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Abstract

We study the possible impact of daylight-saving time adjustments
on stock returns. Previous work reveals that average returns tend
to decline following an adjustment. As averages are sensitive to out-
liers, more recent work focused on the entire distribution of returns
and found little impact following adjustments. Unfortunately, the
general nature of the alternative hypothesis reduces the power of the
distribution test to detect an effect of adjustments on the location
of the distribution. We construct robust tests that are designed to
have power to detect a time-adjustment effect on the location of re-
turns. We also develop a more novel test of exponential tilting that
is designed to accommodate possible heterogeneity in the return dis-
tribution over time. When we apply these tests to S&P 500 stock
returns, we are unable to rigorously detect a time adjustment effect
on stock returns.
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1 Introduction

The returns to assets that trade on sophisticated markets would seem to be
immune to calendar regularities. Yet the search for such effects has a long
history, and the relevant evidence continues to provoke spirited debate. A
recent chapter in this debate concerns the impact of daylight-saving time on
asset returns. Kamstra, Kramer and Levi (2000) find that daylight-saving
time adjustments, driven largely by the fall adjustment, are associated with
declines in average returns on stock exchanges. As the fall adjustment oc-
curs very near several large exchange losses, Pinegar (2002) employs a test
that is robust to these outliers and finds no impact from the time adjust-
ment. In response, Kamstra, Kramer and Levi (2002) argue that because
the test employed by Pinegar studies the entire distribution of returns, the
test lacks the power needed to detect the adjustment impact. In this paper
we construct robust statistics that more closely focus on the location of the
return distribution. As these statistics do not allow time variation in the
return distribution, we also develop a robust statistic that allows for general
forms of such time variation. With these statistics we focus on the poten-
tial impact of daylight-saving time adjustments and find little evidence of
adjustment impacts.

In their 2000 paper Kamstra, Kramer and Levi appeal to psychological
evidence that (daylight-saving) time adjustments alter the performance of
individuals in complex tasks. As trade analysis can be viewed as a complex
task, they turn to analysis of asset returns on the days on which traders are
most likely to be affected by the time adjustment. Because time adjustments
are made on Sundays, the returns over the weekend are the subject of analy-
sis. They find that asset returns are on average lower immediately following
the time adjustments. They further find that the adjustment effect holds in
three of the four countries that they study, although the countries do make
their adjustments simultaneously (hence contagion might be the cause).!

The broad nature of hypotheses about calendar effects allows one to model
the impact quite generally. Of course, the breadth of potential hypotheses

"Worldwide, 38 countries make daylight-saving time adjustments.



also lends weight to concerns about finding one statistic out of many that sup-
ports the hypothesis. These concerns are especially pronounced in assessing
the impact of time adjustments on asset markets. It is not transparent what
aspect of returns should be affected by loss of sleep. For example, should
returns be less tightly clustered as sleepy traders are affected by potentially
inaccurate calculations? The very nature of the preceding question belies
intuition that may not be valid about which time adjustment has an effect.
In spring, individuals potentially have one less hour of sleep on Sunday, while
in fall there is potentially one more hour of sleep. From this logic the effect
should be driven by the spring adjustment. Yet the estimates show the effect
to be largely driven by the fall adjustment.

With such questions in mind, Pinegar revisits the original analysis. Given
the strong correlation in asset return volatility, one is immediately concerned
that the large decline in October 1987, which occurred over a weekend neigh-
boring the time adjustment, is driving the estimated adjustment impact.
Given the broad nature of the original hypothesis, Pinegar conjectures that
the adjustment impact should affect more than simply the mean return.
He examines the entire return distribution, with the Kolmogorov-Smirnov
statistic, and is unable to distinguish a time adjustment impact. Yet the
Kolmogorov-Smirnov statistic has low power to distinguish any one departure
between distributions, as it is a test for general departures.

We propose an alternative approach that also mitigates the effect of out-
liers but concentrates power on the hypothesis of low returns following time
adjustments. As the presence of outliers indicates that the median may be a
more reliable measure of location than the mean, we focus on the hypothesis
that time adjustment weekends (both spring and fall) have a lower median
return than do all other weekends. To detect this effect we use the Wilcoxon
rank-sum statistic together with the sign and the Wilcoxon signed-rank sta-
tistics. Because each of these statistics are less sensitive to an outlier than
is the return mean, the tests are robust to events such as the October 1987
crash.

All of the statistics described above, including those used in the previous
analyses, are developed under the assumption that the return distribution
is invariant over time.? Yet the last 40 years have seen a number of stock

?Kamstra, Kramer and Levi (2000) fit a GARCH(1,1) model to returns and find that
this specific form of variation in the return distribution does not alter their conclusion
that the mean return is lower following a time adjustment.



market changes that have lowered the cost of trading. It is possible that
these changes have not only altered the return distribution, but have done so
in ways that mask the time adjustment impact. To address the possibility
we develop a test statistic that allows the return distribution to vary over
time. For our test we rank the weekend returns for each year separately,
yielding a sequence of annual ranks. As the time adjustment effect would
imply a large number of time adjustment weekends with low annual ranks, we
then estimate the degree of exponential tilting in the histogram of adjustment
weekend annual ranks. Because this method does not depend upon a specific
model of time variation, we may be able to unmask a time adjustment impact
in the presence of a wide range of possible patterns of time variation in the
return distribution.

The remainder of the paper is organized as follows. In Section 2 we
review the initial ¢-tests with the inclusion of more recent exchange returns.
We also report a counterfactual analysis, based on the weekends immediately
preceding the adjustment weekends. In Section 3, we discuss the impact of
outliers and present the standard robust test statistics. We then develop
the test statistic based on annual ranks and present the estimates for both
the adjustment weekends and the counterfactual sample.

2 Time Adjustments and Average Returns

We begin our analysis of the impact of time adjustments on stock returns by
focusing on average returns for the Standard and Poor’s (S&P) 500 index,
in accord with the earlier work of Kamstra and his coauthors. With daily
returns from the Center for Research in Security Prices, we construct weekend
returns for the period June 1962 through December 2006.> From these
weekend returns we construct average returns for both the spring and fall
adjusted weekends and for all other weekends (the unadjusted weekends).
We also construct a (joint ¢) test statistic of the null hypothesis that the
average return for unadjusted weekends equals the average return for adjusted
weekends. In detail, if 7, is the sample mean of the n, adjusted weekends
and 7, is the sample mean of the n, unadjusted weekends, then the test

3Weekend returns are measured as the price change between the Friday close and the
closing price on the first trading day of the following week, which most often is Monday.



statistic for the null hypothesis of no adjustment effect (Hy : 7, = 7,) is

. . —1 2 —1 2
where s is the square root of the pooled variance, s? = (& n)sfg(rﬁ‘z Jsy
a u

formed from the sample variances for adjusted (s?) and unadjusted (s ) week-
ends. A maintained assumption in constructing this test statistic is that the
variance of returns is not affected by the time adjustment (nor is the variance
changing in any other way over time) as the variance of all weekend returns
is treated as constant.

In Table 1, we report the constructed averages and the associated test
statistics.  For the adjusted weekends, we report the overall average as
well as separate averages for the spring and fall adjustments. The first
row mirrors the data sample reported by Kamstra, Kramer and Levi (2000)
(hereafter, Kamstra et al.), for which there are thirty adjusted weekends for
both spring and fall (no time adjustments were made in 1974). The second
row extends the analysis through the most recent data, and so contains 39
adjusted weekends for both spring and fall. The large negative fall return,
which gives rise to a value of the test statistic that finds significant evidence
of time adjustment effects, is apparent in the first row.* For the updated
sample, the negative fall return is reduced (in magnitude) as is the test
statistic, which no longer indicates such strong evidence of time adjustment
effects.

Table 1
Mean of S&P 500 Weekend Returns

Time Period Unadjusted Adjusted Spring Fall  Joint t-test

1967-1997 —.0004 —.0035 —.0014 —.0055 -2.13
(.0107) (.0153) (.0078) (.0202)

1967-2006 —.0003 —.0025 —.0004 —.0046 -1.71
(.0111) (.0143) (.0081) (.0184)

1962-1966 —.0011 +.0018 —.0019 +.0048 1.26
(.0067) (.0080) (.0022) (.0100)

With the attenuation of the adjustment effect in more recent data, we
construct two additional measures of the effect. The first relies on the fact

4The sample standard deviation appears below each sample mean. The large discrep-
ancy between the Fall and Spring standard deviations calls into question the maintained
assumption of constant variance, a point we address in the following section.



that daylight-saving time adjustments occurred only sporadically prior to
the Uniform Time Act that took effect in 1967. Thus, although such time
adjustments first occurred during World War I (in an effort to save energy),
the application of time adjustments varied widely across states and over
time.> In consequence we calculate the average returns for the period prior to
1967, in which we expect to see little impact. From the third row of Table 1,
we find mixed evidence. We find that fall weekends are associated with
higher returns, although the small sample size results in a lack of precision
for the test statistic. If the time adjustment began precisely in 1967, then
such evidence would certainly weaken the claim of a time adjustment effect,
as there is evidence of an adjustment effect prior to the adjustment. But,
as Kamstra et al. note in their original article, time adjustments did occur
in various states over the early period and the observed return effect may be
due to these adjustments.”

To more cleanly isolate the impact of time adjustments, we return to the
post-1967 sample, in which time adjustments were nearly uniform across the
country. We perform a counterfactual analysis in which we construct aver-
age returns for the weekends that immediately precede the time adjustment
weekends. We focus on the week preceding the time adjustment, rather
than the week following the time adjustment, to avoid the possible lingering
effects of time adjustment on succeeding returns. We refer to these coun-
terfactual (CF) weekends as the CF-Spring weekends (the weekends that
immediately precede the spring adjustment weekend), the CF-Fall weekends
and the CF-Unadjusted weekends. Note that the actual adjustment week-
ends are now included in the unadjusted category, so if time adjustments do
cause return declines then it would be possible to have lower average returns
for CF-Unadjusted weekends.

The results of this counter-factual construction, which are contained in
Table 2, are striking. For the sample period that is the focus of earlier

SFor example, the 1918 law establishing daylight-saving time for the entire United
States was later repealed and the adoption of daylight-saving time became a decision
made at the state level. A brief history of daylight-saving time in the US, along with
details of implementation, is presented in Appendix Table Al.

6Kamstra et al. report a significant negative adjustment effect for the period 1928-1966.
Our reporting period differs, as we use the returns reported directly by Standard and Poors,
which are available beginning in June 1962. Kamstra et al. use returns constructed by
the Center for Research in Securities Prices, which attempt to mimic Standard and Poors
and begin earlier. As the Standard and Poors index weights are proprietary, the two
returns series differ slightly.



studies, 1967-1997, the evidence for a “fall effect” is quite strong. As these
fall weekends are not characterized by time adjustments, time adjustment
cannot, be the cause of the sharp decline in average returns.

Table 2
Mean of S&P 500 Weekend Returns: Counterfactual Analysis

Time Period CF-Unadjusted CF-Adjusted CF-Spring CF-Fall Joint ¢-test

1967-1997 —.0004 —.0047 —.0003 —.0092 -3.06
(.0096) (.0279) (.0089) (.0382)

1967-2006 —.0003 —.0026 +.0004 —.0056 -1.80
(.0103) (.0251) (.0094) (.0343)

3 Outlier Influence

While the counterfactual analysis provides some evidence against the con-
clusion that time adjustments lead to lower returns, the entire analysis of
means could be affected by outliers. To determine the impact of outliers on
the data sample from 1967 through 2006, we turn to the compact description
in Figure 1. The rectangular box reflects the interquartile range for re-
turns, with the median bisecting the box. The black lines above and below
the interquartile box mark a further spread of twice the interquartile range.
Observations lying beyond these lines are often referred to as outliers. Two
important points emerge from the figure. First, both the adjusted and coun-
terfactual adjusted weekend return means are likely impacted by outliers as
the most dramatic (negative) outliers correspond to October 1987, in which
both the fall adjustment weekend and the weekend preceding the fall adjust-
ment saw sharp declines. Second, the large number of outliers emphasizes
the point that returns are not well characterized by a Gaussian distribution.
As the joint ¢-test (reported in the first two tables) may not be correctly
sized if returns come from a non-Gaussian distribution, accurate testing of
the proposed time adjustment effect may require robust test statistics.



Figure 1. Boxplot of Weekend Returns
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To reduce the impact of outliers, and so more accurately measure any time
adjustment effect, we turn to nonparametric test statistics that are robust
to outliers. We focus on tests designed to detect an adjustment effect that
reduces the size of returns.” These tests involve the rank of weekend returns,
which are obtained as follows. For the combined sample vector of returns
{r:},_, (our sample of 40 years contains n = 2087 weekend returns), order
the returns from smallest to largest yielding the order statistics {T(t)}.g The
rank (order statistic) is then

p(rey) =t

"Pinegar constructs the Kolomogorov-Smirnov statistic, which as Kamstra, Kramer
and Levi (2002) note, is not designed specifically to measure a reduction in the size of
returns and so may not provide as precise a measure of the proposed adjustment effect.

8Seven years in the sample have 53 weekends.
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Thus 71y corresponds to the return of -20.4% for the weekend ending October
19, 1987, which immediately precedes an adjustment weekend and has rank
p=1

In the presence of such substantial outliers, the median replaces the mean
as the robust measure of return location. The proposed adjustment effect
is then that the median of adjusted weekends (med,) is smaller than the
median of unadjusted weekends (med,). To test Hy : med, = med, against
H, : med, < med,, we use the Wilcoxon rank-sum test statistic

W, = ZP (T(t)) * 2ty
t=1

where z; = 1 if 7 is an adjustment weekend and 2z, = 0 otherwise.” If n,
is the number of adjustment weekends (and n, = n — n,, is the number of
unadjusted weekends), then the value of W, is simply the sum of the ranks
of the n, adjustment weekends. If time adjustment has no impact on the
size of weekend returns, then the ranks of the adjusted weekends should
be randomly scattered among the ranks of the unadjusted weekends and
the expected value of the test statistic is E (W,) = w (with standard

deviation ow, = 4/ %) If, however, time adjustment does lower
weekend returns, then the ranks of the adjusted weekends should tend to be
smaller than the ranks of the unadjusted weekends and the sum of the ranks
for the adjusted weekends should be smaller than £ (W,). For the sample

size at hand, in which we have n, = 78 adjustment weekends,
E (W,) = 81,432 and oy, = 5,222,

so the critical value for a one-tailed test is 72,816 (= 81,432 —1.65x5,222).1
As the observed value of 79,049 exceeds the critical value by a substantial
margin, we do not find evidence to support the hypothesis that adjustment
weekends have a lower (median) return.

The analysis of both means and medians compares adjustment weekends
with all other weekends. As adjustment weekends comprise only 4 percent (=

9The rank-sum test statistic dates to Wilcoxon (1945) for data in which n; = ny. Mann
and Whitney (1947) extend the analysis to n; < ns in developing their U-statistic. As
the rank-sum statistic is a linear transformation of the U-statistic, the analysis in Mann
and Whitney establishes the theory for the rank-sum statistic with n; < ny. Gaussian
critical values are recommended if n; > 15.

10Because n; (=78) exceeds 15, we use Gaussian limit theory.
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78/2087) of all weekends, the discrepancy in relative sample sizes may hamper
the ability to detect an adjustment effect.!! To address the issue of uneven
sample size, we construct matched pairs, for which n, = n,. Specifically,
we pair every adjustment weekend with the weekend immediately preceding
the adjustment weekend, yielding {(744—1,7az)};o, Where 74,1 is the return
for the weekend immediately preceding adjustment weekend . We then
form the sequence of differences {d;} where d; = 74,41 — 74;. If adjustment
weekends have lower returns, then these differences should be positive.

The sign test counts the number of positive differences, to determine if
there are more positive differences than would be expected under the null
hypothesis that med (d;) = 0. As the sign test statistic S is formed from
the sum of n, Bernoulli random variables, each of which is positive with
probability 3 under the null hypothesis: E(S) = 39 (= %) and o0g = 4.4
(= \/%) for the sample size at hand. The observed value of 38 positive
differences is less than the expected value under the null, and so falls far
below the critical value of 46.3 (= 39 + 1.65 x 4.4).

It may be the case that although fewer than half the adjustment weekends
have positive differences, those that do are consistently large in magnitude.
To discern such an effect we need to track both the sign and the magnitude
of the differences. The magnitudes are tracked through the vector of ordered

absolute differences {d(t)} where d;, = |di|. Under the null hypothesis, time

adjustment affects neither the sign nor the magnitude of the differences,
which is expressed as Hy : d; is distributed symmetrically about 0 (which
implies med (d;) = 0). A natural test statistic for the symmetry hypothesis
is the Wilcoxon signed-rank test

W, = ZP (Cz(t)> * Z,
t=1

where Z, = 1 if dy is positive. Under the null hypothesis that there is
no adjustment effect, the ranks of the positive differences should be equally
likely among any of the ranks and E (W) = 1,541 (= W) with oy, =

201 (= \/%W) for our sample size. If there is a pronounced

adjustment effect, then the ranks of the positive differences should exceed
the null expected value. As the observed value of 1,456 is less than the null

HThere are only 78 adjustment weekends over the 40 year span because there was no
time adjustment in 1974.
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expected value, it falls well short of the critical value of 1,872 (= 1,541 +
1.65  201).

Table 3 contains the standardized values of the three nonparametric test
statistics together with their critical values. As none of the estimated values
lie close to, much less beyond, their critical values, there is little evidence to
support the claim that time adjustment impacts the median of returns.

Table 3
Nonparametric Test Statistics (Critical Values in Parentheses)

Time Period Wilcoxon Rank Sum  Sign  Wilcoxon Signed Rank

1967-2006 —0.46 —0.23 —0.42
(—1.65) (+1.65) (+1.65)

3.1 Time Variation

The statistics reported in Table 3 are constructed under the assumption that
the return distribution is unchanging over time. In practice, there have
been a number of substantive changes over the past 40 years to the exchange
markets from which the returns are computed. Dramatic growth in trading
volume, the development of electronic trading, declining bid-ask spreads and
the related decision to decimalize price quotes could all have led to changes in
the return distribution over time.'?> Such changes might mask the adjustment
effect, as significant adjustment effects in one year might be obscured by the
magnitude of returns in other years.

Suppose, for example, that the adjustment effect is present but that the
variance of the return distribution increases at some point in the sample,
perhaps due to a development in electronic trading. We would then expect
to see that adjustment weekends have low annual ranks, but that not all
adjustment weekends have low ranks in the combined sample. In particular,
the adjustment effect before the increase in return variance may be swamped
by the magnitude of unadjusted weekend return changes after the increase
in return variance.

To shed light on this possibility we develop a test statistic that accom-
modates very general time variation in the return distribution. To form
this test statistic, we first construct annual ranks. The annual ranks are
obtained from the vectors of ordered returns for each of the 40 years in our
sample {ryy(t)}, where y = 1,...,40 indexes the sample year. If there are n

12The decision to quote prices in a unit value of one cent rather than 1/8th of a dollar.
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years in the sample, then there are n weekends (one in each year) that have
an annual rank of 1.1* In Table 4 we present the 11 adjustment weekends
with an annual rank of 5 or lower (which corresponds to the lowest decile of
annual ranks), together with their overall rank in the combined sample. If
the return distribution is invariant over time, we would expect adjustment
weekends with an annual rank of 1 to (generally) have an overall rank less
than 40. Similarly, we would expect adjustment weekends with an annual
rank of j = 2,...,5 to have an overall rank less than j * 40. As Table 4 re-
veals, this expected correspondence between annual ranks and overall ranks
is more pronounced in the latter half of the sample. Indeed, the large overall
ranks for the early part of the sample are indicative of time variation in the
return distribution.

Table 4
Adjustment Weekends: Annual and Overall Ranks

Date Annual Overall Date Annual Overall
1970, Spring 3 113 1988, Spring 4 230
1971, Fall 1 123 1994, Spring 1 121
1972, Spring 5 301 1996, Spring 2 87
1977, Spring 1 174 1997, Fall 1 3
1985, Spring 4 342 2001, Fall 4 39

1987, Fall P P

To test for an adjustment effect with time variation in the return distribu-
tion, we examine the histogram of annual ranks for the adjustment weekends.
Because 7 years in the sample have 53 weekends, we first divide the annual
ranks by the number of weekends in the given year to form the standardized

ranks
5 t

T = —
P(rw) = o
where n,, is the number of weekends in year y. We then sort the standardized
annual ranks for adjustment weekends into deciles, which yields the histogram

in Figure 2.1

13The annual ranks of all adjustment weekends are presented in Appendix Table A2.
4 As p is an element of (%, cee, 1) rather than (1,...,n,), we construct the bins from
Y

the deciles over the unit interval. The first decile corresponds to p € (0,.1], which implies
@)

between bins and annual ranks.

< .lor (t) <5. Appendix Table A3 contains the complete list of the correspondence

12



Figure 2. Histogram of Annual Ranks for Adjustment Weekends
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Under the null hypothesis of no adjustment effect, the histogram should
be approximately uniform, while under the alternative hypothesis that there
is an adjustment effect, the annual ranks of adjustment weekends should
cluster in the lowest bins. We search for this pattern of clustering by testing
for exponential tilting. If we let p; be the number of adjustment weekends
whose standardized ranks place them in bin 7, then an exponential model for

the histogram is
J
pj X exp Ao; :

where J = 10 is the number of bins. Under the null hypothesis the histogram
should be uniform and so A\ = 0 (p; is proportional to a constant). If the
ranks of adjustment weekends tend to cluster in the lowest bins, then \y > 0.
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As we can see from Figure 3, which plots the exponential curve of bin heights,
the size of )\g indicates the degree of clustering.

Figure 3: Exponential Tilting Function
25 T T T T T T T T

exp(a )

Deciles

To form a test of Hy : \g = 0 against H; : Ay > 0, we use the nonlinear

least-squares estimator

For the sample at hand A = .25. We obtain an appropriate confidence bound
from Monte Carlo simulation under the null hypothesis of no adjustment
effect. 'We generate 40 rank pairs for each simulation sample. The first
element of each pair is drawn from the full range of ranks (the values 1

14



through 52 for 33 of the pairs and the values 1 through 53 for the remaining
7 pairs). The second element of each pair is drawn without replacement
from the appropriate range of ranks.!> With the simulated pairs of annual
ranks, we then follow the estimation strategy for the original sample. That
is, we standardize the ranks, bin them by deciles and construct the nonlinear
least-squares estimator \. We perform 10,000 simulations and obtain a
95% upper confidence bound of .26. As the sample estimate is below the
upper confidence bound, we are unable to reject the null hypothesis of no
adjustment effect.

4 Conclusion

We attempt to discern a negative impact on stock returns arising from
daylight-saving time adjustments. While the mean return shows a negative
impact from time adjustment in the sample originally analyzed, extension
of the sample lessens the significance of the impact. Curiously, the impact
is driven by fall weekends, in which participants gain an hour of sleep and
so are not sleep deprived. Moreover, the counterfactual returns constructed
for the weekends immediately preceding the time adjustments also show a
significant negative mean.

As the mean analysis is likely sensitive to the large number of outliers in
the data, we also perform three nonparametric statistical tests that are robust
to outliers. None of the three statistics reveals evidence of a negative impact
of time adjustment on returns. Indeed, for two of the statistics the observed
value provides (slight) evidence of a positive impact of time adjustment on
returns. As all of the statistics assume that returns are i.i.d. draws from
one distribution, we next examine the possible impact of time variation in
the return distribution. To do so, we develop a test of exponential tilting
that may prove useful in other applications with general time variation in
the underlying distribution. = While we do find evidence that the return
distribution varies over the sample, when we allow for this variation we are
still unable to detect an adjustment effect. Together, these results call into
question a causal link between daylight-saving time adjustment and stock
returns.

15The drawing is without replacement to ensure that no simulated annual pair has the
same rank for both adjustment weekends.
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5 Appendix: A Brief History of Calendar Time

The deadline-driven culture of today’s business climate is the most recent
manifestation of a connection between time and the functioning of human
society. Human society’s fascination with time and time-keeping extends
back to the origins of man. Few examples remain from pre-historic times,
but it is known that hunters in Europe over 20,000 years ago carved lines and
bored holes in sticks and bones, potentially in efforts to track the phases of the
moon. Among earlier civilizations, time-keeping methods were essential to
survival, so that adequate preparations could be made for important events,
such as animal migrations and river flooding.

Calendars were important developments among many of the ancient civ-
ilizations around the globe. The first Egyptian calendar followed the lunar
cycle, but the observation that the ‘Dog Star” rose next to the sun every 365
days, nearly coinciding with the flooding of the Nile, led to the development
of a 365 day calendar sometime during the years 2937-2821 B.C. (Richards,
1999). Before 1800 B.C., the Babylonians had developed a lunar calendar
made up of 12 months, which were between 29 and 30 days in length. The
Maya created a 365-day calendar based on the motion of planets through the
sky. The current 365-day solar calendar incorporates a leap year in every
fourth year (excepting century years not divisible by 400) and is derived
from the Gregorian calendar, which was introduced in 1582 based on the
mean tropical year.

The next major development in the standardization of time arose in re-
sponse to a desire for scheduled railroad operation. Sanford Fleming was the
chief engineer of the Canadian Pacific Railroad in 1879 and he was primarily
concerned with running his railway on a specified schedule, which was very
difficult using local times. His paper “The Selection of a Prime Meridian” is
the first record of a public presentation of the standard time system as used
today (Curran and Taylor, 1935). The result of his efforts was the establish-
ment of standardized time put into effect in Canada and the United States
on November 18, 1883 at noon.

The implementation of daylight-saving time first occurred as an energy-
saving means during World War 1. In the United States, a law signed on
March 31, 1918 established daylight-saving time in the United States. The
act was repealed just one year later and the adoption of daylight-saving time
became a decision made at the state level until World War II. President
Roosevelt re-established national daylight-saving time on a year-round basis

16



during World War II for energy conservation purposes.

The Uniform Time Act of 1966 became law under President Johnson
on April 12, 1966 and established a uniform period of daylight-saving time,
spanning from the last Sunday of April until the last Sunday of October.
The grandeur of its name belied the fact that any state that chose not to
follow daylight-saving time could do so using state law. In response to the
energy crisis spawned by a reduction in oil production by OPEC, national
year-round daylight-saving time was adopted for a fifteen month period be-
ginning in January of 1974. According to a study of consumption for 1974
and 1975 by the U.S. Department of Transportation, which has jurisdiction
over daylight-saving time, observing daylight-saving time in March and April
saved an amount of energy equivalent to 10,000 barrels of oil each day. In
1987 federal legislation extended the duration of daylight-saving time. As
Table Al reveals, the duration of daylight-saving time (DST) has been ex-
tended again in 2007.

Table Al: daylight-saving Time Legislation

Year DST Observed Spring Adjustment Fall Adjustment
1918 Nationally Last Sunday in March Last Sunday in October
1919 Locally

1942¢ Nationally Year-Round DST

1945° Locally

1967 Nationally Last Sunday in April Last Sunday in October
1974 Nationally Year-Round DST

1975 Nationally Last Sunday in April Last Sunday in October
1987 Nationally First Sunday in April Last Sunday in October

2007¢ Nationally Second Sunday in March First Sunday in November

®  Year-round DST began on the first Sunday in February, 1942
®  Year-round DST ended on the last Sunday in September, 1945
¢ Enacted in 2005
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Table A2: Adjustment Weekend Annual Ranks
Year Spring Fall Year Spring  Fall

1967 26 27 1987 37 2

1968* 38 18 1988 4 31
1969 45 30 1989 44 26
1970 3 19  1990* 15 9

1971 27 1 1991 42 46
1972 5 32 1992 48 47
1973* 32 33 1993 29 31
1974 none none 1994 1 13
1975 18 24 1995 33 44
1976 29 32 1996* 2 10
1977 1 18 1997 31 1

1978 45 39 1998 19 27
1979* 24 30 1999 50 8

1980 36 9 2000 31 47
1981 35 19  2001* 9 4

1982 39 45 2002 34 21
1983 10 28 2003 23 24
1984* 37 26 2004 43 26
1985 4 33 2005 33 45
1986 32 31 2006 37 24

Thus the spring adjustment weekend in 1967 has annual rank 26. The seven
years with 53 weeks are denoted with an asterisk.

Table A3: Annual Rank and Histogram Bin Correspondence

Bin Annual Ranks Bin Annual Ranks
52 Weekends 53 Weekends 52 Weekends 53 Weekends
1 1-5 1-5 6 27-31 27-31
2 6-10 6-10 7 32-36 32-37
3 11-15 11-15 8 37-41 38-42
4 16-20 16-21 9 42-46 43-47
5 21-26 22-26 10 47-52 48-53

Thus adjustment returns fall in the second bin if .1 < % < .20r6 < (t) <10.
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