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Abstract 
Recent studies suggest that humans can infer the underlying 
causal model from observing the distribution of variables. In 
a multiple-cue experiment we investigated if people can infer 
the causal structure from mere observation, and if different 
causal models invite different cognitive processes. 
Participants performed 220 training trials in two judgment 
tasks with different underlying causal structure. The result 
shows a poor ability to discriminate between causal models, 
and poor manipulation insight, but a correlation between 
causal models and cognitive processes. This study suggests 
that people do not represent multiple-cue judgment tasks in 
terms of causal models, but that common effect causal 
models invite reliance on processes of explicit cue 
abstraction. 

Keywords: Multiple Cue Judgment; Causal Models; Cue 
Abstraction; Exemplar Memory. 

Introduction 
In everyday life, we make both judgments about common 
and rare events. From these judgments we might make 
important decisions, and act accordingly. When we make 
these judgments, how aware are we of the information upon 
which we base them? Are humans in general somewhat like 
amateur statisticians, calculating data and acting rationally 
according to the relevant information? And how much do 
we know about causality in our everyday life? Are human’s 
also like amateur private investigators? Imagine, for 
example, yourself as a researcher investigating if different 
hormones in an exotic poisonous frog affect the toxicity of 
the frog, or if it is the toxicity that affects the level of the 
hormones. This is the intriguing task that our participants 
faced. 

Advances in the formal modelling of causal relations 
(Pearl, 2000) has stimulated renewed interest for causal 
reasoning and its role in learning (Gopnik et al., 2004; 
Rehder, 2003; Steyvers, Tenenbaum, Wagenmakers, & 
Blum, 2003). Beliefs about causality are increasingly used 
to explain how people reasons and make judgments 
(Sloman, 2005). Causal models have also emerged in the 
field of categorization (Rehder, 2003), but within a multiple 
cue learning paradigm causal models have been relatively 
absent (but see Schoppek, 2002).  

The purpose of this study is to investigate if people can 
detect causal structure in a multiple-cue judgment task. 
When people are alerted to think about causality, can they 
then infer the causal structures merely from observing the 
cues and the criterion? Do they spontaneously represent the 

judgment tasks in terms of causal structure, or do they 
primarily reason in terms of exemplar memory or functional 
relations (Enkvist, Newell, Juslin, & Olsson, 2006; Juslin, 
Jones, Olsson, & Winman, 2003), as has been the belief in 
judgment research for a long time? These questions will be 
addressed in this study, and in a questionnaire that examines 
people’s insights about the causal structure of the task. 

Judgment Task and Cognitive Models 
The two processes that are perhaps most often discussed in 
categorization learning and multiple cue judgment are rule-
based and exemplar-based processes (Juslin, Jones et al., 
2003; Smith, Patalano, & Jonides, 1998). Ruled-based 
models, like the cue abstraction model, implements the idea 
that people use controlled processes in working memory to 
mentally integrate cues according to a linear additive rule. 
In training participants abstract cue weights that are used to 
compute an estimate of the criterion when a new probe is 
presented (Juslin, Jones et al., 2003; Juslin, Karlsson, & 
Olsson; In press). In contrast, exemplar models assume that 
people make judgments by retrieving similar stored 
exemplars from memory (Medin & Schaffer, 1978; 
Nosofsky & Johansen, 2000), a process that involves rapid 
similarity-based processes. The exemplars retrieved from 
memory are representations of holistic concrete experienced 
instances encountered in training.  

We rely on an experimental paradigm designed to help 
distinguish between cue abstraction and exemplar memory 
in a multiple-cue judgment task (Juslin, Jones et al., 2003). 
The judgment task involves a probe defined by four 
continuous cues and requires a judgment of a continuous 
criterion. Judgments are initially made in a training phase 
where feedback about the correct criterion is provided after 
every judgment. The cues C1, C2, C3 and C4 take on 11 
discrete values between 0 and 10 and the toxicity c of a 
subspecies is a linear additive function of the cues: 

41322314 CCCCc ⋅+⋅+⋅+⋅=    (1) 
The criterion c is thus computed by assigning cue number 

one, C1, most importance and therefore the largest weight 
and cue number four, C4, the least importance. 

When the participants make judgments of the continuous 
criterion the cue abstraction model suggests that they 
perform a mental analogue of linear multiple regression. For 
each cue, the weight ωi (i=1…4) is retrieved and the 
estimate of c is adjusted accordingly: 
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where k = .5 · (100 – 10 · Σ iω ). The intercept k constrains 
the regression to be around the midpoint of the interval 
[0,100] (Juslin, Olsson, & Olsson, 2003). If ω1 = 4, ω 2= 3, 
ω3 = 2, and ω4 = 1, Equations 1 and 2 are identical and the 
cue abstraction model affords perfect judgments in this task. 

The exemplar model implies that the participants make 
judgments by retrieving similar exemplars from memory 
(Medin & Schaffer, 1978). When the exemplar model is 
applied to judgments of a continuous criterion, the estimate 

E  of the criterion c is a weighted average of the criteria cj 
stored for the J exemplars, where the probe-exemplar 
similarities S(p,xj) are the weights: 
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where p is the probe to be judged, xj is stored exemplar j 
(j=1…J), S(p,xj) is the similarity between probe p and 
exemplar xj. The similarity between the probe p and 
exemplar xj is computed according to the generalized 
context model (GCM:Nosofsky, 1986), a generalization of 
the original context model . The similarity S(p,xj) between a 
probe p and an exemplars xj is found by transforming the 
distance between them.  

According to GCM, the distance between a probe p and 
an exemplar j is,  
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where xpm are the value of the probe and xjm are the values 
of an exemplar on the cue dimension m, the parameters wm 
are the attention weight associated with cue dimension m, 
and h is a sensitivity parameter that reflects the overall 
property of discrimination in the psychological space. 
Attention weights can vary between 0 and 1 and are 
constrained to sum to 1. The similarity S(p,xj) between a 
probe p and an exemplar j is assumed to be a nonlinear 
decreasing function of the distance (dpj) between them,

  ,                 (5) pjd
j expS −=),(

Causal Models 
The causal model network is a rather “new” framework 
based on Bayesian networks, a mathematical theory for 
representing probability (Sloman, 2005). In the causal 
modelling network, one of the core ideas is that an 
underlying causal network structure generates stable 
probabilistic relations of a system’s observed variables 
(Sloman, 2005). A particular kind of causal structure will 
generate a particular pattern of probability in the form of 
dependence and independence. Direct causal relations 

illustrated by arrows in a graph correspond to these relations 
between dependence and independence. Two variables are 
unrelated, or probabilistically independent, if there is no 
route from one variable to another on the direction of arrows 
in a causal graph. 

Two causal models are used in this experiment, a 
common cause model and a common effect model, see 
Figure 1. In common cause the cues are affected by the 
criterion and thus have a high intercorrelation. In common 
effect the criterion is an effect of the cues and the cues have 
a low intercorrelation. The common effect model is in 
mathematical terms identical with functional models used in 
previous multiple cue judgment tasks (Enkvist et al., 2006; 
Juslin, Jones et al., 2003; Olsson, Enkvist, & Juslin, 2006), 
where the cues independent of each other affects a criterion. 

 

 

Figure 1. The Common cause and the Common effect 
models.  c is the criterion, C1 to C4 are the cues. 

The Experiment 
The aim of the Experiment is threefold. First to investigate 
the ability to identify the underlying causal structure in a 
multiple-cue judgment task from merely observing the 
system. Recent studies suggests that humans and animals 
may have the ability to observe and infer underlying causal 
structure (Blaisdell, Sawa, Leising, & Waldmann, 2006; 
Gopnik et al., 2004; Steyvers et al., 2003).  

Second, it investigates if different causal models tend to 
induce different cognitive processes in a multiple cue 
judgment task, like the exemplar based model and the cue 
abstraction model. One possibility is that cue abstraction is 
more prevalent in the common effect condition because it 
might be easier to estimate the weight of each independent 
cue. In the common cause condition cues are highly 
correlated and the weight of one individual cue could be 
more difficult to estimate. Therefore, more exemplar 
memory is expected in the common cause condition. 

Third, the experiment highlights the effect of learning 
instructions about causal models on the ability to infer the 
underlying causal structure. Information about different 
causal models has been common in causal learning 
experiment (Lagnado & Sloman, 2004; Steyvers et al., 
2003), and learning instructions can be used to boost 
performance in multiple-cue judgment tasks (Olsson et al., 
2006). A questionnaire at the end of the experiment will try 
to capture participants’ insight about the underlying causal 
structures, by asking for model identification, manipulation 
of the variables, and the intercorrelation between cues. 

Method   
Participants. Forty-four students from Uppsala University 
participated. 19 males and 25 females with a mean age of 
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23.8 years (Range: 19-32, SD=2.9). The participants were 
rewarded with a cinema ticket or course credits. 
 
Material and procedure. The experiment involved a 2*2 
between-subjects factorial design, with learning condition 
(neutral instructions vs. model instructions) and causal 
model condition (common effect vs. common cause) as 
independent variables. Participants were randomly assigned 
to one of the four group conditions. 

Subspecies of fictitious poisonous frogs characterized by 
values on four continuous cues and a continuous criterion 
were used as stimuli. Each cue could take on 11 different 
values, represented in the experiment by a number ranging 
from 0 to 10 (Enkvist et al., 2006). There were two different 
causal environments with the poisonous frog. A common 
cause and a common effect environment. In the common 
cause environment the criterion is causing the levels of the 
cues and in the common effect environment the cues are 
causing the level of the criterion, see Figure 1. A random 
error was added to change the multiple correlation between 
the cues and the criterion to equal R=.9 in both causal 
learning conditions to reflect realistic and probabilistic 
learning environments. 

The model instruction learning condition. Participants in 
the model instruction learning condition, regardless of what 
underlying model they were assigned to, were instructed to 
imagine themselves as doing research on a poisonous frog 
in South America, and that findings had suggested that they 
could guess the amount of poison contained in the frog by 
observing the amount of four different hormones; alpha, 
beta, phi and rho, in its blood. The participants were also 
informed that there were two different theories (the causal 
models) about the causal relations between the amount of 
poison and the value on the different hormones. Their task 
was to try to predict the amount of poison in the frog by 
observing the different values on the hormones, and also to 
try to decide which of the two theories that was correct. One 
theory was that the toxicity was caused by the different 
amounts of hormone in the blood, so that changing the 
hormone would also change the poison. The other theory 
was that the toxicity was instead causing the levels of 
hormones in the blood, so that changing the amount of 
poison would also change the level of hormones.  They 
were informed that the first part of the experiment would 
involve a learning phase, where they would be provided 
with feedback on every trial, about the correct amount of 
poison that the frog was carrying. Also, the instructions said 
that every now and then, they were going to be asked to 
choose between the two theories. The underlying theory 
would remain the same the whole time, but they were asked 
this to see if their understanding of what theory was correct 
would change over time. They were also informed about the 
fact that they could not possible make perfect predictions 
every time, because of a random error.  

The neutral learning condition. In this condition, 
participants were not informed about the possibility of 
alternative underlying structures like the common effect and 

the common cause models. The participants were only told 
that they would try to predict the amount of poison in the 
frog by observing the values of the hormones alpha, beta, 
phi and rho, and that a random error would make it 
impossible to make perfect predictions all the time.  

The Experiment consisted of three parts. First a training 
phase where participants made outcome judgments of 
toxicity based on four cues and received outcome feedback 
about the correct criterion. 220 unique variants of poisonous 
frogs where presented in training. Participants in the model 
learning condition also made 14 judgments of the 
hypothetical model, common cause or common effect, that 
best described the relation between cues and criteria. The 
test phase consisted of 60 trials with no outcome feedback: 
20 exemplars from the training phase and 10 new exemplars 
presented twice in random order.  

After training and test all participants filled in a 
questionnaire, to find out if the participants had gained any 
insight about the system under study. The questionnaire was 
in three parts. First participants were asked 8 questions 
about the degree to which one variable can be used to 
manipulate another (first for how each cue affected the 
criterion and then how the criterion affected each cue). On 
each question participants estimated on a scale from 1 to 7, 
where 1 mean no effect and seven means high effect. 
Second, 6 questions were asked about cue correlations and 
estimated on a scale from 1 to 7 (1 indicate low correlation 
and 7 indicate high correlation). Finally participants made a 
model choice of which of the causal models (common cause 
or common effect) that best described the judgment task. 
 
Dependent Measures. Judgment data is analyzed at three 
levels: Performance and learning, Representation and 
Model Fit. In the questionnaire, three different dependent 
variables were measured, model insight, manipulation 
insight and intercorrelation insight.  

Performance is measure by Root Mean Square Error 
(RMSE), between judgment and criterion in the test phase. 
Lower RMSE suggests better performance. Learning is also 
measured by the correlation between judgments of old 
exemplars in test (exemplars encountered during training 
that also are included in the test phase) and the criterion of 
the old exemplars.  

Representation is measured by Extrapolation index, the 
ability to extrapolate judgments beyond the previous learned 
criterion range. Extrapolation Index is the signed deviation 
from the prediction by a linear regression model with 
judgment as dependent variable and criterion as the 
independent variable. If the judgments for the extreme 
exemplars are as extreme as expected from linear 
extrapolation from the training exemplars the Extrapolation 
index is positive, otherwise Extrapolation index is negative.  

Model fit is measured by Root Mean Square Deviation 
(RMSD), the absolute deviation between model prediction 
for each model (the cue abstraction model and the exemplar 
based model) and judgment data.  
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Results 
Performance and learning. There where no differences in 
performance at test between the learning conditions or 
between the causal models. Figure 2 shows the judgment 
data from the test phase for both causal conditions. 
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Figure 2. Judgment data from the test. Filled squares denote 
old exemplars seen both in training and test. Open squares 
denote new exemplars introduced at test. Panel A: The 
common cause condition. Panel B: The common effect 
condition. 
 
Mann-Whitney U-tests on the correlations between the 
criterion and the judgments for old exemplars shows no 
differences between the learning conditions and causal 
models (causal models: U1, 22=174, p=.11; learning 
conditions: U1, 22=198, p=.31), suggesting that learning is 
roughly equal in all conditions. A two-way ANOVA with 
learning conditions (neutral and model based) and causal 
models (common cause and common effect) as independent 
variables and RMSE as dependent variable shows that there 
are no differences in RMSE between the learning conditions 
and the causal models in the last block (last 20 trials) of the 
training phase, p>.44, suggesting that learning is fairly 
similar at the end of training.  
 
Representation and Model fit. A one-way ANOVA shows 
that the Extrapolation index is significantly higher for the 
common effect model (F1, 42=74.85, p<.001). Extrapolation 
index is positive and significantly separated from zero for 
the common effect condition, suggesting the use of cue 
abstraction. For the common cause condition Extrapolation 
index is negative and significantly separated from zero, 
suggesting the use of exemplar memory, see Figure 3 left 
panel.  

Model fit was analyzed to see which of the cognitive 
models, the exemplar model or the cue abstraction model, 
that best explained the judgment data. A two-way ANOVA 
with learning conditions (neutral and model based) and 
causal models (common cause and common effect) as 
between-subjects independent factors and the cognitive 
models (exemplar model and cue abstraction model) as 
within-subjects factor shows significant difference between 
the causal models (F1, 40=16.95, p<.001), no difference 
between learning conditions (F1, 40=.18, p=.67), but a 
significant interaction (F1, 40=5.14, p=.029), see Figure 3. In 
the common cause condition there is no difference between 

the cue abstraction model and the exemplar model, but in 
the common effect condition cue abstraction has a 
significantly better fit than the exemplar model. 

Different causal structures do not affect learning in a 
multiple-cue judgment task, but different causal structures 
thus seem to be related to different cognitive processes. 
Participants in the common cause condition were unable to 
fully extrapolate their judgment on new exemplars in test 
suggesting the use of exemplar memory. The Model fit 
shows that both the exemplar based model and the cue 
abstraction model fits data in the common cause condition 
suggesting that both models are in use in the common cause 
condition. Positive Extrapolation index that is significantly 
separated from zero and a significantly better fit for the cue 
abstraction model suggests that cue abstraction is the 
dominating process in the common effect condition.  
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Figure 3. Left panel: Extrapolation index for the common 
cause model and the common effect model. Right panel: 
Model fit in terms of RMSD for each causal model 
condition and cognitive process. 

Analysis of the Insight Questionnaire 
Model insight. Participants were asked to assess the 
probability for each of the two causal models (common 
cause and common effect) after viewing two illustrations of 
the models like those in Figure 1. In a one-way ANOVA the 
probability for “common cause” was analyzed, and if the 
participants would have grasped the underlying causal 
structure, the participants in the common cause condition 
should judge a higher probability for common cause. This 
was not the case. There were no differences between the 
causal models (p=.55), see Figure 4A. In the model learning 
conditions participants where asked about the correct model 
14 times during training. The results from the model choice 
in training shows a significantly better accuracy in model 
choice for the common effect condition, F1, 20=16.9, p<.001, 
(accuracy for common cause .28 and for common effect 
.76). This, however, does not seem to indicate better 
performance in the common effect condition, but a general 
bias for the common effect model because the assessments 
in the model insight measure fall systematically below .5 in 
both conditions. This is also supported by the poor accuracy 
in model choice during training for participants in the 
common cause condition. 
 
Manipulation insight. If participants have gained an insight 
about the causal models, they should also know how to 
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manipulate the criterion or the cues. For each participant, a 
measure of the cue criterion relationship was calculated 
based on the causal model used in their task. A significant 
effect was found for causal model, F1, 40=8.4, p<.006, 
indicating a difference between participants in the two 
models when it comes to insight about how to manipulate 
the criterion or the cues, see Figure 4B. A positive value 
suggests that participants have identified the correct 
manipulation pattern for their task. A negative value 
suggests that participants manipulate the task in the wrong 
way.  Participants in the common cause condition seem to 
be completely clueless. The question seems to be if the 
participants in the common effect condition have acquired 
deeper insight, or if all participants are inclined to think in 
terms of the common effect model. One answer is that the 
poor insight in both model conditions suggests that there is a 
response bias towards the common effect model. No 
significant effects were found for learning condition, F1, 

40=.004, p= .95, or interaction, F1, 40=1.83, p=.18. 
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Figure 4. Panel A: Model Insight, probability for common 
cause. Panel B: Manipulation Insight. Panel C: 
Intercorrelation Insight. 
 
Figure 4A and B are together strong evidence that there is a 
general bias towards thinking in terms of common effect. A 
probability judgment for the common cause model that are 
significantly below .5 and a significantly negative value on 
manipulation insight both suggest that participants in the 
common cause condition choose the common effect model 
and wrongly believes that changing values on the cues will 
affect the criterion in their task.  
 
Intercorrelation insight is measuring participant’s insight 
about the intercorrelation between the cues. Remember that 
in the common cause condition the cues have a tendency to 
be intercorrelated because of the underlying cause, while in 

the common effect condition the cues are independent from 
each other and not intercorrelated. A mean was calculated 
for the judgments of six assessments that expressed how 
much of the correlation between cues that was noticed by 
the participants. There were no significant effects of causal 
model, learning condition or interaction, see Figure 4C.  

In summary the insight questionnaire suggests that 
participants have poor knowledge about the causal system 
that they are exposed to and that there seem to be a bias 
towards the common effect model. A surprising result is that 
there is no improvement in insight with learning instructions 
with information about causal models. Despite that the 
cover story contained written and visual information about 
the common cause model and the common effect model, 
participants were unable to gain any insight about the 
causality. 

Discussion 
The purpose of this study was to investigate if it is possible 
from observation to identify the underlying causal structure 
in a multiple-cue judgment task and if different cognitive 
processes could be associated to different causal models. In 
the experiment we also investigated the effects of learning 
instructions about causal models on the ability to infer the 
underlying causal structure in the judgment task. 
 
Inferring Causal Structure in Multiple Cue Judgment.  
The question raised in this study was if it is possible to 
identify the underlying causal models in multiple-cue 
judgment tasks. This question was asked with reference to 
earlier studies, and those made by Steyvers et al. (2003) in 
particular, that humans seem to have a reasonably good 
ability to detect causal models, especially when they have 
been informed about possible causal explanations as 
producers of the patterns in the task. 

The insight measures from the questionnaire in this 
experiment shows a poor understanding about the 
underlying causal structure. An explanation for the poor 
insight in the common cause learning condition is that there 
seems to be a bias towards thinking in terms of common 
effect (see Lagnado & Sloman, 2004 for similar findings). 
Figure 4A and B shows that participants in the common 
cause condition systematically make judgments about cue-
criterion relationships and model choice that are consistent 
with common effect. A second explanation for the poor 
insight is the complexity of the judgment task compared to 
most causal learning tasks (Steyvers et al., 2003). Steyvers 
et al. for example used three binary cues compared to the 
four continuous cues and continuous criterion in the present 
study. It might be that it is more difficult to infer underlying 
causal structures in this multiple-cue judgment task because 
the four continuous cues were maybe at least one too many. 

 
Causal Models and Cognitive Representation. The results 
show that there are no differences between the causal 
learning conditions in learning and performance. However 
when investigating representation and model fit, differences 
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between the causal learning conditions occur.  Participants 
in the common effect learning condition are able to 
extrapolate beyond the previous learned criterion range, 
suggesting the use of cue abstraction, but participants in the 
common cause learning condition are less able to 
extrapolate, as predicted by exemplar memory. The 
common cause learning condition shows no differences 
between cue abstraction model and exemplar based model 
in model fit calculations, but the common effect learning 
condition show a significantly better support for the cue 
abstraction model. The common effect condition which in 
mathematical terms equals Equation 1, is in line with 
previous studies, suggesting the use of cue abstraction in 
multiple cue judgment tasks with continuous cues and 
continuous criterion (Enkvist et al., 2006). The exemplar 
effects in the common cause condition could be an effect of 
the difficulty to abstract cue weights when cues are highly 
intercorrelated. When cue abstraction fails, participants 
shifts to use exemplar memory to succeed with the task 
(Juslin et al., in press; Olsson et al., 2006). 

 
Learning Instructions as a Performance Booster? No 
benefits could be detected in the conditions that received 
learning instruction with model presentations. In Olsson et 
al. (2006) participants receiving information about the 
judgment task performed significantly better than 
participants with neutral instructions. In this experiment we 
found no benefits with instructions about the two causal 
models over neutral instructions with no model information.  

Conclusions 
The main conclusions from this experiment are; 1) there 
was no improvement in performance with initial instructions 
about causal models, 2) no differences in performance 
between the two causal learning conditions, 3) causal 
models seems to invite different cognitive processes. 
Common cause is relatively more associated with exemplar 
memory and common effect is associated with cue 
abstraction, 4) insight measures shows a poor understanding 
about the underlying causal structure and a strong bias 
towards the common effect model. 
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