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Abstract of the Dissertation

Topographic effects on mesoscale ocean circulation

by

Aviv Solodoch

Doctor of Philosophy in Atmospheric and Oceanic Sciences

University of California, Los Angeles, 2020

Professor James C. McWilliams, Co-chair

Professor Andrew L. Stewart, Co-chair

The trajectories and stability of boundary currents, of mesoscale vortices, and of recirculations,

are often largely imposed by ocean bottom topography. Here several related questions in the

influence of topography on mesoscale ocean circulation are investigated, largely motivated by

observed circulation features in the sub-polar North Atlantic ocean.

Observations show that boundary currents tend to becomehighly variable and shedmaterial near

sharp topographic variations, such as peninsula edges or corners of underwater capes. Baroclinic

instability is understood to be one of the main causes of internal variability of large scale ocean

circulation. Therefore the influence of horizontally curving topography on baroclinic instability

is studied, under the hypothesis that the curvature may cause a higher tendency towards insta-

bility. That is done within a minimum complexity model, a two-layer quasi-geostrophic model,

and compared with the classic rectilinearmodel. First necessary conditions for instability as well

as growth rate bounds are derived. Growth rates are calculated analytically or numerically for

several flow and topography profiles. The growth rate in uniform azimuthal flow is similar to

that in uniform rectilinear azimuthal flow, but decreases with increasing depth-averaged flow

component amplitude. That is recognized as a generalization of the so called “barotropic gov-

ernor” effect. Instability growth rate is nonetheless higher with uniform azimuthal flow when

isopycnal slope is similar to the topographic slope magnitude, a common scenario in the ocean.
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Non-normal instability is studied as well, and is generally intensified with uniform azimuthal

flow. Thus a complex picture emerges as to the influence of horizontal curvature on baroclinic

instability.

The Deep Western Boundary Current (DWBC) carries water masses formed in deep convection

sites southward, as part of the Atlantic Overturning Meridional Circulation (AMOC), a circula-

tion pattern of climatic importance. Observations show that the DWBC “leaks” material at an

anomalously high rate in its path along two underwater capes in the Newfoundland Basin. The

leakiness, resulting in water masses dilution, and in AMOC alternative (interior) pathways south-

ward, has not been studied extensively from a dynamical perspective before. A high-resolution

realistic regional numerical model configuration and a particle advection model are developed

for this purpose. The numerical results, as well as two datasets of ocean float trajectories, are

analyzed to determine the dynamical causes of leakiness and its phenomenology. It is found that

leakiness is concentrated in three “hotspots”, in which topography turns and steepens. Mean

Lagrangian velocity is offshore at these locations, showing that leakiness occurs bymean separa-

tion. The mean velocity does not have a substantial eddy-rectified component at the two north-

ern hotspots, where most of the mean leakiness happens. Likewise, energetic analysis shows ed-

dies do not locally force the mean offshore flow. Furthermore, potential vorticity is not diluted

substantially by eddies along mean separating streamlines. These results are consistent with

mean leakiness occurring by inertial separation. A scaling analysis also suggests that bathymet-

ric conditions near the leakiness hotspots are supportive of inertial separation. Eddy processes

also contribute substantially to leakiness, partially through chaotic advection.

In several North Atlantic basins semi-stationary anticyclonic vortices (ACs) have been repeat-

edly observed for decades, within areas with bowl-like topography. These basins play significant

parts in AMOC transport and transformations, and previous evidence suggests these ACs con-

tribute to these processes. Therefore the formation processes of ACs above topographic bowls

is studied here using idealized free evolution simulations in one or two isopycnal layers. It is

demonstrated that ACs readily form under different (bowl-like) topographies and initial condi-
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tions. A non-dimensional nonlinearity parameter (ϵ ∼ ratio of vorticity to bowl PV gradient),

or a potential vorticity (PV) inhomogeneity (PVI) parameter, largely determine if a trapped AC

is formed from random mesoscale-like initial conditions. Trapped ACs form and stay close to

bowl-center for ϵ . 0.5 (PVI ∼ 1). For ϵ & 1 (PVI ∼ 0) vortices freely cross the topography by

mutual interactions. For intermediate ϵ or PVI values, trapped ACs can form at different bowl

radii since the PV gradient is nullified by the presence of a slope current. Trapped ACs generally

form by repeated mergers of ACs within the bowl, and have anomalously low PV. Tracer analysis

shows that ACs which eventually merge into the trapped AC are sourced from within (outside)

the bowl in low (high) energy cases. Two different cross-bowl propagation mechanisms are ex-

amined. Monopole beta drift as well as dipole self propagation can both contribute to cross-bowl

ACmaterial transport, but the latter appears faster in relevant cases. The vertical structure of the

trapped AC is studied as well. It is shown that it is top (bottom) intensified for top (bottom) in-

tensified domain-mean initial conditions. That is consistent with observational structure but in

contrast with the common vertical structure in Taylor Caps and of the slope current in our sim-

ulations, which remain bottom-intensified in all cases. Scaling laws for vertical structures are

suggested in several cases. The robustness of AC formation to topographic complexity is studied,

as well as its long-term evolution, and the results are contrasted with topographic turbulence

theories, which predict a slope current but not a bowl-trapped AC.
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List of Figures

2.1 Schematic drawing of the domain boundaries, bathymetry and mean circulation.

(left) Top-down view of the annular channel, with dashed lines representing iso-

baths or mean streamlines. (right) Along-slope view of the mean flow configu-

ration. The dashed line represents the isopycnal profile z = ZI (r ), the interface
between the two fluid layers. Two particular bathymetry (ηb(r )) and isopycnal
profile pairs are plotted here, linear and parabolic in r , corresponding to uniform

azimuthal flow and solid body rotation, respectively. The isopycnal and bathymet-

ric profiles for uniform rectilinear flow are identical to those of uniform azimuthal

flow, i.e., linear in the cross-channel coordinate. A rigid lid is assumed, consis-

tent with stratified quasi-geostrophy. The δ parameter, i.e., ratio of bathymetric

to isopycnal slopes, is negative in both specific cases displayed here, although both

signs are considered in this study. . . . . . . . . . . . . . . . . . . . . . . . . . . 15
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2.2 Properties of unstablemodes formean solid body rotationover parabolic bathymetry

and for mean uniform rectilinear flow over linear bathymetry, with δ = −0.2 in

both cases. (a) Growth rate vs wavenumber and (b) phase velocity vs wavenumber

(all dimensionless). In both cases two independent eigenmodes are found. The

first (second) mode is presented with solid and dashed/dotted lines for solid body

rotation (SBR) and uniform rectilinear flow (URF), respectively. The abscissa is

downstream Cartesian wavenumber (nondimensional values). In solid body rota-

tion the downstream wavenumber is defined as l ≈ m̂ = m/R. Here m is the

azimuthal wavenumber and R is the radius of the channel center. In panel (b) the

(real) phase speed is approximately Doppler-corrected and normalized to Carte-

sian values (for comparison with uniform rectilinear flow) via ĉr = crR−Ωbt . (c,d)

Upper and lower layer streamfunctions, respectively, for the first (fastest growing)

eigenmode of solid body rotation with wavenumberm = 4 (m̂ = 0.615). The inner

and outer circles mark the domain boundaries at r = Ri and Re , respectively. The

lines intercepting the boundaries are the zero contours of the streamfunctions,

while positive (negative) streamfunction contours are denoted by full (dashed)

closed curves. The absolute value of contours is not given since eigenmode am-

plitudes are arbitrary unless specified by initial conditions. . . . . . . . . . . . . 29
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2.3 Linear growth rates as a function of along-flow wavenumber and the ratio of the

bathymetric to isopycnal slopes. All values are non-dimensionalized as described

in §2.2.1. Where more than one unstable modes exist, the highest growth rate

is shown. (a) Mean uniform rectilinear flow (URF) over linear bathymetry, with

wavenumber l . In all other panels the wavenumber is the normalized azimuthal

wavenumber m̂, defined in §2.4. (b) Mean solid body rotation (SBR) over parabolic

bathymetry. (c–f) Mean uniform azimuthal flow (UAF) over linear bathymetry,

with with the mean barotropic velocity equal to (c) Ubt = 0, (d) Ubt = −1, (e)

Ubt = 1, and (f)Ubt = 2. In contrast to uniform azimuthal flow, the growth rates

in the uniform rectilinear flow and solid body rotation cases do not depend on the

barotropic velocity. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

2.4 Mean uniform azimuthal flow, selected unstable eigenmodes. Upper (lower) layer

streamfunctions are shown in the upper (lower) panels. The bathymetric slope

parameter is δ = −0.2, and the azimuthal wavenumber ism = 4. (a,b) Ubt =

0, fastest growing eigenmode. (c,d) Ubt = −1, fastest growing eigenmode. (e,f)

Ubt = −1, third-fastest growing eigenmode. The inner and outer circles mark

the domain boundaries at r = Ri and Re , respectively. The lines intercepting the

boundaries are the zero contours of the streamfunctions, while positive (negative)

streamfunction contours are denoted by full (dashed) closed curves. The absolute

value of contours is not given since eigenmode amplitudes are arbitrary unless

specified by initial conditions. . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
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2.5 Mean uniform azimuthal flow with barotropic velocity Ubt = 1 and bathymet-

ric to isopycnal slopes ratio δ = −0.2. (a) Growth rate, (b) ratio of Reynolds

stresses volume-integrated work to potential energy conversion, and (c) Doppler-

corrected Cartesian phase speed vs normalized azimuthal wavenumber m̂ =m/R,

for all growing eigenmodes. In panel (c) the (real) phase speed is Doppler-corrected

and normalized to Cartesian values by ĉr = crR−Ubt , to facilitate comparisonwith

the other mean flow cases (figure 2.2). . . . . . . . . . . . . . . . . . . . . . . . 33

2.6 (a) Maximum growth rate (filled contours) in the uniform azimuthal flow (UAF)

case as a function of the barotropic velocity,Ubt , and the ratio of the bathymetric

to isopycnal slopes, δ . The dashed line marks the barotropic velocity correspond-

ing to the largest growth rates at each δ . The dotted line marks δ = 1, above

which straight channel uniform flow is stable. (b) Maximum uniform azimuthal

flow growth rate (full line) and the barotropic velocity at which it is achieved (full

line with circles), as a function of δ . The dashed line is maximum growth rate

for uniform rectilinear flow (URF). (c) (Half the value of) Potential Energy Con-

version (PEC) and Reynolds stresses work (RS = ΣjRSj), for the fastest growing

eigenmode, in three different δ values. Discontinuities (as a function of Ubt ) are

expected since PEC −RS distribution changes withm, and since up to four differ-

ent eigenmodes exist perm. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

2.7 Maximal instantaneous (non-normal) growth rates. The blue curve corresponds

to mean uniform rectilinear flow. The other curves correspond to mean uniform

azimuthal flow with three different barotropic velocitiesUbt . Linear bathymetry

was used in all cases. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
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2.8 (a) Numerical convergence of growth rate for cylinder solid body rotation eigen-

modes to that obtained from the analytical dispersion relation (2.25), for azimuthal

wavenumberm = 2 and bathymetric slope parameter δ = 0. The cylinder width

was set by R1 = 0 andW = R2 = 7 to be equivalent to the annulus width taken

in sections 2.4 and 2.5. The circles denote actual numerical values calculated, in

whichdr is decreased by factors of two. Note the logarithmic scale of the ordinate.

(b)Numerical convergence of uniformazimuthal flowgrowth rateswith variousdr

values to the value similarly calculated with a twice the highest resolution shown

(dr = 0.00625), .i.e. with dr = 0.003125. Results for all four unstable eigenmodes

shown. The presented results are form = 2, δ = −0.2, andUbt = 1. The conver-

gence was similarly tested for a large portion of the parameter space. The value

actually used to generate all other results in this paper isdr = 0.025 (ordx = 0.025

in the channel case). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
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3.1 Model depth-averaged speed, averaged over years 9-16. Panel (a) shows the full

domain of the numerical solution (section 3.2.1). Panel (b) focuses on the area im-

plicated in leakiness in the DWBC (section 3.1). The 1, 3, and 4 km depth isobaths

are marked with thin black lines. Geographic features marked in the figure: New-

foundland (Nfl), the Grand Banks of Newfoundland (GB), Flemish Cap (FC), Flem-

ish Pass (FP, the ≈ 1150m deep channel west of FC), Orphan Knoll (OK), the Mid-

Atlantic-Ridge (MAR), the Charlie-Gibbs Fracture Zone (CGFZ), andGreenland (GL).

Major currents: Gulf Stream (GS), its continuation as the North Atlantic Current

(NAC), and the Deep Western Boundary Current (DWBC). The NAC extends north-

ward, approximately along and meandering about the 4.2 km isobath, from the

Gulf Stream termination about −45 E. The solid red line east of FC, around 47 N ,

marks the location of the vertical sections shown in Fig. 3.11. The dashed red line

west of OK, around 50 N , marks the model particle deployment line (OKL, see text

for details), also shown in Fig. 3.3. Red filled circles mark points of interest along

the 3 km isobath, shown in Fig. 3.4. Blue filled squares on the 4 km isobath in

panel b schematically mark the leakiness hotspots identified here and defined in

the text: (from north to south) Northeast Corner (NEC), Southeast Corner (SEC),

and Southern Face (SF). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
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3.2 Comparison of observed andmodeled float trajectories in the Flemish Cap (FC) re-

gion, centered on the time at which they crossed the 4 km isobath (section 3.3.1).

Color of plotted trajectories corresponds to time (in days) relative to their first off-

shore crossing of the 4 km isobath. Leakage of floats out of the DWBC occurs pref-

erentially in the convex bends of FC, and downstream from the second bend, in the

region of steepening bathymetry. Physical floats are shown in panels (a) (ExPath

floats) and (b) (Argo floats). These data sets are described in section 3.2.2. Panel

(c) shows the trajectories of a random batch of 60model particles from Exp3d (sec-

tion 3.2.3). Temporal resolution of position data for ExPath floats, Argo floats, and

the numerical particles, respectively, are 1 day, ≈ 9 days, and 2 hours. Continuous

curves are used in all panels for visibility. The jagged appearance and deviations

between day 0 position and the 4 km isobtah in panel b are due to the linear inter-

polation between 9 day-intervals of Argo position data. . . . . . . . . . . . . . . 65
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3.3 (a) Locations at which the ExPath floats (circles, both 700 and 1500 m depths) and

1500 m depth-initialized Exp3d particles (colors) first cross the 4 km isobath. The

colors correspond to the number of model particles crossing the 4 km isobath at

each model gridpoint along the isobath. The results for Exp3d particles initialized

at 700 m depth for this and the next panel are very similar in pattern and mag-

nitude to those shown here (supplementary section 3.6.9). (b) Lagrangian-mean

along-bathymetry velocity component (positive ≈ downstream), (c) Lagrangian-

mean cross-bathymetry velocity component (positive offshore), and (d) Lagrangian

eddy kinetic energy (EKE) derived from the Exp3d particles initialized at 1500 m

depth. Values as high as 0.04 m2/s2 occur in the saturated (orange) region near

the 1 km isobath. In panels b-c, only statistically significant values are displayed,

i.e., white patches are not associated with significant values. Lagrangian mean ve-

locity vectors are superimposed in panel d. The 1, 3, and 4 km isobaths are marked

with black contours in each panel. The deployment line (OKL) of model particles

is marked by the thick black line. The bathymetric features of Flemish Cap and the

Grand Banks of Newfoundland are marked by the letters FC and GB, respectively,

in panels a-b. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

3.4 Cumulative offshore transport in (a) density layers and (b) depth layers, along the

3km isobath, averaged overmodel years 9-16. Note that the deepest layer in panel

b is thinner (300 m) than all other layers (500 m). Black circles correspond to the

red circles marked on the 3 km isobath in Fig. 3.1, with the furthest upstream and

downstream circles marking the section’s beginning and end. Other circles mark

points around FC and GB. The middle of the three circles labeled “FC” marks the

SE corner (see section 3.3.1). . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
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3.5 (a) Mean depth of the σ1 = 32.43 kд/m3 (LSW) isopycnal in the vicinity of Flemish

Cap. (b) Velocity streamfunction (section 3.3.2, and supplemental section 3.6.10)

calculated over the same isopycnal layer as in (a). Panels (c–d) are identical to pan-

els (a–b), but for the isopycnal layer σ2 = 37.014 kд/m3 (lLSW). The 1, 3, and 4 km

isobaths are shown in thick black contours. The depths of the isopycnal surfaces

(a) and (b) in the displayed area, averaged between the 1 and 4 km isobaths, are

1450m and 2420m, respectively. Note that the depth of the upper surface (a) is as

low as 800m near the launch position of the Lagrangian particles (section 3.2.2) . 73

3.6 (a) Statistics of cross-bathymetry velocity component averaged between depths

of 700 and 1500 m, as a function of distance along the 4 km isobath around Flem-

ish Cap. The Northeast corner (NEC), Southeast Corner (SEC), and South-Face (SF)

leakiness hotspots are labeled, and correspond to the locations marked by blue

squares in Fig. 3.1b. The mean, median, and mode of the Eulerian velocity distri-

bution at every location is shown, as well as the Lagrangian mean derived from

Exp3d. The latter is averaged between the two particle populations (initialized at

700 and 1500 m depths). (b) Histogram of the Eulerian cross-bathymetry veloc-

ity at SEC (location marked in panel a), with vertical lines indicating the Eulerian

mean, Eulerian median and Lagrangian mean cross-bathymetry velocities. . . . . 75

xxi



3.7 Time-mean (over years 9–16) model fields related to Potential Vorticity (q), on the

σ1 = 32.43 kд/m3 (LSW) isopycnal (see Fig. 3.5). Streamfunction contours are

shown in thin black lines. (a) thickness-weighted average (TWA) Potential vorticity

(PV). The thick black linemarks a selected separating streamline. The TWA PV val-

ues at the numbered red circles [1,2,3,4] are [5.36,5.48,5.55,6.37] × 10−12m−1s−1,
respectively. (b) TWA eddy potential enstrophy. Terms in the TWAPV equation are

shown in bottom panels: (c) the mean advection of mean PV, and (d) the eddy PV

flux divergence term. Smoothing with a Gaussian filter of 5 km half-width (trun-

cated at distance = 20 km) was applied to the fields displayed in panels c and d.

The 1, 3, and 4 km isobaths are shown in gray in all panels. The pattern correlation

between the PV budget terms in panels (c) and (d) is (−)0.85. . . . . . . . . . . . 77

3.8 Model energy budget terms, averaged over years 9–16 on the σ1 = 32.43 kg/m3

(LSW) isopycnal (see Fig. 3.5). Panel (a) shows the Reynolds stress work by ed-

dies on the mean flow, i.e., positive values correspond to local EKE conversion to

MKE. Panel (b) shows the potential energy conversion to EKE. The 1, 3, and 4 km

isobaths are shown in thick black contours in all panels. Streamfunction contours

are shown in thin black lines. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
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3.9 Offshore velocity averaged over depths greater than 500 m (black), as a function

of distance along the 3 km isobath (compare with cumulative transport on the

same curve shown in Fig. 3.4). Additional curves indicate the isobath curvature

(blue) and along-isobath (downstream) gradient of bottom slope steepness (red).

All plotted quantities have been smoothed via a running average with a box width

of 100 km. Black full circles correspond to the locations of the red circles in Fig. 3.1,

e.g., the black circle at the middle of the Flemish Cap (FC) line marks its southeast

corner (SEC) (section 3.3.1). The inset shows cross-correlations along the same

isobath between offshore velocity and bathymetric curvature (blue), and between

offshore velocity and steepness gradient (red). Cross-correlation values and sig-

nificance levels are also given in 3.6.12. . . . . . . . . . . . . . . . . . . . . . . . 85

3.10 Comparison of mean sea surface height (SSH), and geostrophic surface eddy ki-

netic energy (EKE) in the ROMS simulation and in the DUACS L4 merged 1/4 de-

gree product. The ROMS data is averaged between simulation years 9–16. The

DUACS product is averaged between years 1993-2017. The specific mean SSH vari-

able from DUACS is Absolute Dynamic Topography. ROMS (DUACS) SSH and EKE

data are shown in panels a and c (b and d), respectively. Given the different defini-

tions of Absolute Dynamic Topography and SSH, a spatially-average difference is

expected. Therefore, a mean 0.4m amplitude has been subtracted from themodel

SSH for plotting and comparison purposes. The 1, 3, and 4 km isobaths are marked

with black contours. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

3.11 Vertical section ofmeridional (approximately along-slope) velocity east of Flemish

Cap (FC) along 47 N, in (a) ROMS (year 16 average), and (b) 6-repeat ship ADCP

observations after Mertens et al. [2014]. Section location is marked by the red line

east of FC in Fig. 3.1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103
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3.12 (a) Two-year trajectories of ExPath floats (note some of the floats had shorter life

times). (b) Two-year trajectories of randombatch of 60 3Dmodel particles, divided

equally between particles initiated at 700 and 1500m depths. In both panels only a

few floats cross the FC-GB region south andwestward remainingwithin the DWBC.

The rest leak into the interior, with themajority recirculating within the Nfl basin.

A smaller but substantial fraction of leakedfloats travel southwithin interior path-

ways away from the continental slope. Other apparent pathways are an eastward

crossing of the Mid Atlantic Ridge at the Charlie-Gibbs Fracture Zone, and (with a

higher number withinmodel particles than ExPath floats) northward propagation

to the Labrador Sea. The 1, 3, and 4 km isobaths are marked with black contours. 106

3.13 The figure is identical to figure 3.3, except that model particles initialized at 700

m depth (rather than 1500 m) are used here, and that a larger area is displayed

in panel b. (a) Locations at which the ExPath floats (circles, both 700 and 1500 m

depths) and 700mdepth-initialized Exp3dparticles (colors) first cross the 4 km iso-

bath. The colors correspond to the number of model particles crossing the 4 km

isobath at each model gridpoint along the isobath. (b) Lagrangian-mean along-

bathymetry velocity component (positive ≈ downstream), (c) Lagrangian-mean

cross-bathymetry velocity component (positive offshore), and (d) Lagrangian eddy

kinetic energy (EKE) derived from the Exp3d particles initialized at 1500 m depth

(see section 3c for definitions). In panels b-c, only statistically significant values

are displayed, i.e., white patches are not associated with significant values. La-

grangian mean velocity vectors are superimposed in panel d. The 1, 3, and 4 km

isobaths aremarkedwith black contours in each panel. The deployment line (OKL)

of model particles is marked by the thick black line. The bathymetric features of

Flemish Cap and the Grand Banks of Newfoundland are marked by the letters FC

and GB, respectively, in panels a-b. . . . . . . . . . . . . . . . . . . . . . . . . . 112
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3.14 Clustering of the isopycnal circulation around Flemish Cap using a single layer

competitive neural network. The clustered variable is velocity along the σ1 =

32.43 kд/m3 surface between model years 10 and 16. Each panel displays the ve-

locity distribution of a single cluster. Streamfunctions (colors and thin lines) are

used rather than, e.g., arrow plots, for effective visualization. The {1,3,4,4.5} km
isobaths are shown in thick black contours. The fraction of time each cluster “oc-

curs” is approximately equal. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

4.1 Observations of anticyclonic long time-mean motions within topographic depres-

sions in the ocean. Observed mean Sea Surface Height (SSH, in color, between

1993-2018) is shown at three ocean basins with bowl-like bathymetry and semi-

permanent anticyclones within the bowls: (a) Lofoten Basin; (b) Rockall Trough;

(c) Newfoundland Basin. The climatological (time-mean) locations of long-lived

semi-stationary anticyclonic vortices (section 4.1) are identified by local maxima

in SSH within the bowls in each panel. Daily SSH data (“Absolute Dynamics Topog-

raphy”)was obtained from the SEALEVEL_GLO_PHY_L4_REP_OBSERVATIONS_008_047

product distributed by Copernicus (https://marine.copernicus.eu/). A (dynami-

cally irrelevant) constant value is subtracted from each panel for visual clarity.

Colormaps in panels (a) and (c) are saturated at high (low) values in areas far from

the relevant anticyclone. Bathymetry is shown in thin black contours denoting,

in (a) [-3200,-3000:1000:-1000], (b) [-3000:500:-1000], (c) [-5000:500:-2000] m depth.

Land is in gray: Norway and Ireland, in panels (a) and (b), respectively. Coastlines

are marked by thick black lines. For maps of f /H contours, the reader is referred

to Isachsen et al. [2003]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122
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4.2 Initial conditions and examples of the experimental bathymetry. (a) Example of

randomly generated vorticity initial conditions (in units of the Coriolis param-

eter f ), with mean kinetic energy E = 0.01 m2/s2 and dominant wavelength

λ0 = 90 km. Black contours show the (4010,4100,4200,4300,4400,4490) [m] iso-
baths, for topographic parameters Rb = 300,Wb = 50, H = 4, Hb = 0.5 km

(section 4.2.2). This domain geometry is typical of experiments described in sec-

tions 4.3-4.5. In panel (b) solid curves (left axis values) show several examples of

radial topographic “bowl” profiles used in our experiments. We define a “bowl”

loosely as a depression with a slope region of width (∼ 2Wb) that is narrow rela-

tive tomid-slope radius (Rb). Bowl-like topographies are typical of the locations in

which persistent ACs occur in the ocean (section 4.1). The right axis shows initial

conditions for the passive tracer (equation 4.3), which was included in experiment

batches 2, 3, and 6 (see table 4.1). . . . . . . . . . . . . . . . . . . . . . . . . . . 126

4.3 Evolution over time and formation of a bowl-trapped anticyclone in experiment

B1E5 (table 4.1). The instantaneous vorticity distribution is shown at times indi-

cated above each panel. Anticyclones aggregate within the bowl and repeatedly

merge with each other, forming a long-lived AC confined to the central portion

of the bowl. A cyclonic slope current also emerges, centered on the topographic

slope, as seen by the broad regions of positive and negative vorticity inside and

outside of the bowl, respectively. Note that the colormap is saturated to make

the spatial features clearer. The 99th percentile vorticity magnitude is 0.78f and

0.42f in panels a and d, respectively. . . . . . . . . . . . . . . . . . . . . . . . . 131
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4.4 Evolution and late time properties of the bowl-trapped anticyclone and of the

slope-current in experimentB1E5 (table 4.1, figure 4.3). Displayed variables are av-

eraged azimuthally in radial bins from the center of the bowl. (a) Azimuthal veloc-

ity evolution, in 50-day time-averages centered around days 25:50:500. The initial

conditions are also shown for comparison, and times are indicated by line colors.

(b) Bathymetric profile H (r ). (c) Late-time (days 400–500) time- and azimuthal-
mean potential vorticity PV = (f + ζ )/H , “Planetary” Potential Vorticity PPV =
f /H , and transport streamfunction Ψ. . . . . . . . . . . . . . . . . . . . . . . . 132

4.5 Regime diagrams for bowl-trapped anticyclone (AC) formation (section 4.3.2). (a)

Mean normalized radial position (r/Rb) of the emergent anticyclone within the

bowl for each free evolution experiment, versus the nonlinearity parameter ϵ ≡

VH/f HbL. The radial position r is normalized by bowl radius Rb . Bowl-trapped

ACs correspond to r/Rb < 1. Values r/Rb > 1 are indicative of eddies (including

ACs) moving freely across the bathymetry. (b) Position versus the PV inhomo-

geneity parameter (PVI, equation 4.6). (c) PVI vs ϵ . Each different colored marker

represents a separate batch of experiments. Within each batch all parameters are

kept identical except for the initialization energy E (section 4.2.2). The r/Rb-axis

scale is linear (logarithmic) for values below (above) 1. The dashed lines at ϵ = 1

and at r/Rb = 1 serve as visual aids. In panels (a–b), the double-arrow shows

the range of ϵ values estimated to be relevant for the Mann, Lofoten, and Rock-

all Trough eddies. (d) A schematic illustration of the three regimes described in

panels a–c. Note that the states shown are typical but not unique for each regime.

For low ϵ , a trapped AC emerges close to bowl center. For intermediate ϵ values,

a bowl-trapped AC typically emerges, but can occur at some finite bowl-radius,

since the intensified slope current (illustrated in red) causes partial or complete

PV homogenization within the bowl (outside of the AC). For high ϵ , the eddies are

free to move across the slope and are not trapped within the bowl. . . . . . . . . 137
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4.6 Potential vorticity (PV) homogenization in an experiment (B6E7, table 4.1) with

intermediate nonlinearity parameter value ϵ = 1.01. (a) Vorticity (ζ [f ]) distribu-
tion (in colors) at day 450. PV contours are shown in green, with contours plotted

at [0.5 : 0.5 : 2.5]×10−8m−1s−1. The 2.4×10−8m−1s−1 contour is alsomarked; this
contour separates the low-PV trapped AC from its higher-PV surroundings. Depth

contours are shown in gray, at values of [4010,4100:100:4400,4490] m. (b) Radial

profiles of potential vorticity (PV = (f + ζ )/H ), planetary PV (PPV = f /H ), and

azimuthal velocity averaged over days 300–500 (solid lines). PV is homogenized

on the slope region, thus eliminating the vortex cross-slope beta-drift. The an-

ticyclone is advected counter-clockwise (at constant bowl radius) by the cyclonic

slope current. Vortex self-advection in the presence of bathymetry (supplemental

section 4.8.2) also contributes to the cyclonic drift. . . . . . . . . . . . . . . . . 138

4.7 Long-time evolution of bowl-trapped anticyclone. Panels (a) and (b) show the in-

stantaneous vorticity distribution at days 500 and 5000, respectively, for experi-

ment B1E3L. Topographic contours (4100,4200,4300,4400 m depth) are shown in

solid lines. The dashed square line in panels a–b shows the line along which circu-

lation tendencies are calculated in panel c. Panel c: time-cumulative inviscid (blue)

and viscous (red) circulation tendencies inside the bowl (just outside the anticy-

clone peak velocity radius, along the dashed lines of panels a–b). The cumulative

tendencies are normalized by the perimeter of the dashed square such that they

have dimensions of mean velocity, i.e., m/s. . . . . . . . . . . . . . . . . . . . . 139
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4.8 Evolution of the circulation in experimentB1E5. (a) Circulation time series at bowl

radii corresponding to the bowl anticyclone (CAC = C(rAC), in blue) and to the
slope jet (CSC = C(rSC), the red solid line). In this experiment we diagnosed
rAC = 39 km. The reader is referred to equations (4.7a)–(4.8b) for the definitions

ofCAC andCSC . The dashed red line is a theoretical prediction for the slope cur-

rent circulation based on the anticyclone circulation alone (CSC,theory, see text).

Compare with figure 4.4a. (b) Cumulative circulation change, due to eddy vorticity

fluxes (dissipation is negligible), during the period of AC formation (from t1=150 to

t2=250 days) as a function of radial position , i.e.,C(r ,t2)−C(r ,t1) ≈ −
∫ t2
t1
I (r ,t)dt .

See equations 4.7a–4.7b. In panel b, the radii of the AC and slope current time

series of panel a are marked with blue and red vertical lines, respectively. . . . . 143

4.9 Contribution of anticyclones originating outside the bowl to the bowl-trapped an-

ticyclone. (a) Anticyclone material fraction originating from outside of bowl (co),

versus Fδ : the percent of initial material with δ = Hζ /f h ≥ 1, i.e., anomalously

high Rossby (Ro) number. The fraction co is estimated by the late-time tracer con-

centration c averaged between r = 0 and r = Rb/2, since initially c = 1 (0) inside

(outside) of the slope region, with a transition region on the slope. Experiments in

which a trapped anticyclone forms are shown by a black edge to the marker. The

horizontal (dotted) line shows the maximal dilution possible in case of homoge-

neous final state. Different experiment batches (table 4.1) are denoted by different

colors (legend). The diagonal (solid) line shows a hypothetical co = δ relation. The

amount of bowl anticyclonematerial in the final state originating fromoutside the

bowl is quite close to the fraction of material with initial δ ≥ 1. Deviations above

the unit line are likely partially due to material originating over the narrow slope

region, where 0 < c < 1 at t = 0. The maximal possible bias due to this effect is

shown by the gray area. (b–d) Simulated tracer concentrations at three different

times for experiment B2E4. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144
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4.10 Coherent vortex propagation experiments. (a) A monopole vortex experiment.

Diagnosed vortex down-slope velocity (solid black line) is compared with theoret-

ical vortex down-slope beta-drift velocity (dashed line). The radial position from

bowl center is shown in blue (right-side axis). (b) As panel (a), but for a dipole ex-

periment. The theoretical dipole speed is shown by the dashed-dotted line. The

initial conditions for the dipole are: mean vorticity within each dipole vortex of

magnitude 0.25 f ; vortex radii d = 45 km; vortex separation = 2.6d . . . . . . . . 149

4.11 Vorticity (ζ ) snapshots in a 2-layer experiment, with initial (at day 0) zero kinetic

energy at lower layer. Layer number (1=top, 2=bottom) and number of days since

initialization are indicated in each panel. . . . . . . . . . . . . . . . . . . . . . . 151

4.12 Vertical structure of the bowl-trapped anticyclone and of the slope current in two-

layer experiments. A surface-intensification metric, S = v1/v2, is shown for the

initial conditions (Si , x-axis) vs. the final state (S f , y axis). Here v1 (v2) is the ve-

locity magnitude in the top (bottom) layer. Initial magnitudes are the prescribed

RMS random velocities. Final velocities are defined as azimuthal-mean azimuthal

velocity, either in the core of the slope current or at the radius of the anticyclone’s

maximum azimuthal velocity. The results are shown in log-scale. That is, e.g.,

log(S) = −∞,0,∞ for cases with v1 = 0, v1 = v2, and v2 = 0, respectively. The

vertical structure of topographic Rossby waves (dashed-dotted line) closely pre-

dicts the slope current structure regardless of the initial conditions. Scaling esti-

mates for the final anticyclone vertical structure in the limits log(Si) = −∞ and

log(Si) = ∞ (equations 4.16 and 4.17, respectively) are shown by isolated black cir-
cle symbols. Dashed lines and empty circles (solid lines and filled circles) denote

cases with E0 = 0.01 (0.1)m2/s2. . . . . . . . . . . . . . . . . . . . . . . . . . . 154
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4.13 Coherent vortices emerging within topographic anomalies in an experiment with

random topography. (a) Vorticity and (b) potential vorticity (PV) after 500 days

of free evolution in a basin with complex topography. Dashed (solid) lines are el-

evated topographical areas (depressions) of height 200, 400, and 490 m above (be-

low) amean 4 kmdepth. Vorticity andPVare clearly influenced by the topography.

Where relatively strong bottom slopes occur, the vorticity is positive at depres-

sions and vice-versa. This is associated with development of slope currents, and

is consistent with topographic turbulence theories (section 4.1). However, anticy-

clones (cyclones) tend to develop within centers of depressions (bumps), and are

associated with anomalously negative (positive) PV. These central vortices are not

predicted by topographic turbulence theories. Experiment parameters: λ0 = 45,

λt = 400 km, E = 0.02m2/s2, ϵ ≈ 0.3. . . . . . . . . . . . . . . . . . . . . . . . 157

4.14 B1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 166
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CHAPTER 1

Introduction

1.1 Topographic control in mesoscale ocean circulation

The rotation of the earth imparts strong constraints on large scale ocean circulation. One of

the implications in cases of relatively low density stratification is vertical rigidity. That is, large

scale ocean circulation is largely confined to horizontal directions. Vertical velocity is much

smaller, by a factor even larger than to be expected based on the aspect ratio of ocean basins alone

[McWilliams, 2006]. For this reason, the topography of the ocean bottom (bathymetry) plays key

roles in the organization of large-scale ocean circulation [Salmon, 1998]. Vertical rigidity, when it

applies, is maintained by a preferential direction of circulation along topographic contours (iso-

baths), i.e., topographic steering of ocean currents [e.g., LaCasce, 2000; Bower et al., 2002a; Gille,

2003; Isachsen et al., 2003; Talley, 2011].

The aforementioned effects are particularly strong for mesoscale ocean circulation. Mesoscale

refers to scales larger than the Rossby radius of deformation Rd1, but considerably smaller than

ocean basin scale (∼ 103 − −104 km). At scales l > Rd , the Coriolis force is of first order in the

momentum equation, imparting the constraints of quasi-geostrophic flow and vertical rigidity.

Since here the mesoscale is defined by size, it includes the finer features of mean basin scale

circulation, i.e., boundary currents and some small inertial recirculation gyres [e.g., Hogg and
1Typically Rd =5–20 (20–100) km is subtropical (subpolar) areas [Chelton et al., 1998].
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Johns, 1995]. Mesoscale vortices (or eddies), swirling column-like flows, are ubiquitous ocean

circulation features [McWilliams, 2008]. Indeed, large scale ocean variability (eddy kinetic energy)

peaks in themesoscale [Khatri et al., 2018, show that is so at the ocean surface]. Mesoscale vortices

are generally driven through instabilities of basin scale circulation, but in turn partially drive

back the larger basin scale energetically through an inverse energy cascade.

The effects of rotation on large scale circulation can be qualitatively examined by the conserva-

tion of barotropic (depth-averaged) potential vorticity q = (f + ζ )/H , where H is ocean depth,

ζ is barotropic relative vorticity, f = 2Ωsin(θ ) is the Coriolis parameter, Ω is Earth’s rotation

rate, and θ is the latitude. Under approximate geostrophic balance (applicable for large scale

ocean circulation), and in the absence of stratification2, flow is constrained such that barotropic

potential vorticity (q) is materially conserved [McWilliams, 2006]. In themesoscale,H often varies

much more rapidly in space than f does, hence inducing a stricter constraint. That is due to the

mesoscale-like width of topographic features such as continental slopes, mid-ocean ridges, and

seamounts [Talley, 2011, chapter 2]. Wind stress curl locally forces changes in q. However, the

spatial scale of wind stress variation is similar to the basin scale [Talley, 2011, chapter 5], hence

less directly forcing the mesoscale3.

Topographic control is immediately apparent in the routes of boundary currents (of widths∼ 100

km), which often quite strictly follow isobaths, and in deep cross-basin flows often restricted

to fracture zones [e.g., Bower et al., 2002a; Talley, 2011]. Propagation perpendicular to the bot-

tom slope also generally reduces growth rates of linear instabilities [Blumsack and Gierasch, 1972;

Mechoso, 1980], hence improving water retaining and allowing propagation over basin scale dis-

tances 4. The topographic control often appears to break down where isobaths turn abruptly

relative to the mesoscale. There boundary currents, or a component of their flow, often sepa-

2Stratification generally reduces the influence ofH . In some cases the result canbe approximatedby conservation
of a function f /F , where F = F (H ) is essentially a smoothed version ofH [Krupitsky et al., 1996; Killworth and Hughes,
2002].

3Note wind stress can have a damping effect on mesoscale vortices [Renault et al., 2016a]
4Boundary currents are also predicted in flat rotating basins enclosed by vertical walls [e.g., Stommel, 1948]. How-

ever, boundary currents in earth’s oceans often becomeunstablewhere the bottom slope steepens significantly [Eden
and Böning, 2002; Bracco and Pedlosky, 2003;Wolfe and Cenedese, 2006; Trodahl and Isachsen, 2018]
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rate from the boundary and continue to the interior temporarily as a free jet [e.g., Lutjeharms and

Van Ballegooyen, 1988; Bower et al., 2002b, 2009; Holliday et al., 2009;Molemaker et al., 2015; Schoonover

et al., 2017a].

While the effects of topography on mesoscale ocean circulation are readily observed, and well

understood in many scenarios, many open questions remain, of practical and scientific impor-

tance. A general theory of mesoscale boundary current separation does not exist, often not even

in particularly well-studied specific cases, such as Gulf Stream separation at Cape Hatteras [Chas-

signet and Marshall, 2008; Schoonover et al., 2017b]. In comparison, boundary current instability is

a more mature subject. However, important open questions remain there as well. For example,

while moderate bottom slopes tend to reduce baroclinic instability relative to flat bottom cases,

high slopes can cause higher instability in some (but not all) cases. Several competing theories

were previously suggested for increased instability with high slopes [as summarized in Isachsen,

2011; Trodahl and Isachsen, 2018]. Additionally, application of linear instability theory to realistic

cases where bathymetry and currents do not follow a simple geometry (e.g., approximate homo-

geneity along a horizontal axis) remains challenging. Practically, calculations are often done in

a “local approximation”, neglecting the horizontal in-homogeneity [Tulloch et al., 2011].

This dissertation is comprised of three distinct studies inwhich topography plays a key role in de-

terminingmesoscale ocean circulation. The rest of this chapter gives background information to

each project, and explains the connections between them. Section 1.2 is an introduction (relevant

to chapters 2-3) to the physical oceanography of the Atlantic Meridional Overturning Circulation

(AMOC), the leakiness of its deep southward-flowing boundary current, and their climatological

effects. Section 1.3 introduces chapter 2, an idealized study of of boundary current instability

motivated by the observed leakiness. Section 1.4 introduces chapter 3, analysis the boundary

current leakiness in a realistic regional numerical model and in historical observational datasets.

Chapter 4, introduced in section 1.5, is independent of the previous two studies. It deals with

the spontaneous formation of anticyclonic eddies over topographic depressions. As the follow-

ing chapters are reproductions of published (or submitted) papers, each has its own stand-alone
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introduction section in its chapter. The following sections of the present chapter thus provide

a more general, and somewhat less technical introduction for each of the following chapters,

regarding their motivating scientific questions and the chosen analysis methods.

1.2 Leakiness of the Deep Western Boundary Current

The first two projects were motivated by observations of the breakdown of topographic con-

trol within the Deep Western Boundary Current (DWBC) in the North Atlantic. The DWBC is a

boundary current transporting dense water southward. These water masses are formed in a few

key locations at high latitudes in convective processes due to severe heat loss to the atmosphere

[Talley, 2011; Bullister et al., 2013]. Their southward transport is associated with a compensating

northward transport of warm equatorial surface water. This large-scale overturning circulation

is known as the Atlantic Meridional Overturning Circulation (AMOC)5.

The AMOC is a circulation pattern of great climatic significance. Its northward transport near

the surface is responsible for a substantial fraction (e.g.,≈ 15% at 40N) of the global atmosphere-

ocean systemmeridional heat transport [Johns et al., 2011; Trenberth and Fasullo, 2017]. Themerid-

ional heat transport is spatially complex, which (among other results) contributes to the advec-

tion of warm subtropical surface (mixed layer) waters mainly to the east rather than west sub-

polar North Atlantic ocean, and thus also to more moderate west European winters compared to

the North American east coast [Burkholder and Lozier, 2014]. The deep convection centers and the

AMOC bottom cell are responsible for capturing large amounts of atmospheric CO2 [Takahashi

et al., 2009; Khatiwala et al., 2013; Gruber et al., 2019] into the abyssal ocean, and for storing them

for periods as long as centuries [Matsumoto, 2007; Gebbie and Huybers, 2012], serving as a climate

change buffer in regards to this greenhouse gas, as well as other anthropogenic gases [e.g, Pickart

et al., 1989; Rhein et al., 2015].
5Sometimes this name is used for the zonally averaged (within the Atlantic) circulation.
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The DWBC was previously considered a principle southward conduit for the intermediate and

deep water masses formed in the subpolar North Atlantic. However, as DWBC observations have

accumulated over recent decades, it became clearer that the deep (southward) AMOC branch

is considerably more complicated [Bower et al., 2011; Lozier, 2012]. Passive tracer observations

(using dynamically passive anthropogenic gases and trace atomic bomb radioactive materials:

e.g., CFCs, CFMs, and Tritium) have shown that significant dilution of these water masses occurs

along the southward trajectory, and that the dilution is not uniformly distributed [Rhein et al.,

2002; Gary et al., 2012; Le Bras et al., 2017]. In deployments of floats (passively drifting at a preset

depth) within the DWBC in the subpolar North Atlantic, most floats have been ejected out from

the current within the Newfoundland Basin [Lavender et al., 2000; Fischer and Schott, 2002; Bower

et al., 2009]. Only a small fraction has continuously followed the current beyond this region to

subtropical latitudes. Thus this region has been implicated as a particularly “leaky” region of the

DWBC.

Furthermore, a significant fraction of the leaked floats have continued southwards within the

ocean interior (i.e., outside of the boundary current), in what came to be known as “interior

pathways” (IP). The importance of IP is that they are a deep AMOC path southwards, alternative

(and additional) to the DWBC. Given the significance of the AMOC to the climate system (as de-

scribed above), it is also important to clarify the trajectories by which its water mass transport

occurs. The delineation of IP, and study of their dynamical reasons, is an ongoing research topic

[Gary et al., 2011, 2012; Lozier et al., 2013;Mertens et al., 2014; Pedlosky, 2018; Biló and Johns, 2018]

However, less focus has previously been devoted to the understanding of the mechanisms caus-

ing the initial DWBC leakiness in the Nfl basin (which secondarily leads to IP). The first project

described here (chapter 2, introduced in section 1.3 below) was conceived as a theoretical and

idealized study into one such potential mechanism, namely, baroclinic instability. In the second

project (chapter 3, introduced in section 1.4 below), I analyzed historical observations as well as

a realistic regional numerical model (a configuration which I designed and set up), to analyze in

detail the mechanism of DWBC leakiness.
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1.3 Baroclinic instability on curved isobaths

Time-mean rotating and vertically-sheared (e.g., surface-intensified) flow is associatedwith slop-

ing density surfaces (isopycnals). The sloping isopycnals in turn are associated with increase in

[Lorenz, 1955, “available”] potential energy (APE). The APE reservoir of the large scale time-mean

ocean circulation (which is strongly influenced by rotation) is thus about 1000 times larger than

its kinetic energy, and it has been inferred by several means that the release of APE is the main

energy sink of the large scale circulation [Gill et al., 1974; Smith, 2007; Ferrari and Wunsch, 2009].

The process of APE release to eddy kinetic energy (EKE, manifesting in the ocean essentially as

time-varying mesoscale circulation) is termed baroclinic instability (BCI).

Linear baroclinic instability theory is by now a classic topic in geophysical fluid dynamics [Char-

ney, 1990; Eady, 1949; Phillips, 1951; Pedlosky, 1987]. In many cases the linear theory has quantita-

tive explanatory power for the observed variability of mean ocean (and atmosphere) circulation

patterns such as boundary currents [e.g., Smith, 1976; Mysak and Schott, 1977; Sherwin et al., 2006;

Poulin et al., 2014].

Given the ubiquitous importance of BCI for large scale ocean circulation, it is plausible that the

observed leakiness of the DWBC (section 1.2) is the result of enhanced BCI within the Newfound-

land basin. The float observations of [Bower et al., 2009] have shown that much of the leakiness

is concentrated around the convex areas of underwater capes along trajectory of the DWBC in

the Newfoundland basin. Therefore, we embarked on a study of the effect on BCI, of isobath and

mean flow (horizontal) curvature. The study [Solodoch et al., 2016] is reproduced in chapter 2.

We have chosen an idealized mean flow configuration, rather than one specifically based on the

DWBC, with the goal of understanding the aforementioned effects in a general setting. The in-

vestigation, by analytical and numerical linear instability calculations, derives instability criteria

and growth rates in several idealized cases, and compares results of rectilinear vs curved isobaths

and mean flow. Possible implications to DWBC leakiness are discussed.
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1.4 DWBC leakiness in a realistic regional numerical model

Given ambiguity in the implications of the results of chapter 2 to DWBC leakiness, and given

the great complexity of the Newfoundland circulation system, it was considered necessary to

conduct a realistic numerical simulation of the region. The circulation includes, additionally to

the DWBC, a northward going surface-intensified boundary current further offshore (the North

Atlantic Current, NAC), andmultiple recirculation gyres [Lavender et al., 2005]. Variability (EKE) is

quite heightened in the vicinity of the boundary currents. The bathymetry in the Newfoundland

BasinDWBCpath is also quite complex, as described above. Distinguishing various possible causes

of leakiness is difficult in the face of these intricate patterns, without detailed datasets. Given

that the DWBC is a bottom-intensified current, and given the relative remoteness of the region,

observational data is sparse, as it is overmost of the ocean. Thereforewe concluded that a realistic

numerical simulation was the best way forward in this case.

A regional configuration (hereafter GBB) of ROMS [Shchepetkin and McWilliams, 2005], a primi-

tive equations (PE) numerical ocean model was designed and run, spanning the Newfoundland

Basin, and a large part of the surrounding North Atlantic Ocean. The model, its validation, and

its analysis in regards to DWBC leakiness, are described in [Solodoch et al., 2020a], and reproduced

in chapter 3 here.

The analytical approximations made in the PE, hydrostatic balance and Boussinesq approxima-

tion, are an excellent approximation in the mesoscale [McWilliams, 2006]. The horizontal (2 km)

and vertical resolution (50 layers) well resolved the mesoscale, and perhaps penetrated the sub-

mesoscale regime. Anobservations-basedbahtymetric product, and an (observations-constrained)

atmospheric reanalysis were used in the ROMS GBB configuration. The latter was used in the

determination of surface thermodynamic fluxes and wind stress. The implementation and the

main numerical parameterizations used (e.g., vertical mixing operators) are described in detail

in chapter 3.

7



The model was validated using freely available historic observations of the region. It compares

well qualitatively and quantitatively with the main regional circulation patterns. Several biases

do occur and are explored as well. Furthermore, we use the historical observations to validate

the analysis of leakiness phenomenology in the model.

We investigate both the phenomenology of the leakiness and its dynamical mechanisms. The

former are addressed based on the model results as well as the historical observational datasets.

The numerical results are analyzed in both Lagrangian and Eulerian perspectives. The former is

useful since leakiness is inmanyways a Lagrangian phenomenon, as even the time-mean circula-

tion is not homogeneous. A particle advection code was developed and used to create numerical

“float” trajectories (starting) from the DWBC, based on GBB model velocities. The numerical

Lagrangian experiments were modeled after the oceanic float experiments that delineated the

DWBC leakiness and interior pathways (section 1.2).

The dynamics are investigated within the model based on energy transformations, and potential

vorticity budget. Additionally, the comparison of Eulerian and Lagrangian circulation metrics,

allows drawing conclusions on the magnitude and local importance of eddy rectification. The

analysis results are comparedwith several previously suggested causes of leakiness, including our

own [Solodoch et al., 2016]. The possibility that loss of topographic control occurs due to variations

in the along isobath steepness and curvature, is considered as well. Finally, a simple and rough

scaling relation is suggested to examine the latter possibility.

1.5 Formation of Anticyclones above topographic depressions

In several North-Atlantic basins and seas, a semi-stationary anticyclonic vortex has been ob-

served repeatably for decades. That includes the Lofoten Basin Eddy [Köhl, 2007], the Rockall

Trough Eddy [Le Corre et al., 2019a], the Mann Eddy of the Newfoundland Basin [Mann, 1967], and
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the Iceland Basin repeated AC observations [e.g.,Martin et al., 1998]. In each of these regions, the

anticyclone occurs within bowl-like topographic depressions, with steep slopes in the basin pe-

riphery, and a relatively flat interior region. These basins are all of importance to AMOC transport

and/or AMOC related water mass conversions.

Additionally to the topographic similarity between these basins, they all reside in the North At-

lantic sub-polar region, where stratification is relativelyweak and Coriolis force relatively strong,

hence increasing the potential impact of topography on mesoscale circulation. Several previous

investigations have attributed various formation and sustenance mechanism in each case above,

involving various manifestations of topographic effects (chapter 4), based on regional numerical

simulations or observations. We therefore conducted idealized simulations based on the common

denominator in the different basins, i.e., bowl like topography and (although not exclusively in

our simulations) weak stratification. The idealized modeling allows exploring parameter sensi-

tivities of the emergent circulation patterns, to constrain the limits of validity of contributing

mechanisms. The model solves the primitive equations with one or two isopycnal layers. The

former allows investigation of depth-independent circulation, maximally sensitive to the topog-

raphy. The latter allows coarse probing of depth-dependence effects.

We conduct a large array of experiments varying relevant bathymetric and circulation parame-

ters. The emergence of a bowl-trapped anticyclone is studied to identify and quantify the mech-

anisms of formation and its controlling parameters. The robustness and long term evolution of

the circulation is studied aswell. The relation of emergent ACs to boundary currents in themodel

is examined as well using a vorticity budget. Depth dependence of the emergent anticyclone is

probed using two-layer experiment. Possible implications of the results for the observed recur-

rent ocean ACs are discussed. Additionally, the results are contrasted with previous theories of

topographic turbulence, where some differences are found.
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CHAPTER 2

Baroclinic Instability Of Axially-Symmetric Flow Over Sloping

Bathymetry

2.1 Introduction

Baroclinic instability is one of the main energy conversion processes to and from the mesoscale

in the ocean [McWilliams, 2008]. The baroclinic source of energy, available potential energy due to

tilting of isopycnals (constant density surfaces), is ubiquitous. Studies based on high-resolution

altimetry [Chelton et al., 2011] reveal that virtually all areas of the world’s oceans are sources

of mesoscale eddies, and therefore may be baroclinically unstable. A few of the many roles

mesoscale eddies play in the ocean are: supporting the forward and inverse turbulent energy

cascades, relaxing isopycnal slopes and thus restratifying the ocean, vertical transfer of momen-

tumvia the eddy form stress and transport, and ventilation and subdaction of tracers [McWilliams,

2008; Dong et al., 2014].

Baroclinic eddy variability peaks in the ocean near strong persistent currents [Chelton et al., 2011],

such as large boundary currents (e.g., the Gulf Stream). The task ofmeasuring and characterizing

eddy generation mechanisms is more challenging for deep (sub-surface intensified) boundary

currents, since they are much less amenable to remote sensing, and since even after decades of

oceanographic expeditions, in situ measurements are quite sparse. A prominent example is the

variability associated with the Deep Western Boundary Current (DWBC) in the Grand Banks (GB)

10



area, where eddy shedding and interior flow pathways are prevalent, as observational campaigns

using deep Lagrangian floats have revealed [Lavender et al., 2000, 2005; Bower et al., 2009].

The data presented in Bower et al. [2009] suggest that the horizontally curving slopes around the

GB and Flemish Cap (FC) are associated with increased eddy generation relative to less curved

portions. The curvature, convex or concave, we refer to is of isobaths, horizontal lines of con-

stant bottom depth. Thus “underwater capes” such as GBs and FC, are convex, while the area

between them is concave. Arguably, the data also visually suggest greater eddy generation at

convex sections of the continental slope than at concave sections. Their figure 1 suggests that

nearly all floats cross the 4000 meter isobath off-shore after drifting south to FC (where the con-

tinental slope is convex), most of which do not return to the DWBC further downstream. The

few floats that remain shoreward of the 4000 meter isobath, do not drift significantly further off-

shore until they reach the next convex segment, the GB. In the GB area more floats are shed from

the continental slope and cross the 4000 meter isobath. Lavender et al. [2005] found similar loss

of floats to the interior ocean at the vicinity of FC, as well as a maximum in eddy kinetic energy

there. Since the floats are generally drifting with the (baroclinic) DWBC, these findings raise the

possibility that the influence of coastal curvature on baroclinic instability could explain the lo-

calization of eddy generation around FC and GB. There aremany dynamically similar examples of

boundary currents leaking around convex continental slopes, such as the Mediterranean Over-

flow Water, which sheds Submesoscale-Coherent Vortices as it propagates around the Iberian

peninsula [McDowell and Rossby, 1978; McWilliams, 1985; Bower et al., 1997]. The California Under-

current also sheds submesoscale eddies at convex bends, for example at the mouth of Monterey

Bay [Stegmann and Schwing, 2007;Molemaker et al., 2015].

To study the influence of horizontal curvature in a controlled setting, we employ amodel of min-

imal complexity that admits baroclinic instability, a 2-layer quasi-geostrophic (QG) model, in an

annular channel. This model is a geometric variant of the straight-channel 2-layer QG model

presented in Pedlosky [1964]. The case of linear baroclinic instability in horizontally-uniform QG

flow over a flat bottomwas solved by Phillips [1951] with 2 vertical layers and by Eady [1949] with a
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continuous vertical coordinate. Blumsack and Gierasch [1972] extended the Eady model to include

a sloping bottom boundary. Mechoso [1980] similarly extended the Phillips model, and system-

atically investigated the influence of a sloping bottom boundary in both models. Pedlosky [1964]

derived integral stability constraints for instability, for a more general family of straight channel

flows over sloping bathymetry. Multiple investigators found that linear 2-layer baroclinic in-

stability models compared well with observed variability in boundary currents over continental

slopes in various regions, including the Denmark Straight Overflow [Smith, 1976], the Norwegian

Current [Mysak and Schott, 1977], and the Färoe-Shetland flow [Sherwin et al., 2006]. Phase speeds

and wavelengths were within ∼ 30% of observed values, and eigenmode structures were qualita-

tively similar to those derived from observations. Other authors have attempted to incorporate

this theory into eddy parameterizations over continental slopes [Stipa, 2004a; Isachsen, 2011].

Choboter and Swaters [2000] used a non-QG asymptotic derivation to analyze the baroclinic insta-

bility of a double-frontal dense water layer over sloping topography in an annulus. Their explicit

solutions are for a relatively narrow (1.5 Rossby radii apart at the bottom) coupled front on the

bottom of an otherwise stationary fluid, whereas we investigate wider and more horizontally-

uniform 2-layer flows here. Since wemodel wider currents, we use the approximation that isopy-

cnals do not intersect the bathymetry, consistent with the QG approximation. In addition, our fo-

cus here is deducing the influence of horizontal curvature on the instability, whereas Choboter and

Swaters [2000] aimed to compare an existing theory for rectilinear bottom-trapped flow against

laboratory experiments in a rotating tank.

A key measure of the effect of bathymetry on baroclinic instability is the ratio of the bathymet-

ric slope to the mean isopycnal slope (hereafter δ , see also figure 2.1, and §2.2.4). Blumsack and

Gierasch [1972] found that the wavelength of the most rapidly growing mode was lower (higher)

for negative (positive) δ , compared to the wavelength at δ = 0, and that themean flowwas stable

to all disturbances for δ > 1. Mechoso [1980] reported the same result for the analogous case in a

2-layer model. Isachsen [2011] used δ to characterize the topographic regime in both Eady model

calculations and in nonlinear three-dimensional simulations. We similarly use δ throughout this

12



paper to quantify the influence of the topographic slope.

The outline of this paper is as follows. In §2.2 we present themodel, and in §2.3 we derive integral

theorems that constrain the growth rates and phase speeds of unstable waves. In §2.4 we apply

the model to investigate instability of solid-body rotation over parabolic bathymetry, and estab-

lish a close analogy with straight channel uniform flow over linear bathymetry (supplemental

section 2.8.2, hereafter uniform rectilinear flow). In §2.5 we similarly, and in more detail, inves-

tigate instability of uniform azimuthal flow in an annulus over linear bathymetry. In §2.6 we

discuss the essential factors, independent of channel geometry, that make uniform rectilinear

flow and solid body rotation similar and uniform azimuthal flow quite different. We briefly dis-

cuss a few other experiments in support of the generality of these factors and their influence on

baroclinic instability. In §2.7 we discuss our results and their relevance to the stability of oceanic

boundary currents.

2.2 Linear model of baroclinic growth in an annular channel

A schematic drawing of the domain and model is shown in figure 2.1. We model a horizontally-

curved continental slope as an annular channel, in which the walls represent the shoreward and

offshore extents of a baroclinic slope-trapped current. We model the mean current as a 2-layer

axisymmetric azimuthal flow, a minimal discrete approximation to a continuous density stratifi-

cation. We prescribe different geostrophic mean velocities in each layer, creating a vertical shear

and thus allowing the possibility of baroclinic instability. The vertical axis is denoted by z, and

the reference frame is assumed to revolve around that axis to imitate the earth’s rotation (§2.2.1).
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2.2.1 Quasi-geostrophic model equations in cylindrical coordinates

In this section we present the QG potential vorticity (PV) and energy equations for axially sym-

metric mean flow and bathymetry. Quasigeostrophy is an approximation to fluid flow in a ro-

tating reference frame, which is often a good approximation for synoptic scale oceanic flows

(oceanic mesoscale), i.e., with characteristic lengthscales comparable with the Rossby radius of

deformation, defined below [Pedlosky, 1987]. The necessarily small parameter in the approxima-

tion is the Rossby number Ro = U /f X � 1, where f is the Coriolis parameter, U the velocity

scale andX the horizontal lengthscale. In these cases the Coriolis force approximately balances

the pressure gradient, and to first order in Ro, the evolution of the flow field is given by the

QG PV equations. The QG approximation also requires the bathymetry and isopycnals to exhibit

small variations relative to their respective domain-wide averages. While these conditions are

not necessarily satisfied over continental slopes, previous studies suggest that QG captures the

essential features of large-scale flows over topographic steepnesses typical of the ocean’s conti-

nental slopes [Williams et al., 2010; Stewart et al., 2011, 2014; Poulin et al., 2014; Stern et al., 2015].

We use the f -plane approximation [Pedlosky, 1987], in which the reference frame revolves around

the vertical axis with the same rate everywhere in the domain, neglecting the effect of the Earth’s

curvature on the Coriolis acceleration. This isolates the effect of continental slope curvature,

and thereby simplifies our analysis. This is partially justified by the fact that, dynamically, a

topographic gradient induces a similar dynamical effect on rotating flow as does the latitudinal

gradient of the rotation rate. This so-called topographic β effect is usually much larger than the

planetary β effect in the local dynamics of slope-trapped currents.

We write the 2-layer QG PV equations [Pedlosky, 1964] in cylindrical coordinates,
[
∂

∂t̃
+ ũ1r

∂

∂r̃
+
ũ1ϕ

r̃

∂

∂ϕ̃

] [
∇̃2ψ̃1 −

1
L21

(ψ̃1 − ψ̃2)
]
= 0, (2.1a)

[
∂

∂t̃
+ ũ2r

∂

∂r̃
+
ũ2ϕ

r̃

∂

∂ϕ̃

] [
∇̃2ψ̃2 −

1
L22

(
ψ̃2 − ψ̃1 −

д′

f0
η̃b

)]
= 0. (2.1b)

The upper and lower layer variables are denoted by the subscripts 1 and 2 respectively. Tildes
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Figure 2.1: Schematic drawing of the domain boundaries, bathymetry and mean circulation.

(left) Top-down view of the annular channel, with dashed lines representing isobaths or mean

streamlines. (right) Along-slope view of the mean flow configuration. The dashed line repre-

sents the isopycnal profile z = ZI (r ), the interface between the two fluid layers. Two partic-
ular bathymetry (ηb(r )) and isopycnal profile pairs are plotted here, linear and parabolic in r ,
corresponding to uniform azimuthal flow and solid body rotation, respectively. The isopycnal

and bathymetric profiles for uniform rectilinear flow are identical to those of uniform azimuthal

flow, i.e., linear in the cross-channel coordinate. A rigid lid is assumed, consistent with stratified

quasi-geostrophy. The δ parameter, i.e., ratio of bathymetric to isopycnal slopes, is negative in

both specific cases displayed here, although both signs are considered in this study.

are used since we will later nondimensionalize the equations and use variables without tildes.

The annular channel interior and exterior radii are denoted by R̃i and R̃e respectively. The radial

(r̃ ) and azimuthal (ϕ̃) velocity components are related to the streamfunction ψ̃j by
�
ũjr , ũjϕ

�
=(

−r̃−1∂ψ̃j/∂ϕ̃, ∂ψ̃j/∂r̃
)
. Vorticity ζ̃j is related to the streamfunction by ζ̃j = ∇̃2ψ̃j . Other param-

eters include the gravitational accelerationд, the density ρj , the reduced gravityд′ = д
ρ2−ρ1
ρ1

, the

average layer thicknessesHj , the reference Coriolis parameter f0, the Rossby radii of deformation

Lj =
√
д′Hj/f0, and the bottom elevation η̃b(r̃ ). For boundary conditions, we require that there

be no flow normal to the inner and outer walls, ∂ψ̃j/∂ϕ̃ = 0 |r̃=R̃i ,R̃e .

To study the instability of currents flowing parallel to the bathymetric isobaths, we assume a
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geostrophic, axially-symmetric, azimuthal mean flow Ũjϕ(r̃ ) = ∂ψ̃ j/∂r̃ . This is an exact steady

solution of (2.1a)–(2.1b). We partition the streamfunction into mean and perturbation compo-

nents, ψ̃ j and ψ̃
′
j respectively. Linearizing the QG PV equations (2.1a)–(2.1b) yields a linear system

of equations for the perturbation streamfunctions,



∂

∂t̃
+
Ũ1ϕ

r̃

∂

∂ϕ̃



[
∇̃2ψ̃ ′1 −

1
L21

(ψ̃ ′1 − ψ̃ ′2)
]
−
1
r̃

∂ψ̃ ′1

∂ϕ̃

∂Q̃1
∂r̃
= 0, (2.2a)



∂

∂t̃
+
Ũ2ϕ

r̃

∂

∂ϕ̃



[
∇̃2ψ̃ ′2 −

1
L22

(ψ̃ ′2 − ψ̃ ′1)
]
−
1
r̃

∂ψ̃ ′2

∂ϕ̃

∂Q̃2
∂r̃
= 0, (2.2b)

Q̃j = ∇̃
2ψ̃j −

1
L2j

[
(−1)j

(
ψ̃2 − ψ̃1

)
− ∆j2

д′

f0
η̃b

]
. (2.2c)

Here ∆j2 = 0,1 for j = 1,2 respectively.

The model describes a concave (convex) continental slope is if η̃b(r̃ ) is monotonically increasing
(decreasing) with radius. A given convex (concave) along-slope flow can be transformed to the

analogous concave (convex) along-slope flow by a radial reflection P(r̃ − R̃i)→ P(R̃e − r̃ ), for any
scalar radial property P(r̃ − R̃i) of the mean state, such as bathymetry η̃b(r ) or isopycnal profile
Z̃I (r̃ ).

The baroclinic growth rate in uniformrectilinearflow [Mechoso, 1980] peaks close to thewavenum-

ber corresponding to thefirst baroclinic Rossby radius of deformation. Thereforewenon-dimensionalize

the equations by scaling r̃ ∼ L, where

L =

√
д′H1H2

f 20 (H1 + H2)
. (2.3)

We denote the velocity scale (to be specified later) by U . The non-dimensional variables are

defined by

t = (L/U )−1t̃ , Ujϕ = U
−1Ũjϕ , ηb = (ULf0/д

′)−1η̃b , r = L−1r̃ . (2.4)

For notational convenience we also define Fj = L2/L2j = 1 − Hj/(H1 + H2), which measures the
fraction of the total depth that is not occupied by layer j. Although F1 and F2 are not independent,

we shall keep both parameters to preserve some symmetry in the presentation of the equations.
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2.2.2 Method of solution

Inwhat followswe drop the prime notation from the perturbation streamfunction for ease of pre-

sentation. The eigenvalue problem is derived by decomposing the perturbation streamfunction

into normal azimuthal and temporal modes,

ψj = Re
�
Ψj(r ) exp(i(mϕ − σt))	 . (2.5)

The notation Re {} indicates the real part of the expression in the curly braces, and i ≡ √−1.
The azimuthal wavenumber is denoted asm, and σ is the nondimensional complex frequency

(dimensional σ̃ scales like (U /L) by (2.4)). The real and imaginary parts ofσ are the frequency and
the growth rate, respectively. The no-normal flow boundary condition (stated above) simplifies

to Ψj |r=Ri ,Re = 0. Writing ∇2r = ( ∂∂r + 1
r ) ∂∂r , the linear vorticity equations (2.2a)–(2.2b) may be

simplified as
[
U1ϕ

r
m − σ

] [
∇2rΨ1 −

m2

r 2
Ψ1 − F1(Ψ1 − Ψ2)

]
−
m

r
Ψ1
∂Q1
∂r
= 0, (2.6a)

[
U2ϕ

r
m − σ

] [
∇2rΨ2 −

m2

r 2
Ψ2 − F2(Ψ2 − Ψ1)

]
−
m

r
Ψ2
∂Q2
∂r
= 0, (2.6b)

∂Qj

∂r
=
∂

∂r

(
∂

∂r
+
1
r

)
Ujϕ − Fj(−1)j

[�
U2ϕ −U1ϕ

�
− ∆j2

∂ηb
∂r

]
. (2.6c)

In most cases presented below we solve the eigenproblem posed by (2.6a)–(2.6c) numerically. We

discretize equations (2.6a)–(2.6b) using second-order centered finite differences and solve the

resulting matrix eigenvalue problem using the “eig” function in Matlab, which uses the QZ al-

gorithm [Moler and Stewart, 1973]. The grid resolution is dr = 0.025, giving 40 grid points per

Rossby radii, thus resolving well the spatial scales normally associated with QG dynamics. Veri-

fication of the numerical setup including convergence tests and comparison with some analytic

results are presented in supplemental section 2.8.1. The standard experiment parameters are:

F1 = F2 = 1/2, Ri = 3, Re = 10. The chosen channel width (Re − Ri) is motivated by the widths
of deep western boundary currents, which are typically at least a few Rossby radii [Xu et al., 2015;

Stommel and Arons, 1972]. Similar bathymetric curvature radii (in the range of 3−10 Rossby radii)
17



are found around the Grand Banks and Flemish Cap. Other parameter ranges and sensitivity tests

are discussed in supplemental section 2.8.1.

2.2.3 Energy equation

To study the modes of energy conversion from the mean state to perturbations, we derive the

volume-integrated energy equation. The general method is standard [Pedlosky, 1987]: multiply-

ing equations (2.2a) and (2.2b) byD1ψ1 andD2ψ2 respectively, adding the two resulting equations

together, integrating in the entire domain, and using several integrations by parts and the no-

normal flow boundary conditions. We defined the relative layer thicknesses Di , by D1 = F2 =

H1/(H1 + H2) and D2 = F1 = H2/(H1 + H2). In addition, one line integral over the domain
boundaries,

∑2
j=1Dj

∮
ψ ′j

∂2

∂t∂nψ
′
jds (where n is the normal to the boundary), is required to van-

ish (McWilliams, 1977, specifically equation 13), for consistency with the analogous asymptotic

expansion (in Rossby number) of the Primitive Equations energy balance. The derived energy

equation in non-dimensional variables is

∂

∂t
E =

∂

∂t




2∑
j=1

EKEj + EPE


=

2∑
j=1

RSj + PEC, (2.7a)

EKEj =
1
2
Dj

" �
∇ψj

�2
r dr dθ , EPE =

1
2
D1D2

"
(ψ1 −ψ2)2 r dr dϕ, (2.7b)

RSj = Dj

" (
r
∂

∂r

Ujϕ

r

) (
1
r

∂ψj

∂ϕ

) (
∂ψj

∂r

)
r dr dϕ (2.7c)

PEC = D1D2

" �
U1ϕ −U2ϕ

�
ψ1
1
r

∂ψ2
∂ϕ

r dr dϕ. (2.7d)

The energy of perturbations to the mean flow (E) is a sum of the so-called eddy kinetic energy

(
∑
EKEj) and eddy potential energy (EPE). Thus energy tendency ∂tE is balanced by the volume-

integrated Reynolds Stresses work (
∑
RSj) and by Potential Energy Conversion (PEC), i.e., con-

version rates from mean kinetic and mean potential energy, respectively [Pedlosky, 1987]. When

the net perturbation energy tendency (i.e., left hand side of (2.7a)) is positive (i.e, perturbations
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grow), we may define a purely baroclinic instability as one where the Reynolds stresses volume-

integrated work is zero, as occurs in uniform rectilinear flow [Pedlosky, 1987]. We later show that

when RSj do not vanish, they in fact are negative, i.e., decrease the perturbation growth rate in

all cases we study here.

Bathymetry does not enter the energy equation explicitly: it does contribute to energy exchange

locally, but integrates to zero over the entire domain. The energy equation has zero energy ten-

dency for an azimuthally constant perturbation, and therefore suchperturbations are necessarily

neutral. RSj are identically zero when the radial strain,

Sr ≡ r
∂

∂r

Ujϕ

r
, (2.8)

is identically zero, which in an annular channel occurs everywhere only for flow in solid-body

rotation. Therefore solid body rotation is the only annular flow that has zero Reynolds stresses

volume-integrated work for any infinitesimal perturbation. If Sr is nonzero anywhere then there

exist many particularψ (r ,ϕ) perturbation shapes that make RSj nonzero.

2.2.4 Mean flow profiles

Throughout this paper we compare our results against the case of uniform flow in a straight

channel over linear bathymetry [Pedlosky, 1964;Mechoso, 1980], which is described in supplemen-

tal section 2.8.2. We hereafter refer to this case as uniform rectilinear flow for short. In the

annular channel, we investigate in detail two specific configurations of the bathymetry and the

mean azimuthal flow. Since the mean flows we prescribe are geostrophic, the isopycnal profile

ZI (r ) is determined by the Margules relation [Cushman-Roisin, 1994]. In dimensional variables,

Ũ1ϕ − Ũ2ϕ = −
д′

f

∂Z̃I

∂r̃
. (2.9)

The first case, solid body rotation, is motivated by the fact that both uniform rectilinear flow

and solid-body rotation have zero strain rate, defined for solid body rotation by (2.8), and thus
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it is a simple starting point from which to study the effect of horizontal curvature. We assume

parabolic bathymetry to simplify the analysis, though we later briefly explore linear bathymetry

too (see §2.6). Formally, we define our solid body rotation case as

Ujϕ = Ωjr , ZI ∼ −(Ω1 − Ω2)r 2, ηb =
1
2
pr 2, (2.10)

where Ωj are the constant angular velocities of the flow in each layer, and p is a quadratic coef-

ficient for the bathymetry.

The second case is uniform azimuthal flow, where we assume constant mean azimuthal velocity

everywhere. This is similar to uniform rectilinear flow in that the speed is uniform, and the

isopycnals are linear in the cross-flow coordinate (r ). It is different in that the velocity direction

varies, i.e., speed is everywhere azimuthal but the azimuthal direction varies with the azimuthal

angle ϕ. We take the bathymetry to be linear as well (as in the uniform rectilinear flow case),

though we later briefly explore parabolic bathymetry as well (see §2.6). Formally, we define our

uniform azimuthal flow case as

Ujϕ = constants, ZI ∼ −(U1ϕ −U2ϕ)r , ηb = br , (2.11)

whereU1ϕ andU2ϕ are the azimuthal velocities andb is the linear coefficient for the bathymetry.

We note that in uniform azimuthal velocity Ri cannot be chosen to approach r = 0, both be-

cause the azimuthal velocity must be zero in the r → 0 limit, and because even before the actual

limit, the centrifugal force becomes larger than the Coriolis force, in violation of the QG con-

ditions. The balance between the two forces results in a local Rossby number, Ro = U /f r̃ =

U /(r √
д′H1H2/(H1 + H2)). For example, taking H1 = H2 ≈ 500m, д′ ≈ 10−3д, andU ≈ 0.1m/s ,

we have r > 1 (and Ri > 1) as an approximate condition for Ro = o(1). Therefore our choice of
Ri = 3 (§2.2.2) is also consistent with the QG approximation.

We define themean vertical rotation rate shear and velocity shear for solid body rotation and for

uniform azimuthal flow as follows: Ωs = Ω1 − Ω2, andUs = U1ϕ −U2ϕ , respectively. Motivated

by the fact that the baroclinic instability growth rate in uniform rectilinear flow varies linearly
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in the vertical velocity shear [Mechoso, 1980], we choose the velocity scaleU = LΩ̃s for solid body

rotation, andU = Ũs for uniform azimuthal flow. We assume everywhere thatU > 0 (and hence

ZI (r ) is monotonously decreasing). This assumption is general since we explore both positive
and negative δ and can then deduce corresponding results forU < 0 results by symmetry (see

§2.5.3).

Similarly we define for solid body rotation and uniform azimuthal flow, the barotropic mean

rotation rate and velocity as follows: Ωbt =
1
2(Ω1 + Ω2), andUbt =

1
2(U1ϕ + U2ϕ), respectively.

In fact Ωbt (orUbt ) is exactly the barotropic component only if mean layer thicknesses are equal,

but for ease of notation we refer to it as the barotropic component in what follows.

2.3 Integral constraints on baroclinic growth

The classical theorem by Rayleigh [1880] on flow instability conditions was adapted by Pedlosky

[1964] to the straight-channel rotating-baroclinic instability problem. It gives necessary (though

not always sufficient) conditions for instability to occur, using only knowledge of the mean flow.

Equivalently, the theorem provides a range of values for the physical parameters over which lin-

ear perturbations cannot grow. Here we adapt Pedlosky’s derivation to the annular channel case,

and use it to derive stability bounds for the profiles described in §2.2.4. The derivation and the

results remain unchanged if Ri → 0 and also if Re → ∞, and so are also applicable to other

phenomena, e.g., geophysical vortices [Olson, 1991; Paldor and Nof , 1990; Dewar and Killworth, 1995;

Benilov, 2005].

While qualitatively similar instability theorems have been derived in the literature for a variety

of flows [Pedlosky, 1970], we were unable to find this derivation or result elsewhere for azimuthal

flow (QG or not) over bathymetry with no further constraints (e.g. thin layers, flat bottom). We

also derived bounds on the phase speed and on the growth rate (semi-circle theorem, Pedlosky
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1964) for general annular 2-layer flow, but we defer their presentation to supplemental section

2.8.3.

2.3.1 Derivation of the Rayleigh theorem

Our starting point is the modal PV equations (2.6a)-(2.6b). We define the complex phase speed

c = σ/m, and its real (cr ) and imaginary (ci) parts. By (2.5), only unstable eigenmodes have a non-

zero ci , so for unstable eigenmodes we may divide the equation for the layer j bym(Ujϕ/r − c).

∇2rΨ1 −
m2

r 2
Ψ1 − F1(Ψ1 − Ψ2) − 1

U1ϕ − cr
Ψ1
∂Q1
∂r
= 0, (2.12a)

∇2rΨ2 −
m2

r 2
Ψ2 − F2(Ψ2 − Ψ1) − 1

U2ϕ − cr
Ψ2
∂Q2
∂r
= 0. (2.12b)

We multiply the first and second of these last two equations by D1Ψ∗1 and D2Ψ
∗
2 , respectively

(where ∗ denotes complex conjugate), and integrate with the volume element (rdr ) between the
domain boundaries Ri and Re . The first (Laplacian) term can be simplified via integration by

parts, making use of the boundary conditions Ψj(Ri) = Ψj(Re) = 0. The result is
∫ Re

Ri



2∑
j=1

Dj

�����
∂

∂r
Ψj

�����

2

+

2∑
j=1

Dj
m2

r 2
�
Ψj

�2
+ D1D2 |Ψ1 − Ψ2|2


r dr +

∫ Re

Ri



2∑
j=1

Dj

Ujϕ − cr

∂Qj

∂r

�
Ψj

�2

r dr = 0. (2.13)

The imaginary part of this expression is

ci

∫ Re

Ri

2∑
j=1

Dj
�
Ujϕ − cr

�2
∂Qj

∂r

�
Ψj

�2
r 2dr = 0. (2.14)

For an unstable mode ci is nonzero, and so the last integral must vanish. Therefore a necessary

condition for instability (hereafter, the Rayleigh criterion) is that the mean PV gradient must be

somewhere negative and somewhere positive in the domain interior.
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Another necessary condition for instability can be foundusing the real part of (2.13). Substituting

(2.14) into (2.13), eliminates ther terms proportional to cr and ci , leaving∫ Re

Ri

2∑
j=1

Dj
�
Ujϕ − cr

�2
�
Ψj

�2
(
Ujϕ
∂Qj

∂r

)
r dr =

−

∫ Re

Ri



2∑
j=1

Dj

�����
∂

∂r
Ψj

�����

2

+

2∑
j=1

Dj
m2

r 2
�
Ψj

�2
+ D1D2 |Ψ1 − Ψ2|2


r dr < 0. (2.15)

Therefore, another necessary instability condition (hereafter, the Fjortoft criterion) can be stated

as: at least one of the products U1ϕ
∂Q1
∂r and U2ϕ

∂Q2
∂r , must be negative inside at least part of the

domain (Ri ,Re).

Both the first and second conditions as phrased here are the same as found in a straight-channel

[Pedlosky, 1964]. These (straight channel) conditions are used frequently to identify unstable flow

regimes in boundary currents, as well as other ocean and atmosphere flow regimes.

2.3.2 Stability bounds for solid-body rotation and uniform azimuthal flow

For solid body rotation, using the same notation as [Mechoso, 1980] the ratio between bathymetric

slope and isopycnal slope is the bathymetric parameterδ = pr/Ωsr = p/Ωs . Vorticity is constant

and hence the PV gradients are simply

∂Q1
∂r
= −F1r ,

∂Q2
∂r
= F2 (1 − δ ) r . (2.16)

By the Rayleigh criterion instability is possible only if the PV gradient changes sign, which is seen

from (2.16) to occur only if δ < 1, exactly as in uniform rectilinear flow.

For uniform azimuthal flow, in non-dimensional variables, U1ϕ = U2ϕ + 1. The bathymetric

parameter is now δ = −b, and from equation (2.6c),

∂Q1
∂r
= −

1
r 2

�
U2ϕ + 1

�
− F1,

∂Q2
∂r
= −

1
r 2
U2ϕ + F2 (1 − δ ) . (2.17)
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Using (2.17) in the instability criteria (§2.3.1), it follows that a necessary condition for instability

is that, at least somewhere inside the domain,

δ < δ0(r ) ≡ 1 − 1
F2

U2ϕ

r 2
. (2.18)

Equivalently, a sufficient condition for stability is δ > max(δ0), similarly to the uniform recti-

linear flow case which is stable for δ > 1. Note that δ0 = 1 exactly if U2ϕ = 0, and δ0 ≈ 1 if
1
F2

|U2ϕ (r )|
r 2 = o(1). Unlike the case in uniform rectilinear flow, the stability threshold depends on

themean velocitymagnitude, i.e., the cutoff bathymetric parameter, δ0, increases (decreases) for

negative (positive)U2ϕ . As evident from the Rayleigh criterion and from (2.17), the difference is

due to the non-zero mean relative vorticity caused by curved streamlines.

We add that forU2ϕ < −1− F1R2i , instability is not prohibited, irrespectively of the δ value, since

a PV gradient sign change occurs within a single layer. However, since the mean flow becomes

almost barotropic, that regime is less relevant to this study.

2.4 Stability of flows in solid-body rotation

In this section, we investigate baroclinic instability of flow in solid body rotation, and show that it

bears strong dynamical similarity to baroclinic instability of uniform rectilinear flow. The isopy-

cnal cross-flow profile for solid-body rotation is parabolic (§2.2.4), and we specifically choose to

investigate the flow over a cross-flow profile similar to the isopycnal profile, namely a parabolic

bathymetry profile. This simplifies the PV equations significantly, and allows for some analytical

results which help with more general interpretation of the physical system. Linear bathymetry

does not qualitatively change the results, as discussed in §2.6.
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In the solid body rotation case, equations (2.6a)-(2.6b) are,
[(
Ωbt +

1
2

)
m − σ

] [
∇2rΨ1 −

m2

r 2
Ψ1 − F1(Ψ1 − Ψ2)

]
+mF1Ψ1 = 0, (2.19a)

[(
Ωbt −

1
2

)
m − σ

] [
∇2rΨ2 −

m2

r 2
Ψ2 − F2(Ψ2 − Ψ1)

]
+mF2Ψ2 [−1 + δ ] = 0. (2.19b)

Since Ωs does not appear explicitly, it follows from the scaling in section 2.2.4 that the dimen-

sional growth rate and frequency depend linearly on the dimensional angular shear Ω̃s . In addi-

tion, the variables Ωbt and σ appear only together, in the expression (Ωbtm − σ ) ≡ σ0. Solving
(2.19) for σ0 would correspond to a σ solution Doppler-shifted by Ωbtm. The only effect of the

barotropic velocity is a real frequency Doppler-shift, with no influence on growth rate or stream-

function structure. Therefore to derive the dispersion relation we may take Ωbt = 0, and after

deriving it, just Doppler-shift the frequency back by adding to it the term Ωbtm.

The terms in the left brackets may vanish only for neutral modes. In this section we are only

interested in modal instability (non-normal growth is covered in §2.5.2) and hence assume that

the terms in the left brackets do not vanish and rearrange (2.19) to obtain a pair of coupled Bessel

equations,

∇2rΨ1 −
m2

r 2
Ψ1 + α1Ψ1 + F1Ψ2 = 0, (2.20a)

∇2rΨ2 −
m2

r 2
Ψ2 + α2Ψ2 + F2Ψ1 = 0, (2.20b)

α1 = F1

1
2m + σ
1
2m − σ

, α2 = F2

�1
2 − δ

�
m − σ

1
2m + σ

. (2.20c)

The solution can be found in terms of Bessel functions of the first kind Jm and of the second

kind Ym. A complete and orthogonal set of Bessel functions in the radial domain (Ri ,Re) can be
found as the solution set of the Bessel equation in the same geometry with Dirichlet boundary

conditions. This set is given by Pm(µir ),

Pm(µr ) = Jm(µr ) − Jm(µRe)
Ym(µRe)Ym(µr ), (2.21)
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provided that µi are determined from

Jm(µiRi)Ym(µiRe) − Ym(µiRi)Jm(µiRe) = 0. (2.22)

The general solution to (2.20) may be then expanded in the Fourier-Bessel series,

Ψj = Σ∞i=1Aj,iPm(µir ). (2.23)

The amplitudesAj,i are constants. Plugging the general solution (2.23) into (2.20), using the iden-

tity that a Bessel function of orderm satisfies,∇2rPm(µr )−m2

r 2 Pm(µr ) = −µ2Pm(µr ), and exploiting
the orthogonality of the Pm functions, one finds that the solution (2.23) is consistent, under the

following condition on the coefficients of each Bessel function,

(α1 − µ2i )A1,i + F1A2,i = 0, (2.24a)

(α2 − µ2i )A2,i + F2A1,i = 0. (2.24b)

Requiring the determinant to disappear we find, after some algebra, the solid body rotation dis-

persion relation, relating the complex frequency σ to the radial wavenumber-like parameter µi ,

σi =Ωbt +m
µ2i (F2 − F1 − F2δ ) −mF1F2δ +

√
D

2µ4i + 2µ
2
i (F1 + F2)

, (2.25a)

D

m2 =µ
8
i + (2F2δ ) µ6i +

�
−4F1F2 + 2F1F2δ + F 22δ

2� µ4i

+
�
−4F 22F1δ + 2F

2
2F1δ

2� µ2i + F 21F 22δ 2. (2.25b)

The main result of this section is that the solid body rotation dispersion relation (2.25) is isomor-

phic to the uniform rectilinear flow dispersion relation (2.31), showing that the dynamics are in

some sense identical, although the geometries are different. The mapping between the disper-

sion relations is symbolic (and simple), with (Ωbt ,m,µ) → (Vbt ,l ,K). Here k , l , K =
√
k2 + l2,

and Vbt , are the uniform rectilinear flow cross-stream, down-stream, total wavenumbers, and

mean barotropic velocity, respectively (see supplemental section 2.8.2). Since the dispersion re-

lations are analogous, the dependences of the growth rates and frequencies on the dimension-

less parameters are similar, though not identical since the allowed µi are determined from (2.22),
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while the allowedK are determined from an equation with harmonic functions instead of Bessel

functions.

In figure 2.2 we display numerical dispersion curves (growth rates and phase speeds as a function

of wavenumberm) for solid body rotation and for uniform rectilinear flow, setting δ = −0.2 for

the purpose of illustration. We normalize the azimuthal wavenumber by the mean radial coordi-

nateR = (R1+R2)/2,m̂ =m/R to provide an approximate analogue of the Cartesianwavenumber
in uniform rectilinear flow. The uniform rectilinear flow and solid body rotation curves are very

close to each other, and the main qualitative features are identical for both cases: (i) two eigen-

modes exist in each case (for other δ values either 1 or 2 eigenmodes but nomore exist per down-

stream wavenumber). (ii) The global maximum in growth rate occurs at a wavenumber slightly

smaller than 1 (in dimensional variables l ≈ 1/L). (iii) The phase speed has the opposite sign toδ .

This is in fact true for all δ values and is explained by a resonance condition [Pichevin, 1998] with

topographic Rossby waves (which propagate with shallow water to their right in the northern

hemisphere). Panels (c) and (d) show a typical first (fastest growing) eigenmode streamfunction

for solid body rotation. The streamfunction is centered in the channel, and no mean horizontal

tilt (relative to the cross-stream direction) is present in the circulation cells. The second fastest

growing eigenmodes (not shown) have two periods in the radial axis, rather than one as the first

mode, and are generally similar to the first mode in that they have no horizontal tilt.

Figure 2.3b shows the solid body rotation growth rate as a function of bothm and δ . Again, the

growth rate values are almost identical to the uniform rectilinear flow case (figure 2.3a). We also

confirmed numerically that (as in uniform rectilinear flow) there is no growth rate dependence

on barotropic velocity. Thus we can summarize the solid body rotation case as follows: (i) The

dispersion relation is isomorphic to the previously-derived uniform rectilinear flow dispersion

relation, thus demonstrating that the dynamics are essentially identical. The growth rate is inde-

pendent of the barotropic velocity and linearly dependent on the vertical shear. Thus, (ii) despite

different geometries (affecting the boundary conditions) in solid body rotation and in uniform

rectilinear flow, the growth rates are very similar (figure 2.3a and b). (iii) Both cases have van-
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ishing strain rates and RSj and are thus pure baroclinic instabilities.

2.5 Stability of uniform azimuthal flow

In this section we explore the stability of uniform azimuthal flow over bathymetry that varies

linearly with radius, as defined in §2.2.4.

2.5.1 Normal modes

In figure 2.3, we plot growth rate (GR) as a function of normalized wavenumber m̂ and of δ for

uniform azimuthal flow (each panel for a different Ubt value), and for reference also the GR of

the uniform rectilinear flow and solid body rotation cases. Note that at each point in (m̂,δ ) space
there may be multiple unstable modes, so we have plotted the growth rate of the most unsta-

ble mode in each case. While for zero barotropic flow Ubt = 0 the growth rate is similar to

uniform rectilinear flow, nonzero barotropic velocity results in very different GR(m̂,δ ) depen-
dence. In contrast, uniform rectilinear flow and solid body rotation have no barotropic velocity

dependence. Additional local maxima in GR(m̂,δ ) appear in uniform azimuthal flow for nonzero
barotropic velocity.

The streamfunctions for several unstable uniform azimuthal flow modes are presented in figure

2.4. Two geometrical differences from uniform rectilinear flow and solid body rotation (see ex-

amples in figure 2.2) are evident: (a) While in solid body rotation streamfunctions are always

centered in the channel, the streamfunctions in uniform azimuthal flow cases with nonzeroUbt

are shifted off the center of the channel. (b)While in uniform rectilinear flow the streamfunction

circulation cells axes are aligned with the radial direction, those in uniform azimuthal flow cases

with nonzeroUbt are often tilted. Reynolds stress work varies linearlywith the strain and the tilts
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Figure 2.2: Properties of unstable modes for mean solid body rotation over parabolic bathymetry

and for mean uniform rectilinear flow over linear bathymetry, with δ = −0.2 in both cases.

(a) Growth rate vs wavenumber and (b) phase velocity vs wavenumber (all dimensionless). In

both cases two independent eigenmodes are found. The first (second) mode is presented with

solid and dashed/dotted lines for solid body rotation (SBR) and uniform rectilinear flow (URF),

respectively. The abscissa is downstream Cartesian wavenumber (nondimensional values). In

solid body rotation the downstream wavenumber is defined as l ≈ m̂ = m/R. Herem is the

azimuthal wavenumber and R is the radius of the channel center. In panel (b) the (real) phase

speed is approximately Doppler-corrected and normalized to Cartesian values (for comparison

with uniform rectilinear flow) via ĉr = crR − Ωbt . (c,d) Upper and lower layer streamfunctions,

respectively, for the first (fastest growing) eigenmode of solid body rotation with wavenumber

m = 4 (m̂ = 0.615). The inner and outer circles mark the domain boundaries at r = Ri and Re ,

respectively. The lines intercepting the boundaries are the zero contours of the streamfunctions,

while positive (negative) streamfunction contours are denoted by full (dashed) closed curves. The

absolute value of contours is not given since eigenmode amplitudes are arbitrary unless specified

by initial conditions.
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Figure 2.3: Linear growth rates as a function of along-flowwavenumber and the ratio of the bathy-

metric to isopycnal slopes. All values are non-dimensionalized as described in §2.2.1. Wheremore

than one unstable modes exist, the highest growth rate is shown. (a) Mean uniform rectilinear

flow (URF) over linear bathymetry, withwavenumber l . In all other panels thewavenumber is the

normalized azimuthal wavenumber m̂, defined in §2.4. (b) Mean solid body rotation (SBR) over

parabolic bathymetry. (c–f) Mean uniform azimuthal flow (UAF) over linear bathymetry, with

with the mean barotropic velocity equal to (c)Ubt = 0, (d)Ubt = −1, (e)Ubt = 1, and (f)Ubt = 2.

In contrast to uniform azimuthal flow, the growth rates in the uniform rectilinear flow and solid

body rotation cases do not depend on the barotropic velocity.
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Figure 2.4: Mean uniform azimuthal flow, selected unstable eigenmodes. Upper (lower) layer

streamfunctions are shown in the upper (lower) panels. The bathymetric slope parameter is

δ = −0.2, and the azimuthal wavenumber ism = 4. (a,b)Ubt = 0, fastest growing eigenmode.

(c,d)Ubt = −1, fastest growing eigenmode. (e,f)Ubt = −1, third-fastest growing eigenmode. The

inner and outer circles mark the domain boundaries at r = Ri and Re , respectively. The lines

intercepting the boundaries are the zero contours of the streamfunctions, while positive (nega-

tive) streamfunction contours are denoted by full (dashed) closed curves. The absolute value of

contours is not given since eigenmode amplitudes are arbitrary unless specified by initial condi-

tions.
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of the circulation axes, and vanishes when the tilt is zero [Pedlosky, 1987]. In polar coordinates,

RSj ∼ −(Sr )j
(
∂r

∂ϕ

)
ψj

. (2.26)

The uniform azimuthal flow streamfunction for the first mode atUbt = 0 (left panel) has zero or

very small tilt, implying insignificant Reynolds stresses work. The center and right panels (for

the first and third eigenmodes withUbt = −1) show progressively higher positive tilts, implying

higher negative RSj , since by (2.8) strain rate is positive for constant negative velocity.

The local maxima in the panels (d)-(f) of figure 2.3 are due to changes in the number and charac-

ter of growing eigenmodes withUbt value. This can be seen in figure 2.5, where we plot several

properties for all uniform azimuthal flow growing eigenmodes at δ = −0.2 andUbt = 1 (compare

with solid body rotation and uniform rectilinear flow, figure 2.2). We find that up to four unsta-

ble eigenmodes can co-exist at a given wavenumber, whereas no more than two co-existed for

uniform rectilinear flow and solid body rotation. While in uniform rectilinear flow the second

mode has considerably lower growth rate than the first, in uniform azimuthal flow they have

similar maximum values but still peak at different wavenumbers, thus explaining the multiple

maxima observed in figure 2.3 panels (d)-(f). The growth rates of third- and fourth-most unstable

modes are considerably smaller. In figure 2.5(c) we plot the eigenmodes’ phase speeds, doppler-

corrected and normalized via ĉr = crR − Ubt to compare approximately with equivalent values

in uniform rectilinear flow. While uniform rectilinear flow has waves propagating with shallow

water to their right (prograde), in uniform azimuthal flow the secondmost rapidly growingmode

is retrograde, and eigenmodes 3 and 4 have much smaller propagation speeds ĉr .

Themiddle panel of figure 2.5 shows the ratios of volume-integrated Reynolds stresswork (ΣjRSj)

to potential energy conversion (PEC), which are negative in all cases. In contrast, uniform recti-

linear flowhas zeroRSj values in all cases. Thus the uniform azimuthal flowunstable eigenmodes

are largely baroclinic modes whose growth rates are somewhat diminished by Reynolds stresses

work. The two extra eigenmodes that appearwith non-zero barotropic velocity havemuchhigher

ΣjRSj to PEC ratio magnitudes, consistent with their very low growth rates. These results are

also consistent with the tilts of streamfunctions shown in figure 2.4, and are qualitatively similar

32



Figure 2.5: Mean uniform azimuthal flow with barotropic velocity Ubt = 1 and bathymetric to

isopycnal slopes ratio δ = −0.2. (a) Growth rate, (b) ratio of Reynolds stresses volume-integrated

work to potential energy conversion, and (c) Doppler-corrected Cartesian phase speed vs normal-

ized azimuthal wavenumber m̂ = m/R, for all growing eigenmodes. In panel (c) the (real) phase

speed is Doppler-corrected and normalized to Cartesian values by ĉr = crR − Ubt , to facilitate

comparison with the other mean flow cases (figure 2.2).

for other values of δ ,m andUbt . The general reduction in growth rate with |Ubt | is thus partially
attributed to increase in Reynolds stresses work.

In figure 2.6 (panels a and b) we plot the maximum growth rate over all unstable modes and over

all wavenumbers as a function of Ubt and δ . Unless δ ∼ 1, the growth rate peaks at or close to

Ubt = 0, and is close to peak growth rate for the uniform rectilinear flow case, while lower growth

rates are found for non-zeroUbt . However, the uniform rectilinear flow instability has a cutoff at

δ = 1, whereas the uniform azimuthal flow cutoff depends onUbt and can occur for δ larger than

1, as predicted by the instability criteria derived in §2.3.2. Therefore horizontal curvature de-

creases eigenmodes’ growth rates whenUbt is non-zero, unless the isopycnals are approximately

parallel to the bathymetry (δ ∼ 1) andUbt < 0, in which case the curvature destabilizes the flow.

Although we report above that Reynolds stresses work is partially responsible for reduction in

growth rate (both relative to uniform rectilinear flow and between different uniform azimuthal

flowmodes), figure 2.6c demonstrates that reduction in potential energy conversion is responsi-

ble for a ∼ 2 − 4 times larger fraction of the growth rate reduction, than is the |ΣjRSj | increase.
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Figure 2.6: (a) Maximum growth rate (filled contours) in the uniform azimuthal flow (UAF) case

as a function of the barotropic velocity,Ubt , and the ratio of the bathymetric to isopycnal slopes,

δ . The dashed line marks the barotropic velocity corresponding to the largest growth rates at

each δ . The dotted line marks δ = 1, above which straight channel uniform flow is stable. (b)

Maximum uniform azimuthal flow growth rate (full line) and the barotropic velocity at which it

is achieved (full line with circles), as a function of δ . The dashed line is maximum growth rate

for uniform rectilinear flow (URF). (c) (Half the value of) Potential Energy Conversion (PEC) and

Reynolds stresses work (RS = ΣjRSj), for the fastest growing eigenmode, in three different δ

values. Discontinuities (as a function ofUbt ) are expected since PEC − RS distribution changes

withm, and since up to four different eigenmodes exist perm.
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For an eigenmode,GR = (PEC+ΣjRSj)/2 and hence the changes in growth rate are proportional
to changes in PEC and RSj . Generally PEC decreases monotonously with |Ubt |, thus supporting
the barotropic governor effect interpretation, given below.

Reduction in baroclinic growth rate in the presence of lateral barotropic shear is a somewhat

general phenomenon, often called barotropic governor effect [James and Gray, 1986; James, 1987].

James [1987] attributes the effect to the horizontal shear of advection. To remain in phase in

the cross-flow direction in the presence of advective shear, the unstable eigenmodes are tilted

in the horizontal plane and have a reduced cross-flow extent. These circulation features make

the unstable eigenmodes less ideally suited for extractingmean potential energy and hence their

growth rates are smaller.

Though the usual barotropic governor effect interpretation is due to barotropic shear, we find

that in curved flow geometry, it may be more general to refer to barotropic strain rather than

shear. In uniform azimuthal flow, the eigenmodes are azimuthally travelingwaves, with constant

angular phase velocity [rad/s]. If they were to have no tilt, azimuthal advection would need to

be radially constant. The azimuthally advecting quantity is the (mean) angular velocity, Ωj(r ) ≡
Ujϕ/r , and its radial gradient is the strain rate (2.8). Thus the barotropic governor effect can

generally occur in azimuthal flowwith non-zero strain, i.e. flow not in solid-body rotation (§2.4).

In accordance, wefind (figure 2.4) that someuniformazimuthal floweigenmodes have substantial

horizontal tilts, oftenwithmuch lower growth rates. Similar results were obtained in a primitive-

equations 2-layer vortex instability model Dewar and Killworth [1995]. The authors found that

Gaussian vortices with co-rotating lower layers had reduced PEC and growth rates relative to

vortices with counter-rotating lower layers, and attributed the result to the barotropic governor

effect.
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2.5.2 Non-normal growth

While the above diagnosis focuses on perturbation growth by individual eigenmodes (aka nor-

mal modes), non-orthogonality of eigenmodes, which is a common occurrence in sheared flow,

means that what is known as non-normal growth is also possible [Trefethen et al., 1993; Farrell and

Ioannou, 1996]. Linear evolution of two or more non-orthogonal eigenmodes, even if they are all

neutral or decaying, can result in transient (non-normal) growth before the eventual decay of

the disturbance. For parameter values where growing eigenmodes exist, they do dominate the

linearized dynamics, at long enough times. But transient non-normal growth may dominate at

shorter times, as well as for parameter ranges where no growing eigenmodes exist.

To calculate thenon-normal growth, using the samenumerical eigenvalue solver described above,

we recast the PV equations (2.6) in the form: MΨ = σBΨ, where M and B are differential op-

erators, and Ψ = (Ψ1,Ψ2)T (T for transpose). We refer the reader to Farrell and Ioannou [1996]

for details of the method. Assuming B is invertible we can rewrite the differential equation as

σΨ = LΨ, where L = B−1M . And since Ψ ∼ exp(−iσt),

∂tΨ = −iLΨ. (2.27)

So the propagator to time t is exp(−iLt). If we define L̂ = N 1/2LN −1/2, where N is the energy

norm operator [Farrell and Ioannou, 1996], then the maximal instantaneous growth-rate of dis-

turbances is given by the eigenvalues (and eigenstates) of the operator H = 1
2i(L̂† − L̂). The

energy-norm operator in the annulus case is, prior to the performed discreziation of the differ-

ential operators and of r ,

N =
1
2

*.
,

rD1 0

0 rD2

+/
-

(
−∇2r +

m2

r 2

)
+
1
2
D1D2

*.
,

1 −1

−1 1

+/
-
. (2.28)

In figure 2.7 the maximal instantaneous non-normal growth in energy norm is shown for uni-

form azimuthal flow and uniform rectilinear flow. Interestingly, the result is independent of δ ,
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Figure 2.7: Maximal instantaneous (non-normal) growth rates. The blue curve corresponds to

mean uniform rectilinear flow. The other curves correspond to mean uniform azimuthal flow

with three different barotropic velocitiesUbt . Linear bathymetry was used in all cases.

as the bathymetry does not appear in the energy equation (2.7). Bathymetry affects local en-

ergy conversion but not its domain integral. However, in finite time bathymetry certainly effects

energy growth or decay since it affects the streamfunction evolution, and would likely render

sub-optimal the fastest-growing non-normal perturbations calculated using (2.28). ForUbt = 0,

uniform azimuthal flow growth is very similar to uniform rectilinear flow (which is independent

of barotropic velocity), and both have non-normal growth just slightly higher than peak normal

growth rate (compare with figure 2.6). However, non-normal growth occurs for a wider range

of wavenumbers than the range in which unstable normal modes exist. The decay of the non-

normal growth rate with wavenumber is slower in uniform azimuthal flow relative to uniform

rectilinear flow. In addition, at nonzero Ubt , the uniform azimuthal flow growth rate is higher

everywhere, and decays even slowerwithm̂, or even (not shown) grows and oscillates inm̂ before

decaying again. Growth at very high wavenumbers is probably not physical, and would likely not

appear if some form of scale-selective “eddy" viscosity were included.
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2.5.3 Convex and concave cases

The convex to concave transformation (by reflection of ηb(r ) and ZI (r ), as explained in §2.2.1),
results for uniform azimuthal flow in b → −b and Ujϕ → −Ujϕ . Therefore equations (2.6) are

unaltered if in addition σ → −σ . Also, if {σ ,Ψj(r )} are an eigenvalue-eigenfunction pair of
equations (2.6) then so are their complex conjugates {σ ∗,Ψ∗j (r )}, as can be verified by taking the
complex conjugate of (2.6). Combining the last two observations, if {σ ,Ψj(r )} is an eigenvalue-
eigenfunction pair in a convex geometry, then {−σ ∗,Ψ∗j (r )} is an eigenvalue-eigenfunction pair
in a concave geometry, and vice-versa. Thus the growth rate and the real (physical) part of the

streamfunction are unaltered, and the phase speed is reversed. The reversal of phase speed, along

with reflection of ηb(r ) (shallow water at other side of the channel) results in the same phase
speed direction relative to shallow water, and therefore the physical propagation direction is

also unaltered.

Different eddy growth rate at convex versus concave sections is not accounted for in the linear

uniform azimuthal flow model, contrasting with the pronounced instabilities observed around

convex bends in the real ocean’s continental slopes (see §2.1). Despite this symmetry of our QG

model, there is still a potentially important difference betweenunstablemodes growing over con-

vex and concave bends in the continental slope. If the perturbation streamfunction is displaced

off the center of the channel, say toward shallower water, then switching between concave and

convex continental slopes will result in the streamfunction being displaced toward deep water

instead. As noted in §2.5.1, the uniform azimuthal flow perturbation streamfunctions are indeed

typically displaced from the center of the channel (see figure 2.4). The significance of this dif-

ference between structure of growingmodes over convex and concave continental slopes cannot

be determined from our linear instability analysis, and warrants further investigation using a

nonlinear model.
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2.6 Relation between baroclinic instability in straight and curved geome-

tries

Althoughuniformazimuthal flowanduniformrectilinearflowshare the same cross-stream isopy-

cnal and bathymetric profiles, the properties of their unstablemodes are quite different (§2.5). In

contrast, we found strong similarity (§2.4) between the uniform rectilinear flow and solid body

rotation cases, despite differing isopycnal and bathymetric profiles. Using insights from §2.4-

2.5, we can reduce the parallel between uniform rectilinear flow and solid body rotation to three

conditions:

1. Vanishing horizontalmean strain, resulting in zero Reynolds stresses work. From a dynam-

ical perspective, the mean flow does not shear waves propagating in the direction of the

mean flow.

The following two factors stem from the Rayleigh criterion (§2.3).

2. Vanishing horizontal gradient of the mean vorticity. Under this condition the Rayleigh

criterion depends only on the ratio of bathymetric to isopycnal slopes, δ .

3. Congruous cross-stream bathymetric and isopycnal profiles. This renders δ constant. The

implication can be understood by considering a uniform rectilinear flow-like case of uni-

form channel flow (linear isopycnals) but over non-linear bathymetry. Then, using (2.9)

and defining δ (x) = ∂ηb (x)∂x /
∂ZI
∂x , the PV gradient (2.30) can be rewritten as

∂Qj

∂x
= −Fj(−1)j �

1 − ∆j2δ (x)� . (2.29)

By the Rayleigh criterion (§2.3) if δ (x) < 1 anywhere, instability is not prohibited. Thus
even if δ̄ > 1 (the bar denoting a cross-stream average), but locally δ (x) < 1 somewhere,
then this uniform flow case may be unstable.

For annular flow, the vanishing of the strain rate occurs only for parabolic isopycnals (or equiva-

lently, solid-body rotation), while zero horizontal gradient of vorticity occurs only for parabolic
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or logarithmic isopycnals. Therefore the only annulus flow case in which conditions (i)–(iii) all

occur together is parabolic isopycnals over parabolic bathymetry, which is our solid body rota-

tion case (§2.4). Mean flow over any other bathymetry (such as linear bathymetry, as in §2.5) will

necessary violate at least one of (i)–(iii). For uniform azimuthal flow, condition (iii) is satisfied,

but the curvature results in non-zero strain rate and non-zero vorticity gradient. Superficially

uniform azimuthal flowmay appear to be the most similar to uniform rectilinear flow since both

cases have isopycnals (linear bathymetry in the present treatment) in the cross-stream direction,

but conditions (i)–(iii) identify solid body rotation as the true dynamical analogue of uniform rec-

tilinear flow.

We have verified conditions (i)–(iii) using some additional numerical experiments, whose results

are summarized in this paragraph, rather than plotted. The same numerical solver was used in all

cases. We considered two cases in which only factor (iii) is violated: (a) Uniform straight channel

flow (i.e., linear isopycnals) over parabolic bathymetry, and (b) solid body rotation (i.e., parabolic

isopycnals) over linear bathymetry in an annular channel. Both have zero strain, and therefore

were found to be similar to uniform rectilinear flow/solid body rotation in that the magnitudes

of their growth rates are very similar, in that the Reynolds stresses work is zero, and in that the

results are independent of the barotropic velocity. However, non-zero (though small) growth

occurs for δ > 1 in (a) because condition (iii) is violated. We also tested a third case, where only

condition (i) is violated: (c) annular flow with logarithmic isopycnals and bathymetry. We found

this case to be similar to our uniform azimuthal flow results, though with a more exaggerated

dependence on the magnitude of the barotropic velocity |Ubt |. Unlike uniform azimuthal flow,

the logarithmic profile used in case (c) has zero growth rate at δ > 1 because the vorticity is

zero.
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2.7 Summary and Discussion

To study the effect of horizontal curvature in flow and bathymetry on baroclinic instability, we

study several mean flow and bathymetry cases in an annulus and compare them with uniform

mean flow over linear bathymetry in a straight channel (uniform rectilinear flow). We consider

uniform rectilinear flow a reasonable though simple test case for deep western boundary cur-

rents since these tend to be quite broad relative to the Rossby radius [Xu et al., 2015; Stommel and

Arons, 1972]. Some further justificationmay be required for the use of a periodic annular channel

in place of an open domain that is approximately an annular section. We expect that for time

intervals short compared to the travel time of perturbations along the section, azimuthal edge

effects will be small, as long as the wavelength is somewhat smaller than the section length.

We find solid body rotation (§2.4) to be very similar to uniform rectilinear flow, with an exact

simple transformation between the dispersion relations of both cases. We trace the similarity in

instability properties to the three commonalities between of the mean flows and bathymetries

(§2.6): vanishing strain rate, vanishing vorticity, and constant ratio of bathymetric slope to isopy-

cnal slope δ (r ) ≡ δ . In contrast, the uniform azimuthal flow case (§2.5), which has (like uniform

rectilinear flow) linear isopycnals (and bathymetry), has quite different stability properties from

because it has non-vanishing strain rate andmean vorticity. While we began a preliminary explo-

ration of more significantly sheared velocity profiles (i.e., jets and free shear layers), an adequate

coverage of this topic requires at least a full additional paper. However, we would like to stress

that the analysis in §2.6 is very general as it is based on the Rayleigh criterion (§2.3) and on the

energy equation (§2.2.3), and that a few experiments with other simple profiles (§2.6) support

the generality of these results.

Baroclinic instabilities in uniform azimuthal flow differ in several ways from uniform rectilinear

flow and solid body rotation: (a) The eigenmodes depend on the mean barotropic velocity. The

growth rate of unstable eigenmodes generally decreases with |Ubt |, unless δ ≈ 1. (b) Whereas
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solid body rotation and uniform rectilinear flow are stable for δ ≥ 1, uniform azimuthal flow

is (weakly) unstable for a small interval of δ greater than 1. That is due to non-zero mean flow

vorticity. (c) Negative Reynolds stresses work manifest as part of the barotropic governor effect

(BGE). AlthoughBGE is usually attributed to barotropic shear, wefind that in non-parallel flow the

cause may be generalized to barotropic strain (even when cross-flow shear is zero, as in uniform

azimuthal flow). (d) For non zero |Ubt |, more growing eigenmodes arise, with diverse growth rates,
phase speeds, and barotropic to baroclinic energy conversion ratios. (e) Non-normal growth is

generally faster and occurs over a larger wavenumber range. The growth rate becomes even

larger with increased |Ubt |magnitude.

The uniform azimuthal flow case has a small but non-zero growth rate for δ > 1, due to the

vorticity associated with curved streamlines, unlike the straight-channel case [Mechoso, 1980].

Deep western (and some surface) boundary currents often have isopycnal profiles similar to the

bathymetric profile, i.e., δ (r ) ≈ 1 [Xu et al., 2015; Stommel and Arons, 1972; Stipa, 2004b; Spall, 2010].
Thus the increased instability of uniformazimuthal flowrelative to uniformrectilinearflow in the

δ (r ) ≈ 1 regime is potentially relevant for the DWBC eddy-shedding observations that motivates
this work. Assuming that the DWBCflow is faster in the deeper layer, and that the barotropic flow

is in the same direction as the flow in the deeper layer, flow on a convex slope is described (in

addition to δ ≈ 1) byUbt < 0. NegativeUbt is indeed the range in which we find the instability

is possible for δ > 1 (figure 2.6, and §2.3.2). Note that by the symmetry described in §2.5.3, a

concave section would have the same linear growth rates as the convex section described.

The result regarding instability of eigenmodes for δ ≈ 1 may also be relevant for parameteri-

zations of eddies on sloping boundaries, still a little explored subject. Isachsen [2011] compares

parameterizations based on the extended Eady model with eddy fluxes diagnosed in a Primitive

Equation simulation over a straight continental slope. While the parametrization predicts zero

flux at δ > 1, the diagnosed eddy flux is very low but non-zero. This might be due to non-zero

horizontal vorticity gradients in the flow, which in any casemay be relevant to the equivalent pa-

rameterization problem on a horizontally curved slope. Non-normal growth, whichwe found has
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larger maximal values in uniform azimuthal flow, may also play a role in eddy fluxes when δ > 1,

especially since maximal potential non-normal growth rate is independent of the bathymetry.

Disturbances with large non-normal growth, even if they occur rarely, may produce non-zero

eddy fluxes for any value of δ .

The curved streamlines and associated strain introduce more growing eigenmodes in uniform

azimuthal flow, generally with diminished growth rates and negative Reynolds stresses work.

These propagate in various directions and speeds, unlike the strictly topographic Rossby wave-

like propagation direction (with shallow water to the right) in uniform rectilinear flow. The

wavenumber ofmaximum growth rate thus changes, and in some casesmore than one local max-

ima in wavenumber exist (for a fixed δ value). This raises questions about the validity for curved

slopes of some continental slope eddy parameterizations [Stipa, 2004a; Isachsen, 2011], where dif-

fusivity is determined by solely the global maximum in wavenumber (of the Eady model growth

rate).

Perturbations over convex or concave continental slopes have the same perturbation growth

rates in uniform azimuthal flow, but the streamfunction profiles are reflected relative to mid-

channel on the shallow-deep water axis (§2.5.3). Uniform azimuthal flow eigenmodes are gen-

erally not centered at mid-channel (figure 2.4). If an eigenmode on a convex slope is centered

offshore from mid-channel, the analogous eigenmodes on a concave plane would be displaced

shoreward from mid-channel, and vice-versa. While in linear theory this has no direct implica-

tions for the growth rate, non-linear evolution, interaction with topography, and bottom bound-

ary layers may result in implications we cannot determine here.

While non-normal peak instantaneous growth rate and the range of unstable wavenumbers are

larger due to non-zero mean strain and mean vorticity gradient in uniform azimuthal flow, their

importance relative to individual eigenmodes’ growth remains unclear due to the transience of

non-normal amplification. Differentiating between the two effects would probably require fully

non-linear, time-evolution integrations. The domain would preferably be open rather than peri-
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odic, to prevent confusion with down and upstream disturbance interaction occurring in finite

time. In such a case and especially if the domain were to have changing curvature, it may be

that the transience of non-normal growth would not be as large a limitation to actual growth.

Non-orthogonality of growing eigenmodes may also influence their nonlinear evolution: their

nonzero mutual projections may encourage nonlinear interactions between modes and acceler-

ate the path to finite-amplitude effects.

While we have striven to choose relevant and similar flow profiles for comparison of straight

and curved flow and bathymetry, we can imagine a different criterion for selection of the curved

profile given a straight flow profile, viz., that the curved profile is the downstream-adjusted pro-

file of the straight flow after meeting a curve in the continental slope. Assume that the upstream

(straight flow) boundary current has linear isopycnals and linear bathyemtry, as in uniform recti-

linear flow. Once the current traverses a horizontally curved slope section, assuming adjustment

to solid-body rotation does not happen, then strain and relative vorticity are necessarily induced

in the mean flow (§2.6). Hence Reynolds stresses will modulate and generally decrease the baro-

clinic instability growth rates, and the relative vorticity will modulate the range of unstable δ

parameters. We find the same results in the uniform azimuthal flow case (§2.5), which can also

be regarded as a study of these effects, when the linear isopycnals remain (cross-stream) approx-

imately linear after meeting the bend in the slope. In §2.6 we find that a logarithmic isopycnal

profile generally has similar results to uniform azimuthal flow, and we expect this to hold quite

generally for other broad and relatively uniform flow profiles. Exactly how and how much the

mean isopycnal structure actually adjusts to curvature is a question worthy of further investiga-

tion.

To summarize, the initial hypothesis is that horizontal curvature of bottom slopes increases baro-

clinic instability. We find that to the contrary, peak growth rates are mostly reduced in uniform

azimuthal flow relative to uniform rectilinear flow. One exception is the δ >∼ 1 regime. δ ∼ 1 is

actually quite common in deep boundary currents [Xu et al., 2015; Stommel and Arons, 1972], and

despite the relatively smaller values of growth rates (relative to δ < 1) the increased instability
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in this regime thus appears relevant. We also find higher peak non-normal growth in uniform az-

imuthal flow relative to uniform rectilinear flow, but the relative effect of transient non-normal

growth versus normal exponential growth is unclear and will remain so unless evaluated in a

particular context. The actual profile a deep western boundary current adjusts to (from which

baroclinic instability arises), may be different than linear, but it is conjectured above that the

results may be quite similar in terms of the baroclinic instability. Exceptions to that may occur,

if one takes into account the finite width of the slope and of the current.

2.8 Supplement

2.8.1 Numerical verification and sensitivity tests

Here we give results of numerical convergence tests, including comparison with some analytical

results, to show the validity of the solver and of the numerical solutions. We also give results of

sensitivity tests where we vary Ri , Re , F1, and F2, showing that the general results presented in

the main text still hold over a larger parameter range.

The numerical setup in a straight-channel was verified in the uniform rectilinear flow case to

reproduce the known [Mechoso, 1980] analytical dispersion relation. We also verified the numer-

ical solution of the solid body rotation case in a cylinder (annulus with Ri = 0) relative to the

analytical dispersion relation (2.25). A cylinder (rather than annulus) is chosen because deriving

the numerical value of growth rate from the dispersion relation requires first solving the nonlin-

ear algebraic equation (2.22). That can be avoided since in a cylinder since the functions Pm are

replaced then by Bessel functions of the first kind Jm, and thereby only (tabulated) Bessel zeros

values are needed for the calculation. The results (figure 2.8a) show a very small relative error

in the numerical result with the standard dr = 0.025, and decreasing super-exponentially with

decreasing dr in the range shown, implying the numerical scheme is convergent.
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Since the same solver was used for both solid body rotation and uniform azimuthal flow, the

comparison described in the previous paragraph verifies partially the correct setup for uniform

azimuthal flow too. We also present in figure 2.8b the difference in growth rates computed, rela-

tive to the result with a higher resolution, namelydr = 0.003125. The results suggest that growth

rates of all four modes have probably converged to a very good approximation at the resolution

used thorough the paper, i.e., dr = 0.025. While the specific plot is form = 2, δ = −0.2, and

Ubt = 1, we find that the results are similar in other cases. The difference in the growth rates

of the most unstable mode calculated with dr = 0.025 relative to that with dr = 0.0125 are

generally < 10−5 inside of the instability boundary.

Further verification for uniform azimuthal flow came from a test of convergence of the uniform

azimuthal flow growth rates and frequencies to uniform rectilinear flow values, as the channel

inner radius Ri is increased (with constant channel widthW = Re − Ri). That is since in the

strict Ri → ∞ limit, the mean state of uniform azimuthal flow converges to the mean state of

uniform rectilinear flow. We verified that for large enough Ri the GR(m,b) functional form for

anyUbt value indeed became arbitrarily close to the channel result (which is independent ofUbt )

for large enough Ri values as far as was tested. The convergence test was deemed successful.

The standard experiment described has a radial extent [Ri ,Re] = [3,10]. It is found thatmoderate
increases to domain size (and hence also to current width) do not result in significant changes

to the growth rates. For example a current with radial extent [Ri ,Re] = [3,15] has a similar
GR(m̂,b) to the standard experiment considered (with the wavenumber normalized by average
domain width, m̂ = mR). Increasing Ri while keeping channel width constant generally results

in more uniform rectilinear flow-like results, as described in the previous paragraph. We find

that convergence is slower for larger |Ubt | cases, and so the differences described in themain text
between annulus and channel instabilities remain qualitatively similar. Decreasing Ri down to a

value of 1 (while either keeping (Re − Ri) constant, or keeping Re constant) barely changes the
growth rates of the fastest growing modes, though the pattern shifts to smallerm’s. Note that,

as derived in §2.2.4, Ri . 1 is not consistent with QG.
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Figure 2.8: (a) Numerical convergence of growth rate for cylinder solid body rotation eigenmodes

to that obtained from the analytical dispersion relation (2.25), for azimuthal wavenumberm = 2

and bathymetric slope parameter δ = 0. The cylinder width was set by R1 = 0 andW = R2 = 7

to be equivalent to the annulus width taken in sections 2.4 and 2.5. The circles denote actual

numerical values calculated, in which dr is decreased by factors of two. Note the logarithmic

scale of the ordinate. (b) Numerical convergence of uniform azimuthal flow growth rates with

various dr values to the value similarly calculated with a twice the highest resolution shown

(dr = 0.00625), .i.e. with dr = 0.003125. Results for all four unstable eigenmodes shown. The

presented results are form = 2, δ = −0.2, andUbt = 1. The convergence was similarly tested

for a large portion of the parameter space. The value actually used to generate all other results

in this paper is dr = 0.025 (or dx = 0.025 in the channel case).
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A layer thickness ratio of 1 (F1 = F2 = 1/2) was taken throughout the numerical experiments.

Further experiments were done as sensitivity tests with non-equal layers in uniform azimuthal

flow, and these show similar growth rate dependence on Ubt andm as in the standard experi-

ments, with a few differences. The growth rate maximum is achieved at Fj = 1/2 and decreases

as |Fj − 1/2| increases. If a line of maximum instability (inm) per δ is fit (in figure 2.3), then its

slope generally increases with H1/H2 (maximum δ < 0 instability occurs at higher wavenum-

bers).

2.8.2 Straight channel equations

We use the uniform rectilinear flow instability case [Pedlosky, 1964; Mechoso, 1980] as a point of

comparison for our investigations. Since it is not new, and to avoid confusing notation, we pro-

vide details in this supplemental subsection.

Generalizing uniform rectilinear flow by allowing non-uniform currents in a straight channel,

we provide below the perturbation modal equations for mean geostrophic along-channel flow

V̄j = Vj(x)ŷ, and bathymetry ηb(x), which vary in the cross channel coordinate (x) only (and in
each layer). The background and perturbation streamfunctions are again denoted byψ j andψj

respectively, and therefore Vj(x) = ∂ψ j/∂x . Note that usually the straight channel is modeled

with the x coordinate along the channel axis (in the downstream direction). We chose to take the

x coordinate in the cross-stream direction for easy comparison with the annular channel, which

naturally has the cross-stream coordinate (the radial coordinate r ) as the first coordinate of a

right-handed triplet.

Assuming an harmonic solution in x and in t , ψj = Re
�
Ψj(x)exp(i(ly − σt))	 (where Re is the

real part of the expression that follows, l is a real down-stream wavenumber, and σ is the com-

plex frequency), we have the (nondimensional) quasi-geostrophic potential vorticity equations
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[Pedlosky, 1964]:

[V1l − σ ]
[
∂2

∂x2
Ψ1 − l

2Ψ1 − F1(Ψ1 − Ψ2)
]
− lΨ1

∂Q1
∂x
= 0, (2.30a)

[V2l − σ ]
[
∂2

∂x2
Ψ2 − l

2Ψ2 − F2(Ψ2 − Ψ1)
]
− lΨ2

∂Q2
∂x
= 0, (2.30b)

∂Qj

∂x
=
∂2

∂x2
Vj − Fj

[
(−1)j (V2 −V1) − ∆j2

∂ηb
∂x

]
. (2.30c)

For uniform rectilinear flow, ∂ηb∂x and theVj are constants. We state the equations in more gen-

eral form for easy comparison with the general annulus case given in the equation set (2.6). The

eigenvalue problem is defined by the PV equations together with no-normal flow boundary con-

ditions. The channel boundaries are denoted byXi andXe , and since only their difference (chan-

nel width) is important, Xi = 0 is chosen. In the standard uniform rectilinear flow experiment,

Xe = 7, F1 = F2 = 1/2, and Vbt ≡ (V1 + V2)/2 = 0. The last condition (zero barotropic ve-

locity) is not limiting since the growth rates and eigenmodes are invariant with Vbt , which just

Doppler-shifts the (real) frequency. The numerical solution is obtained in a similar way as for the

annulus.

The eigenmodes streamfunctions are sums of harmonic functions and the nondimensional uni-

form rectilinear flow dispersion relation is

σ =Vbt + l
K2 (F2 − F1 − F2δ ) − lF1F2δ +

√
D

2K4 + 2K2 (F1 + F2) , (2.31a)

D

l2
=K8 + (2F2δ )K6 +

�
−4F1F2 + 2F1F2δ + F 22δ

2�K4

+
�
−4F 22F1δ + 2F

2
2F1δ

2�K2 + F 21F
2
2δ

2. (2.31b)

Here k , and K =
√
k2 + l2 are the cross-stream, and total wavenumbers, respectively. The non-

dimensionalization is similar to the uniform azimuthal flow case, and (in non-dimensional vari-

ables) δ = −∂ηb∂x .
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2.8.3 Semicircle theorem

In this section we adapt the Pedlosky [1964] semi-circle theorem, which gives growth-rate bounds

and the associated phase-speed bounds to the annular channel, and we extend it for the general

case where the bathymetry is not flat. First, we make the transformation Ψj = (Ujϕ − cr )bj in
equations (2.12a)-(2.12b), thenmultiply the first and the second equations byD1b∗1(U1ϕ −cr ) and
D2b

∗
2(U2ϕ −cr ) respectively. Summing both equations and integrating the result with the volume

element (rdr ), results, after an integration by parts of the Laplacian terms, in
2∑

n=1

∫ Re

Ri

(Ujϕ − cr )2Pjrdr

= D1D2
1
2

∫ Re

Ri

(U1ϕ −U2ϕ)2|b1 − b2|2rdr − D1
∫ Re

Ri

(U2ϕ − cr )J2 ∂ηb
∂r

rdr . (2.32)

Here we made use of the identity,

(U1ϕ − cr )(U2ϕ − cr ) = −12
�(U1ϕ −U2ϕ)2 − (U1ϕ − cr )2 − (U2ϕ − cr )2� ,

with the following definitions:

Pj = Dj



�����
∂

∂r
bj

�����

2

+
m2 − 1
r 2

|bj |2

+ D1D2

1
2
|b1 − b2|2

Jj = Dj |bj |2.

The real part of (2.32) is thus

2∑
n=1

∫ Re

Ri

(U 2
jϕ + c

2
r r
2 − 2Ujϕcrr − c

2
i r
2)Pjrdr

=
1
2
D1D2

∫ Re

Ri

(U1ϕ −U2ϕ)2|b1 − b2|2rdr − D1
∫ Re

Ri

(U2ϕ − crr )J2 ∂ηb
∂r

rdr . (2.33)

If ci , 0, from the imaginary part of (2.32) we have∫ Re

Ri

2∑
n=1

(Ujϕ − crr )Pjr 2dr = −D12
∫ Re

Ri

J2
∂ηb
∂r

r 2dr . (2.34)
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Table 2.1: Summary of phase speed bounds

Condition Phase speed bounds

ηb ≡ 0 umin ≤ cr ≤ umax(
∂ηb
∂r

)
max
< 0 umin −

D1
����

(
∂ηb
∂r

)
min

����R
2
e

2Ri (m2−1) ≤ cr ≤ umax(
∂ηb
∂r

)
min
< 0 and

(
∂ηb
∂r

)
max
> 0 umin −

D1
����

(
∂ηb
∂r

)
min

����R
2
e

2Ri (m2−1) ≤ cr ≤ umax +
D1

(
∂ηb
∂r

)
max

R2e

2Ri (m2−1)(
∂ηb
∂r

)
min
> 0 umin ≤ cr ≤ umax +

D1

(
∂ηb
∂r

)
max

R2e

2Ri (m2−1)

Form > 1, we can derive the following inequality between integrals of Jj and Pj :∫ Re

Ri

Pjr
2dr = D1

∫ Re

Ri





�����
∂

∂r
bj

�����

2

+
m2 − 1
r 2

|bj |2

+ D1D2

1
2
|b1 − b2|2


r 2dr

≥
m2 − 1
R2e

Dj

∫ Re

Ri

|bj |2r 2dr ,

from which follows a result we will refer to as the J − P inequality:∫ Re

Ri

Jjr
2dr ≤

R2e
m2 − 1

∫ Re

Ri

Pjr
2dr . (2.35)

Pedlosky [1964] found a tighter J-P type inequality for the straight-channel case, using a spectral

estimate, which we were unable to adapt to the annulus case. The next two subsections will

derive phase speed and growth rate bounds respectively, based on the results so far derived in

this section.

Bounds on phase speed Defininguj = Ujϕ/r , equation (2.34) can then be written as∫ Re

Ri

2∑
n=1

(uj − cr )Pjr 3dr = −D12
∫ Re

Ri

J2
∂ηb
∂r

r 2dr . (2.36)

Bounds on the phase speed can be found from the last equation, using the J − P inequality, as-

suming that information about Information on ηb and u is available. The bounds are derived

separately for 4 different types of ηb profiles, and are summarized in Table 2.1.
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Growth rate bound Wedefineumax = maxj=1,2{maxRi≤r≤Re [uj(r )]} andumin = minj=1,2{minRi≤r≤Re [uj(r )]},
and use the following inequality:

0 ≤
∫ Re

Ri

2∑
n=1

(uj − umin)(umax − uj)Pjr 3dr

=

∫ Re

Ri

2∑
n=1

[
−u2j + uj(umax + umin) − uminumax

]
Pjr

3dr . (2.37)

In a similar manner to the straight-channel case [Pedlosky, 1964], we take (2.37) + (2.33) −(umin +
umax − 2cr )(2.34), resulting in,

2∑
n=1

[(
cr −

umin + umax
2

)2
+ c2i −

(umax − umin
2

)2] ∫ Re

Ri

Pjr
3dr ≤

− D1

∫ Re

Ri

(umax + umin
2

− u2

)
J2
∂ηb
∂r

r 2dr . (2.38)

Now, using
�2max+umin

2 − uj
�
≤

umax−umin
2 together with the J-P inequality (assumingm > 1), we

obtain the semi-circle inequality:

(
cr −

umin + umax
2

)2
+ c2i ≤

(umax − umin
2

)2
+
R2eD1

���
∂ηb
∂r

���max
Ri(m2 − 1)

(umax − umin
2

)
. (2.39)

The first term on the left may be dropped as it is positive definite. In fact, by the phase speed

bounds derived ( in table 2.1), this term may attain a zero value in all cases.

A tighter bound may be derived by noting that

− D1

∫ Re

Ri

(umax + umin
2

− u2

)
J2
∂ηb
∂r

r 2dr ≤

− D1min
[
0,min

[(umax + umin
2

− u2

) ∂ηb
∂r

] ] ∫ Re

Ri

J2r
2dr ,

from which follows

c2i ≤
(umax − umin

2

)2
−

R2eD1
Ri(m2 − 1) min

[
0,min

[(umax + umin
2

− u2

) ∂ηb
∂r

] ]
. (2.40)
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CHAPTER 3

Why Does the Deep Western Boundary Current “Leak” Around

Flemish Cap?

3.1 Introduction

TheAtlanticMeridional OverturningCirculation (AMOC1 ) connects disparatewatermasses, depths,

and geographical locations [Buckley and Marshall, 2016; Lozier, 2012], and plays major roles in the

broader climate system [Srokosz et al., 2012; Bullister et al., 2013]. These include driving a signifi-

cant fraction of the global atmosphere-ocean meridional heat flux, e.g., an estimated ≈ 15% at

40 ◦N [virtually all of the oceanic component, Trenberth and Fasullo, 2017, Fig. 3], and influencing

the CO2 sink in the North Atlantic [Takahashi et al., 2009]. Despite its importance, the characteri-

zation of three-dimensional AMOC pathways remains incomplete, as does the understanding of

their driving mechanisms [Lozier, 2012].

A significant portion of the deep (southward) AMOC branch occurs within the Deep Western

Boundary Current (DWBC). The occurrence and role of the DWBC was predicted by Stommel and

Arons [1959], albeit on the basis of assumptions now partially outdated [Ferrari et al., 2016]. The

DWBC has nonetheless been observed from the subpolar North Atlantic southward to the south-

ern Atlantic, forming an intensified boundary current that carries North Atlantic Deep Water

(NADW) along the western Atlantic continental slope [Hogg and Johns, 1995; Talley, 2011].
1A table of acronyms and terms commonly used in the text appears in supplemental subsection 3.6.1.
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However, in recent decades it has become clearer that the DWBC is not the only southward trans-

port branch of the AMOC. A series of float experiments [Lavender et al., 2000; Fischer and Schott,

2002; Bower et al., 2009] and tracer analyses [Rhein et al., 2002; Gary et al., 2012; Le Bras et al., 2017]

have identified significant loss (“leakiness”) of material from the DWBC in the Newfoundland

(Nfl) Basin. This leakiness was specifically targeted and quantified in the “Export Pathways” ex-

periment [ExPath, Bower et al., 2011]. The majority (≈ 90%) of floats seeded upstream within the

DWBC at Labrador Sea Water (LSW) depths2 leaked to the interior within the Nfl basin. Much of

the leakiness occurred between two large underwater capes (Fig. 3.1) in the DWBC’s path: Flem-

ish Cap (FC) and the Grand Banks of Newfoundland (GB).

Within the two-year lifespan of the floats,∼ 20% of the floats that leaked out of the DWBC contin-

ued southward in the basin interior away from the boundary. Hence these additional pathways

are referred to as interior pathways. These findings of DWBC leakiness and interior pathways

represent a significant revision of the classical picture of deep southward AMOC transport being

confined to the DWBC. Furthermore, Argo observations [Biló and Johns, 2018] and numerical sim-

ulations [Gary et al., 2011, 2012; Lozier et al., 2013] suggest that interior pathways continue south

further than the 2-year ExPath observations demonstrate. Gary et al. [2012] shows that 75% of

simulated floats initialized within the DWBC and traveling from 44 N to 30 N did so in the interior

rather than within the DWBC.

Two contrasting views on the dynamical causes of interior pathways were examined hitherto:

Gary et al. [2011] have shown that within realistic numerical models and in hydrography, inte-

rior pathways were largely collocated with Eulerian recirculation gyres, elevated eddy kinetic

energy, and decreased potential vorticity gradients [see also Lozier, 1997], all qualitatively con-

sistent with previous theory of eddy-driven gyres [Rhines and Young, 1982a]. Furthermore, in the

eddy-resolving model examined in Gary et al. [2011], eddy fluxes explained a large fraction of the

potential vorticity balance. In contrast, Pedlosky [2018] has shown, in the context of an idealized,

steady, flat-basin model, that interior pathways are necessary somewhere in the domain to pro-

2LSW, formed mainly in Labrador Sea deep convection events, comprises the NADW upper component, typically
≈ 400−2000m [Yashayaev and Loder, 2016; Bullister et al., 2013]. The lower component is OverflowWater [Talley, 2011].
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vide westward flow into the boundary current at all latitudes to its south; That is since inertial

boundary currents need inflow from the east to avoid Rossby wave energy radiation away from

the boundary

Previous studies have thus addressed the locations of DWBC leakiness, interior pathways trajecto-

ries, as well as interior pathways dynamics. In contrast, the mechanism underlying the leakiness

itself remains unclear. In the following paragraphs, we review four hypotheses that have been

posited in the literature.

1. DWBC-NAC interactions. The DWBC and the more energetic, surface-intensified North At-

lantic Current (NAC, an extension of the Gulf Stream), pass quite close to each other in the GB-

FC area. The currents come especially close together at the southern tip of the GB, and at the

southeast corner of FC, where a large fraction of the floats leaked out of the DWBC. Therefore,

interaction between these currents could plausibly causematerial to leak from the DWBC [Fischer

and Schott, 2002; Lavender et al., 2005; Bower et al., 2009, 2011]. The high eddy kinetic energy (EKE)

values measured [e.g., Carr and Rossby, 2001] near the GB region and east of FC imply that the loss

of floats from the DWBC may be eddy-driven. Additionally, the surface-intensification of EKE in

the region suggests that the eddies result from instabilities of the surface-intensified NAC.

2. Inertial separation. Current systems throughout theNfl region are strongly steered by topog-

raphy, including the surface-intensified NAC and the DWBC [Rossby, 1996; Kearns and Paldor, 2000;

Fischer and Schott, 2002; Lavender et al., 2005]. Boundary currents approaching coastal bends may

separate from the coast if they have sufficient inertia [e.g. Ou and De Ruijter, 1986; Klinger, 1994].

Pickart and Huang [1995] examined the inertial downstream adjustment of a DWBC-like current

to changes in bathymetry in a steady, semigeostrophic, 1.5 layer model. They found that a sub-

stantial fraction of the current volume flux was lost to offshore or to a recirculating component,

although these solutions lay outside the formal regime of applicability of the semigeostrophic

model.
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3. SCVs. Previous studies have found that material may leak from boundary currents via shed-

ding of Submesoscale Coherent Vortices (SCVs) [McWilliams, 1985; D’Asaro, 1988; Bower et al., 1997].

Bottom-reaching prograde boundary currents (propagating left of inshore in the northern hemi-

sphere) can generally be expected to develop negative vorticity near the bottom boundary layer

due to bottom drag [Molemaker et al., 2015]. If the prograde boundary current then separates

from the slope, e.g., at a bathymetric cape, the negative vorticity in the bottom boundary layer

can cause a roll up into an anticyclonic SCV. Of the ExPath float data set, Bower et al. [2013] indeed

found that three floats became trapped within anticyclonic SCVs formed at the southern tip of

the GB.

4. Instabilities of the DWBC. Oceanic boundary currents may be unstable, and therefore intrin-

sically favor leakiness [e.g. Cimoli et al., 2017]. Motivated by the observed leakiness around FC and

GB, the effect of horizontal curvature of bathymetry (and streamlines) upon baroclinic instabil-

ity was examined by Solodoch et al. [2016], in a 2-layer Quasi-Geostrophic model. They found that

uniform parallel flow over curved bathymetry has similar baroclinic modal instability growth

rates to the case of rectilinear bathymetry [i.e., the extended Phillips model, Mechoso, 1980], if

the mean flow has a weak barotropic component. The growth rate generally diminishes with in-

creasing mean barotropic flow, an example of the Barotropic Governor effect [James, 1987] in the

presence of mean strain.

Based on Eulerian transport measurements at southeast FC and at southeast GB, Mertens et al.

[2014, hereafter M14] estimated that out of ≈ 30 Sv of southward flowing NADW at southeast FC,

15 Sv are lost offshore before the southern tip of the GB. Biló and Johns [2018] analyzed interior

pathways of LSW based on Argo data, and found that of the water leaked from the DWBC within

the Nfl basin, 9.3 ± 3.5 Sv recirculates within the subpolar basin, while 3.2 ± 0.4 Sv continues

eastward. These studies therefore show that DWBC leakiness has a significant (on the order of

multiple Sverdrups) uncompensated component, i.e., that there is a net loss of mass from the

DWBC, rather than simply an exchange ofmasswith the ambient ocean. This defines a distinction

between compensated and uncompensated leakiness, which we shall use in what follows.
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In this paper we focus on DWBC leakiness in the Nfl basin, rather than on the interior pathways

which follow leakiness. We combine a new regional model of the northwest Atlantic with his-

torical observations to characterize the leakiness process in detail, and to investigate the mecha-

nisms viawhich it occurs. In section 3.2we describe the regionalmodel, a particle advection code,

and the observational datasets used in this study. In section 3.3 we diagnose the leakiness of the

DWBC around FC, using both Lagrangian trajectories (section 3.3.1) and Eulerian-mean flow pat-

terns (section 3.3.2). We then quantify the variability in the patterns of leakiness (section 3.3.3)

and use budgets of PV (section 3.3.4) and energy (section 3.3.5) to investigate the relative roles

of mean flows and variability in driving the leakiness. In section 3.4 we relate our results to the

mechanism of leakiness (1-4) summarized in this section, andwe put forward a hypothesis for the

dependence of leakiness on the geometry of the continental slope. In section 3.5 we summarize

our findings and conclude.

3.2 Methods

3.2.1 Numerical Model

We use the Regional Oceanic Modeling System (ROMS), which solves the Boussinesq primitive

equations with a free surface [Shchepetkin and McWilliams, 2005]. ROMS is appealing for use in

modeling areas of varying bathymetry, such as the path of the DWBC in the Nfl basin, due to the

combination of terrain-following coordinates that allow fine resolution of the bottom boundary

layer and accurate pressure gradient calculation [Shchepetkin and McWilliams, 2011] to minimize

spurious along-slope flows. The specific ROMS branch we use is the Coastal and Regional Ocean

Community (CROCO) branch [Debreu et al., 2012].

We designed a North Atlantic domain ROMS configuration (hereafter GBB), with the Nfl basin

close to the domain center. The model domain is shown in Fig. 3.1, along with the barotropic
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(depth-averaged) velocitymagnitude averagedovermodel year 16. Several important topographic

features discussed below are annotated in the figure. The domain extends to and beyond theMid-

Atlantic Ridge on the east, and to the Labrador and Irminger Seas on the north. The Gulf Stream

enters from the western boundary, following its separation from Cape Hatteras within the parent

grid (discussed below).

The GBB horizontal resolution is approximately 2.5 km, which is small compared to the first

baroclinic Rossby radius of deformation (Rd ≈ 10 − 20 km) in the Nfl basin [Chelton et al., 1998].

Therefore, the model configuration resolves the mesoscale, and possibly a portion of the subme-

soscale. Fifty (terrain-following) vertical levels are used. At mid-depths, the typical resolution is

then ≈ 100 m in the deep ocean, and finer in shallower areas, e.g., the DWBC path along the con-

tinental slope. Top and bottom coordinate stretching (with stretching factors θs = 6 and θb = 4,

respectively) further increases vertical resolution near the top and bottom boundaries. Vertical

resolution is approximately 5 m near the surface. At continental slope to continental rise seabed

depths (1000 − 4000 m), vertical resolution near the bottom is ≈ 15 − 50 m , respectively. The

model bathymetry is derived from the 30 arc second-resolution Shuttle Radar Topography Mis-

sion global product, SRTM30_PLUS [Becker et al., 2009], processed for use in ROMS as described by

Renault et al. [2016b].

Boundary conditions at open boundary segments are prescribed using an offline nesting ap-

proach [Mason et al., 2010]. Model variables at the open boundaries are relaxed to values from

a coarser parent domain, using radiation-like boundary conditions. These are as described in

Marchesiello et al. [2001], except for the barotropic momentum and surface elevation boundary

conditions, which are described inMason et al. [2010]. The parent (ROMS) solution is described in

Renault et al. [2016b]. Its domain covers the entire North Atlantic ocean, with ≈ 5 km horizontal

resolution in GBB region, and 50 vertical levels as well. The parent configuration was spun-up

for 14 years using climatological forcing, and subsequently solved for five additional years with

time-dependent forcing, corresponding to calendar years 2000-2004. For boundary data used

in the nesting procedure, in the first fourGBB years we use the last four parent solution years,
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since theywere conductedwith time dependent forcing. For each following four-yearGBB period

(years 5-8, 9-12,13-16), we recycle the same four years of boundary data from the parent solution.

Thus inter-annual variability is statistically limited in the model (see discussion in supplemen-

tal section 3.6.3). To minimize shock-like numerical artifacts when the forcing cycle is restarted,

the last 10 samples of the boundary data cycle (last 10 days of December 2004) are linearly in-

terpolated toward its first sample (January 1st, 2001). Because radiation boundary conditions are

generally not completely free of artifacts, such as boundary reflections, sponge layers are applied

near the open boundaries, with amaximum viscosity of 300m2/s at the boundary, and a decrease

as a cosine quarter cycle to zero over a distance of 25km from the boundary. Air-sea fluxes are ac-

counted for using bulk formulae [e.g., Fairall et al., 1996], with the atmospheric state interpolated

from 6-hour interspersed CFSR reanalysis data [Saha et al., 2010].

Vertical sub-grid scale mixing is parameterized via the K-Profile Parameterization [Large et al.,

1994]. For the tracer advection scheme we initially used the split-rotated scheme “RSUP3”, with

the diffusive componenta aligned with the local neutral plane [Lemarié et al., 2012]. However, we

found severe numerical issues in our configuration (supplementary section 3.6.2). Therefore, we

reverted to isopotential alignment of the diffusive part of RSUP3 [Marchesiello et al., 2009]. We

integrate the model for 16 ocean years, and save 2-day averages of output variables, on which

all presented analysis are performed offline. Domain-integrated kinetic energy and Available

Potential Energy [Vallis, 2017] are examined (not shown), to probe the degree to which the model

has spun-up. Both quantities have pronounced seasonal cycles, with no clear interannual drift,

i.e., the solution appears close to a statistical steady state. Further model validation is presented

in supplemental sections 3.6.3-3.6.6. Given that statistics of domain integrated energy, water

mass properties, and circulation pattern exhibit little variation after year 8 (supplemental section

3.6.3), the presented results (e.g., mean quantities) are based on model years 9-16, unless stated

otherwise.
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Figure 3.1: Model depth-averaged speed, averaged over years 9-16. Panel (a) shows the full do-

main of the numerical solution (section 3.2.1). Panel (b) focuses on the area implicated in leaki-

ness in the DWBC (section 3.1). The 1, 3, and 4 kmdepth isobaths aremarkedwith thin black lines.

Geographic featuresmarked in thefigure: Newfoundland (Nfl), theGrandBanks ofNewfoundland

(GB), Flemish Cap (FC), Flemish Pass (FP, the ≈ 1150m deep channel west of FC), Orphan Knoll

(OK), theMid-Atlantic-Ridge (MAR), the Charlie-Gibbs Fracture Zone (CGFZ), and Greenland (GL).

Major currents: Gulf Stream (GS), its continuation as the North Atlantic Current (NAC), and the

DeepWestern Boundary Current (DWBC). The NAC extends northward, approximately along and

meandering about the 4.2 km isobath, from the Gulf Stream termination about −45 E. The solid

red line east of FC, around 47 N , marks the location of the vertical sections shown in Fig. 3.11.

The dashed red line west of OK, around 50N , marks themodel particle deployment line (OKL, see

text for details), also shown in Fig. 3.3. Red filled circles mark points of interest along the 3 km

isobath, shown in Fig. 3.4. Blue filled squares on the 4 km isobath in panel b schematically mark

the leakiness hotspots identified here and defined in the text: (from north to south) Northeast

Corner (NEC), Southeast Corner (SEC), and Southern Face (SF).
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3.2.2 Float datasets

Two observational datasets of subsurface Lagrangian floats are used here. One is “Export Path-

ways from the Subpolar North Atlantic Experiment” (ExPath) data set [Furey and Bower, 2009;

Bower et al., 2011]. In ExPath, RAFOS floats were seeded within the DWBC region west of Orphan

Knoll (Fig. 3.1). These are isobaric (i.e., approximately depth-maintaining) floats that are tracked

by acoustic sound sources and hence do not need to surface during their trajectory (unlike Argo

floats, see below).

Relative to float datasets used in prior analyses of DWBC leakiness in Newfoundland [Lavender

et al., 2000; Fischer and Schott, 2002], the ExPath dataset has the advantages that the floats used are

not profiling (eliminating contamination of velocity from surfacing), and that the floats were all

seededwithin the DWBC and just north of the leakiness area, whereas previous floatswere seeded

further upstream in the Labrador sea. In numerical simulations the isobaric nature of simulated

ExPath-like floats did not appreciably change the interior pathways statistics compared with 3D

simulated floats [Bower et al., 2011].

Approximately equal fractions of floats were ballasted for 700 dbar , and for 1500 dbar (1 dbar ≈

1m) depth. Each float drifted for two years before resurfacing. We analyze the trajectories of

the fifty-five floats deemed usable in Furey and Bower [2009]. Floats positions are generally avail-

able with daily resolution. Exceptions include the positions of floats within Flemish Pass (the

channel running between FC and GB), which was shielded from sound sources. Due to failure of

sound sources during part of the experiment, position triangulation for some trajectories in the

continental slope area south of FC were also not possible [Furey and Bower, 2009].

The second dataset consisted of a subset of Argo floats [Riser et al., 2016]. Argo floats drift at a set

“parking depth”. After a typical period of 9 days, the float first descends to 2 km depth, and then

ascends to the sea surface, while taking hydrographic measurements. At the surface the float

transmits collected data via satellite communication. Then the float descends back to its parking
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depth, restarting the cycle. We compiled a dataset of all Argo floats that have ever crossed the

DWBC cross-section along which the ExPath floats were deployed. Specifically, the chosen area is

west of Orphan Knoll, between latitudes 49.5 to 50.5N , and longitudes 49.6 to 47.7W . We find 67

floats thatmeet this criterion, with parking depths between 800−2000m, between the years 1998-

2017. Specifically, the number of floats that have parking depths (800,1000,1500,2000)m, respec-
tively, is (3,43,18,3). Unfortunately, not all floats in the assembled dataset have actual pressure
readings stored from their drift periods, inwhich casewe rely on the programmed parking depth.

Despite this caveat, we find this dataset to be a useful complement to the ExPath observations.

3.2.3 Particle advection

The phenomenon in question, Lagrangian leakiness, is most directly addressed in a Lagrangian

framework. For that purpose, and for comparison with the float observations, we seed and track

passive particles in the velocity fields obtained from the numerical model described in section

3.2.1. We developed a Fortran code (named “TrajInt”, for trajectory integration) that allows 3-

dimensional (3D) integration of particle trajectories given their initial positions at a particular

time. Particle advection experiments were performed offline, i.e., after running GBB (section

3.2.1). The main features of the code are described here. The particles are passively advected by

solving the advection ordinary differential equation ∂tx = u, where x = x(t) is the particle posi-
tion at time t , andu is the ROMS velocity field interpolated to time t and positionx . The temporal

interpolation is done using cubic splines, the spatial interpolation is tri-linear, and time stepping

is done using the classical fourth-order Runge–Kutta method. The chosen advection time step

is half an hour, which is 1/96 of the GBB saved output rate (2-day averages). At characteristic

speeds within the Nfl basin at mid-depth of up to 0.3 m/s, the maximal displacement within a

TrajInt time step is ≈ 0.5 km, or one fifth of a grid cell side length. Therefore, the time step is

likely sufficient to resolve the model output space and time scales. We confirmed this via sen-

sitivity experiments in which trajectories were recomputed with refinement (repeated halving)

of the time step size, and found that the differences in the trajectories were smaller than one
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grid point for at least 10 model days after initialization, when the larger time step is . one hour.

This time period is comparable to the observed velocity auto-correlation time in sub-thermocline

depths in the northwest North Atlantic [Böning, 1988; Lumpkin et al., 2002], hence we consider the

convergence satisfactory.

We conduct several particle advection experiments. Floats are initialized along a line (Figs. 3.1,

3.12) within the DWBC, west of Orphan Knoll (hereafter OKL), close to the seeding locations of Ex-

Path floats [Furey and Bower, 2009], between the 1 and 2.8 km isobaths, andwith an initial depth at

least 300 m above the bottom. The specified line is chosen since it is located upstream of Flemish

Cap, where much of the leakiness occurs, and for comparison with the ExPath dataset (section

3.2.2). The mean model velocity at the seeded depths along OKL is everywhere downstream (ap-

proximately southward) within the DWBC, except for a clockwise recirculation at Orphan Knoll.

Experiment 1 (Exp3d) employs a large number of deployments (≈ 550,000 particles) to get statis-

tically robust estimates of leakiness metrics. We deploy up to 1000 particles at depths of 700 and

1500 m each, uniformly distributed along the entire OKL section, every 10 days between years 9

and 16. At each seeding date, particles were only seeded along the OKL in locations where the

meridional component of the 2-day averaged velocity was directed southward.

These particles are advected for 200 days each. Because the velocity auto-correlation (integral)

time scale in this region is generally between 5 and 10 days [Böning, 1988; Lumpkin et al., 2002],

seeding more often than 10 days would not likely have been effective in terms of relative con-

tribution of additional effective degrees of freedom. Experiment 2 (Exp3dMean) uses the time

mean (years 9-16) velocity field in place of the 2-day-averaged output velocity field. Its purpose

is to delineate themean offshore flow pathways and compare time-mean with variable leakiness.

We deploy 1000 particles each at depths of 700 and 1500 m, uniformly distributed along the OKL

section. Only floats that drift southward past Orphan Knoll are considered here to delineate the

mean DWBC trajectory, and thus are used in the analysis of Exp3dMean.
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3.3 Results

3.3.1 Lagrangian leakiness pathways

An estimated 73 − 84% of all ExPath floats were lost (“leaked”) from the DWBC to the interior

before circumnavigating FC (supplementary section 3.6.7), demonstrating its relative importance

in DWBC leakiness within the Nfl basin. We therefore focus mostly on the FC area in this section.

Fig. 3.2a shows the trajectories of the ExPath floats around the time that each float makes its

first (offshore) crossing of the 4 km isobath at FC, which is approximately the offshore limit of

the DWBC. This diagnostic parameter is useful as floats which crossed offshore around FC3 do not

appear to have reentered the DWBC [see individual trajectories in Furey and Bower, 2009]. While

some do cross the 4 km isobath back near FC, these either recirculate immediately offshore again,

or travel close to the same isobath upstream, apparently entrained in the NAC.

The distribution of trajectories leaving the DWBC around FC (Fig. 3.2a) suggests that leakiness of

ExPath floats occurs in three main FC sub-regions (“leakiness hotspots”): at the northeast (NEC)

and southeast (SEC) corners of FC, and in the south face (SF) just following SEC. Their approximate

locations are marked in Fig. 3.1b. The concentration of ExPath floats leakiness near SEC was

previously reported by Bower et al. [2011].

At theNEC and SEC, ExPathfloats leave theDWBCvia trajectories that are oriented almost directly

offshore. In the SF area, the offshore velocity component is weaker relative to the along-shore

component, but some of the floats abruptly turn back upstream (approximately north-eastward)

midway through the SF. The hotspots are approximately collocated with local maxima in topo-

graphic changes: convex curvature at NEC and SEC, and a 2-3 fold increase in bottom steepness

in the SF area (section 3.4). Fig. 3.2 also shows that as floats travel offshore, they tend to turn cy-

clonically, consistent with vortex stretching assuming conservation of potential vorticity of the

3Further downstream, around GB, several floats did come back into the DWBC [Bower et al., 2009].
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Figure 3.2: Comparison of observed andmodeled float trajectories in the Flemish Cap (FC) region,

centered on the time at which they crossed the 4 km isobath (section 3.3.1). Color of plotted

trajectories corresponds to time (in days) relative to their first offshore crossing of the 4 km

isobath. Leakage of floats out of the DWBC occurs preferentially in the convex bends of FC, and

downstream from the second bend, in the region of steepening bathymetry. Physical floats are

shown in panels (a) (ExPath floats) and (b) (Argo floats). These data sets are described in section

3.2.2. Panel (c) shows the trajectories of a randombatch of 60model particles fromExp3d (section

3.2.3). Temporal resolution of position data for ExPath floats, Argo floats, and the numerical

particles, respectively, are 1 day, ≈ 9 days, and 2 hours. Continuous curves are used in all panels

for visibility. The jagged appearance and deviations between day 0 position and the 4 km isobtah

in panel b are due to the linear interpolation between 9 day-intervals of Argo position data.
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layer below the pycnocline. The question of what sets the locations of the leakiness hotspots is

discussed in Secs. 3.3.4-3.3.5 and 3.4.

We further examine Lagrangianpathways in observations, byperforming a similar analysis (Fig. 3.2b)

on Argo floats traveling south within the DWBC 4. The subset of Argo floats is described in section

3.2.2. While the temporal resolution of Argo floats locations is an order of magnitude lower, the

clustering of the Argo floats’ crossings of the 4 km isobath is qualitatively similar to that of the

ExPath floats.

Next we examine Lagrangian pathways of particles seeded within the numerical model (section

3.2.2), beginning with a small subset of the seeded particles for a qualitative visual comparison

with the floats. Panel c of Fig. 3.2 is identical to panels a and b, but displaying the trajectories of a

random batch of 60model particles from Exp3d (section 3.2.3) — 30 from each seeding depth (700

and 1500 m). The leakiness hotspots and other related properties described above for the ExPath

floats are largely reproduced in this case. These results are consistent in other random samples

of the floats from Exp3d (not shown).

To examine leakiness within the full set of (∼ 550,000) model particles, we first plot the dis-

tribution of the locations at which each particle in Exp3d first crossed from the DWBC to off-

shore of the 4 km isobath (Fig. 3.3a). We find the same clustering as suggested in Fig. 3.2, i.e.,

the offshore crossing density is highest at the NE corner, SE corner, and SF. The pattern appears

qualitatively consistent with the ExPath observations (circles superimposed in the panel). For a

quantitative comparison, we apply a two-sample Kolmogorov-Smirnov (KS) test. The two sample

sets are the ExPath and Exp3d offshore crossing locations. We partition the 4 km isobath into

consecutive 50 km long sections, and count (bin) the number of floats or particles crossing each

section. The cumulative distribution function (CDF) of the ExPath floats (F f ) offshore crossings

is then compared with the same CDF for the Exp3d particles (Fp). The KS test statistic, defined by

D =maxn |F f (n)− Fp(n)|, is then compared with the theoretical KS distribution. The result from
4Leakiness of profiling floats in this region was investigated by Lavender et al. [2000]; Fischer and Schott [2002] as

well.
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the comparison is that the two distributions are statistically indistinguishable (p value = 0.96).

This indicates that the observed and modeled float trajectories are consistent with one another,

to the extent that differences between them could be distinguished statistically.

Finallywe calculate the Lagrangian-mean velocity, based again on the full number of Exp3dmodel

particles. The Lagrangianmean velocity is defined for our purpose as the average velocity within

a grid cell of all particles that have crossed it. Note that this is a conditional average, in that

it includes solely particles that were released within the DWBC, and in that we apply a further

restriction by including particles only before their first crossing of the 4.2 km isobath offshore.

This differs from an Eulerian average because, for example, the velocities of parcels carried by

intrusions into the DWBC from offshore will not directly contribute to the calculation. In Fig.

3.3 panels b and c, the Lagrangian mean velocity is displayed and decomposed into along and

cross-bathymetry components (hereafterva andvc , respectively 5). Only statistically significant

(supplementary section 3.6.8)va andvc values are displayed. We similarly calculate average La-

grangian eddy kinetic energy, EKE = 1
2

�
v −v

�2, wherev is the velocity of an individual particle
sampled within a grid cell, and an overbar again denotes an average over all such samples within

a single grid cell. In Fig. 3.3 only the results based on 1500m-deepmodel particles are shown. The

same diagnostics for the 700 m-deep model particles are quantitatively similar (supplementary

section 3.6.9).

The along-bathymetry velocity component (Fig. 3.3b) exhibits a maximum along the path of the

DWBC on the continental slope. The cross-bathymetry component (Fig. 3.3c) shows that offshore

Lagrangian-mean velocities occur in patches stretching across the DWBC to its offshore edge (≈

4 km isobath) at the identified Lagrangian leakiness hotspots (NEC, SEC, and SF). The Lagrangian-

mean velocity follows pathways from the DWBC core to NEC, SEC and SF, which is most easily

seen via the Lagrangian-mean velocity vectors overlaid on Fig. 3.3d.

The EKE (Fig. 3.3d) is considerably lower (by roughly 50% percent) at leakiness hotspots NEC and

5The cross-bathymetry component vc points toward deeper water, and the along-bathymetry component va is
defined to point to the right ofvc , i.e., generally downstream for the DWBC.
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Figure 3.3: (a) Locations at which the ExPath floats (circles, both 700 and 1500 m depths) and

1500 m depth-initialized Exp3d particles (colors) first cross the 4 km isobath. The colors cor-

respond to the number of model particles crossing the 4 km isobath at each model gridpoint

along the isobath. The results for Exp3d particles initialized at 700 m depth for this and the next

panel are very similar in pattern and magnitude to those shown here (supplementary section

3.6.9). (b) Lagrangian-mean along-bathymetry velocity component (positive ≈ downstream), (c)

Lagrangian-mean cross-bathymetry velocity component (positive offshore), and (d) Lagrangian

eddy kinetic energy (EKE) derived from the Exp3d particles initialized at 1500 m depth. Values

as high as 0.04 m2/s2 occur in the saturated (orange) region near the 1 km isobath. In panels b-c,

only statistically significant values are displayed, i.e., white patches are not associated with sig-

nificant values. Lagrangianmean velocity vectors are superimposed in panel d. The 1, 3, and 4 km

isobaths are marked with black contours in each panel. The deployment line (OKL) of model par-

ticles is marked by the thick black line. The bathymetric features of Flemish Cap and the Grand

Banks of Newfoundland are marked by the letters FC and GB, respectively, in panels a-b.
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SEC compared to adjacent patches along the same isobaths, suggesting that the cross-isobath

Lagrangian transport at these hotspots is primarily due to an Eulerian-mean flow. In contrast, if

the Lagrangian-mean offshore flowwere an eddy-forced or eddy-rectified flow, onewould expect

it to be associatedwith elevated EKEvalues. Thatmaybe the case at SF,where EKE is indeed locally

elevated (see subsections 3.3.3 and 3.3.5 as well).

In summary, the analysis presented in this section shows that in observations Lagrangian leaki-

ness trajectories are clustered in a few key locations (NEC, SEC, SF). Additionally, the numerical

model compares well with the observations, and using a much larger number of (numerical) par-

ticles demonstrates that these leakiness hotspots are associated with high Lagrangian mean off-

shore velocities, offshore deflections of the peak along-shore velocity (va) upstream, reductions

in the magnitude ofva, and (except at SF) low variability (EKE).

3.3.2 Eulerian characterization of leakiness

In section 3.3.1 we quantified the Lagrangian leakiness via the Lagrangian-mean offshore flow.

The Lagrangian-mean flowmay be locally represented as the sum of the Eulerian-mean flow, and

the rectified eddy flow. In the present section we analyze the Eulerian-mean flow over the same

time period (years 9–16), and thereby deduce the contribution of rectified eddy transport to the

Lagrangian-mean offshore flow.

We begin by examining cumulative (Eulerian) offshore transport on the 3 km isobath (Fig. 3.4)
6, in comparison with the observational estimate of M14 (section 3.1). As in M14, we decompose

the transport into densities greater or smaller than σθ = 27.68 kg/m3 (Fig. 3.4a), approximately

the upper boundary of LSW. This partitioning is also useful because the bias in model isopycnal

depths significantly decreases for σθ < 27.0 kg/m3 (supplemental section 3.6.3 and Fig. 11).

6The same calculation applied to the 4 km isobath yields very similar results (e.g., ∼ 15 Sv offshore flux at FC).
The 3 km isobath is used here since it extends further north past Orphan Knoll.
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Figure 3.4: Cumulative offshore transport in (a) density layers and (b) depth layers, along the

3 km isobath, averaged over model years 9-16. Note that the deepest layer in panel b is thinner

(300 m) than all other layers (500 m). Black circles correspond to the red circles marked on the

3 km isobath in Fig. 3.1, with the furthest upstream and downstream circlesmarking the section’s

beginning and end. Other circles mark points around FC and GB. The middle of the three circles

labeled “FC” marks the SE corner (see section 3.3.1).

Although there is a substantial offshore transport (∼4 Sv) at OK, it is compensated by shore-

ward flow immediately downstream, resulting in negligible net offshore transport around OK

(Fig. 3.4a). In contrast, around FC there is an offshore transport of 13 − 16 Sv, which is uncom-

pensated in the σθ ≥ 27.68 kg/m3 density range. The offshore transport rate (slope of the curve)

greatly increases around the SE corner and downstream from it (around SF), where much of the

Lagrangian leakiness is clustered. Additionally, 3 − 5 Sv are lost around the southern tip of the

GB. The cumulative loss from FC to GB is consistent with the M14 estimate, and our analysis fur-

ther constrains (within the numerical model) the along-slope distribution of the offshore trans-

port. Results for σθ ≤ 27.68 kg/m3 show a similar pattern, with ∼ 3 Sv lost around FC, and

∼ 1 Sv lost around GB. An examination of the cumulative offshore transport in depth layers (Fig.

3.4b) reveals that the transport is largely depth independent down to 2.5 km depth (and slightly

surface-intensified).

We now examine the Eulerian-mean circulation patterns around the DWBC leakiness hotspots.
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Fig. 3.5 shows the Eulerian-mean velocity streamfunction on two representative isopycnal sur-

faces: σ1 = 32.43 and σ2 = 37.014 kg/m3, averaged over years 9–16. The upper surface lies

between depths of 800 and 1750 m in the DWBC (figure 3.5a), similar to ExPath floats and to the

Lagrangian analysis in the previous section. It also corresponds to typical LSW depths [Bullister

et al., 2013; Mertens et al., 2014]. The lower surface lies between depths of 1800 and 2700 m in the

DWBC, corresponding to lower LSW or upper Overflow Water. These surfaces are hereafter re-

ferred to as LSW and lLSW for clarity. However, we do not suggest they correspond accurately to

observed water mass properties (supplemental section 3.6.3). The streamfunction is calculated

by an adaptation of a flood-fill algorithm (supplementary section 3.6.10). Closed streamlineswith

inner minima (maxima) are cyclonic (anticyclonic) recirculations, and streamfunction values are

only meaningful up to an addition of a global constant.

Fig. 3.5 shows that the Lagrangian leakiness hotspots (NEC, SEC, SF; section 3.3.1) coincide with

mean streamlines exiting the DWBC. This indicates that the leakiness is at least partially at-

tributable to Eulerian-mean offshore flows at the NEC, SEC and SF hotspots. At NEC separat-

ing streamlines are apparent only in the deeper density surface (σ2 = 37.014 kg/m3) plotted,

although they appear if more streamlines are plotted in the shallower density surface (σ1 =

32.43 kg/m3) as well. This is consistent with the larger offshore flux near SEC (figure 3.4).

Fig. 3.5 also reveals the existence of three closed cyclonic recirculations with radii ofO(100 km)
immediately offshore of the DWBC around FC. These recirculations stand between the DWBC and

the NAC, complicating the potential NAC influence on DWBC leakiness (mechanism 1, section

3.1). Similar cyclonic recirculations around FC were reported in circulation estimates based on

profiling floats [Lavender et al., 2005], and in numerical simulations by Xu et al. [2015], which noted

that the recirculations are consistent with the distribution of Tritium (see also Fig. 2a in Biló and

Johns [2018], and Fig. 1a in Getzlaff et al. [2006]). The separating streamlines at NEC and SEC do

not return to the DWBC, but rather turn (around the offshore recirculations) cyclonically east

and northward post separation, and appear to join or travel adjacent to the NAC. The cyclonic

turning of separated streamlines is visually similar to the cyclonic trajectories of the Lagrangian
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particles after they have left theDWBC (Fig. 3.2). These circulation patterns (including separation

and recirculation) are similar on both density surfaces shown in Fig. 3.5, which are separated by

around 1 km vertically. Similar results are found when the streamfunction is computed for other,

intermediate density surfaces, or for the depth-integrated flow (not shown).

We investigated the role of eddies transport by comparing the thickness-weighted averaged ve-

locity streamfunction [Young, 2012] to the simple time-averaged velocity streamfunction dis-

cussed above in this subsection. The patterns (not shown) and speeds are nearly indistinguish-

able between the two different averages. The mean speed difference in the area shown in figure

3.5 is 0.002m/s . The maximal difference (≈ 0.01m/s) occurs around the SF hotspots and in the

confluence zone offshore of SF. This is consistent with the greater EKE diagnosed at SF relative

to NEC or SEC from model particle motions (section 3.3.1). Thus, the eddy-rectified circulation

is generally negligible in comparison with the mean Eulerian circulation on these isopycnals.

This is consistentwith the qualitative similarity between the Lagrangian-mean (section 3.3.1) and

Eulerian-mean (figure 3.5) offshore flow velocity distributions. Furthermore, it suggests that the

Eulerian-mean flow accounts for the offshore transport of Lagrangian particles at the leakiness

hotspots.

3.3.3 Robustness of spatial patterns of separation

Diagnostics presented in the previous two subsections suggest that leakiness occurs, at least par-

tially, as a spatially localized and temporally steady (time-mean) offshore flow pattern. In this

section we examine the following question: how representative is the diagnosed time-mean cir-

culation pattern of the time-varying circulation patterns? The answer permits dynamical inter-

pretation of the mean circulation; for example, if the mean offshore flow is locally the result of

infrequent but intense offshore flow events, while most of the time the velocity is inshore, the

mean flow state itself would be atypical. Such a scenario may be consistent with rare but intense

external events, e.g., NAC-derived eddies propagating inshore, causing the mean offshore flow.
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Figure 3.5: (a) Mean depth of the σ1 = 32.43 kд/m3 (LSW) isopycnal in the vicinity of Flemish

Cap. (b) Velocity streamfunction (section 3.3.2, and supplemental section 3.6.10) calculated over

the same isopycnal layer as in (a). Panels (c–d) are identical to panels (a–b), but for the isopycnal

layer σ2 = 37.014 kд/m3 (lLSW). The 1, 3, and 4 km isobaths are shown in thick black contours.

The depths of the isopycnal surfaces (a) and (b) in the displayed area, averaged between the 1 and

4 km isobaths, are 1450m and 2420m, respectively. Note that the depth of the upper surface (a)

is as low as 800m near the launch position of the Lagrangian particles (section 3.2.2)

.
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We will see, however, that the mean circulation patterns are in fact statistically quite represen-

tative of instantaneous patterns.

In Fig. 3.6 we present statistics of the cross-bathymetry flow as a function of distance along the

4 km isobath. The velocity is averaged between depths of 700 m and 1500 m, but the findings are

representative of velocity statistics in other layers between 500 m depth and the sea floor (not

shown). Panel (a) shows the Eulerian mean, median, and mode of the cross-bathymetry flow, as

well as the Exp3d Lagrangianmean cross-isobath velocityvc . Here themode was defined relative

to 1 cm/s resolution binning of all samples. Panel (b) shows a histogram of the cross-isobath

velocity at SEC, the location of which is marked in panel (a) and in Fig. 3.1b. In constructing

the histogram, all time samples from locations up to two grid cells distant from the indicated

point along the isobath were used. The error in estimation of the Eulerian mean, std/
√
Ne , is

everywhere < 0.01 m/s, where std is the standard deviation over the N = 1460 time samples

(years 9-16, 2 day intervals), and Ne = N /(10/2) is the number of effective degrees of freedom,
assuming an integral timescale of 10 days (section 3.2.3). Hence, the mean offshore velocity at

NEC, SEC, and SF, is statistically significant (p < 0.05).

The Eulerian mean and median are very close to one other along this section, and particularly so

at themean leakiness hotspots (Fig. 3.6a). Themode fluctuates strongly, but generally follows the

mean values well over length scales ' 50−100 km. Themode is very close to themean at the SEC

and (slightly less so at) NEC. Fig. 3.6b shows that offshore flow is indeed the typical occurrence,

and the distribution is quite symmetric around the mean. The distributions at NEC (not shown)

and SEC are both center-heavy (an excess kurtosis magnitude of |κ | ≈ 0.25), and symmetric (a
skewness magnitude of |γ | ≤ 0.1). At SF the distribution (not shown) remains center-heavy,

although to a lesser degree: (κ = 0.75 and γ = 0.5). In summary, the Eulerian-mean offshore

flow is statistically representative, i.e., typical values are close to the mean. In supplemental

section 3.6.11 we present a cluster analysis that demonstrates that the spatial Eulerian pattern

of mean separation (including separating streamlines) is statistically representative as well, in a

similar sense to that described above.
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Figure 3.6: (a) Statistics of cross-bathymetry velocity component averaged between depths of 700

and 1500 m, as a function of distance along the 4 km isobath around Flemish Cap. The Northeast

corner (NEC), Southeast Corner (SEC), and South-Face (SF) leakiness hotspots are labeled, and

correspond to the locations marked by blue squares in Fig. 3.1b. The mean, median, and mode

of the Eulerian velocity distribution at every location is shown, as well as the Lagrangian mean

derived from Exp3d. The latter is averaged between the two particle populations (initialized at

700 and 1500 m depths). (b) Histogram of the Eulerian cross-bathymetry velocity at SEC (loca-

tion marked in panel a), with vertical lines indicating the Eulerian mean, Eulerian median and

Lagrangian mean cross-bathymetry velocities.

The Lagrangian and Eulerianmeans are very similar aroundmost of FC, confirming that the eddy-

induced rectified offshore flow is relatively low in this area (Figure 3.6a). Along eastern FC out-

side of the hotspots the Lagrangian-mean is generally slightly higher, increasing mean leakiness

there (compare with Fig. 3.4). Another exception is that at SF the Eulerian mean only accounts

for around 50% of the Lagrangian mean offshore velocity, suggesting that the remainder of the

transport is due to the rectified eddymean flow. This is consistent with the elevated Lagrangian-

mean EKE at SF (section 3.3.1). However, the Lagrangian mean offshore flow is also generally

weaker at SF than it is at NEC or SEC.

We emphasize that although Lagrangian and Eulerian mean velocities are almost identical at the

leakiness hotspots, particularlyNEC and SEC, time variability nonetheless has a non-negligible in-

75



fluence on the Lagrangian leakiness. In Exp3d, more than 90% of the particles are exported across

the 4 km isobath before they can reach the GB (longitude≈ −55 E). In contrast, in Exp3dMean, in

which particles are advected by the time-mean velocity fields, only ∼ 59% (35%) of the particles

initialized at a depth of 700 m (1500 m) are exported across the 4 km isobath before they can pass

GB (longitude ≈ -55 E). Therefore flow variability contributes substantially to the leakiness. This

contrasts with the high quantitative similarity demonstrated between Eulerian and Lagrangian

mean offshore flow, and the relatively low magnitude of eddy-rectified offshore flow.

Although mean streamlines leave the DWBC offshore at the three identified leakiness hotspots,

fewer particles in Exp3dMean reach those hotspots. This is to be expected given approximate

planetary vorticty (f /h) conservation. Indeed, the DWBC at and upstream of the particle seeding

locations [Fischer et al., 2004; Bower et al., 2011] is confined inshore of the 3 km isobath, but around

FC (figure 3.11) and GB [Schott et al., 2004] it extends to the 4 km isobath. With temporal variability

(i.e., in Exp3d), particles cross f /h lines and populate themean leakiness hotspots offshore of the

3 km isobath, wheremean velocity can propel them further offshore. Thismay be amanifestation

of the phenomenon known as chaotic advection [e.g., Shepherd et al., 2000; Rypina et al., 2010].

Chaotic advection [Aref , 1984] refers to complex Lagrangian trajectories which often result even

from simple Eulerian fields by the kinematics of superimposed eddies and non-uniform mean

circulation.

3.3.4 PV distribution and balance

Given the separation of the mean flow from the DWBC into the interior, one might ask: how does

themean flow cross the dynamical barrier presented by the cross-bathymetry potential vorticity

(PV) gradient? To address this, we now examine the thickness-weighted-averaged (TWA) PV bud-

get [Smith, 1999; Young, 2012]. The TWA of a variable a, and its deviation from TWA, are defined

by â = ha

h
, and a′′ = a − â, respectively. Here an overbar denotes a time-average and h = −ρ0 ∂z∂ρ

is the isopycnal “thickness density”, where ρ0 = 1027.4 kg/m3 is a constant reference density.
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Figure 3.7: Time-mean (over years 9–16) model fields related to Potential Vorticity (q), on the

σ1 = 32.43 kд/m3 (LSW) isopycnal (see Fig. 3.5). Streamfunction contours are shown in thin

black lines. (a) thickness-weighted average (TWA) Potential vorticity (PV). The thick black line

marks a selected separating streamline. The TWA PV values at the numbered red circles [1,2,3,4]

are [5.36,5.48,5.55,6.37] × 10−12m−1s−1, respectively. (b) TWA eddy potential enstrophy. Terms
in the TWA PV equation are shown in bottom panels: (c) the mean advection of mean PV, and (d)

the eddy PVflux divergence term. Smoothingwith a Gaussianfilter of 5km half-width (truncated

at distance = 20 km) was applied to the fields displayed in panels c and d. The 1, 3, and 4 km

isobaths are shown in gray in all panels. The pattern correlation between the PV budget terms

in panels (c) and (d) is (−)0.85.
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All averages are performed on a selected isopycnal. The TWA PV (q̂), and its balance, are then

respectively defined by [Smith, 1999],

q̂ =
f +vx − uy

h
, (3.1a)

∂q̂

∂t
= −û · ∇q̂ − (1/h)∇ · hEq′′u′′ + nct = 0. (3.1b)

From left to right, the terms in (3.1b) are time tendency, advection of themeanPVby themean ve-

locity, the eddy PVflux divergence, and all non-conservative terms (nct) lumped together. Fig. 3.7

shows the TWA PV, its budget, and the TWA eddy enstrophy, all calculated on σ1 = 32.43 kg/m3,

which is the same (LSW) isopycnal as in the top panels of Fig. 3.5. The analysis was also repeated

(not shown) on σ2 = 37.014 kg/m3 (as in the bottom panels of Fig. 3.5), and we find that the

patterns described below are similar on this deeper isopycnal as well.

The PV (Fig. 3.7a) is generally lower near the western boundary, due to the low stratification

imparted to LSW in its formation via deep convection [Talley and McCartney, 1982; Rhein et al.,

2002]. We observe that in addition to the large-scale offshore gradient, low-PV pockets extend

away from the DWBC along the mean flow streamlines at the NEC, SEC, and SF areas, and into

the adjacent recirculations. Thus, separation occurs across (up) the mean PV gradient, andmean

PV dilution or modification by the eddy and nct terms is sufficiently weak that low PV contours

protrude offshore. Panel (b) displays TWA potential eddy enstrophy, Z = 1
2

E(q′′)2, which peaks
inshore within the DWBC, and upstream of FC. Values are lower further offshore, including the

areas offshore of the leakiness hotspots.

The conservative terms of the PV equation (3.1b) are displayed in Fig. 3.7(c–d). At the leakiness

hotspots the offshore mean PV advection (panel c) results in a negative contribution to the local

PV tendency, because PV increases along the path of the TWA flow. Elsewhere the pattern at the

offshore edge of the DWBC is generally less coherent. The eddy PV flux divergence (panel d) ap-

proximately matches the pattern and amplitude of the mean PV advection term, but is opposite

in sign (with pattern correlation = −0.85). Therefore, at separation streamlines, mean PV ad-

vection is upgradient and balanced by eddy PV flux convergence, with only a secondary role for
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non-conservative processes 7. Themagnitudes of the conservative PV terms are generally largest

just downstream of the leakiness hotspots and within the cyclonic recirculations. Because eddy

PV flux divergence is order one in the PV budget, we gauge its influence on the mean PV dis-

tribution by evaluating the change in mean PV along a mean streamline. We specifically pick a

streamline that separates from the DWBC (at SEC), marked in Fig. 3.7a. The PV values at three

points along this streamline, and an additional point along a mean NAC streamline, are given in

the caption. The total growth in mean PV along the DWBC streamline after its separation (occur-

ring between points 1 to 2 in the plot) is ≈ 10% of the DWBC-NAC mean PV difference (between

points 1 and 4). The maximal cumulative growth along the streamline, ≈ 20%, occurs at point 3.

To summarize, eddy PV flux divergence is a first order term in the PV budget, largely balanc-

ing the offshore PV advection. However, cumulative mean PV change along mean separating

streamlines (which is dominated by eddy stirring), is relatively modest. In contrast, if leakiness

occurred mainly via eddies derived from the NAC (mechanism 1, section 3.1), then along a sep-

arating streamline eddy stirring should result in significant (O(1)) changes in PV relative to the
NAC-DWBC mean PV difference. Furthermore, under mechanism 1, we would expect that vari-

ability would either peak offshore at the eddy source (NAC) or be more homogeneous in between

the NAC and DWBC. That does not appear to be the case, based on our diagnostics of the eddy

potential enstrophy and the Lagrangian EKE (section 3.3.1).

3.3.5 Energy conversions

To more completely characterize the role of eddies in leakiness of the DWBC, we examine in this

section the energy balance around FC. Given that the PV budget is primarily a balance between

the inviscid (mean advection and eddy flux divergence) terms, we focus on the conversion terms

between the mean and eddy energy reservoirs. We define the mean kinetic energy (MKE), mean

7Non-conservative terms are almost certainly even lower in magnitude than indicated by the pattern correlation
result. That is because diagnostics are based on 2-day averaged output andhigher frequency variability is unresolved,
i.e., aliased.
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Figure 3.8: Model energy budget terms, averaged over years 9–16 on the σ1 = 32.43 kg/m3 (LSW)

isopycnal (see Fig. 3.5). Panel (a) shows the Reynolds stress work by eddies on themean flow, i.e.,

positive values correspond to local EKE conversion to MKE. Panel (b) shows the potential energy

conversion to EKE. The 1, 3, and 4 km isobaths are shown in thick black contours in all panels.

Streamfunction contours are shown in thin black lines.

potential energy (MPE), and eddy kinetic energy (EKE) as:

MKE =
1
2
ui
2, MPE =

1
ρ0
ρдz, EKE =

1
2
u
′2
i . (3.2)

Here the time-mean (betweenmodel years 9-16) and deviation from themean are denoted by the

overbar and prime symbols, respectively. The MKE (eq. 3.3) and EKE (eq. 3.4) budgets are given

by [Harrison and Robinson, 1978]:

ui∂tui = RSWe2m + PECm +Tm + nctm, (3.3)
1
2
∂tu

′2
i = RSWm2e + PECe +w′b′ +Te + ncte , (3.4)

Here we define

RSWe2m = −uλ∂ju
′
λ
u′j , PECm = wb, (3.5)

RSWm2e = −u
′
λ
u′j∂juλ, PECe = w′b′, (3.6)

where double indices imply summation. The left-side terms of equations (3.3)-(3.4) are the time

tendency terms, whichwefindarenegligible comparedwith all other terms in each equation. The
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T symbols represent non-local transport and pressure work terms, whereas nct symbols denote

non-conservative terms. The local energy conversion terms in both the MKE and EKE budgets

are the Reynolds stress work terms (RSW ), and potential energy conversion terms (PEC). In

the MKE equation (3.3), RSWe2m is the eddy-to-mean Reynolds stress work, which corresponds

to conversion from EKE to MKE. The PECm term corresponds to conversion of potential energy

to MKE. In the EKE equation (3.4), the RSWm2e term is the mean to eddy Reynolds stress work,

and PECe corresponds to conversion of potential energy to EKE. We calculate the local energy

conversion terms in model (terrain-following) coordinates, and later sample them on the time-

meanσ1 = 32.43 kg/m3 (LSW) isopycnal surface, for comparisonwith the previous diagnostics on

the same surface. However, very similar conversion patterns are obtained at other LSW depths,

and in a full depth integral (not shown). The results are also robust in that they vary little when

alternative averaging periods are used in place of years 9–16, e.g., when averaging over individual

years.

The EKE to MKE conversion term, RSWe2m, is displayed in Fig. 3.8a. If the mean flow is driven

by eddy fluxes, that should be reflected by positive values of Reynolds stress work by the eddies.

Upstream of the leakiness hotspots, the mean flow is accelerated by positive RSWe2m. However,

RSWe2m is low and close to a sign change at the leakiness hotspots, indicating that mean separa-

tion is not forced energetically by eddies. In particular, RSWe2m becomes negative upstream of

the SEC separating streamlines. The MPE to MKE conversion term, PECm (not shown), is positive

at and following the mean separation areas, due to column stretching and downwelling which

occurs in the offshore crossing of isobaths.

The conversion term ofMPE into EKE (by slumping of sloping isopycnals, for example in the form

of baroclinic instability) is shown in Fig. 3.8b8. This term is positive overmost of the extent of the

DWBC in the figure, including upstream of FC. At and downstream of separation points, as well

as within the adjacent recirculating streamlines, PECe values are elevated. It is plausible that

the separation of the mean flow from the continental slope contributes to the growth in PECe : a

8The RSWm2e term (not shown) of the EKE equation is mostly similar in pattern and opposite in sign to RSWe2m
in the area.
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parallel flow over sloping bathymetry exhibits lower linear growth rates compared to flows over

a flat bottom or a free jet crossing isobaths [Mechoso, 1980; Gula et al., 2014; Solodoch et al., 2016].

We note that the release of MPE to EKEmay locally contribute to the following conversion of EKE

to MKE. Indeed, in most areas within the DWBC where RSWe2m is positive, PECe is also positive.

This path to MKE increase does not appear to facilitate the leakiness itself, but rather appears to

be a consequence of the mean flow departing the continental slope, as noted above. However,

positive PECe upstream of NEC may be sufficient to locally increase EKE, and so may contribute

to the “diffusion” of particle trajectories across the DWBC and toward the leakiness hotspots

(section 3.3.3).

3.4 Discussion

We now relate our results to the potential mechanisms of DWBC leakiness identified in section

3.1. We first argue that our results are consistent with inertial separation of the DWBC at FC,

and we briefly review previous theoretical works on the conditions for inertial separation. Given

that existing theories are not applicable to the DWBC, in section 3.4.2 we present a scaling argu-

ment for inertial separation. Finally, possible dependence of separation on model resolution and

physics is briefly discussed (section 3.4.3).

3.4.1 Mechanism of DWBC leakiness

Taken together, the results presented in section 3.3 are consistent with inertial separation of the

DWBC at FC (mechanism 2 in section 3.1). The evidence in support of this claim is as follows:

• The Lagrangian leakiness hotspots coincide with relatively sharp bathymetric variations,
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namely convex turns and steepening of the continental slope (section 3.3.1).

• The offshore Lagrangian-mean flow coincides with the Eulerian-mean flow, which is a typ-

ical (rather than intermittent) offshore flow pattern at the leakiness hotspots.

• Mean DWBC PV contours are deformed in the offshore flow direction at leakiness hotspots

NEC and SEC, indicating advection of PV from the continental slope into the open ocean by

the separating mean flow. The PV exhibits relatively modest changes, mainly due to eddy

stirring, along mean separating streamlines (section 3.3.4).

• Separating streamlines (Fig. 3.5) and floats leaving the DWBC (Fig. 3.2) tend to turn anti-

clockwise, consistent with potential vorticity conservation and thus vertical stretching.

Themain hypothesis put forward in previous studies is that high NAC-generated EKE is responsi-

ble for DWBC leakiness (mechanism 1 in section 3.1), whichmay be expected based on the spatial

proximity between the currents at separation areas. While rectified offshore eddy transport in-

deed accounts for ≈ 50% of the Lagrangian mean offshore velocity at SF, it is negligible at NEC

and SEC. Eddying effects also play a significant role in shifting particles from the upper conti-

nental slope toward the leakiness hotspots at NEC and SEC via chaotic advection, as revealed in

a comparison of Exp3d with Exp3dMean. However, the majority of the uncompensated, cumu-

lative, leakiness occurs as an Eulerian time-mean offshore flow (Secs. 3.3.2–3.3.3). Additionally,

the mean offshore flow does not appear to be directly forced by either internally or externally

generated eddies (mechanisms 1 & 4 in section 3.1); baroclinic eddy production is relatively weak

within the DWBC, and Reynolds Stress work by the eddies on the mean flow is negative close to

the separation ofmean streamlines (section 3.3.5). Finally, we do not directly address the possible

role of SCV formation in DWBC leakiness [Bower et al., 2013] here (mechanism 2 in section 3.1), a

topic reserved for future study.

We note that the Nfl basin lies close to the latitude of zero wind stress curl. This marks the

border between the subpolar and subtropical wind gyres in Sverdrup theory. Furthermore, the

Sverdrup “streamfunction” predicts 10 − 20 Sv leaving the western boundary near FC [Talley,
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2011, Fig. S9.3], which is similar to the observed (uncompensated) leakiness of the DWBC (sec-

tion 3.3.2). However, previous studies have demonstrated that Sverdrup-balance is significantly

compromised in the subpolar gyre due to bottom pressure torque Hughes and De Cuevas [2001];

Spence et al. [2012] and eddy terms [Gary et al., 2011]. In a high resolution (2 km) numerical model,

Le Corre et al. [2019b] show that in the North Atlantic subpolar gyre, Sverdrup balance does not

hold even to first order (including in the gyre interior). Rather, bottom pressure torque, nonlin-

earity, and other terms are dominant. Thus, it is not clear whether boundary current separation

should be expected in the vicinity of the latitude of zero wind stress curl in the subpolar gyre.

The results of Le Corre et al. [2019b] further show that nonlinear terms, representing fluxes from

the slope region, are a dominant positive (cyclonic) term in the interior vorticity balance of the

simulated subpolar gyre. Le Corre et al. [2019b] show that this flux is high near FC and is mainly

due to the mean rather than the eddying circulation. We interpret this result as supportive of

locally determined mean inertial separation. Therefore, although large scale gyre constraints

may play a role in DWBC separation, we focus on the local constraints and dynamics here and

leave the role of the gyre-scale circulation in the FC separation as a topic for future study.

We likewise do not analyze here non-local energy transfer terms (pressure work, and eddy trans-

port of EKE). These terms may be important in interactions between the DWBC and the NAC,

but remain outside the scope of this work. This is related to the concept of boundary currents

collision [Cessi, 1991; Agra andNof , 1993], which occurs when twowestern boundary currents con-

verge, and can substantiallymodify their latitude of separation. In the present case, however, the

DWBC and NAC occupy distinct ranges of isobaths, and the NAC separates further north than the

(partially separating) DWBC.
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Figure 3.9: Offshore velocity averaged over depths greater than 500 m (black), as a function of

distance along the 3km isobath (compare with cumulative transport on the same curve shown in

Fig. 3.4). Additional curves indicate the isobath curvature (blue) and along-isobath (downstream)

gradient of bottom slope steepness (red). All plotted quantities have been smoothed via a running

averagewith a boxwidth of 100 km. Black full circles correspond to the locations of the red circles

in Fig. 3.1, e.g., the black circle at the middle of the Flemish Cap (FC) line marks its southeast

corner (SEC) (section 3.3.1). The inset shows cross-correlations along the same isobath between

offshore velocity and bathymetric curvature (blue), and between offshore velocity and steepness

gradient (red). Cross-correlation values and significance levels are also given in 3.6.12.
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3.4.2 A scaling analysis of inertial separation

Given the evidence for inertial separation as the primary mechanism of DWBC leakiness (section

3.4.1), we now examine the distributions of offshore flow vc and bathymetric changes. Fig. 3.9

shows that larger offshore values ofvc tend to be co-locatedwith sharp increases in curvature and

steepness (see Fig. 3.4 as well). Everywhere around FCvc > 0, and it peaks around NEC and SEC.

This occurs to a lesser degree around GB, where steepening and curvature are not as pronounced

as around FC. Elsewhere, away from FC,vc is either lower in magnitude or oscillates in sign along

other bathymetric features. More quantitatively, we plot cross-correlation of offshore velocity

with isobath curvature and steepening along the 3 km isobath in Fig. 3.9. The correlation between

steepness gradient and offshore velocity reaches r = 0.47 at a downstream lag 73 km, while the

correlation between curvature and offshore velocity reaches r = −0.56 at a downstream lag of 45

km (see supplemental section 3.6.12). These correlations are consistent with inertial separation

initiated by sharp changes in the geometry of the continental slope. However, the correlations

are at least partially due tomeandering of the DWBC along the entire length of the isobath, rather

than just the separation points around FC.

Inertial separation of currents flowing around capes or ridges was studied theoretically by Pickart

and Huang [1995], Ou and De Ruijter [1986], Klinger [1994], and Jiang [1995] 9. As reviewed in sec-

tion 3.1, Pickart and Huang [1995] specifically studied a DWBC-like current traversing a ridge, and

demonstrated that a significant flux is lost to offshore. However, these studies all made the

semigeostrophic approximation, which is invalid when along-stream variations are of similar

or shorter length scales than cross-stream variations. At FC, the radius of curvature at the SEC is

around 10 km, and a few tens of kmat theNEC. In comparison, thewidth of theDWBC (50−100 km)

is considerably larger. Hence, at the convex corners, where much of the separation happens, the

semigeostrophic approximation fails, and these models become inapplicable.

9Laboratory experiments related to the same parameter regimes as these theoretical works were conducted by,
e.g., [Whitehead and Miller, 1979; Bormans and Garrett, 1989].
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Furthermore, these works [except Pickart and Huang, 1995] all find separation happens within

their respective models due to surface outcropping of a density surface bounding a surface cur-

rent from below. The DWBC is not a surface current, but rather has significant deep and depth-

independent components. Indeed leakiness and separation at FC are to a large degree depth-

independent in our numerical model (e.g., figures 4, 5, and 10). Hence theories derived for sepa-

ration via isopycnal outcropping in a buoyant boundary current are not applicable to the DWBC.

Finally the citedworks do not cover downstream changes in bottom slope, which the scaling anal-

ysis we employ (subsection 3.4.2) suggests is a significant factor at FC. In fact, most of the cited

works assumed a flat bottom and vertical side walls.

Greenberg and Petrie [1988] presented a barotropic numerical model over a Nfl-like bathymetry,

where the only prescribed current (by boundary conditions) is DWBC-like. The solution indeed

displayed significant offshore transport around FC (their Fig. 3a), consistent with inertial sepa-

ration. A caveat is that the eastern domain boundary was very close to FC.

In the absence of a closed-form theory of inertial separation relevant for the present case, we

present a scaling analysis that seeks to determine a simple condition for cape separation of a

prograde deep boundary current. The analysis first assumes that mean streamlines continuously

curve around a convex corner, while conserving PV (as noted above, mean PV changes moder-

ately along mean streamlines around FC in GBB , including at separation). Then, a condition is

derived under which offshore excursions or recirculations form. Because we do not explicitly

solve for, or use constraints related to the global streamfunction, it is still conceivable that off-

shore excursions may be followed by meandering and reattachment downstream, rather than

permanent separation. However, we are concerned with bathymetric turns of large angles (∼ 90

degrees for SEC), which are likely more favorable for permanent separation. From a kinematic

standpoint, larger bathymetric turn angles require larger inshore displacements to compensate

for a set offshore detachment distance. A contributing factor in that regard is that for a pro-

grade slope current, vorticity stretching upon offshore excursions may enhance separation, as

discussed below.
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We use the fact that vorticity can generally be decomposed into shear vorticity ζs = −∂nU and

curvature vorticity, ζc = U /rc . Here t and n are the tangential and normal components of the

“natural” coordinate system [Holton, 1973], where t is locally downstream, andn is to its left. The

subscript n denotes differentiation in the n direction,U is the magnitude of the DWBC velocity,

which is directed in the t direction, and rc is the streamline radius of curvature, negative for

clockwise turns as for, e.g., the DWBC around FC NEC or SEC. The expression for PV in isopycnal

coordinates is then

PV =
f + ζc + ζs

h
=

f +U /rc − ∂nU

h
, (3.7)

where h is the thickness (distance between two chosen density values), and f is the Coriolis pa-

rameter. The downstream change in PV along a mean streamline under the above assumptions

is

d(PV ) ∼ d f + dζc + dζs − f

h
dh = 0.

The first term is the change in planetary vorticity, which is neglected over the scales relevant in

the present analysis, i.e.,O(100 km). The last is the vorticity stretching term, which is linearized
under the assumption that vertical excursions are a modest fraction of the total thickness for

mesoscale motions.

At the turn itself, dζc ≈ Û /Rc . Here Û is a velocity scale, while Rc is the bathymetric radius of

curvature. The scale of the downstream change in shear vorticity is written as dζs ≈ −∆U /W ,

whereW is the currentwidth upstream, and∆U is the downstreamchange in cross-current shear

integrated in the positiven direction. Note that if width decreases (increases) downstream, then

∆U is an overestimate (underestimate). We assume that the change in current width will be a

modest fraction, if the current does not partially separate. Therefore, we have a scaling equation

relating cross-stream shear changes to bathymetric curvature and deepening (the latter related

to steepening across the current):

∆U ≈
W

Rc
Û −

fW

h
dh. (3.8)
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At FC, the turn of the DWBC is clockwise, henceRc is negative, especially at the leakiness hotspots

NEC and SEC. Additionally, a steepening occurs at and prior to NEC, SEC, and SF. The deepening

should be accompanied by vertical stretching (dh > 0), given that the current fills a significant

part of the water column (Fig. 3.11). By (3.8) both clockwise curvature and vertical stretching

each add to a drop in velocity per unit distance offshore (∆U ), tending to reduce current flux

downstream along the isobaths. In the next two paragraphs we examine the contribution of each

of these terms in turn.

It follows fromequation (3.8) that if the radius of curvatureRc is similar inmagnitude to or shorter

than the current widthW , then its contribution to ∆U is of the same magnitude as the mean

current speed. At the outer rim of the current the added shear is then of sufficient magnitude

to reverse its direction10 , with speed comparable to Û . The associated large relative reduction

in downstream flux in the steady circulation is a manifestation of inertial separation. As noted

above, the radius of curvature at the SEC (NEC) is around (a few times) 10 km, while the width of

the DWBC is 50 − 100 km. Thus Rc is in fact significantly lower thanW .

The stretching (2nd right-side) term in (3.8) has a similar effect in reducing downstream along-

isobaths flux as does the curvature term, and is of a similar magnitude. The deepening of stream-

lines originating on, say, the h = 3 km isobath upstream of the SEC, is greater than dh = 500m,

resulting in cumulative vorticity stretching as great as that from curvature vorticiy, (Rc ·f ·dh
h·Û

) ∼ 1,
assuming Û = 0.15m/s , and Rc = 10 km. A similar but slighter steepening occurs around the

NEC. Bathymetric steepening also limits streamline shoaling around bathymetric turns, which

adds confidence to the scaling analysis since shoaling kinematiclly reduces streamline curvature.

Furthermore, if the (prograde) flow does “begin” to separate rather than turn around the cape,

as a parcel travels offshore additional vortex stretching occurs. The increased vorticity may be

expressed as increased cyclonic path curvature, steering the parcel further away from the up-

10Offshore of the downstream stagnation streamline, the present analysis cannot determine the circulation pat-
tern, since offshore streamlines do not necessarily originate upstream. Rather than a reversal or recirculation, a
split in the current may emerge for example. That does not affect the result inshore however.
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stream isobath. That can result in a positive feedback, e.g., by creating more positive curvature

vorticity (by vortex stretching), and further angular separation from the continental slope. Note

that floats trajectories separating around FC do tend to turn cyclonically offshore (Fig. 3.2), as do

mean separating streamlines (Fig. 3.5).

To summarize, the scaling analysis suggests that partial separation (loss of outer streamlines to

offshore) of a prograde current is a plausible outcomewhere significant downstreambathymetric

steepening occurs, and especially where it is accompanied by anticyclonic bathymetric turning.

The dependence on curvature radius is particularly simple to express – an order one flux reduc-

tionmay result for curvature radiusRc <W . Both conditions aremet at the FC leakiness hotspots

(section 3.3.1).

As an additional but still preliminary consistency check, we compare these conditions (down-

stream steepening and Rc < W ) with the conditions at several locations of separation of other

prograde currents: the western boundary current flowing around the southern tip of Greenland

[Holliday et al., 2009], the Mediterranean Overflow current propagating around the Iberian penin-

sula [McDowell and Rossby, 1978; McWilliams, 1985; Bower et al., 1997] 11 , and the California Under-

current at the mouth of Monterrey Bay [Molemaker et al., 2015]. The width of these currents is

O(150,50,20) km, respectively, while the capes they traverse have Rc = O(10) km. Furthermore,
steepening occurs as well on the upstream side of these capes. It is difficult to determine the

relative contribution of steepening to vorticity stretching without knowledge of trajectories or

mean streamlines, but the relative contraction of cross-isobaths distance at these capes is a large

fraction, as in the FC separation locations.

Several assumptions and idealizationsweremade in deriving this scaling that remain to be tested.

a. The assumption of mean PV conservation along mean streamlines is only qualitatively moti-

vated by the modest cumulative effect of eddy terms in the GBB PV budget. b. If the current

width decreases downstream (to a valueW2), then the magnitude of ∆U is overestimated in (3.8)

11Note that leakiness of the Mediterranean Overflow current is at least in some cases associated with SCV forma-
tion and interactions [Bower et al., 1997].
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by a factor ∼ W /W2. However, the magnitude of ∆U estimated from our scaling at FC is such

that even, e.g., a factor of two width decrease is relatively minor12. c. If separation does occur,

reattachment cannot be excludedwithin the analysis. It could only be suggested that lack of reat-

tachment is likely for a prograde current separating from a large-angle bathymetric bend, due

to cyclonic turning past separation resulting from additional vortex stretching. In light of these

assumptions and simplifications, the analysis needs to be further refined and tested in dedicated

and controlled (e.g., numerical) experiments.

3.4.3 Sensitivity to model circulation and resolution

The scaling analysis also suggests that inertial separation at a bathymetric turn should depend

mostly on the local conditions: radius of curvature, bottom steepness changes, current width,

and speed. Two implications may be that: (a) the leakiness at FC should be largely insensitive to

external variations in the Nfl circulation pattern; (b) as long as numerical model resolution is fine

enough that, e.g., bathymetric curvature radii are similar to or smaller than model DWBC width,

separation should still occur to some degree.

The observed leakiness patterns are reproduced well in the FLAME model employed by Bower

et al. [2011], which has a coarser resolution, ≈ 6.5 km, despite water mass biases (supplemental

section 3.6.12) in theNfl basin. Thus, the leakinessmay not be strongly dependent on the detailed

structure of the DWBC and surrounding currents, or on good resolution of baroclinic instabilities

at the DWBC boundary (where the Rossby radius is ≈ 10 km). Indeed, with further decrease in

model resolution, at least up to 0.5◦, leakiness around FC and interior pathways still appear, but

seem to gradually change and eventually severely deteriorate relative to observations [Gary et al.,

2011; Spence et al., 2012].
12Additionally, even following separation at SEC (withinGBB ) width decreases by only a small fraction locally (Fig.

3.5b and d).
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3.5 Summary and Conclusions

3.5.1 Phenomenology

Using twoobservational float datasets and a realistic, high-resolution, numericalmodel, wedemon-

strate that within the Newfoundland (Nfl) Basin, the DWBC has a few well-defined geographical

hotspots of maximal Lagrangian leakiness (Figs. 3.2-3.3). At the leakiness hotspots, local maxima

of time-mean Lagrangian and Eulerian offshore velocities occur in the numerical model, while

Lagrangian EKE is minimal (Figs. 3.3-3.6). These hotspots are further characterized by convex

curvature and/or downstream steepening isobaths (Fig. 3.9). The localized, and time-mean na-

ture of the leakiness, and its apparent correlation with bathymetric variations, suggests that it

occurs largely via an inertial separation mechanism (mechanism 2 in section 3.1). This contrasts

with previous hypotheses that suggested that the DWBC leakiness was due to interaction with

NAC eddies (mechanism 1 in section 3.1).

The Eulerian mean circulation is examined within potential density layers, revealing that mean

DWBC streamlines separate offshore at the identified Lagrangian leakiness hotspots (Fig. 3.5).

Following separation, the streamlines revolve around deep cyclonic recirculations that reside

between the DWBC and NAC. The Eulerian-mean and Lagrangian-mean DWBC velocities are very

similar in the region. Consistently, the thickness-weighted average (TWA) flow is almost identical

to the Eulerian-mean flow, which means that the rectified eddy mean flow is negligible. Cluster

analysis (supplemental 3.6.11) supports these conclusions as well.

The mean offshore flow is associated with cumulative downstream reduction in DWBC mass flux

(Fig. 3.4). Thus, we distinguish uncompensated leakiness from compensated leakiness: the for-

mer (latter) is associated with a net (zero) loss of material flux to offshore. The time-mean flow

only contributes uncompensated leakiness, since no mean streamlines appear to join the DWBC

from the interior (Fig. 3.5). The eddy component (with respect to the time-mean) can contribute
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to uncompensated leakiness only via rectified eddy transport, which is found to be negligible

compared to the Eulerian-mean circulation around most of FC. The eddies may contribute sub-

stantially to compensated leakiness, but this has not been examined in this study. The model

DWBC volume flux decreases by 13-16 Sv around FC, within LSW and deeper waters. The reduc-

tion primarily takes place at the Lagrangian leakiness hotspots identified in this study. The result

is generally consistent with observational estimates (M14) showing ≈ 15 Sv loss between FC and

east GB.

3.5.2 Dynamics

The dynamics of separation are addressed from a (TWA) PV perspective (Fig. 3.7) as well as in

terms of energetic transformations (Fig. 3.8). We find that mean separation deforms the PV

contours offshore at the leakiness hotspots, which is consistent with inertial separation. Indeed,

the cumulative change in mean PV along mean separating streamlines is modest (≈ 10 − 20%)

relative to the DWBC-NAC contrast. However, the mean PV advection is found to be balanced to

first order by eddy PV flux divergence, indicating that eddies play a role in guiding the separated

mean flow offshore. We therefore examined energy conversion processes in the region (Fig. 3.8).

We find that the separation of mean DWBC streamlines is not directly forced by conversion of

EKE to MKE (RSWe2m). In fact RSWe2m decreases and becomes negative prior to separation. This

is consistent with the low magnitude of the eddy-rectified flow relative to the mean flow; as

well as with cluster analysis (supplemental section 3.6.11), which shows that the separation of

streamlines is statistically typical.

Outside of the separation areas, patches of positive PECe are collocated with positive RSWe2m,

whichmay be interpreted as a forcing of themean flow by eddies spawned locally from baroclinic

instability. This seems to occur in the recirculations, as well as in the DWBC itself (except at

the separation areas). Rectified eddy mean flow is indeed towards offshore and significant at

SF, but not elsewhere around FC. Our Lagrangian experiments using the time-mean model flow
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field (Exp3dMean) highlights another role of eddies in DWBC leakiness: this experiment exhibits

≈ 50% less leakiness compared with Lagrangian experiments using the time dependent velocity

(Exp3d). We attribute this difference to the eddies chaotically advecting Lagrangian particles

from the upper continental slope toward the leakiness hotspots.

In contrast with previous hypotheses, our findings are in line with the main fraction of mean

uncompensated leakiness occurring by inertial separation. Leakiness hotspots and mean stream-

line separation are localized at areas of convex and/or steepening bathymetry, where inertial

separation may be expected. Furthermore, cumulative leakiness is demonstrated to be a persis-

tent and typical occurrence, rather than eddying or intermittent. Along these mean separating

streamlines, eddy PVflux divergence does not induce a dramatic change inmean PV, in support of

inertial separation. The separation process is likely inviscid, since non-conservative terms have

a small role in the TWA PV balance. Finally, past separation, Lagrangian trajectories as well as

mean streamlines tend to turn cyclonically, which is consistent with vortex stretching in inertial

motion into deeper water.

Previous theoretical frameworks determining conditions for inertial separation are not suitable

for treating the DWBC conditions near FC. This is partially due their focus on buoyant rather than

deep boundary currents. Additionally the semi-geostrophic approximation (made in these stud-

ies) is violated in areas of high curvature of the slope (section 3.4). Instead, a scaling analysis is

presented (section 3.4.2) for the downstream evolution of a boundary current due to bathymet-

ric variations. The result suggests that a steady and continuous DWBC flow around the convex

corners of FC is unlikely. A significant reduction in flux (e.g., partial separation) is a plausible

outcome, due to influence of bathymetric curvature and steepening. Several assumptions made

in the scaling analysis cannot be validated in the present study, and they require detailed exam-

ination in dedicated numerical experiments.
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3.5.3 Outlook

We note several caveats of the present investigation (also see supplemental section 3.6.3). (1)

The numericalmodel configuration developed and presented here suffers fromwatermass biases

that make detailed comparisons with observations delicate at times, although mean circulation

features and their variability appear to agree favorably with observations (supplemental section

3.6.3). Similar water mass biases plague numerical models of the area, and have been partially

resolved in some studies using relaxation of water properties toward climatology [e.g., Tréguier

et al., 2005; Rattan et al., 2010], a method not without drawbacks for dynamical analysis. (2) Like-

wise, totalmodel DWBC transport east of FC is anomalously high in comparisonwith observations

(supplemental section 3.6.3). This may have an impact on the leakiness process. For example a

faster current may be more likely to inertially separate. However, in supplemental section 3.6.6

we show that the model DWBC transport is in good agreement with observations elsewhere in

several other locations in Newfoundland including along FC, and that the anomaly is likely re-

lated to the cyclonic recirculations east of FC rather than to the DWBC itself. (3) While the model

output frequency of twodays is likely sufficient to resolvemesoscale processes, itmaynot provide

sufficient representation of the submesoscale. For that reason leakiness by SCV formation and

escape (mechanism 3 in section 3.1) is not addressed. Indeed, Bower et al. [2013] found that several

ExPath floats were trapped in SCVs at or near their leakage from the DWBC around the GB south-

ern tip. (4) On a related note, while vertical resolution is at a relatively high present standard

(section 3.2.1), it is not sufficient to resolve bottom boundary layer processes in deeper regions.

(5) We note that the interpretation used here of binned and conditionally-sampled Lagrangian

velocities as the Lagrangianmean velocity (section 3.3.1) is only approximately representative of

true Lagrangian mean velocity. However, the low amplitude of rectified eddy flow as calculated

independently of the defined Lagrangian mean (section 3.3.2), corroborates that the deviation of

Lagrangian mean from the Eulerian mean flow is small.

The results of this study suggest that the leakiness and separation mechanism depend strongly

on the bathymetric environment of the current. Therefore, future work should examine the cir-
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culation in idealized scenarios where a DWBC-like current traverses a region of bathymetry re-

sembling FC and GB.Within a simplified setting the dynamicalmechanisms can be better isolated

in experiments where factors such as bathymetry and the presence of a NAC-like countercurrent

can be varied. Additionally, the geographical distribution of cumulative (uncompensated) leaki-

ness was evaluated in our model, inspired by observational estimates [Mertens et al., 2014; Biló and

Johns, 2018]. While they are consistent in terms of total flux, the observational record is not yet

extensive enough to test the model distribution in detail.

Comparison of model particle trajectories transported by time-averaged vs unaveraged currents

(section 3.3.3) suggests that chaotic advection significantly increases the offshore leakiness of

particles, including at themean leakiness hotspots. We donot distinguish quantitatively the roles

of pure eddy variability and of eddy interaction with spatial gradients in mean flow (i.e., chaotic

advection). While several metrics were previously suggested to evaluate the relevance of chaotic

advection in particular scenarios [e.g. Shepherd et al., 2000; Brett et al., 2019], it remains challenging

to do so locally in a realistic flow such as examined here. Hence we do not attempt in the present

study to determine quantitatively the enhancement of leakiness by chaotic advection.

This study has concentrated on the mechanisms of DWBC leakiness in the Nfl basin. Previous

studies had a greater focus on characterization of the interior pathways that follow – from the

subpolar to the subtropical region. It has also been shown previously that most leaked particles

recirculate in the Nfl basin for years [Bower et al., 2009; Gary et al., 2011; Lozier et al., 2013]. In this

regard, the robustness of cyclonic mesoscale recirculations demonstrated in the present model

also merits further study. Their relation to the larger scale interior pathways and recirculation is

also of interest. Furthermore, it remains to be determined if and howdiapycnalmixing andwater

mass transformations are associated with the leakiness process or with the long recirculation

period water parcels spend within the Nfl basin.
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3.6 Supplement

3.6.1 Terms and acronyms

Terms, acronyms, and symbols used often in the text are contained in table 3.6.1.

3.6.2 Tracer diffusion noise

For theGBB ROMS solution (section 2a), split-rotated third-order upwind (RSUP3) tracer advec-

tion is used [Marchesiello et al., 2009]. We initially used the RSUP3 version in which the diffusive

component is rotated to align with isoneutral coordinates [Lemarié et al., 2012], but found that

severe grid-scale noise appeared at depth (especially near the bottom), including in vertical ve-

locity, and was accompanied by temperature drift in the same locations. The problem appears to

be accentuated by high spatial resolution, and does not appear or is greatly diminished in CROCO

implementations of resolution twice coarser or more in our experience, e.g., the parent domain

[Renault et al., 2016b] used for theGBB boundary conditions (section 2a). It is likely related to sim-

plifying approximations made in the estimation of isoneutral-direction derivatives in the CROCO

version we use (personal communication from Florian Lemarié). To circumvent the problem, we

reverted to the isopotential-rotated RSUP3 version [Marchesiello et al., 2009], and reinitialized the

model solution. The noise and severe temperature drift did not occur in the isopotential con-

figuration. Water mass biases that do appear in the final configuration are typical of numerical

models in the subpolar region (appendix B); these biases have lower amplitude and a different

spatial structure than encountered in the isoneutral noise case.
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Table 3.1: Summary of acronyms, terms, and symbols commonly used in the text. The list is

divided (by horizontal lines) into different subjects, from top to bottom: water masses; currents

and circulation patterns; geographic and topographic features; observational and model names

or terms; dynamical and technical terms and symbols. At the end of each row, the section number

is given where the term is defined. Acronyms not used in the text are in parentheses. Note many

of the geographical locations and currents are identified in Fig. 3.1 as well.

Acronym Expansion and notes

(NADW) North Atlantic Deep Water. Water masses advected southward in the deep AMOC

branch. Sec. 3.1.

LSW Labrador Sea Water. Upper component of NADW. Sec. 3.1.

lLSW Lower Labrador Sea Water. Refers here to model isopycnal σ2 = 37.014 kд/m3.

Sec. 3.3.2.

(OW) Overflow Waters. Lower component of NADW. Sec. 3.1.

AMOC Atlantic Meridional Overturning Circulation. Sec. 3.1.

DWBC Deep Western Boundary Current. Sec. 3.1.

(IP) Interior Pathways. Equatorward routes of NADW to the subtropical region, but

offshore of the DWBC. Sec. 3.1.

NAC North Atlantic Current. Northward branch continuing from Gulf Stream north

into Nfl. Sec. 3.1.

Nfl Newfoundland (Basin). Sec. 3.1.

FC Flemish Cap. Underwater cape within the route of the DWBC in Nfl. Sec. 3.1.

(FP) Flemish Pass. Meridional channel between the continental shelf and FC. Sec.

3.2.2.

GB The Grand Banks of Newfoundland. Underwater cape within the route of the

DWBC in Nfl, downstream from FC. Sec. 3.1.

(OK) Orphan Knoll. Underwater seamount north of FC, east of the continental slope.

Sec. 3.1.
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ExPath Export Pathways. Float deployment campaign. Sec. 3.1.

ROMS Regional Oceanic Modeling System. Numerical model in presented analysis.

Sec. 3.2.1.

GBB Grand-Banks-B. Main ROMS solution designed for and used in presented

analysis. Sec. 3.2.1.

OKL Orphan Knoll Line. Deployment position of model particles, west of OK.

Sec. 3.3.1.

NEC North East Corner. Diagnosed “hotspot” of leakiness at NEC of FC. Sec. 3.3.1.

SEC South East Corner. Diagnosed “hotspot” of leakiness at SEC of FC. Sec. 3.3.1.

SF Southern Face. Diagnosed “hotspot” of leakiness at SF of FC. Sec. 3.3.1.

SCV Submesoscale Coherent Vortex. Sec. 3.1.

MKE Mean Kinetic Energy. Sec. 3.3.5.

EKE Eddy Kinetic Energy. Sec. 3.3.5.

MPE Mean Potential Energy. Sec. 3.3.5.

PV Potential Vorticity. Sec. 3.3.4.

TWA Thickness Weighted Average. Sec. 3.3.4.

Z TWA Eddy Potential Enstrophy. Sec. 3.3.4.

vc Cross-bathymetry velocity component. Positive toward deeper water. Sec. 3.3.1.

va Along-bathymetry velocity component. Positive to the right ofvc , i.e., generally

downstream within the DWBC. Sec. 3.3.1.
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3.6.3 Numerical model validation

In this section we describe model validation against observations and discuss possible caveats in

model setup. We begin with examining sea surface height (SSH), because it determines surface

geostrophic velocity. We compare model SSH to the measurements of Absolute Dynamic Topog-

raphy from satellite altimetry. Model SSH is averaged over model years 9-16. The observational

product we use is the DUACS L4 merged reprocessed product [Pujol et al., 2016], with 1/4 degree

grid resolution and product samples spaced 1-day apart, with data from 1993 to 2017. The Abso-

lute Dynamic Topography to model SSH comparison is shown in panels (a)-(b) of Fig. 4.1. Some

differences inmean SSHandEKE are to be expected due to differences in averaging periods. There

is general agreement in SSH patterns and amplitudes of the main circulation features, including

the mean paths of the Gulf Stream and the Labrador Current, and the standing meanders of the

NAC, including the Mann eddy.

Geostrophic surface EKE= 1
2ug
′2 is compared between the model and the altimetric observations

over the same periods as for the mean SSH. The model geostrophic component of surface eddy

velocity ug
′ is calculated from eddy SSH [Vallis, 2017]. The observed eddy velocity is an available

variable within the DUACS product. The model (observed) eddy component is defined as the

instantaneous deviation from the time-mean SSH. Within the area shown in Fig. 4.1(c–d), the

model EKE is higher on average by a factor of ≈ 5. Higher EKE is generally to be expected in the

model because its grid resolution is about 10 times higher compared with the altimetric product

grid resolution, and because Rd in this region is close to or lower than the altimetric product

grid resolution. Low pass filtering of the model output shows that the unresolved scales likely

account for the majority of the EKE difference (section 3.6.4, where effective resolution is taken

into account). In addition, the spatial patterns of model and observed EKE are generally in good

agreement. Both peak along the trajectories of the Gulf Stream and NAC. The model EKE also has

a local peak of EKE along the 1 km isobath in the Labrador Sea andNflBasin. The peak is related to

the Labrador Current, the inshore and upper ocean component of the western boundary current

in the Subpolar North Atlantic, the deep component being the DWBC. The absence of Labrador
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Current signature in the observed EKE is again likely due to the coarser resolution.

We compare the depth and cross-stream structure and amplitude of the DWBC east of FC at 47 N

(Fig. 3.11) with the observations of M14 reproduced in panel b. The observational estimate was

obtainedby averaging over six individual vessel ADCP cross-DWBC sections, taken at various dates

between April and August at six different years (M14). The ROMS data presented in panel (a) is

an average over model years 9–16. However, model averages over single years are generally quite

similar (e.g., for DWBC width variation). Considering the very different averaging details, the

spatial patterns are visually similar between the model and observational estimates. Above the

continental slope there is an intensified, quasi-barotropic DWBC core, while over the continental

rise a bottom-intensified DWBC core is present. The northward flow to the east is related to the

NAC and is similar in its structure between the model and observational estimates as well. The

multiple surface-intensified cores present in the observational northward flow may be smeared

out in the longer model time-average.

The maximal DWBC velocity magnitude is just under 0.3 m/s in both model and observational

averages within both current cores, except within very limited regions in the observational es-

timate where the magnitude exceeds 0.3 m/s. The total width of the DWBC compares well with

the observations. Here an operational definition of the current width is taken as the distance

between the 0.05 m/s velocity contours near the bottom, west of the western (continental slope)

core, and east of the eastern (continental rise) core. With this definition, the model (observed)

width is 156±13 (153) km. Themodel width error estimate quoted here is the standard deviation

in annual-mean widths between years 9–16. We did not obtain the results for the individual (six)

observational cruises on which Fig. 3.11b is based. However, based on Fig. 4 in M14, we estimate

the observed width std atO(50 km), across the six cruises.

Despite the agreement with observations in patterns, widths, and maximal velocities along this

section, the model flow is seen to be more barotropic than the observational estimate at the 47 N

section, and therefore carries a higher total volume transport. In what follows, GBB transport
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Figure 3.10: Comparison of mean sea surface height (SSH), and geostrophic surface eddy kinetic

energy (EKE) in the ROMS simulation and in the DUACS L4merged 1/4 degree product. The ROMS

data is averaged between simulation years 9–16. The DUACS product is averaged between years

1993-2017. The specific mean SSH variable from DUACS is Absolute Dynamic Topography. ROMS

(DUACS) SSH and EKE data are shown in panels a and c (b and d), respectively. Given the different

definitions of Absolute Dynamic Topography and SSH, a spatially-average difference is expected.

Therefore, a mean 0.4 m amplitude has been subtracted from the model SSH for plotting and

comparison purposes. The 1, 3, and 4 km isobaths are marked with black contours.
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Figure 3.11: Vertical section of meridional (approximately along-slope) velocity east of Flemish

Cap (FC) along 47 N, in (a) ROMS (year 16 average), and (b) 6-repeat ship ADCP observations after

Mertens et al. [2014]. Section location is marked by the red line east of FC in Fig. 3.1.

uncertainties are calculated from interannual variations of annual mean flow, unless otherwise

stated. Mean transport is calculated as the total southward transport west of 41 W of the aver-

aged velocity across the section. Note that this straightforward Eulerian-mean transport defi-

nition is different than that of M14 (section 3.6.5). From the mean section of M14 observations,

we calculate a depth-integrated transport estimate of 30.8 Sv. The DWBC transport in the model

along this section is 58.5± 29.8 Sv, where the standard deviation is over all model (2-day) output

samples, while interannual standard deviation in annual mean transports is 4.5 Sv. The differ-

ence between themodel and observed transport sample-means is statistically significant (section

3.6.5). The model transport estimate, as well as the stronger barotropic tendency relative to the

observations along the section, are similar to the results of the VIKING20 numerical model em-

ployed by M14, 60.3 ± 23.6 Sv. However, further validation deferred to section 3.6.6 shows that

the (GBB) model DWBC transport in other sections is very similar to observations, and a cause

for this difference is suggested.

We also comparedmodel Eulerian EKEwith observations. Fischer et al. [2018a] have gridded veloc-
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ity data from Argo floats [Lebedev et al., 2007] at 1500 m depth around FC as well as further north.

We use their Gaussian-interpolated product [Fischer et al., 2018b], with grid-cell size (generally

not equivalent to resolution) of 1/4 (1/2) degree latitude (longitude). Note figure 5b in [Fischer

et al., 2018a] is somewhat saturated in some areas around FC. We find that around east and south

FC, within the DWBC and NAC, the model EKE is of similar magnitude or higher (by up to a factor

∼ 3) than the Fischer et al. [2018a] gridded-EKE. As in the altimetric observations (see above) this is

likely related to the coarser observational product not fully resolving smaller scale fluctuations.

Fischer et al. [2018a] also provide EKE values at two moorings (K18 and B227) within the DWBC

around FC. Mooring B227 is near the M14 section. We find that model EKE at these mooring loca-

tions is only∼ 20% higher than observed, and within the uncertainty range (the difference being

equal to about one standard deviation of model EKE values).

The model suffers from a bias in the mid-depth density field. As seen in Fig. 3.11, the σθ =

27.8 kg/m3 isopycnal is 400 − 700 m too deep in the model. The model density bias is mostly

related to (not shown) a salinity bias. A salinity-related density bias, especially at mid-depth, is

very common in Sub-Polar North Atlantic numerical models. See for example Figs. 3 and 6 in

Bower et al. [2011] in comparison with Fig. 3.11; as well as Fig. 2 in Handmann et al. [2018]. This

common problem was previously attributed [Tréguier et al., 2005; Rattan et al., 2010] largely to

salt transport biases appearing in model boundary currents. Typically, nudging model salinity to

climatological values is required, althoughnot always sufficient, to reduce or eliminate the bias in

presentmodels. A disadvantage associatedwith a nudging proceduremay be reduction in frontal

features and sharpness of boundary currents in high resolutionmodels, because the resolution of

climatological datasets is generally coarser. We therefore did not apply such anudgingprocedure.

In ourmodel the bias gradually appears during spin-up and appears to be fully developed by year

9, without further increase in the bias amplitude in the following years. It is difficult to determine

with certainty to what degree our key results are affected by the water mass bias. We expect

however, that the such effects shouldmanifestmainly indirectly, through the effects on themean

circulation and on EKE. The good agreement of leakiness and recirculation patterns with other

models, and with observations (here, and in section 3.3.1), is encouraging in this regard, as is the
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comparison with EKE observations (above). It appears however, that DWBC flow east of Flemish

Cap has a stronger barotropic component that observations suggest. The implications of this

possible bias are discussed in section 3.5.3.

There are additional caveats concerning the temporal extent of the surface andhorizontal bound-

ary fields used to determine the model boundary conditions. These fields only have a 4-year

length, corresponding to a 2001-2005 atmospheric state, and are recycled after the first four

model years (section 3.2.1). Since the domain (open) boundaries are very far (over 500 km) from

the analyzed area, the transient effects of the recycling method are likely very limited. Indeed,

we do not observe any significant changes at the 4 year period (e.g., in mean kinetic or poten-

tial energy), other than the seasonal cycle similar to that observed in other years. Furthermore,

the analysis presented in section 3.3.3 confirms that rare events are not important for either the

mean or eddy components of offshore flow. However, years 2001-2005 cover only negative to

moderate North Atlantic Oscillation index values, and therefore the model boundary forcing is

likely not representative of the full range of DWBC variability. Interannual and decadal variabil-

ity in atmospheric forcing, including that due to the North Atlantic Oscillation, influences the

depth of deep convection in the Labrador Sea, and hence the variability in LSW thermohaline

properties [Yashayaev and Loder, 2016] as well as DWBC transport [Zantopp et al., 2017].

Finally, we qualitatively compare in Fig. 3.12 pathways of (3D) Lagrangian floats in the model

(Exp3d, section 3.2.3) to the (isobaric) ExPath floats [Bower et al., 2011]. At each deployment depth

(700 and 1500 m), a batch of 30 particles are randomly selected and their trajectories extended to

a 2 year duration. The full trajectories of these floats and ExPath floats are displayed in Fig. 3.12.

The transport patterns are generally similar to those sampled by the ExPath floats: the majority

of particleswere caught in recirculationswithin theNewfoundlandBasin. A smaller fraction trav-

eled south in the interior of the ocean. Some particles crossed the Mid Atlantic Ridge eastward

at the Charlie-Gibbs Fracture Zone. Only a few particles traveled within the DWBC continuously

past the GB, although more model particles did so compared with ExPath floats. This likely due

to fewer model particles traveling through Flemish Pass, which we speculate happens either due
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Figure 3.12: (a) Two-year trajectories of ExPath floats (note some of the floats had shorter life

times). (b) Two-year trajectories of random batch of 60 3D model particles, divided equally be-

tween particles initiated at 700 and 1500 m depths. In both panels only a few floats cross the

FC-GB region south and westward remaining within the DWBC. The rest leak into the interior,

with the majority recirculating within the Nfl basin. A smaller but substantial fraction of leaked

floats travel south within interior pathways away from the continental slope. Other apparent

pathways are an eastward crossing of the Mid Atlantic Ridge at the Charlie-Gibbs Fracture Zone,

and (with a higher number within model particles than ExPath floats) northward propagation to

the Labrador Sea. The 1, 3, and 4 km isobaths are marked with black contours.

to model velocity output frequency not being high enough, or due to watermass biases. A second

bias appears in the model in that more particles appear to cross north to the subpolar area com-

pared to the number for ExPath floats. Some of these differences from the ExPath floats manifest

similarly in the 3d float trajectories of Bower et al. [2011, their Fig. 7a].

3.6.4 EKE comparison with altimetry and degradation with resolution

Themodel surface geostrophic EKE (appendix B) is about five times larger than the altimetric es-

timates based on the DUACS L4 merged reprocessed product [Pujol et al., 2016], in a region around
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FC (figure 4.1(c-d)). Lower altimetric EKE is to be expected, since the model (GBB) horizontal

grid resolution is about 10 times higher than that of the altimetric product. In addition, the

objective mapping technique applied in constructing the altimetric product is associated with

coarser scales than its grid resolution. Indeed it is well documented that the altimetric product

is biased low in EKE [Pujol et al., 2016]. The unresolved scales contribute much of the difference

in energy. For example, while the locations of elevated EKE are generally in agreement between

the panels, the altimetric product shows no elevated values near the Labrador Current, which

has width close to the product resolution. These issues are likely exacerbated since the Rossby

radius of deformation in the region is close to or lower than the altimetric product resolution.

Additionally, it is possible thatmodel EKE is biased high due to not including current-atmosphere

feedback parameterization [Renault et al., 2016a,b, 2019].

To roughly gauge the effect of coarser resolution sampling on themodel EKE, we applied a spatial

Gaussian low pass filter (LPF) toGBB SSH fields in calculation of (low-passed) EKE. Two different

LPFs were tested separately. A 1/4 degree standard-deviation (std) LPF approximately represents

a 25 km grid resolution. The 1/4 degree LPF applied to the model fields results in only a 40% EKE

reduction within the same region. However, the effective spatial and temporal resolutions of the

altimetric product are generally lower than its grid resolution and sample intervals, respectively.

These depend on the details of the objective mapping method applied to the multiple-satellite

data set (see appendix B in Pujol et al. [2016]). The enforced DUACS-L4 data correlation scales of

observations to derivedfields are≥ 100km and≥ 15days at the latitudes considered infigure 4.1.

In addition the observation covariancematrix is constructed on a 1 degree grid. Thus, to account

for the objective mapping effective resolution in a rough approximation, we thus exchange the

1/4 degree LPF for a 100 km std LPF. According to Soufflet et al. [2016], effective numerical model

resolution is about 5× the grid resolution. Therefore effective numerical (GBB) model resolution

is ≈ 12.5 km, and hence the 100 km st LPF is a reasonable method of comparison with the alti-

metric product. The resultingGBB model spatially averaged LPF EKE (not shown) is within a few

percent of the spatially-averaged altimetric observations within the region, demonstrating that

the discrepancy in amplitude of the unfilteredmodel EKE compared with altimetry, is largely due
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to lower effective altimetric product resolution.

3.6.5 Statistical comparison of model and observed DWBC transports

The model mean DWBC transport at the 47 N section east of Flemish Cap (FC) , 58.5 ± 29.8 Sv ,

is considerably higher than the observational value [Mertens et al., 2014], 30.7 ± 7.4 Sv , an aver-

age of six summer-time LADCP ship-sections, from different years. Additionally the observations

were taken in summertime, andMa-August model mean transport is even 5.5 Sv higher. Here we

defined the Eulerian mean transport as the sum over all southward transport cells west of 41 W,

of the time-mean Eulerian velocity section. Note that M14 used a different definition, obtaining

37.47 ± 7.4 Sv . The model transport standard deviation is based on transport estimates over all

(2-day) output samples from years 9-16, a total of 1460 samples. The time samples may be taken

as approximately independent, since on the continental slope, variability over time scale of a few

days is high [Mertens et al., 2014], likely due to topographic Rossby waves. A more conservative

approach, where the number of effective degrees of freedom is halved (analogous to a 4-day in-

tegral scale) leads to only a 3rd significant digit change in the p value we quote below. Since six

observations are likely not enough to estimate variability well, we make the assumption that the

variance of the distributions from which the model and observed samples were taken are equal,

leading to equation 5.9 for the test statistic z inWilks [2011],

z =
x1 − x2√

1
n1
+ 1

n2

√
(n1−1)s21+(n2−1)s22

n1+n2−2

. (3.9)

Here xi is the transport mean, ni is the number of degrees of freedom, and si is the standard

deviation, within set i , i.e., the ROMS or observational [Mertens et al., 2014] data. The test statistic

value is then z = 2.27, leading to significancep = 0.0231 for a two-sided test. Therefore, the null

hypothesis that the true means are equal is rejected. The high model transport is similar to the

results of the VIKING20 numerical model employed by M14, 60.3 ± 23.6 Sv. However, in the next

subsection we show that the model DWBC transport is in excellent agreement with observations

in other locations, and suggest a reason for the reason for gross model disagreement with the
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M14 observations.

3.6.6 Additional model DWBC transport validation

Here we show evidence that within the GBB simulation, the high DWBC transport relative to

observations at the Mertens et al. [2014] (M14) section is partially the result of southward flow

on the western flank of the southern cyclonic recirculation to the east of the DWBC (figure 3.5).

The cyclonic recirculations around FC have been reported previously based on observations and

other numerical models as well (section 3b). TheGBB DWBC top to bottom transport east of FC

but further north from the M14 section, between the two recirculation cells residing east of FC,

is 33.2 ± 3.5 Sv , a value much closer to the M14 observations. Note that this and the follow-

ing uncertanity values correspond to interannual standard deviation in annual mean transports,

rather than variance of 2-day average values as for the (29.8 Sv) model value given previously.

It is possible that model details such as bathymetric smoothing may influence the exact position

of the model FC recirculations, and hence the apparent DWBC transport one derives without ac-

counting for recirculation. The northward velocity magnitude further east of Flemish Cap in the

model is generally higher as well than in themeanM14 section, which is together with the strong

southward anomally nearer to FC, is consistent with the idea of a stronger recirculation locally

in the model.

Indeed, further upstream, around 53N , themodel (ROMS) top to bottomDWBC transport is 36.5±

2.2 Sv , much closer to the M14 (47 N ) observations. Zantopp et al. [2017] present and analyze 17-

years (1997-2014) of data from an array of moorings maintained across the DWBC at 53 N . They

measure the DWBC transport at this latitude at 30.2 ± 6.6 Sv , beneath 400m depth. This depth

approximately corresponds to the upper boundary of LSW at this location. At the same depths

the (GBB) model DWBC transports 26.8 ± 1.8 Sv . Due to water mass bias in our model, the ρθ

surfaces are considerably less flat than the observations at this depth and location, and hence

we calculate the transport under the ρθ = 27.4 kд/m3 surface, which has mean depth close to
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400m in the model at this location. The model result is then 29.3 ± 2.1 Sv , quite close to the

observations. Additionally, model velocity within Flemish Pass agrees favorably in pattern (not

shown) as well as in total DWBC southward transport (8.4 ± 0.7 Sv) with observations-based

estimates (6.3 − 9.8 Sv) [Hill and Folkard, 1973; Greenberg and Petrie, 1988; Petrie and Buckley, 1996].

Note the Flemish Pass transport is substantial relative to the≈ 30 and≈ 15 Sv encircling eastern

FP, and remaining downstream of FC, respectively (section 3b).

3.6.7 Loss of ExPath floats around Flemish Cap

The number of ExPath floats that have left the DWBC around FC (section 3a) is estimated from

reviewing individual trajectories and their time dependence (not shown). Despite some trajec-

tory gaps (section 2a), it appears relatively clear that 33 of the 55 floats with usable trajectories

(Sec. 2b) have left the DWBC around FC (see also Bower et al. [2009], figure 2b). Here the 45 N

latitude is used as the boundary between south FC and the GB. Changing the limit by up to almost

0.5 degree to the north and more to the south, does not change these numbers. Five additional

floats have likely left the DWBC at either south FC or east GB, which remains uncertain since their

trajectories are less complete in their loss region. Ten floats have crossed south through Flemish

Pass rather than travel around FC (see also Bower et al. [2011])13. Therefore 73 − 84% of all floats

that traveled around FC (i.e., excluding floats traveling through Flemish Cap), were lost (“leaked”)

from the DWBC to the interior before circumventing this topographic feature.

3.6.8 Statistical significance of Lagrangian velocity average

Statistical significance of Lagrangian mean quantities (section 3a) in each grid cell was deter-

mined approximately by the condition that |vc | > 2S(vc). Here an overbar denotes the simple
mean estimator, a sample average, while S(·) denotes an estimator of the error of the sample av-
13Flemish Pass has a 1100 m deep sill, and all floats crossing it were of the 700 dbar ballast type.
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erage. Two error estimators were tested. The first was Se = STD/Ne . Here STD stands for the

standard deviation of allvc measurements, Ne is the effective number of degrees of freedom. In

our estimate forNe we account for consecutive population of a grid cell by the same particle. We

do not account for co-population of a grid cell by particles from different OKL releases. This type

of event is likely rare, since auto-correlation time in this area [Böning, 1988; Lumpkin et al., 2002], 5-

10 days, is no longer than intervals between releases (10 days), and due to the fine grid resolution.

The approximation Ne = N /n was made separately for each grid cell, where N is the number of

samples used to calculate |vc |, and n = Adx/|vcdt | is the average number of TrajInt time samples
(with time step dt ) required for a particle to leave a grid cell (of length dx). The factorA = 0.25

approximately accounts for the two-dimensional geometry, assuming entry directions into cells

are random. The second error estimator is based on the standard deviation (STDMA) of annualvc

averages over NY = 8 years (model years 9-16) SM = STDMA/NY . Both methods yielded similar

results, and hence the second, simpler method is used to define statistically significant values in

figure 3.3.

3.6.9 Additional Lagrangian mean diagnostics for model particles

To complement figure 3.3, where the Lagrangian-mean quantities were shown for particles ini-

tialized over 1500 m depth, we display the same diagnostics for particles initialized over 700 m

depth in figure 3.13 below. The results are very similar to 1500m particles results. One difference

is the transport of 700 m particles through Flemish Pass (the ≈ 1100m deep channel west of

Flemish Cap, FC in the figure). A second difference is that 700 m particles have statistically sig-

nificant velocity further downstream than 1500 m initialized particles, including west of Grand

Banks. For this reason, the displayed area in figure 3.13b is larger than in figure 3.3.
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Figure 3.13: The figure is identical to figure 3.3, except that model particles initialized at 700

m depth (rather than 1500 m) are used here, and that a larger area is displayed in panel b. (a)

Locations at which the ExPath floats (circles, both 700 and 1500 m depths) and 700 m depth-ini-

tialized Exp3d particles (colors) first cross the 4 km isobath. The colors correspond to the num-

ber of model particles crossing the 4 km isobath at each model gridpoint along the isobath.

(b) Lagrangian-mean along-bathymetry velocity component (positive ≈ downstream), (c) La-

grangian-mean cross-bathymetry velocity component (positive offshore), and (d) Lagrangian

eddy kinetic energy (EKE) derived from the Exp3d particles initialized at 1500 m depth (see sec-

tion 3c for definitions). In panels b-c, only statistically significant values are displayed, i.e., white

patches are not associated with significant values. Lagrangian mean velocity vectors are super-

imposed in panel d. The 1, 3, and 4 km isobaths are marked with black contours in each panel.

The deployment line (OKL) of model particles is marked by the thick black line. The bathymetric

features of Flemish Cap and the Grand Banks of Newfoundland are marked by the letters FC and

GB, respectively, in panels a-b.
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3.6.10 Streamfunction calculation by a flood-fill algorithm

Given that large scale flow averaged on isopycnal surfaces is largely geostrophic, it should also

be approximately non-divergent. Hence the isopycnal velocitymay be used to derive the stream-

function (ψ ) locally to a good approximation 14, by simple integration of the relation

dψ = vdx − udy. (3.10)

To that end, an integration path need be chosen. One simple choice is interleaving integration

along lines of constant model coordinate (x and y, approximately zonal or meridional, respec-

tively, in our configuration), where a full line is continuously integrated until the region bound-

ary, followed by integration of the next row in the opposite direction. A disadvantage of the in-

terleaving integration approach is that errors accumulate over very different paths for adjacent

pixels in different rows (when interleaving is between rows), hence making the streamfunction

less smooth in the interleaving direction. To avoid this pitfall, we adapt a queue (i.e., first-in first-

out) flood-fill algorithm [Pavlidis, 2012] to create multiple integration paths, growing outside in

a dendritic-like fashion from a chosen initial seed point. A pseudo-algorithm follows. An added

advantage is that taking into account “islands” and complex boundaries is accomplished simply

by the definition of the mask array (see below).

Derivation of a streamfunction by direct integration of velocity is strictly correct only for a non-

divergent velocity distribution. However, the divergent component of themeanflowonpotential

isopycnal surfaces is relatively small in our results. That is confirmed, by testing that the stream-

function describes the mean circulation to a good approximation (not shown). The mesoscale or

larger patterns are confirmed qualitatively by plotting superimposed model velocity fields and

the derived approximateψ . The local velocity field defined byψ is confirmed on the grid scale by

deriving the velocity from (u1,v1) = (−∂y, ∂x)ψ , and comparing it with the original (u,v) field.
Themaximal difference is orders ofmagnitude smaller than the actual velocity everywhere. That

14Note the only approximation in (3.10) is that the full isopycnal velocity is used rather than its the rotational
component.
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may not be the case using an interleaving integration method, for the velocity component per-

pendicular to the interleaving direction, as mentioned above. The pseudo-algorithm follows:

0. Initialize a streamfunction array (ψ ), and a mask array (M). SetM = 0 in masked areas (e.g.,

land areas, boundary pixels, and other points where the isopycnal surface does not occur), and

M = 1 elsewhere.

1. Choose an initial grid cell i , which hasM(i) = 1. Setψ (i) = 0, andM(i) = 0. Add pixel i to
queue.

2. While queue is not empty,

3. Remove the first pixel (p1) in queue.

4. For each pixel p which is adjacent to the removed pixel p1, and for whichM(p) = 1,
5. Calculateψ (p) by integrating (3.10) from p1 to p. SetM(p) = 0.
6. Add pixel p to end of queue.

3.6.11 Cluster analysis of the horizontal circulation pattern variability

Hereweexamine the statistics of thehorizontal circulationpattern. Weare specifically interested

in the typicality of streamline separation from the DWBC, and of the cyclonic recirculations. To

achieve this, we perform a cluster analysis of velocity distribution on potential density surfaces.

The clustering method used is a single-layer competitive neural network method [Dreyfus, 2005],

as implemented in the MATLAB function “competlayer” [Beale et al., 2019]. The algorithm finds

a predefined number Nc of clusters (velocity distributions) that best represent the data in the

metric used. Each cluster represents the “best”match to the instantaneous velocity in a Euclidean

metric, for a significant number of model time samples.

A qualitative description of the clustering algorithm follows. For a thorough description see Drey-

fus [2005], and the “competlayer” function description in Beale et al. [2019]. Each (2-day mean)

GBB velocity (3-dimensional) output time sample is interpolated onto a chosen (isopycnal) sur-

face Sσ to form a two-dimensional distribution of horizontal velocity,V (t ,x1,x2), which consti-
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tutes an input sample for the cluster analysis. The cluster distributionsV n(x1,x2) are initialized
randomly. In the main part of the algorithm, velocity samples V (t ,x1,x2) are randomly drawn
from a chosen input set, here all output samples from years 9-16. After each random draw, it

is determined which cluster is closest, in a Euclidean metric, to the drawn sample. The closest

(“winning”) cluster is then adjusted to better represent the sample. At the end of the process,

each sample is associated with exactly one cluster. Each cluster is then a velocity distribution

which is approximately equally likely in terms of the number of samples closest to it within the

input set.

Figure 3.14 shows results for circulation on σ1 = 32.43 kдm−3 using eight clusters. The velocity

distribution of each cluster is presented in terms of a streamfunction, for easy comparison with

the time-mean circulation pattern. Note that each cluster represents typical circulation con-

ditions during approximately an equal (1/8) fraction of time samples. It is evident that (1) the

cyclonic circulations previously identified in the time-mean circulation around FC are present

in some form in each of the clusters; (2) the main difference between clusters is the offshore lo-

cation of the recirculation present east of the southeast FC corner, and (for a smaller fraction

of time) its possible coalescence with the recirculation at the northeast corner; (3) the offshore

separation of DWBC streamlines occurs in most of the clusters as well (although this is not clear

in all panels due to the number of contours used). The clustering is qualitatively insensitive to

the prescribed number of clusters (between 4 and 36 clusters were attempted, not shown), i.e.,

essentially no new patterns emerge with an increase in the number of clusters. Rather, clusters

lookmuch like combinations of patterns already present in Fig. 3.14. Therefore, the separation of

DWBC streamlines around FC is not just a mean flow pattern (section 3.3.2), but also as a typical

flow pattern.

The described results and the main qualitative features identified, are very robust to to changes

in the values of the free parameters of the clustering method. Some of the parameter ranges

which were tested are: a. choosing up to 36 clusters or as few as 4.; b. variations in the algorithm

itself, including using “self-organizingmaps” [Dreyfus, 2005]. c. The number of training “epochs”.
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Figure 3.14: Clustering of the isopycnal circulation around Flemish Cap using a single layer com-

petitive neural network. The clustered variable is velocity along the σ1 = 32.43 kд/m3 surface

between model years 10 and 16. Each panel displays the velocity distribution of a single cluster.

Streamfunctions (colors and thin lines) are used rather than, e.g., arrow plots, for effective visu-

alization. The {1,3,4,4.5} km isobaths are shown in thick black contours. The fraction of time

each cluster “occurs” is approximately equal.
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In each epoch each sample is drawn exactly once (and used to calculate and update the winning

cluster), in random order. d. Changing the neural network learning rate parameters: Kohonen

weight and conscience bias. Trials were conducted with the weights in the ranges 0.001 − 0.05,

and 0.0001− 0.01, whereas their default values in “competlayer” are 0.01 and 0.001, respectively.

The results are also representative of other mid-depth or deep isopycnal layers as well, including

σ2 = 37.014 kд/m3 which was examined in the time mean above, as well as depth layers, e.g.,

500− 1000 or 2000− 2500m depth. Enlarging the horizontal area over which the analysis is done

also does not change the main results. The clustering area of the results presented in figure 3.14

was chosen tomaximize visibility of the patternswhile still capturingmost of the area of interest.

3.6.12 Correlations between offshore velocity and bathymetric variation

We present correlations between offshore velocity and variables related to bathymetric variation

along the 3 km isobath. Offshore velocity is averaged over depths greater than 500 m. The bathy-

metric variables examined are curvature, steepness, and steepening. The latter is defined as the

change in steepness with along-isobath distance. Offshore velocity and the former two bathy-

metric variables are displayed in Fig. 3.9. The correlation data is summarized in Table 3.6.12.
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Table 3.2: Correlations (denoted “Corr.” within the table) between offshore velocity and bathy-

metric variability along the 3 km isobath (Fig. 3.9). For each bathymetric variable, the correla-

tion at zero lag, as well as the correlation of maximal magnitude (and its distance lag) are pre-

sented. Lag coefficients are positive (negative) if local peaks of offshore velocity tend to occur

downstream (∼southward) of the bathymetric variable local peaks. A curvature versus offshore

velocity cross-correlation distance of dccor =
∫
r (s)ds ≈ 40 km is obtained, where r (s) is the re-

spective cross-correlation function at lag distance s , and the integral is performed over the entire

isobath section displayed in Fig. 3.9. The correlation±2σ (i.e.,p = 0.05) confidence intervals are

obtained using a Fisher z transform [Wilks, 2011] with number of degrees of freedom (ndof ) equal

to section length divided by dccor , i.e., ndof = 100.

Bathymetric variable Corr. at 2σ range Lag at Corr. at 2σ range

lag= 0 max |Corr.| max |Corr.|
Isobath curvature −0.34 [−0.50,−0.15] 45 km −0.56 [−0.68,−0.41)
Isobath steepening 0.22 [0.02,0.40] 73 km 0.47 [0.3,0.61]
Isobath steepness 0.18 [−0.02,0.36] −100 km 0.31 [0.12,0.48]
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CHAPTER 4

Formation Of Anticyclones Above Topographic Depressions

4.1 Introduction

In several oceanbasins, long-lived and semi-stationarymesoscale anticyclones (ACs) appear above

topographic bowls1. Examples are the Mann Eddy [Mann, 1967], Lofoten Basin Eddy [e.g., Ivanov

and Korablev, 1995; Köhl, 2007; Søiland et al., 2016], and the Rockall Trough Eddy [Le Corre et al.,

2019a]. The eddies have a clear climatological signature in sea-surface-height, as seen from satel-

lite altimetry (figure 4.1). The first two have been repeatedly sampled in hydrographic surveys

since their first discoveries. In the elongated bowl-like Iceland Basin long-lived ACs also appear

to be common [Martin et al., 1998;Wade and Heywood, 2001; Read and Pollard, 2001; Zhao et al., 2018].

The aforementioned ACs all occur in high latitude North Atlantic2 seas or basins, where strat-

ification is relatively weak, and the Coriolis parameter (f ) is relatively high. This results in a

larger tendency for currents to respond to seabed depth (H ) variations [Salmon, 1998] and fol-

low ambient potential vorticity (f /H ) contours [Isachsen et al., 2003]. The latter are often well-

approximated by H contours due to the limited relative f variation in in higher latitudes com-

pared with relative H variation across basins [Nøst and Isachsen, 2003]. Thus the effect of topo-

graphic depressions may be enhanced in these areas and play a role in the formation of the ob-

1We loosely define a bowl as a topographic depression which has a central relatively flat region of similar width
or wider than the outer slope region.

2The North Atlantic is by far the most-sampled of the oceans, and hence a statistical bias may be present.
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served ACs.

Significant thermohaline fluxes and transformations occur in these basins, processes of climatic

significance as part of the Atlantic Meridional Overturning Circulation (AMOC). Tulloch and Mar-

shall [2012] suggested that theMann eddy affects the trajectory and strength of theNorthAtlantic

Current in the Newfoundland basin [cf.Meinen, 2001], as well AMOC variability, in two ocean gen-

eral circulation models. The Lofoten Basin Eddy attains anomalously large wintertime mixed

layer depths [Yu et al., 2017]. It encompasses a large reservoir of heat, absorbing warm eddies

shed from poleward flowing boundary currents [Raj et al., 2015; Søiland et al., 2016]. Richards and

Straneo [2015] presented evidence for water mass transformation within a Lofoten Basin eddy.

Likewise, Zhao et al. [2018] suggested that the long-lived anticyclones of the Iceland Basin are

susceptible to air-sea interaction and water mass transformation due to isopycnal doming.

Several differentmechanisms have previously been suggested to sustain these eddies. Köhl [2007]

presented evidence that the Lofoten Eddy ismaintained by repeatedmergers with ACs, which are

shed from the Norwegian Atlantic Current and descend into the Lofoten Basin due to planetary

and topographic beta drift [see Carnevale et al., 1991]. Le Corre et al. [2019a] showed that the Rockall

Trough Eddy is similarly replenished by ACs, resulting from frictional vorticity generation at the

adjacent topographic slope. Zhao et al. [2018] showed that Iceland Basin ACs are likely formed lo-

cally through mixed baroclinic-barotropic instability of the adjacent slope current. Rossby [1996]

suggested that the Mann eddy is spawned from ACs released from the anticyclonic side of the

adjacent North Atlantic Current.

In contrast, several theoretical and numerical studies have shown that in the absence of large

scale external flow, mesoscale variability trends to produce rectified prograde3mean flows. That

is, cyclonic (anticyclonic) circulation develops over topographic depressions (bumps), consis-

tently with vorticity stretching (compression). This is predicted by “enstrophy-minimization”

theory [Bretherton and Haidvogel, 1976]4, as well as statistical mechanics theories of topographic
3The same propagation direction as that of coastal Kelvin waves and topographic Rossby waves.
4Based on the tendency of enstrophy to dissipate faster than energy in 2d turbulence.
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turbulence [starting with Salmon et al., 1976]. This tendency is commonly known as the “Nep-

tune” effect [e.g., Merryfield et al., 2001]. With an imposed large scale impinging flow, dynamical

seamount circulation theories also predict development of a prograde mean circulation [Hogg,

1973; Huppert and Bryan, 1976], as indeed had been observed in the ocean5 [Hogg, 1973; Owens and

Hogg, 1980; Richardson, 1981; Freeland, 1994;White and Mohn, 2004]. Alternative mechanisms must

therefore explain the presence of long-lived ACs in topographic “bowls”.

Although separate formationmechanismswerepreviously suggested for eachof the above-mentioned

semi-stationary oceanic ACs, there is not presently a unified dynamical understanding of AC for-

mation and longevity abovebowl-like topographic depressions. With the aimof achieving such an

understanding, in this study we pose an idealized topographic-turbulence problem. Specifically,

we conduct numerical simulations of the free evolution of mesoscale eddies randomly initialized

over topographic depressions. We restrict our attention to the layered primitive equations, in

one or two density layers, allowing wide sweeps of parameter space.

A description of the numerical experiments configurations is given in section 4.2. In section 4.3

we show that ACs form consistently over isolated topographic bowls in a very wide set of cir-

cumstances in single-layer experiments, and characterize the range of dynamical regimes that

emerge in our simulations. In section 4.4we investigate the degree of cross-topography exchange

involved in AC formation, and its dynamical mechanisms. In section 4.5 we show that bowl ACs

form from barotropic as well as baroclinic initial conditions in 2-layer experiments, and inves-

tigate the dependence of its final vertical structure on the initial conditions. A discussion and

comparison with previous results is presented in section 4.6. A summary and conclusions are

given in section 4.7.

5Such circulations can also result from tidal rectification [e.g., Beckmann and Haidvogel, 1997].

121



Figure 4.1: Observations of anticyclonic long time-mean motions within topographic depres-

sions in the ocean. Observed mean Sea Surface Height (SSH, in color, between 1993-2018) is

shown at three ocean basinswith bowl-like bathymetry and semi-permanent anticycloneswithin

the bowls: (a) Lofoten Basin; (b) Rockall Trough; (c) Newfoundland Basin. The climatological

(time-mean) locations of long-lived semi-stationary anticyclonic vortices (section 4.1) are iden-

tified by local maxima in SSH within the bowls in each panel. Daily SSH data (“Absolute Dynam-

ics Topography”) was obtained from the SEALEVEL_GLO_PHY_L4_REP_OBSERVATIONS_008_047

product distributed by Copernicus (https://marine.copernicus.eu/). A (dynamically irrelevant)

constant value is subtracted from each panel for visual clarity. Colormaps in panels (a) and (c)

are saturated at high (low) values in areas far from the relevant anticyclone. Bathymetry is

shown in thin black contours denoting, in (a) [-3200,-3000:1000:-1000], (b) [-3000:500:-1000], (c)

[-5000:500:-2000]m depth. Land is in gray: Norway and Ireland, in panels (a) and (b), respectively.

Coastlines are marked by thick black lines. For maps of f /H contours, the reader is referred to

Isachsen et al. [2003].
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4.2 Methods

4.2.1 Layered Primitive Equations model

We conduct our simulations using the layered primitive equations model AWSIM [Stewart and

Dellar, 2016]6. The model equations [e.g., for two-layers it is given by equation 5.6 in McWilliams,

2006] represent the simplest setting for studying topographic turbulence with finite amplitude

topography and finite amplitude circulation effects. A primitive equationmodel is preferred over

a quasi-geostrophic model because some of the observed ACs (section 4.1) have a high Rossby

number (ζ = O(f )) and reside in areas withO(1) changes inH [Søiland et al., 2016; Yu et al., 2017;

Le Corre et al., 2019a].

Themainmodel equations and its numerical scheme are describedmore fully in Stewart and Dellar

[2016]. Here we summarize salient aspects of themodel. The dynamical equations are discretized

via finite differences on an Arakawa C grid. The spatial discretization of the momentum and

thickness equations [Stewart and Dellar, 2016] is essentially identical to Arakawa and Lamb [1981]

for the present experiments. Time stepping scheme follows the third-order Adams-Bashforth

scheme [Durran, 1991]. Themodel conserves total energy and layer-wise potential enstrophy and

mass to machine precision in the absence of explicit dissipation [Stewart and Dellar, 2016]. A rigid

upper lid condition is applied for computational efficiency, and surface pressure is diagnosed

at each time step by numerical solution of the associated elliptic equation using a multi-grid

method. Grid-scale accumulation of energy and enstrophy is controlled using a hyperviscous

operator in the momentum equation [Griffies and Hallberg, 2000].

The model can also evolve a passive tracer using an advection-diffusion equation, which was im-

plemented in several of the experimentswe conducted. Weused theflux-limited tracer advection

scheme of Kurganov and Tadmor [2000], which allows us to integrate the tracer equation without
6The AWSIM model code used in this study can be obtained from https://github.com/andystew7583/AWSIM.
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any explicit diffusion operator in the tracer advection equation.

4.2.2 Main experiments

We conduct most of our experiments using an isolated topographic bowl, with the following to-

pographic depth (H ) structure:

H = H0 +
Hb

2

[
1 − tanh

(
r − Rb
Wb

)]
. (4.1)

Here H0 is depth far outside of the bowl, Hb is bowl depth relative to H0, Rb is bowl radius, and

r is distance from bowl center. We callWb the bowl half-width, since most of the topographic

variation (76%) occurs over a distance ±Wb from slope center, and since the slope decreases ap-

preciably at larger distances. We are interested mostly in smallWb/Rb values, which prescribe

relatively flat bowl interiors (section 4.1). For example, withWb/Rb = 1/6, the slope magnitude

at r = Rb −Wb is already an order of magnitude smaller compared with at r = Rb . Examples of

severalH profiles with different parameter choices used in our experiments are shown in figure

4.2. Experiments with more complex topography are discussed in section 4.6.

The initial velocity field is prescribed randomly such that dominant length scales are smaller than

bowl size (e.g., its radius). Initial conditions for velocity are defined by a velocity streamfunction

ψ , i.e.,v = ∂xψ ,u = −∂yψ . The streamfunction is defined by its discrete Fourier transform,

ψ̂k ,l = N −1K−1e−((K−K0)/dK)2eiθk . (4.2)

HereK =
√
k2 + l2 is the magnitude of the wavenumber vector kx̂ + lŷ, where x̂ and ŷ are unit

vectors in thex andy directions, respectively. The dependence of the eddy energy onwavelength

is set byK0, the wavenumber at which the spectral power peaks, anddK = K0/8, the exponential

width of the spectral powermaximum. The phaseθk of each Fourier component (k,l) is randomly
generated from a uniform [0,2π ] distribution. The factor N is a normalization constant that

is selected to make domain-averaged kinetic energy density equal to a prescribed value E. An

example of the resulting initial conditions is shown in figure 4.2a.
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Table 4.1 lists our main single-layer experiments. We divide the experiments into batches ac-

cording to the values of the geometric parametersH0,Hb , Rb ,Wb , and λ0 = 2π/K0. In each batch

we fix these parameters and vary the initial kinetic energy density E. Each experiment is then

referred to via the naming convention BnEm, where n is the batch number (left column of the

corresponding row in table 4.1), andm is the experiment number within that batch. We setm

equal to 1, 2, 3,... to denote the experiments with 1st, 2nd, 3rd,... lowest initial kinetic energies

within each batch.

The values of H0 used are typical of deep seas (∼ 2 km) or abyssal ocean depths (∼ 4 km). The

values Hb = 0.1–0.5, Rb = 150–300, andWb = 50–100 km, are loosely based on values relevant

for the Mann eddy basin, although the latter is significantly more complicated than a symmetric

bowl shape. The selected kinetic energy density values span (and surpass a factor of ∼ 2) the

range of typical ocean velocities, i.e., velocity scales of cm/s to several m/s. We set the Coriolis

parameter to a value of f = 10−4 s−1 in all cases.

Unless otherwise specified, we conduct our experiments in square domain with a side length of

1000 km. We use periodic boundary conditions to facilitate comparison with topographic tur-

bulence theories. We conducted several experiments with wall boundary conditions or with pe-

riodic domains multiple times larger, but we found no appreciable differences in the resulting

bowl circulation. The horizontal resolution (dx) used is uniform and is either ≈ 2 or 1 km, cor-

responding to 5122 or 10242 grid cells, respectively. The latterwas used only in batch 1. In all cases

dx ≤ λ0/46. We re-ran various experiments from several different batches with the grid spacing

decreased by a factor of 2-4 to check the resolution sensitivity, but these experiments exhibited

little quantitative and qualitative differences. Biharmonic momentum dissipation with constant

coefficient A4 = 0.01dx3UCFL was used, where U0 = 1.5 max |u(x ,t = 0)| is a velocity scale.
Re-running several experiments with Smagorinsky-like [Griffies and Hallberg, 2000] biharmonic

dissipation operator instead resulted in negligible quantitative differences. We also verified that

kinetic energy does not accumulate at the grid scale over time — a sign of insufficient grid-scale

dissipation. Model output was saved in 5-day (1-day) averages in batches 1-5 (6-9), except where
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Figure 4.2: Initial conditions and examples of the experimental bathymetry. (a) Example of ran-

domly generated vorticity initial conditions (in units of the Coriolis parameter f ), with mean

kinetic energy E = 0.01m2/s2 and dominant wavelength λ0 = 90 km. Black contours show the

(4010,4100,4200,4300,4400,4490) [m] isobaths, for topographic parameters Rb = 300,Wb = 50,

H = 4, Hb = 0.5 km (section 4.2.2). This domain geometry is typical of experiments described

in sections 4.3-4.5. In panel (b) solid curves (left axis values) show several examples of radial to-

pographic “bowl” profiles used in our experiments. We define a “bowl” loosely as a depression

with a slope region of width (∼ 2Wb) that is narrow relative to mid-slope radius (Rb). Bowl-like

topographies are typical of the locations in which persistent ACs occur in the ocean (section 4.1).

The right axis shows initial conditions for the passive tracer (equation 4.3), which was included

in experiment batches 2, 3, and 6 (see table 4.1).

noted otherwise.

A tracer field (section 4.2.1) is implemented in all experiments of batches 2, 3, and 6. We set the

tracer initial condition c(x ,y,t = 0) = c0(r ), where r is distance from bowl center, as follows:

c0(r ) =
[
1 − tanh

(
r − Rb −Wb

Wc

)]
/2. (4.3)

This prescription is advantageous in estimating total cross-slope material transport (see sec-

tion 4.4). The parameterWc is set to a value of 10 km to minimize the width of the transition

in the tracer concentration without introducing numerical artifacts in the calculation.
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Table 4.1: Summary of our main single-layer experiments. Each experiment is later referred to

by a name of form: BnEm, where n is the batch number (left column of appropriate row in the

table), andm is the experiment number within the same batch. Parameters pertaining to the

topography and initial conditions are given in each column. An experiment numberm of 1, 2,

3,... corresponds to the 1st, 2nd, 3rd,... lowest initial kinetic energy experimentwithin each batch.

Experiment energies for each batch are given in supplementary table 4.2. In all cases except in

batch 9, the energies were 0.001,0.005,0.01,0.02,0.05,0.1,0.2,0.5,1,2m2/s2, except that the last 3

values were not included in all batches and that the last value was in some cases replaced by

the value 5m2/s2. Therefore, e.g., experiment B1E5 (for which diagnostics are shown in figures

4.3-4.4) refers to the fifth lowest initial energy (0.05 m2/s2) among the experiments in the first

row (n = 1).

Batch Bowl radius External Depth change Bowl half- IC: dominant

# Rb [km] depthH0 [km] Hb [km] widthWb [km] wavelength λ0 [km]
1 300 4 0.5 50 45

2 300 4 0.5 50 90

3 300 4 0.1 50 90

4 300 4 0.5 100 90

5 150 4 0.5 50 90

6 300 4 0.5 50 180

7 300 2 0.5 50 180

8 300 2 0.2 50 180

9 200 2 0.5 50 180
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4.2.3 Coherent monopole and dipole experiments

To investigate dynamics of isolated vortices in the bowl geometry, we also conducted several ex-

periments with a different circulation initialization scheme (results reported in section 4.4). In-

stead of randomanddomain-filling disturbances, either a single coherent anticyclone (monopole)

or an AC-cyclone pair (dipole) was initialized outside of the bowl. The topographic parameters

used were H0 = 4, Rb = 300,Wb = 50, and Hb = 0.5 km. A domain length of 1500–2000 km

was used, with little difference between the two, and with 10242 grid cells. All other parameters

were identical to those described above. The prescription of a single vortex (centered at initial

location x0) was by a Gaussian streamfunction with length scale r0 [m−1]:

ψ (x) ∼ exp
(
−(x − x0)2

2r 20

)
(4.4)

A dipole was created by superposing two eddies of the form (4.4) with opposing signs.

4.2.4 Eddy Detection

To track the central ACweuse an algorithmbased on anOkubo-Weiss parameter (OWP) threshold.

TheOWP is defined byOWP = s2−ζ 2, where s is horizontal strain (s2 = (ux−vy)2+(uy+vx )2), and
ζ = vx − uy is the vorticity within an isopycnal layer. Eddies are characterized by negative OWP

values, i.e., vorticity dominating over strain. Within a single time sample and isopycnal layer,

a grid cell (with index i) is identified as a vortex-core candidate if the OWP in that cell satisfies

OWPi < −a STDOWP, where STDOWP is the spatial standard deviation of OWP for the same time

sample and isopycnal layer, anda is a constant factor. Drawing on previous studies [Pasquero et al.,

2001; Isern-Fontanet et al., 2006; Volkov et al., 2015], we set a = 0.2.

A connected region of model grid cells is identified as containing a vortex “core” if each cell

was identified as a candidate, if ζ is singly-signed in the connected region, and if the total area

A is larger than an imposed minimum πr 2min. We choose rmin = 10 km, equivalent to 5 grid
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cells for the lowest resolution experiments reported here. The detected eddy radius is defined

as re =
√
A/π , where A is the detected (connected) area size. The detected eddy vorticity is

defined as the spatially average vorticity within the detected area. In simulations that develop a

bowl-trapped AC, we found that the AC could be tracked accurately by searching for the strongest

AC within the bowl at any given time.

4.3 Emergence of barotropic bowl-trapped anticyclones

We begin by describing the results of a representative single 1-layer experiment in some detail,

in subsection 4.3.1. In subsection 4.3.2 we consider the results of all standard 1-layer experi-

ments (section 4.2.2 and table 4.1) and identify nondimensional parameters that approximately

constrain the properties of the bowl-trapped AC. In subsection 4.3.3 we investigate the long-time

fate and stability of the emergent bowl AC. In subsection 4.3.4, we present a vorticity budget for

the evolution of the trapped AC and of the bowl slope current.

4.3.1 Emergent circulation over a bowl — case study

In this subsectionwe describe the results of a experimentB1E5 (table 4.1), as an illustrative exam-

ple of bowl AC formation and properties in our experiments. The results of free evolution from

the random initial conditions (section 4.2) are graphically summarized in figures 4.3,4.4, and a

movie (supplementary file SA1.avi, described in supplementary section 4.8.4).

Twomain circulation patterns emergewithin the bowl. One is a cyclonic slope-current, i.e., prop-

agating with shallower water to its right (cyclonic in the present case). It is associated with pos-

itive vorticity in the inner slope region and somewhat interior to it, and azimuthal velocity peak

at mid-slope. The second emergent circulation pattern is a central (bowl-trapped) AC. The AC is

129



apparent by its negative vorticity around the bowl center (figure 4.3), and by its negative (ret-

rograde) azimuthal velocity, peaking at a radius of about 60 km (figure 4.4a). Multiple (mainly

cyclonic) eddies survive outside of the bowl (panel d), although in time they tend to merge into

a smaller number (supplementary movie SA1.avi).

The emergence and intensification of the trapped AC is related to repeated merging of ACs (fig-

ure 4.3). Down-slope migration of ACs contributes to these mergers. In contrast, cyclones are

cleared from the center of the bowl, leaving a diffuse cyclonic layer over most of the bowl inte-

rior, up to the center of the slope (figure 4.3d). A consequence of this redistribution of cyclonic

and AC vorticity is that potential vorticity (PV) becomes segregated, with low PV material form-

ing the center AC (figure 4.4b). Material transport and vortex cross-slope propagation are further

investigated in subsection 4.4.

The emergence of a prograde slope current is to be expected based on topographic turbulence

theories posed by previous studies (section 4.1), whereas the emergence of a central AC is not.

This is underlined by the late-time streamfunction-PV relation (figure 4.4); this relation is multi-

valued, contrary to the predictions of topographic turbulence theories [e.g. Bretherton and Haidvo-

gel, 1976]. This point and further comparisonwith topographic turbulence theories are discussed

in section 4.6. However, the evolution time scales of the slope current and of the AC are similar

(figure 4.4a), which motivates a discussion of the relation between vorticity fluxes contributing

to the AC and to the slope current formation (section 4.3.4). The anticyclone is stable and long

lived, in the sense that it is little-changed in form or amplitude from its formation, around day

150, until the end of the present experiment, at day 500. The same applies to the slope current.

AC longevity is further investigated in subsection 4.3.3.
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Figure 4.3: Evolution over time and formation of a bowl-trapped anticyclone in experiment B1E5

(table 4.1). The instantaneous vorticity distribution is shown at times indicated above each

panel. Anticyclones aggregate within the bowl and repeatedly merge with each other, forming a

long-lived AC confined to the central portion of the bowl. A cyclonic slope current also emerges,

centered on the topographic slope, as seen by the broad regions of positive and negative vortic-

ity inside and outside of the bowl, respectively. Note that the colormap is saturated to make the

spatial features clearer. The 99th percentile vorticity magnitude is 0.78f and 0.42f in panels a

and d, respectively.
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Figure 4.4: Evolution and late time properties of the bowl-trapped anticyclone and of the

slope-current in experiment B1E5 (table 4.1, figure 4.3). Displayed variables are averaged az-

imuthally in radial bins from the center of the bowl. (a) Azimuthal velocity evolution, in 50-day

time-averages centered around days 25:50:500. The initial conditions are also shown for com-

parison, and times are indicated by line colors. (b) Bathymetric profileH (r ). (c) Late-time (days
400–500) time- and azimuthal-mean potential vorticity PV = (f + ζ )/H , “Planetary” Potential
Vorticity PPV = f /H , and transport streamfunction Ψ.
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4.3.2 Regime diagram

Non-linearity parameter. In this subsectionwe consider the conditions for bowl-trapped anti-

cyclone formation across our entire array of experiments (table 4.1). We find that the formation

or absence of a trapped AC is largely predicted by the value of a nonlinearity parameter. The

parameter (ϵ) is defined by a vorticity magnitude V /L relative to f Hb/H0, the value of topo-

graphically induced vorticity due to hypothetical crossing of the bowl slope:

ϵ ≡
VH0
f HbL

. (4.5)

HereV =
√
2E is the velocity scale, and L is an eddy length scale. The late-time radii of eddies

(within and outside of the bowl) are of order 50 km in all cases, despite starting from different

initial length scales. That is partially since topography limits the progression of the inverse cas-

cade. Hence we set L = 50 km. The choice is preferable to using the final AC radius re since L

(like V ) is a “coarse-grained” parameter. However, we find that both choices result in similar ϵ

values.

In figure 4.5a we plot the distance (D) of the AC from the center of the bowl (section 4.2.4), av-

eraged over the last 100 days of each experiment. This shows that trapped ACs form within the

bowl in all instances with small enough ϵ , i.e., ϵ . 0.5, and in most cases with ϵ = 0.5 − 1.

However, advection is necessary to the formation, i.e., no mean anticyclonic flow emerges inside

the bowl in the limit ϵ → 0, and neither does the slope current. In supplemental section 4.8.3

we verify this using a linear simulation. This is also consistent with the bowl vorticity budget

(section 4.3.4).

Significant variation in D occur in the range ϵ = 0.5 − 1, as discussed in (ii) below. At higher

values of ϵ & 1 there is a transition to a regime with no bowl-trapped AC. In this regime, co-

herent eddies of both polarities freely move across the topography, their motions dominated

by eddy-eddy interactions. Thus ϵ may be interpreted as determining the dominance of eddy-

eddy vs eddy-topography effects. However, the cross-over does not occur sharply at a single ϵ
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value across different experiment batches, as there is substantial scatter in the diagnostics due to

inter-experiment variations in the random initialization. Note that the slope current, predicted

by topographic turbulence theories (section 4.1), persists in all cases.

Finally, we quantify the bowl-trapped AC strength, i.e., integrated vorticity in its core, Γ ≈ ζ0πr 2e ,

were re is the diagnosed AC radius (section 4.2.4). We pose a scaling for the core-averaged vor-

ticity: ζ0 ∼ Ve/re . Anticipating thatVe should scale with initial kinetic energy (E), we then pose

Γ = a
√
Eπre . We diagnose the value of the coefficient a in all experiments where a bowl trapped

AC occurs. The result (mean ± standard deviation) is a = −3 ± 1 across three orders of magni-

tude ofE. Thus the AC is anomalously strong relative to scalingwith domain-mean kinetic energy

value, i.e., |a| is ≥ 1. That is consistent with the accumulation of anomalously low PV within the
AC through repeated mergers (section 4.3.1).

Background PV homogenization For ϵ ∼ 0.5 − 1, the trapped AC typically drifts azimuthally

around the bowl center, at a radius which tends to increase with ϵ . These states can occur even

with AC close to the slope peak (r = Rb). We find that these AC states near the topographic

slope occur in cases where “background” PV is homogenized within the bowl. “Background”

here refers to the area outside of (excluding) the trapped AC, as defined by a PV inhomogeneity

parameter below. The topographic beta-drift tendency, including in the cross-slope direction

[Carnevale et al., 1991], is negated due to the homogenization of background PV. An example is

shown in figure 4.6.

In the quasigeostrophic (QG) approximation, vortices within jets with homogenized PV propa-

gate with the local-mean (eddy PV-weighted) velocity [Marcus, 1990]. We show in supplemental

section 4.8.2 that in ShallowWater Equations (SWE) there is an additional along-topography drift,

not present in the QG approximation. This additional drift is related to topographic stretching of

relative vorticity, and does not vanish with homogenized background PV. In the experiment B6E7

shown in figure 4.6, the AC drifts with propagation speed ∼0.82 m/s. Calculation of the vortex

134



propagation speed formula (4.22) in supplemental section 4.8.2 gives in this case a theoretical

drift speed of 0.9–1 m/s, of which 0.24–0.34 are due to the additional SWE term (relative vorticity

stretching), and the remainder is due to vortex advection by the mean velocity. The 10− 20% de-

viation is potentially due to vortex effects on the slope current which advects it, since the vortex

is of significant magnitude and since rigid-lid barotropic vortices have long-range velocity tails

[McWilliams, 2006].

The vortex in B6E7 is long-lived despite residing in a region of azimuthal-mean strain induced by

the slope current. It was found by Marcus [1990] that a vortex can be stable within a large scale

mean currentv(r ) (flowing in the azimuthal direction, and varying in the radial direction) when
its vorticity ζ has the same sign as the large-scale current strain, i.e., Sr = r∂r (v/r ), and if σ/ζ is
ofO(1) or smaller. Indeed in the present case (Exp7) the mean radial strain is about (−0.04) [f ]
in the radial position of the AC, while AC vorticity ≈ −0.5f , fulfilling both the sign and magni-

tude requirements of Marcus [1990]. This implies that bowl-trapped ACs should be able to reside

(while moving azimuthally) at any bowl radial positionD within the homogenized area at which

the mean strain sufficiently small. Indeed repeating experiments with identical parameters but

different random initial phases (θk , section 4.2.2) generates trapped ACs that reside stably at dif-

ferent radii from the bowl center. Thus multiple “steady” states (or limit cycles, to be precise)

are available. This explains the general tendency for largerD values at∼ 0.5− 1 (compared with

smaller ϵ), as well as the substantial scatter inD at fixed ϵ (figure 4.5a).

Therefore, we now quantify background PV homogenization across our suite of experiments by

defining a background PV inhomogeneity parameter,

PV I =
PV IQR
PPV IQR

. (4.6)

Here PV IQR is the PV inter-quartile range (IQR, the difference between 75th and 25th percentiles)

within the bowl (r < Rb), excluding the trapped AC core, and PPV IQR is the IQR of the “planetary

PV”, PPV = f /H , in the same area. For partially or fully homogenized background PV cases,

PVI < 1. Complete homogenization results in PVI = 0. We plot PVI against ϵ and against D ,

in figure 4.5 panels b and c, respectively. As expected, we find that PVI decreases as ϵ increases,
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and in most cases approaches zero for ϵ & 1. Much of the scatter in D occurs when PV I ≤ 0.2.

As discussed above, PV homogenization results in a multiplicity of possible “steady states” (limit

cycles) that produces the scatter in the ϵ–D and PVI–D relations, visible in figure 4.5.

4.3.3 Long-term evolution

Here we explore the long term evolution of bowl-trapped ACs in our experiments. This is moti-

vated by the persistence of ocean ACs over depressions (section 4.1), and also in comparison with

topographic turbulence theories (section 4.6). In all experiments in which a bowl AC formed (de-

duced by its persistence for & 100 days), it lasted for the rest of the experiment duration, with

little qualitative or quantitative change. We also extended the duration of multiple experiments

to several thousand days after AC formation, with similar results.

To further diagnose long term evolution of the bowl-trapped AC and its dynamical causes, we

re-ran experiment B1E3 (hereby B1E3L) for 5000 days, with daily-mean outputs including on-

line momentum equation diagnostics. The spatial resolution was ∼2 km, twice as coarse as ex-

periment B1E3. Although the trapped AC core circulation at, e.g., day 500 is 25% higher in the

higher-resolution experiment, the end states are qualitatively similar and well resolved in each

simulation. Thus the coarser simulation diagnostics are informative about the late time evolution

of the trapped AC.

The evolution of the B1E3L AC between days 500 and 5000 is illustrated in figure 4.7. The AC

central (peak) vorticity decays over time, by ∼50%. However, the integrated core circulation, as

diagnosed by eddydetection (section 4.2.4), does not decay bymore than≈ 5%. This percentage is

the relative size of long-term circulation oscillations; smaller trends are impossible to distinguish

due to these oscillations. The lack of appreciable circulation decay is not inconsistent with the

peak vorticity decay, as the AC becomes wider with time (figure 4.7 panels a-b).
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Figure 4.5: Regime diagrams for bowl-trapped anticyclone (AC) formation (section 4.3.2). (a)

Mean normalized radial position (r/Rb) of the emergent anticyclonewithin the bowl for each free

evolution experiment, versus the nonlinearity parameter ϵ ≡ VH/f HbL. The radial position r

is normalized by bowl radius Rb . Bowl-trapped ACs correspond to r/Rb < 1. Values r/Rb > 1

are indicative of eddies (including ACs) moving freely across the bathymetry. (b) Position versus

the PV inhomogeneity parameter (PVI, equation 4.6). (c) PVI vs ϵ . Each different colored marker

represents a separate batch of experiments. Within each batch all parameters are kept identical

except for the initialization energy E (section 4.2.2). The r/Rb-axis scale is linear (logarithmic)

for values below (above) 1. The dashed lines at ϵ = 1 and at r/Rb = 1 serve as visual aids. In pan-

els (a–b), the double-arrow shows the range of ϵ values estimated to be relevant for the Mann,

Lofoten, and Rockall Trough eddies. (d) A schematic illustration of the three regimes described

in panels a–c. Note that the states shown are typical but not unique for each regime. For low ϵ , a

trapped AC emerges close to bowl center. For intermediate ϵ values, a bowl-trapped AC typically

emerges, but can occur at some finite bowl-radius, since the intensified slope current (illustrated

in red) causes partial or complete PV homogenization within the bowl (outside of the AC). For

high ϵ , the eddies are free to move across the slope and are not trapped within the bowl.
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Figure 4.6: Potential vorticity (PV) homogenization in an experiment (B6E7, table 4.1) with inter-

mediate nonlinearity parameter value ϵ = 1.01. (a) Vorticity (ζ [f ]) distribution (in colors) at
day 450. PV contours are shown in green, with contours plotted at [0.5 : 0.5 : 2.5]× 10−8m−1s−1.
The 2.4 × 10−8m−1s−1 contour is also marked; this contour separates the low-PV trapped

AC from its higher-PV surroundings. Depth contours are shown in gray, at values of

[4010,4100:100:4400,4490] m. (b) Radial profiles of potential vorticity (PV = (f + ζ )/H ), plan-
etary PV (PPV = f /H ), and azimuthal velocity averaged over days 300–500 (solid lines). PV is

homogenized on the slope region, thus eliminating the vortex cross-slope beta-drift. The an-

ticyclone is advected counter-clockwise (at constant bowl radius) by the cyclonic slope current.

Vortex self-advection in the presence of bathymetry (supplemental section 4.8.2) also contributes

to the cyclonic drift.
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Figure 4.7: Long-time evolution of bowl-trapped anticyclone. Panels (a) and (b) show the instan-

taneous vorticity distribution at days 500 and 5000, respectively, for experiment B1E3L. Topo-

graphic contours (4100,4200,4300,4400 m depth) are shown in solid lines. The dashed square line

in panels a–b shows the line along which circulation tendencies are calculated in panel c. Panel c:

time-cumulative inviscid (blue) and viscous (red) circulation tendencies inside the bowl (just out-

side the anticyclone peak velocity radius, along the dashed lines of panels a–b). The cumulative

tendencies are normalized by the perimeter of the dashed square such that they have dimensions

of mean velocity, i.e., m/s.

We also diagnose the AC circulation evolution in an Eulerian frame. We calculate the circulation

tendency at each time step due to each term in the momentum equation. We perform this analy-

sis around the perimeter of a 50 km × 50 km square in the center of the bowl, which encloses the

AC core. The perimeter is aligned with grid axes, to avoid introducing discretization errors. As

expected, the AC is initially spun-up by the inviscid terms (figure 4.7c). Similar to the Lagrangian

analysis of the eddy core discussed above, this Eulerian analysis shows no clear decay in AC cir-

culation after its formation. Circulation oscillations are of order 2%. The viscous term cause a

slight ≈ 2% decay in circulation between days 500 and 5000. We found that doubling the size of

the perimeter used for this calculation did not qualitatively change the result. Therefore the AC

does not decay directly by inviscid terms in a symmetric bowl, within at least a scale of thousands

of days. The implications of these results are discussed in section 4.6.
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4.3.4 Spin-up of the anticyclone and slope current: a vorticity budget

Herewe show that the spin-up of the bowl anticyclone necessarily implies a tendency for cyclonic

vorticity accumulation between the anticyclone and the topographic slope. We further suggest a

scaling relation for determining the relative circulation magnitudes of the bowl anticyclone and

of the slope current a priori.

We first derive an equation for the circulation tendency along an isobath by integrating the vor-

ticity equation within the area bounded by that isobath:

∂tC(r ,t) = ∂t
2π∫
0

r∫
0

ζ dA = −I (r ,t) + F , (4.7a)

I (r ,t) =
2π∫

ϕ=0

ζ ′(r ,ϕ)u′(r ,ϕ)rdϕ. (4.7b)

Here r denotes the distance from bowl center is denoted by r , u denotes the radial velocity, F

denotes viscous terms, and primes denote deviations from an azimuthal average. In section 4.3.3

we showed that the primary contribution to circulation tendency is I (r ,t), i.e., cross-bathymetry
eddy vorticity flux. Thus we hereafter neglect the viscous terms in (4.7a).

To address AC and slope current circulations, we define rAC as the radial position ofmaximalmag-

nitude in retrograde (anticyclonic) final-state azimuthal-mean velocity within the bowl. Like-

wise, we choose rSC as the radial position ofmaximalmagnitude in prograde (cyclonic) final-state

azimuthal-mean velocity over the topographic slope. In our simulations the latter occurs around

the position of maximal topographic slope, r = Rb . The equations for CAC ≡ C(rAC) and for
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CSC ≡ C(rSC) then follow from (4.7a)-(4.7b):

∂tCAC = −I (rAC), (4.8a)

∂tCSC = −I (rSC), (4.8b)

∂tMs ≡ ∂t

2π∫
0

rSC∫
rAC

ζdA = I (rAC) − I (rSC). (4.8c)

Between the radii of maximal AC and slope current velocities (rAC < r < rSC ) the late-time vor-

ticity is positive (figures 4.3 and 4.7), principally due to the slope current. The trapped AC in our

experiments typically has only a weak7 “shield” of positive vorticity surrounding it [McWilliams,

2006]. The quantityMs measures the slope current strength removing the AC integrated vortic-

ity (by the Stokes theorem, equation 4.7a), and thus is a preferred slope current metric compared

with CSC . Therefore equation 4.8c shows that the slope current evolution (∂tMs ) has positive

contributions from two flux integrals, i.e., at the slope region (−I (rSC)) and in the bowl interior
(I (rAC)). Since CAC decreases over time (as the anticyclone forms), we diagnose I (rAC) > 0 for
the ϵ . 1 experiments of section 4.34.3.2. Likewise, sinceCSC increases over time (as the cyclonic

slope flow forms), we diagnose I (rSC) < 0. We conclude that the spin-up of the retrograde bowl
anticyclone is necessarily associated with an eddy vorticity flux of equivalent magnitude at rAC

driving the slope current. That is in addition to spin-up due to contributions of eddy-fluxes at

the slope region (rSC ).

In figure 4.8a we compare the time evolution of the circulationsCAC andCSC in experiment B1E5

(compare with figure 4.4a). These are equivalent to the two cumulative eddy-flux tendencies

forcing the slope current strength metricMs . First, in panel (a) it is seen that both eddy fluxes

have similar evolutionary time scales. Second, the exterior (rSC ) fluxes are larger in magnitude

(see below). These qualitative observations occur across all the experiments (table 4.1). The role

of eddy fluxes as a function of position (I (r ), equation 4.7b) is examined in panel b. This panel
shows cumulative change in circulation over days 150-250 (≈

∫ t2
t1
I (r ,t)dt ), selected because |CAC |

7In the reference experiment B1E5 for example, the AC shield has an integrated vorticity just 20% the magnitude
of the integrated negative vorticity AC interior.
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gains most of its amplitude during this time, as a function of r . It is seen that the locations rAC

and rSC are indeed associated with approximately the largest cumulative eddy fluxes. Over this

period the eddy vorticity fluxes at rAC and at rSC have similar sized contributions to the slope

current metricMs .

Figure 4.8a shows that the magnitude of the late-time bowl AC circulation is around 1/3 of that

of the slope current. Therefore, by the above analysis inner bowl fluxes (I (rAC)) supply approxi-
mately 1/4 of the cyclonic vorticity that accumulates on the inner bowl slope (Ms ). The remainder

is contributed by slope-region fluxes (I (rSC)). We suggest that the larger contribution from exter-
nal fluxes (I (rSC)) relative to internal fluxes (I (rAC)) is largely a geometrical effect, due to larger
area outside of the bowl. If this is the case then the slope current circulation should equal the

anticyclone circulation, scaled by the appropriate area from which external fluxes are sourced:

CSC,theory ≈ −CACD
2/πr 2SC (figure 4.8, dashed line). Here D = 1000 km is the domain length.

Indeed, in the figure CSC and CSC,theory agree to within 3% at later times. In other experiments

(table 4.1), the agreement is typically within ∼20%.

4.4 Cross-slope motion and PV segregation

Our findings in §4.3 suggest that material transport is fundamental to the formation of the bowl

central anticyclonic circulation. Indeed, the AC grows in our experiments through eddymergers,

and nonlinearity appears to be necessary (section 4.3.1 and supplemental section 4.8.3). Further-

more, PV (a materially conserved quantity) is anomalously low within the emergent AC (sections

4.3.1-4.3.2). Here we address the following questions: Are all ACs that participate in central AC

formation initiated within the bowl at t = 0, or do some enter from outside of the bowl? If the

latter, what are the mechanisms via which they transition from outside to inside the bowl?
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Figure 4.8: Evolution of the circulation in experiment B1E5. (a) Circulation time series at bowl

radii corresponding to the bowl anticyclone (CAC = C(rAC), in blue) and to the slope jet
(CSC = C(rSC), the red solid line). In this experiment we diagnosed rAC = 39 km. The reader
is referred to equations (4.7a)–(4.8b) for the definitions of CAC and CSC . The dashed red line is

a theoretical prediction for the slope current circulation based on the anticyclone circulation

alone (CSC,theory, see text). Compare with figure 4.4a. (b) Cumulative circulation change, due to

eddy vorticity fluxes (dissipation is negligible), during the period of AC formation (from t1=150 to

t2=250 days) as a function of radial position , i.e.,C(r ,t2)−C(r ,t1) ≈ −
∫ t2
t1
I (r ,t)dt . See equations

4.7a–4.7b. In panel b, the radii of the AC and slope current time series of panel a are marked with

blue and red vertical lines, respectively.
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Figure 4.9: Contribution of anticyclones originating outside the bowl to the bowl-trapped anti-

cyclone. (a) Anticyclone material fraction originating from outside of bowl (co), versus Fδ : the

percent of initial material with δ = Hζ /f h ≥ 1, i.e., anomalously high Rossby (Ro) number.

The fraction co is estimated by the late-time tracer concentration c averaged between r = 0 and

r = Rb/2, since initially c = 1 (0) inside (outside) of the slope region, with a transition region on

the slope. Experiments in which a trapped anticyclone forms are shown by a black edge to the

marker. The horizontal (dotted) line shows themaximal dilution possible in case of homogeneous

final state. Different experiment batches (table 4.1) are denoted by different colors (legend). The

diagonal (solid) line shows a hypothetical co = δ relation. The amount of bowl anticyclone ma-

terial in the final state originating from outside the bowl is quite close to the fraction of material

with initial δ ≥ 1. Deviations above the unit line are likely partially due to material originating

over the narrow slope region, where 0 < c < 1 at t = 0. The maximal possible bias due to this

effect is shown by the gray area. (b–d) Simulated tracer concentrations at three different times

for experiment B2E4.
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Cross-bowl material transport First, we examine the amount of cross-bowl material trans-

port which occurs in the process of AC evolution using passive tracer deployments. The tracer

is initialized (section 4.2.2) with a radial tanh profile, with values close to 1 (0) inside (outside)

of the bowl. Therefore a final average value c = cb < 1 within the bowl center (diagnosed at

r ≤ Rb/2), implies that the fraction of material in the same area which originated outside the

bowl is co = (1 − cb).

An anticyclone can maintain its coherence while crossing the slope into the bowl only if its vor-

ticity (ζ ) is high enough to avoid destruction by vortex stretching. The latter occurs if δ =

H0ζ /f HB ≤ 1. We test this in figure 4.9, which shows that the amount of bowl anticyclone

material in the final state originating from outside the bowl is approximately proportional to

Fδ , the fraction of material with δ ≥ 1 at t = 0. For small enough Fδ virtually no material is

exchanged across the slope, and the AC forms only from material originally present within the

bowl. At higher Fδ values, a substantial fraction of the late-time material in the AC originates

outside the bowl.

The interpretation of the late-time tracer concentration is complicated by the initial O(50km)
wide tracer transition area on the bowl slope, where 0 ≤ c ≤ 1. Due to this transition region, in a

hypothetical end state in which no material is exchanged across r = Rb + 2Wb (at the 98th depth

percentile) and all material in r < Rb + 2Wb is well mixed, the bowl tracer concentration would

be c ≈ 0.75. Hence we estimate the maximal possible bias from the tracer transition region via

an added dilution of 25%, shown by the gray area in figure 4.9. Another complication is that in a

finite domain only a finite maximal dilution can occur; this is also marked in figure 4.9.

In cases with small Fδ , the anticyclonic vortex growth still occurs by via repeated vortexmergers,

but only emerges from AC eddies that are already in the bowl at t = 0. We observe (not shown)

that anomalously high-PVmaterial (i.e. cyclones) initially inside the bowl ultimately transit to the

slope region, either as part of the cyclonic slope current, or as a coherent cyclonic eddy embedded

within the slope current. Stability of cyclonic eddies within the inner part of the slope current
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(where mean strain σ > 0) is generally consistent with the results ofMarcus [1990].

In cases where Fδ is large enough, cross-slope motion may be induced by at least two processes

in the present experiments: 1. Monopole vortex (topographic) beta drift [Carnevale et al., 1991]; 2.

Dipole propagation. Rather than attempting to determine the fraction of monopole and dipole

(or multipole) interactions contributing to the AC formation in our turbulent experiments, we

concentrate on a more tractable task. We present results from topographic bowl experiments

initialized with a single monopole or dipole (section 4.2.3), and compare the cross-topography

propagation speed of each. For brevity, in each case a single illustrative experiment is presented,

along with formula for propagation speeds in the general case.

Monopole topographic beta-drift McWilliams and Flierl [1979] found that barotropic QG vor-

tices on a beta plane (with constant β) drift merdionally (equivalently, cross-slope on a topo-

graphic β plane) with speed∼ βr 20 , where r0 is the vortex radius (or, more generally, the pressure

e-folding scale). It is not clear to what extent these results should hold for a finite-width and

curved bottom slope. In this case we define a cross-slope vortex (monopole) propagation speed

(vm,1) predicted from the local topographic beta value, β(x) = −(f /H )|∇H (x)|:

vm,1(x,l) = β(x)r 20 . (4.9)

However, vortex beta drift is driven by a secondary vorticity field which is set up by the vortex as

it advects material a finite distance across f /H contours.Therefore, it may be that the relevant

β value for vortex drift is to be evaluated in a region around the vortex rather than at its center.

Thus we also test a second hypothetical speed,

vm,2(x,l) =< β(x) > r 20 , (4.10)

where <> marks an average over the area defined by r0 ≤ rv ≤ 2r0, with rv = distance from

vortex center.

Expressionsvm,1 andvm,2 are comparedwith thediagnosed vortexdown-slopepropagation speed,
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vm,e for a vortex of radius r0 = 45 km initialized outside the bowl in figure 4.10a. Indeed, the

approximate non-local generalization of the beta drift term, vm,2, compares quite well with the

diagnosed speed up until the vortex arrives at themiddle of the slope. In comparison,vm,1 is con-

siderably lower outside the bowl.After the vortex reaches the middle of the slope region, both of

the above formulae fail to reproduce it subsequent propagation speed. The vortex acquires a

weak dipole component as it propagates across the slope [McWilliams and Flierl, 1979], which sur-

vives into the flat interior region. The companion is largely responsible for the deviation between

the theoretical predictions and the diagnosed propagation speed, as are the presence of a slope

current and topographic Rossby waves induced by the passage of the vortex.

Dipole propagation Dipoles propagate perpendicular to their eddy-separation axis. Topogra-

phy causes an asymmetry in their dynamics such that propagation in the down-slope direction

often results in the anticyclone shedding into the depressionwhile the cyclone is repelled outside

[Carnevale et al., 1988].

The trajectory of the anticyclone from a representative dipole experiment (see section 4.2.3) is

shown in figure 4.10b. Here the initial mean vorticity in each vortex is 0.25 f , and the dipole

orientation was chosen such that the dipole propagates directly towards the bowl. The dipole

propagates towards the bowl until the cyclone is shed upon arrival at the bowl slope [Carnevale

et al., 1988] between days 15-20, after which the anticyclone continues downslope and the cyclone

is eventually ejected upslope. It is seen that away from the bowl rim, the dipole travels consider-

ably faster than the monopole in panel a. For example at 1.5 bowl radii away (r = 1.5Rb) from its

center (with present slope half-width parameterWb ≈ Rb/6) the dipole is an order of magnitude

faster than the monopole. The dipole is initialized at a greater distance than the anticyclone to

illustrate this difference further.

The dipole speed can be predicted based on a theoretical model of point vortices [McWilliams,

2006; Kloosterziel et al., 1993]. The point model predicts a dipole speed vd = C
2πd , where C is the

147



strength (peak circulation) of each vortex, and d the pair separation distance. The value ofvd is

estimated based on diagnosis of these parameters from the dipole experiment. Its value generally

agrees well in order of magnitude with the diagnosed anticyclone down-slope drift speed before

the cyclone is shed. The dipole begins somewhat slower thanvd and overshoots its value slightly.

This may be explained by that the initialized state is comprised of two superposed monopole

vorticity fields, and hence some initial adjustment occurs. The adjustment process results in a

smaller d , which explains the faster velocity at later times.

In summary, in this subsection it is shown that a bowl trapped anticyclone can form either lo-

cally frommaterial initial present within the bowl, or also by sourcing material from outside the

bowl. The percentage of externally sourced material depends largely on Fδ , the fraction of the

initial anticyclonic vorticity outside the bowl that exceeds the topographically-imposed vortic-

ity change. Anticyclones that enter the bowl can do so via either monopolar or dipolar propaga-

tion. It is shown that dipole cross-slope propagation can be considerably faster than monopole

topographic beta drift former under certain conditions. For the monopole case, due to the non-

uniform bottom slope, an approximate generalization the constant-slope formula is suggested,

and reasonably matches the diagnosed speed.

4.5 Two-layer experiments

In this section we report the results of our 2-layer experiments — theminimal configuration that

permits baroclinity. We examine whether a bowl AC forms in baroclinic conditions, and diagnose

its vertical structure as a function of system parameters. The very long lived ACs observed in

the ocean above depressions (section 4.1) are surface intensified (note their velocity maximum

commonly occurs at depths of ∼ 500m), but a non-negligible barotropic component is observed

as well [Mann, 1967; Willis and Fu, 2008; Köhl, 2007; Fer et al., 2018; Bosse et al., 2019; Le Corre et al.,

2019a]. In our idealized barotropic experiments AC formation depends strongly on topographic
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Figure 4.10: Coherent vortex propagation experiments. (a) Amonopole vortex experiment. Diag-

nosed vortex down-slope velocity (solid black line) is compared with theoretical vortex down-s-

lope beta-drift velocity (dashed line). The radial position from bowl center is shown in blue

(right-side axis). (b) As panel (a), but for a dipole experiment. The theoretical dipole speed is

shown by the dashed-dotted line. The initial conditions for the dipole are: mean vorticity within

each dipole vortex of magnitude 0.25 f ; vortex radii d = 45 km; vortex separation = 2.6d .

effects, and it is unclear whether this should favor a surface-intensified trapped AC structure.

Several batches of experiments were conducted. Stratification parameters were varied between

batches, and the initial vertical structure was varied within each batch. For brevity we report

mainly on a reference batch (hereafter BBC1, BC standing for “baroclinic”) of experiments with

λ0 = 90 km, upper layer rest thickness H1 = 1000 m, and topographic parameters Rb = 300,

Wb = 50, H = 2, and Hb = 0.5 km. The reduced gravity is set to д′ = 10−2m/s2, resulting in

a baroclinic Rossby deformation radius of Ld =
√
д′Heq/f = 22 km [McWilliams, 2006]. Here

the equivalent depth Heq = H1H2/H is used, with H2 = H − H1. These parameters are loosely

motivated by the Mann Eddy basin (see also section 4.2.2). The Rossby deformation radius in the

top (bottom) layer is Rd ,1 =
√
д′H1/f = 27 (Rd ,2 =

√
д′H2/f = 38) km.

The initial kinetic energy densities of the top and bottom layers (E1 and E2 [m2/s2], respec-
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tively) were varied between the BBC1 batch experiments, taking the following relative values:

(E1,E2)/E0 = (0,1), (0.25,1), (0.5,1), (0.75,1), (1,1), (1,0.75), (1,0.5), (1,0.25), (1,0). These experiments
were repeated with for two different kinetic energy densities in the dominant layer: E0 = 0.01 or

E0 = 0.1m2/s2. In each experiment, the random initial phases θk were generated independently

in each layer.

Wefind that a bowl-trappedAC forms in allBBC1 experiments. A specific example of the evolution

is shown in figure 4.11, from the BBC1 experiment with E2 = 0 and E1 = 0.1m2/s2. By day 30

the circulation has largely barotropized as is generally expected for circulation features larger

than the deformation radius [Salmon, 1998]. By day 250 a single coherent AC is formed near the

bowl center. It is top intensified but has a substantial barotropic component. Topographic Rossby

waves (TRW), straining of eddies on the slope, and the emergent slope current all appear to be

bottom-intensified.

More generally, we find that the trapped AC tends to be top (bottom) intensified for top (bottom)

intensified (random) initial conditions. Vertical structure results are presented in figure 4.12, in

terms of a surface intensification metric: S ≡ log(v1/v2), where vi is a velocity magnitude in
layer i . Initialvi is defined as the RMS velocity value in the layer. Finalvi is defined as azimuthal-

mean azimuthal velocity at the radius of peak eddy velocity (for the AC), or at mid-slope (for the

slope current). In contrast to the AC, the slope current is consistently bottom-intensified, with

a similar value of final S value in all BBC1 experiments. Following these diagnosed trends, we

suggest simple scaling rules for top intensification of the AC and slope current.

Scaling for the slope current vertical structure. We assume that the slope current is induced by

TRW rectification [Brink, 1986; Beckmann and Haidvogel, 1997]. Hence, the slope current vertical

structure may be expected to be similar to that of the waves. The upper layer QG PV equation for

TRW is8

∂t
(
∇2ψ1 − R

−2
d ,1ψ1 + R

−2
d ,1ψ2

)
= 0. (4.11)

8Here we linearize around the initial state of approximate zero mean flow along isobaths.
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Figure 4.11: Vorticity (ζ ) snapshots in a 2-layer experiment, with initial (at day 0) zero kinetic

energy at lower layer. Layer number (1=top, 2=bottom) and number of days since initialization

are indicated in each panel. 151



Here upper and lower layer quantities are denoted by i = 1 and i = 2 subscripts, respectively.

For any wave mode (with nonzero frequency) the expression within the parentheses need be

identically zero. Therefore,

ψ2 = (1 − R2d ,1∇2)ψ1. (4.12)

Over an isolated topographic feature TRW generally vary with scales similar to the topographic

variation length scale, which we take as the bowl half-widthWb (section 4.2.2). Hence ∇2 ∼

−W −2
b
, resulting in

ψ1 ∼
1

1 + (Rd,1/Wb)2ψ2. (4.13)

The relation is similar to a Taylor Cap height over seamountswith continuous stratification [Hogg,

1973]. Statistical turbulence theories [Salmon et al., 1976] predict functionally-similar, although

not identical, relations.

Scaling for the anticyclonefinal vertical structure is suggested for the cases inwhich one layer is

initially at rest (Si = 0 or 1). Suppose conditions are initially surface intensified, i.e.,ψ2(t = 0) = 0
and Si = 1. Then initially the lower layer evolution is likely approximately described by the

linearized QG equation,

∂t
(
∇2ψ2 − R

−2
d ,2ψ2

)
= −∂tR

−2
d ,2ψ1 − J (ψ2,h). (4.14)

With random initial conditions we may assumeψ1(t = 0) ≈ 0 at the bowl center. We also assume
that the topographic termwill be initially negligible sinceψ2(t = 0) = 0 and since the topography
is weak at bowl center. Therefore, in this case the AC amplitude in the lower layer follows from(

∇2ψ2 − R
−2
d ,2ψ2

)
= −R−2d ,2ψ1. (4.15)

Assuming that horizontal structure is dictated by the energy-dominant layer, a scale estimate

results by setting ∇2 ∼ −r−21 , where ri the AC core radius in layer i . The eddy core radii ri are

diagnosed in each case (section 4.2.4), and is typically 35–60 km in these simulations. Therefore

ψ1 =
�
1 + (Rd ,2/r1)2�ψ2. (4.16)

For a case with Si = 0, the late-time scaling resulting from similar reasoning is

ψ1 =
1

1 + (Rd ,1/r2)2ψ2. (4.17)
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The top intensification scaling for the slope current and for the AC are examined against theBBC1

numerical experiments results in figure 4.12. The scaling laws predict the right sign of log(S f ),
i.e., top or bottom intensification. The slope-current prediction (equation 4.13) is indeed very

close to the numerical final state S f , for all examined Si values. The AC S scaling relations, (4.16)

and (4.17)), are of the right (log(S)) sign, and of the right (S) order of magnitude (within 7-40%)
in all applicable cases (i.e., Si = 0,1).

The scalings (4.13)-(4.17) all share a dependency of the form Ri/L, where L is the relevant cir-

culation feature length scale. Hence we conducted additional experiment batches varying the

Rossby radii Rd,i (e.g., by changing stratification). Cases with much higher Rossby radii of order

100−150 kmwere attempted. The length scales ri were< 90 km in all cases. We find that trapped

anticyclones still form in cases with Si < 1, and in some cases with Si = 1 9. The trend predicted

by the scaling relations is correct in these cases, i.e., top or bottom intensification is more acute

relative toBBC1, by as much as on order of magnitude. The scaling relations also predict the right

S order of magnitude in each applicable case. The scatter in S is however relatively larger than

in BBC1, and we do not attempt a further systematic exploration.

4.6 Discussion - complex topography and topographic turbulence theories

All numerical experiments discussed above involved an isolated and functionally simple topo-

graphic feature. Real ocean topography is characterized bymultiple scales and roughness. Hence,

experiments with non-isolated topographywere conducted aswell. Complex topographic shapes

were created using a similar random formula to (4.2) (e.g., figure 4.13). Cyclonic (anticyclonic)

circulations emerge on the slopes of the topographic depressions (bumps), i.e., slope currents,

consistent with previous results [e.g., Bretherton and Haidvogel, 1976]. However, embedded within

the interiors of these large scale circulations, we find that coherent ACs (cyclones) with anoma-

9Time-scales to (partial) cross-layer coupling grow with Ri/l magnitude, and with Si magnitude, which makes
simulation more demanding and complicates analysis of the results.
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Figure 4.12: Vertical structure of the bowl-trapped anticyclone and of the slope current in

two-layer experiments. A surface-intensification metric, S = v1/v2, is shown for the initial con-

ditions (Si , x-axis) vs. the final state (S f , y axis). Herev1 (v2) is the velocity magnitude in the top

(bottom) layer. Initial magnitudes are the prescribed RMS random velocities. Final velocities are

defined as azimuthal-mean azimuthal velocity, either in the core of the slope current or at the

radius of the anticyclone’s maximum azimuthal velocity. The results are shown in log-scale. That

is, e.g., log(S) = −∞,0,∞ for cases with v1 = 0, v1 = v2, and v2 = 0, respectively. The verti-

cal structure of topographic Rossby waves (dashed-dotted line) closely predicts the slope current

structure regardless of the initial conditions. Scaling estimates for the final anticyclone vertical

structure in the limits log(Si) = −∞ and log(Si) = ∞ (equations 4.16 and 4.17, respectively)

are shown by isolated black circle symbols. Dashed lines and empty circles (solid lines and filled

circles) denote cases with E0 = 0.01 (0.1)m2/s2.
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lously low (high) PV appear at the center of some or all topographic depressions (bumps) in each

experiment. The trapped coherent eddies emerge as long as λ0 is small enough (e.g., a factor of

≈ 5 was sufficient) relative to the analogous typical topographic wavelength (λt ). This condition,

as well as numerical resolution, may explain the lack of previous reports on these vortices in sim-

ilar numerical simulations. Results from one of our random topography experiments are shown

in figure 4.13.

We also conducted experiments with isolated topographic features lacking a significant central

flat region of size larger than an eddy size, not shown here in the interest of space. We find that

trapped (ACs) cyclones can emerge over the slope regions of such (inverted) seamount shapes,

and propagate with the slope current at a constant radius. This occurs when partial homogeniza-

tion of the PV field is achieved, i.e., the cause is similar to the 0.5 . ϵ . 1 regime of section 4.3.2,

and may explain similar observations in the experiments of Carnevale et al. [1991].

As summarized in section 4.1, topographic turbulence theories broadly predict that (anti)cyclonic

circulation should form over (bumps) depressions. These predictions have been verified in previ-

ous idealized numerical simulations [Bretherton and Haidvogel, 1976; Salmon et al., 1976; Merryfield,

1998; Majda and Wang, 2006; Venaille, 2012] and in the present study. However, these theories do

not predict a circulation of opposite polarity in the interior of closed topographic contours, i.e.

they do not predict the formation of the bowl-trapped AC in our experiments.

A fundamental feature of these topographic turbulence theories is the prediction of a single-

valued (i.e., monotonic) streamfunction (ψ ) to PV (q) relation [Bouchet and Venaille, 2012]. To the

contrary, we find the relation is multiple-valued in our simulations (e.g., figure 4.4b). It is clear

that the multiple-valued ψ − q relation is due to the cross-over from the bowl AC to the slope

jet. Hence the theories cited above cannot predict these two features together. Earlier numerical

random topography simulations [Bretherton andHaidvogel, 1976] did exhibit differing, quasi-linear,

ψ−q relations over different subdomains. However, wefind aqualitatively different,multi-valued

ψ − q relation within a single isolated and smooth topographic feature. A deviation from single-
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valuedψ − q relations in idealized simulations was also previously reported by Vallis and Maltrud

[1993], associated with alternating jets parallel to steep topography.

A possible explanation for the disagreement of our results with topographic turbulence theories

is that the AC (unlike the slope current) is a transient feature, and hence should not be predicted

by equilibrium theories. However as shown in section 4.3.3, the bowl AC does not decay by a

measurable amount over a time scale of at least ∼ 10 years. In barotropic numerical simulations

of a closed basin with a “continental slope” close to the basin edges and a flat bottom in the

center, the spin up of a center anticyclone was previously reported [Cummins and Holloway, 1994;

Shchepetkin, 1995]. In the case of Cummins and Holloway [1994], the center anticyclone decayed

over a time scale equivalent to ∼ 100 years. Cummins and Holloway [1994] argued that the decay

occurred inviscidly. We note, however, that the AC evolution and the slope-current evolution are

not completely independent, as the results of section 4.3.4 show. Finally, it is possible that this

local coupling is not captured in the discussed topographic turbulence theories since they impose

conservation laws only in an integrated sense, or with a mean-field approximation [Bouchet and

Venaille, 2012; Venaille, 2012].

4.7 Summary and conclusions

In several North-Atlantic basins, long-lived and semi-stationary mesoscale anticyclonic vortices

(ACs) have been observed repeatedly. These basins are characterized by bowl-like topography,

i.e., slopes surrounding a much less steep central area. The ACs reoccur over periods of years

to decades, and have a significant signature on mean regional properties (e.g., SSH, figure 4.1).

Previous work suggested different dynamical mechanisms for AC formation and persistence in

each of these cases.

Motivated by these observations, we conduct idealized numerical experiments of flow evolution
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Figure 4.13: Coherent vortices emerging within topographic anomalies in an experiment with

random topography. (a) Vorticity and (b) potential vorticity (PV) after 500 days of free evolution

in a basin with complex topography. Dashed (solid) lines are elevated topographical areas (de-

pressions) of height 200, 400, and 490 m above (below) a mean 4 km depth. Vorticity and PV are

clearly influenced by the topography. Where relatively strong bottom slopes occur, the vorticity

is positive at depressions and vice-versa. This is associated with development of slope currents,

and is consistent with topographic turbulence theories (section 4.1). However, anticyclones (cy-

clones) tend to develop within centers of depressions (bumps), and are associated with anoma-

lously negative (positive) PV. These central vortices are not predicted by topographic turbulence

theories. Experiment parameters: λ0 = 45, λt = 400 km, E = 0.02m2/s2, ϵ ≈ 0.3.
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over bowl-like topography to determine if and how a trapped ACs evolve in a minimal complex-

ity model. Primitive equation simulations with one or two isopycnal layers are conducted. Al-

though many processes are neglected, the lighter computational burden facilitates multiple ex-

periments, sweeping wide parameter ranges.

Wefind that a bowl-trappedAC does emerge spontaneously from random initial conditions under

a wide range of circumstances. Typically this occurs through repeated mergers of ACs within

the bowl interior, and the resulting trapped AC is characterized by anomalously low PV. Another

general result, consistent with previous theory and simulations (the “Neptune” effect, section

4.1), is the emergence of a prograde slope current, corresponding to cyclonic circulation around

a bowl.

To determine the robustness and parameter dependence of these phenomena, we conduct a large

array of single-layer experiments. The initial kinetic energy and dominant initial circulation

wavelength, as well as topographic shape parameters, are varied. A nonlinearity parameter (ϵ)

is identified as largely determining the formation of a trapped AC in these experiments. This

parameter is the ratio of vorticity scale to topographic vorticity stretching, and describes the rel-

ative effects of eddy-eddy interactions to topographic effects. The AC typically forms for ϵ . 1,

although it does not form for ϵ = 0 (i.e., with advection terms neglected, as shown in supple-

mental section 4.8.3). In the first regime, ϵ . 0.5, the AC is confined relatively close to the bowl

center. In the second regime, 0.5 . ϵ . 1, trapped ACs typically still occur, but may revolve

around bowl-center at different distances r ≤ Rb , depending on initial conditions. In the third

regime, ϵ & 1, eddy-eddy interactions dominate, and vortices freely cross topographic contours.

To explain the varying radial positions of the bowl-trapped ACs, we introduced a second non-

dimensional parameter, PVI, a metric of PV inhomogeneity (excluding the trapped AC PV signa-

ture). At small ϵ the radial PV gradient is dominated by the topography, and PVI ≈ 1. However,

PVI generally decreases with increasing ϵ values, and in most cases satisfies PVI � 1 for ϵ & 0.5.

The outcome is consistent with PV stirring and mixing by incoherent eddies, viewing the La-
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grangian conservation of PV as approximately analogous to a passive tracer. A similar outcome

was also predicted by Rhines and Young [1982b] within closed mean ocean gyre streamlines, at

depths such that non-conservative process are negligible, under the assumption that eddy fluxes

cause a mean down-gradient PV diffusion. The erosion of background PV gradient in the bowl

eliminates the topographic beta drift, which otherwise tends to pushACs toward the center of the

bowl. Hence, for 0.5 . ϵ . 1, the AC can occupy any radial position within the region of homog-

enized PV, and be passively advected cyclonically by the slope current. We show that a relatively

smaller contribution to the cyclonic drift of the AC occurs through a nonlinear eddy-topography

SWE effect, which is not eliminated despite the homogenization of background PV.

While it is clear that AC mergers contribute to the trapped AC formation, it is not a priori clear

whether these ACs should originate from inside or outside of the bowl. We show that the origins

of the ACs that contribute to the bowl-trapped AC is set by a parameter Fδ (section 4.4), which

quantifies the fraction of the initial anticyclones that are outside of the bowl and are sufficiently

strong to cross the topographic PV gradient. We show through tracer analysis that for weak

vortices, i.e. small Fδ , there is negligible exchange ofmaterial across the topography. The relative

exchange and amount of final “dilution” of the inner bowlmaterial, grows approximately linearly

with Fδ .

Motivated by the role of anticyclones migrating into the bowl in forming the trapped AC, we iso-

lated and examined two different mechanisms of cross-bowl transport: eddy (topographic) beta

drift [Carnevale et al., 1991], and dipole interactions [Carnevale et al., 1988; Kloosterziel et al., 1993].

The former was previously suggested to be important in the case of the Lofoten AC [Köhl, 2007].

Using experiments with initial conditions of a single (monopole) AC, or of a close pair of opposite-

signed eddies (dipole), we show that both mechanisms can allow anticyclones to enter the bowl.

However, and dipole propagation is typically more efficient for reasonable parameter values, es-

pecially at larger distances from the bowl slope. We proposed an approximate generalization of

previous theoretical monopole beta-drift to account for the variable topographic slope.
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Two-layer experiments support the one-layer results on AC formation. We focus on the char-

acterization of vertical structure of the emergent trapped AC, as well as of the slope current.

We find that the emergent slope current is bottom intensified in all cases, to a degree deter-

mined by stratification conditions, similar to a Taylor Cap [Hogg, 1973]. In contrast, the emer-

gent trapped-AC is bottom-intensified (surface-intensified) if domain-mean initial conditions are

bottom-intensified (surface-intensified). The vertical structures of the observed ocean ACs (see

section 4.1) are surface-intensified, with maximal velocities within the upper 1 km of the wa-

ter column, and velocities decaying toward smaller but finite values near the sea floor. Thus

an interpretation of our two-layer experimental findings is that the general tendency for ocean

mesoscale eddies to be surface-intensified leads to surface-intensified trapped ACs such as the

Mann and Lofoten eddies.

We find that, in the single layer experiments, the spin-up times of the bowl AC and the slope

current are similar. Therefore, we examine the relation between vorticity and circulation evolu-

tion equations of both the AC and the slope current (section 4.3.4). This relation shows that the

vorticity fluxes driving the formation of the bowl AC also contribute to the spin-up of the slope

current. Furthermore, although the slope current is accelerated by a second source of vorticity

fluxes as well (from outside the bowl), the final bowl AC strength is a good predictor of the slope

current strength. These relations suggest that the vorticity fluxes inside and outside of the bowl

are both mediated by similar mechanisms.

In section 4.6 we contrasted our results with topographic turbulence theories. These theories

predict the emergence of a prograde slope current, but not a bowl-trapped AC. We find that

depression-trapped ACs also occur in simulations with complex topographies, similar to experi-

ments previously used to test topographic turbulence theories. We suggest an emergence criteria

(for trapped ACs over depressions) in such simulations, based on the relative length scales of to-

pography and circulation. The lack of bowl-trapped ACs in topographic turbulence theories is

discussed. The aforementioned theories only predict strictly steady states. It is possible that the

trapped AC is a transient state. However trapped ACs in our bowl simulations are stable over
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time scales of at least dozens of years. Additionally, it is unclear if local vorticity fluxes, which

couple the slope current and AC formation tendencies (section 4.6), are captured by mean-field

approximations in such theories.

The numerical model used here is much too simple to directly apply to the discussed ocean ob-

servations of long-lived semi-steady ACs (section 4.1). One of the potentially important factors

which are not included aremore complicated stratification conditions [Bashmachnikov et al., 2017].

The low stratification conditions, high f , and low planetary β values in the sub-polar areas make

this limitation less severe than in other areas. Indeed, Isachsen et al. [2003] found that a barotropic

model explains over 50% of seasonal gyre variability in the Nordic Seas (including the Lofoten

basin). As mentioned above, each of the observed quasi-stationary vortices has a significant

barotropic component (section 4.5).

Another limitation is that the neglect of external circulation patterns (e.g., boundary currents

and eddy fluxes), and of atmospheric forcing. This limitation is very partially addressed here in

the random topography experiments, as different topographic bowls (or bumps) and their emer-

gent circulations, are not isolated from each other. The influence of regional circulation features

and perpetual external variability or forcing need to be studied within intermediate complexity

models or realistic regional numerical simulations.

Different formation mechanisms were previously suggested and diagnosed for observed semi-

stationary ocean ACs (section 4.1). The present results suggest that whatever the source and

exact location (cf. section 4.4) of low PV material in a topographic bowl region is, it is likely to

lead to bowl-trapped AC formation. A rough estimate of the nonlinearity parameter value in the

discussed oceanic basins (section 4.1) based on bathymetry and observed eddy strengths, gives

ϵ < 1, which in our idealized experiments predicts AC formation and topographic trapping. The

vertical structure of the formed AC, also in rough agreement with observations, is a reflection of

the domain (regionally) averaged vertical structure. As discussed above, in our model, trapped

AC formation is related to prograde slope current formation tendency. The tendency for vorticity
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Table 4.2: Initial kinetic energies for experiments in each batch defined in table 4.1.

Batch # IC: average energy density [m2/s2]

1 0.001,0.005,0.01,0.02,0.05,0.1,0.2,0.5,1

2 0.001,0.005,0.01,0.02,0.05,0.1,0.2,0.5,1,2

3 0.001,0.005,0.01,0.02,0.05,0.1,0.2,0.5,1,2

4 0.001,0.005,0.01,0.02,0.05,0.1,0.2,0.5,1,5

5 0.001,0.005,0.01,0.02,0.05,0.1,0.2,0.5

6 0.001,0.005,0.01,0.02,0.05,0.1,0.2,0.5

7 0.001,0.005,0.01,0.02,0.05,0.1,0.2,0.5,1,5

8 0.001,0.005,0.01,0.02,0.05,0.1,0.2,0.5

9 0.001,0.005,0.01,0.05,0.1,0.2,0.3,0.4,0.6

segregation by eddy fluxes may in principle be tested within more realistic numerical models of

the North Atlantic basins.

4.8 Supplement

4.8.1 List of initial kinetic energies in experiment batches

In this subsection the initial kinetic energies for all experiments described in section 4.2.2 are

provided, within table 4.2. Other parameters of these experiments were provided in table 4.1 in

the same section .
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4.8.2 Vortex propagation in homogenized ambient PV over a slope in SWE

Here the motion of an isolated vortex over a slope is examined. Use Reynolds decomposition for

any variable, b = b + b′, the primed terms denoting vortex-induced deviations. PV is denoted

by q = q + q′. A special characteristic examined here is that q is constant, i.e., ambient or mean

PV is homogenized (as occurs for 0.5 . ϵ . 1 in our experiments, section 4.3.2). Define the

PV-weighted vortex center:

X =
1
Q

∫ ∫
q′xdA, (4.18a)

Y =
1
Q

∫ ∫
q′ydA, (4.18b)

Q =

∫ ∫
q′dA. (4.18c)

Now,

∂tX =
1
Q

∫ ∫
x∂tq

′dA −
X

Q

∫ ∫
∂tq
′dA. (4.19)

The first integral may be expanded as follows:∫ ∫
x∂tq

′dA = −

∫ ∫
xu · ∇q′dA

= −

∫ ∫
∇ · (xuq′)dA +

∫ ∫
uq′dA +

∫ ∫
xq′∇ · u dA

=

∫ ∫
uq′dA −

∫ ∫
xq′

H
u · ∇HdA.

Here and below boundary terms are assumed to vanish. The velocity divergence term in the last

integral was expanded as follows (using that ∇ · (uH ) = 0 in SWE):

∇ · u = ∇ ·
(uH
H

)
=
1
H
∇ · (uH ) − 1

H
u · ∇H = −

1
H
u · ∇H .
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Similarly, the second integral in (4.19) may be expanded as follows:∫ ∫
∂tq
′dA = −

∫ ∫
u · ∇q′dA

= −

∫ ∫
∇ (uq′)dA +

∫ ∫
q′∇ · u dA

= −

∫ ∫
q′

H
u · ∇HdA.

Using these expansions within (4.19), and defining x′ ≡ x − X , we finally have

∂tX =
1
Q

∫ ∫
uq′dA −

1
Q

∫ ∫
x′q′

H
u · ∇HdA. (4.20)

Similarly,

∂tY =
1
Q

∫ ∫
vq′dA −

1
Q

∫ ∫
y′q′

H
u · ∇HdA. (4.21)

The second term in each of the last two equations corresponds to vortex self-propagation, which

does not occur in QG approximation (since ∇ · u = 0). It operates by differential self-advection

and accompanying relative vorticity stretching over a bottom slope, rather than by planetary

vorticity stretching as in topographic beta drift. The latter does not occur here despite of the

bottom slope since mean PV is homogenized.

Finally, if the mean flow is along isobaths (say, along the x direction) and if the vortex has an axis

of symmetry perpendicular to isobaths, i.e., (v′) q′ and u′ are (anti)symmetric in x′, then these

symmetries vanish a few of the terms which appeared above, resulting in:

∂tX =
1
Q

∫ ∫
uq′dA −

1
Q

∫ ∫
x′q′

H
v′∂yHdA, (4.22)

∂tY = 0. (4.23)

For an anticyclone the second integral results in a prograde contribution to vortex propagation,

i.e., with shallower water to the right. That is, if ∂yH < 0 then ∂tX < 0, since q′ < 0,Q < 0, and

x′v′ < 0.
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4.8.3 Free linear evolution in a numerical model

To show explicitly that nonlinear effects are critical to the formation of the trapped anticyclone,

we conduct a numerical experiment where the nonlinear (advection) terms are not included in

the model equations. Since this option was not readily available in the model of Stewart and Del-

lar [2016], we conducted the linear experiment using the Back of Envelope Ocean Model [BEOM,

St-Laurent, 2018], a primitive equation layered isopycnal model. Firstly, we ran BEOM in a fully

nonlinear configuration identical to experimentB7E5, except that BEOMhas a free surface rather

than rigid upper lid. The BEOM experiment has very similar results to B7E5, including a trapped

bowl AC and a cyclonic slope current. We conducted a second BEOM experiment identical to

the previous, but without the advective terms in the momentum equation. Results are shown

in figure 4.14. The circulation appears, as expected, composed of topographic Rossby waves. No

tendency towards AC formation occurred over 1000 days. Indeed, linear dynamics cannot change

azimuthal mean azimuthal velocity. That may be seen directly from equation 4.8a, as the right

hand side vanishes under linear dynamics.

4.8.4 Supplementary animation description

An animation of vorticity evolution in the reference (single-layer) experiment B1E5 is presented

in supplementary file SA1.avi. The reference experiment parameters are described in section

4.2.2. The results and evolution within this experiment are described in detail in section 4.3.1, as

well as in subsequent subsections of section 4.3. Figures 4.3, 4.4, and 4.8 also show results of this

experiment.

The animation shows daily-mean vorticity distribution, at 5-day intervals between days 0-1000

from initialization. Vorticity ζ is shown normalized by the (constant) Coriolis parameter f . To-

pographic contours are superimposed, at depths of 4010, 4100, 4200, 4300, 4400, and 4900 m. The

minimal (maximal) depths in the domain are 4000 (4500) m, as described in section 4.2.2.
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Figure 4.14: B1

Linear evolution experiment using BEOM [St-Laurent, 2018], with the same topographical

parameters and initial conditions as in experiment B7E5. Instantaneous vorticity distribution is

shown at times indicated above each panel. Neither a trapped anticyclone nor a slope current

evolve. Motions due to linear topographic Rossby waves are apparent.
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CHAPTER 5

Summary and Outlook

The following sections (5.1-5.3) provide high level summaries for chapters 2-4, respectively. Each

of these chapters, as reproductions of published or submitted papers, contains a full length sum-

mary and conclusions section. Here a stand-alone, shorter, and less technical, summary of each

chapter is provided. Additionally prospects for for future research based on these results are also

discussed, and mostly do not overlap the outlook given in each chapter’s summary section.

5.1 Baroclinic instability on curved isobaths

Observations and models of deep ocean boundary currents show that they exhibit complex vari-

ability, instabilities and eddy shedding, particularly over continental slopes that curve horizon-

tally, for example around coastal peninsulas. The present investigation [chapter 3 here, Solodoch

et al., 2016] was motivated by such observations of the Deep Western Boundary Current (DWBC;

studied in detail in chapter 3, and summarized in section 5.2 here). One ubiquitous cause of such

variability is baroclinic instability (BCI), the release of (“available”) potential energy stored by

geostrophic vertically sheared currents. Here, the modulation of BCI by horizontal curvature of

topography is investigated, in light of the observations of increased eddy shedding and variabil-

ity from boundary currents near underwater capes. To generate as direct as possible comparison

with classical instability of uniform rectilinear flow, an equivalent angular flow problem is iden-

167



tified and solved in several cases, concentrating especially on uniform azimuthal velocity and

on solid-body rotation. The classical 2-layer quasi-geostrophic BCI problem [Phillips, 1951] over

sloping bottom topography [Mechoso, 1980], is extended to the case of azimuthal flow in an annu-

lar channel. The linear instability problem, an eigenvalue problem, is addressed analytically and

numerically.

We first analytically derive instability criteria and upper limits on growth rates for the present

problem, generalizing classical results for the rectilinear problem [Pedlosky, 1964, 1987]. Growth

rates for particular flow profiles are solved for either analytically or numerically. A criterion for

time scale up to which BCI results in annular geometry is relevant to more general curved but

open flow geometry is discussed.

It is found that solid-body rotation BCI is analytically analogous to the rectilinear uniform flow

BCI instability. That is due to several reasons, which are identified, including that the strain rate

and the vorticity gradient vanish in both cases. In case of uniform azimuthal flow, BCI can be

quantitatively similar (in terms of, e.g., growth rates) to rectilinear uniform flow BCI. The sim-

ilarity occurs in case of a vanishing depth-averaged (barotropic) mean flow. In the more gen-

eral case of nonzero barotropic (uniform azimuthal) flow, BCI growth rate is suppressed. This

suppression is identified as a generalization of the so called “barotropic governor effect” [James,

1987] whereby barotropic horizontal shear (strain in the present and more general, curvilinear,

case) reduces BCI growth rate.

An exception to the relative reduction in growth rate occurs when the ratio of the bathymetric

to isopycnal slopes (δ ) is close to (positive) one, in which case the instability is enhanced. This

value (δ ≈ 1) is in fact often observed in the ocean, as it is an empirical observation that often

isopycnal slopes of boundary currents are parallel to the bathymetry [Stommel and Arons, 1972;

Stipa, 2004b; Spall, 2010; Xu et al., 2015; Trodahl and Isachsen, 2018]. This δ ≈ 1 regime is potentially

relevant for the DWBC eddy-shedding observations that motivate this work
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Additionally, it is found that with mean horizontal strain (as in, e.g., uniform azimuthal flow) a

nonzero barotropic flow component results in increased growth rates of so called non-normal in-

stability. That is transient but possibly explosive growth, whichmay bridge the gap to non-linear

effects despite its finite growth time in linear theory. Given the sharp bathymetric changes in

some areas at which DWBC leakiness has been identified, it is possible that the (finite-time) non-

normal instability results are more relevant than modal instability (although the latter grows

exponentially). Modal linear instability can provide predictions when the medium changes on

length scales considerably longer than mesoscale (or at least a Rossby deformation radius), but

not necessarily otherwise.

5.2 DWBC leakiness in a realistic regional numerical model

The Atlantic Meridional Overturning Circulation (AMOC) is an oceanic circulation pattern strad-

dling the meridional extent of the Atlantic Ocean, communicating water mass transformations

in sub-polar and polar regions across it, as well as with the other oceans. As such, it is of great

climatic significance [Lozier, 2012]. Its important effects on climate include heat and greenhouse

gas uptake from the atmosphere, heat transport and heat redistribution (section 1.2). The AMOC

three dimensional circulation patterns and its variability are quite complex, and a subject of in-

tense international observational efforts [e.g., Bower et al., 2002a; Lavender et al., 2005; Bower et al.,

2009; Cunningham et al., 2007; Bryden et al., 2009;Meinen et al., 2013; Lozier et al., 2017].

Decades of North Atlantic observations have shown that the the deep AMOC limb is comprised

of both the Deep Western Boundary Current (DWBC) and of a second (more recently delineated)

component: interior pathways. The latter are fed by the exchange and loss of material (“leak-

iness”) from the DWBC in the Newfoundland Basin. Understanding the cause of leakiness and

its phenomenology are necessary to better understand AMOC patterns, and to determine the re-

lation of leakiness to other climate variability patterns. Therefore, we conducted the research
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described in chapter 3 [Solodoch et al., 2016], to investigate the cause of DWBC leakiness and its

characteristics in detail.

The statistics and dynamics of the DWBC leakiness in the Newfoundland Basin are explored using

an oceanic numerical circulation model in a high-resolution regional configuration designed for

the present purpose. Additionally, two oceanfloat data sets and other observational data are used

in the investigation. One of these data setswas originally a key indicator of DWBC leakiness [Bower

et al., 2009]. A direct comparison ofmodel datawithfloats ismade by advecting passive “particles”

based on model velocities. The vast number of numerical particles (≈ 550,000) in comparison

with available and relevant deployed ocean floats (∼ 100) allows a detailed characterization of

DWBC leakiness.

The float leakiness around Flemish Cap is found to be concentrated in several areas (“hotspots”)

that are collocated with bathymetric curvature and steepening. The leakiness of themodel parti-

cles is consistent with presence and location of float leakiness hotspots. The large number of the

latter allows systematic statistical analysis of the leakiness pattern. These reveal that Lagrangian

mean velocity is offshore at these hotspots, while Lagrangian variability is minimal locally, which

is an indication that leakiness by a non-eddying process is at work.

Model results are also analyzed from an Eulerian perspective. Time-mean Eulerian DWBC stream-

lines separate to the interior at the same leakiness hotspots identified in the Lagrangian analy-

sis. Furthermore, eddy-rectified flow is negligible relative to the Eulerian mean flow, except at

the southern face of Flemish Cap, where a smaller percentage of particle loss (leakiness) occurs.

The Eulerian and Lagrangian results taken together show that leakiness occurs mainly due to

Eulerian-mean cross-isobath flow at the identified hot spot locations.

Eddies1 do play significant, if subtle, roles in the leakiness process. It is inferred, by comparison

with particle advection experiments using the time-mean circulation, that eddies are conducive

1In this paragraph the term “eddy” relates to time-variability, not necessarily in the form of a coherent vortex.
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to ≈ 50% of the Lagrangian leakiness. Eddy stirring allows DWBC parcels to cross the mean po-

tential vorticity (PV) gradient to the offshore side of the DWBC and continental slope, where the

time-mean offshore flow at leakiness hotspots finally transports these particles out of the cur-

rent. This coupled eddy-mean flow process is identified as a manifestation of chaotic advection

[Shepherd et al., 2000;Waugh et al., 2006].

The dynamics of mean leakiness of the DWBC is further investigated by model energy and PV

budgets. The results confirm that eddy to mean flow energy conversion is not efficient near the

leakiness hotspots, and that even downstream of mean streamlines separation (from the DWBC),

eddy stirring imposes a modest change to mean PV. It is suggested that the evidence on mean

flow leakiness and separation is consistent with a mechanism of inertial separation of the DWBC

due to bathymetric changes, namely abrupt isobaths steepnening and turning near the deduced

leakiness hotspots. Finally, a scaling relation for the ability of a boundary current to follow bathy-

metric changes is suggested, which is consistent with DWBC separation by inertial separation at

the leakiness hotspots. The results are contrastedwith previous suggestedmechanisms for DWBC

leakiness.

Possible implications of the investigation are discussed in regards to both modeling require-

ments, phenomenon robustness to varying climatic conditions, and relation to other circulation

features (section 3.5). Additional prospects for future research are discussed here.

• The leakiness is characterized in this work by two components, compensated and uncom-

pensated. The former (latter) results in null (nonzero) exchange ofmass across the current.

Here we quantify the cumulative value of the latter component, which compares well with

observational estimates [Mertens et al., 2014], and provides more detail (within the model).

A similar quantification of compensated leakiness would be a useful calculation as well, in

providing the amount of downstream dilution of DWBC water masses.

• It is indirectly inferred that mean-eddy coupling causes ≈ 50% of model leakiness. A more

direct demonstration and quantification is perhaps possible. For example, in (preliminary)
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particle advection experiments using only eddy velocity, considerably less leakiness oc-

curs relative to full velocity experiments. The difference is also considerably larger that

the leakiness due to mean flow advection alone. I presently understand this mean-eddy

coupling as a kinematic process, and expect that studying its details, as well as disentan-

gling it from the demonstrated dynamical processes of separation, would be informative

from theoretical as well as observational perspectives.

• Theprocess of leakiness by formationof anticyclonic submesoscale coherent vortices [McWilliams,

1985; Bower et al., 1997] has previously been suggested to be relevant for the DWBC [Bower

et al., 2013] leakiness around the Grand Banks area, based on several observations with

floats. Recently, SCVs with similar thermohaline properties where detected in the same

area from Argo floats profiles by McCoy et al. [2020]. Leakiness by SCV shedding was not

investigated in the published manuscript Solodoch et al. [2020a], which focused on the up-

stream Flemish Cap area. However, in a preliminary analysis bottom boundary layer vor-

ticity (ζ ) smaller than (−f )2 are diagnosed in the model (GBB , presented here) around

the southern face of Flemish Cap and around the eastern and southern areas of the Grand

Banks. That (ζ < −f ) is generally a necessary condition for inertial instability, previously

found to result in SCV formation post separation in the California Undercurrent [Molemaker

et al., 2015]. Furthermore, SCVs have been diagnosed using an eddy tracking code [Le Vu

et al., 2018] with our GBB configuration in similar location to the Bower et al. [2013] ob-

servations. That was done on model year 17 (not reported upon in Solodoch et al. [2020a]),

which was run with 1/4 daily output in order to better resolve SCVmotions. A quantitative

measure of SCV role in the model leakiness, may be deduced by further analysis of these

calculations.
2 f denotes the Coriolis parameter
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5.3 Formation of Anticyclones above topographic depressions

Long-lived anticyclonic eddies (ACs) have been repeatedly observed over several North-Atlantic

basins characterized by bowl-like topographic depressions. Significant thermohaline fluxes and

thermohaline transformations occur in these basins, processes of climatic significance as part of

the Atlantic Meridional Overturning Circulation (AMOC). The possible relations of these trapped

ACs with AMOC processes are discussed in section 4.1.

Motivated by these previous findings, we conduct numerical experiments of circulation over to-

pographic bowls in simplified settings. We find, in experiments with 1 or 2 isopycnal layers, that

a bowl-trapped AC is an emergent circulation pattern under a wide range of parameters. The

trapped AC, often formed by repeated mergers of ACs over the bowl interior, is characterized by

anomalously low PV.

It is demonstrated that the trapped-AC material may be sourced from both inside and outside

of the bowl. The (former) latter occurs for (low) high scales of initial vorticity relative to to-

pographic vorticity stretching. Two PV segregation mechanisms that can contribute to the AC

formation in the latter case are examined, namely monopole vortex propagation by topographic

beta-drift [McWilliams and Flierl, 1979; Carnevale et al., 1991], and dipole self-propagation [Carnevale

et al., 1988]. We compare the down-slope propagation velocities of eachmechanism in the present

scenario. While previous studies of the Lofoten Basin Eddy have given consideration to topo-

graphic (and planetary) beta-drift [Köhl, 2007], we show that dipole propagation can be consid-

erably faster with reasonable parameter choices.

A nonlinearity parameter (ϵ) is suggested to largely control the trapped AC formation or lack

thereof. The former occurs under a low ϵ . 1, although advection is necessary for formation.

Under moderate values (0.5 . ϵ . 1), partial PV homogenization allows the AC to travel finite

distances within the bowl, rather than remain close to its center. Under higher ϵ & 1, eddies
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freely cross the topography. A regime diagram is thus suggested to account for results from a

large set of 1-layer experiments in terms of either ϵ or of a PV (in-)homogenization parameter.

Observed topography-trapped ACs in the ocean are top-intensified. That is in contrast to other

topographically-induced circulation patterns, such as Taylor Caps above seamounts [e.g., Hogg,

1973;Owens andHogg, 1980], andpreviously reported emergent circulationpatterns in topographic

turbulence theory and experiments [e.g., Salmon et al., 1976;Merryfield, 1998;Venaille, 2012]. These

latter circulation patterns are generally prograde (cyclonic over a topographic depression) and

bottom-intensified. The latter characteristic occurs since density stratification provides partial

“shielding” of top layers from topography-induced vortex-stretching. Model two-layer experi-

ments reported here reproduce the bottom-intensification of an emergent prograde slope cur-

rent. The emergent trapped AC vertical structure is found to depend on initial conditions, i.e.,

domain-mean vertical energy partition. The trapped AC is top (bottom) intensified for top (bot-

tom) intensified domain-mean initial conditions. Mean top-intensified energy is the general rule

in large scale ocean circulation, hence the results appear consistent with trapped AC observa-

tions. Simple physically-based scaling laws are suggested for slope current as well as trapped-AC

top-intensification measures.

Finally, the results are comparedwith topographic turbulence theories [Salmon et al., 1976; Brether-

ton and Haidvogel, 1976;Majda and Wang, 2006; Venaille, 2012], which predict the emergence of the

prograde slope current, but do not predict a trapped AC. A vorticity budget suggests these fea-

tures are nonetheless dynamically related. Possible reasons for the difference and implications

are discussed.

One of the main limitations of the investigation is that the experiments are unforced, i.e., free

evolution within a closed system is studied. In the ocean on the other hand, boundary currents,

propagating waves and eddies entering the region, and air-ocean interaction, can all affect the

regional circulation and trapped AC. For that reason, a suite of forced-dissipative experiments

(not reported in [Solodoch et al., 2020b]) were conducted as well. Random forcing was prescribed,
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with length and time scales roughly relevant for mesoscale disturbances. Dissipation (additional

to hyper-viscosity) was provided by linear bottom friction. The main qualitative result was that

in many cases a coherent and trapped AC formed, as it did in the free evolution experiments. In

those cases, the trapped AC occasionally did collapse due to the random forcing, but reformed

again repeatedly, such that on average the inner bowl circulation was anticyclonic. The forced-

dissipative experiments were not studied exhaustively, but results suggested that a trapped AC

formed in cases that the random forcing auto-correlation time scale was longer than an advective

time scale. The interpretation of this preliminary result is that if advective time scale 3 is short

enough relative to the time over which the forcing pattern changes, than vortices can cross the

topography and merge within the bowl in sufficient numbers to maintain a trapped AC. While

the forced-dissipative experiments are quite idealized as well, they provide a demonstration that

a trapped AC forms in the present setting, in non-equilibrium conditions as well.

The results of the idealized investigation suggest that common underlining mechanisms may be

responsible for the various observed trapped oceanic ACs, although the mechanisms may man-

ifest differently in each case. For example, it is found that the AC may be formed from either

locally or remotely-sourced vortices (depending on the nonlinearity parameter, section 4.4). An

investigation of the dynamics of theMann Eddy based on observations and on a realistic regional

numerical model (the same model developed in [Solodoch et al., 2020a]) is underway as well. The

Mann Eddy is the least studied of the discussed oceanic long-lived ACs, despite its potential ef-

fects on the AMOC. Mann [1967] suggested (based on tracer properties) that mid-depth convec-

tion happens within the eddy, changing the water mass propagating within the North Atlantic

Current (NAC) as part of the AMOC4. The proximity to a (locally) retrograde current (the NAC),

also distinguishes the Mann Eddy from the other observed ACs. Therefore, examination of the

presently identified mechanisms for the Mann Eddy would be informative regarding the wider

applicability of the idealized simulations as well.

3Generally inversely proportional to forcing amplitude, but dependent on other parametres, including the forcing
time scale

4Additional climatic influences of the Mann Eddy were mentioned in chapter 4.
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5.4 Outlook

As discussed in chapter 1, topographic effects on mesoscale circulation is a common theme of

chapters 2-4. Without much repetition of the above summaries, it is noteworthy that within

each chapter it is found that topographic control can manifest in opposite circulation tenden-

cies. In chapter 2 it is found that for boundary currents above a sloping topography, downstream

variation in isobath direction (curvature) can be either stabilizing or destabilizing in regards to

baroclinic instability, depending on the details of the topography and mean flow. In chapter 3

it is deduced that downstream topographic variations do contribute to Deep Western Boundary

Current leakiness and variability, through inertial separation. However, it is the presence of the

bottom slope itself that guides the path of the DWBC. Furthermore, persistent recirculation gyres

occur offshore of the topographic variation locations, and their existence is likely related to the

leakiness and topographic separation of the DWBC. Thus a second time-mean circulation pattern

is possibly supported by the topographic variation causing leakiness from the first. Finally, in

chapter 4 we show that opposing circulation patterns emerge in the relatively flat interior of

topographic bowls (a trapped anticyclone), and on their slope region away from the center (a cy-

clonic slope current). Furthermore, it is shown that the vorticity fluxes responsible for forming

these two circulation patterns are in fact related to each other. It is apparent that topographic

effects, even limited to purely mesoscale variety, are immensely varied and rich, and that even a

single suchmechanism can lead to contrasting and even opposite circulation patterns depending

on local conditions.
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