn at random from the posterior distribution. For com-
parison, the figure also shows the PADM2M, Sint-2000 and
CALS10k.2 data as well as 5× 103 realizations of the low-
and high-frequency error models. We note that the overall
uncertainty is reduced by the Bayesian parameter estimation.
The reduction in uncertainty is apparent from the expected
errors generating a “wider” cloud of PSDs (in grey) than the
posterior estimates (in blue and turquoise). We further note
that the PSDs of the models, with parameters drawn from
the posterior distribution, fall largely within the expected er-
rors (illustrated in grey). In particular, the high-frequency
PSDs (the CALS10k.2 range) are well within the errors we
imposed by the likelihoods. The low frequencies of Sint-
2000/PADM2M are also within the expected errors, and so
are the high frequencies beyond the second roll-off due to
the sedimentation effects. At intermediate frequencies, some
of the PDSs of the model are outside of the expected errors.
This indicates a model inconsistency because it is difficult to
account for the intermediate frequencies with model param-
eters that fit the other data (spectral and time domain) within
the assumed error models. We investigate this issue further
in Sect. 6.

Panels (b) and (c) of Fig. 7 show a Myr model run (top) and
kyr model run (bottom) using the posterior mean values for
the parameters. We note that the model with posterior mean
parameter values exhibits qualitatively similar characteristics
to the Sint-2000, PADM2M and CALS10k.2 data. The figure
thus illustrates that the feature-based Bayesian parameter es-
timation, which is based solely on PSD, reversal rates, time-
averaged VADM and VADM standard deviation, translates
into model parameters that also appear reasonable when a
single simulation in the time domain is considered.

In summary, we conclude that the likelihoods we con-
structed and the assumptions about errors we made lead to
a posterior distribution that constrains the model parameters
tightly (as compared to the uniform prior). The posterior dis-
tribution describes a set of model parameters that yield model
outputs that are comparable with the data in the feature-
based sense. The estimates of the uncertainty in the param-
eters, e.g., posterior standard deviations, however, should be
used with the understanding that error variances are not easy
to define. For the spectral data, we constructed error mod-
els that reflect uncertainty induced by the shortness of the
paleomagnetic record. For the time-domain data (reversal
rate, time-averaged VADM and VADM standard deviation)
we used error variances that are smaller than intuitive error
variances to account for the fact that the number of spec-
tral data points (hundreds) is much larger than the number of
time-domain data points (three data points). Moreover, the
reversal rate and VADM standard deviation data are far (as
measured by posterior standard deviations) from the reversal
rate and VADM standard deviation of the model with poste-

rior parameters. As indicated above, this discrepancy could
be due to inconsistencies between spectral data and time-
domain data, which we will study in more detail in the next
section.

6 Discussion

We study the effects the independent data sets have on the
parameter estimates and also study the effects of different
choices for error variances for the time-domain data (reversal
rate, time-averaged VADM and VADM standard deviation).
We do so by running the MCMC code in several configura-
tions. Each configuration corresponds to a posterior distribu-
tion and, therefore, to a set of parameter estimates. The con-
figurations we consider are summarized in Table 4 and the
corresponding parameter estimates are reported in Table 5.
Configuration (a) is the default configuration described in the
previous sections. We now discuss the other configurations in
relation to (a) and in relation to each other.

Configuration (b) differs from configuration (a) in that the
CALS10k.2 data are not used; i.e., we do not include the
high-frequency component, pl,hf(y|θ), in the feature-based
likelihood (Eq. 15). Configurations (a) and (b) lead to nearly
identical posterior distributions and, hence, nearly identi-
cal parameter estimates with the exception of the parame-
ter a, which controls the correlation of the noise on the kyr
timescale. The differences and similarities are apparent when
we compare the corner plots of the posterior distributions of
configurations (a), shown in Fig. 6, and of configuration (b),
shown in Fig. 8.

The corner plots are nearly identical, except for the bot-
tom row of plots, which illustrates marginals of the posterior
related to a. We note that the posterior distribution over a
is nearly identical to its prior distribution. Thus, the parame-
ter a is not constrained by the data used in configuration (b),
which is perhaps not surprising because a only appears in
the Bayesian parameter estimation problem via the high-
frequency likelihood pl,hf(y|θ). Moreover, since pl,lf(y|θ)
and pl,td(y|θ) are independent of a, the marginal of the pos-
terior distribution of configuration (b) over the parameter a is
independent of the data. More interestingly, however, we find
that all other model parameters are estimated to have nearly
the same values, independently of whether CALS10k.2 is
being used during parameter estimation or not. This latter
observation indicates that the model is self-consistent and
consistent with the data on the Myr and kyr timescales; in
the context of our simple stochastic model, the data from
CALS10k.2 mostly constrain the noise correlation parame-
ter a.

Configuration (c) differs from configuration (a) in the er-
ror variances for the time-domain data (reversal rate, time-
averaged VADM and VADM standard deviation). With the
larger values used in configuration (c), the spectral data are
emphasized during the Bayesian estimation, which also leads
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Figure 7. Parameter estimation results. (a) PSDs of data and model. Orange: PSD of Sint-2000. Red: PSD of PADM2M. Dashed purple: PSD
of CALS10k.2. Solid purple: PSD of CALS10k.2 at frequencies we consider (yhf). Grey (low frequencies): 5×103 samples of the error model
εlf added to ylf. Grey (high frequencies): 5×103 samples of the error model εhf added to yhf. Dark blue: PSDs of 100 posterior samples of the
Myr model (with smoothing). Turquoise: PSDs of 100 posterior samples of the kyr model with uncorrelated noise. (b) Sint-2000 (orange),
PADM2M (red) and a realization of the Myr model with smoothing and with posterior mean parameters (blue). (c) CALS10k.2 (purple) and
a realization of the kyr model with correlated noise and with posterior mean parameters of the kyr model (turquoise).

Table 5. Configurations for several Bayesian problem formulations. A checkmark means that the data set is used; a cross means it is not
used in the overall likelihood construction. The standard deviations (σ ) define the Gaussian error models for the reversal rate, time-averaged
VADM and VADM standard deviation.

Configuration (a) (b) (c) (d) (e) (f)

PADM2M & Sint-2000 X X X X × X
CALS10k.2 X × X X × ×

Rev. Rate, time avg., SD X X X × X ×

σrr in reversals per Myr 0.05 0.05 0.5 n/a 0.05 n/a
σx̄ in 1022 Am2 0.048 0.048 0.48 n/a 0.048 n/a
σσ in 1022 Am2 0.036 0.036 0.36 n/a 0.036 n/a

n/a: not applicable

to an overall better fit of the spectra. This is illustrated in
Fig. 9, where we plot the 100 PSDs generated by 100 (inde-
pendent) simulations with the model with parameters drawn
from the posterior distribution of configuration (c).

For comparison, we also plot the PSDs of PADM2M, Sint-
2000, CALS10k.2 and 5× 103 realizations of the high- and
low-frequency error models. In contrast to configuration (a)
(see Fig. 7), we find that the PSDs of the model of configura-
tion (c) are all well within the expected errors. On the other
hand, the reversal rate drops to about three reversals per Myr,
and the time-averaged VADM and VADM standard deviation
also decrease significantly as compared to configuration (a).
This is caused by the posterior mean of D being decreased
by more than 50 %, while γ and Ts are comparable for con-
figurations (a)–(c). The fact that the improved fit of the PDSs
comes at the cost of a poor fit of the reversal rate, time aver-
age and standard deviation is another indication of an incon-
sistency between the reversal rate and the VADM data sets.

As indicated above, one of the strengths of the Bayesian pa-
rameter estimation framework we describe here is being able
to identify such inconsistencies. Once identified, one can try
to fix the model. For example, we can envision a modifica-
tion of the functional form of the drift term in Eq. (2). A
nearly linear dependence of the drift term on x near x = x̄
is supported by the VADM data sets, but the behavior near
x = 0 is largely unconstrained. Symmetry of the underlying
governing equations suggests that the drift term should van-
ish, and the functional form adopted in Eq. (2) is just one
way that a linear trend can be extrapolated to x = 0. Other
functional forms that lower the barrier between the potential
wells would have the effect of increasing the reversal rate.
This simple change to the model could bring the reversal rate
into better agreement with the time average and standard de-
viation of the VADM data sets.

In configuration (d), the spectral data are used, but the
time-domain data are not used (which corresponds to infi-

www.nonlin-processes-geophys.net/26/123/2019/ Nonlin. Processes Geophys., 26, 123–142, 2019



138 M. Morzfeld and B. A. Buffett: Comprehensive dipole model

Table 6. Posterior parameter estimates (mean and standard deviation, in brackets) and corresponding VADM standard deviation (σ ) and
reversal rates for five different setups (see Table 5).

Configuration (a) (b) (c)

x̄ in 1022 Am2 5.23 (0.043) 5.23 (0.042) 3.56 (0.26)
D in 1044 A2 m4 kyr−1 0.34 (0.0072) 0.34 (0.0072) 0.13 (0.014)
γ in kyr−1 0.10 (0.0033) 0.10 (0.0033) 0.081 (0.0052)
Ts in kyr 1.75 (0.050) 1.74 (0.050) 1.68 (0.14)
a in kyr−1 8.56 (1.93) 22.45 (10.01) 11.69 (3.91)

σ in 1022 Am2 1.77 (0.024) 1.77 (0.023) 1.22 (0.060)
Rev. rate in reversals per Myr 4.06 (0.049) 4.06 (0.023) 3.34 (0.52)

Configuration (d) (e) (f)

x̄ in 1022 Am2 5.04 (2.91) 5.56 (0.048) 5.04 (2.88)
D in 1044 A2 m4 kyr−1 0.094 (0.015) 0.44 (0.021) 0.093 (0.015)
γ in kyr−1 0.078 (0.0063) 0.14 (0.014) 0.077 (0.0064)
Ts in kyr 1.64 (0.19) 2.98 (1.15) 1.64 (0.19)
a in kyr−1 12.92 (4.79) 22.59 (10.08) 22.37 (10.13)

σ in 1022 Am2 1.08 (0.074) 1.66 (0.036) 1.07 (0.075)
Rev. rate in reversals per Myr 2.89 (4.11) 4.23 (0.050) 2.83 (4.10)

Figure 8. One- and two-dimensional histograms of the posterior distribution of configuration (b).
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Figure 9. PSDs of data and model with parameters drawn from
the posterior distribution of configuration (c). Orange: PSD of Sint-
2000. Red: PSD of PADM2M. Dashed purple: PSD of CALS10k.2.
Solid purple: PSD of CALS10k.2 at frequencies we consider (yhf).
Grey (low frequencies): 5×103 samples of the error model εlf added
to ylf. Grey (high frequencies): 5× 103 samples of the error model
εhf added to yhf. Dark blue: PSDs of 100 posterior samples of the
Myr model (with smoothing). Turquoise: PSDs of 100 posterior
samples of the kyr model with uncorrelated noise.

nite σrr, σσ and σx̄). We note that the posterior means and
variances of all parameters are comparable for configura-
tions (c), where the error variances of the time-domain data
are “large”, and (d), where the error variances of the time-
domain data are “infinite”. Thus, the impact of the time-
domain data is minimal if the error variances of the time-
domain data are large. The reason is that the number of spec-
tral data points is larger (hundreds) than the number of time-
domain data (three data points: reversal rate, time-averaged
VADM and VADM standard deviation). When the error vari-
ances of the time-domain data decrease, the impact these
data have on the parameter estimates increases. We further
note that the parameter estimates of configurations (c) or (d)
are quite different from the parameter estimates of configu-
ration (a) (see above). For an overall good fit of the model
to the spectral and time-domain data, the error variances for
the time-domain data must be small, as in configuration (a).
Otherwise, the reversal rates are too low. Small error vari-
ances, however, imply (relatively) large deviations between
the time-domain data and the model predictions. Small error
variances also come at the cost of not necessarily realistic
posterior variances.

Comparing configurations (d) and (e), we note that if only
the spectral data are used, the reversal rates are unrealisti-
cally small (nominally one reversal per Myr). Moreover, the
parameter estimates based on the spectral data are quite dif-
ferent from the estimates we obtain when we use the time-
domain data (reversal rate, time-averaged VADM and VADM

standard deviation). This is further evidence that either the
model has some inconsistencies or that the reversal rate and
the VADM standard deviation are not consistent. Specifi-
cally, our experiments suggest that a good match to spectral
data requires a set of model parameters that are quite dif-
ferent from the set of model parameters that lead to a good
fit to the reversal rate, time-averaged VADM and VADM
standard deviation. Experimenting with different functional
forms for the drift term is one strategy for achieving bet-
ter agreement between the reversal rate, the time-averaged
VADM and VADM standard deviation.

Comparing configurations (d) and (f), we can further study
the effects that the CALS10k.2 data have on parameter es-
timates (similarly to how we compared configurations (a)
and (b) above). The results, shown in Table 6, indicate that
the parameter estimates based on configurations (d) and (f)
are nearly identical, except in the parameter a that controls
the time correlation of the noise on the kyr timescale. This
confirms what we already found by comparing configura-
tions (a) and (b): the CALS10k.2 data are mostly useful for
constraining a. These results, along with configurations (a)
and (b), suggest that the model is self-consistent with the in-
dependent data on the Myr scale (Sint-2000 and PADM2M)
and on the kyr scale (CALS10k.2). Our experiments, how-
ever, also suggest that the model has difficulties in reconcil-
ing the spectral and time-domain data.

Finally, note that the data used in configuration (d) do not
inform the parameter x̄, and configuration (f) does not inform
x̄ or a. If the data do not inform the parameters, then the pos-
terior distribution over these parameters is essentially equal
to the prior distribution, which is uniform. This is illustrated
in Fig. 10, where we show the corner plot of the posterior
distribution of configuration (f).

We can clearly identify the uniform prior in the marginals
over the parameters x̄ and a. This means that the Sint-2000
and PADM2M data only constrain the parameters D, γ and
Ts.

7 Examples of applications of the model

The Bayesian estimation technique we describe leads to a
model with stochastic parameters whose distributions are in-
formed by the paleomagnetic data. Moreover, we ran a large
number of numerical experiments to understand the limita-
tions of the model, to discover inconsistencies between the
model and the data and to check our assumptions about error
modeling. This process results in a well-understood and well-
founded stochastic model for selected aspects of the long-
term behavior of the geomagnetic dipole field. We believe
that such a model can be useful for a variety of purposes, in-
cluding testing hypotheses about selected long-term aspects
of the geomagnetic dipole.

For example, it was noted by Ziegler et al. (2011) that
the VADM (time-averaged) amplitude during the past chron
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Figure 10. One- and two-dimensional histograms of the posterior distribution of configuration (f).

was slightly lower than during the previous chron. Specif-
ically, the time-averaged VADM for −0.78< t < 0 Myr is
E(x)= 6.2× 1022 Am2, but for −2< t <−0.78 Myr the
time average is E(x)= 4.8× 1022 Am2. A natural question
is whether this increase in the time average is significant or
whether it is due to random variability. We investigate this
question using the model whose parameters are the posterior
mean values of configuration (a) (the configuration that leads
to an overall good fit to all data). Specifically, we perform
10 000 simulations of duration 0.78 Myr and 10 000 indepen-
dent simulations of duration 1.22 Myr. For each simulation,
we compute the time average, which allows us to estimate
the standard deviation of the difference in means (assuming
no correlation between the two time intervals). We find that
this standard deviation is about 0.46× 1022 Am2, which is
much smaller than the differences in VADM time averages
of 1.4× 1022 Am2. This suggests that the increase in time-
averaged VADM is likely not due to random variability.

A similar approach can be applied to the question of
changes in the reversal rate over geological time. The ob-
served reversal rate over the past 30 Myr is approximately
4.26 Myr−1. When the record is divided into 10 Myr inter-
vals, the reversal rate varies about the average, with a stan-
dard deviation of about 0.49 Myr−1 (see Table 2). These vari-

ations are within the expected fluctuations for the stochastic
model. Specifically, we can use an ensemble of 105 simula-
tions, each of duration 10 Myr, to compute the average and
standard deviations of the reversal rate. The results, obtained
by using nominal parameters and posterior mean parameters
of configurations (a) (overall good fit to all data) and (e) (em-
phasis on reversal rate data), are shown in Table 7.

As already indicated in Sect. 4.2.1, the standard deviation
from the geomagnetic polarity timescale is comparable to the
standard deviation we compute via the model. The observed
reversal rate for the 10 Myr interval between 30 and 40 Myr,
however, is approximately 2.0 Myr−1, which departs from
the 0–30 Myr average by more than 3 standard deviations.
This suggests that the reversal rate between 30 and 40 Ma
cannot be explained by natural variability in the model. In-
stead, it suggests that model parameters were different before
30 Ma, implying that there was a change in the operation of
the geodynamo.

8 Summary and conclusions

We considered parameter estimation for a model of Earth’s
axial magnetic dipole field. The idea is to estimate the model
parameters using data that describe Earth’s dipole field over
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Table 7. Average reversal rate and standard deviation of an ensemble of 105 simulations of duration 10 Myr, filtered to a resolution of 30 kyr.
The simulations are done with nominal parameter values (Table 3) or the posterior mean values of configurations (a) and (e).

Nominal parameter values Configuration (a) Configuration (e)

Average reversal rate (in Myr−1) 4.50 3.76 3.56
Standard deviation (in Myr−1) 0.68 0.63 0.59

kyr and Myr timescales. The resulting model, with calibrated
parameters, is thus a representation of Earth’s dipole field
on these timescales. We formulated a Bayesian estimation
problem in terms of “features” that we derived from the
model and data. The data include two time series (Sint-2000
and PADM2M) that describe the strengths of Earth’s dipole
over the past 2 Myr, a shorter record (CALS10k.2) that de-
scribes dipole strength over the past 10 kyr, as well as re-
versal rates derived from the geomagnetic polarity timescale.
The features are used to synthesize information from these
data sources (that had previously been treated separately).

Formulating the Bayesian estimation problem requires
definition of anticipated model error. We found that the main
source of uncertainty is the shortness of the paleomagnetic
record and constructed error models to incorporate this un-
certainty. Numerical solution of the feature-based estimation
problem is done via conventional Markov chain Monte Carlo
(an affine-invariant ensemble sampler). With suitable error
models, our numerical results indicate that the paleomagnetic
data constrain all model parameters in the sense that the pos-
terior probability mass is concentrated on a smaller subset
of parameters than the prior probability. Moreover, the pos-
terior parameter values yield model outputs that fit the data
in a precise, feature-based sense, which also translates into a
good fit by other, more intuitive measures.

A main advantage of our approach (Bayesian estimation
with an MCMC solution) is that it allows us to understand
the limitations and remaining (posterior) uncertainties of the
model. After parameter estimation, we thus have produced
a reliable, stochastic model for selected aspects of the long-
term behavior of the geomagnetic dipole field whose limi-
tations and errors are well-understood. We believe that such
a model is useful for hypothesis testing and have given sev-
eral examples of how the model can be used in this context.
Another important aspect of our overall approach is that it
can reveal inconsistencies between model and data. For ex-
ample, we ran a suite of numerical experiments to assess the
internal consistency of the data and the underlying model.
We found that the model is self-consistent on the Myr and
kyr timescales, but we discovered inconsistencies that make
it difficult to achieve a good fit to all data simultaneously.
It is also possible that the data themselves are not entirely
self-consistent in this regard. Our methodology does not re-
solve these questions, but once inconsistencies are identified,
several strategies can be pursued to resolve them, e.g., im-
proving the model or resolving consistency issues of the data

themselves. Our conceptual and numerical framework can
also be used to reveal the impact that some of the individual
data sets have on parameter estimates and associated pos-
terior uncertainties. In this paper, however, we focused on
describing the mathematical and numerical framework and
only briefly mention some of the implications.
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