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Abstract

We study the geometry and dynamics of discrete infinite covolume subgroups of higher
rank semisimple Lie groups. We introduce and prove the equivalence of several conditions,
capturing “rank one behavior” of discrete subgroups of higher rank Lie groups. They are
direct generalizations of rank one equivalents to convex cocompactness. We also prove
that our notions are equivalent to the notion of Anosov subgroup, for which we provide
a closely related, but simplified and more accessible reformulation, avoiding the geodesic
flow of the group. We show moreover that the Anosov condition can be relaxed further by
requiring only non-uniform unbounded expansion along the (quasi)geodesics in the group.

A substantial part of the paper is devoted to the coarse geometry of these discrete sub-
groups. A key concept which emerges from our analysis is that of Morse quasigeodesics
in higher rank symmetric spaces, generalizing the Morse property for quasigeodesics in
Gromov hyperbolic spaces. It leads to the notion of Morse actions of word hyperbolic
groups on symmetric spaces, i.e. actions for which the orbit maps are Morse quasiiso-
metric embeddings, and thus provides a coarse geometric characterization for the class
of subgroups considered in this paper. A basic result is a local-to-global principle for
Morse quasigeodesics and actions. As an application of our techniques we show algorith-
mic recognizability of Morse actions and construct Morse “Schottky subgroups” of higher
rank semisimple Lie groups via arguments not based on Tits’ ping-pong. Our argument
is purely geometric and proceeds by constructing equivariant Morse quasiisometric em-
beddings of trees into higher rank symmetric spaces.
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1 Introduction

This paper is motivated by the search for “geometrically nice” infinite covolume discrete groups
of isometries of higher rank symmetric spaces, respectively, discrete subgroups of semisimple
Lie groups with finite center. A reasonable class of such groups should be broad enough and
at the same time manageable.

The class of groups considered in this paper can be viewed as groups with rank one actions
on higher rank symmetric spaces, i.e. discrete subgroups of semisimple Lie groups which exhibit
some rank one behavior. They are a direct generalization of convexr cocompact subgroups of
rank one Lie groups. The strength of the notion of convex cocompactness in rank one relies
on a number of different characterizations in terms of geometry/dynamics (conical limit set),
dynamics (expansion at the limit set, uniform convergence action on the limit set), coarse
geometry (undistorted) and topology (existence of a natural compactification of the quotient
locally symmetric space). Furthermore, for these subgroups one can prove results which are
inaccessible or unavailable otherwise (e.g. topological or algebraic finiteness properties). In
chapter 4] we will go through different characterizations of rank one convex cocompact groups.

In higher rank, some of these characterizations turn out to be too restrictive, and others
too weak. For example, it was shown by Kleiner and Leeb [KL0G] that convex cocompactness
is too restrictive in higher rank, as it is satisfied only by few subgroups. On the other hand,
undistortion is way too weak; for instance, undistorted subgroups can fail to be finitely pre-
sented. Thus, one is forced to look for alternative generalizations of convex cocompactness in



higher rank.

In this paper, we will consider, in the context of weakly reqular discrete subgroups I' ¢ G
of semisimple Lie groups (with finitely many connected components and finite center), four
notions generalizing convex cocompactness to higher rank:

(i) conical (RCA) subgroups

(ii) subgroups expanding at a (suitable) limit set
(iii) asymptotically embedded subgroups

(iv) Morse subgroups

Whereas (i)-(iii) are asymptotic (mostly dynamical) conditions, condition (iv) is coarse
geometric. The Morse condition is a suitable strengthening of undistortedness in higher rank;
the orbit quasigeodesics must satisfy an additional restriction which is a higher rank analogue
of the Morse property for quasigeodesics in hyperbolic spaces. See below for the definitions.

A consequence of the equivalence (iii)<(iv) is the structural stability of asymptotically
embedded subgroups, generalizing Sullivan’s Structural Stability Theorem in rank one [Sul.
Another consequence of this equivalence is that asymptotically embedded subgroups are undis-
torted and uniformly regular.

Furthermore, an important feature of the Morse condition (iv) is that it admits a local
characterization. The localness of the Morse property implies that the space of Morse actions
is open, and that Morse subgroups are algorithmically recognizable.

We illustrate our techniques by constructing Morse-Schottky actions of free groups on higher
rank symmetric spaces. Unlike all previously known constructions, our proof does not rely on
ping-pong, but is purely geometric and proceeds by constructing equivariant quasi-isometric
embeddings of trees. The key step is the observation that a certain local straightness property
for sufficiently spaced sequences of points in the symmetric space implies the global Morse
property. This observation is also at the heart of the proof of the local-to-global principle for
Morse actions.

An advantage of the notion of conicality /expansivity over the notions of asymptotic embed-
dedness and Morse is that it does not a priori assume that the subgroup is word hyperbolic as
an abstract group. For example, uniform lattices in semisimple Lie groups satisfy this prop-
erty. Thus, the conicality condition can serve as an ingredient in a general theory of “geometric
niceness” in higher rank which includes groups which are not (relatively) hyperbolic.

In our paper [KLP], we study the dynamics of weakly regular antipodal discrete subgroups
acting on the partial flag manifolds associated to semisimple Lie groups. We construct domains
of discontinuity in general. Furthermore, we prove cocompactness of actions under the addi-
tional assumption of expansivity, equivalently, conicality using some of the discussion in this
paper. The latter results can be regarded as a weak form of cocompactness for the action on
the domain of discontinuity at infinity in rank one.

We prove (section [6.5.2, Theorem [6.57) that our characterizations (i)-(iv) are equivalent to
the notion of Anosov representation (subgroup) introduced by Labourie [La06] and developed



further by Guichard and Wienhard [GW]. In section [6.5.1] we also give a closely related, but
simplified and more accessible reformulation of the Anosov property. Our definition involves
only an expansion property for the group action on the flag manifold and avoids the notion of
expansion /contraction of flows on bundles. In particular, it avoids using the geodesic flow for
hyperbolic groups (whose construction is highly involved for groups which do not arise as the
fundamental group of a closed negatively curved Riemannian manifold). In section [6.5.2] we
present a further relaxation of our version of the Anosov condition, by requiring only non-uni-
form unbounded expansion along quasigeodesics in I'. Nevertheless, we show that the resulting
class of subgroups remains the same (Theorem [6.57]).

While our methods are independent of the ones in [La06, [GW], it was known before that
Anosov subgroups are undistorted ([GW], Theorem 5.3]), uniformly regular ([GW, Proposition
3.16]), and that Anosov representations are structurally stable ([GW) Theorem 5.13]).

In addition to the equivalent conditions mentioned above, we also introduce a notion of
boundary embeddedness for discrete subgroups which are word hyperbolic as abstract groups.
It is a priori a weakening of asymptotic embeddedness, as it only requires an antipodal equiv-
ariant embedding of the Gromov boundary into the flag manifold. Here, antipodality means
that distinct points go to opposite simplices. Boundary embeddedness constitutes the non-
dynamical part of the definition of Anosov subgroup, omitting the expansivity. We show that
boundary embeddedness is equivalent to asymptotic embeddedness in the regular case (see

Proposition [6.24]).

We now describe in more detail some of the concepts and results discussed above.

Let X = G/K be a symmetric space of noncompact type. Of primary importance to us
will be the visual boundary 0, X and the fact that it carries a natural structure as a spherical
building 074X . We recall that the visual limit set A(I"') < 0, X of a discrete subgroup I' ¢ GG
is the set of accumulation points of an(y) I'-orbit I'z < X.

Weak regularity of discrete subgroups is an asymptotic condition regarding the directions
of segments connecting orbit points. It is defined with respect to a fixed face 7,,,4 of the model
Weyl chamber o,,,4 associated to G and X. The condition of 7,,,4-regularity is a relaxation
of uniform 7,,,4-regularity which requires that all limit points of I' are 7,,,4-regular, see Defini-
tion £.0l In the case when 7,04 = Omod, uniform regularity simply means that all limit points
of I" are interior points of chambers in the Tits building.

The 7,,0q-regularity of a discrete subgroup I' € G can be read off its dynamics at infinity,
namely it is equivalent to a contraction-expansion property of the I'-action on the partial flag
manifold

Flag(7yod) = G/ P,

mod

associated to G and 7,4, generalizing convergence dynamics in rank one, see section [5.21

For 7,,,4-regular subgroups and, more generally, for subgroups containing diverging 7,4~
regular sequences, we have a 7,,,q-limit set

A, (I') < Flag(Tmod)-

Tmod



In the uniformly 7,,,4-regular case, the 7,,,4-limit set is the natural projection of A(I") to
Flag(Tmoea). Furthermore, in the uniformly regular case, A, _ (I') is the set of chambers which
contain ordinary limit points. We will refer to points in A, (I") as limit simplices or limit
flags. We call I 7,,,,q-non-elementary if it has at least three limit flags of type Ti.04-

Definition 1.1 (Antipodal). A 7,,,4-regular discrete subgroup I' © G is called 7,,,4-antipodal,
if any two distinct limit simplices in A, . (I") are opposite.

The notion of conicality of limit simplices is due to Albuquerque [Al, Def. 5.2]. For simplicity,
we give it here only in the regular case and refer the reader to Definition for the general
case.

Definition 1.2 (Conicality). A o,,.4-regular discrete subgroup I' = G is called ,,04-conical
if for every limit chamber o € A, (I") there exists a sequence 7,, — o0 in I" such that for a(ny)
point x € X the sequence of orbit points v,z is contained in a tubular neighborhood of the
euclidean Weyl chamber V' (z, o) with tip = and asymptotic to o.

Definition 1.3 (RCA). A discrete subgroup I' G is called 7,,04-RCA if it is T,04-regular,
Tmog-conical and 7,,,q-antipodal.

Following Sullivan [Sul, we call a subgroup expanding at infinity if its action on the appro-
priate partial flag manifold is expanding at the limit set. More precisely:

Definition 1.4 (Expanding). We call a 7,,,4-regular discrete subgroup I' © G 7,,,04-expanding
at the limit set if for every limit flag in A, _ (I") there exists a neighborhood U in Flag(7meq)
and an element v € I' which is uniformly expanding on U, i.e. for some constant ¢ > 1 and all
71, T2 € U we have:

d(y11,y72) = ¢ - d(11, T2)

Here, the distance d is induced by a Riemannian background metric on the flag manifold.

Definition 1.5 (Asymptotically embedded). We call a 7,,,,4-antipodal 7,,,4-regular discrete
subgroup I' € G Ty0q-asymptotically embedded if T' is word hyperbolic and there exists a I'-
equivariant homeomorphism

e

a: 0.l > A, (') < Flag(Tmea)

of its Gromov boundary onto its 7,,,4-limit set.

For simplicity, we define the Morse property only in the regular case, see Definitions [7.14]
[7.23] and [7.30) for the general case.

Definition 1.6 (Morse). (i) A uniformly regular quasigeodesic ray in X is called 0,,,q4-Morse
if it converges to a chamber at infinity in uniform conical fashion, compare Definition

(ii) An isometric action p : I' —~ X of a word hyperbolic group T is called o,,,q-Morse if its
orbit map sends uniform quasigeodesic rays in I' to uniformly o,,,q-Morse quasigeodesic rays
in X. In this case the image p(I') will be called a ,,,q-Morse subgroup.
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It follows immediately from the definition that Morse actions are properly discontinuous
and Morse subgroups are discrete and undistorted.

The first main result of this paper is (see Theorems [6.16], [6.57 and [7.35]):

Theorem 1.7 (Equivalence). For 7,,,q-non-elementary Tyoq-reqular discrete subgroups I' <
G the following properties are equivalent:

1. T is 1,0q-RCA.

2. T is Tyeq-antipodal and its action on Flag(Tyea) is expanding at A, ().
3. T 18 Tioa-asymptotically embedded.

4. T 18 Tpoq-Morse.
5

. ' is Tyoa-Anosov.

Whereas properties 3-5 include that I' is word hyperbolic, it follows that subgroups having
property 1 or 2 must be word hyperbolic.

Among the consequences of this theorem are (see Theorem [6.33)):

Theorem 1.8 (Undistortedness and uniform regularity). A subgroup I' = G satisfying
one of the equivalent properties 1-5 is Toq-uniformly reqular and undistorted.

We recall that quasigeodesics in Gromov hyperbolic spaces can be recognized locally by
looking at sufficiently large finite pieces. Our second main theorem is an analogous result for
Morse quasigeodesics in symmetric spaces and, as a consequence, for Morse actions. Morse
actions can be recognized locally by looking at the image of sufficiently large balls in the group
under the orbit map (see Theorem [7.26]):

Theorem 1.9 (Local-to-global). For a word hyperbolic group T', locally Teq-Morse actions
' = X (for suitable parameters) are Toq-Morse actions.

As a consequence of the localness and equivalence theorems, we obtain (see Theorems [7.33]
and [7.36)):

Theorem 1.10 (Openness of the space of Morse actions). For a word hyperbolic group
[, the subset of Tyeq-Morse actions is open in Hom(T', G).

Theorem 1.11 (Structural stability). Let I be word hyperbolic. Then for T,,,q-Morse ac-
tions p : I' =~ X, the boundary embedding o, depends continuously on the action p.

Thus, actions sufficiently close to a faithful Morse action are again discrete and faithful.
The localness implies furthermore, that Morse actions are algorithmically recognizable (see

section [7.7):

Theorem 1.12 (Algorithmic recognition of Morse actions). Let I' be word hyperbolic.
Then there exists an algorithm whose inputs are homomorphisms p : I' — G (defined on gener-
ators of I') and which terminates if and only if p defines a Tyoq-Morse action T' —~ X.



If the action is not Morse, the algorithm runs forever. We do not know if there is an algorithm
which recognizes non-Morse actions. Note, that even in hyperbolic 3-space no algorithm is
known which recognizes that a finitely generated group is not convex cocompact.

Organization of the paper. In section 2] we review basic definitions from the theory of
symmetric spaces and spherical buildings. We also prove some results on geometry of such
spaces, including geometry of parallel sets and associated decompositions of X, cones in X
over certain subsets of 0,X and dynamics of transvections of X. In section [3] we discuss
several standard concepts of topological dynamics, namely, convergence actions, expansivity
and conical limit points. In section 4 we give a list of equivalent definitions of convex cocompact
subgroups of rank one Lie groups. In section [3] we introduce several key asymptotic notions
describing geometry of discrete groups, such as regularity and uniform regularity, various limit
sets as well as antipodality and conicality of limit sets in partial flag manifolds. In section [0l we
prove the equivalence of the first three items in Theorem [[.7 and establish some fundamental
properties of asymptotically embedded groups which lead to the concept of Morse quasigeodesics
and Morse actions. We conclude the section by discussing the Anosov condition. The notions
of Morse quasigeodesics and actions are discussed in detail in section [l In that section, among
other things, we establish local-to-global principles, prove Theorem [I.7] and show that Morse
actions are structurally stable and algorithmically recognizable. We also construct Morse-
Schottky actions of free groups on symmetric spaces.

Acknowledgements. The first author was supported by NSF grants DMS-09-05802 and
DMS-12-05312. The last author was supported by grants Mineco MTM2012-34834 and AGAUR
SGR2009-1207. The three authors are also grateful to the GEAR grant which partially sup-
ported the IHP trimester in Winter of 2012 (DMS 1107452, 1107263, 1107367 “RNMS: Geo-
metric structures and representation varieties” (the GEAR Network)), and to the Max Planck
Institute for Mathematics in Bonn, where some of this work was done.

2 (Geometric preliminaries

In this section we collect some standard material on Coxeter complexes, the geometry of non-
positively curved symmetric spaces and associated spherical Tits buildings; we refer the reader
to [KLI8] and [Le] for more detailed discussion of symmetric spaces and buildings. We also
prove some new results on the geometry of parallel sets and cones in symmetric spaces.

We start with some general notations:

A tubular neighborhood of a subset A of a metric space X is an open r-neighborhood of A
in X for some r > 0, i.e. the set

N.(A) ={xe X :d(z,A) <r}.

We will use the notation
B(a,r) ={r e X :d(z,a) <r}



and
Bla,r) ={re X :d(x,a) <1}

for the open and, respectively, closed r-ball, centered at a.

A geodesic in a metric space X is an isometric embedding from a (possibly infinite) interval
I < R into X. In the context of finitely generated groups I' equipped with word metrics we
will also sometimes use the notion of discrete geodesics, which are isometric maps

v:l—-G

where [ is an interval (possibly infinite) in Z. Similarly, we will be talking about discrete
quasigeodesics whose domains are intervals in Z.

Definition 2.1. For a diffeomorphism & : M — M of a Riemannian manifold M we define
the expansion factor e(®,x) at a point x € M as
dd
e(®,r) = inf lde ()] = |(d®,) |t

veT,M—{0} ||

The ezponential expansion factor of ® at x is defined as log(e(®, z)).

2.1 Coxeter complexes

A spherical Cozeter complex is a pair (S, W) consisting of a unit sphere S in a Euclidean vector
space V and a finite group W which acts isometrically on S and is generated by reflections
at hyperplanes. We will use the notation Z for the angular metric on S. Throughout the
paper, we assume that W does not fix a point in S and is associated with a root system R.
Spherical Coxeter complexes will occur as model apartments of spherical buildings, mostly of
Tits boundaries of symmetric spaces, and will in this context usually be denoted by a,,04.

A wall m, in S is the fixed point set of a hyperplane reflection p in W. An half-apartment
in S is a closed hemisphere bounded by a wall. A point £ € S is called singular if it belongs to
a wall and regular otherwise.

The action W —~ S determines on S a structure as a simplicial complex whose facets, called
chambers, are the closures of the connected components of

S—Ump
p

where the union is taken over all reflections p in W. We will refer to the simplices in this
complex as faces. (If one allows fixed points for W on S, then S carries only a structure as a
cell complex.) Codimension one faces of this complex are called panels. The interior int(7) of
a face 7 is the complement in 7 to the union of walls not containing 7. The interiors int(7)
are called open simplices in (S, W). A geodesic sphere in S is called simplicial if it equals an
intersection of walls.



The chambers are fundamental domains for the action W —~ S. We define the spherical
model Weyl chamber as the quotient ,,,q = S/W. The natural projection  : S — 04
restricts to an isometry on every chamber.

It is convenient, and we will frequently do so, to identify ,,,¢ with a chamber in S (tradi-
tionally called the positive chamber). An important elementary property of the chamber 0,4

is that its diameter (with respect to the spherical metric) is < 7.

Given a face Ty0q Of 010q, We define the subgroup W, =~ < W as the stabilizer of 7,,,¢ in

d
W. An identification of ¢,,,q with a chamber o — S determines a generating set of W, namely
the reflections at the walls bounding ,,,,4, and hence a word metric on W; the longest element
with respect to this metric is denoted wgy. This element sends o,,,q to the opposite chamber
in S. We say that two points & ,é e S are Weyl antipodes if é = woé. We define the standard

involution (also known as the Cartan involution)
L=1g:5—> S8

as the composition —wy. This involution preserves 0,,,q and equals the identity if and only if
—1idg € W because then wy = —idg.

A point £ in S is called a root if the hemisphere centered at & is simplicial, equivalently,
is bounded by a wall. Every root point ¢ defines a certain linear functional a; € V* on the
Euclidean vector space V' containing S as the unit sphere; this linear functional is also called
root. The kernel of a; is the hyperplane in V' which intersects S along the wall defined by &.
The set of roots in V* is denoted by R and called the root system associated with the Coxeter
complex (S, W). We refer the reader to [Bou] for details.

Suppose that S is identified with the sphere at infinity of a Euclidean space F, S =~ 0, F,
where 0, F is equipped with the angular metric. For a chamber ¢ < S and a point x € F' we
define the Weyl sector V(z,0)  F' as the cone over ¢ with tip x, that is, as the union of rays
emanating from z and asymptotic to o.

After fixing an origin o € F' the group W lifts to a group of isometries of F' fixing o. The
sectors V (o, o) are then fundamental domains for the action of W — F.

We define the euclidean model Weyl chamber as the quotient V,,.q = F/W; we will also
denote it by A or A.... It is canonically isometric to the complete euclidean cone over ,,.4.
The natural projection F' — V.4 restricts to an isometry on the sector V(o,0) for every
chamber o < S. Furthermore, for a closed subset A < 0,04 We define V(O,fl) C Vinod a8

the complete cone over A with tip 0. In particular, a face Tpoq © Tmoq cOrresponds to a face
V(O, Tmod) Of Vmod-

We define the A-valued distance function or A-distance da on F' by
da(z,y) = projly —z) € A
where proj : F' — F/W =~ A is the quotient map. Note the symmetry property
da(z,y) = tada(y, x) (2.2)

where ta denotes the isometric involution of A induced by tg. The Weyl group is precisely the
group of isometries for the A-valued distance on F;,,q which fix the origin.
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2.2 Hadamard manifolds

In this section only, X denotes a Hadamard manifold, i.e. a simply connected complete Rie-
mannian manifold with nonpositive sectional curvature. We will use the notation Isom(X) for
the full isometry group of X.

Any two points in X are connected by a unique geodesic segment. We will use the notation
xy for the oriented geodesic segment connecting x to y and parameterized with unit speed. We
will be treating geodesic segments, geodesic rays and complete geodesics as isometric maps of
intervals to X; we sometime will abuse the terminology and identify geodesics and their images.

We will denote by Z,(y, z) the angle between the geodesic segments xy and xz at the point
x. For x € X we let ¥, X denote the space of directions of X at x, i.e. the unit sphere in the
tangent space T, X, equipped with the angle metric.

The ideal or visual boundary of X, denoted 0., X, is the set of asymptote classes of geodesic
rays in X, where two rays are asymptotic if and only if they have finite Hausdorff distance.
Points in 0, X are called ideal points. For £ € 0, X and x € X we denote by z£ the geodesic
ray emanating from z and asymptotic to &, i.e. representing the ideal point &. For x € X we
have a natural map

log, : 0px X — 3, X

sending & € 0, X to the velocity vector at = of the geodesic ray x£. The cone or visual topology
on 0, X is characterized by the property that all the maps log, are homeomorphisms; with
respect to this topology, 0, X is homeomorphic to the sphere of dimension dim(X) — 1. The
visual topology extends to X = X U 0, X as follows: A sequence (z,) converges to an ideal
point & € 0, X if the sequence of geodesic segments zz,, emanating from some (any) base point
x converges to the ray x€ pointwise (equivalently, uniformly on compacts in R). This topology
makes X into a closed ball. We define the visual boundary of a subset A — X as the set
OpA = AN 0, X of its accumulation points at infinity.

The ideal boundary 0, X carries the natural Tits (angle) metric Ly, defined as
Lris(§,m) = sup £, (§,m)
zeX

where Z,(&,n) is the angle between the geodesic rays x€ and zn. The Tits boundary Oris X
is the metric space (0 X, Zr1its). The Tits metric is lower semicontinuous with respect to the
visual topology and, accordingly, the Tits topology induced by the Tits metric is finer than
the visual topology. It is discrete if there is an upper negative curvature bound, and becomes
nontrivial if flat directions occur. For instance, the Tits boundary of flat r-space is the unit
(r—1)-sphere, drysR™ =~ S™71(1). An isometric embedding X — Y of Hadamard spaces induces
an isometric embedding 0y X — OpysY of Tits boundaries.

A subset A of 07y X is called convez if for any two points £, € A with Z7us(€,n) < 7, the
(unique) geodesic {n connecting & and 7 in Orys X is entirely contained in A.

Let € € 0, X be an ideal point. For a unit speed geodesic ray p : [0,4+00) — X asymptotic

11



to £ one defines the Busemann function b; on X as the uniform monotonic limit

be(x) = lim (d(z,p(t)) —1).

t—+400

Altering the ray p changes bs by an additive constant. Along the ray we have

The Busemann function b is convex, 1-Lipschitz and measures the relative distance from &.
The sublevel sets
I‘Ibg7m = {bg < bg(:{})} c X

are called (closed) horoballs centered at §. Horoballs are convex. The ideal boundaries of
horoballs are the closed F-balls at infinity with respect to the Tits metric,

O Hbe o = {Lpis(§, ) < m/2} < 00 X.

Busemann functions are asymptotically linear along rays; if v : [0, 4+00) — X is a unit speed
geodesic ray asymptotic to n € 0 X, y(+) = 7, then

be (7(t))
t

lim = — COS LTits (57 77)

t—00
This limit is called the asymptotic slope of b at n. In particular, rays asymptotic to n enter
horoballs centered at ideal points § with Zry(£, 1) < 3.

2.3 Symmetric spaces of noncompact type

The standard references for this and the following section are [Eb] and [H]. Our treatment of
this standard material is more geometric than the one presented in these books.

A symmetric space, denoted by X throughout this paper, is said to be of noncompact type
if it is nonpositively curved, simply connected and has no Euclidean factor. In particular, it
is a Hadamard manifold. We will identify X with the quotient G/K where G is a semisimple
Lie group acting isometrically and transitively on X, and K is a maximal compact subgroup
of G. We will assume that G is commensurable with the isometry group Isom(X) in the sense
that we allow finite kernel and cokernel for the natural map G — Isom(X). In particular, the
image of G in Isom(X) contains the identity component Isom(X),. The Lie group G carries a
natural structure as a real algebraic group.

A point reflection (confusingly, also known as a Cartan involution) at a point x € X is
an isometry o, which fixes x and has differential —idr, x in . In a symmetric space, point
reflections exist in all points (by definition). A transvection of X is an isometry which is the
product 0,0, of two point reflections; it preserves the oriented geodesic through z and z’
and the parallel vector fields along it. The transvections preserving a unit speed geodesic c¢(t)
form a one parameter subgroup (7y) of Isom(X), where T} denotes the transvection mapping
c(s) — ¢(s +t). A nontrivial isometry ¢ of X is called azial if it preserves a geodesic [ and
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shifts along it. (It does not have to be a transvection.) The geodesic [ is called an azis of ¢.
Axes are in general not unique. They are parallel to each other.

A flat in X is a totally geodesic flat submanifold, equivalently, a convex subset isometric to
a Euclidean space. A maximal flat in X is a flat which is not contained in any larger flat; we
will use the notation F' for maximal flats. The group Isom(X), acts transitively on the set of
maximal flats; the common dimension of maximal flats is called the rank of X. The space X
has rank one if and only if it has strictly negative sectional curvature.

A maximal flat F' is preserved by all transvections along geodesic lines contained in it. In
general, there exist nontrivial isometries of X fixing F' pointwise. The subgroup of isometries
of F' which are induced by elements of GG is isomorphic to a semidirect product R” x W, where
r is the rank of X. The subgroup R" acts simply transitively on F' by translations. The linear
part W is a finite reflection group, called the Weyl group of G and X. Since maximal flats are
equivalent modulo G, the action W — F'is well-defined up to isometric conjugacy.

We will think of the Weyl group as acting on a model flat F,,,q =~ R" and on its ideal bound-
ary sphere at infinity, the model apartment ameq = Orits Frnoa = S™'. The pair (@meq, W) is the
spherical Cozeter complex associated with X. We identify the spherical model Weyl chamber
Omod With a (fundamental) chamber in the model apartment, 0,04 © Gmog. Accordingly, we
identify the euclidean model Weyl chamber V,,,q with the sector in F,,,q with tip in the origin
and ideal boundary .04, Vined © Finod-

The A-valued distance naturally extends from F},,q to X because every pair of points lies
in a maximal flat. In order to define the distance da(x,y) of two points z,y € X one chooses
a maximal flat F' containing x,y and identifies it isometrically with F,,q while preserving the
types of points at infinity. The resulting quantity da(x,y) is independent of the choices. We
refer the reader to [KLM] for the detailed discussion of metric properties of da.

For every maximal flat F' < X, we have a Tits isometric embedding 0, F < 0, X of its ideal
boundary sphere. There is an identification 0, F = a,,,q with the model apartment, unique up
to composition with elements in W. The Coxeter complex structure on a,,,q induces a simplicial
structure on dy F. The ideal boundaries of maximal flats cover d,, X because every geodesic
ray in X is contained in a maximal flat. Moreover, their intersections are simplicial. One thus
obtains a G-invariant piecewise spherical simplicial structure on 0,X which makes 0,X into a
spherical building and, also taking into account the visual topology, into a topological spherical
building. It is called the spherical or Tits building associated to X. The Tits metric is the path
metric with respect to the piecewise spherical structure. We will refer to the simplices as faces.

The ideal boundaries 0, F < 0, X of the maximal flats F' = X are precisely the apartments
with respect to the spherical building structure at infinity, which in turn are precisely the
convex subsets isometric to the unit (r — 1)-sphere with respect to the Tits metric. Any two
points in 0, X lie in a common apartment.

The action G —~ 0, X on ideal points is not transitive if X has rank > 2. Every G-orbit
meets every chamber exactly once. The quotient can be identified with the spherical model
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chamber, 0, X /G = 0,,,4. We call the projection
0 : OOOX - (?OOX/G = Omod

the type map. It restricts to an isometry on every chamber ¢ < 0,X. We call the inverse
ko = (05)7 : Omog — o the (chamber) chart for o. Consequently, 0 restricts to an isometry on
every face 7 < 0, X. We call 0(7) < 0,04 the type of the face 7 and k, = (0],)7" : (1) — T its
chart. We define the type of an ideal point £ € 0, X as its image 0(§) € Tpnoq- A point & € 0 X
is called regular if its type is an interior point of 0,,,q, and singular otherwise. We denote by
02X < 0, X the set of regular ideal boundary points. A point p € 074, X is said to be of root
type if 0(p) is a root in opmeq = S. Equivalently, the closed F-ball centered at p (with respect to
the Tits metric) is simplicial, i.e. is a simplicial subcomplex of Op;s X.

A geodesic segment xy in X is called reqular if + # y and for the unique geodesic ray x&
containing xy the point £ € dpys X is regular. Equivalently, the vector da(x,y) belongs to the
interior of V4.

Two ideal points &, 1 € 0, X are called antipodal if Z1yu5(€,n) = 7.

We say that two simplices 71,75 © 0, X are opposite (or antipodal) with respect to a point
x € X if y = 0,7, where o, is the reflection at the point . We say that two simplices 7,7, <
00X are opposite (or antipodal) if they are opposite simplices in the apartments containing
both of them, equivalently, if every interior point of 71 has an antipode in the interior of 7 and
vice versa, equivalently, if they are opposite with respect to some point x € X. Their types
are then related by 0(7y) = 1(0(m1)). We will frequently use the notation 7,7 and 7,,7_ for
antipodal simplices.

One can quantify the antipodality of simplices of t-invariant type Toq © Tmoq as follows:
Pick an -invariant type ¢ in the interior of 7,4, t(¢) = ¢. Given two simplices 7., 7_ in Opius X
of type 7T0q and a point x € X define the (-angle

Lx<(7—7 T+) = Lx(€—> 6-‘:—)’ (23)
where &4 € 71 are such that 6(£4) = (. Similarly, define the (-Tits angle
éTitsC(T—a Ty) = AxC(TﬂTJr)a (24)

where = belongs to a flat F' < X such that 7,7, < 0pysF. Then simplices 74 (of the same
type) are antipodal iff
L%its (T_’ 7_+) =T

for some, equivalently, every, choice of ( as above.

A pair of opposite chambers o, and o_ is contained in a unique apartment, which we will
denote by a(o,,0_); the apartment a(o,,o0_) is the ideal boundary of a unique maximal flat
F(oy,0_) in X.

For a point z € X and a simplex 7 € 0, X we define the (Weyl) sector V.=V (z,7) = X
as the union of rays z¢ for all ideal points £ € 7. It is contained in a flat. (Thus, Weyl sectors
in X are isometric images of Weyl sectors V (0, Tjoa) © Vinea under isometric embeddings
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Froa — X.) More generally, for a point z € X and a closed subset A ¢ 0,,X, we define the
Weyl cone V(x, A) as the union of all rays z¢ for £ € A. It is, in general, not flat.

The stabilizers B, < G of the chambers ¢ c 0, X are the Borel subgroups of G. After
identifying the model chamber with a chamber in 0, X, 000 © 05X, we call B = B, . the
positive Borel subgroup. The group G acts transitively on the set of chambers in 0., X, which
we will then identify with G/B, the full flag manifold of G. The Borel subgroups are algebraic
subgroups of GG, and GG/B is a real projective variety. The set 0pX =~ G/B of chambers in 0, X
is called the Firstenberg boundary of X; we will equip it with the visual topology (as opposed
to the Zariski topology coming from G//B) which coincides with its manifold topology as a
compact homogeneous G-space. After picking an interior point £ € int(o,,04), We can identify
the G-orbit G§¢ < 0, X G-equivariantly and homeomorphically with dpX by assigning to the
(regular) point g¢ the (unique) chamber go,,,q containing it.

The stabilizers P, ¢ G of simplices 7 < 0., X are the parabolic subgroups of G. The group G
acts transitively on simplices of the same type. The set Flag(7oq) = G/P;,, of the simplices 7
of type 6(T) = Tmod © Tmoa 18 called the partial flag manifold. In particular, Flag(o,eq) = 0rX.
Again, we equip the flag manifolds with the visual topology; it agrees with their topology as
compact homogeneous G-spaces.

We also fix a Riemannian metric on each flag manifold Flag(7,,.q); the particular choice of
the metric will be irrelevant.

For a flag manifold Flag(7,,,¢) and a simplex 7 of type ¢(Timoq) We define the open Schubert
stratum C(7) < Flag(T04) as the subset of simplices opposite to 7. It follows from semicon-
tinuity of the Tits distance that the subset C(7) < Flag(Tmoea) is indeed open. Furthermore,
this subset is also dense in Flag(7,,04). We note that for rank 1 symmetric spaces, the only flag
manifold associated to G is 0, X and the open Schubert strata are the complements of points.

2.4 Parallel sets, cones, horocycles and decompositions of symmet-
ric spaces

2.4.1 Parallel sets

Let s © 07y X be an isometrically embedded unit sphere. We denote by P(s) ¢ X the parallel
set associated to s. It can be defined as the union of maximal flats F' < X asymptotic to s,
s < O F. Alternatively, one can define it as the union of flats f < X with ideal boundary
0w f = s. The parallel set is a totally geodesic subspace and splits metrically as the product

P(s) = f x CS(s) (2.5)

of any of these flats and a symmetric space C'S(s) called its cross section. Accordingly, the
ideal boundary of the parallel set is a metric suspension

aTitsP(S) =~ Opusf o aTitsCS<S)- (2-6)
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It coincides with the subbuilding B(s) < 0, X consisting of the union of all apartments a < 0, X
containing s,

It is immediate that parallel sets are nonpositively curved symmetric spaces. However, they
do not have noncompact type as their Euclidean de Rham factors are nontrivial. The factor
f in the splitting (2.6]) of the parallel set is then the Euclidean de Rham factor and the cross
section C'S(s) has trivial euclidean de Rham factor, i.e. it is a symmetric space of noncompact
type.

For a pair of antipodal simplices 7, , 7 < 0, X there exists a unique minimal singular sphere
s(1_,74) € X containing them. We denote P(7_, 7, ) := P(s(7_,7y)); this parallel set is the
union of (maximal) flats /' = X whose ideal boundaries contain 7— U 7. In order to simplify
the notation, we will denote B(s(7_, 7)) simply by B(7_, 7).

2.4.2 Stars, Weyl cones and diamonds

Definition 2.7 (Stars). Let 7 < 0rus X be a simplex. We define the star st(7) of the open
simplex int(7) as the subcomplex of dr;s X consisting of all simplices intersecting the open
simplex int(7) nontrivially (i.e., containing 7). In other words, st(7) is the smallest subcomplex
of drys X containing all chambers o such that 7 < 0. We note that st(7) is also known as the
residue of 7, see e.g. [AB].

We define the open star ost(7) < 0, X as the union of all open simplices whose closure
intersects int(7) nontrivially. For the model simplex 7,,,4, we will use the notation ost(7,,04) to
denote its open star in the simplicial complex consisting of faces of ;4.

Note that ost(7) is an open subset of the simplex o,,.4; it does not include any open faces
of 7 except for the interior of 7. Furthermore, dst(7) = st(7) — ost(7) is the union of all panels
7 of type 0(m) D Toq Which are contained in a chamber with face 7.

Tmoa-Tegularity. Using the notion of open stars we now generalize the standard notion of
regularity in Opys X to reqularity relative to faces Tmoa Of Omod- L€t Tmoq be a face of g,,04.
A point £ € 0Opys X such that 0(&) € 0St(Timoa), is called T0q-regular. If © < o0st(Tneq) 1S
a compact subset, then we will refer to points £ € drysX such that 6(£) € ©, as being O-
reqular. Analogously to the definition of regular geodesic segments, a nondegenerate geodesic
segment xy is called 7y,04-reqular, resp. O-reqular if it is contained in a geodesic ray x€ with &
Tmog-Tegular, resp. O-reqular.

We note that each subset © as above determines the simplex 7,4, namely, .04 is the
smallest face of 7,,,4 such that © < ost(T04)-

The fact that the diameter of 0,,,4 is < § immediately implies:

Lemma 2.8. For every interior point & € Tpeq and every compact subset © C 0st(Tpoq) we
have

oc B(g,g).
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An isolation property in subbuildings B(s).

Lemma 2.9. Let s € 0, X be a singular sphere. Then the following hold:

(i) The simplices contained in s are isolated among the simplices contained in B(s) =
O P(s). In other words: If 7, — T is a converging sequence of simplices T, < B(s) with limit
simplex T < s, then 1, = T for large n.

(i1) For a simplex T < s, the subset ost(T) N B(s) is open in B(s) with respect to the visual
topology. In particular, if T is top-dimensional in s, then ost(T) is an open subset of B(s).

Proof. In view of the decomposition (2.6]) of B(s) as a metric suspension, a point £ € s has a
unique antipode £ in B(s), and this antipode is contained in s, £ € s. Furthermore,

Lris(€,) + Lous(€) = (2.10)

on B(s). We recall that, due to the lower semicontinuity of the Tits metric, Tits closed balls
B(n,r) in 0,X are closed also with respect to the visual topology. Therefore (Z.I0) implies
that Tits open balls B(£,r) nB(s) in B(s) centered at £ € s are open in B(s) also with respect

to the visual topology, because B(€,r) n B(s) = B(s) — B(E, m — 7).

We recall furthermore that, due to the finiteness of possible Tits distances between points
of a fixed type € € 004, the subset 0710(¢) is Tits discrete, i.e. B(&,€) n 0710(¢) = {&} for
sufficiently small € > 0, depending on 6(€). It follows that £ is an isolated point of 0710(£) N B(s)
with respect to the visual topology, i.e. it is isolated among points in B(s) of the same type.

Now we prove (i). Since the face type of the 7,, must stabilize, we may assume that it is
constant, i.e. 0(7,) = Timod © Omoa for all n and O(7) = Tpnog. We choose a type € € int(Tpnoq)
and consider the points &, € int(7,) and ¢ € int(7) of type 0(&,) = 0(¢) = €. Then &, — £.
Since ¢ is isolated in 0710(¢) n B(s), it follows that &, = £ and hence 7,, = 7 for large n.

To verify (ii), we note that the subset st(7) n B(s) is the union of all chambers ¢ with
7 < o < B(s). This family of chambers is obviously closed and thus compact in the space of
all chambers contained in B(s). It is also open in it as a consequence of part (i). Indeed, if
o, — 0 is a converging sequence of chambers ¢, < B(s), then 7,, — 7 for the faces 7,, < o, of
type 6(7,) = 0(7), and it follows that 7,, = 7 and hence 7 < o, for large n.

Consider now a sequence of points 7, € B(s) such that 7, — 1 € ost(7). We must show that
N, € ost(7) for large n. Let 0, < B(s) be chambers containing them, 7, € ¢,. It suffices to
check that o,, < st(7) for large n, because 6(n,) — 6(n), and hence 0(n,,) € 0st(0(7)) < y0a for
large n. Suppose the contrary, i.e. that one can pass to a subsequence such that o, ¢ st(7) for
all n. We may assume that o,, — o < B(s). By the openness above, it follows that o ¢ st(7),
equivalently 7 ¢ 0. On the other hand, n € 0. Together with n € ost(7) this implies that 7 < o,
a contradiction. 0J

Convexity of stars.

Lemma 2.11. The star st(T) of a simplex T C ayoq 1S a convex subset of ameq. Furthermore,
st(7) equals the intersection of the simplicial hemispheres h C apmoq Such that int(7) < int h.
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Proof. If a hemisphere h contains a simplex 7, but does not contain it in its boundary, then all
chambers containing this simplex as a face belong to the (closed) hemisphere. Vice versa, if a
chamber ¢ does not contain 7 as a face, then there exists a wall which separates & from 7. [

Similarly, the star st(7) of a simplex 7 < dpyus X is a convex subset of drysX. One can
represent it as the intersection of all simplicial 7-balls which contain int(7) in their interior.
One can represent st(7) also as the intersection of fewer balls:

Lemma 2.12 (Convexity of stars). (i) Let 7 < drys X be a simplex. Then st(7) equals the
intersection of the simplicial T -balls whose interior contains int(7).

(i1) For any simplex T opposite to T, the star st(7) equals the intersection of the subbuilding
B(7,7) = 0 P(7,7) with all simplicial 5-balls whose interior contains int(7) and whose center
lies in this subbuilding.

Proof. (i) If a simplicial 7-ball contains a simplex 7, but does not contain it in its boundary,
then all chambers containing this simplex as a face belong to this ball. Vice versa, let ¢ be
a chamber which does not contain 7 as a face. There exists an apartment a < Op;;sX which
contains o and 7. As before in the proof of Lemma 2.11] there exists a simplicial hemisphere
h < a containing 7 but not 0. Then the simplicial $-ball with the same center as h contains 7
but not o.

(ii) Note first that st(7) < B(7, 7). Then we argue as in part (i), observing that if o < B(r, 7)
then a can be chosen inside B(7, 7). 0

Convexity of cones.

Now we prove a corresponding convexity statement in the symmetric space, namely that
the Weyl cones V (z,st(7)) are convex. We begin with

Lemma 2.13. For every x € P(7,7), the Weyl cone V(x,st(7)) is contained in the parallel set
P(r,7).

Proof. Consider a chamber ¢ in 07, X containing 7. The Weyl sector V' (z, o) is contained in
a (unique maximal) flat ' < X. Since 7,7 are antipodal with respect to x, 7 U T < 0, F.
Therefore, F' < P(7,7). O

Proposition 2.14 (Convexity of Weyl cones). Let 7 be the simplex opposite to T with
respect to x. Then the Weyl cone V(xz,st(7)) is the intersection of the parallel set P(7,7) with
the horoballs which are centered at 0, P(7,7) and contain V (x,st(T)).

Proof. One inclusion is clear. We must prove that each point y € P(7,7)\V (z,st(7)) is not
contained in one of these horoballs. There exists a maximal flat F' < P(7,7) containing x and
y. (Any two points in a parallel set lie in a common maximal flat.) We extend the oriented

segment xy to a ray xn inside F.
As in the proof of Lemma 212 there exists ¢ € dF such that B((, %) contains st() but
does not contain 7. Then the horoball Hb, , intersects F' in a half-space which contains z in its
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boundary hyperplane but does not contain 7 in its ideal boundary. Therefore does not contain
y. By convexity, V (z,st(7)) € Hb¢ . O

We will need a version of the above convexity results for more general stars and cones.

Definition 2.15 (Weyl convex). A subset © € 0,04 is called Tpoq- Weyl convez, if its sym-
metrization W, O C st(0,04) is a convex subset of ay0q-

Below, © will always denote a 7;,,4- Weyl convex subset of ¢,,04.

Weyl convexity implies convexity.

Note that 0,4 itself is Weyl convex, since W, 0 pmod = 8t(Tmoa) is convex. A point £ € Tpoq

is a Weyl convex subset if and only if it belongs to 7,,,4.

Definition 2.16 (O-stars). We define the O-star of a simplex 7 < 0, X of type Tyoq as
ste(T) = st(7) N 671(O).

The symmetrization W, O < a,,,q equals the ©-star of 7,,,4 inside the model apartment,

Tmod
St (Tod) = W, 6.

Tmod

Our next result establishes convexity of ©O-stars. More precisely:

Lemma 2.17 (Convexity of O-stars). For every simplex 7 © 0, X of type Tmod, the O-star
ste(7) © 0 X equals the intersection of all 5-balls containing it.

Proof. Let ( € 0, X. For an apartment a < 0,X containing 7 and ¢, we have a N stg(7T) =
st&(7), the intrinsic star of 7 inside the apartment a (viewed as a thin building). Moreover,
sto(7) equals the union of all these intersections with apartments.

By definition of spherical buildings, for any two apartments a,a’ < 0,X containing 7 and
¢, there exists an isometry a — a’ fixing (the convex hull of) 7 and . This identification carries
ste(T) N a to ste(7) N a’. Hence ste(r) = B((, 5) if and only if ste(7) na < B((, 5) for one
(any) of these apartments a. This shows that the intersection of all 7-balls containing st(7) is
not strictly bigger than st(7), since any point in 0y, X lies in a common apartment with 7. [

Proposition 2.18 (Convexity of O-cones). For every point x € X and every simplex T <
O X Of type Timoa the ©-cone V (x,ste(T)) is convex of X.

Proof. In view of Lemma 217, the proof of Proposition 2.14] goes through. O
The following consequence will be important for us.

Corollary 2.19 (Nested O-cones). Ifz' € V(z,stg(7)), then V(2',sto(1)) < V(x,ste(T)).

Let zy < X be an oriented 7,,,4-regular geodesic segment. Then we define the simplex
T = T(zy) € 0 X as follows: Forward extend the segment zy to the geodesic ray z¢, and let 7
be the unique face of type Ti,0q Of O7is X such that & € st(7).
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Definition 2.20 (Diamond). We define the ©-diamond of a O-regular segment z_x as

Qo(r_,xy) =V(r_,ste(ry)) n V(zy,ste(r-)) < P(r_,74)

where 74 = T(z524).

The next result follows immediately from Corollary 2.19

Lemma 2.21. If 2 2, is a ©-regular segment contained in $e(x’,2',) and if T(2la!) =

T(zgzy), then $o(a, 7)) € Qolx_, x4).

2.4.3 Strong asymptote classes

Recall that two unit speed geodesic rays pq,ps : [0,+20) — X in a Hadamard manifold are
called asymptotic if the convex function t — d(p1(t), p2(t)) on [0, +00) is bounded, and they are
called strongly asymptotic if d(py(t), p2(t)) — 0 as t — 400. In the case when X is a symmetric
space, one verifies using Jacobi fields on X that the decay is exponential with rate depending
on the type of the ideal boundary point p;(+00) = pa(+0) (see [ED]).

We generalize these two notions to sectors. A sector V(z,7) has a canonical isometric
parametrization by a sector chart ky (- @ V(0,0(7)) — V(x,7) preserving types at infinity;
here, 0(7) © 0yoq 18 the type of the simplex 7 and V(0,6(7)) is a face of the model sector V;,o4.

For two sectors V' (z1, 1) and V (x9, 73) of the same type, 8(71) = 0(72), the distance function
from points in Ky (5, ) to the sector Ky (z, )

A(Kv (zrm)s BV (eam)) = V(0,0(71)) — [0, +00) (2.22)

is convex. The two sectors are called asymptotic, if this distance function is bounded, equiva-
lently, if they coincide at infinity, 71 = 7. For two asymptotic sectors V(x1,7) and V(za,7),
we define

dr (w1, 22) i= Inf d(Kv (o)1) KV (22.7));

this defines a pseudo-metric d, on X, viewed as the set of (tips of) sectors asymptotic to 7.

Definition 2.23. The sectors V (z1,7) and V (x5, 7) are strongly asymptotic if d,(x1,x9) = 0.

This is equivalent to the property that for some (any) £ € int(7) the rays x1£ and zo¢ are
strongly asymptotic.
We denote by
X2 = X/ ~q,
the space of (parametrized) strong asymptote classes of sectors asymptotic to 7.

We show next that parallel sets represent strong asymptote classes. For a simplex 7 opposite
to 7 we consider the restriction
P(r,7) — XPo (2.24)

of the projection X — XP%. We observe that for points x1,zy € P(7,7) the distance function
222) is constant = d(xy,z5). Hence (224) is an isometric embedding. To see that it is
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also surjective, we need to verify that every sector V(z, ) is strongly asymptotic to a sector
V(2',7) < P(7,7). This follows from the corresponding fact for geodesics:

Lemma 2.25. Let f,é be antipodal ideal points. Then every geodesic asymptotic to £ is strongly
asymptotic to a geodesic whose other end is asymptotic to &.

Proof. Let ¢,(t) be a unit speed geodesic forward asymptotic to €. Then t — d(c,(t), P(€,€))
is convex and bounded on [0, +o0), and hence non-increasing. We claim that the limit

d := lim d(c1(t), P(£,§))

t—00

equals zero. To see this, we choose a unit speed geodesic c3(t) in P(€, é) forward asymptotic to
¢ and use the transvections along it to “pull back” ¢;: The geodesics ¢§ := T ¢;(- + s) form
a bounded family as s — +o0 and subconverge to a geodesic ¢f*. Since the transvections T2
preserve the parallel set P(&,€), the distance functions d(¢i(-), P(€,€)) = d(ci(- + s), P(&,€))
converge locally uniformly on R and uniformly on [0, +00) to the constant d. It follows that the
limit geodesic ¢ has distance = d from P (¢, é) The same argument, applied to ¢y instead of
the parallel set, implies that c¢f® is parallel to ¢o. Thus, d = 0.

Now we find a geodesic in P( ,é) strongly asymptotic to ¢; as follows. Let t, — +o0.
Then there exist unit speed geodesics ¢,(t) in P(&,€) forward asymptotic to & and with
d(c (tn), c1(tn)) = d(ci(tn), P(€,€)) — 0. This family of parallel geodesics ¢, is a Cauchy
family and converges to a geodesic in P(£, é ) which is strongly asymptotic to ¢;. O

We conclude:

Corollary 2.26. The map (2.24) is an isometry.

Let £ € 0,X, and let ¢(t) be a geodesic asymptotic to it, ¢(+o) = £. We observe that for
every 1) € 0w P(c) the restriction b, o c is linear, because there exists a flat f containing ¢ and
asymptotic to n, n € 0w f.

As a consequence, for any two strongly asymptotic geodesics ¢;(t) and cy(t) at 1, the re-
stricted Busemann functions b, o ¢; coincide for every n € st(§) < 0o P(c1) N 0 P(c2). In fact,
there is the following criterion for strong asymptoticity:

Lemma 2.27. For geodesics c1(t) and c5(t) asymptotic to £ € 0, X the following are equivalent:

(i) c1(t) and co(t) are strongly asymptotic.

(it) by o c1 = by o cy for every n € st(§).

(11’) by o c1 = by o cy for every n e B(&, €) for some e > 0.

Proof. We may replace the geodesics ¢; by parallel ones without changing their strong asymptote
classes (Lemma [2.20]) and hence assume that they lie in one flat. Then the assertion is clear. [
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2.4.4 Horocycles and horocyclic subgroups

We fix a simplex 7 © 0, X, respectively, a parabolic subgroup P, < G and discuss various
foliations of X naturally associated to it.

We begin with foliations by flats and parallel sets: First, we denote by JF. the partition
of X into minimal flats asymptotic to 7, i.e. singular flats f < X such that 7 is a top-
dimensional simplex in 05 f. Second, any simplex 7 opposite to 7 spans together with 7 a
singular sphere s(7,7) € 0,X and determines the parallel set P(7,7) := P(s(7,7)) with cross
section CS(7,7) := CS(s(1,7)). The parallel sets P(7,7) for all 7 form a partition P, of X,
which is a coarsening of F,. The parabolic subgroup P, preserves both partitions and acts
transitively on their leaves, because it acts transitively on X. (This in turn can be derived e.g.
from the transitivity of G on maximal flats.) This implies that these partitions are smooth
foliations.

We describe now preferred identifications of the leaves of these foliations by the actions of
certain subgroups of P,. Their orbits will be the submanifolds orthogonal and complementary
to the foliations, i.e. the integral submanifolds of the distributions normal to the foliations.

The tuple (b¢)eevert(r) of Busemann functions for the vertices £ of 7 (well-defined up to
additive constants) provides affine coordinates simultaneously for each of the flats in F,. The
Busemann functions at the other ideal points in 7 are linear combinations of these. The normal
subgroup

(] Stab(be) = () Stab(be) = P (2.28)
&eVert () get
acts transitively on the set of these flats and preserves the coordinates; it thus provides con-
sistent preferred identifications between them. The level sets of (b¢)eevert(r) are submanifolds
orthogonal to the flats in F;, because the gradient directions of the Busemann functions b¢ at
a point = € f € F, span the tangent space T} f. They form a smooth foliation F* and are the
orbits of the group (2.28).

We define the horocyclic subgroup at T as the normal subgroup
N, = () Stab(be) < Fix(st(r)) < P. (2.29)
Eest(T)
Note that as a consequence of Lemma .27 N, preserves the strong asymptote classes of
geodesics at all ideal points £ € ost(7).
We now give a method for constructing isometries in V.

Let £ € 0,X be an ideal point, and let ¢(t) be a unit speed geodesic forward asymptotic
to it, ¢(+o0) = £. Consider the one parameter group (7f) of transvections along ¢. The T fix
0 P(c) pointwise and shift the Busemann functions b, for n € d,P(c) by additive constants:

by o Tf — b, = —t - cos Lyis(n, €)

Lemma 2.30. Let ¢i(t) and c3(t) be geodesics forward asymptotic to &, which are strongly
asymptotic. Then there exists an isometry n € G with the properties:
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(i) nocy = co.
(ii) n fizes O P(c1) N 0 P(c2) pointwise.
(iit) by on = by, for all n € 0P (c1) N 0 P(c2).
In particular, n € N, for the simplex T spanned by £, £ € int(7).

Proof. By our observation above, the isometries 7% o Ty fix 0o, P(c1) M 0 P(c2) pointwise and
preserve the Busemann functions b, for all n € 0, P(c1) N 05, P(c2). (The geodesics ¢; need
not have unit speed; they have the same positive speed since they are strongly asymptotic.)
Moreover, they form a bounded family and, as t — +00, subconverge to an isometry n € GG
with the same properties and which maps ¢; to ¢ while preserving parametrizations, compare
the proof of Lemma 225l The last assertion follows because st(7) < 0, P(c1) N 0P (c2). O

Corollary 2.31. N, acts transitively on

(i) every strong asymptote class of geodesics at every ideal point & € int(7);

(ii) the set of leaves of P.

Proof. Part (i) is a direct consequence.

To verify (ii), we choose ¢ € int(7). Given leaves P(7,7;) of P,, we let ¢;(t) be unit speed
geodesics in P(1,7;) forward asymptotic to £&. They may be chosen strongly asymptotic by
Lemma 225 The parallel set of ¢; equals P(7,7;) because £ is an interior point of 7. Hence an
isometry in N, carrying c¢; to ¢y carries P(1,71) to P(T,T2). O

Remark 2.32. One also obtains that every geodesic asymptotic to an ideal point £ € 07 can
be carried by an isometry in N, to any other strongly asymptotic geodesic. However, N, does
not preserve strong asymptote classes at & in that case.

Lemma 2.33. Ifn e N, preserves a leaf P(T,7T), nT = T, then it acts trivially on it.

Proof. Then n fixes st(7) and 7 pointwise, and hence their Tits convex hull 0, P(7,7). Thus
n preserves every maximal flat F' in P(7,7). Moreover it preserves the Busemann functions b
at all £ € 0 F n st(7), and hence must fix F' pointwise, compare Lemma [2.27] O

Thus, N, provides consistent preferred identifications between the parallel sets P(7,7). The
N,-orbits are submanifolds orthogonal to the parallel sets. They form a smooth foliation

H, — P (2.34)

refining F=, which we call the horocyclic foliation and its leaves the horocycles at 7. We denote

T

the horocycle at 7 through the point by Hcl, i.e. Hc] = N, x.

For incident faces v < 7, the associated subgroups and foliations are contained in each
other. For instance, we have st(v) > st(r) and N, € N..

We next relate horocycles and strong asymptote classes.
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Proposition 2.35 (Strong asymptote classes are horocycles). The sectors V(xq,7) and
V(xg,T) are strongly asymptotic if and only if x1 and x4 lie in the same horocycle at T.

Proof. Let £ € int(7). By Corollary 2.31|(ii), N, acts transitively on every strong asymptote
class of geodesics at &, and hence of sectors at 7. Thus, strong asymptote classes are contained
in horocycles.

On the other hand, they cannot be strictly larger because every strong asymptote class
intersects every parallel set, cf. the surjectivity of (2.24]), and every horocycle intersects every
parallel set exactly once. O

Our discussion shows that there is the exact sequence
N, — P, — Isom(XP2").

Remark 2.36. Note that the homomorphism P, — Isom(X?*") is (in general) not surjective.
Namely, let f x C'S(s) denote the de Rham decomposition with the maximal flat factor f.
Then the image of the above homomorphism (if dim(f) > 1) does not contain the full group
of rotations of f. This can be corrected as follows. Let A, denote the group of translations of
f, and let M, be the isometry group of C'S(s). Then the above exact sequence is a part of the
Langlands’ decomposition of the group P;,

1> N, > P, > A x M, —> 1,

which, on the level of Lie algebras, is a split exact sequence.

We return now to Lemma 2.30l For later use, we elaborate on the special case when the
geodesics ¢; are contained in the parallel set of a singular flat of dimension rank minus one.

For an half-apartment h < 0,X, we define its star st(h) as the union of the stars st(7)
where 7 runs through all simplices with int(7) < int(h), equivalently, which are spanned by an
interior point of h. Similarly, we define the open star ost(h) as the union of the corresponding
open stars ost(7). Note that int(h) < ost(h). Furthermore, we define the closed subgroup
N, © G as the intersection of the horocyclic subgroups N, at these simplices 7.

We observe that N, preserves the strong asymptote classes of geodesics at all ideal points
¢ € ost(h), and it permutes the maximal flats F' asymptotic to h, 0 F > h. The next result
shows that it acts transitively on them:

Lemma 2.37. Let h < 0,X be a half-apartment, and let Fy, Fy < P(0h) be mazimal flats
asymptotic to h, 0, F; D h. Then there exists an isometry n € Ny with the properties:

(i) nFy = F;.

(ii) n fizes st(h) pointwise.

(iit) by, on = by, for all n € st(h).

Proof. In the metric decomposition P(0h) = R™*(X)=1 x 0'S(0h) (see (2.5)), the maximal flats
F; correspond to a pair of asymptotic, and hence strongly asymptotic geodesics ¢; in the rank
one symmetric space C'S(0h).
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Let £,& €int(h). Let ¢;(t) and c3(t) be strongly asymptotic geodesics at £ so that ¢; < F;.
Then they project (up to reparameterization) to the strongly asymptotic geodesics ¢; in C'S(0h),
and their projections to the Euclidean de Rham factor of P(dh) coincide. Analogously, let
ci < F; be strongly asymptotic geodesics at £’. Their parametrizations can be chosen so that
their projections to C'S(0h) coincide with the projections of the ¢;. Then

/ /
c2 c1 __ € €1
T2 0T = T% o T,

and the isometry n produced in the proof of Lemma [2.30] belongs to both N, and N, where
7.7 denote the simplices spanned by &, ¢&’. Varying £ or & yields the assertion. O

We obtain an analogue of Corollary 2.3k

Corollary 2.38. N, acts transitively on
(i) every strong asymptote class of geodesics at every ideal point & € int(h);

(i1) the set of mazimal flats F' asymptotic to h, 0 F > h.

We describe a consequence of our discussion for the horocyclic foliations.

The maximal flats asymptotic to h are contained in the parallel set P(0h) = Rk (X)—1
CS(0h) and form the leaves of a smooth foliation Pj, of P(dh). This foliation is the pullback
of the one-dimensional foliation of the rank one symmetric space C'S(0h) by the geodesics
asymptotic to the ideal point ¢ € 0,,C'S(0h) corresponding to the center (pole) of h. We call
the foliation of P(0h) normal to Py, the horocyclic foliation Hy,. Its leaves are of the form point
times a horosphere in C'S(0h) centered at (. We call them horocycles at h. Corollary
implies that they are the Nj-orbits, and we denote by Hc" = N,z the horocycle through the
point x € P(0h).

Let 7 be a simplex so that int(7) < int(h). Then the foliation P, of X by parallel sets
restricts on P(0h) to the foliation Pj, by maximal flats, and the horocyclic foliation H., restricts
to the horocyclic foliation Hj,. (This follows from the fact that the foliations P, and H, are
normal to each other, cf. (2:34]).) In other words, the foliations #, for the various simplices 7
coincide on the parallel set P(0h).

2.4.5 Distances to parallel sets versus angles

In this section we collect further geometric facts regarding parallel sets in symmetric spaces,
primarily dealing with estimation of distances from points in X to parallel sets.

We first strengthen Proposition 2.35]

Lemma 2.39. Suppose that 71 are antipodal simplices in OpusX. Then every geodesic ray -y
asymptotic to a point & € ost(y), is strongly asymptotic to a geodesic ray in P(1_,T,).

Proof. 1f € belongs to the interior of the simplex 7, , then the assertion follows from Proposition
2351 We now consider the general case. Suppose, that £ belongs to an open simplex int(7’),
such that 7 is a face of 7. Then there exists an apartment a < 07y X containing both ¢ (and,
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hence, 7 as well as 7) and the simplex 7_. Let F' < X be the maximal flat with 0, F = a.
Then F' contains a geodesic asymptotic to points in 7_ and 7. Therefore, F' is contained in
P(r_,7¢). On the other hand, by the same Proposition applied to the simplex 7/, we
conclude that v is strongly asymptotic to a geodesic ray in F'. O

The following lemma provides a quantitative strengthening of the conclusion of Lemma [2.39

Lemma 2.40. Let © be a compact subset of ost(ty). Then those rays x€ with 0(§) € ©
are uniformly strongly asymptotic to P(1t_,1,), i.e. d(-, P(T_,7y)) decays to zero along them
uniformly in terms of d(x, P(17_,74)) and ©.

Proof. Suppose that the assertion of lemma is false, i.e., there exists € > 0, a sequence T; € R
diverging to infinity, and a sequence of rays p; = ;& with & € © and d(z;, P(7_,74)) < d, so
that

d(y, P(t_,71)) = €, Yy € p([0,T;]). (2.41)

Using the action of the stabilizer of P(7_,7.), we can assume that the points z; belong to a
certain compact subset of X. Therefore, the sequence of rays x;&; subconverges to a ray £ with
d(z, P(1_,74)) < d and £ € ©. The inequality (2.41]) then implies that the entire limit ray z¢ is
contained outside of the open e-neighborhood of the parallel set P(7_, 7, ). However, in view of
Lemma 239 the ray z¢ is strongly asymptotic to a geodesic in P(7_, 7, ). Contradiction. [

We next relate distance from points x € X to parallel sets and certain angles at . Fix a
generic point ¢ = (oq I Tynoq and consider a pair of simplices 71 of type Ty,04; set (& = ((74).
We begin with the following elementary observation:

Remark 2.42. We observe that the ideal points (1 are opposite, Z7ys(¢_,(;) = 7, if and only
if they can be seen under angle ~ 7 (i.e., close to 7) from some point in X. More precisely,
there exists €((noq) such that:

If £,(C_, (1) > 7 — €(Cmoa) for some point x then (4 are opposite.

This follows from the angle comparison Z,(¢_,(;) < Zrus((_, ;) and the fact that the Tits
distance between ideal points of the fixed type (,,0q takes only finitely many values.

Suppose now that the simplices 74, equivalently, the ideal points (1, are opposite. Then
Z(C_,(y) =7 if and only if x lies in the parallel set P(7_,7,). Furthermore, Z,((_,(;) ~
if and only if = is close to P(7_,7,), and both quantities control each other near the parallel
set. More precisely:

Lemma 2.43. (i) If d(x, P(t_,7,)) <d, then Z,((_,(;) =7 — e(d) with ¢(d) — 0 as d — 0.
(11) For sufficiently small €, € < € ((moa), we have: The inequality Z,((—, () = m—€ implies

that d(x, P(1_, 7)) < d(€) for some function d(e) which converges to 0 as € — 0.

Proof. The intersection of parabolic subgroups P, N P, preserves the parallel set P(7_, ;)
and acts transitively on it. Compactness and the continuity of Z.({_, (;) therefore imply that
m — £.((_,(;) attains on the boundary of the tubular r-neighborhood of P(7_,7,) a strictly
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positive maximum and minimum, which we denote by ¢;(r) and ¢5(r). Furthermore, ¢;(r) — 0
as 7 — 0. We have the estimate:

™= ¢1(d(x, P(1-,74))) < Lo, C4) < T — go(d(z, P(7—,74)))

The functions ¢;(r) are (weakly) monotonically increasing. This follows from the fact that,
along rays asymptotic to (_ or (,, the angle Z.(¢_,(;) is monotonically increasing and the
distance d(-, P(7_, 7)) is monotonically decreasing. The estimate implies the assertions. [

The control of d(-, P(7_, 7)) and Z.((_,(y) “spreads” along the Weyl cone V' (z,st()),
since the latter is asymptotic to the parallel set P(7_,7,). Moreover, the control improves, if
one enters the cone far into a 7,,4-regular direction. More precisely:

Lemma 2.44. Let y € V(x,ste(7y)) be a point with d(z,y) = 1.

(i) If d(x, P(T_, 7)) < d, then

d(y7 P(va T+)) < D/(dv 97 l) <d

with D'(d,0,1) — 0 as | — +o0.

(i1) For sufficiently small €, € < € ((moa), we have: If £,(C_,(;) =7 — €, then

Ly(c—a C-‘r) =T — el(ea @a l) =T — E(d(€>>

with € (€,0,1) —> 0 as | — +o0.
Proof. The distance from P(7_,7,) takes its maximum at the tip x of the cone V(z,st(7)),

because it is monotonically decreasing along the rays xz€ for £ € st(7,). This yields the right-
hand bounds d and, applying Lemma twice, e(d(e)).

Those rays z€ with uniformly 7,,,4-regular type 6(§) € © are uniformly strongly asymptotic
to P(t_,7y), i.e. d(-, P(1_, 7} )) decays to zero along them uniformly in terms of d and O, see
Lemma 2.401 This yields the decay D'(d,©,l) — 0 as | — +o0. The decay of € follows by
applying Lemma again. O

2.5 Dynamics of transvections at infinity
2.5.1 Identifications of horocycles and contraction

We continue with the notation of section 2.4.4]

Fix a simplex 7 © 0,X. Since every leaf of the foliation ., intersects every leaf of P;
exactly once, and the leaves of the latter foliation correspond to the flags in C(7), we have
consistent simultaneous N,-equivariant smooth identifications

Hc™ S HAT

between the horocycles at 7, and



of the horocycles with the open Schubert stratum C(7). A point z € H¢™ corresponds to a
point ' € H'™ iff they lie in the same leaf of P,, i.e. parallel set P(r,7) for a (unique) simplex
7 opposite to 7.

Let h < 05X be a half-apartment such that int(7) < int(h). Then the horocycles at
T intersect the parallel set P(0h) in the horocycles at h, and the identifications restrict to
Np-equivariant smooth identifications

between the horocycles at h, and
Hc S C(h)

of the horocycles with a submanifold C'(h) < C(7).

We discuss now contraction-expansion properties of these identifications.

The horocycles Hcl' in P(0h) isometrically project onto the horospheres H ¢ in CS(0h).

h

Under these projections, the natural identifications 7% : Hc! — Hel, correspond to the

¢

'z

natural identifications 7%, : Hcs — H cg, of horospheres. The cross sections C'S(0h) are
rank one symmetric spaces. There are only finitely many isometry types of them occurring in
X. In a rank one symmetric space, the natural identifications between horospheres contract
and expand exponentially. (This follows from the fact that the exponential decay rate of
decaying Jacobi fields along geodesics is bounded below and above.) We therefore obtain the
following estimate for the contraction-expansion of the identifications 7, : Hch — Heh,: 1f
be(z) —be (') = be(Z) — be(F') = 0 and 2’ = 7, _(z), then for corresponding points y € Hcl and
h (y) € Hcl, we have

z'x

y=m

/ /
e~ @) < da,y) < e~ 2d@) (2.45)
with constants ¢; > ¢y > 0 depending only on X.

2.5.2 Infinitesimal contraction of transvections

We describe now the action of transvections at infinity using the natural identifications of
horocycles.

Suppose that =, 2’ € P(1,7) are distinct points. Let 9., denote the transvection with axis
[z through x and 2’ mapping 2’ — x. It preserves 0, P(7,7) < 0, X and fixes the singular
sphere s(7,7) < 0, P(7,7) pointwise. In particular, it fixes the simplices 7 and 7. We consider
the action of ¥,,» on C(7) and its differential at the fixed point 7. Modulo the identifications
C(r) 5 Hcl and n7,, : Hel, — HcT,, the action of 9., on C(7) corresponds to the action of
Uyl on Hcl, and the differential of 9.,/ at 7 to the differential of ¥,/ 7], at z.

We first consider the case that v,, translates towards 7, i.e. when & := [,,/(—00) € ost(7),
equivalently, when 2’ lies in the interior of the Weyl cone V' (z,st(7)).

Lemma 2.46. If{ € ost(T), then (d¥,4 )+ is diagonalizable with strictly positive eigenvalues.
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Proof. If £ € ost(7), then there is a natural N,-equivariant identification of C'(7) with the
strong asymptote class of the geodesic [,,. Namely, the simplex 7/ € C(7) corresponds to the
unique geodesic ' = P(7,7') strongly asymptotic to l,,/, and in particular 7 corresponds to
lzer. Accordingly, tangent vectors to C'(7) at 7 one-to-one correspond to Jacobi fields along 1,
which are orthogonal to P(7,7) and decay to zero at £. The effect of the differential (dd,. )+
on C(7) is given in terms of these Jacobi fields J by

J = diyy o J oV,

The Jacobi fields, which are of the form exponential function times a parallel vector field along
l.2, correspond to eigenvectors of the differential of 1., with strictly positive eigenvalues. It
is a standard fact from the Riemannian geometry of symmetric spaces that every decaying
Jacobi field (orthogonally) decomposes as a sum of such special Jacobi fields. (One trivializes
the normal bundle along the geodesic using the one parameter group of transvections along it.
Since the curvature tensor of a Riemannian symmetric space is parallel, the Jacobi equation
becomes an ODE with constant coefficients.) Thus the eigenvectors of (dv,./); for positive
eigenvalues span T:C(7). O

Lemma 2.47. If £ € ost(), then the eigenvalues N of (d¥,.)+ satisfy an estimate
—log A = c-d(a', 0V (z,st(7)))
with a constant ¢ > 0 depending only on X.

Proof. We continue the argument in the previous proof.

Let F' o I, be a maximal flat. Then F' < P(7,7). A smooth variation of the geodesic
.+ by strongly asymptotic geodesics extends to a smooth variation of F' by maximal flats
asymptotic to st(7) N d F'. Indeed, it can be induced by a smooth curve in N, through 1, and
this curve can be used to vary F'.

The Jacobi field J along [,/ corresponding to a tangent vector v € T>C(7) therefore extends
to a Jacobi field J along F' which decays to zero at all ideal points 1 € ost(7) N dF. The
decomposition of Jacobi fields on symmetric spaces mentioned in the previous proof works in
the same way along flats. (One trivializes the normal bundle using the abelian transvection
subgroup.) Hence J decomposes as an orthogonal sum of Jacobi fields along F' of the form
e~V with an affine linear form o on F' and a parallel orthogonal vector field V' along F'. Up
to additive constants, only finitely many affine linear forms « occur, since G' acts transitively
on maximal flats. (The possible forms are determined by the root system of G, but we do not
need this fact here.)

We may normalize the forms o occurring in our decomposition so that a(x) = 0. Since
J decays to zero at ost(7) N 0 F, they have the property that o = 0 on V(z,st(7) n 0 F),
equivalently, that st(7) N 0l < dx{a = 0}. Moreover, @ > 0 on the interior of the cone
V(z,st(T) N 0, F), because a # 0. One can estimate

a(x’) = c(a) - d(2, oV (z,st(1)))
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with a constant ¢(a) > 0. Taking ¢ to be the minimum over the finitely many constants ¢(«),
we obtain the assertion, because the eigenvalues of (dd,,); are bounded above by the maximal
possible value of e=*(*"), O

The previous two lemmas yield:
Corollary 2.48. If 2’ € V(x,st(7)), then (d¥.. )+ is weakly contracting on T:C(71) with norm
H(dﬁxw’)%H < efc-d(m’,av(gc,st(r)))

where the constant ¢ > 0 depends only on X . In particular, it is strongly contracting if x’ lies
in the interior of V(z,st(7)).

Proof. For 2’ in the interior of the Weyl cone, and hence £ € ost(7), this is a direct consequence.
For 2’ on the boundary of the cone, it follows by continuity. O

In order to show that 1., has expanding directions at 7 if 2’ lies outside the Weyl cone, we
consider its action on certain invariant submanifolds of C'(7) corresponding to parallel sets of
singular hyperplanes.

Let again F be a maximal flat with l,,» ¢ F < P(7,7). Moreover, let h < 0,F be a
half-apartment such that int(7) < int(h). Then 9., fixes 05 F pointwise. Hence it preserves h,
the parallel set P(0h) and the submanifold C(h) = N,7 < C(7).

If [, is parallel to the euclidean factor of P(dh), equivalently, if £ € 0y ly,r < Oh, then 0,
acts trivially on the cross section C'S(0h), and hence also trivially on C'(h) = 0,,CS(dh) — {C}.

In the general case, the action of ¥,,» on C'(h) corresponds to the restriction of the action
of Vpwnl,, to Hcl = Hcl n P(0h). When projecting to C'S(dh), the latter action in turn
corresponds to the action of ﬁmzwg,f on H cg. Here, 55 denotes the transvection on CS(dh)
with axis [z through z and ' mapping z’ — Z, and ﬂé,f cHS — H cg, denotes the natural
identification of horospheres at (. The projection of F' to C'S(0h) is a ¥zz-invariant geodesic
line asymptotic to ¢ and another ideal point ¢. The fixed point 7 of ¥, on C (1) corresponds
to the fixed point ¢ of ¥z on 0, CS(0h) — {C}.

We prove analogues of Lemmata 2.46] and 2.47]

Lemma 2.49. If ¢ € int(h), then the restriction of the differential of .. at T to the invariant
subspace T:>C(h) < T>C(7) is diagonalizable with strictly positive eigenvalues.

Proof. Modulo the canonical identification C'(h) = 0,,CS(0h) — {C}, U restricts to ¥zz. The
argument for ¥z on 0,,C'S(0h) is then the same as for Lemmal[2Z46. We have that ( = Iz (—0)
because £ € int(h). Therefore, the tangent vectors to C'(h) at ¢ one-to-one correspond to the
orthogonal Jacobi fields along lzz which decay to zero at (. We conclude as before that (d¥zz ) ¢
is diagonalizable with strictly positive eigenvalues. O

Lemma 2.50. If{ € int(h), then the eigenvalues X of (d¥,q.):|1.cn) Satisfy an estimate

—log A

c1 <
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with constants c1,co > 0 depending only on X.

Proof. Since £ € int(h), we have that b:(z) — bc(2') = d(Z,7’) > 0. The assertion follows from
the contraction estimate (2.45) and the diagonalizability of the differential. O

Corollary 2.52. Ifz' € P(7,7)=V (z,st(7)), then (d0,)s is not weakly contracting on T>C(T).

Proof. By our assumption, we have that £ ¢ st(7). Therefore, the half-apartment h c 0, F can
be chosen so that its interior contains, besides int(7), also l,./(+0). (Recall that the convex
subcomplex st(7) N 0 F is an intersection of half-apartments in 0, F'.) Then the estimate (2.51])
applied to ¥, = 9., yields that (d¥,./); " has eigenvalues in (0, 1). O

We also can deduce an upper estimate on the strength of the contraction if 2’ € V' (z,st(7)),
complementing Lemma 2.47}

Lemma 2.53. If € € st(7), then (d¥. )7 has an eigenvalue satisfying an estimate
—log\ < C-d(2', 0V (x,st(1)))
with a constant C' > 0 depending only on X.

Proof. A nearest point ¢’ to &’ on 0V (z,st(7)) lies on oV (x,st(7)) n F = oV (z,st(7) N 0 F).
Hence we can choose the half-apartment h so that b.(y’) = b¢(z) and

A, OV (,5t(r))) = () — b (o).
Now let A be an eigenvalue of (d¥,.)#|1.c(rn) and apply the upper estimate (ZEII). O

Putting the information (Corollaries 2.48] 2.52 and Lemma [2.53)) together, we obtain:

Theorem 2.54 (Infinitesimal contraction of transvections at infinity). Let 7,7 < 0, X

be a pair of opposite simplices, and let ¥ be a nontrivial transvection which has an azxis ¢ <
P(7,7) through the point x = ¢(0). Then the following hold for the differential d¥; of ¥ on
C(7) at the fized point 7:

(i) dV; is weakly contracting on T:C(7), if and only if 9 'z € V(z,st(7)), and strongly
contracting if and only if 9™z € int(V (z,st(7))).

(ii) Suppose that 9~ x € V(x,st(7)). Then the exponential contraction rate of di; is com-
parable to d(9 'z, 0V (z,st(7)), i.e. there is an estimate

c1-d(¥ 1 x, 0V (z,st(7))) < —log||dd;| < co - d(V x, 0V (z,5t(7)))
with constants ¢y, co > 0 depending only on X.

We will later use the following consequence of the theorem for general isometries in G.

Corollary 2.55 (Infinitesimal expansion of isometries at infinity). Let 7 < 0,X be a
simplex of type Tmoa, © € X a point and g € G an isometry such that d(gx,V (z,st(1)) < r.
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-1 1

on Flag(Tineq) at T is comparable to

Then the exponential expansion rate loge(g—,7) of g~

d(gx, 0V (x,st(7)) in the sense that
ct- d(.ng aV(SL’, St(7—>>> -A< log 6(9717 T) <C- d(ng aV(SL’, St(7—>>> + A

with constants C; A > 0 depending only on X, r and the chosen background Riemannian metric
on Flag(Tmod)-

Proof. We can write the isometry ¢ as a product g = tb of a transvection t along a geodesic
[ through = asymptotic to st(7), [(+o0) € st(7), and an isometry b € G which is bounded in
terms of the radius 7. Then ¢ fixes 7 on Flag(7,.0q), and the expansion factor e(g™*
e(t™1,7) up to a multiplicative constant depending on X, r and the background Riemannian

,T) equals

metric on Flag(7,,.q). Furthermore, e(t™!,7) = |dt, |~

Let 7 denote the simplex opposite to 7 with respect to xz. Applying Theorem 254((ii) to
t = 97! while exchanging the roles of 7 and 7, we obtain that the exponential contraction rate
of dt, is comparable to d(t 'z, oV (z,st(7)) = d(tx, 0V (z,st(7)), i.e.:

¢ - d(tx, 0V (x,st(r))) < —log||dt,| < co - d(tx, 0V (x,st(1)))

Since d(gz,tr) = d(bzx, x) is bounded in terms of r and X, the assertion follows. O

3 Topological dynamics preliminaries

In this section we collect various definitions and results from topological dynamics; most of
them are rather standard but some are new.

Throughout this section, we let I" be a discrete group, i.e. a group equipped with the discrete
topology. We say that a sequence (7,) of elements of the discrete group I' diverges to infinity,
Vn — 0, if the map N — [',n — =, is proper. We consider continuous actions I' —~ Z on
compact metric spaces (Z,d).

3.1 Expanding actions

The following notion due to Sullivan [Sul, §9] will be of basic importance to us:

Definition 3.1 (Expanding action). We say that the action I' —~ Z is expanding at the
point z € Z if there exists an element ~ € I' which is uniformly expanding on a neighborhood U
of z, i.e. for some constant ¢ > 1 and all points 21, 2o € U we have

d(vz1,722) = ¢ - d(z1, 22).

We say that the action of I' is expanding at a compact I'-invariant subset E — 7 if it is expanding
at all points z € F.
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3.2 Convergence actions

Let Z be a compact metric space. We define the space Trip(Z) to be the subset of Z3 consisting
of triples of pairwise distinct points in Z. Every topological action I' —~ Z induces a topological
action I' —~ Trip(Z).

Definition 3.2 (Convergence action). The action I' ~ Z is called a convergence action and
the image of I in Homeo(Z7) is said to be a convergence group if one of the following equivalent
conditions holds:

(i) The action I" —~ Trip(Z) is properly discontinuous.

(ii) For every sequence -, — oo in I' there exist points z4+ € Z and a subsequence of (7,)
which converges to the constant map = z, uniformly on compacts in Z — {z_}. The points z,
and z_ are called the limit point and the exceptional point of this subsequence.

A convergence action I' ~ Z is said to be uniform if the action I' —~ Trip(Z) is cocompact.

A proof for the equivalence of both definitions can be found in [Bo99].

The main example of convergence actions comes from the following fact: Every discrete
group I' of isometries of a proper Gromov hyperbolic geodesic metric space X acts as a conver-
gence group on the Gromov boundary d,, X of X. Furthermore, every word hyperbolic group
I' acts on its Gromov boundary 0,I" as a uniform convergence group.

Bowditch proved that, vice versa, this dynamical behavior characterizes the natural actions
of word hyperbolic groups on their boundaries:

Theorem 3.3 ([Bo98, Thm. 0.1]). Let I' —~ Z be a uniform convergence action on a non-
empty perfect compact metric space. Then I is word hyperbolic and Z is equivariantly homeo-
morphic to Oy .

The uniformity of a convergence action is in turn equivalent to all points being conical. The
notion of conical limit point (e.g. of a Kleinian group) can be expressed purely in terms of the
dynamics at infinity and, therefore, extends to the more general context considered here:

Definition 3.4 (Intrinsically conical [Bo98, §8]). Let I' ~ Z be a convergence action. A
point z € 7 is called intrinsically conical if there exists a sequence «,, — o0 in I' such that the
sequence of points v, 'z converges and the sequence of maps v, | z_(,} converges (uniformly on
compacta) to a constant map with value # lim,,_,, 7, 2.

We note that the locally uniform convergence of v, *|z_.; to a constant map implies that z
is a limit point of I'. We, thus, will refer to such point z as an intrinsically conical limit point
of I'.

Theorem 3.5 ([Bo98, Thm. 8.1], [Tu98]). A convergence action I' —~ Z on a perfect
compact metric space Z is uniform if and only if every point in Z is intrinsically conical.

Remark 3.6. The easy direction is that uniformity implies conicality. This can be seen as
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follows: Let 2’ # z and 2! — 2 be a sequence of points different from z. By uniformity,
there exist elements 7, — o0 in I' such that we have convergence 7, 'z — 2., 7,12 — 2,
and v, '2” — 2/ with pairwise different limits. Since I' ~ Z is a convergence action, we have
convergence of v to a constant map on Z —{z} or on Z —{2'}. The latter is impossible because

the convergence is locally uniform and v, 'z” — 2 # z,. Thus, the point z is intrinsically

n n

conical.

The following result connects expanding actions with Bowditch’s theorem. Note that if we
equip the boundary of a word hyperbolic group I' with a visual metric d, then the natural
action I' ~ (0,,I', d) is expanding, see e.g. [CPJ.

Lemma 3.7. If I' —~ Z is an expanding convergence action on a perfect compact metric space
Z, then all points in Z are intrinsically conical.

Proof. We start with a general remark concerning expanding actions. For every point z € Z
there exist an element v € I' and constants r > 0 and ¢ > 1 such that v is a c-expansion on the
ball B(z,r) and v(B(z,r")) o B(yz, cr’) for all radii 7 < r. To see this, suppose that c is a local
expansion factor for v at z and, by contradiction, that there exist sequences of radii r, — 0
and points 2, ¢ B(z,r,) such that vz, € B(yz,cr,). Then z, — z due to the continuity of 4!
and, for large n, we obtain a contradiction to the local c-expansion of . Since Z is compact,
the constants r and ¢ can be chosen uniformly. It follows by iterating expanding maps that for
every point z and every neighborhood V' of z there exists 7 € I" such that v(V) > B(vz, 1),
equivalently, v(Z — V) ¢ Z — B(yz,r).

To verify that a point z is intrinsically conical, let V,, be a shrinking sequence of neighbor-

hoods of z,
(V= {z},

and let 7, € T’ be elements such that v, *(Z — V,,) ¢ Z — B(v, '2,7). Since V,, is shrinking
and 7, *(V,)) © B(v;'2,7) contains balls of uniform radius r, it follows that the 7, ! do not
subconverge uniformly on any neighborhood of z; here we use that Z is perfect. In particular,
V. — . The convergence action property implies that, after passing to a subsequence, the
v, ! must converge locally uniformly on Z — {z}. Moreover, we can assume that the sequence
of points 7, 'z converges. By construction, its limit will be different (by distance > r) from the
limit of the sequence of maps 7, | 7—{=}- Hence the point z is intrinsically conical. O

Suppose that I' —~ Z is a convergence action. The set of limit points of sequences in I’
is called the limit set A(I") of I'; the limit set can be also described as the set of exceptional
points of sequences in I'. The group I is called elementary if A(T') contains at most 2 points
and nonelementary otherwise.

We will need the following theorem, proven in the case of groups acting on spheres by
Gehring and Martin [GeM| Theorem 6.3] and by Tukia [Tu94, Theorem 2S] in general:

Theorem 3.8. IfT" is nonelementary then the action of I' on its limit set A(T") is minimal and
A(T) is perfect.
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4 Convex cocompact groups of isometries of rank one
symmetric spaces

In this section we review equivalent definitions and properties of convex cocompact groups of
isometries of negatively curved symmetric spaces. Most of this discussion remains valid in the
case of isometry groups of proper CAT'(—1) spaces. The main reference for this material is the
paper of Bowditch [Bo95]. We also refer the reader to [Kal] for a survey of discrete isometry
groups of rank one symmetric spaces (primarily focused on higher-dimensional real-hyperbolic
spaces).

Let I' € G = Isom(X) be a discrete subgroup of the group of isometries of a negatively
curved symmetric space X. We let A = A(I') € 0, X denote the limit set of I', i.e. the
accumulation set of a I'-orbit in X. Note that A is necessarily closed in 0,X. Then =
Q) = 0,X — A is the domain of discontinuity of T', which is also the wandering set for
the action I' —~ 0,X, and hence is the largest open subset of d,X where I' acts properly
discontinuously. The Nielsen hull N(A) of A is defined as the smallest closed convex subset in
X whose ideal boundary contains A. The set N(A) exists provided that A contains at least
two points; in this case, 0, N(A) = A. In what follows, we will consider only nonelementary
discrete subgroups T, i.e., subgroups for which A(T") contains more than 2 points.

The following definition explains the terminology convex cocompact.

Definition 4.1 (C1). A discrete subgroup I' © G is called convex cocompact if N(A(T"))/T" is
compact.

In particular, such group I' is finitely presented and, moreover, word hyperbolic.

A limit point A € A is called a conical limit point of T' if for some (every) geodesic ray p in
X asymptotic to A there exists a sequence v;x < X converging to A in an R-neighborhood of p
for some R < 0.

Definition 4.2 (C2). A discrete subgroup I' G is called conver cocompact if every limit
point of I' is conical.

In fact, one can get R to be uniform for 2 € N(A) and A € A.

Recall (see section [3.2)) that for a set Z, Trip(Z) denotes the set of triples of pairwise distinct
points in Z.

Definition 4.3 (C3). A discrete subgroup I' © G is called convex cocompact if the action
[' —~ Trip(A) is cocompact.

Every discrete group I' = G acts properly discontinuously on X u €2, which we equip with
the subset topology induced from X = X U 0,X.

Definition 4.4 (C4). A discrete subgroup I' < G is called convexr cocompact if the action
' = X u Qis cocompact.
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Definition C4 implies that for every convex cocompact subgroup I' € G, the quotient /T’
is compact. The converse is false, as the following examples show.

Example 4.5. 1. Consider a cyclic group I' of parabolic isometries of the hyperbolic plane
H? = X. Then A(T) is a singleton, /T is homeomorphic to S*, while

(X Q)T =[0,0) x S*

is noncompact. Thus, I' is not convex cocompact. In this case, of course, I' contains unipotent
(parabolic) elements. The next three examples contain only loxodromic elements.

2. Let S denote a closed hyperbolic surface, m := m(S). Then 7 admits a discrete and
faithful representation p : 7 — G = Isom(H?), so that its image I' = p(7) is a totally-
degenerate purely loxodromic subgroup of G: €(T") is simply connected and nonempty, I" contains
no parabolic elements and

(X uQ)/r

is homeomorphic to S x [0,00), where S x {0} corresponds to Q/I", see [Be]. Thus, I' is not
convex cocompact.

3. Let M be a closed oriented hyperbolic m-manifold with a nonseparating oriented closed
totally-geodesic hypersurface N. Such manifolds exist for all m (see [Mil]). Let M — M denote
the infinite cyclic cover determined by the homomorphism (M) — Z corresponding to the
element of H'(M,Z) Poincaré dual to the homology class [N]. Then N lifts to a submanifold
Ny © M which is isometric to N and which separates M in two components M_, M,. Let
M’ denote the metric completion of the Riemannian manifold M,. Then M’ is a complete
hyperbolic manifold with single geodesic boundary component isometric to Ny and injectivity
radius bounded below. The fundamental group I' of M’ is not finitely generated. The hyperbolic
structure on M’ determines a discrete isometric action I' —~ H™, so that I' contains no parabolic
elements. Then

(H™ U Q)T

is homeomorphic to M’. In particular, 2/T" is compact and nonempty, while I' is not even
finitely generated; in particular, I' is not convex cocompact.

4. Similarly, for every simple Lie group G of rank 1, there are discrete subgroups I' = G
whose limit set is the entire sphere 0., X, but I' is not finitely generated. For instance, one can
start with a uniform lattice [' < G; being a non-elementary word hyperbolic group, ' admits
a normal subgroup I' which is isomorphic to the free groups of countably infinite rank. The
limit set of I is necessarily the entire sphere d,, X. Furthermore, when X is a real-hyperbolic 3-
space or complex-hyperbolic plane or complex-hyperbolic 3-space, there are examples of finitely
generated subgroups I' © GG whose limit set is 0, X, but I' is not a lattice in G. In the case
X = HB3, such examples can be constructed, for instance, using normal surface subgroups in
fundamental groups of closed hyperbolic 3-manifolds fibering over the circle. For examples in
CH? and CH? see e.g. [Kal3]: These are normal subgroups in complex-hyperbolic manifolds
which admit (singular) holomorphic fibrations over hyperbolic Riemann surfaces.
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On the other hand, the phenomenon in the Examples 2 and 3 can essentially only occur in
the real-hyperbolic case:

Theorem 4.6 (See [Ra]). Let X be a negatively curved rank one symmetric space which is
not real-hyperbolic. Suppose that I' ¢ G = Isom(X) is a discrete torsion-free subgroup without
unipotent elements so that Q(I")/T" is compact and nonempty. Then T is conver cocompact
provided that X is not isometric to CH?. In the case X = CH?, the same result holds provided
that the Riemannian manifold X /T has injectivity radius bounded below.

Let I' © G be a discrete subgroup. Pick a point x € X which is not fixed by any nontrivial
element of I', and define the Dirichlet fundamental domain D, of T" as

D, ={ye X :d(x,y) <d(yx,y),Vyel}.

Note that D, is convex if X is real-hyperbolic, but is not convex otherwise. In general, D, is
starlike with the center z; since X is Gromov hyperbolic, this implies that D, is quasiconvex
in X. Subsets of D, of the form
D,n~yD,, ~el,
are called faces of D,.
Let D, denote the union
D, v (0D, n QI)),

which is a certain partial compactification of D,. It follows (almost) immediately from C4 that
I" is convex cocompact if and only if D, is compact. The following definition is a more elaborate
version of this observation:

Definition 4.7 (C5). A discrete subgroup I' © G containing no parabolic elements is called
convez cocompact if one (every) Dirichlet fundamental domain D, has finitely many faces.

Note that a cyclic unipotent subgroup of Isom(H?*) can have a Dirichlet domain with in-
finitely many faces.

Definition 4.8 (C6). A discrete subgroup I' © G is convex cocompact whenever I' is word
hyperbolic as an abstract group and there exists an equivariant homeomorphism

B0l — AT,
where 0" is the Gromov boundary of T.

Note that the injectivity of g is critical here:

Theorem 4.9 (Mj, [M1, MZ2]). Suppose that T' = Isom(H?) is a word hyperbolic subgroup
(not necessarily conver cocompact). Then there always exists a continuous equivariant map
B : 0" = A(T"); the map 5 is called the Cannon-Thurston map for the subgroup ' < G.

Let I' © G be a finitely generated subgroup of a Lie group G with finitely many connected
components; we will equip I' with a word metric. A point z € X defines the orbit map
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I' 5> 'z © X. The subgroup I is called undistorted in G, if some (any) orbit map I' - X is a
quasi-isometric embedding, equivalently, if the inclusion I' — G is a quasi-isometric embedding,
where G is equipped with a left invariant Riemannian metric.

Definition 4.10 (C7). A discrete subgroup I' © GG is convex cocompact if it is undistorted.

Note that, in view of the hyperbolicity of X, undistortion of I' implies that the quasi-
isometrically embedded I'-orbits are quasi-convex subsets of X. In particular:

1. I' is word hyperbolic, and hence the orbit maps I' — 'z continuously extend at infinity
to an equivariant homeomorphism £ : d,,I' — A(T).

2. The I'-equivariant relation in X x I' given by the nearest-point projection to an orbit I'z
is a coarse Lipschitz retraction X — I'x.

The converse to this is also easy:

Definition 4.11 (C8). A discrete subgroup I' ¢ G is convex cocompact if for some (every)
[-orbit 'z < X there exists a ['-equivariant coarse Lipschitz retraction X — I'x.

The equivariance condition for the retraction can be omitted:

Definition 4.12 (C9). A discrete subgroup I' ¢ G is convex cocompact if for some (every)
[-orbit 'z < X there exists a coarse Lipschitz retraction X — I'x.

Our last characterization of convex cocompactness is in terms of expanding actions. We fix
a visual metric d on S = 0, X.

Definition 4.13 (C10). A discrete subgroup I' = G is convex cocompact if its action on dpn X
is expanding at every point of A(I"), see Definition [3.1]

This interpretation of convex cocompactness appears in Sullivan’s paper [Sul.

Theorem 4.14. The definitions C1-C10 are equivalent.

The equivalence of Definitions C1-C9 can be found for instance in [Bo95]. The implication
C10 = C2 is a corollary of Lemma 3.7l In the case of real-hyperbolic space, the implication C5
= C10 is immediate by taking a Ford fundamental domain (bounded by finitely many isometric
spheres I(v;),I(7; '), i =1,...,k) and observing that 7; is a strict expansion on every compact
contained in the open round ball bounded by I(7;). For the remaining rank one symmetric
spaces the implication C2 = C10 is a corollary of our Proposition in section [6.1.5
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5 Weakly regular subgroups and their limit sets

5.1 Weak regularity

In this section we introduce and discuss an asymptotic regularity property for discrete subgroups
I' of a semisimple group G. It is a condition on the asymptotics of divergent sequences in the
subgroup and is defined with respect to a t-invariant face type 7Toq © Tmod-

We first define a stronger uniform version of regularity which can be stated more directly
in terms of the limit set A(I') = Tw N 05, X in the visual boundary.

We recall that the subset of 7,,,q-regular types in 0,,,q is the open star ost(T,.q), that is,
the union of all open faces of o,,,¢ Wwhich contain 7,,,4 in their closure, see section 2.4.21 The
Tmod-Tegular part of the ideal boundary is then defined as the subset

a;'gLod_regX = 9_1(Ost(7-m0d)) = an

of all 7,,,,4-regular ideal points. It consists of the ideal points for which there is a unique closest
(with respect to the Tits metric) simplex 7 € 0, X of type Ti,0q. It contains all open chambers
and is in particular dense in d, X (also in the Tits topology).

Definition 5.1 (Uniformly weakly regular). We call the subgroup I" uniformly 7,,.q4-reqular
if its visual limit set consists only of 7,,,¢-regular ideal points, A(T") < 97 "X,

Note that A(I") is compact, as is its type projection to 0,,,4. A quantitative version of
uniform regularity is given by:

Definition 5.2 (O-regular). Let © < 0st(7,,04) be compact. The subgroup I' is called ©-
reqular if its visual limit set consists only of ideal points of type ©, A(T') < 71(0) < oy " X.

These notions apply in the same way to divergent sequences (z,) in X and (g,) in G, the
latter by looking at the accumulation set in d,, X of an associated orbit sequence (g,z) for a(ny)
base point z.

Now we define (non-uniform) weak regularity itself. We denote by 0 0st(Timod) = Tmod —

08t(Tmod) the set of T,04-singular types.

Definition 5.3 (Weakly regular sequence). (i) A sequence §,, — 0 in A = V54 1S Tod-

reqular if
d (0, V (0, 0rmoa — 08t(Timod))) — +00. (5.4)

(ii) A sequence x,, — o0 in X is Ty,.q-regular if for some (any) base point x the sequence of
A-valued lengths da(z, x,) in A has this property.

(iii) A sequence g, — o in G iS Tyeq-regularif some (any) orbit (g,2) in X has this property.
Remark 5.5. (i) The independence of the base point and the orbit in parts (ii) and (iii) of
the definition is due to the triangle inequality |da(z,y) — da(2',y")| < d(z,2") + d(y, /).

(ii) Uniform Teq-regularity is equivalent to linear (with respect to |d,|) divergence in (5.4]).
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/

') uniformly close to it,

(iii) If the sequence (z,) is Tig-regular, then every sequence (x
sup,, d(x,, x),) < 400, is also Teg-regular, again by the triangle inequality. Similarly, if the
sequence (g,) in G is Tpeg-regular, then for all bounded sequences (b,) and (b)) in G, the

sequence (b,g,bl) is also 7,,.4-regular.

(v) (Uniform) 7,,04-regularity implies (uniform) 7/ .-regularity for all face types 7/, < Timod,

because 08t(Tmoa) < 08t(7),.4)-

(vi) Every diverging sequence has a weakly regular subsequence, i.e. a subsequence which
iS Timoeg-regular for some face type Tiod-

Definition 5.6 (Weakly regular subgroup). A subgroup I' © G is 7y,.q-regular if all se-
quences 7, — o0 in I' have this property. When we do not want to specify 7,,,4, we refer to I"
simply as weakly regular.

Remark 5.7. (i) The definition of 7,,,4-regularity for sequences makes sense also if 7,04 is N0t
t-invariant. Then a sequence (g,) in G is (uniformly) 7,,.¢-regular if and only if the sequence
(g;') of inverses is (uniformly) ¢7,,,4-regular, cf. the symmetry property (2.2)) for A-lengths.
When defining 7,,,,4-regularity for subgroups, it is therefore natural to require the -invariance
of the simplex 7,,,4, and this is why we impose this condition in the entire paper.

(ii) A discrete subgroup I' € G needs not be 7,,.4-regular (for any 7,,,4) even if all its
nontrivial elements are regular (transvections). This can happen e.g. for free abelian subgroups
of rank > 2.

Remark 5.8 (Relation to visual compactifications for Finsler metrics). We recall that
a sequence x, — o0 converges to an ideal point in the visual compactification if and only if
the normalized distance functions d(-, z,) — d(p, z,) converge (locally uniformly), where p is
some base point. Ideal boundary points can thus be identified with normalized Busemann
functions. The same construction can be carried out for G-invariant Finsler metrics on X and
one obtains modified visual compactifications. To a face type T,,0¢ We can associate a Finsler
metric as follows. Fix a t-invariant unit vector v € A pointing to an interior point of 7,,,q4 (e.g.
its center), and define d,(x, ") := {da(z,z’),v). In the visual boundary with respect to this
Finsler metric there is a unique G-orbit which is a copy of Flag(7,,.q); its points correspond to
collapsed open stars around simplices of type 7,00 in 05 X. (The union X U Flag(7,u0q) is the
natural 7,,,q-bordification of X.) The relation with 7,,,4-regularity is as follows: A subgroup I
is Tyneg-regular if and only if its visual limit set with respect to the modified compactification
of X is contained in the G-orbit Flag(7,04)-

5.2 Contraction-expansion dynamics at infinity

In this section, we will describe how the weak regularity of sequences in G can be read off
their dynamics at infinity. Roughly speaking, on appropriate flag manifolds, certain almost full
subsets are contracted, asymptotically, almost to points. Dually, small balls are expanded to
almost full subsets. This “contraction-expansion dynamics” is a generalization of convergence
dynamics in rank one to arbitrary rank.
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5.2.1 Contraction and expansion

We now formulate the contraction and expansion properties for sequences in G and show that
they are satisfied by weakly regular sequences. We first state and discuss contraction.

Definition 5.9 (Contraction). Let (g,) be a sequence in G. We call a sequence of subsets
U, < Flag(Tmoq) & contraction sequence for (g,) if it satisfies the following properties:

(i) It is exhaustive in the sense that there exist a bounded sequence (b,) in G and a simplex
7 of type Tynoq such that b,U,, — C(7), meaning that every compact subset of the open Schubert
stratum C(7) is contained in b,U,, for n sufficiently large.

(ii) The image subsets ¢,U,, shrink in the sense that there exists a bounded sequence (b,,)
in G such that b,g,U, Hausdorff converges to a point, equivalently, if diam(g,U,) — 0 with
respect to a Riemannian background metric on Flag(7,,04)-

We call the sequence (g,) contracting on Flag(7,,,q) if it admits a contraction sequence.

Note that open Schubert strata are dense open subsets of full volume with respect to any
auxiliary smooth probability measure on Flag(7,,,q). Hence the subsets in a (measurable)
exhausting sequence have asymptotically full volume.

Property (i) in the definition means that the subsets U,, asymptotically fill out the sequence
of moving open Schubert strata b,'C(7) = C(b,'7), and property (ii) means that the images
g,U, asymptotically concentrate to points which are also allowed to move.

Note that if the sequence (g,,) in G is contracting, then for all bounded sequences (b,,) and
(b)) in G, the sequence (b,g,b,) is also contracting.

We will say that a contraction sequence (U,) is opposite to a sequence (7,) in Flag(70q)
if U, < C(r,) for large n. Note that in the definition the sequence (U, n C(b,'7)) is still
exhaustive, and hence a contraction sequence for (g,) opposite to the sequence (b, '7).

The contraction property can be reformulated in terms of concentration of measures, which
shows that it essentially agrees with other notions of contraction (on flag manifolds) used in
the literature, cf. [GoM, §3]: If a sequence (g,) is contracting in the above sense, then there
exists a bounded sequence (b,) such that the sequence of measures (b,g,)«/t converges to a
Dirac mass for any smooth probability measure p on Flag(7,,,4). Moreover, one can also prove
the converse. Note that we do not require the measures g, , 1t themselves to converge, but allow
them to concentrate around any sequence of moving points. Since flag manifolds are compact,
one can always achieve by passing to a subsequence that also the measures g, converge.

Remark 5.10 (Proximal). Related to the notion of contraction is the notion of prozimality,
see e.g. [Ab]. Say that an element g € G acts as a prozimal transformation on Flag(7,,.q) if the
sequence (¢")nen converges to a point 7, € Flag(7,,4) locally uniformly on an open Schubert
stratum C'(7_) < Flag(T0q), where 7_ is a simplex antipodal to 7. We will refer to 7, as the
attractive fixed point of g. (Note that it is necessarily fixed by g). The sequence (g™) is then
contracting on Flag(7,,.q¢). Note however that vice versa sequences, which are contracting on
Flag(7imoa), need not contain proximal elements. For instance, in the rank one case all divergent
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sequences in GG are contracting due to convergence dynamics.

The expansion property is dual to contraction:
Definition 5.11 (Expansion). Let (g,) be a sequence in G. We call a sequence of subsets
Vi, < Flag(Timoa) an expansion sequence for (g,,) if it satisfies the following properties:

(i) It shrinks, diam(V;,) — 0.

(ii) The sequence of image subsets g, V;, is exhaustive.

We call the sequence (g,) expanding on Flag(7,,.q) if it admits an expansion sequence.

The duality means that (U,,) is a contraction sequence for (g,) if and only if (g,U,) is an
expansion sequence for (g, 1).

5.2.2 Strong asymptoticity of Weyl cones

Before proceeding, we need to prove a fact from the geometry of symmetric spaces.

Let 7 < 0, X be a simplex of type T,,0q. For a point x € X we have on the open Schubert
stratum C(7) < Flag(7,04) the function

7' d(z, P(1,7")).

It is continuous and proper. (This follows from the fact that C'(7) and X are homogeneous
spaces for the parabolic subgroup P,.) It has a unique minimum zero in the chamber 7, which
is opposite to 7 with respect to x.

We define the following open subsets of C'(7) which can be regarded as “shadows” of balls
with respect to 7. For z € X and r > 0, we put

Urpr = {7 € C(7)|d(z, P(,7")) < r}.

Then the subsets U, ,, for fixed 7 and x form a neighborhood basis of 7,.

The next fact expresses the uniform strong asymptoticity of asymptotic Weyl cones.

Lemma 5.12. Forr, R > 0 exists d = d(r, R) > 0 such that:

Proof. It U, » g & U, then there exists 2’ € B(z,r) such that d(y, V(2/,st(7))) = r. Thus, if
the assertion is wrong, there exist a sequence z,, — =, in B(x,r) and a sequence y,, — o0 in
V(z,st(7)) such that d(y,, oV (x,st(1))) — 40 and d(y,, V (z,,st(1))) = r.

Let p : [0,+00) — V(z,7)) be a geodesic ray with initial point x and asymptotic to an
interior point of 7. Then the sequence (y,) eventually enters every Weyl sector V' (p(t),st(7)).
Since the distance function d(-, V(z,,st(7))) is convex and bounded, and hence non-increasing
along rays asymptotic to st(7), we have that

R = d(x,V(x,,st(1))) = d(p(t), V(zn,st(7))) = d(yn, V(x,,st(1))) =7

42



for n large. It follows that
R=d(p(t),V(ze,st(1))) =r

for all t. However, if p is asymptotic to V' (z4,st(7)), then it is strongly asymptotic, a contra-
diction. [

5.2.3 Regularity implies contraction-expansion

We are now ready to show that weakly regular sequences in G are contracting-expanding on
suitable flag manifolds.

The following flexibile and base point independent notion of radial projection to infinity
will be useful for describing contraction and expansion sequences.

Definition 5.13 (Shadows at infinity). A shadow sequence of a sequence (z,) in X is a
sequence (7;,) of simplices in Flag(7,,,4) such that

sup d(x,, V(x,st(1,))) < +o0
for some (any) base point x. A shadow sequence of a sequence (g,) in G is a sequence of
shadows for an orbit sequence (g,z) for some (any) base point z.

Proposition 5.14. 7,,,4-reqular sequences in G are contracting and expanding on Flag(Tmoed)-
More precisely, let (gn) be a Timoa-regular sequence in G. Then for a shadow sequence (7,) of
() there emists

(1) a contraction sequence (U,) for (gn) opposite to (7, ), i.e. U, = C(T,).

(i1) an expansion sequence (V,,) for (g,) containing (7, ), i.e. 7, € V.
Proof. (i) We fix a base point z and denote by g, 'z, the nearest point projection of g, 'z to
V(z,st(r,,)). Then the sequence (x,) is bounded. Due to 7,,,4-regularity, we have that

d(g;, *wn, OV (z,5t(T,))) — +00.
Lemma yields that for any r, R > 0 the inclusion

Uirwr < Ur;

Tn 79771557177‘
holds for large n. Therefore there exist sequences of positive numbers R, — +o and r, — 0

such that
gnU

Tn @, Bn - UgnTrjyxnyT’n
for large n. The sequence (U, - , 5 ) is exhaustive, and the sequence (U, - .

(z) is bounded. Hence (U -, ) is a contraction sequence for (g,), and U_- < C(1,).

n

) shrinks because

(ii) Let g,'7," be the simplices opposite to 7, with respect to z. Similarly, Lemma [5.12]
implies that
U;ng»’g;lwn’Rn cU + ST

—1
g 9n Tn Z,Tn n
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for suitable sequences R, — +c0 and r,, — 0. The sequence (U_+ , 5 ) is exhaustive because
(z,,) is bounded, and it follows that (U, -1+, ) is an expansion sequence for (g,). O

n Tn T,Tn

The proposition has several useful consequences.

Firstly, the various shadow sequences of a weakly regular sequence approach each other.
We will use this below to define flag convergence.

Lemma 5.15 (Asymptotic uniqueness of shadows). For a 7,,.q-reqular sequence (g,) in
G any two shadow sequences (7,) and (7)) asymptotically coincide, i.e. d(7,, 7)) — 0.

Proof. By Proposition [£.14] (Part (ii)), there exist expansion sequences (V},) and (V) for (g, !)
such that 7,, € V,, and 7/ € V!. The assertion follows from the fact that any two expansion
sequences asymptotically coincide, i.e. diam(V,, u V') — 0.

To see the latter, note that (g,'V,) and (g, 'V/) are contraction sequences for (g,). In
particular, they are exhaustive and therefore asymptotically intersect by volume reasons, that
is g 'V, n g, V! # & for large n. So, V,, "'V # & for large n, and hence diam(V,, u V) — 0,
as claimed. O

Secondly, shadow sequences asymptotically agree with the values on contraction subsets:

Lemma 5.16. Let (g,) be a Thoq-regular sequence in G. Then for any contraction sequence
(Un) and any shadow sequence (1), the subsets g,U, U {1} shrink, diam(g,U, v {7,}) — 0.

Proof. Note that (g,U,) is an expansion sequence for (g,'). According to Proposition [(.14]
(Part (ii)) applied to (g, ') there exists another expansion sequence (V") for (g,') such that
T, € V7. The assertion follows from the asymptotic uniqueness of expansion sequences, compare
the proof of Lemma [5.15, which yields that diam(g,U, v V))) — 0. O

Remark 5.17. The last result relates the asymptotics of orbits in X and the dynamics at
infinity. One can promote it to showing that 7,,,q-regular sequences in G have contraction-
expansion dynamics on the bordification X U Flag(T,eq)-

5.2.4 Contraction implies regularity

We consider now sequences (g,,) in G which are contracting on Flag(7,04), and show that they
are Tpog-regular.

The key step is a converse to Proposition [5.14] (i), essentially saying that sequences opposite

to contraction sequences for (g,) asymptotically coincide with shadow sequences for (g, !):

Lemma 5.18. Let (U,) be a contraction sequence for (g,), and let (7,7) be a shadow sequence
of (g.1). Suppose that (1,,) is a sequence in Flag(Timoq) such that (U, nC(7,)) is still exhaustive.
Then d(t,, 7, ) — 0.

Proof. By passing to a subsequence, we may assume convergence 7, — 7 and 7, — 7. It
suffices to show that then 7 = 7.

44



We look at the dynamics of (g,) on the space of maximal flats. Recall that a sequence of
maximal flats F,, = X is bounded if d(z, F,,) is bounded for a base point z € X.

Suppose that (F},) is a bounded sequence of maximal flats, such that the sequence (g, F},)
of image flats is also bounded. We will see that its position relative to 7 is restricted. Consider
a maximal flat F' which is the limit of a subsequence of (F,).

Sublemma 5.19. The apartment 0 F < 0, X contains exactly one simplex opposite to T.

Proof. In a spherical building, every point has an antipode in every apartment. Hence, 0o F
contains at least one simplex 7 opposite to 7. Suppose that it contains another simplex 7’
opposite to 7. After passing to a subsequence, we may assume that F,, — F. Let 7,,, 7, < 0y [},
be approximating simplices, 7, — 7 and 7/, — 7. Since (g, F,) is bounded, after passing to a
subsequence, the sequences (¢,7,) and (g,7,,) converge to distinct limit simplices. On the other
hand, in view of 7,7 € C(1), we have that 7,,,7, € U, for large n. Since (g,U,) shrinks, it
follows that d(g,7n, g.7,,) — 0, a contradiction. O

We need the following general fact from spherical building geometry.

Sublemma 5.20. Let £ be a point in a spherical building B and let a = B be an apartment. If
& has only one antipode in a, then & € a.

Proof. Suppose that £ ¢ a and let f € a be an antipode of £. (It always exists.) We choose
a ”generic” segment fé of length 7 tangent to a at é as follows. The suspension B(, é) cB
contains an apartment a’ with the same unit tangent sphere at é , Zga’ = Xga. Inside a’ there
exists a segment ff whose interior does not meet simplices of codimension > 2. Hence éf leaves
a at an interior point n # 5,5 of a panel 7  a, i.e. an 55 = né and N 55 = 7, and n¢ initially
lies in a chamber adjacent to m but not contained in a. Let s < a be the wall (codimension one
singular sphere) containing 7. By reflecting f at s, one obtains a second antipode for £ in a,
contradiction. O

Returning to the proof of the lemma, it follows that 7 < 0, F.

Sequences (F,) of maximal flats satisfying our assumptions are obtained as follows. Since
(7,7) is a shadow of (g,') in Flag(7,u.q), there exist chambers o, > 7, such that (o) is a
shadow of (g !) in dr X, that is

supd(g, 'z, V(z,0,)) < +o

for a(ny) point x € X. Then the flats F;, extending the euclidean Weyl chambers V' (z, o, ) have
the property that both sequences (F},) and (g,F},) are bounded.

A subsequence of (F},) converges iff the corresponding subsequence of (o, ) of chambers con-
verges, and the limit flat contains the Weyl sector V (x,7_). In particular, it is itself contained
in the parallel set P(7_,7_) for the simplex 7_ opposite to 7_ with respect to x. It follows from
the above that 7 < 0, P(7_,7_). Since the point x is arbitrary, 7_ can be any simplex opposite
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to 7_, and we obtain that

TC ﬂ O P (T, 7_) = st(1_),
)

7_eC(1—
which implies that 7 = 7_. O

Lemma [5.18 has various implications of asymptotic uniqueness. Firstly, it yields the asymp-
totic uniqueness of shadows of the inverse of a contracting sequence. From this, in turn, follows
regularity and we obtain the converse of Proposition .14k

Proposition 5.21 (Contraction implies regularity). Sequences in G, which are contracting
on Flag(Tmoed), are Tmoq-reqular.

Proof. Suppose that the sequence (g,) in G is contracting on Flag(7,,04) but not 7,,,4-regular.
Then the sequence (g, ') is not 7,,.4-regular either and, after passing to a subsequence, we may
assume that there exists a converging sequence 7, — 7_ of panels (codimension one simplices)
of fixed face type 0(7,,) P Timoa such that

supd(g, 'z, V(x,m,)) < +oo (5.22)

for a(ny) point z € X.

Let 7, be simplices of type 7,04 such that 7,7 and 7, are faces of the same chamber. (This
is equivalent to 7, < dst(m, ), respectively, to m, < dst(7,).) Note that 7,7 ¢ m, because
O(m) P Tmoa, and hence the 7, are non-unique. Any such sequence (7, ) is a shadow of (g, !) in
Flag(7imoq). These sequences (7,,) can accumulate at any simplex 7_ of type T,,,q¢ contained in
Ost(m_). Again, since 0(m_) D Tioa, there are several such simplices 7_. In particular, shadow
sequences of (g, ') are not asymptotically unique. This contradicts Lemma [5.18| O

Combining Propositions [5.14] and [5.21I] we obtain a characterization of weak regularity in
terms of dynamics at infinity:

Theorem 5.23 (Contraction characterizes regularity). A sequence in G is Tpeq-regular
if and only if it is contracting on Flag(Tieq)-

Secondly, an immediate consequence of Lemma [5.18 is the following asymptotic uniqueness
statement for contraction sequences complementing the asymptotic uniqueness of expansion
and shadow sequences, cf. Lemma [5.15]

Lemma 5.24 (Asymptotic uniqueness of contraction sequences). Suppose that (U,)
and (U},) are contraction sequences for (g,), and that (7,) and (7)) are sequences in Flag(Tmod)

such that (U, n C(7,)) and (U, n C(7))) are still exhaustive. Then d(7,, 7)) — 0.

Another consequence of Lemma [5.18 and our earlier discussion of the contraction-expansion
dynamics of weakly regular sequences is:
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Lemma 5.25 (Contraction and expansion sequences are asymptotically opposite).
Let (g,) be a Tmoq-reqular sequence in G. Suppose that (U,) is a contraction and (V) an
expansion sequence for (g,). Furthermore, let (1,) be a sequence on Flag(Tyeaq) such that (U, N
C(7,)) s still exhaustive. Then V,, u {7,} shrinks, diam(V,, v {7,}) — 0.

Proof. Combine Lemma [5.18 with Proposition [5.14] and the proof of Lemma, [5.15] O

5.3 Flag convergence

The asymptotic uniqueness of shadow sequences, see Lemma [5.15] leads to a notion of con-
vergence at infinity for weakly regular sequences with limits in the appropriate flag manifolds.
Namely, we can define convergence as the convergence of their shadows:

Definition 5.26 (Flag convergence). A 7,,,4-regular sequence in X or G flag converges to
a simplex 7 € Flag(T,n0q), if one (any) of its shadow sequences in Flag(7,,,q4) converges to 7.

We denote the flag convergence of a sequence (z,,) or (g,) by z, L, T, respectively, g, EENOA
If we want to refer to the face type 7,04, Wwe will sometimes also say that the sequence 7,,04-
converges or speak of flag convergence of type Tpoq-

Note that a 7,,,¢-regular sequence always has a 7,,,4-converging subsequence due to the
compactness of Flag(7,04)-

Remark 5.27. (i) Flag convergence of type 7T,,,q captures convergence “transversely to the
stars of the simplices of type T,04". It is related to the “usual” convergence at infinity with
respect to the visual compactification X = X U 0, X as follows. If a 7,,,4-regular sequence flag
converges to 7 € Flag(7,,04), then it accumulates in the visual compactification at st(7) < 0, X;
however, the converse is in general not true. For wuniformly 7,,.q-regular sequences, one has
equivalence: They flag converge to 7 if and only if they accumulate in X at ost(7).

(ii) Flag convergence of type 7,04 can be understood as convergence at infinity with respect
to a modified visual compactification, namely as convergence in the 7,,,4-bordification X u
Flag(Tmoa) of X, compare Remark .8

(ili) Tynoa-Convergence implies 77, ,-convergence for smaller face types 7., ; € Timod, and the
limits correspond under the natural forgetful projection Flag(7,04) — Flag(7/,.4)-

Flag convergence of weakly regular sequences in G can be characterized in different ways in
terms of the dynamics at infinity.

Firstly, one can use the close relation between the asymptotics of orbits in X and the dy-
namics on flag manifolds, as expressed by Lemma [5.16. Since shadow sequences asymptotically
agree with the values on contraction subsets, one has the equivalence: A 7,,,4-regular sequence
(gn) in G flag converges to 7 € Flag(T,04) if and only if for the image sequences (g,U,) of its
contraction sequences (U,,) in Flag(7,,,¢) shrink to 7, g, U, — 7.

Secondly, one can read off flag convergence from the dynamics of the sequence of inverses:
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Lemma 5.28. For a Ty.q-regular sequence (g,) in G the following two conditions are equiva-
lent:

(i) gn —L> 7 € Flag(timoq).

(ii) (g;') admits a contraction sequence (U, ) in Flag(Timea) opposite to 7, i.e. U, < C(7).

Proof. The direction (i)=(ii) follows from our construction of contraction sequences: Let (7,)
be a shadow of (g,) in Flag(7,0q). Then 7, — 7, and we apply Proposition ET4(i) to (g;!).

The reverse direction follows from the asymptotic uniqueness of contraction sequences:
Namely, invoking Proposition 5.14{(i) again, there exists another contraction sequence (U’))
for (g, ') which is opposite to a shadow (/) of (g,). Lemma [5.24 then implies that 7/ — 7. [

Our next observation concerns the relation between flag convergence of sequences in G' and
their convergence as sequences of maps (homeomorphisms) of flag manifolds.

For a 7,,,q-converging sequence g, L rin G, one can in general not conclude pointwise
convergence of (g,) to 7 anywhere on Flag(7,,,4). The reason being that in general no nested
(monotonic) contraction sequence (U,) exists because there is no control on the sequence of
open Schubert strata which it approximates; if (U,,) is opposite to a sequence (7, ) in Flag(T,0d),
U, < C(7,, ), then (7,7) can be arbitrary.

However, after passing to a subsequence so that also (g, ') flag converges, one obtains for
(gn) and (g, ') locally uniform convergence on open Schubert strata:

Proposition 5.29 (Attraction-repulsion). For a 7,,.q-reqular sequence (g,) in G, we have

flag convergence g+t J, 74 € Flag(Timea) if and only if
' = Tx

locally uniformly on C(7+) as homeomorphisms of Flag(Tied)-

Proof. Suppose that ¢! 7, 7+. Then there exist contraction sequences (UZF) for (¢g*') in
Flag(7moq) opposite to 7, cf. Lemma [5.28. Moreover, g-'U* — 7., cf. Lemma [5.16 or our
remark above. Together, this means that g=! — 7, locally uniformly on C(75).

Conversely, if g*!' — 74 locally uniformly on C(73), then there exist contraction sequences

(UZF) for (g+1) such that ¢'U* — 7, and Lemma 516 implies that ¢! > 7. O

Remark 5.30. There is no restriction on the relative position of the pair of simplices 7. They
may even agree.

Example 5.31. Fix a maximal flat ' < X and a simplex 7 < 0, F. Let (¢,) be a sequence
of transvections along F such that the expansion factors (1, 7) for the action of J,, on the
flag manifold Flag(6(7)) = G7 satisfy

lim (9, !, 7) = +c0.

n
n—o0
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In view of Theorem 2.54], this is equivalent to ¥,x € V(z,st(7) n 0 F) for large n, with x € F

fixed, and to the sequence (1, being 7,,,q-regular, where 7,,,¢ = (7). Then 9, 1, 7, because
the constant sequence (7) is a shadow of (9,,) in Flag(7ea)-

5.4 Flag limit sets

We now consider discrete subgroups I' = G.

We recall that the visual limit set A(I') € 0, X is defined as the set of accumulation points
of an(y) orbit 'z = X in the visual compactification X = X U 0, X, i.e. A(T) = Tz N 0, X.
The notion of flag convergence allows to associate to I' in an analogous way visual limit sets in
the flag manifolds associated to G.

Definition 5.32 (Flag limit set). Let I' € G be a discrete subgroup. We define its flag
limit set of type Timod O Tmoa-limit set A, (I') < Flag(7,04) as the set of all limit simplices of
Tmoda-converging sequences in I'. We call A, (I') < dpX the chamber limit set of T.

In other words, A, (T) is the set of accumulation points Tz N Flag(7neq) of an(y) orbit
'z ¢ X in the 7,,,¢4-bordification X U Flag(7,04)-

Remark 5.33. (i) A, (') is compact and I'-invariant.

(ii) A, ,(I') is nonempty if and only if I' contains a 7,,,4-regular sequence v, — o, i.e. if
part of the I'-action on Flag(7.q) is contracting. In particular, A, (I') is nonempty if I' is an
infinite 7,,,¢-regular subgroup.

(iii) If I' is uniformly 7,,.4-regular, then A, (I') is the image of A(I') under the natural
projection 02 "X — Flag(Timod)-
(iv) If 7),04 S Timod, then A, (') maps onto A, (I') via the natural forgetful projection

Flag(Tmeq) — Flag(7 )

mod

For sufficiently generic subgroups the limit sets are perfect and the groups act on them
minimally:

Proposition 5.34 (Minimality and perfectness). Suppose that A, ,(I') # & and that for
all X € A, (T') and 7 € Flag(Tmea) we have It n C(N) # &. Then A, (') is the unique
minimal nonempty T'-invariant compact subset of Flag(Tmoea)-

If in addition A, . (I') is infinite, then it is perfect.

Proof. Let Ay € A, (I'). For minimality, we must show that A, is contained in the closure
of every I'-orbit I'7 in Flag(7,,,4). By definition of the limit set, there exists a 7,,,4-regular

sequence (7,) in I' such that ! SR A+ with some A_ € A, (T), and hence 7' — A4 locally
uniformly on C()\z). By assumption, we have I't n C(\_) # . It follows that A\, € I'r.

It remains to show perfectness. Suppose that A, (') contains isolated points. The non-
isolated limit points (simplices) form a closed subset which, by minimality, must be empty.
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Hence, all limit points are isolated and, by compactness, the limit set is finite. O

Remark 5.35. (i) The condition that every I'-orbit on Flag(7,,,q4) intersects every open Schu-
bert stratum is satisfied by Zariski dense subgroups I'. Indeed, the action G — Flag(7,0q4) is an
algebraic action of a semisimple algebraic group on a projective variety. In this setting, Zariski
dense subgroups of G have Zariski dense orbits (because the Zariski closure of a subgroup pre-
serves the Zariski closure of any of its orbits). So, no orbit can avoid an open Schubert stratum
because its complement, a Schubert cycle, is a subvariety. If A, (I') is nonempty and finite,
then T' is virtually contained in a parabolic subgroup and can therefore not be Zariski dense.
Hence, the proposition applies in particular to Zariski dense 7,,,4-regular subgroups.

(ii) Essentially the same notion of limit set had been introduced and studied by Benoist
in [Ben|. He showed that for Zariski dense subgroups I' the chamber limit set A, (I") (and
hence every T,,,q-limit set) is nonempty, perfect and the I'-action on it is minimal, see [Benl,
3.6]. Furthermore, the attractive fixed points of the proximal elements in I', cf. Remark 510 lie
dense in the limit set. The minimality of the I'-action on A,,__ (I') implies that the intersection
of the visual limit set A(I') with every limit chamber o € A, __ (') is independent of o modulo
the canonical mutual identifications of Weyl chambers, in other words, the set of types [(T") :=
0(c N A(T")) € 0pnoa is independent. One of the main results of [Ben| regarding the structure
of limit sets of Zariski dense subgroups I' asserts that {(I") is convex with nonempty interior,
see [Benl, 1.2-1.3]. (We will not use this result in our paper.) In particular, if I is uniformly
regular and Zariski dense in G, then A(T") is I-equivariantly homeomorphic to the product
[(T) x A,,,(I'). This product decomposition comes from the fact that 059X splits naturally
as the product of dpX and the open simplex int(c,,,q). We note that the Zariski density
assumption not used in our paper, is essential to Benoist’s work. On the other hand, 7,,,4-
regularity assumptions which are key for us, play no role in [Ben].

(iii) There are other notions of limit sets for actions of discrete subgroups of G' on partial
flag manifolds, see [CNS] for details.

Remark 5.36. We recall that the limit set of a discrete isometry group of a rank 1 symmetric
space either consists of < 2 points or has cardinality of continuum. Situation in the case of
symmetric spaces of rank > 2 is different: It may happen that flag limit set i finite with more
than two points. For a specific example, let I' € G be a virtually abelian discrete subgroup
which preserves a maximal flat F' < X, and acts on F' cocompactly and such that the action
' ~ 0, F is via the Weyl group of G. Then for every face type 7,04 the flag limit set A, (I
is finite and consists of the type 7,4 flags in d F. Clearly, the group I' therefore satisfies the
assumptions of the first part of Proposition (.34

5.5 Antipodal subgroups

In the remainder of this paper, we will only consider weakly regular subgroups whose limit set
satisfies the following natural additional property.

Definition 5.37 (Antipodal). A subset of Flag(7,.q) is antipodal if it consists of pairwise
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opposite simplices. A discrete subgroup I' © G is Tyeq-antipodal if A, (I') is antipodal.

It would be nice to know whether or not weak regularity implies antipodality. We currently
have no examples of 7,,,4-regular discrete subgroup I' © G which are not 7,,,4-antipodal.

For antipodal subgroups, the attraction-repulsion dynamics on flag manifolds as given by
Proposition implies convergence dynamics on the limit set (also without the assumption
of weak regularity). We obtain the following version of Proposition [5.34}

Proposition 5.38 (Dynamical properties of antipodal subgroups). Let I' < G be a
Tmod-antipodal discrete subgroup. Then the action I' ~ A, (') is a convergence action.

If in addition |A._ ,(I')| = 3, then the convergence action I' ~ A, (I') is minimal and

A, (T') is perfect.

Tmod

Proof. The argument is similar to the proof of Proposition 5341 Let Ay € A, ('), and let
(7) be a Tea-regular sequence in T’ such that v*' — A; locally uniformly on C'(\;) with
A_ e A, (). Due to antipodality, A, (I') n C(As) = A, (I') — {As}. This establishes the
convergence property.

If A, ,(T') has at least three points, the minimality of the I'-action on A, (I') and the
perfectness of A, (I') follow from results by Gehring-Martin and Tukia, cf. Proposition3.8 O

Tmod Tmod

Remark 5.39. Under the assumptions of the proposition, let A < Flag(7,,0,q4) be a nonempty I'-
invariant compact antipodal subset. Then A, (I') < A, compare Proposition[5.34] and I' —~ A
is a convergence action. The argument is the same as in the proof of the last proposition.

6 Asymptotic conditions for discrete subgroups

6.1 Conicality
6.1.1 Conical convergence

Following the notion of conical convergence at infinity for sequences in rank one symmetric
spaces, we will say that a flag converging sequence converges conically if it goes straight towards
its limit flag in a suitable sense. In the context of flag convergence it is natural to require the
sequence to stay within bounded distance not from a geodesic ray but from the Weyl cone over
the star of its limit flag.

Definition 6.1 (Conical convergence). We say that a 7,,,4-converging sequence in X con-
verges conically to its limit flag 7 € Flag(7,,0q4) if it is contained in a certain tubular neighbor-
hood of the Weyl cone V' (x,st(7)). Similarly, we say that a 7,,,4-converging sequence (g,,) in G
converges conically if an(y) orbit (g,x) in X converges conically.

In other words, the convergence of a sequence in X or GG is conical with limit flag 7 if and
only if the constant sequence (7) is a shadow sequence.
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We will need later the following observation.

Lemma 6.2. A flag converging sequence x, BN converges conically if and only if it is
contained in a tubular neighborhood of a parallel set P(T,7) for some simplex T opposite to T.

Proof. Suppose that (x,) is contained in a tubular neighborhood of P(7,7). Then there exist
ideal points &, € 0 P(7,7) such that x, has uniformly bounded distance from the rays z¢,,
where © € P(7,7) is some base point. Since 0., P(7,7) is a top-dimensional subbuilding of
0 X, the points &, are contained in chambers o, < 0y, P(7,7). The type Teq faces of these
chambers then form a shadow sequence of (z,). Hence there exists a shadow sequence (7;,) of
(z,) consisting of simplices 7,, € 0y P(7,7). Since 7 is isolated among the type 7,4 simplices
in 0, P(7,7), compare Lemma 2.9] the convergence 7,, — 7 implies that 7,, = 7 for large n. O

6.1.2 Recognizing conical convergence at infinity

As it is the case for flag convergence, also the conicality of the convergence can be read off the
dynamics at infinity, namely it can be recognized from the dynamics on pairs of flags.

Suppose that the sequence (g,) in G flag converges, g, L, 7. Then there exists a contraction
sequence for (g,') which exhausts C(7), cf. Lemma Hence the orbits (g, !7) for all
simplices 7 € C(7) are asymptotic to each other. (More generally, this remains true for all
sequences (g, '7,) where (7,) is a bounded sequence in C(7).) However, there is in general
no control on the asymptotics of the orbits of the other simplices 7 € Flag(70a) — C(7), in
particular of the orbit (g, 7).

We will now see that g, BEN conically if and only if the orbit (g, '7) stays away from the
orbits (g, '7) for 7 € C(7) in the sense that the sequence of pairs g, !(7,7) is bounded in the
space

(Flag(Tmod) X Flag(Tmea))™ < Flag(Tmoed) X Flag(Tmod)

of pairs of opposite flags of type 7,00 = 0(7).

Lemma 6.3. A set of opposite pairs A < (Flag(Tmoa) %X Flag(Tmea))?? is bounded if and only
if the corresponding family of parallel sets P(t_, 1) in X for (1_,74) € A is bounded, i.e.

sup d(z, P(1_,74)) < +©

(t—,71)eA

for a base point x.

Proof. The forward direction can be deduced from the fact that (Flag(Tmea) % Flag(7mead))" is
a homogeneous G-space. Indeed, if A is bounded, then there exists a compact subset C' < G
and a reference pair ag = (75 , 75" ) such that A = Cag. It follows that the parallel sets P(7_, 1)
for (7_, 7, ) € A intersect the compact set Czg, where xq is a point in P(r, ,75").

For the converse direction we use that the set of triples (7_, 2, 7, ), such that 74 are simplices
of type Timoq Opposite to each other with respect to the point 2’ € X, is still a homogeneous G-
space. As a consequence, every parallel set P(7_, 7, ) intersecting the ball B(xg, R) is of the form
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gP(7y .74 ) with g such that d(zg, gz¢) < R, i.e. g belongs to a compact subset of G. It follows
that the set of these pairs (7_,7,) = (75,75 ) is bounded in (Flag(7eq) X Flag(mmoq))??. O

Proposition 6.4 (Recognizing conical convergence at infinity). Suppose that the se-

quence (gn) in G flag converges, g, St Then the following are equivalent:

(i) gn A conically.

(ii) For some flag 7 € C(1), the sequence of pairs g, (7,7) is bounded in (Flag(Timoed) X
Flag(Timoa)) 7" .

(ii’) For any bounded sequence (7,) in C(7), the sequence of pairs g, (7, 7,) is bounded in
(Flag(Timoa) % Flag(Tmoaq))P.

Proof. Let (7,,) be a bounded sequence in C(7), i.e. as a subset it is relatively compact. Then
the set of pairs (7,7,) is bounded in (Flag(7,q4) % Flag(7imea))?, and hence the family of
parallel sets P(7,7,) is bounded, i.e.

supd(z, P(7,7,)) < +©

n

for a base point z, cf. Lemma We have the estimate
d(z, g, P(1,7)) = d(gaz, P(7,7,)) < d(gn, V (2, 5t(7)) + d(z, P(7,7,)),

using that st(7) < 0, P(7,7,) and hence d(-, P(T,7,))|v (zst(r)) is maximal at z.

The right hand side is bounded iff g, — 7 conically. The left hand side is bounded iff the
sequence of pairs g, '(7,7,) is bounded in (Flag(T,ea) x Flag(Tmeq)), again by Lemma
This shows the implication (i)=>(ii’).

Conversely, assume the weaker condition (ii). Then the sequence (g,x) is contained in a
tubular neighborhood of P(7,7) and Lemma [6.2] implies (i). O

6.1.3 Conical limit set

Conicality is a condition on the asymptotic geometry of the orbits of a discrete subgroup I' = G,
namely on how limit flags can be approached by sequences in orbits 'z < X.

Following the definition of conicality in the rank one case, cf. section [, a limit point £ €
A(T) € 0, X may be called ray conical if it is the limit of a sequence of orbit points 7,z which
are contained in a tubular neighborhood of some geodesic ray asymptotic to £&. However, ray
conicality too restrictive in higher rank. It is satisfied by convex-cocompact subgroups, but
these are rare, cf. [KL0OG], and e.g. one can show that RCA Schottky subgroups are, in general,
not ray conical, see section for the construction.

The following notion of conicality considered by Albuquerque [Al Def. 5.2] is more flexible
and useful in higher rank.

Definition 6.5 (Conical limit set). Let I' © G be a discrete subgroup. We call a limit

flag A € A, (I') conical if there exists a 7,,0,4-regular sequence (,) in I' such that ~, B
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conically. The conical Tpoq-limit set A5 (I') = A, (') is the subset of conical limit flags. We
say that I" has conical Toq-limit set or is Tpeq-conical if A, (I') = A& (T).

Tmod

We deduce from Proposition how one can recognize conical limit flags from the dynamics

at infinity, compare the notion of intrinsically conical point in the case of convergence actions
cf. Definition [3.4

Lemma 6.6 (Recognizing conical limit flags). A flag 7 € Flag(7,04) s a conical limit flag
if and only if there exists a Tpoq-reqular sequence () in I' such that

(i) the maps v, '|c(ry converge locally uniformly to a constant map, v, *|c() — 7—, and

(ii) the points v, ‘T converge, v, 't — 7_, with limit T_ opposite to 7_.

Proof. Let T be a conical limit flag. Then there exists a 7,,,q-regular sequence (7,,) in I" such that
Y BEA conically. By passing to a subsequence we can obtain further convergence properties,

namely that also the sequence (7, ') flag converges (not necessarily conically), 7, J, 7_, and
that v, ' — 7_. Then Proposition [£.29 yields that 7, |c(-) — 7— locally uniformly.

To see that the flags 7 and 7_ are opposite, we use Proposition[6.4l For any flag 7 € C(7) we
have the convergence of pairs 7, *(7,7) — (7_,7_). On the other hand, the proposition implies
that the sequence +, (7, 7) is relatively compact in the space of opposite pairs (Flag(T,oq) X
Flag(7imoa))P". Hence the limit pair (7_,7_) must also lie in this space, i.e. 7 and 7_ are
opposite.

Conversely, suppose that (7,) is a Tiea-regular sequence in I' satisfying (i) and (ii). Then
property (i) implies flag convergence ~,, J, 7, compare Lemma [5.28 and we can apply Propo-
sition It follows that v, SN conically. O

Remark 6.7. As mentioned in the proof, property (i) implies flag convergence =, 7, T,
compare Lemma [5.28, and in particular that 7 is a limit flag, 7€ A, (I).

6.1.4 Comparing extrinsic and intrinsic conicality

If I' © G is a Tpeg-antipodal discrete subgroup, then I' —~ A, (I') is a convergence action,
cf. Proposition (.38, and hence there is a notion of intrinsic conical point for this action, cf.
Definition [3.4l We show now that the intrinsic and extrinsic notions of conicality coincide for
non-elementary weakly regular antipodal subgroups:

Proposition 6.8 (Conical equivalent to intrinsically conical). Let I' ¢ G be a Tpoq-

antipodal Tmeq-reqular discrete subgroup and suppose that |A, (T)] = 3.

Tmod
Then a limit flag in A, (T') is conical if and only if it is intrinsically conical for the
convergence action I' ~ A, (T).

Proof. Suppose that the limit flag A € A, (I") is conical. Then it follows by restricting the
[-action on Flag(7,,,q4) to the convergence action on A,  (I') and applying Lemma [6.6] that A
is intrinsically conical.
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Conversely, suppose that A is intrinsically conical for the convergence action I' ~ A, (T').
Then there exist a sequence v, — o in [ and a pair of opposite limit flags in A_, A€ A, ()
such that 7, '"A — A_and v, 'x, ~ 1)-() — A_ locally uniformly. Note that A, (') —{\} #
& because |A, (T')] = 3.

Now we consider the I'-action on the entire flag manifold Flag(7,,,q). By assumption, I" is

Tmoa-Tegular, and hence in particular the sequence (7,). After passing to a subsequence, we

may assume that ! S, 74+ € Flag(Tnoa), and therefore

+1
Yo lo@s) = T+

locally uniformly, as a consequence of Proposition [5.291 Necessarily, 74 € A, (T').

We first observe that 7. = A. Indeed, assume that 7, # A\. Then A, (') —{A\} and C(7y)

cover A, (). Since [A, (T)] = 3, they also intersect and it follows that -, ' converges

uniformly on the entire limit set A, (I') to a constant map, which is absurd. So, v, NG
() —{A} = C(X\) we have
Y (A, A) = (A, A_). Such limit flags A # \ exist, and implication (ii)=(i) of the proposition

Now we can apply Proposition For every limit flag Ae A

yields that ~, EEIY conically, i.e. A is conical. O

6.1.5 Expansion at conical limit flags

If a weakly regular sequence (g,) in G flag converges, g, NEARYS Flag(7moa), then its sequence
(g;') of inverses admits an expansion sequence (V) in Flag(7,,,q¢) with V.- — 7, see Propo-
sition 5.14Yii). We will show now that, if the convergence is conical, then there is a stronger

form of expansion at 7 for the dynamics of (¢g,7') on Flag(Tmeda)-
Generalizing the definition of expansion point for a group action, cf. Definition B from

groups to sequences, we say that the sequence (g, !) in G is ezpanding on Flag(T,.q) at 7 if

lim e(ggl,T) = 400
n—-+0o0

with respect to an auxiliary Riemannian metric on Flag(7,,0¢). This implies in particular that
for large n the map g, ! is uniformly expanding on some neighborhood V;, of 7 in Flag(7,neq)
with expansion factor ¢, — +oo0.

Lemma 6.9. If a T,,0q-reqular sequence (g,,) in G flag converges conically, gy, Jre Flag(Tmod),
then the sequence (g, ') is expanding at T.

Proof. By assumption, the orbit sequence (g,z) for a point z € X is contained in a tubular
neighborhood of the Weyl cone V' (z,st(7)) and, due to 7,,,¢-regularity, we have that

lim d(gnz,dV(x,st(1))) = +oo.

n—-+0o0

Corollary 255 implies that the infinitesimal expansion of g, ! at 7 becomes arbitrarily strong,

. -1 N
nETQQ E(gn aT) =+
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(with respect to the auxiliary Riemannian metric on Flag(7,,0q)). Thus for sufficiently large n,
the map g, ! is uniformly expanding with arbitrarily large expansion factor on some neighbor-
hood of 7. O

Applied to group actions, the lemma yields:

Proposition 6.10 (Expansion at conical limit flags). Let ' ¢ G be a discrete subgroup.
If the limit flag A € A, (') is conical, then the action I' —~ Flag(7med) is expanding at X. In
particular, if I' has conical flag limit set A, ,(T'), then the action I' —~ Flag(Tea) is expanding
a/t ATmod (F> °

6.2 Equivalence of certain asymptotic conditions

In section Ml we discussed discrete groups of isometries on symmetric spaces of rank one and
formulated a number of conditions (C2-C10) which are equivalent to convex cocompactness.
We will now generalize some of these conditions to weakly regular discrete groups in arbitrary
rank and show that they remain equivalent to each other.

The first condition generalizes the conical limit set property (C2) in rank one:

Definition 6.11 (RCA). We call a discrete subgroup of G 7,,0q-RCA if it is T,04-regular,
Tmod-conical and 7,,,q-antipodal. We call it weakly RCA if it is 7,,,g-RCA for some 7,,,q4, and
RCA if it is 0,,0,4-RCA.

In this section we prove that weakly RCA groups are word hyperbolic and that their 7,,,4-
limit set is equivariantly homeomorphic to their Gromov boundary. We will also prove a con-
verse of this result and establish a similar equivalence of between weak RCA and an expansion
property (subject to 7,,.¢-regularity and antipodality conditions).

The second condition generalizes condition C6 in rank one, requesting that the subgroup is
intrinsically word hyperbolic and its limit set is an equivariantly embedded copy of its Gromov
boundary as a word hyperbolic group:

Definition 6.12 (Asymptotically embedded). We call an 7,,,4-antipodal 7,,,4-regular dis-
crete subgroup I' © G T,,0q-asymptotically embedded if T' is word hyperbolic and there exists a
I'-equivariant homeomorphism

a: 0,0 5 A, (T) < Flag(Timod) (6.13)

of its Gromov boundary onto its 7,,,¢-limit set.

Note that in view of the minimality of the action on the flag limit set, cf. Proposition [5.38]
it suffices to assume that « is an equivariant embedding into A, (T').

The terminology “asymptotically embedded” is justified by the next observation which can
be understood as saying that for asymptotically embedded subgroups the orbit maps I' — 'z <
X continuously extend to maps I' — X U Flag(7,,0q) from the visual compactification of the
group to the bordification of X:
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Lemma 6.14 (Continuity at infinity). Suppose that ' € G is Tpeq-asymptotically embedded
and |A, ()| = 3. Then a sequence 7, — 0 in I' converges to ¢ € ..l if and only if, as a
sequence in G, it flag converges to o(C) € A, ().

Note that the assertion may fail when I' is elementary (as a hyperbolic group), for instance
when I is cyclic and hence acts trivially on its ideal boundary d,I" which consists of two points.

Proof. We use the characterization of flag convergence in terms of the dynamics at infinity and
the analogous fact for hyperbolic groups.

Suppose that the assertion is wrong. Then there exists a sequence 7, — oo in I' such that
() in G, but A # a(¢). According to Lemma[5.28] this means
that (v, ') admits contraction sequences (U,,) on Flag(7,,04) opposite to A, U, = C()), and (U})
on d,.I" opposite to ¢, U’ < d,.I" — {¢}. Due to antipodality, (a~1(U,)) is another contraction
sequence on 0, [, but opposite to a~!(\) # (. It follows that for large n the subsets U/ and
(T)] = 3, intersect. This implies that 7, !(0,I)
shrinks to a point, a contradiction. O

%—>Cinfand%i>)\e/\

a~1(U,) cover 0,I" and, since |0,,I'| = |A

Tmod

Our third condition extends the expansion at the limit set property (C10) to higher rank:

Definition 6.15 (Expanding at infinity). We call a 7,,,4-antipodal 7,,,4-regular discrete
subgroup I' € G Teq-ezpanding at infinity if the action I' —~ Flag(7,,,4) is expanding at
A, (I") (with respect to a Riemannian background metric).

We note that it is plausible that in the three definitions above the antipodality assumption
is implied by regularity and hence redundant.

Theorem 6.16 (Equivalence of asymptotic conditions). Suppose that I' = G is a Tpeq-
antipodal Tpeq-regqular discrete subgroup such that |A, (I')| = 3. Then the following are equiv-
alent:

(i) T is Tpoa-RCA.
(11) T' 1S Tioq-asymptotically embedded.

(111) T is Tioq-expanding at infinity.

Proof. Due to the equivalence of the intrinsic and extrinsic notions of conicality, see Proposi-
tion [6.8] property (i) is equivalent to A,  (I') being intrinsically conical for the convergence
action I' ~ A, (T).

Suppose that A, (') is intrinsically conical. According to Proposition 538, A, (I') is
perfect. Therefore, we can apply Bowditch’s Theorems and B3 (A, (') is metrizable
as a subset of the manifold Flag(7,,04).) Theorem implies that the convergence action
I' = A, (') is uniform, and Theorem [3.3] implies property (ii). The converse implication
holds because the action of a word hyperbolic group on its Gromov boundary is intrinsically
conical. Hence (i) and (ii) are equivalent.

The equivalence with (iii) can be seen as follows. The (extrinsic) conicality of A, (I")
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implies that the action I' —~ Flag(7,04) is expanding at A, ('), see Lemma Vice versa, if
the action I' —~ A, (I') is expanding, then A, (I') is intrinsically conical by Lemma 37 O

Corollary 6.17. IfT" © G is Tyoq-RCA 07 Tinoq-expanding at infinity, then it is word hyperbolic.

6.3 Boundary embeddings

The asymptotic embedding property requires an equivariant embedding from the Gromov
boundary to the 7,,,¢-limit set of an intrinsically word hyperbolic 7,,.4-regular discrete sub-
group. In this section we consider a weakening of this property.

Definition 6.18 (Boundary embedded). Let I' be a non-elementary (i.e. not virtually
cyclic) word hyperbolic group. We say that an isometric action p : I' =~ X is 7y,0q-boundary
embedded if there exists a ['-equivariant continuous embedding

B : 0" = Flag(Tmod)- (6.19)

which maps different boundary points to opposite flags.

Note that such actions are necessarily properly discontinuous, because I' acts on f(0,I") as
a discrete convergence group. Henceforth, we identify I' with its image in G.

Note moreover, that we do not a priori assume that the subgroup I' © G is 7;,0,4-regular.
Even if it is 7;,0,4-regular, boundary embeddedness is a priori weaker than asymptotic em-
beddedness, because it does not assume that 5(0,I) < A, (') or that I' is 7,,,4-antipodal.
Nevertheless, in the case 7,00 = Omoq We Will show that being boundary embedded and regular
implies the stronger asymptotic embeddedness property, see Proposition below. Further-
more, one can show the same implication for arbitrary 7,,,¢ and Zariski dense subgroups (cf.
[GW]), but we will not prove this in our paper.

Note also that for 7,,,4-asymptotically embedded groups there are in general other equivari-
ant embeddings 0,,I" — Flag(7,,04) besides the one onto the 7,,,4-limit set, even if 7,00 = Tmod:

Example 6.20 (Nonuniqueness of boundary maps). One can construct totally geodesic
embeddings Y — X of symmetric spaces, e.g. of equal rank > 2, such that for the induced
boundary map at infinity d,Y < 0, X Weyl chambers of Y break up into several Weyl cham-
bers of X. Then there are several induced embeddings 0rY < 0r X of Fiirstenberg boundaries.
As a consequence, for suitable hyperbolic groups I' acting on Y one obtains several equivariant
embeddings 0,I" — dpX.

For instance, consider the embedding of Weyl groups Wy4,,4, € Wp, and the corresponding
refinement of Coxeter complexes where an A; o A;-Weyl arc of length 7 breaks up into two Bs-
Weyl arcs of length 7. Let ¥ < X be an isometric embedding of symmetric spaces inducing
this embedding of Weyl groups, and H < G a corresponding embedding of semisimple Lie
groups, for instance, SO(2,1) x SO(2,1) € SO(4,2). The symmetric space Y is reducible and
decomposes as a product of rank one spaces, Y =~ Y; x Y5. Accordingly, its Tits boundary
decomposes as a spherical join, Or;Y = OrisY1 © OrisYo. The Weyl chambers of Y are arcs
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§10& of length & with endpoints &; € d,,Y;. The embedding 0,Y < dx X of visual boundaries
sends the Weyl chamber & 0&5 to an arc denoted by &£;&. With respect to the spherical building
structure on 0, X it decomposes as the union of two Weyl chambers &u of length 7, where
 is the midpoint of £;&. We see that there are two H-equivariant continuous embeddings of
Fiirstenberg boundaries ¢; : dpY < 0drX obtained by assigning to each Weyl chamber &; o &
of Y its half &pu of type i. The embeddings send opposite chambers to opposite chambers. It
is easy to construct regular Schottky subgroups I' € H which remain regular in G, and by
composing the embeddings d,I" — drY with ¢;, one obtains two ['-equivariant embeddings

O’ — 0pX mapping distinct boundary points to opposite chambers.

6.4 Coarse extrinsic geometry

In this section we study the coarse geometry of discrete subgroups I' © G satisfying one of
the asymptotic conditions introduced above, i.e. one of the three equivalent conditions “RCA”,
“asymptotically embedded” and “expanding at infinity” or the weaker condition “boundary
embedded”. Note that such subgroups are intrinsically word hyperbolic and hence finitely
generated, see Corollary and Definition We will show that RCA subgroups are
undistorted, i.e. that the orbit maps ' — 'z € X are quasi-isometric embeddings. Equiva-
lently, they send uniform quasigeodesics in I' to uniform quasigeodesics in X. We will in fact
prove a stronger form of undistortion, namely that the images of quasigeodesics in I' under the
orbit maps satisfy a generalized version of the Morse Lemma (for quasigeodesics in negatively
curved spaces): the images of quasirays stay close to Weyl cones. This is indeed a strong further
restriction because in higher rank quasigeodesics are quite flexible.

6.4.1 Boundary embedded groups

In this section we consider boundary embedded groups; this is a weakening of the asymptotic
embeddedness which will be, however, sufficient for establishing some some preliminary control
on the images of quasigeodesics in I' under the orbit maps, namely that they are uniformly
close to parallel sets.

Let I' € G be a 7,0g-boundary embedded discrete subgroup. The boundary map S : d,I" —
Flag(7imoq) induces a map (3, 5) of pairs of boundary points. By assumption, (3, 5) maps pairs
of distinct boundary points into the open dense G-orbit

(Flag(Tmod) X Flag<7—mod))opp - Flag(Tmod> X Flag<7—mod)

consisting of the pairs of opposite flags, and we obtain a continuous I'-equivariant embedding

(0 % 2,T) — Diag 22 (Flag(moa) * Flag(Tmoa)) 7.
Here and in what follows, Diag denotes the diagonal in the product.

Lemma 6.21. An (L, A)-quasigeodesic q : Z — T" with ideal endpoints (4 € 01" is mapped by
the orbit map I' — 'z < X into a tubular neighborhood of uniform radius r = r(I', L, A, x) of

the parallel set P(5(C-), B((+))-
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Proof. We consider the map from the space of (L, A)-quasigeodesics ¢ : Z — I' to the space
(Flag(Tmoa) % Flag(Timea) )" x X,

assigning to ¢ the pair consisting of the (directed) parallel set P(5(q(—0)), 5(q(+0))) and
the orbit point ¢(0)x. This map is I-equivariant and continuous, where the space of (L, A)-
quasigeodesics is equipped with the topology of pointwise convergence. (The continuity of
the assignment ¢ — (q(—0), g(+0)) uses the Morse Lemma in the hyperbolic group I'.) By
composing this map with the distance between ¢(0)z and the parallel set, we obtain a I'-
periodic continuous function on the space of (L, A)-quasigeodesics. Since I' acts cocompactly
on this space (by Arzela-Ascoli), this function is bounded. The assertion follows by shifting the
parametrization of q. O

6.4.2 The regular case

We restrict now to the case T4 = Omod, i-€. Wwe assume that the subgroup I' is 7,,,4-boundary
embedded. In particular, it is then regular. Our proofs, while less general, will be more
straightforward and motivate the more difficult arguments for general 7,,,; and asymptotically
embedded subgroups in section below.

According to Lemma [6.21], the images of quasigeodesics in I under the orbit maps are now
uniformly close to maximal flats; a quasigeodesics asymptotic to a pair of ideal points (4 € do I’
is mapped into a tubular neighborhood of the maximal flat F'(3((_), 8({+)) asymptotic to the
pair of opposite chambers 5(¢_) and 5((; ). The next result restricts the position of the image
along the maximal flat. Namely, the images of quasirays are uniformly close to euclidean Weyl
chambers and move towards limit chambers at infinity:

Lemma 6.22. There exists a I'-equivariant embedding ' : 0.I' — A, (') € 0pX sending
distinct ideal points to antipodal chambers, such that for every (L, A)-quasigeodesic q : Z — T
with ideal endpoints (+ we have

(i) B'(C+) = 0 F(B(C-), B(C))-
(i1) q(m £ n)z is contained in a tubular neighborhood of uniform radius v = r'(I', L, A, x)
of the euclidean Weyl chamber V(q(m)x, 5'((+)) for m,n € N.

Proof. Let q: Z — T be an (L, A)-quasigeodesic. By Lemmal[6.21], g(m +n)x is contained in the
r(I', L, A, x)-neighborhood of the maximal flat F'(5(¢-), 8((y+)) and hence (by the triangle in-
equality) in the 2r(I", L, A, x)-neighborhood of the euclidean Weyl chamber V (q(m)x, o(m, +n))
for some chamber o(m, £n) < 0, F(B(¢-), B((+)).

The regularity of I' implies that for every D > 0 we have
d(da(x,~vx),0A) = D (6.23)

for all v € I" with dr(v,e) = R = R(I', dr, z, D). Here dr denotes a word metric on I'.

It follows that o(m,+n) stabilizes as n — +00 independently of m, ie. o(m,+n) =

o(m, too) for n = n(I', L, A, x). In particular, we have chamber convergence q(m + n)x J,
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o(m, £0o0). Since any two asymptotic quasirays in I" have finite Hausdorff distance from each
other, the chamber limit o(m, +o0) depends only on (1. Putting 8'(¢+) = o(m, +0), we thus
obtain a well-defined map £’ : d,,I' = A, _,(I') € drpX satisfying properties (i) and (ii).

The equivariance of ' is clear from the construction. To verify its continuity, we argue
by contradiction. Suppose that ¢, — ¢ in d.I', but 5'({x) — o # §(¢) in dpX. Since I is
a word hyperbolic group, there exist uniform quasigeodesics g : Z — I' with ¢(0) = 1r and
qr(+00) = (. After passing to a subsequence, we may assume that they converge (pointwise)
to a quasigeodesic ¢ : Z — I' with ¢(0) = 1 and ¢(+o0) = {. Then there exists a sequence of
natural numbers n; — +00 such that the points gx(ny) are contained in a tubular neighborhood
of the quasiray ¢(N), i.e. gx(ny) — (¢ conically. Using property (ii), it follows that both the
sequence of chambers (4'(())) and the constant sequence (5'(()) are shadow sequences in 0p X
for the sequence (gx(ng)z) of points in X. The asymptotic uniqueness of shadows (Lemma [5.T5])
implies that 8'(¢x) — £'((), contradicting our assumption. We conclude that 5’ is continuous.

It remains to verify that ' is antipodal. If (4 € 0" are distinct ideal points, then there
exists a quasigeodesic ¢ asymptotic to them, ¢(+o0) = (4. For the nearest point projection g
of gz to F(B((-),B((+)) we have for large n that g(+n) € V(g(Fn), 8'((+)) and the segment
G(—n)@(n) is regular. This implies that the chambers §'({s) are opposite to each other. O

Using the information on quasirays, we can now show that the image of the modified bound-
ary map [’ fills out the chamber limit set. We conclude that the weaker asymptotic condition
of boundary embeddedness already implies the stronger ones in the regular case:

Proposition 6.24 (Boundary embedded regular implies asymptotically embedded).
FEvery opmoq-boundary embedded discrete subgroup I' € G is 00q-asymptotically embedded.

Proof. Lemma yields that '(0,I) < A, ,(I'). It suffices to prove that A, ,(I') =
B'(00T).

The argument is similar to the proof of the continuity of 5’ in Lemmal6.22l Let o € A, (I")
and let (7,) be a sequence in I chamber-converging to o, 7, L, 5. Since T is word hyperbolic,
there exists a sequence of uniform quasigeodesics ¢, : Z — I such that ¢,(0) = 1p and
Yn € qn(N). Let (, € 0,I" denote their forward ideal endpoints. According to Lemma [6.22] the
distance from v,z to the euclidean Weyl chamber V(x, 5(¢,)) is uniformly bounded. Hence
(B'(¢n)) is a shadow of (v,z) in drX, and Lemma implies that f'((,) — o. Thus o €
B'(0T). O

Remark 6.25. (i) Since both embeddings  and /3’ are continuous and I'-equivariant, the
relative position (see [KLP|) pos(f’, ) : 0" — W is continuous (locally constant) and I'-
periodic. For nonelementary hyperbolic groups I'" this map must be constant, because the
action of a nonelementary word hyperbolic group on its Gromov boundary is minimal.

(ii) One can show that if I is Zariski dense in G then g = ', cf. |[GW].
(iii) On the other hand, in general, 5 and 5’ can be different as Example shows.

We take up again the discussion of the coarse geometry of the orbit map. Elaborating on
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part (i) of Lemma [6.22] we will see next that the images of quasirays, since they must stay
close to euclidean Weyl chambers, they are forced to move out to infinity at a linear rate.

Definition 6.26 (O-regular quasigeodesic). Let © < 0,,,¢ be a compact subset. A discrete
quasigeodesic p : [ nZ — X is (s, 0)-regular if for every m,n € I nZ with |m —n| > s the
segment p(m)p(n) is ©-regular.

Lemma 6.27. For every (L, A)-quasigeodesic q : Z — T, its image qz in X is an (s, O)-reqular
discrete quasigeodesic with s, a compact subset © < int(0,,04) and quasi-isometry constants
depending on I', L, A, x.

Proof. Since T is a discrete subgroup of GG, the distance between orbit points can be bounded
from below in terms of the word metric, i.e. there is an estimate of the form

d(yz,~'x) = fo(dr(7,7"))
with f,(t) — +o0 as t — +00. As a consequence, for p > 0 we have d(q(m)x,q(m +n)z) = p
for n = n(f., L, A, p).

As before, let (4 € 0" denote the ideal endpoints of q. We consider the nearest point
projection g of gz to F(B((-),5(¢y)). Choosing p » r(I', L, A, z),r'(I', L, A, z) and invoking
again the regularity of I, cf. (€.23), we obtain as in the end of the proof of Lemma [6.22] that

q(m +n) e V(q(m), 5'(¢+)) (6.28)

for n = n/(I', L, A, x). It follows that along the coarsening G|,z of g, the A-distances between
its points are additive in the sense that

da(q(ma), 4(mz)) + da(q(mz), g(ms)) = da(q(ma), q(ms)) (6.29)
if m3—msg, mo—my = n'. In particular, ¢ and hence gz is a ©-regular uniform quasigeodesic. [

We summarize the properties of asymptotically embedded subgroups I' established in the
previous two lemmas:

(i) For some (every) x € X there exists a constant r such that for every discrete geodesic ray
q : N — T, the points g(n)x belong to the r-neighborhood of the Weyl cone V' (¢(0)(z),st(7))
for some 7 € Flag(7,,04) depending on q.
(ii) For all sequences 7, — oo in I', all subsequential limits of the quantities
—da (o, 00)
—da (T, Yo
|7l

are in the interior of the cone V' (0, st(704)), Where |v,| denotes the word length of 7, € I'.
As a consequence of Lemmata [6.22] [6.27), we obtain:

Theorem 6.30 (Coarse geometric properties of boundary embedded regular sub-
groups). Let I' € G be a 0,,04-boundary embedded discrete subgroup. Then I' is opoq-asymp-
totically embedded, uniformly reqular and the orbit maps I' — T'e < X are quasi-isometric
embeddings.
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Proof. Since I' is word hyperbolic, through any two elements -, € I' there exists a complete
quasigeodesic q : Z — I' with uniform quasi-isometry constants L, A. The assertion then follows
from Lemma [6.27] 0

6.4.3 Asymptotically embedded groups

In this section we prove a version of the results of the previous section for 7,,,4-regular subgroups,
under the stronger assumption of asymptotic embeddedness.

Let I' © G be 7,04-asymptotically embedded, and let o : d,.,I' = A, (I") be the equivariant
homeomorphism. Lemma[6.21] holds for o. We will now obtain more specific information on the
position of the image gz of the quasigeodesic ¢ under the orbit map, generalizing Lemmal[6.22](ii).

Lemma 6.31. For every (L, A)-quasigeodesic q : 7 — T with ideal endpoints (4, the point
g(m £ n)x is contained in a tubular neighborhood of uniform radius " = r"(I', L, A, x) of the
Weyl cone V(q(m)x,st(a((+))) for m,n € N.

Proof. Due to the continuity at infinity of orbit maps (Lemma [6.14]) we have that ¢(n) J, T4
as n — +00, where we abbreviate 74 = a((4).

According to Lemma [6.27], ¢z is contained in a uniform tubular neighborhood of the parallel
set P(7_,7y). Therefore, the 7,,,4-regular sequence (¢(n)) in I' has a shadow sequence (o,,) in
0rX consisting of chambers o, € 0, P(7_,7,). Taking their type T,,,q faces, one obtains a
shadow sequence (7,) in Flag(7,0q) consisting of simplices 7, < 0o, P(7—, 7). More precisely,
¢(n)x has uniformly bounded distance from V(¢(0)z, 0,) < V(q(0)z,st(7,)). The asymptotic
uniqueness of shadows (Lemma [5.15]) implies that 7,, — 7.

We use now that 7, is isolated among the type 7,,,q4 simplices occurring in 0, P(7_, 7,), see
Lemma 2.9(i). It follows that 7, = 7, for sufficiently large n. This means that the sequence
(¢(n)x) enters a uniform tubular neighborhood of the Weyl cone V' (g(0)x, st(74.)).

It remains to show that the entry time is uniform. We will do this by backtracking, based
on the fact that V(¢(0)x,ost(74)) is an open subset of P(7_,7.). The latter follows from the
fact that ost(r,) is an open subset of 0, P(7_,7,) with respect to the visual topology, see
Lemma 2.9(ii).

Let p, denote the nearest point projection of g(n)z to the parallel set P(7_,7,). Since I'
is Teq-regular, the segment pop, is Tieq-regular for n = n(I', L, A, z). More precisely, given
D > 0, the distance of p, from oV (py,st(7,)) = V(po, Ost(r,)) is at least D provided that
n = ng(D), with ng(D) independent of q. We choose D sufficiently large depending on L, A, =
and r (the constant r from Lemma [6.21]) so that D >> r and d(p,, pnr1) < D for all n and gq.
Hence the sequence p,, cannot enter the cone V (py, st(7,)) after time ng(D), i.e. if p,,1 belongs
to the cone for n = ny(D), then p, itself belongs to the cone. Therefore p, € V (po,st(7y)) for
n = ng(D).

The assertion follows by suitably enlarging the uniform radius of the tubular neighborhood,
e.g. by no(D) - D. O
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The following is an analogue of Lemma [6.27]

Lemma 6.32. For every (L, A)-quasigeodesic q : Z — T, its image qz in X is an (s, O)-reqular
discrete quasigeodesic with s, a compact subset © < 0st(Tioq) and the quasi-isometry constants
depending on I', L, A, x.

Proof. We continue the argument in the previous proof, keeping the notation.

There exists a compact Weyl convex subset © < 0st(T,,0q) depending on I', L, A, x such that
the segments pop,, are ©-regular for all g. This is because there are only finitely many elements
q(0)"*q(no) € T. Moreover, there is a lower bound d(py, pn,) = do = do(T, L, A, ) > 0.

We consider the nearest point projection V(pg,st(ry)) — V(po,71), which can be re-
garded as the restriction of the projection from P(7_,7.) to its Euclidean de Rham factor.
Let p, € V(po, ) denote the projection of p,. Since Pring € V(Pm,st(7y)), it follows that
Pmtng € V(Dm,74). Since © < int(B(&,5)) for any £ € int(7,04) (see Lemma 2.8)), we have
that d(Dm, Pming) = ¢(©)d(Pmy Dimtny) With a constant ¢(©) > 0. Inductively, we obtain that
APy P kng) = ke(Tmoa)c(©)dy for k € N and some constant ¢(7,,04) > 0, compare the proof of
Lemma [6.27]1 This establishes that gx is a uniform quasigeodesic.

The inclusion Pyin, € V(Pm,st(74)) and the O-regularity of p,,pmin, imply that pp,in, €
V(Pm,ste(74+)). Induction and the convexity of ©-cones (Proposition 2.14) yield pyign, €
V (Pm,ste(ry)) for all 0 < k € N. After slightly enlarging © and choosing s sufficiently large
(both depending on I, L, A, x) we obtain that gz is (s, ©)-regular. O

As a consequence we obtain, analogously to Theorem [6.30:

Theorem 6.33 (Coarse geometric properties of asymptotically embedded subgroups).
Let I' € G be a Timoq-asymptotically embedded discrete subgroup with boundary embedding o.
Suppose furthermore that I' is non-elementary as a word hyperbolic group, |0,I'| = 3. Then:

(i) T is uniformly Tpyeq-reqular.
(i1) The orbit maps I' — T'x < X are quasi-isometric embeddings.

(11i) The action I' —~ X s strongly conical in the following sense: For every ( € Oyl
and quasiray q : N — ' asymptotic to (, the image quasiray qr lies in a uniform tubular

neighborhood of the Weyl cone V (q(0)z, st((C))).

The following example shows that being undistorted without further restrictions is a very
weak concept in higher rank, unlike in rank one.

Example 6.34 (Infinitely presented undistorted subgroups). Consider the group Fs x F;
where F5 is the free group of rank 2. Let ¢ : F; — Z be the homomorphism which sends both
free generators of F, to the generator of Z. Let I' < Fy x F5 denote the normal subgroup

I'={(h1, h2) : ¢(h1) = d(ha)}.

Then I' is finitely generated but I' is not finitely presentable (see [BR]). We claim that the
subgroup I is undistorted in F, x F5. Indeed, let w be a path in the Cayley graph of Fy x Fj
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connecting the unit element e to an element v € I'. We will equip Z with the presentation
which is the quotient of the standard presentation of Fy x F5. Then ¢(w) is a loop in Z, which,
therefore, bounds a van Kampen diagram D in the Cayley complex of Z. Since Z has a linear
Dehn function, the diagram D has combinatorial area at most C¢(w), where ¢(w) is the length
of w (which is the same as the length of ¢(w)). Lifting D to the Cayley complex of Fy x F,
results in a van Kampen diagram D bounding a bigon one of whose sides is w and the other is
a path u in the Cayley graph of I. Since D has combinatorial area at most a constant times
the combinatorial area of D, we conclude that

U(u) < C'(w).

Thus, I' is indeed undistorted in Fy x Fb.

Realizing Fy as a convex cocompact subgroup of Isom(H?), we obtain a discrete quasi-
isometric embedding Fy x Fy — Isom(X), X = H? x H2. Then the subgroup I' = Isom(X) is
undistorted and not finitely presentable. On the other hand, since I' is not finitely presented,
there is no coarse Lipschitz retraction X — I'z.

Note that the group I' in this example is not weakly regular.

Theorem [6.33] in particular part 3, can be regarded as a higher rank version of the Morse
Lemma for quasigeodesics in hyperbolic spaces. We will study in section [7] quasigeodesics with
such a Morse property and Morse actions, whose orbit maps send uniform quasigeodesics to
Morse quasigeodesics. We will show that the class of Morse actions coincides with the class
of actions having the strong asymptotic properties discussed in this section (weakly RCA,
asymptotically embedded and expanding at infinity).

6.5 The Anosov condition
6.5.1 Anosov representations

A notion of Anosov representations of surface groups into P.SL(n, R) was introduced by Labourie
in [La06], and generalized to a notion of (P, P_)-Anosov representations I' — G of word hy-
perbolic groups into semisimple Lie groups by Guichard and Wienhard in [GW]. The goal of
this section is to review this definition of Anosov representations I' — G using the language
of expanding and contracting flows and then present a closely related and equivalent definition
which avoids the language of flows.

Let T" be a non-elementary (i.e. not virtually cyclic) word hyperbolic group with a fixed word
metric dr and Cayley graph Cr. Consider a geodesic flow [ of T ; such a flow was originally
constructed by Gromov [G] and then improved by Champetier [C] and Mineyev [Min], resulting
in definitions with different properties. We note that the exponential convergence of asymptotic
geodesic rays will not be used in our discussion; as we will see, it is also irrelevant whether the
trajectories of the geodesic flow are geodesics or uniform quasigeodesics in [. In particular, it
will be irrelevant for us which definition of T is used. Only the following properties of [ will be
used in the sequel:
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1.Tisa proper metric space.
2. There exists a properly discontinuous isometric action I' —~ I

3. There exists a [-equivariant quasi-isometry 7 : [>T ; in particular, the fibers of 7 are
relatively compact.

4. There exists a continuous action R — T , denoted ¢, and called the geodesic flow, whose
trajectories are uniform quasigeodesics in I, i.e. for each m € I the flow line

t — 1y = ¢(1h)

is a uniform quasi-isometric embedding R — I
5. The flow ¢; commutes with the action of I'.

6. Each 7 € I defines a uniform quasigeodesic m : t — m, in I’ by the formula:
my = W(mt)

The natural map
e=(e_,eq):I' > 0, x 0,I' — Diag

assigning to m the pair of ideal endpoints (m_q, m,4) of m is continuous and surjective. In
particular, every uniform quasigeodesic in I' is uniformly Hausdorff close to a flow line.

The reader can think of the elements of I' as parameterized geodesics in Cr, so that ¢; acts
on geodesics via reparameterization. This was Gromov’s original viewpoint, although not the
one in [Min].

We say that 7 € I is normalized if m(m) = 1€ T, Similarly, maps¢:Z - I';and ¢ : N —> T’
will be called normalized if q(0) = 1. It is clear that every m € [ can be sent to a normalized
element of I' via the action of mgtel.

Since trajectories of ¢; are uniform quasigeodesics, for each normalized m € I we have
dr(1,m;) ~ t (6.35)

in the sense that
Cl_lt — (5 < dr(l,mt) < Chit + Cy

for some positive constants C7, Cs.

Let F* = Flag(7> ;) be a pair of opposite partial flag manifolds associated to the Lie group
G, i.e. they are quotient manifolds of the form F* = G/P;, where P, are opposite (up to
conjugation) parabolic subgroups. The conjugacy classes of P; correspond to faces 7., of

the model spherical Weyl chamber ,,,4 related by «(7 ) = 7 . As usual, we will regard

mod*
elements of F* as simplices of type 77, in the Tits boundary of X.

Define the trivial bundles
E* =T xFtf > T.

For every representation p : I' — G, the group I' acts on both bundles via its natural action
on I' and via the representation p on F*. Put a I-invariant background Riemannian metric
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on the fibers of theses bundles, which varies continuously with respect to m € T. We will use
the notation Fi for the fiber above the point m equipped with this Riemannian metric. Since
the subspace of r consisting of normalized elements is compact, it follows that for normalized
m,m’ the identity map

O

is uniformly bilipschitz (with bilipschitz constant independent of m,m’). We will identify I'-
equivariant (continuous) sections of the bundles E* with equivariant maps sy : I' — F*. These
sections are said to be parallel along flow lines if

for all t e R and e T.

Definition 6.36. Parallel sections sy are called strongly parallel along flow lines if for any two
flow lines m, m’ with the same ideal endpoints, we have sy (1) = s4 (/).

Note that this property is automatic for the geodesic flows constructed by Champetier and
Mineyev since (for their flows) any two flow lines which are at finite distance from each other
are actually equal. Strongly parallel sections define I'-equivariant boundary maps

from the Gromov boundary 0d,I" of the word hyperbolic group I' by:

Broey = sy (6.37)
Lemma 6.38. (4 is continuous.

Proof. Let (£7,€%) — (£-,&4+) be a converging sequence in 0,1" x d,,I' — Diag. There exists a
bounded sequence (m™) in [ so that ey (m™) = £}. It subconverges, m™ — m. The continuity
of s4 implies that B4 (&}) = s+(Mm™) — s+(m) = B+(&+). This shows that no subsequence of
(B+(€1)) can have a limit # (4 (£4), and the assertion follows because F* is compact. O

Conversely, equivariant continuous maps [+ define [-equivariant sections strongly parallel
along flow lines just by (6.37)).

Consider the canonical “identity” maps
Dy Fi > F3

) drm”

These maps distort the Riemannian metric on the fibers. Using Definition 2.1 we define the
expansion factor of the flow ¢(t) on the fiber F at the point si () as

€+ (1M, ) 1= €( Py, 51+()),

see Definition 1] for the definition of the expansion factor of a diffeomorphism.
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Definition 6.39. The geodesic flow ¢, is said to be uniformly exponentially expanding on the
bundles E* with respect to the sections s, if there exist constants a,c > 0 such that

€4 (1, £t) = ae”

for all e T and ¢ > 0.

Our next goal is to give an alternative interpretation for the uniform expansion in this
definition. First of all, since the metrics on the fibers are [-invariant, it suffices to verify unlform
exponential expansion only for normalized elements of [. Consider a normalized element 7 € T
and for ¢t € R the composition

Ly Dy y F+ — F;rz{lmt'
Note that m(m; ') = m; 'm; = 1, i.e. both / and m; "1, are normalized. Since the group I’
acts isometrically on the fibers of the bundles E*, the metric distortion of the above composi-
tions is exactly the same as the distortion of @, ;. Furthermore, since, as we noted above, the
metrics on F:fL and Fi,lmt are uniformly bilipschitz to each other (via the “identity” map), the
rate of expansion for tthe above composition is (up to a uniform multiplicative error) the same
as the expansion rate for the map

(Here we are using fixed background Riemannian metrics on F*.) Thus, we get the estimate

Csle(p(myh), Br(mac)) < ex (1) < Cse(p(my ), Br(mac))

for some uniform constant C3 > 1. By taking into account the equation (6.35]), we obtain the
following equivalent reformulation of Definition [6.39

Lemma 6.40. The geodesic flow is uniformly exponentially expanding with respect to the sec-
tions s+ if and only if for every normalized uniform quasigeodesic v : Z — ', which is asymp-
totic to points & = () € d,I', the elements p(y(£n))~" act on Tp, ¢ \F* with uniform
exponential expansion rate, i.e.

e(p(v(£n)) 7!, Be(&r)) = Ae”

for allm e ' and n > 0 with some fized constants A,C > 0.

Proof. There exists a normalized flow line m uniformly close to 7, i.e. y(n) is uniformly
close to my, with ¢, ~ n uniformly. Then mi,, = &4, and e(p(y(£n))™', B+(£+)) equals
e(p(mi ), B+(m4is)) up to a uniform multiplicative error, and hence also ey (i, t1,,). O

Since every uniformly quasigeodesic ray v : N — I' extends to a uniform complete quasi-
geodesic v : Z — I, and in view of Morse lemma for hyperbolic groups, in the above definition
it suffices to consider only normalized integer geodesic rays v: N — I'.

We can now give the original and an alternative definition of Anosov representations.
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Definition 6.41. A pair of continuous maps 3+ : 0,I' — F* is said to be antipodal if it satisfies
the following conditions (called compatibility in [GW]):

(i) For every pair of distinct ideal points (, (" € 05", the simplices 5, (¢), 5-(¢’) in the Tits
boundary of X are antipodal, equivalently, the corresponding parabolic subgroups of G are
opposite. (In [GW] this property is called transversality.)

(ii) For every ¢ € 0,1, the simplices (3, (¢), 5-(¢) belong to the same spherical Weyl chamber,
i.e. the intersection of the corresponding parabolic subgroups of GG contains a Borel subgroup.

Note that, as a consequence, the maps [+ are embeddings, because antipodal simplices
cannot be faces of the same chamber.

Definition 6.42 ([GW]). A representation p : I' — G is said to be (P, P_)-Anosov if there
exists an antipodal pair of continuous p-equivariant maps S+ : 0,I' — F* such that the geodesic
flow on the associated bundles E* satisfies the uniform expansion property with respect to the
sections sy associated to the maps fy.

The pair of maps (5,,[_) in this definition is called compatible with the Anosov repre-
sentation p. Note that a (P., P_)-Anosov representation admits a unique compatible pair of
maps. Indeed, the fixed points of infinite order elements v € I" are dense in d,I'. The maps [+
send the attractive and repulsive fixed points of 7 to fixed points of p(-y) with contracting and
expanding differentials, and these fixed points are unique. In particular, if P, is conjugate to

P_ then f_ = ..

We note that Guichard and Wienhard in [GW] use in their definition the uniform contraction
property of the reverse flow ¢_; instead of the expansion property used above, but the two are
clearly equivalent. Note also that in the definition, it suffices to verify the uniform exponential
expansion property only for the bundle E,. We thus obtain, as a corollary of Lemma [6.40] the
following alternative definition of Anosov representations:

Proposition 6.43 (Alternative definition of Anosov representations). A representation
p: T — G is (Py, P_)-Anosov if and only if there exists a pair of antipodal continuous p-
equivariant maps B+ : 0l — FT such that for every normalized geodesic ray (equivalently, for
every uniformly quasigeodesic ray) v : N — T asymptotic to £ € 0,1, the elements p(y(n))~!

act on T, ()F 4 with uniform exponential expansion rate, i.e.

e(p(y(n)) ™", B4 (€)) = Aem (6.44)

forn = 0 with constants A,C' > 0 which are independent of .

We now restrict to the case that the parabolic subgroups P are conjugate to each other,
i.e. the simplices Tniwd are equal to an t-invariant face 7,004 Of 0y0q. The (P, P_)-Anosov
representations will in this case be called simply P-Anosov, where P = P, or T,,,q-Anosov.
Note that the study of general (P, , P_)-Anosov representations quickly reduces to the case of
P-Anosov representations by intersecting parabolic subgroups, cf. [GW] Lemma 3.18]|. Now,

F* = F = G/P = Flag(tiod)
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and
e =p0:0x0" > F

is a single continuous embedding. The compatibility condition reduces to the antipodality con-
dition: For any two distinct ideal points (, (" € 0, I the simplices 5(¢) and (') are antipodal
to each other. In other words, (8 is a boundary embedding in the sense of Definition

We thus arrive to our definition:

Definition 6.45 (Anosov representation). Let P be a parabolic subgroup which is conju-
gate to its opposite parabolic subgroups, and let 7,,,¢ © Tmoq the corresponding face type. We
call a representation p: I' > G P-Anosov or T,.q-Anosov if it is 7,,,4-boundary embedded (cf.
Definition [6.18]) with boundary embedding g : d,,I' — F = G/P such that for every normalized
geodesic ray ¢ : N — I' asymptotic to ¢ € d,I', the elements p(g(n))~! act on TyF with
uniform exponential expansion rate, i.e.

e(p(q(n))™, B(C)) = Ae"

for n > 0 with constants A, C' > 0 independent of q.

We will refer to p(I') as a 7,,04-Anosov subgroup of G.

6.5.2 Non-uniformly expanding Anosov representations

In this section we discuss a further weakening of the Anosov condition which leads, however,
to the same class of group actions. We restrict our discussion to the case of t-invariant model
simplices Tnoq © Omoq and the corresponding parabolic subgroups P < G (conjugate to their
opposites), even though, with minor modifications, the same proofs go through for arbitrary
pairs of opposite (up to conjugation) parabolic subgroups Py < G.

We note that in the definition of Anosov representation (both the original definition and
the alternative one) the constants a and ¢ (respectively, A and C') were required to be uniform
for the entire group. The main goal of this section is to show that the requirement of uniform
exponential expansion can be relaxed and that the weakened notion is still equivalent to the
Anosov condition as well as to the concept of asymptotic embedding for discrete subgroups.

Definition 6.46 (Non-uniformly Anosov representation). We call a representation p :
I' — G of a word hyperbolic group I' non-uniformly 7,,.q-Anosov if it is 7,,,q-boundary embed-
ded with boundary embedding 5 : 0" — Flag(7,.eq) such that for every normalized discrete
geodesic ray (equivalently, normalized uniform quasiray) ¢ : N — I" asymptotic to ¢ € d, [, the
elements p(g(n))~" act on T F with unbounded expansion rate:

sup €(p(q(n)) ™, B(C)) = +. (6.47)

n=0

Note that this definition does not even have the requirement that the expansion rate of
p(q(n))~! at 7 diverges to infinity. Other weakenings of the Anosov condition appear in [La06),
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sec. 6.1] and [GW, Prop. 3.16]. They assume uniform, not necessarily exponential, divergence
to infinity of the expansion factors along the trajectories of the geodesic flow.

Non-uniformly Anosov representations clearly have finite kernel (and discrete image). There-
fore we will consider from now on only the case when I is a subgroup of G.

Theorem 6.48 (Non-uniformly Anosov implies asymptotically embedded). Every
non-uniformly Tmeq-Anosov subgroup is Tmeq-asymptotically embedded.

Proof. We first establish a weak form of continuity at infinity and conicality for the boundary
embedding of a non-uniformly Anosov subgroups:

Lemma 6.49. Suppose that I' = G is non-uniformly T,eq-Anosov with boundary embedding 5.
Then for every discrete geodesic ray q : N — T, the sequence (q(n)) inT' contains a Tyeq-reqular

subsequence (q(n;)) such that q(n;) L, B(q(+w0)) conically. In particular, 5(0,I') < A, ().

Proof. We fix a point x € X. Since by definition, I is 7;,,,¢-boundary embedded, the discussion
in section applies. By Lemma [6.2T], the image under the orbit map I' — I'z < X of every
discrete geodesic ¢ : Z — I' is uniformly close to the parallel set P(5(q(—)), B(q(+0))), i.e.
there is a constant r > 0 independent of ¢ such that

d(q(n), P(B(q(=0)), B(a(+x0)))) <7 (6.50)
for all ¢ and n € Z.

We will now establish a weak analogue of Lemma [6.31] taking into account the infinitesimal
expansion property (6.47). To make use of the expansion property, we need a version, in
particular, a converse of Lemma for sequences close to parallel sets and their infinitesimal
contraction at infinity:

Sublemma 6.51. Let (g,,) be a sequence in G whose orbit sequence (g,x) for a point x € X
is contained in a tubular neighborhood of the parallel set P(t_,7,). Then the following are
equivalent:

(i) The sequence (gy) is Tmoa-regular and g, £, T, conically.

(ii) The differentials (dg,'),. expand arbitrarily strongly, i.e.

lim e(g, ', 7)) = 4o (6.52)

n—-+0o0

with respect to a fived background metric on Flag(Tyoq)-

Proof. We proceed as in the proof of Corollary 255 Let z € P(7_, 7, ) denote the nearest point
projection of x. We write the g, as products g, = t,b, of transvections ¢, € G along geodesics
l, € P(1_,7;) through Z and bounded isometries b, € G, e.g. such that d(b,z,z) < 2r. Then
the ¢, fix 7, on Flag(7im0q), and the expansion factors €(g, !, 7,) are the same as €(t,*, 7,) up
to bounded multiplicative error. In view of (¢, *, 7,) = ||(dt,)-, | ', condition (6.52) translates
to the infinitesimal contraction condition

Tim [ (dt)e, | = 0.
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According to Theorem 2.54] the latter is equivalent to ¢, being contained in V(Z,st(r,)) for
large n and

lim d(t,7,0V(Z,st(r,))) = lim d(t,'z, oV (Z,st(7))) = +oo.

n—+00 n—+w0
Since d(g,7,t,x) = d(b,Z, T) is bounded, this is in turn equivalent to (g,) being 7,,,4-regular and

the constant sequence (7, ) being a shadow of (g,) in Flag(7,04), i-€. gn J, 7, conically. O

The lemma follows by applying the sublemma to g. Since I' is word hyperbolic, every
discrete geodesic ray N — [I' is contained in a uniform tubular neighborhood of a discrete
geodesic Z — I'. So, we may assume that ¢ extends to a discrete geodesic ¢ : Z — I' and,
moreover, that it is normalized. Since

lim e(q(n;) ", Bla(+20))) = +o0

1—+00
for some sequence of indices n; — +o0 in N by property (6.47)), the sublemma yields that the

subsequence (q(1;))ien 1S Timoq-regular and q(n;) L, B(q(+0)) conically as i — +c0. O

At this stage we do not yet know that the entire subgroup I' is 7,,,¢-regular, nor do we know
that 5(0,") = A, (I'). The problem is that we have no uniform control yet on the distance
of g(n)z from the Weyl cone V' (¢(0)x,st(5(q(+0)))). This will be our next aim.

In the sequel, we will denote the nearest point projections of points y in X to the parallel
set P(B(g(—)), Bla(+0))) by 7.

The proof of Sublemma[6.51] yields the following additional information. Since d(g,x,t,z) <
d(gnx, gnT) + d(g9,T, t,x) < 3r, it follows (for unnormalized ¢) that

q(ni)z € V(q(0)z, st(B(g(+))))

for all 7, and

lim_d(g(m)z, OV (q(0)z, st(B(q(+0)))) = +20

1—+00

We fix a constant d >> 0 and define for a discrete geodesic q : Z — ' the entry time
T'(q) € N as the smallest natural number > 1 for which

9(T)z € V(q(0)z,st(B(g(+0))))

and

d(q(T)x, 0V (q(0)x, st(6(q(+20))))) > d.

Lemma 6.53 (Bounded entry time). 7(q) is bounded above independently of q.

Proof. We first observe that the function 7" on the space G(I') of discrete geodesics in T,
equipped with the topology of pointwise convergence, is upper semicontinuous, because f is
continuous. Since T is I'-periodic and the I'-action on G(I') is cocompact, the claim follows. [

Now we can strengthen Lemma[6.49 and show that the orbit maps of rays in I" stay uniformly
close to the Weyl cones associated to them by the boundary embedding, and that their nearest
point projections to these Weyl cones move away from the boundaries of the cones at a uniform
linear rate:
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Lemma 6.54. (i) The distance of q(n)x from the Weyl cone V(q(0)xz,st(8(q(+0)))) is uni-
formly bounded for all n = 0 independently of q.

(i1) The distance of q(n)x from the boundary

oV (q(0)z,st(B(q(+2))))

of the Weyl cone is at least Cn — A for all n = 0 with constants C;, A > 0 independent of q.

Proof. We inductively define a sequence of i-th entry times 7;(q) for i = 0 by To(q) := 0 and

Tiva(q) — Tilq) := T(q:)

for i > 1, where T'(¢;) is the entry time of the shifted discrete geodesic ¢;(n) = ¢(T;(q) +n) with
the same ideal endpoints. Then T'(¢;) and the increments T;.1(q) — T;(q) are bounded above
independently of ¢, and T;(q) — 40 monotonically as ¢ — 400, because T' > 1. By taking into
account that g(+o0) = ¢;(£o0), the definition of the T'(¢;) implies:

Q(Tisa)z € V(g(Th)x, st(B(q(+0)))) — Na(@V (¢(Ti), st(B(q(+0)))))

Corollary 2.19 yields that the cones are nested,

V(q(Tip1)z,st(B(q(+0)))) = V(q(Ti)z, st(B(q(+0)))),

and it hence follows that

d(q(T3)z, 0V (q(0)z, st(B(q(+0))))) > id.
Note that T; grows uniformly linearly with ¢, i.e.
cli<T;<c

for ¢« > 1 with a constant ¢ > 1 independent of ¢q. Moreover, the increments T;,; — T; are
uniformly bounded. These two observations imply that:

(i) The distance of g(n)x from V(q(0)z,st(8(g(+)))) is uniformly bounded for all n > 0
independently of ¢; and

(ii) the distance of ¢(n)z from the complement

P(B(q(=0)), B(q(+20))) — V(q(0)x,st(B(g(+0))))

> (Cn — A for all n > 0 with constants C, A > 0 independent of q.

The claim follows, because the Hausdorff distance between the cones V (¢(0)x, st(8(q(+0))))
and V(q(0)z, st(8(q(+0)))) is < d(q(0)z, ¢(0)z) < r, as well as d(qg(n)z, g(n)z) < r. O

It follows that the group I' is uniformly 7,,,4-regular.

We will finally deduce from the last lemma that §(0,I') = A, ('), i.e. that 8 maps onto
the 7,04-limit set. We proceed as in the proof of Proposition [6.24]

73



Suppose that 7€ A, (') and let (7,) be a sequence in I" with

Y 1 T, (6.55)

Since I' is word hyperbolic, there exists a sequence of discrete geodesic rays ¢, : N — I' initiating
in ¢,(0) = 1r and passing at uniformly bounded distance from ~,, i.e. (¢,(+00)) is a shadow
sequence for (7,) in d,I". After passing to a subsequence, the ¢, converge (pointwise) to a ray
q¢:N—T. Then ¢,(+%) — ¢(4+00) and

Blan(+0)) = B(g(+0)). (6.56)

As a consequence of Lemma [6.54] (5(g,(+0))) is a shadow sequence for (7,) in Flag(7meq)-

Therefore, (6:55) and (656) imply that 8(g,(+%)) - 7, cf. Lemma 515 Hence B(q(+)) =
T, i.e. T is in the image of (. O

Thus, I' is 7,,0,4-asymptotically embedded. This concludes the proof of Theorem [6.48. [

We are now ready to prove the equivalence of three concepts, namely of the (non-uniformly)
Anosov property and asymptotic embeddedness. Note that equivalences of the Anosov condition
with other weakened forms of it appear in [La06l sec. 6.1] and |[GW) Prop. 3.16].

Theorem 6.57. For a discrete subgroup I' € G which is non-elementary word hyperbolic, the
following are equivalent:

1. T 18 Ty,0q-Anosov.

2. T is non-uniformly T,,.q-Anosov.

3. T is Timoa-asymptotically embedded.

Proof. The implication 1=2 is immediate; implication 2=3 is established in Theorem [6.48 It
remains to prove that 3=1.

Suppose that I' = G is 7,,,g-asymptotically embedded with boundary embedding 5. We use
our results on the coarse geometry of asymptotically embedded subgroups, see Theorem [6.33]
For a discrete geodesic ray ¢ : N — I we know that its image gz : N — X is a uniformly 7,04~

(0)z, st(B(g(+0))))-
)

) of the cone with
uniform linear speed. Therefore, Corollary 2.55 yields that the elements g(n)~! have uniform
exponential expansion rate at 5(q(+0)) € Flag(Timod),

e(q(n)™!, Bla(+0))) = A",

with constants A, C' > 0 independent of ¢q. Hence, the subgroup I' © G is 7;,,,4-Anosov. O

regular discrete quasigeodesic ray uniformly close to the Weyl cone V(g
In particular, it moves away from the boundary oV (q(0)z,st(B(q(+x0))

As a corollary we obtain:

Corollary 6.58. Let I' be a non-elementary word hyperbolic group. An isometric action p :
'~ X is Tyea-Anosov if and only if the kernel of p is finite and p(I') € G is a Typoq-asympto-
tically embedded discrete subgroup.
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7 Morse maps and actions

In section we saw that asymptotically embedded subgroups satisfy an important coarse
geometric property, namely the orbit maps sends uniform quasigeodesic rays in I' to quasi-
geodesic rays z, = ¢(n)xr in X which stay within bounded distance from Weyl cones. We
also saw that this property has important consequences: nondistortion of I' and uniform weak
regularity. We will call this property of sequences (z,,) the Morse property. The corresponding
class of group actions will be called Morse actions. It is not hard to verify that, conversely,
Morse actions satisfy asymptotic embeddedness.

In this section we further investigate the Morse property of sequences and group actions.
The main aim of this section is to establish a local criterion for being Morse. To do so we
introduce a local notion of straightness for sequences of points in X. Morse sequences are in
general not straight, but they become straight after suitable modification, namely by sufficiently
coarsifying them and then passing to the sequence of successive midpoints. Conversely, the key
result is that sufficiently spaced straight sequences are Morse. We conclude that there is a
local-to-global implication for the Morse property.

As a consequence of the local-to-global criterion we establish that the Morse property for
isometric group actions is an open condition. Furthermore, for two nearby Morse actions, the
actions on their 7,,,4-limit sets are also close, i.e. conjugate by an equivariant homeomorphism
close to identity. In view of the equivalence of Morse property with the asymptotic properties
discussed earlier, this implies structural stability for asymptotically embedded groups. Another
corollary of the local-to-global result is the algorithmic recognizability of Morse actions.

We conclude the section by illustrating our technique by constructing Morse-Schottky ac-
tions of free groups on higher rank symmetric spaces. Unlike all previously known constructions,
our proof does not rely on ping-pong, but is purely geometric and proceeds by constructing
equivariant quasi-isometric embeddings of trees.

For the rest of this section we fix the following notation and conventions:
Let Tiod S 0moq be an t-invariant face type.

We fix as auxiliary datum a t-invariant type ¢ = (noq € Int(Timoq). (We will omit the
subscript in (¢ in order to avoid cumbersome notation for (-angles.) This allows us to the
define the C-angle Z¢ and (-Tits angle Z5.,., see equations (23) and (Z4). For a simplex
T C 0 X of type Tmoq we define ((7) € 7 as the ideal point of type (noq. For a 7,,4-regular unit
tangent vector v € T X we denote by 7(v) € 0,X the unique simplex of type 7,04 such that
ray p, with initial direction v represents an ideal point in ost(7(v)). We put ((v) = ((7(v)).
Note that ((v) depends continuously on v.

In this section ©,0" < 0st(Ti0q) Will denote c-invariant 7,,,g-convex compact subsets such
that © < int(©’). The constants L, A, D,€,6,1,a, s, S are meant to be always strictly positive.
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7.1 A Morse Lemma for straight sequences

In the following, we consider finite or infinite sequences (z,) of points in X.

Definition 7.1 (Straight and spaced sequence). We call a sequence (x,,) (0, €)-straight if
the segments z,x, .1 are ©-regular and

LS (Tno1, Tng1) 2T —€
for all n. We call it [-spaced if the segments x,x,,1 have length > [.

Note that every straight sequence can be extended to a biinfinite straight sequence.

Straightness is a local condition. The goal of this section is to prove the following local
to global result asserting that sufficiently straight and spaced sequences satisfy a higher rank
version of the Morse Lemma (for quasigeodesics in hyperbolic space).

Theorem 7.2 (Morse Lemma for straight spaced sequences). For ©,0 6 there exist
l,e such that:

Every (O, €)-straight l-spaced sequence (x,,) is d-close to a parallel set P(r_,7,) with sim-
plices T+ of type Tioq, and it moves from 7_ to T, in the sense that its nearest point projection
T, to P(1_,7,) satisfies

Tpgm € V(ZTp,ster(T4)) (7.3)

for alln and m > 1.

Remark 7.4 (Global spacing). 1. As a corollary of this theorem, we will show that straight
spaced sequences are quasigeodesic:

A(Tp, Tpam) = clm — 2

with a constant ¢ = ¢(0’) > 0. See Corollary [[.13

2. Theorem [(.2] is a higher-rank generalization of two familiar facts from geometry of
Gromov-hyperbolic geodesic metric spaces: The fact that local quasigeodesics (with suitable
parameters) are global quasigeodesics and the Morse lemma stating that quasigeodesics stay
uniformly close to geodesics. In the higher rank, quasigeodesics, of course, need not be close to
geodesics, but, instead (under the straightness assumption), are close to parallel sets.

In order to prove the theorem, we start by considering one-sided infinite sequences and
prove that they keep moving away from an ideal simplex of type 7,4 if they do so initially.

Definition 7.5 (Moving away from an ideal simplex). Given a face 7 < O0rus X of type
Tmod and distinct points z,y € X, define the angle

L:Cc(7-> y) = L:c(z> y)

where z is a point (distinct from z) on the geodesic ray z€, where £ € 7 is the point of type (.
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We say that a sequence (x,,) moves e-away from a simplex 7 of type 7,04 if

L8 (T, Tpp1) =T —¢€

n

for all n.
Lemma 7.6 (Moving away from ideal simplices). For small € and large |, € < €y and
[ > 1(e,0), the following holds:

If the sequence (x,)n=0 1S (O, €)-straight l-spaced and if

Lgo(Ta 113'1) =T — 267
then (x,) moves e-away from T.

Proof. By Lemma [2.44((ii), the unit speed geodesic segment ¢ : [0,¢;] — X from p(0) to p(1)
moves €(d(2¢))-away from 7 at all times, and € (2¢, ©,[)-away at times > [, which includes the
final time ¢;. For (¢, ©) sufficiently large, we have € (2¢,0,1) < e. Then ¢ moves e-away from
7 at time ¢;, which means that Z§ (7,z9) < e. Straightness at x; and the triangle inequality
yield that again /¢ (7,22) = ™ — 2¢. One proceeds by induction. O

Note that there do exist simplices 7 satisfying the hypothesis of the previous lemma. For
instance, one can extend the initial segment xox; backwards to infinity and choose 7 = 7(x120).

Now we look at biinfinite sequences.

We assume in the following that (z,).ez is (O, €)-straight I-spaced for small € and large [. As
a first step, we study the asymptotics of such sequences and use the argument for Lemma
to find a pair of opposite ideal simplices 74 such that (z,) moves from 7_ towards 7.

Lemma 7.7 (Moving towards ideal simplices). For small € and large l, € < €y and | >
l(e,0), the following holds:

There exists a pair of opposite simplices T+ of type Timoqa Such that the inequality

LS (T4, Tpg1) =7 — 2€ (7.8)

Tn

holds for all n.

Proof. 1. For every n define a compact set C;F < Flag(7,0a)
C;l_i_ = {Ti . Lin(Ti>In$l> =T — 26}

As in the proof of Lemma [(.0] straightness at x,; implies that C;; < C, ;. Hence the family
{C }nez form a nested sequence of nonempty compact subsets and therefore have nonempty

intersection containing a simplex 7_. Analogously, there exists a simplex 7, which belongs to
C.r for all n.

2. It remains to show that the simplices 7_, 7, are antipodal. Using straightness and the
triangle inequality, we see that
L8 (T, 74) =T — be

T
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for all n. Hence, if 5e < €((), then the simplices 7_, 7, are antipodal in view of Remark 2421 [

The pair of opposite simplices (7_, 7, ) which we found determines a parallel set in X. The
second step is to show that (x,,) is uniformly close to it.

Lemma 7.9 (Close to parallel set). For small € and large I, € < €(d) and | = 1(0©,9), the
sequence (x,) is 0-close to P(1_,74).

Proof. The statement follows from the combination of the inequality (ZI]) (in the second part
of the proof of Lemma [(.7)) and Lemma 243 O

The third and final step is to show that the nearest point projection (z,) of (z,) to P(7_, 1)
moves from 7_ towards 7.

Lemma 7.10 (Projection moves towards ideal simplices). For small e and large l, € < €y
and | = 1(e,0,0"), the segments T,T,+1 are O -reqular and
Lo (7o ) =

for all n.

Proof. By the previous lemma, (z,) is do-close to P(7_, 7, ) if €y is sufficiently small and [ is
sufficiently large. Since x,,,1 is ©O-regular, the triangle inequality for A-lengths yields that
the segment Z,, %, 1 is ©'-regular, again if [ is sufficiently large.

Let &, denote the ideal endpoint of the ray extending this segment, i.e. T, € T,&,. Then
Ty is 20g-close to the ray z,&,.. We obtain that

Lg“its(vaé-Jr) = Lgn(T,,er) = Lgn<7—77xn+1) =T

where the last step follows from inequality (7.8)). The discreteness of Tits distances between
ideal points of fixed type ¢ implies that in fact

L%it5(7—>€+) =T,
i.e. the ideal points ((7_) and ((£;) are antipodal. But the only simplex opposite to 7_ in
OwP(T_,74)is 74,50 7(§,) = 71 and

Lg:n(vajnJrl) = L:%n(T,, £+> =T,
as claimed. 0

Proof of Theorem [7.2. 1t suffices to consider biinfinite sequences.

The conclusion of Lemma [[I0 is equivalent to Z,.; € V(Z,,ste/(74)). Combining Lem-
mas [7.9 and [T.10, we thus obtain the theorem for m = 1.

The convexity of ©’-cones, cf. Proposition 218, implies that
V(fn-‘rl) St@’ (T-i-)) < V(fna St@’(T-l-))a

and the assertion follows for all m > 1 by induction. O

Remark 7.11. The conclusion of the theorem implies that x4, N T4+ as n — +00. However,
the x,, do in general not converge at infinity, but accumulate at a compact subset of ste/(74).
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7.2 Lipschitz retractions

Consider a (possibly infinite) closed interval J in R; we will assume that J has integer or infinite
bounds. Suppose that p: J nZ — P = P(r_,7,) < X is an [-separated, \-Lipschitz, (©,0)-
straight coarse sequence pointing away from 7_ and towards 7,. We extend p to a piecewise-
geodesic map p : J — P by sending intervals [n,n + 1] to geodesic segments p(n)p(n + 1) via
affine maps. We retain the name p for the extension.

Lemma 7.12. There exists L = L(I,\,0) and an L-Lipschitz retraction of X to p, i.e., an
L-Lipschitz map v : X — J so that r op = Id. In particular, p : J nZ — X is a (L, A)-
quasigeodesic, where L, A depend only on I, \, ©.

Proof. 1t suffices to prove existence of a retraction. Since P is convex in X, it suffices to
construct a map P — J. Pick a generic point { = £, € 7 and let b : P — R denote the
Busemann function normalized so that be(p(z)) = 0 for some z € J N Z. Then the O-regularity
assumption on p implies that the slope of the piecewise-linear function beop : J — R is strictly
positive, bounded away from 0. The assumption that p is [-separated A-Lipschitz implies that

L<|p ()] <A

for each ¢ (where the derivative exists). The straightness assumption on p implies that the
function h := b op : J — R is strictly increasing. By combining these observations, we
conclude that h is an L-biLipschitz homeomorphism for some L = L(I, A, ©). Lastly, we define

r:P—J r=h"ob,
Since bg is 1-Lipschitz, the map r is L-Lipschitz. By construction, r op = Id. O

Corollary 7.13. Suppose that p : J nZ — X is a l-separated, \-Lipschitz, (O,¢)-reqular
straight coarse sequence. Pick some ©" such that © < int(©") and let 6 = 6(1,0,0’ €) be the
constant as in Theorem[7.3. Then for L = L(l — 26, A + 2§,0") we have:

1. There ezists an (L,20)-coarse Lipschitz retraction X — J.

2. The map p is an (L', A")-quasigeodesic for L', A" depending only on 1,0,0’ €.

Proof. The statement immediately follows the above lemma combined with Theorem O

7.3 Morse quasigeodesics

According to Theorem [[.2] sufficiently spaced straight sequences satisfy a Morse Lemma. If the
spacing is also bounded above, then these sequences are quasigeodesics (Corollary [[.13). This
motivates considering quasigeodesics which satisfy a higher rank version of the Morse Lemma
as it appears in the conclusion of Theorem [7.2]

Definition 7.14 (Morse quasigeodesic). An (L, A, 0, D)-Morse quasigeodesic in X is an
(L, A)-quasigeodesic p : I — X such that for all ¢;,%, € I the subpath p|p, ¢, is D-close to a
O-diamond {$e (21, o) with d(x;, p(t;)) < D.
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Note that each quasigeodesic satisfying Theorem [7.2] is Morse; the converse is also true as
we will see in Lemma [7.T9

We will now prove that, conversely, the Morse property implies straightness in a suitable
sense, namely that for sufficiently spaced quadruples the associated midpoint triples are arbi-
trarily straight. (For the quadruples themselves this is in general not true.)

Definition 7.15 (Quadruple condition). For points z,y € X we let mid(z,y) denote the
midpoint of the geodesic segment zy. A map p : I — X satisfies the (0, ¢, s)-quadruple
condition if for all tq,tq,t3,t4 € I with t9 — t1,t3 — to,t4 — t3 = s the triple of midpoints

(mid(tl, tg), mid(tg, tg), mid(tg, t4))

is (O, €)-straight and [-spaced.

Proposition 7.16 (Morse implies quadruple condition). For L, A, 0,0’ D el exists a
scale s = s(L,A,0,0', D e l) such that every (L, A,©, D)-Morse quasigeodesic satisfies the
(©',¢,1,8")-quadruple condition for every s’ = s.

Proof. Let p: I — X be an (L, A, ©, D)-Morse quasigeodesic, and let t,...,ts € I such that
tg — tl, tg — tg, t4 - t3 = S. We abbreviate pi = p(tl) and m; = mld(pl’p2+1)

Regarding straightness, it suffices to show that the segment msym; is ©'-regular and that
25, (p2,my) < § provided that s is sufficiently large in terms of the given data.

By the Morse property, there exists a diamond {g(z1, 23) such that d(x1, p1),d(z3,p3) < D
and py € Np(Oe(1,x3)). The diamond spans a unique parallel set P(7_,7,). (Necessarily,
xg € V(xy,sto(ry)) and 21 € V (z3,ste(7-)).)

We denote by p; and m; the projections of p; and m; to the parallel set.

We first observe that mo (and mg) is arbitrarily close to the parallel set if s is large enough.
If this were not true, a limiting argument would produce a geodesic line at strictly positive
finite Hausdorff distance € (0, D] from P(7_,7,) and asymptotic to ideal points in stg(74).
However, all lines asymptotic to ideal points in stg(74) are contained in P(7_, 7).

Next, we look at the directions of the segments mom; and msps and show that they
have the same 7-direction. Since py is 2D-close to V(py,ste(7:)), we have that the point
p1 is 2D-close to V(pa,ste(7-)), and hence also m; is 2D-close to V(pa,ste(7-)). There-
fore, p1,my € V(pa,ste (7)) if s is large enough. Similarly, my € V (P2, ste(74)) and hence
P2 € V(mg,ste(7-)). The convexity of ©’-cones, see Proposition 218 implies that also
my € V(ma,ste(7_)). In particular, Lfm (p2,my) = 0 if s is sufficiently large.

Since my is arbitrarily close to the parallel set if s is sufficiently large, it follows by another
limiting argument that Z§, (p2,m1) < § if s is sufficiently large.

Regarding the spacing, we use that m; € V(pa, ster(7-)) and ma € V(pa, ster(71)). It follows
that
d(mi,me) = ¢ - (d(ma, p2) + d(P2, M2))

with a constant ¢ = ¢(©’) > 0, and hence that d(my, my) = 1 if s is sufficiently large. O
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Theorem and Proposition tell that the Morse property for quasigeodesics is equiv-
alent to straightness (of associated spaced sequences of points). Since straightness is a local
condition, this leads to a local to global result for Morse quasigeodesics, namely that the Morse
property holds globally if it holds locally up to a sufficiently large scale.

Definition 7.17 (Local Morse quasigeodesic). An (L, A, 0, D, S)-local Morse quasigeode-
sicin X is a map p : I — X such that for all ¢y the subpath pl, «+9) is an (L, A, ©, D)-Morse
quasigeodesic.

Note that local Morse quasigeodesics are uniformly coarse Lipschitz.

Theorem 7.18 (Local to global for Morse quasigeodesics). For L,A,0,0" D exist
S, L', A', D" such that every (L, A, O, D, S)-local Morse quasigeodesic in X is an (L', A’,©", D')-
Morse quasigeodesic.

Proof. We choose an auxiliary Weyl convex subset ©” depending on ©, ©' such that © < int(0”)
and ©" c int(©’).

Let p: I - X bean (L, A, 0, D, S)-local Morse quasigeodesic. We consider its coarsification
on a (large) scale s and the associated midpoint sequence, i.e. we put p? = p(ns) and m$ =
mid(p;, p;.q). Whereas the coarsification itself does in general not become arbitrarily straight
as the scale s increases, this is true for its midpoint sequence due to Proposition [[.16. We
want it to be sufficiently straight and spaced so that we can apply to it the Morse Lemma from
Theorem Therefore we first fix an auxiliary constant ¢, and further auxiliary constants [, e
as determined by Theorem in terms of ©,©” and §. Then Proposition applied to the
(L, A,©, D)-Morse quasigeodesics p|,,4+5) yields that (m;) is (0", €)-straight and [-spaced if
S > 3s and the scale s is large enough depending on L, A,0,0" D, ¢, l.

Now we can apply Theorem to (m$). It yields a nearby sequence (m?), d(m?,m?) < 9,
with the following property: For all n; < ny < ng the segments m, m;_ are uniformly regular

and the points m;, are 0-close to the diamonds {e/(m , M5, ).

Since the subpaths p|pns m+1)s) filling in (p;)) are (L, A)-quasigeodesics (because S > s),
and it follows that for all ¢,,¢, € I the subpaths p|y, «,) are D’-close to ©’-diamonds with D’
depending on L, A, s.

The conclusion of Theorem also implies a global spacing for the sequence (m?), compare
Remark [74] i.e. d(m},m],) = ¢ |n —n'| with a positive constant ¢ depending on ©',/. Hence
p is a global (L', A")-quasigeodesic with L', A" depending on L, A, s, c.

Combining this information, we obtain that p is an (L', A’, ©’, D’)-Morse quasigeodesic for
certain constants L', A" and D’ depending on L, A,0,0’ and D, provided that the scale S is
sufficiently large in terms of the same data. O

We discuss now the asymptotics of Morse quasigeodesics.

There is much freedom for the asymptotic behavior of arbitrary quasigeodesics in euclidean
spaces, and therefore also in symmetric spaces of higher rank. However, the asymptotic behavior
of Morse quasigeodesics is as restricted as for quasigeodesics in rank one symmetric spaces.
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Morse quasirays do in general not converge at infinity, but they 7,,,4-converge at infinity,
compare Remark [T.T1l This is a consequence of:

Lemma 7.19 (Conicality). Every Morse quasiray p : [0,00) — X is uniformly Hausdorff
close to a cone V(p(0),ste(7)) for a unique simplex T of type Tmoa-

Proof. The subpaths plj,] are uniformly Hausdorff close to ©-diamonds. These subconverge
to a cone V (z,stg(7)) x uniformly close to p(0) and 7 a simplex of type 7,04 This establishes

the existence. Since p(n) J, 7, the uniqueness of 7 may be deduced from the uniqueness of
Tmog-limits, cf. Lemma ]

Definition 7.20 (End of Morse quasiray). We call the unique simplex given by the previous
lemma the end of the Morse quasiray p : [0,00) — X and denote it by

p(+0) € Flag(Timod)-

Hausdorff close Morse quasirays have the same end, again by Lemma [5.15 and this lemma
also implies the continuous dependence of the end on the Morse quasiray:

Lemma 7.21 (Continuity of end). The assignment p — p(+0) is a continuous map from the
space of Morse quasirays [0, +o0) — X with fized data, equipped with the topology of pointwise
convergence (equivalently, uniform convergence on compacts), to Flag(Tmeq)-

7.4 Morse embeddings

We consider maps into X from metric spaces which are coarsely geodesic in the sense that their
points can be connected by uniform quasigeodesics.

Definition 7.22 (Quasigeodesic metric space). A metric space is called (I, a)-quasigeodesic
if pairs of points can be connected by (I, a)-quasigeodesics. It is called quasigeodesicif it is (I, a)-
quasigeodesic for some parameters [, a.

The quasigeodesic spaces considered in this paper are discrete groups equipped with word
metrics.

Definition 7.23 (Morse embedding). A Morse embedding from a quasigeodesic space Z
into X is a map f : Z — X which sends uniform quasigeodesics in Z to uniform Morse
quasigeodesics in X. We call it a ©-Morse embedding if it sends uniform quasigeodesics to
uniform ©-Morse quasigeodesics.

Thus, to be a Morse embedding means that for any parameters [, a the (I, a)-quasigeodesics
in Z are mapped to (L, A, ©, D)-Morse quasigeodesics in X with the parameters L, A, ©, D
depending on [, a.

Note that Morse embeddings are quasi-isometric embeddings.

Our definition is chosen so that it depends only on the quasi-isometry class of Z whether a
map f: Z — X is a (©-)Morse embedding, i.e. the precomposition of a (©-)Morse embedding
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with a quasi-isometry is again (©-)Morse. For this to be true is why we require control on the
images of quasigeodesics of arbitrarily bad quality.

However, as we observe next, in the case of maps from Gromov hyperbolic spaces control
on the images of quasigeodesics of a fixed quality suffices. This is due to the Morse Lemma
for quasigeodesics in Gromov hyperbolic spaces. We recall that it asserts that quasigeodesics
with the same endpoints are uniformly close to each other, the closeness depending on the
quasi-isometry and hyperbolicity constants.

Lemma 7.24. Let f : Z — X be a map from a Gromov hyperbolic space Z into X. If Z
is (I, a)-quasigeodesic and if f sends (I, a)-quasigeodesics to uniform ©-Morse quasigeodesics,
then f is a ©-Morse embedding.

Proof. This is a consequence of the definition of Morse quasigeodesics, see Definition [7.14] and
the Morse Lemma applied to Z. O

We now deduce from our local to global result for Morse quasigeodesics, see Theorem [7.18]
a local to global result for Morse embeddings.

Since we need to fix one scale of localness, we can expect a local to global control for the
f-images of quasigeodesics in Z only if they have a certain fixed quality. This is why we need
to restrict to maps from Gromov hyperbolic spaces.

Definition 7.25 (Local Morse embedding). We call amap f : Z — X from a quasigeodesic
space Z into X an (l,a, L, A, 0O, D, S)-local Morse embedding if Z is (I, a)-quasigeodesic and if
for any (I, a)-quasigeodesic ¢ : I — Z defined on an interval I of length < S the image path
fogqisan (L, A, O, D)-Morse quasigeodesic in X.

Theorem 7.26 (Local-to-global for Morse embeddings of Gromov hyperbolic spaces).
Forl,a,L,A,©,0 D exists a scale S such that every (I,a, L, A,©, D, S)-local Morse embedding
from a quasigeodesic Gromouv hyperbolic space into X is a ©'-Morse embedding.

Proof. Let f : Z — X denote the local Morse embedding. It sends every (I, a)-quasigeodesic
q:1— Ztoa (L, A 0O,D,S)local Morse quasigeodesic p = f oq in X. By Theorem [I.T8]
pis (L', A", 0" D')-Morse if S is sufficiently large, where L', A’, D’ depend on the given data.
Lemma [7.24] implies that f is a ©’-Morse embedding. O

We now discuss the asymptotics of Morse embeddings.

Morse embeddings f : Z — X map sufficiently spaced pairs of points to uniformly 7,04
regular pairs of points. Therefore, their images accumulate in the 7,,,4-regular part of d,,X and
there is a well-defined flag limit set

Aroa(f) & Flag(Timoa)- (7.27)

For Morse embeddings f : Z — X of Gromov hyperbolic spaces Z we obtain, by applying our
discussion of the asymptotics of Morse quasirays, a well-defined continuous boundary map at
infinity

Onf i OZ — Flag(Timoa) (7.28)
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which sends the ideal endpoint g(+00) of a quasiray ¢ : [0, +o0) — Z to the end (f o q)(+0) of
the image Morse quasiray. The continuity of dy f follows from Lemma [T.2T]

Proposition 7.29 (Asymptotic properties of Morse embeddings). Let f: Z — X be a
Morse embedding from a proper, quasigeodesic Gromov hyperbolic space Z .

(1) f 1S Tmoa-conical in the sense that f sends each quasigeodesic ray q in Z to a quasigeodesic
ray p in X so that the sequence (p(n)) converges conically to the simplex Oy f(q(0)).

(i1) O f is antipodal, i.e. it maps distinct ideal points to antipodal simplices.

(111) f has nice asymptotics, i.e. Oxf is a homeomorphism onto A, (f).

Proof. (i) This is a consequence of Lemma [T.19 applied to the f-images of quasirays in Z.

(ii) By hyperbolicity and the quasigeodesic properties of Z, any two distinct points in 0y Z
can be connected by a quasigeodesic ¢ : R — Z. Then foq is a Morse quasigeodesic. Since Morse
quasigeodesics are Hausdorff close to biinfinite straight spaced sequences (Proposition[7.16]), and
such sequences satisfy a Morse Lemma (Theorem [[.2]) and therefore 7,,,4-converge to a pair of
opposite simplices, the assertion follows.

(iii) Our argument follows the end of the proof of Theorem [6.48 By construction of the
boundary map 0y f, its image is contained in the limit set A, (f). It is injective by antipo-
dality. To prove surjectivity, let 7 € A, (f), and let z, — oo be a sequence in Z so that
f(z,) — 7 in the sense of 7,,,4-convergence. Since Z is quasigeodesic, there exists a sequence
of uniform quasigeodesic segments g, : [0,1,] — Z connecting a base point to z,. After passing
to a subsequence, the ¢, converge to a quasiray ¢ : [0, +00) — Z because Z is proper. We
need to verify that (f o ¢y)(+0)) = 7.

Let t, — 4o be a sequence of times ¢, < [,. Then the Morse property of f o ¢, and
Lemma ET5 imply that (f 0q,)(t,) — 7. We can choose the t,, so that ¢, (t,) is uniformly close
t0 go. The Morse property of f o g, implies that (f o g,)(t,) is uniformly close to a ©-cone
V(z,ste((f © qyn)(+0))). Applying Lemma again, we conclude that 7 = (f 0 g, )(+0) =
O [ (qoo(+90)), i.e. 7 is in the image of 0, f. O

7.5 Morse actions

We consider isometric actions I' —~ X of finitely generated groups.

Definition 7.30 (Morse action). We call an action I' ~ X ©-Morse if one (any) orbit map
I' - I'r ¢ X is a ©-Morse embedding with respect to a(ny) word metric on I'. We call an action
' = X T0a-Morse if it is ©-Morse for some 7,,,4-Weyl convex compact subset © < 0st(7,n04)-

Remark 7.31 (Morse actions are weakly regular and undistorted). (i) It follows im-
mediately from the definition of Morse quasigeodesics that ©-Morse actions are 7,,,4-regular
for the simplex type 7,04 determined by ©.

(ii) Morse actions are undistorted in the sense that the orbit maps are quasi-isometric em-
beddings. In particular, they are properly discontinuous.
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We denote by Hom,(I', G) € Hom(I', G) the subset of Morse actions I' —~ X.

By analogy with local Morse quasigeodesics, we define local Morse group actions p: I' —~ X
of a hyperbolic group (with fixed generating set):

Definition 7.32. An action p is called (L, A, ©, D, S)-locally Morse, or (I, a, L, A, O, D)-locally
Morse on the scale S, if the orbit map I' - I' -z < X is an (l,a, L, A, 0, D, S)-local Morse
embedding.

According to our local to global result for Morse embeddings, see Theorem [7.26, an action
of a word hyperbolic group is Morse if and only if it is local Morse on a sufficiently large scale.
Since this is a finite condition, it follows that the Morse property is stable under perturbation
of the action:

Theorem 7.33 (Morse is open for word hyperbolic groups). For any word hyperbolic
group I' the subset Homy (I, G) is open in Hom(I', G).

Proof. Let p : I' —~ X be a Morse action. We fix a word metric on I' and a base point
x € X. Then there exist data (L, A,©, D) such that the orbit map I' — I'c < X sends is
an (L, A)-quasi-isometric embedding, which sends (discrete) geodesics to (L, A, ©, D)-Morse
quasigeodesics.

We relax the Morse parameters slightly, i.e. we consider (L, A, ©, D)-Morse quasigeodesics
as (L,A+1,0,D + 1)-Morse quasigeodesics satisfying strict inequalities. For every scale S,
the orbit map is, in particular, an (L, A + 1,0, D + 1,.5)-local Morse embedding. Due to I'-
equivariance, this is a finite condition in the sense that it is equivalent to a condition involving
only finitely many orbit points. Since we relaxed the Morse parameters, the same condition is
satisfied by all actions sufficiently close to p.

Theorem provides a scale S such that (L, A+ 1,0, D + 1, 5)-local Morse embeddings
are global Morse. (More precisely, they are uniform ©’-Morse embeddings.) It follows that
actions sufficiently close to p are (©'-)Morse. O

Corollary 7.34. For every hyperbolic group I' the space of faithful Morse representations
Homy (T, G)
is open in Homy (T, G).

Proof. Every hyperbolic group I' has the unique maximal finite normal subgroup F < I' (if
I' is nonelementary then F' is the kernel of the action of I' on 0, I'). Since Morse actions
are properly discontinuous, kernel of every Morse representation I' — G is contained in F.
Since Hom(F, G)/G is finite, it follows that the set of faithful Morse representations is open in
Homy (T, G). O

We now turn to asymptotic properties of Morse actions. We apply our earlier discussion of
the asymptotics of Morse embeddings.
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For a Morse action p : I' ~ X, the limit sets (T.27]) of the orbit maps coincide with the limit
set A, (p(I")) of the subgroup p(I') = G. If T" is word hyperbolic group, then the boundary
map ((C28) induced by the orbit maps yield a well-defined I'-equivariant homeomorphism at
infinity

Op : 0l 5 A, (T) < Flag(Timoa)
which does not depend on the I'-orbit, cf. Proposition The same proposition implies
together with the fact that Morse embeddings are uniformly regular:

Theorem 7.35 (Asymptotic characterization of Morse actions). An action of a word
hyperbolic group is Tyea-Morse if and only if it is Tyoq-asymptotically embedded.

Proof. One direction follows from the discussion above, the converse from Theorem [6.33] [

Our result on the openness of the Morse condition for actions of word hyperbolic groups,
cf. Theorem [T.33] can be strengthened in the sense that the asymptotics of Morse actions vary
continuously:

Theorem 7.36 (Morse actions are structurally stable). The boundary map at infinity of
a Morse action depends continuously on the action.

Proof. Nearby actions are uniformly Morse, see the proof of Theorem [[.33] The assertion there-
fore follows from the fact that the ends of Morse quasirays vary continuously, cf. Lemma [7.21]
]

Remark 7.37. (i) Note that since the boundary maps at infinity are embeddings, the I-actions
on the 7,,,¢-limit sets are topologically conjugate to each other and, for nearby actions, by a
homeomorphism close to the identity.

(ii) In rank one, our argument yields a different proof for Sullivan’s Structural Stability
Theorem [Su| for convex cocompact group actions.

7.6 Schottky actions

In this section we apply our local-to-global result for straight sequences (Theorem [T.2)) to con-
struct Morse actions of free groups, generalizing and sharpenin Tits’s ping-pong construction.

We consider two oriented 7,,,4-regular geodesic lines a,b in X. Let 74,, 74 € Flag(Tmoa)
denote the simplices which they are T-asymptotic to, and let 64,, 04y € 0,04 denote the types
of their forward/backward ideal endpoints in 0,X. (Note that 0_, = ¢(6,) and 0_, = (6;).)
Let © be a compact convex subset of 08t(T,u04) © Timoa, Which is invariant under «.

Definition 7.38 (Generic pair of geodesics). We call the pair of geodesics (a,b) generic if
the four simplices T4,, T4, are pairwise opposite.

'In the sense that we obtain free subgroups which are not only embedded, but also asymptotically embedded
in G.
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Let o, 5 € G be axial isometries with axes a and b respectively and translating in the positive
direction along these geodesics. Then 74, and 74, are the attractive/repulsive fixed points of
a and 5 on Flag(70q)-

For every pair of numbers m,n € N we consider the representation of the free group in two

generators
pmm . F2 = <A, B> — G

sending the generator A to o™ and B to 8". We regard it as an isometric action p,, , : F —~ X.

Definition 7.39 (Schottky subgroup). A 7,,,4-Schottky subgroup of G is a free 7,,,4-asymp-
totically embedded subgroup of G.

If G has rank one, this definition amounts to the requirement that I' is convex cocompact
and free. Equivalently, this is a discrete finitely generated subgroup of G which contains no
nontrivial elliptic and parabolic elements and has totally disconnected limit set (see see [Kal).
We note that this definition essentially agrees with the standard definition of Schottky groups
in rank 1 Lie groups, provided one allows fundamental domains at infinity for such groups to
be bounded by pairwise disjoint compact submanifolds which need not be topological spheres,
see [Ka] for the detailed discussion.

Theorem 7.40 (Morse Schottky actions). If the pair of geodesics (a,b) is generic and if
010,040 € int(O), then the action py,, is ©-Morse for sufficiently large m,n. Thus, such ppyn
is injective and its image S @ Tmoq-Schottky subgroup of G.

Remark 7.41. In particular, these actions are faithful and undistorted, compare Remark [7.31]

Proof. Let S = {A*! B*!'} be the standard generating set. We consider the sequences ()
in I, with the property that -, "vei1 € S and i1 # Y1 for all k. They correspond to the
geodesic segments in the Cayley tree of Fj associated to S which connect vertices.

Let x € X be a base point. In view of Lemma we must show that the corresponding
sequences (v,x) in the orbit Fy -z are uniformly ©-Morse. (Meaning e.g. that the maps R — X
sending the intervals [k, k + 1) to the points v,z are uniform ©-Morse quasigeodesics.) As in
the proof of Theorem [.I§ we will obtain this by applying our local to global result for straight
spaced sequences (Theorem [T.2)) to the associated midpoint sequences. Note that the sequences
(k) themselves cannot expected to be straight.

Taking into account the I'-action, the uniform straightness of all midpoint sequences depends
on the geometry of a finite configuration in the orbit. It is a consequence of the following fact.
Consider the midpoints 94, of the segments za®™(x) and 2, of the segments x3+"(z).

Lemma 7.42. For sufficiently large m,n the quadruple {Y+m, 24+n} is arbitrarily separated and
O-reqular. Moreover, for any of the four points, the segments connecting it to the other three
points have arbitrarily small (-angles with the segment connecting it to x.

Proof. The four points are arbitrarily separated from each other and from x because the axes
a and b diverge from each other due to our genericity assumption.
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By symmetry, it suffices to verify the rest of the assertion for the point y,,, i.e. we show that
the segments y,,y_m and yn,z, are O-regular for large m,n and that lim,, .o, £5 (2,y_p) = 0

Y
and lim,, ;o0 Lgm (

x,zn) = 0.
The orbit points a*™x and the midpoints 14.,, are contained in a tubular neighborhood of the
axis a. Therefore, the segments y,,,x and y,,y_,, are O-regular for large m and 2, (z,y_.,) — 0.

This implies that also £ (z,y_m) — 0.

To verify the assertion for (y,,, z,) we use that, due to genericity, the simplices 7, and 7,
are opposite and we consider the parallel set P = P(7,, 7). Since the geodesics a and b are
forward asymptotic to P, it follows that the points x, y,,, 2z, have uniformly bounded distance
from P. We denote their projections to P by T, ¥, Zn.

Let ©” < int(O) be an auxiliary Weyl convex subset such that 01,, 04, € int(©”). We have
that g, € V(Z,ster(7,)) for large m because the points y,, lie in a tubular neighborhood of
the ray with initial point & and asymptotic to a. Similarly, z, € V(Z,stgr(7,)) for large n. It
follows that € V (¥, ster(7,)) and, using the convexity of ©-cones (Proposition 2.18)), that
Zn € V(Um, ster(3)).

The cone V (ym, ster (7)) is uniformly Hausdorff close to the cone V (,,,ste(7)) because
the Hausdorff distance of the cones is bounded by the distance d(y,, ¥m) of their tips. Hence
there exist points @', 2/, € V(ym, ster (7)) uniformly close to x, z,. Since d(Ym, z’), d(Ym, z,) —
o0 as m,n — oo, it follows that the segments y,,z and y,,z, are O-regular for large m,n.
Furthermore, since £$ (2/,2),) = 0 and £, (z,2') — 0 as well as Z,, (2, 2,) — 0, it follows
that Z§ (x,2,) — 0. O

Proof of Theorem concluded. The lemma implies that for any given [, ¢ the midpoint triples
of the four point sequences (yxz) are (O, €)-straight and l-spaced if m,n are sufficiently large,
compare the quadruple condition (Definition [[15). This means that the midpoint sequences
of all sequences (yxx) are (O, €)-straight and [-spaced for large m, n. Theorem then implies
that the sequences (yxz) are uniformly ©-Morse. O

Remark 7.43. Generalizing the above argument to free groups with finitely many generators,
one can construct Morse Schottky subgroups for which the set 8(A) © 0,04 of types of limit
points is arbitrarily Hausdorff close to a given t-invariant Weyl convex subset ©. This provides
an alternative approach to the second main theorem in [Ben] using geometric arguments.

7.7 Algorithmic recognition of Morse actions

In this section, we describe an algorithm which has an isometric action p : I' —~ X and a point
x € X as its input and terminates if and only if the action p is Morse (otherwise, the algorithm
runs forever).

We begin by describing briefly a Jorgensen’s algorithm accomplishing a similar task, namely,
detecting geometrically finite actions on X = H?. Suppose that we are given a finite (symmetric)
set of generators g1 = 1,..., g, of a subgroup I' € PO(3,1) and a base-point z € X = H".
The idea of Jgrgensen’s algorithm is to construct a finite sided Dirichlet fundamental domain
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D for I' (with the center at z): Every geometrically finite subgroup of PO(3,1) admits such
a domain. (The latter is false for geometrically finite subgroups of PO(n,1), n = 4, but is,
nevertheless true for convex cocompact subgroups.) Given a finite sided convex fundamental
domain, one concludes that I' is geometrically finite. Here is how the algorithm works: For each
k define the subset S; < I' represented by words of length < k in the letters ¢4,...,¢g,. For
each g € Sy consider the half-space Bis(x, g(x)) € X bounded by the bisector of the segment
zg(z) and containing the point x. Then compute the intersection

Dy = ﬂ Bis(x, g(x)).

9€Sk

Check if D,, satisfies the conditions of the Poincaré’s Fundamental Domain theorem. If it does,
then D = Dy, is a finite sided fundamental domain of I'. If not, increase k by 1 and repeat the
process. Clearly, this process terminates if and only if I' is geometrically finite.

One can enhance the algorithm in order to detect if a geometrically finite group is convex
cocompact. Namely, after a Dirichlet domain D is constructed, one checks for the following;:

1. If the ideal boundary of a Dirichlet domain D has isolated ideal points (they would
correspond to rank two cusps which are not allowed in convex cocompact groups).

2. If the ideal boundary of D contains tangent circular arcs with points of tangency fixed
by parabolic elements (coming from the “ideal vertex cycles”). Such points correspond to rank
1 cusps, which again are not allowed in convex cocompact groups.

Checking 1 and 2 is a finite process; after its completion, one concludes that I' is convex
cocompact.

We now consider group actions on general symmetric spaces. Let I be a hyperbolic group
with a fixed finite (symmetric) generating set; we equip the group I' with the word metric
determined by this generating set.

For each n, let £, denote the set of maps ¢ : [0,3n] " Z — T which are restrictions of
geodesics ¢ : Z — T', so that ¢(0) = 1 € I". In view of the geodesic automatic structure on I
(see e.g. [Epl Theorem 3.4.5]), the set £,, can be described via a finite state automaton.

Suppose that p : ' —~ X is an isometric action on a symmetric space X; we fix a base-point
x € X and the corresponding orbit map f : ' - ' € X. We also fix an ¢-invariant face 7,4
of the model spherical simplex o,,,g of X. The algorithm that we are about to describe will
detect that the action p is 7,,,4-Morse.

Remark 7.44. If the face 7,,.,4 is not fixed in advance, we would run algorithms for each face
Tmod 1N parallel.

For the algorithm we will be using a special (countable) increasing family of Weyl-convex
compact subsets © = O; < 0St(Tjoa) S Omoq Which exhausts ost(7,,,4; in particular, every
compact t-invariant convex subset of 0st(Ty04) © Tmoq 1S contained in some O;:

O;:={veo: min alv)=-}, (7.45)

aeCPTmOd

<L | =
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where ¢ is the subset of the set of simple roots ® (with respect to g,,,q) which vanish on

Tmod

the face 7,,0,4. Clearly, the sets ©; satisfy the required properties. Furthermore, we consider
only those L and D which are natural numbers.

Next, consider the sequence
(Li> @i> Dz) = (Z, @ia Dz)>z e N.

In order to detect 7,,,4-Morse actions we will use the local characterization of Morse quasi-
geodesics given by Theorem and Proposition [.16l Due to the discrete nature of quasi-
geodesics that we will be considering, it suffices to assume that the additive quasi-isometry
constant A is zero.

Consider the functions

1(0,0,0),6(0,0,0)

as in Theorem Using these functions, for the sets © = 0,,0’ = ©,,; and the constant
0 = 1 we define the numbers

I, = 1(0,0',8),¢ = €(0,6,6).

Next, for the numbers L = L;;D = D; and the sets © = 0;,0" = ©,,1, consider the
numbers
s; = 5(Li,0,0;, 0411, Dy, €541, liy1)

as in Proposition [[.T6 According to this proposition, every (L;, 0, ©;, D;)-Morse quasigeodesic
satisfies the (0,41, €41, i1, $)-quadruple condition for all s > s;. We note that, a priori, the
sequence s; need not be increasing. We set S; = s; and define a monotonic sequence S;
recursively by

Siv1 = max(S;, Siy1)-

Then every (L;,0,0;, D;)-Morse quasigeodesic also satisfies the (0,41, €;41, li+1, Si+1)-quadruple
condition.

We are now ready to describe the algorithm. For each ¢ € N we compute the numbers
l;,e; and, then, S;, as above. We then consider finite discrete paths in I', ¢ € Lg,, and the
corresponding discrete paths in X, p(t) = q(t)x, t € [0,3S5;] n Z. The number of paths ¢ (and,
hence, p) for each i is finite, bounded by the growth function of the group I'.

For each discrete path p we check the (0;,¢€;,[;, S;)-quadruple condition. If for some i = i,
all paths p satisfy this condition, the algorithm terminates: It follows from Theorem that
the map f sends all normalized discrete biinfinite geodesics in I' to Morse quasigeodesics in
X. Hence, the action I' —~ X is Morse in this case. Conversely, suppose that the action of I"
is (L,0,0, D)-Morse. Then f sends all isomeric embeddings ¢ : Z — I" to (L,0,0, D)-Morse
quasigeodesics p in X. In view of the properties of the sequence

(Li7 ®i7 D2)7

it follows that for some 1,
(L,©,D) < (L;,©;,D;),
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ie, L < L;;© < ©;,D < D;; hence, all the biinfinite discrete paths p are (L;,0,0;, D;)-
Morse quasigeodesic. By the definition of the numbers I;, ¢;,S;, it then follows that all the

discrete paths p = f oq,q € Lg, satisfy the (0;,1, €11, 111, Si+1)-quadruple condition. Thus,
the algorithm will terminate at the step ¢ + 1 in this case.

Therefore, the algorithm terminates if and only if the action is Morse (for some parameters).

If the action is not Morse, the algorithm will run forever. O

References

[Ab] H. Abels, Prozimal linear maps, Pure Appl. Math. Q. Vol. 4 (2008), no. 1, Special
Issue: In honor of Grigory Margulis. Part 2, p. 127-145.

[AB] P. Abramenko, K. Brown, “Buildings: Theory and Applications,” Graduate Texts in
Mathematics, Vol. 248, Springer Verlag, 2008.

[A]] P. Albuquerque, Patterson-Sullivan theory in higher rank symmetric spaces, Geom.
Funct. Anal. Vol. 9 (1999), no. 1, p. 1-28.

[BR] G. Baumslag, J. E. Roseblade, Subgroups of direct products of free groups, J. London
Math. Soc. (2) Vol. 30 (1984), p. 44-52.

[Ben] Y. Benoist, Propriétés asymptotiques des groupes linéaires, Geom. Funct. Anal. Vol.
7 (1997), no. 1, p. 1-47.

[Be] L. Bers, On boundaries of Teichmiiller spaces and on Kleinian groups I, Ann. Math.
Vol. 91 no. 3 (1970), p. 570-600.

[Bou]  N. Bourbaki, “Lie Groups and Lie Algebras,” ch. 4-6. Springer Verlag, 2002.

[Bo95]  B. Bowditch, Geometrical finiteness with variable negative curvature, Duke Math. J.
Vol. 77 (1995) p. 229-274.

[Bo98]  B. Bowditch, A topological characterisation of hyperbolic groups, J. Amer. Math. Soc.
Vol. 11 (1998), no. 3, p. 643—-667.

[Bo99] B. Bowditch, Convergence groups and configuration spaces, in “Geometric group the-
ory down under” (Canberra, 1996), p. 23-54, de Gruyter, Berlin, 1999.

[CNS]  A. Cano, J.-P. Navarrete, J. Seade, “Complex Kleinian groups”, Progress in Mathe-
matics, Vol. 303, Springer Verlag, 2013.

[C] C. Champetier, Petite simplification dans les groupes hyperboliques, Ann. Fac. Sci.
Toulouse Math. (6) Vol. 3 (1994) p. 161-221.

[CP] M. Coornaert, A. Papadopoulos, Symbolic dynamics and hyperbolic groups, Lecture

Notes in Mathematics, Vol. 1539, Berlin, 1993.

91



[Kal3]

[KLM]

[KLP]

[KLOS]

[KLOG]

[La06]

P. Eberlein, “Geometry of nonpositively curved manifolds”, University of Chicago
Press, 1997.

D.B.A. Epstein, J. Cannon, D. Holt, S. Levy, M. Paterson, W. Thurston, “Word
processing in groups”, Jones and Bartlett Publishers, Boston, MA, 1992.

L. Ford, “Automorphic Functions” Chelsea, New York, 1972.

F. Gehring, G. Martin, Discrete quasiconformal groups I, Proc. London Math. Soc.
(3) Vol. 55 (1987), p. 331 — 358.

I. Ya. Goldsheid, G. A. Margulis, Lyapunov exponents of a product of random matrices,
Russian Math. Surveys, Vol. 44 (1989), no. 5, p. 11-71.

M. Gromov, Hyperbolic groups. In: “Essays in group theory,” p. 75-263, Math. Sci.
Res. Inst. Publ., Vol. 8, Springer, New York, 1987.

O. Guichard, A. Wienhard, Anosov representations: Domains of discontinuity and
applications, Invent. Math. Vol. 190 (2012) no. 2, p. 357-438.

S. Helgason, “Differential geometry, Lie groups and symmetric spaces”, AMS series
Graduate Studies in Mathematics, 2001.

J.E. Humphreys, “Reflection groups and Coxeter groups”, Cambridge studies in ad-
vanced mathematics, Vol. 29, 1990.

M. Kapovich, Kleinian groups in higher dimensions, In “Geometry and Dynamics of
Groups and Spaces. In memory of Alexander Reznikov”, M. Kapranov et al (eds).
Birkhauser, Progress in Mathematics, Vol. 265, 2007, p. 485-562.

M. Kapovich, Non-coherence of arithmetic hyperbolic lattices, Geometry and Topology,
Vol. 17 (2013) p. 39-71.

M. Kapovich, B. Leeb, J.J. Millson, Convex functions on symmetric spaces, side
lengths of polygons and the stability inequalities for weighted configurations at infinity,
Journal of Differential Geometry, Vol. 81 (2009), p. 297-354.

M. Kapovich, B. Leeb, J. Porti, Dynamics at infinity of reqular discrete subgroups of
isometries of higher rank symmetric spaces, Preprint, 2013.

B. Kleiner, B. Leeb, Rigidity of quasi-isometries for symmetric spaces and Fuclidean
buildings, Inst. Hautes Etudes Sci. Publ. Math. No. 86 (1997) p. 115-197.

B. Kleiner, B. Leeb, Rigidity of invariant convez sets in symmetric spaces, Invent.
Math. Vol. 163, No. 3, (2006) p. 657-676.

F. Labourie, Anosov flows, surface groups and curves in projective space, Invent.

Math. Vol. 165, No. 1, (2006) p. 51-114.

92



[Le] B. Leeb, A characterization of irreducible symmetric spaces and Euclidean buildings
of higher rank by their asymptotic geometry, Bonner Mathematische Schriften, Vol.
326 (2000), see also larXiv:0903.0584' (2009).

[Mil] J. Millson, On the first Betti number of a constant negatively curved manifold, Ann.
of Math. (2) Vol. 104 (1976), no. 2, p. 235-247.

[Min] 1. Mineyev, Flows and joins of metric spaces, Geom. Topol. Vol. 9 (2005), p. 403-482.

[M1] M. Mj, Cannon-Thurston maps for surface groups, Annals of Math. Vol. 179 (2014)
p. 1-80.

[M2] M. Mj, Cannon-Thurston maps for Kleinian groups, Preprint, arXiv:1002.0996, 2010.

[Ra] M. Ramachandran, in preparation.

[Su] D. Sullivan, Quasiconformal homeomorphisms and dynamics. II. Structural stability
implies hyperbolicity for Kleinian groups, Acta Math. Vol. 155 (1985), no. 3-4, p.
243-260.

[Ti] J. Tits, Free subgroups in linear groups, J. Algebra, Vol. 20 (1972) p. 250-270.

[Tu94] P. Tukia, Convergence groups and Gromov-hyperbolic metric spaces, New Zealand
Journal of Math. Vol. 23 (1994), p. 157-187.

[Tu98]  P. Tukia, Conical limit points and uniform convergence groups, J. Reine Angew. Math.
Vol. 501 (1998), p. 71-98.

Addresses:

M.K.: Department of Mathematics,
University of California, Davis

CA 95616, USA

email: kapovich@math.ucdavis.edu

B.L.: Mathematisches Institut
Universitat Miinchen
Theresienstr. 39

D-80333, Miinchen, Germany
email: b.l1@Qlmu.de

J.P.: Departament de Matematiques,
Universitat Autonoma de Barcelona,
08193 Bellaterra, Spain

email: porti@mat.uab.cat

93


http://arxiv.org/abs/0903.0584
http://arxiv.org/abs/1002.0996

	1 Introduction
	2 Geometric preliminaries
	2.1 Coxeter complexes
	2.2 Hadamard manifolds
	2.3 Symmetric spaces of noncompact type
	2.4 Parallel sets, cones, horocycles and decompositions of symmetric spaces
	2.4.1 Parallel sets
	2.4.2 Stars, Weyl cones and diamonds
	2.4.3 Strong asymptote classes
	2.4.4 Horocycles and horocyclic subgroups
	2.4.5 Distances to parallel sets versus angles

	2.5 Dynamics of transvections at infinity
	2.5.1 Identifications of horocycles and contraction
	2.5.2 Infinitesimal contraction of transvections


	3 Topological dynamics preliminaries
	3.1 Expanding actions
	3.2 Convergence actions

	4 Convex cocompact groups of isometries of rank one symmetric spaces
	5 Weakly regular subgroups and their limit sets
	5.1 Weak regularity
	5.2 Contraction-expansion dynamics at infinity
	5.2.1 Contraction and expansion
	5.2.2 Strong asymptoticity of Weyl cones
	5.2.3 Regularity implies contraction-expansion
	5.2.4 Contraction implies regularity

	5.3 Flag convergence
	5.4 Flag limit sets
	5.5 Antipodal subgroups

	6 Asymptotic conditions for discrete subgroups
	6.1 Conicality
	6.1.1 Conical convergence
	6.1.2 Recognizing conical convergence at infinity
	6.1.3 Conical limit set
	6.1.4 Comparing extrinsic and intrinsic conicality
	6.1.5 Expansion at conical limit flags

	6.2 Equivalence of certain asymptotic conditions
	6.3 Boundary embeddings
	6.4 Coarse extrinsic geometry
	6.4.1 Boundary embedded groups
	6.4.2 The regular case
	6.4.3 Asymptotically embedded groups

	6.5 The Anosov condition
	6.5.1 Anosov representations
	6.5.2 Non-uniformly expanding Anosov representations


	7 Morse maps and actions
	7.1 A Morse Lemma for straight sequences
	7.2 Lipschitz retractions
	7.3 Morse quasigeodesics
	7.4 Morse embeddings
	7.5 Morse actions
	7.6 Schottky actions
	7.7 Algorithmic recognition of Morse actions




