UC Merced
Proceedings of the Annual Meeting of the Cognitive Science
Society

Title
Learning from Failures for Cognitive Flexibility

Permalink
https://escholarship.org/uc/item/3kb9899n

Journal
Proceedings of the Annual Meeting of the Cognitive Science Society, 32(32)

ISSN
1069-7977

Authors
Choi, Dongkyu
Ohlsson, Stellan

Publication Date
2010

Peer reviewed

eScholarship.org Powered by the California Diqital Library

University of California

https://escholarship.org/uc/item/3kb9899n
https://escholarship.org
http://www.cdlib.org/

Learning from Failures for Cognitive Flexibility

Dongkyu Choi (dongkyuc@uic.edu)
Stellan Ohlsson (stellan @uic.edu)
Department of Psychology
University of Illinois at Chicago
1007 W Harrison Street (M/C 285), Chicago, IL 60607 USA

Abstract

Cognitive flexibility is an important goal in the computational
modeling of higher cognition. An agent operating in the world
that changes over time should adapt to the changes and update
its knowledge according to them. In this paper, we report our
progress on implementing a constraint-based mechanism for
learning from failures in a cognitive architecture, ICARUS. We
review relevant features of the architecture, and describe the
learning mechanism in detail. We also discuss the challenges
encountered during the implementation and describe how we
solved them. We then provide some experimental observations
and conclude after a discussion on related and future work.

Keywords: cognitive architecture, constraints, constraint
violations, learning from failures, skill acquisition

Introduction

In computational models of higher cognition, it is impor-
tant to simulate the broad human functionality that we call
adaptability or flexibility. Cognitive flexibility is, of course,
a multi-dimensional construct, but in this paper, we focus
specifically on the ability of humans to act effectively when a
familiar task environment is changing, thus rendering previ-
ously learned skills ineffective or obsolete.

Traditionally, researchers discussed two types of error cor-
rection mechanisms for this problem. Weakening (Anderson,
1983, pp. 249-254) assumes that certain knowledge struc-
tures like rules, skills, schemas, or chunks have strengths as-
sociated with them, and it decreases the strength of the par-
ticular structure that generates a negative outcome. However,
actions themselves are not typically correct or incorrect, or
appropriate or inappropriate. Instead, they are appropriate,
correct or, useful in some situations but not in others. The
goal of learning from failure is thus to distinguish between
the class of situations in which a particular type of action will
cause errors and the class of situations in which it does not.
Weakening does not accomplish this, because lower strength
makes an action less likely to be selected in all situations.

Another mechanism proposed for error correction is dis-
crimination (Langley, 1987). The key idea behind this con-
tribution is to compare a situation with a positive outcome
and another with a negative outcome to identify discriminat-
ing features. If an action generates both positive and negative
outcomes across multiple situations, the system identifies any
features that were true in one situation but not in the other,
and uses them to constrain the applicability of the action. But
the computational discrimination mechanism also has several
problems including: the lack of criterion for how many in-
stances of either type are needed before a valid inference
as to the discriminating features can be drawn; the possible

existence of a very large number of potential discriminating
features, leading to complex applicability conditions or large
numbers of new rules or both; and the inability to identify
potential discriminating features with a causal impact from
those of accidental correlation.

In response, Ohlsson (1996) developed a constraint-based
specialization mechanism for learning from negative out-
comes. The production system implementation of the mech-
anism overcomes most of the weaknesses of previous meth-
ods. It assumes that the agent has access to some declara-
tive knowledge in the form of constraints, which consist of
an ordered pair with a relevance criterion and a satisfaction
criterion. The system matches the relevance criteria of all
constraints against the current state of the world on each cy-
cle of its operation. For constraints with matching relevance
conditions, the system also matches the satisfaction condi-
tions. Satisfied constraints require no response, but violated
constraints signal a failed expectation due to various reasons
including a change in the world or erroneous knowledge. This
constitutes a learning opportunity, and the system revises the
current skill in such a way as to avoid violating the same
constraint in the future. The computational problem involved
here is to specify exactly how to revise the relevant skill when
an error occurs, and the constraint-based specialization pro-
vides a solution to this problem.

Unlike weakening, the constraint-based approach identifies
the specific class of situations in which an action is likely (or
unlikely) to cause errors. It also differs from the discrim-
ination method, and the mechanism does not carry out an
uncertain, inductive inference. Instead, it computes a ratio-
nally motivated revision to the current skill. However, these
advantages were limited by a simplistic credit/blame attribu-
tion algorithm and the lack of serious architectural supports
like other learning mechanisms that can operate in parallel. In
this paper, we adapt the constraint-based specialization mech-
anism to a cognitive architecture, ICARUS, and address these
limitations. The architecture features hierarchical knowledge
structures, and it has a variety of well-developed capabilities
including learning from positive outcomes (Langley & Choi,
2006). We first review the relevant features of the ICARUS
architecture, and describe the constraint-based specialization
mechanism in some detail. Then we identify the challenges
we encountered during the implementation in ICARUS, with a
particular attention to the credit assignment problem. Finally,
we report some experimental observations with the system,
and discuss related and future work.

2099

The ICARUS Architecture

Cognitive architectures aim for a general framework for cog-
nition. They include a set of hypotheses covering representa-
tion, inference, execution, learning and other aspects of cog-
nition. Soar (Laird et al., 1986) and ACT-R (Anderson, 1993)
are some of the well-known cognitive architectures, and the
IcARUS architecture exhibits some similarities to them but
has some important differences as well (Langley & Choi,
2006). In this section, we review the fundamental aspects
of the architecture before continuing our discussion to the
specifics of learning from failures in this framework.

Representation and Memories

IcARUS distinguishes conceptual and procedural knowledge.
Concepts describe the environment, and enable the system to
infer beliefs about the current state of the world. Skills, on the
other hand, consist of procedures that are known to achieve
certain goals. The architecture also distinguishes long-term,
abstract knowledge and short-term, instantiated structures.
Long-term concepts and skills are general descriptions of sit-
uations and procedures, and the system instantiates them be-
fore applying them to a particular situation. Instantiated con-
cepts and skills are short-term structures, in that they are ap-
plicable only at a specific moment. ICARUS has four separate
memories to support these distinctions.

The architecture encodes concepts with definitions that are
similar to Horn clauses. They consist of a head and a body
that includes perceptual matching conditions or references to
other concepts. Table 1 shows some sample concepts. The
first concept has a head, (same-color ?blockl ?block2),
and specifies perceptual matching conditions among the vari-
ables involved in its :percepts and :tests fields. It is a
primitive concept, which does not have any reference to other
concepts. The second concept also has a head and some per-
ceptual matching conditions, but it has references to other
concepts in the :relations field, and therefore, it is a non-
primitive concept.

Table 1: Some sample ICARUS concepts for the Blocks
World. Question marks denote variables.

((same-color ?blockl ?block2)
:percepts ((block ?blockl color ?color
(block ?block2 color ?color)

:tests ((not (equal ?blockl ?block2))))

((not-color-sorted ?color)

:percepts ((block ?blockl color ?color
(block ?block2))

:relations ((on ?blockl ?block2
(not
(same-color ?blockl ?block2))))

On the other hand, ICARUS’ skills resemble STRIPS oper-
ators. The head of each skill is the predicate it is known to
achieve, and therefore, all skills are indexed by their respec-
tive goals. Each skill has a body that consists of perceptual
matching conditions, some preconditions, and either direct
actions to the world or references to its subgoals. Like in con-

cepts, skills with no references to any subgoals are primitive,
while the ones with them are non-primitive. The hierarchi-
cal organization provides multiple layers of abstraction in the
specification of complex procedures.

In Table 2, the first skill indexed by its goal (stacked
?block ?to) has some perceptual matching conditions and
a precondition, (stackable ?block ?to). It includes sev-
eral direct actions in the world (marked with asterisks), and
therefore, it is a primitive skill. The second skill, how-
ever, is a non-primitive one, with references to subgoals,
(stackable ?blockl ?block2) and (stacked ?blockl
?block2). The subgoals are ordered, and they invoke other
skills that achieve them. For instance, the second subgoal will
invoke skills like the first example in the table. In this manner,
IcARUS’s skills are hierarchically organized.

Table 2: Some sample ICARUS skills for the Blocks World.

((stacked ?block ?to)
:percepts ((block ?block)
(block ?to xpos ?xpos ypos ?ypos

height ?height)
((stackable ?block ?to)
((*horizontal-move ?block ?xpos)
(*vertical-move ?block

(+ ?ypos ?height))

(*ungrasp ?block)))

((on ?blockl ?block2)

:percepts ((block ?blockl)
(block ?block2))

:subgoals ((stackable ?blockl ?block2
(stacked ?blockl ?block2)))

istart
ractions

Inference and Execution

The ICARUS architecture operates in cycles. On each cycle,
the system instantiates its long-term concepts based on the
current situation. The bottom-up inference of concepts cre-
ates beliefs in the form of instantiated conceptual predicates.
The inference process starts with the perceptual information
about objects in the world. The system attempts to match its
concept definitions to the perceptual information and, when
there is a match, it instantiates the head of the definitions to
compute its current beliefs.

Once the architecture computes all its beliefs, it starts the
skill retrieval and execution process. ICARUS’ goals guide
this process, and the system retrieves relevant long-term skills
based on the current beliefs. When it finds an executable path
through its skill hierarchy, from its goal at the top to actions
at the bottom, ICARUS executes the actions specified at the
leaf node of the path. This execution, in turn, changes the
environment, and the system starts another cycle by inferring
the updated beliefs from new data received from the environ-
ment.

Problem Solving and Learning

During the execution for its goals, the architecture sometimes
encounters a situation where it can not find any executable
skill path. When this happens, ICARUS invokes its means-
ends problem solver, chaining backward from its goal. It at-

2100

tempts to use two types of chains, a skill chain that uses a
goal-achieving skill with unsatisfied preconditions and a con-
cept chain that decomposes the goal into subgoals through
concept definitions. Once the system finds a subgoal with an
executable skill during this process, it immediately executes
the skill and continue to the next cycle until it achieves all the
top-level goals.

When the architecture finds a solution and achieves a goal
(which includes both the top-level goals and any of their sub-
goals), it learns new skills from the successful problem solv-
ing trace. The learned skills differs in their forms based on the
type of the problem solving chain. Further discussions on the
problem solving and learning capabilities would require more
space than we can afford here, but Langley and Choi (2006)
covers all the details. In the subsequent sections, we explain
the details of the constraint-based specialization mechanism
and its implementation in ICARUS.

Learning from Failures

As described in the previous section, ICARUS has hierarchi-
cally organized skill knowledge and it can learn from positive
outcomes through problem solving. However, the architec-
ture can not adapt to environmental changes when some of
its existing skills become incorrect or obsolete. Extending
ICARUS with the constraint-based specialization mechanism
provides this capability.

Representation of Constraints

The extended architecture stores each constraint as a pair
of relevance and satisfaction conditions, following Ohlsson
and Rees (1991). Both relevance and satisfaction conditions
are conjunctions of predicates, and the ICARUS architecture
keeps a list of such pairs in a separate constraint memory.

Table 3 shows some sample constraints we use in the
Blocks World domain. For convenience, we store each pair
with a name like color, top-block, or width. The first con-
straint, color, says that two blocks should have the same color
when they are stacked, which, in effect, enforces all towers to
have a single color. Similarly, the other two constraints mean
that a block that is designated as a fop-block should always
be clear, and that a block on top of another block should be
smaller than the one below, respectively.

Table 3: Some sample constraints for the Blocks World.

(color :relevance ((on ?a ?b))
:satisfaction ((same-color ?a ?b)))

(top-block :relevance ((top-block ?b))
:satisfaction ((clear ?b)))

(width :relevance ((on ?a ?b))
:satisfaction ((smaller-than ?a ?b)))

Detection of Constraint Violations

On each cycle, the system checks if the current belief state
satisfies all the constraints. It first attempts to match the rel-
evance conditions of its constraints against the current state,

and, if a match is found, verifies that the satisfaction con-
ditions also hold. When it finds an unsatisfied constraint, it
attempts to revise the skill that caused this violation.

We distinguish two different types of constraint violations.
In the first type, a constraint just becomes relevant after an
action but not satisfied at the same time. For instance, when
an agent stacks a red block, A, on top of a blue block, B,
it achieves (on A B), so the corresponding instance of the
color constraint in Table 3 matches and the constraint be-
comes relevant by the stacking action. But the satisfaction
condition, (same-color A B), is not met in this case, be-
cause one of the blocks is red and the other is blue. We refer
to violations like this as fype A violations.

Another type of violations, which we call type B viola-
tions, involves a constraint that has been relevant and satis-
fied, but becomes unsatisfied as a result of an action while it
still stays relevant. An example of this type occurs when an
agent stacks a block C on top of a block 7B that is designated
as a top block. In this case, the top-block constraint stays rel-
evant before and after the stacking action, since the predicate,
(top-block TB) continues to hold. But the satisfaction con-
dition, (clear TB) becomes false as a consequence of the
action, and the constraint is violated.

Skill Revisions

Once the system detects constraint violations of either type,
it randomly chooses one of them and attempts to make re-
visions to the skill it just used. The revision process shares
its basic steps with those used in previous research (Ohlsson,
1996; Ohlsson & Rees, 1991). The goal of this process is to
constrain the application of the skill to situations in which it
will not violate the constraint.

For a type A violation, where a constraint becomes rele-
vant but violated, one of the revisions forces the constraint to
stay irrelevant, and the other ensures that it is both relevant
and satisfied. On the other hand, a type B violation, in which
a constraint stays relevant but becomes violated, invokes one
revision that makes sure the constraint is irrelevant, and an-
other that restricts the use of the skill to cases where the sat-
isfaction is not affected.

The system revises skills by adding preconditions, and Ta-
ble 4 shows how the system computes the new preconditions
for the two types of violations. C, and C; represent the rel-
evance and satisfaction conditions. O, and O, are the add
and delete lists of the executed primitive skill. The rationale
for these computations has been developed in detail in prior
publications (Ohlsson, 1996; Ohlsson & Rees, 1991).

As an example, let us revisit the Blocks World cases. In
the first case, we have a red block, A, and a blue block, B. The
system executes an instance of the first skill shown in Table 2,
(stacked A B), which adds the predicate to the state. This
implies that the relevance condition of the color constraint,
(on A B) also becomes true, but the satisfaction condition
(same-color A B) does not. When detecting this type A
violation, the system computes additional preconditions and
attempts to make two revisions. The first calculation, =(C, —

2101

Table 4: New preconditions created in response to constraint
violations.

Type \ Revision 1 2
A -(C,—0,) (C,—0,)U(Cs—0,)
B -C, C,U~(C;N0y)
0,),leads to (on A B) — (stacked A B), which results in

a null precondition. Therefore, the system ignores the first
revision and tries the second one. This time, the additional
precondition comes from (C, — O,) U (Cs — O,), which leads
to (same-color A B). The system adds this precondition to
the skill that caused the violation, and restricts the execution
of the stacking action to the case where two blocks have the
same color.

In the second case, we have two blocks, C, and 7B. When
the system stacks the block C on top of the block TB us-
ing the skill (stacked C TB), the top-block constraint be-
comes unsatisfied ((clear TB) not true in the state) while
it stays relevant continuously ((top-block TB) true in the
state). Upon detecting this type B violation, the system com-
putes two sets of additional preconditions using the formulas,
—C, and C,U—(C;NOy). These lead to (not (top-block
TB)) and ((top-block TB) (not (clear TB))), respec-
tively, which are added to two separate revisions of the skill.
The first revision prevents the use of the stacking action onto
a block designated as a top-block. The second revision is a
case of over-specialization, which makes it impossible to fire.
Nevertheless, the two revisions achieve the proper restriction
of the skill for the top-block constraint.

Challenges in Implementation

Although this implementation in the context of ICARUS
shares the basic steps with previous systems using constraint-
based specialization, various important differences between
the ICARUS architecture and production system architectures
require some significant changes in the revision process. In
this section, we discuss the challenges and our solutions to
them.

Hierarchical Organization

First of all, ICARUS’ hierarchical organization of skill knowl-
edge poses the most significant change, in relation to the as-
signment of blame. Production systems have flat structures,
and it is mostly the case that the last executed rule caused
a violation. But in ICARUS, execution involves a skill path,
which may include more than one skill instance. Skill in-
stances near the top of the path are more abstract, and those
close to the bottom are more specific. Depending on the level
of abstraction at which the violated constraint exists, the skill
that needs to be revised can be anywhere on this path, and no
simple attribution rule will be sufficient. So, the question is
how ICARUS can identify the right skill to revise generally.

An analysis of multiple examples indicates that the archi-
tecture should find the highest level in the skill path in which
all the variables involved in the additional preconditions for
the revision are bound. All the additional preconditions are
fully instantiated at this level and, therefore, it is the highest
level in which the preconditions become meaningful. This
makes it the right level at which to make the corresponding
revisions. The results of running ICARUS indicate that this
solution is correct. This solution is easily computable and
general across domains. The possibility that it applies to other
types of hierarchical systems might deserve attention.

Add and Delete Lists

Another problem occurs during the computation of the ad-
ditional preconditions for skill revisions. Unlike production
systems that have explicit and complete add and delete lists
associated with actions, the ICARUS architecture has skills as-
sociated with goals. Goals typically do not include any side
effects we do not care about, and they do not specify any
predicates that should disappear after a successful execution.
For this reason, the add and delete lists are not explicit in the
architecture, and we must compute them from other sources.

Meanwhile, the use of add lists during the revision pro-
cess is limited to the calculation of logical differences, and
we can use goals as if they represent complete add lists. This
will make the revised skill more restrictive rather than less
so, thus making it safe. However, we should compute the
delete list explicitly because of the way it is used during the
revision process. We chose to calculate the list by comparing
two successive belief states, although this may include some
predicates removed by sources external to the agent. Again,
however, this makes the revisions more restrictive, rather than
more general, keeping the agent safe, because the delete list
is negated during the computation of preconditions.

Disjunctive Definitions

IcARUS’ support for multiple, disjunctive definitions of con-
cepts adds another layer of complexity. When computing ad-
ditional preconditions for skill revisions, the system should
decompose any non-primitive concepts. Disjunctive concepts
create multiple expansions, possibly resulting in more than
one set of additional preconditions. The architecture accepts
all such expansions and create multiple revisions.

The consequences of this approach are significant. When
the system experiences a constraint violation, the situation
might involve a particular disjunction of a concept. Never-
theless, the architecture learns multiple revisions from this
case, covering all possible disjunctions of the concept. This
approach is based on the understanding that there is a good
reason why the disjunctive concepts have the same head, and
that the system benefits from learning about all such cases. In
future tasks, the system might confront a situation in which
another one of the disjunctions applies, and, due to its prior
learning, the system will already know how to avoid making
an error in this situation even though it has never encountered
it before.

2102

Experimental Observations

To verify that the system works as intended, we performed
experiments in two domains. We give only the basic con-
cept and skill sets to the system at the beginning, along with
the information on constraints. This means that the system
knows how to operate in the world, but not at the level of ex-
pertise that enables it to satisfy the constraints at all times.
It is as if humans sometimes know what should happen and
what should not, but do not necessarily know how to impose
these rules and often make mistakes. As the system learns
from its failures, it revises the basic skills to avoid constraint
violations in the future.

Blocks World

We modified the familiar Blocks World from the typical setup
to include blocks of different colors and sizes. This modi-
fied domain supports various constraints like the color and
size of the blocks in a tower or the maximum height of each
tower. Table 3 shown earlier includes three of the constraints
we have in this domain. The color constraint says whenever
a block is stacked on top of another the two blocks should
have the same color. This, in effect, forces any tower to have
only the blocks of one color. The fop-block constraint means
any block designated as a top block (according to the sys-
tem’s conceptual knowledge) should always be clear, having
no other blocks on top. The last constraint, width enforces
that a block is smaller than the block underneath it.

Number of subjects with error

1 2 3 4 5 6 7 8 9 10
Number of trials

Figure 1: Number of simulated subjects that violated a con-
straint at each trial.

We ran simulation experiments with several different goals,
and Figure 1 shows the result from one of them. In this ex-
periment, we had ten simulated subjects, and each subject
performed ten trials of the given task. We recorded the num-
ber of subjects that violated any constraints during each trial.
The graph clearly shows that the revision process gradually
reduces the number of the simulated subjects with constraint
violations.

Route Generation

Another domain we used to test the system is a simplified
version of route generation between places. Here, in addition
to testing the specialization mechanism in ICARUS, we also
want to verify that the mechanism can operate in parallel to
other learning schemes like learning from success. The agent
starts at a certain location, and has the goal of getting to a tar-
get location elsewhere. Using the information on connections
between neighboring locations, the system performs problem
solving to find a route to its target. As a result, it finds one of
the several possible routes that involve different waypoints,
and ICARUS learns specific route knowledge from this posi-
tive experience.

But some of the routes might become unavailable for travel
due to various reasons like a broken bridge. At subsequent
runs, the agent encounters situations where it can not use
routes it learned before. While attempting to get to the target
using a learned route, ICARUS recognizes that it gets stuck at
a location with no outlet, violating a constraint not to be at a
dead end. This failure triggers the system to learn a revised
skill, which prevents it from moving to a location without any
outlet. On the next trial, armed with this new skill, the system
attempts to find another route to get to its target, and learns a
skill for an alternate route for later use.

Let us see this behavior in a sample run. We give the sys-
tem a goal to get to a target location, B, starting from the
initial location, A. The two locations are connected by two al-
ternate routes using waypoints W1 and W2, respectively. The
system starts out with two concepts and a skill as shown in
Table 5. It also has the connection information between the
locations, A, B, Wi, and W2 as some static beliefs. The only
constraint it knows of is,

(at ?location) — (not-dead-end ?location)

which simply says that it should not be at a dead end at any
time. During the first trial, the system finds a path, A - W1 -
B through problem solving, and learns a specific skill for this
route. Before we continue to the next trial, we intentionally
remove the connection between W/ and B, making the path
obsolete. On the next trial, the system attempts to reuse the
path, but it finds that it violates the constraint while it is at
location W1. This violation triggers a revision process, re-
sulting in another new skill. Once the system learns this new
skill, it attempts to find an alternate route through yet another
problem solving process, resulting in the path, A - W2 - B.
After ICARUS stores this route as a specific skill, it executes
the skill when it encounters the same task at a later time.

Related and Future Work

The current work on the constraint-based specialization has
important similarities to some work in the explanation-based
learning (EBL) literature (see Ellman, 1989; Wusteman, 1992
for reviews). EBL methods assume a significant amount of
domain theories presumed to be perfect. However, in most
of the domains, this is not true, and they require some ways

2103

Table 5: Two concepts and a skill given to ICARUS for
the route generation domain, and the two skills the system
learned. The first skill is learned from problem solving
(marked as P-S), and the other is learned from constraint-
based specialization (marked as C-S). The additional precon-
dition in this skill is shown in bold face.

((at ?location)
:percepts ((self ?self location ?location)))

Given:

((not-dead-end ?location)

:percepts ((location ?location))

:relations ((connected ?location ?tol)
(connected ?location ?to2))

itests ((not (equal ?tol ?to2))))

((at ?location)

:percepts ((location ?from))
:start ((at ?from)
(connected ?from ?location))
ractions ((*move-to ?location)))
Learned ((at B)
from P-S 1: :subgoals ((at W1)
(at B)))
Learned ((at ?location)
from C-S: :percepts ((location ?from))
:start ((at 2?from)
(connected ?from ?location)
(not-dead-end ?location))
:actions ((*move-to ?location)))
Learned ((at B)
from P-S 2: :subgoals ((at W2)
(at B)))

to augment or correct the domain theories. There, researchers
worked on the similar problems of blame assignment and the-
ory revision, although the exact formulations were different.
Unlike most of these work, our approach uses explicit de-
scriptions of constraints, which the system uses to detect fail-
ures and revise existing theories accordingly.

With the successful implementation of the constraint-based
specialization mechanism in ICARUS, we are able to study
the important problem of interactions between two learning
mechanisms. People learn in a variety of ways (Ohlsson,
2008) and human-level flexibility is the outcome of the in-
teractions among multiple learning mechanisms. Currently,
we have only a limited understanding of how learning mecha-
nisms interact to produce flexible behavior. We intend to add
additional mechanisms to ICARUS, including learning from
examples or from analogies, and explore the conditions under
which multiple mechanisms produce more flexible behavior
than individual mechanisms.

Another key problem is how to interleave thinking (search
in a mental, symbolic problem space) and action (search in an
external, physical environment). The two types of processes
differ in a variety of ways, most importantly in that a return to
a previous state can be achieved by fiat in the internal search
space, but has to be accomplished through physical action
in the external environment. We intend to experiment with
multiple schemes for controlling the interleaving in multiple
task domains.

Conclusions

An intelligent agent cannot be limited to learning from pos-
itive experience. When task environments change, the ex-
trapolation of prior experience to cover future situations in-
evitably leads to errors, mistakes and unacceptable outcomes.
To exhibit human-level flexibility, an artificial agent needs
learning mechanisms that specify how to change in the face
of such negative outcomes. The constraint-based specializa-
tion mechanism provided this capability in a production sys-
tem framework before, and we implemented it with the hier-
archical skill representation in the ICARUS architecture suc-
cessfully, after resolving multiple conceptual problems. We
performed some test runs in the Blocks World and a naviga-
tion domain, and found the mechanism successfully removes
failures after revisions. We also verified that the mechanism
works well in parallel to another learning mechanism, allow-
ing further study of human level flexibility in this direction.

Acknowledgments

This research was funded by Award # N0001-4-09-1025 from
the Office of Naval Research (ONR) to the second author. No
endorsement should be inferred.

References

Anderson, J. R. (1983). The architecture of cognition. Cam-
bridge, MA: Harvard University Press.

Anderson, J. R. (1993). Rules of the mind. Hillsdale, NJ:
Lawrence Erlbaum.

Ellman, T. (1989). Explanation-based learning: A survey
of programs and perspectives. ACM Computing Surveys,
21(2), 163-222.

Laird, J. E., Rosenbloom, P. S., & Newell, A. (1986). Chunk-
ing in soar: The anatomy of a general learning mechanism.
Machine Learning, 1, 11-46.

Langley, P. (1987). A general theory of discrimination learn-
ing. In D. Klahr, P. Langley, & R. Neches (Eds.), Pro-
duction system models of learning and development (pp.
99-161). Cambridge, MA: MIT Press.

Langley, P, & Choi, D. (2006). Learning recursive con-
trol programs from problem solving. Journal of Machine
Learning Research, 7, 493-518.

Ohlsson, S. (1996). Learning from performance errors. Psy-
chological Review, 103, 241-262.

Ohlsson, S. (2008). Computational models of skill acquisi-
tion. In R. Sun (Ed.), The cambridge handbook of compu-
tational psychology (pp. 359-395). Cambridge, UK: Cam-
bridge University Press.

Ohlsson, S., & Rees, E. (1991). Adaptive search through con-
straint violations. Journal of Experimental & Theoretical
Artificial Intelligence, 3, 33—42.

Wusteman, J. (1992). Explanation-based learning - a survey.
Artificial Intelligence Review, 6(3), 243-262.

2104

