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ABSTRACT OF THE THESIS

Deep Risk: Timely Risk Scoring by a Recurrent

Ensemble of Recurrent Neural Networks

by

Anton Nemchenko

Master of Science in Electrical & Computer Engineering

University of California, Los Angeles, 2018

Professor Mihaela Van Der Schaar, Chair

Timely prediction of clinical adverse events is a ubiquitous and important problem. We

present here a timely risk scoring algorithm (Deep Risk) based on a novel Deep Learning

architecture that solves the following key challenges: 1) the statistical properties of the

physiological time-series data streams are not constant over time; 2) timely prediction is of

the essence; 3) different patients exhibit different physiological trajectories; 4) the data is

unbalanced (adverse events are uncommon). Deep Risk employs a Gated Recurrent Unit

(GRU)-based Recurrent Neural Network (RNN) to aggregate the predictions of a family

of GRU-based RNN’s which operate on time windows of varying lengths. We show that

shorter windows cope better with the non-stationary data but longer windows are capable

of issuing more timely predictions. Using both shorter and longer windows enables Deep

Risk to do both. Each “lower level” RNN uses the information in its time window to make a

prediction; the “higher level” RNN uses the information in the longest of these time intervals

to aggregate the predictions of the “lower level” RNN’s and issue a final prediction. We

perform simulations based on real-world medical data sets and show that Deep Risk achieves

large and significant performance improvement over other methods, including clinical risk

scores and state-of-the-art machine learning algorithms.
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CHAPTER 1

Introduction

Every year in the U.S., more than 200,000 hospitalized patients experience cardio-pulmonary

arrest, 75% of those patients die and 50% of those who die could have been saved by timely

interventions, especially admission to an Intensive Care Unit (ICU). This represents more

than 75,000 unnecessary deaths in hospital every year. Evidently, the warning systems in

operation are not up to the task, which explains why enormous efforts have been expended to

create better warning systems. Unfortunately, none of these efforts have been as successful

as might have been hoped. In terms of True Positive Rate (TPR)/Sensitivity vs Positive

Predictive Value (PPV)/Precision, the most commonly used clinical risk scoring systems

(MEWS [SKR01] and APACHE [KDW85]) achieve Area Under the Sensitivity/Precision

Curve (AUSPC) of only 0.172 and the state-of-the-art machine learning scoring system

[AYH17] achieves AUSPC of only 0.361. This paper reports a new risk scoring system,

Deep Risk, based on novel Deep Learning architecture, that achieves AUSPC of 0.460.

In recent years, an enormous amount of effort has been expended to develop machine

learning methods for the prediction of various adverse events (in the hospital): admission

to ICU [AYH17], septic shock [HHP15], etc. The approaches taken have included Neural

Networks [KCB15], [CKL15], Gaussian Processes [CCP12], Hidden Markov Models [AYH17]

[HV16], hypothesis testing [YAH16]. Although these methods have generally improved on

state-of-the-art clinical methods, there is much room for improvement.

The lack of success of work to date comes from the many very difficult challenges the

problem poses. The first is that the statistical properties (for instance, the mean and vari-

ance) of the physiological time-series data streams are not constant over time; they are

non-stationary [AYH17]. This is important because a single patient may exhibit different
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patterns over time. The second is that timely prediction is of the essence: intervention may

be required now; delay of even a few hours may prove irreversible or even fatal. It follows

that to be useful, a warning must be issued well in advance of the time it becomes obvious (to

the clinicians) that intervention or admission to ICU is required. The third is that different

patients may exhibit different patterns over time. (Identifying groups of patients for which

disease patterns are similar – i.e., phenotyping – has proved to be very important in other

contexts, and numerous papers have used machine learning techniques to attempt to use

phenotyping for predicting adverse events [CKL15, AYH16, SS15]. However these papers

have not succeeded in learning temporal phenotypes in settings in which the disease pattern

(trajectory) is non-stationary and in which both static and dynamic data from many sources

needs to be integrated.) The fourth is that the data is very unbalanced: only a small fraction

of patients experience adverse events. (For instance: only 5% of hospitalized patients will

require transfer to ICU.).

We address these challenges by using a novel Deep Learning methodology that employs

a Gated Recurrent Unit (GRU)-based Recurrent Neural Network (RNN) to aggregate the

predictions of a family of GRU-based RNN Denoising Autoencoders (DAE). Each of the

“lower level” RNN’s uses the information in a time window of a specific length (e.g., 4 hours

before the present time, 8 hours before the present time, etc.) to make a prediction; the

“higher level” RNN uses the information in the longest of these time intervals to aggregate

the predictions of the “lower level” RNN’s and issue a single (final) prediction. Each of the

“lower level” RNN’s learns what information is important in its time window; the “higher

level” RNN learns when the information is important; this addresses the first challenge. We

address the second challenge by using GRU’s with different time windows to issue both cur-

rent predictions and future predictions (e.g. the patient will need to be sent to ICU 8 hours

from now). We address the third challenge by using the DAE’s to produce latent repre-

sentations/phenotypes. However, rather than using the DAE to learn general unsupervised

representations/phenotypes and then using other machinery to issue a prediction for each

phenotype, we integrate the DAE with a GRU-based classification layer so that we learn a

task specific, mixed supervised and unsupervised representation. (Our DAE’s add noise to
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the input time series and then reconstruct the original input from the noisy version. A novel

aspect of our construction is that we reconstruct both the input at the current time and

the input at the next (future) time and penalize for errors in each of these reconstructions

and in the correlation between them. This regularization allows us to learn more predictive

representations.) We address the imbalance of the data set by bootstrapping (re-sampling

the data) to enable the RNN to learn more accurately for the small fraction of patients who

experience adverse events.

We demonstrate these results using the same data set used by [AYH17] which has a

heterogeneous cohort of patients hospitalized in a large medical center. In comparison with

clinical risk scoring systems and previous machine learning risk scoring systems Deep Risk

achieves very large improvements in AUSPC (TPR vs PPV) and significant improvements

in AUROC (TPR vs FPR). With respect to correct prediction at specific times, Deep Risk

achieves truly spectacular improvements. For instance, in terms of predictions 8 hours

before actual clinical decisions to admit to ICU, at a fixed TPR of 50%, the best clinical

risk scores achieve PPV below 0.15, the best previous machine learning score achieves PPV

of 0.26 and Deep Risk achieves PPV of 0.70. Taken together, these performance numbers

show that Deep Risk is able to provide recommendations that are better, timelier and have

greater reliability than those provided by clinical risk scoring systems and previous machine

learning risk scoring systems.
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CHAPTER 2

Related Work

The paper closest to ours in terms of problem, intent and data is [AYH17]. However, [AYH17]

takes a very different approach based on multi-task Gaussian processes. In the Results

Section, we directly compare the performance of Deep Risk to that of [AYH17] and show

that Deep Risk achieves much superior performance. This is due, among other things, to its

ability to effectively integrate static and dynamic features and implicitly learn phenotypes

(thereby avoiding model-selection difficulties) in order to issue predictions.

[KCB15] consider a setting similar to ours, with time series and static features. This

paper first learns phenotypes using a multilayer DAE and then uses the phenotypes to make

predictions using a sigmoid layer. Because an RNN is not used, the temporal relationships

between samples are not exploited. The thrust of [CKL15] is to identify phenotypes using

a feedforward network with prior-based regularization. The temporal relationships are cap-

tured by expanding the network at each time step and initializing the new weights using

the weights constructed at the previous time step, either by similarity or through Gaussian

sampling. The focus of the paper is on the identification of disease phenotypes and not on

prediction of adverse events. [RMS16] predicts the onset of a disease months in the future

(rather than an adverse event). The neural network structure used for prediction is very

different from ours: they use two convolutional architectures and a standard Long Short-

Term Memory unit-based RNN. They deal with the unbalancedness of the data by using a

weighted cost function that assigns higher weights to rare diseases rather than using boot-

strap resampling as we do. [CBS16] predicts diagnosis, medication and the time to follow-up,

but does not treat the non-stationarity of the data. It uses a standard RNN architecture.

[PTP16] models long-term disease trajectories and issues long-term risk predictions from
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infrequently gathered data; this poses a very different set of challenges. Non-stationarity,

phenotyping and timely prediction of adverse events are not in the scope of this work.
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CHAPTER 3

Goal

We begin by formalizing our approach to the problem of timely risk prediction and our goal.

We have a dataset with N patients. For each patient n we have a vector process {Xn(t)}

of features, including static features such as gender, age, height and weight, ICD9 codes,

which are recorded when a patient is admitted and do not change during the hospital stay,

and dynamic features, such as vital signs and lab tests, which do change during the hospital

stay. The dynamic features are irregularly sampled and the time duration is different for

different patients (who have different lengths of stay in the hospital). We write x(t) for

the realization of this process for a particular patient and xi(t) for the value of the data

stream i at time t for this patient. For each patient, there is an eventual outcome: either an

adverse event (e.g. admission to the ICU) or discharge from the hospital. We write Y = 0

for discharge and Y = 1 for the adverse event.

As with other algorithms, the goal of Deep Risk is to use the available data to issue a risk

score. As usual, to evaluate the risk score we set a threshold τ and treat a risk score above τ

as the prediction of an adverse event. Among those predictions, the true positives are those

for which the adverse event actually occurred and the false positives are those for which the

event did not occur; the ratio of the number of true positives to the number of adverse events

is the sensitivity or true positive rate (TPR) and the ratio of the number of false positives

to the number of adverse events is the false positive rate (FPR). The ratio of the number of

true positives to the number of predicted adverse events is the precision or positive predicted

value (PPV). Hence every threshold τ yields a pair of numbers (TPR(τ),PPV(τ)); varying

τ yields the Sensitivity vs Precision curve.

Our goal in this paper is to issue accurate and timely predictions of the eventual outcome.
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We measure accuracy using TPR vs PPV; it is argued that this measure is more informative

than other measures in the evaluation of binary classifiers on unbalanced data sets such as

ours [SR15]. We do this in different ways. As in [AYH17], we set a threshold, compute TPR

and PPV at the first time the computed risk exceeds that threshold and then plot TPR and

PPV for different values of the threshold. This is an important measure but it is not the

only important measure. We use TPR vs PPV to measure timeliness both for predictions

for different horizons into the future and for predictions within the last 24 hours. We also

measure timeliness in terms of prediction in advance of actual admission. Finally, we also

measure the performance Deep Risk using the conventional AUROC curve (TPR vs FPR).
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CHAPTER 4

Deep Risk: Algorithm

The Deep Risk algorithm operates in two modes. In the offline mode, the risk scoring model

is learned from the training data; in the online mode, risk scores are computed as needed for

a hospitalized patient. Note that risk scores for a given patient may be computed at many

times, as new information about the patient is acquired. We first describe the offline mode

and then the online mode.

4.1 Offline Mode

Figure 4.1 displays the architecture of Deep Risk. For each time window there is a GRU-

based DAE that learns a latent representation and a classifier that turns this representation

into a recommendation/risk score. Then there is another GRU-based RNN that combines

the recommendations from the classifier’s for the various windows into a single recommen-

dation/risk score. Overall, the architecture is a RNN of RNN’s.

Since our algorithm is based on GRU’s, we first describe these briefly and then particular-

ize to our construction. Denote the logistic sigmoid function by σ(·) and a general activation

function by act(·). Corresponding to each data stream i , there is an output function hi(t)

(memory state) that follows the recursive equation:

hi(t) = (1− zi(t))hi(t− 1) + zi(t)act([Wx(t) + U(r(t)� h(t− 1))]i)

Thus hi(t) is a linear combination of the output hi(t−1) at the previous time and an update

at the current time. The update in turn is an activation of a weighted combination of the

current input x(t) and the product of the previous memory state with the reset gate r(t).

The amount of update is regulated by the update gate zi(t). The reset and the update gates
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follow the equations:

ri(t) = σ([W rx(t) + U rh(t− 1)]i)

zi(t) = σ([W zx(t) + U zh(t− 1)]i)

These equations involve the learnable parameters: (W,U), (W z, U z), (W r, U r), which are

optimized using back-propagation via stochastic gradient descent.

We use different activation functions for different types of layers. For regression layers,

we use the linear activation act(x) = x; for classification layers, we use the logistic sigmoid

function act(x) = σ(x) = 1
1+e−x ; and for the hidden layers we use the rectified linear unit

(ReLU) act(x) = max(0, x).

Figure 4.1: Deep Risk: architecture.

As we mentioned earlier, an essential component in our algorithm is a DAE. This compo-

nent works by adding noise (with zero mean) to the input time series and then reconstructing

the original input from the noisy version. A DAE has two parts: an encoder and a decoder.

Our encoder is a single GRU layer with a ReLU activation and width that is 3 times the

number of dynamic features; the decoder is a single GRU layer with a linear activation and
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width that is 2 times the number of dynamic features. The encoder learns the latent repre-

sentation which is then decoded to reconstruct the original input data and to predict future

data. (We will elaborate shortly).

The typical way to employ a DAE is to train it in an unsupervised manner and then add a

classification layer on top of the DAE [KCB15]. When employed in this way, the DAE learns

a general latent representation of the data that is not optimized for a specific task. However,

we would like our DAE to learn a specific latent representation of the data that is optimized

for our specific task (prediction). To do this we train the DAE jointly with the classification

layer and directly optimize the latent representation. In our case, the classification layer

is a two layer, GRU-based RNN. The first layer uses a ReLU activation and is fed with

the encoded time series (containing both the static and dynamic features), its width is 4

times the number of dynamic features. The second layer is a single, sigmoid activated, GRU

hidden unit that outputs the risk score. (Recall that we use a separate DAE-GRU and issue

a separate risk score for each time window; we discuss aggregation below.) Since we are

feeding the DAE with noisy data, we would like to make sure that the representation the

encoder learns is robust to noise and can be effectively used in the classification layer. We

achieve this goal by temporal regularization: We reconstruct the current input and predict

the next input, measure the errors in predictions of outcome and reconstructions of the data,

and compute a loss function that takes all of these errors into account. To be precise, let

x̂(t) be the reconstructed input for time t that our algorithm is producing at time t when

fed with {x(s) +n(s) | s ≤ t, n(s) ∼ N(0, σ2)}, let x̃(t+ 1) be the prediction at time t of the

input at time t + 1 and let ŷ(t) be the predicted risk score at time t. The time regularized

loss function is:

L(t) = −y(t)log [ŷ(t)]− (1− y(t)) log [(1− ŷ(t))]

+α ‖x̂(t)− x(t)‖22 + β ‖x̃(t+ 1)− x(t+ 1)‖22

+γ ‖[x̃(t+ 1)− x(t+ 1)] + [x̂(t)− x(t)]‖22

where α, β, γ are tradeoff parameters. Note that the first line (i.e. the logarithmic terms) is

the familiar cross entropy. The remaining terms are penalties: α multiplies (the square of
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the norm of) the error vector of the reconstruction at time t; β multiplies (the square of the

norm of) the error vector of the prediction at time t of the value at time t+ 1; γ multiplies

(the square of the norm of) the sum of these error vectors. Notice that the size of the γ

term depends on the magnitude of the two error vectors and on the angle between them: if

they point in the same direction, the errors simply add; otherwise there is some cancellation.

Hence this term represents a proxy for the correlation between the measurement errors at

time t and at time t+ 1. We optimize the parameters by cross validation.

This regularized loss function plays an important role in the performance of Deep Risk

because appropriate choices of the coefficients α, β, γ allow the loss function to control the

accuracy and consistency of the representation as well as the accuracy of the prediction.

This is important because more accurate and consistent representations ultimately lead to

better predictions. The effect of regularization will be discussed in the Results Section.

As we will discuss in Subsection 4.3, to balance the non-stationarity of the data against the

need for timely predictions, we will form predictions using classifiers with different window

lengths and then aggregate the predictions of these classifiers using an ensembler. The

ensembler is a 2-layer GRU-based RNN. The first layer is ReLU-activated and has width

that is 3 times the number of features; the second is a softmax layer of width equal to

the number of classifiers. The ensembler computes weights for the individual classifiers and

aggregates them according to these weights to issue a final risk score.

11



Figure 4.2: Deep Risk: run-time operation

4.2 Run-time

At run-time, we issue predictions for a specified number of hours ahead; the specified number

of hours will be chosen by the clinician. This is an especially challenging but useful task

because it incorporates urgency. Notice that letting H tend to infinity yields a prediction

of the ultimate outcome for the patient; this is the predictive task considered by much of

the literature, including [AYH16]. Evidently, issuing predictions for every horizon H is more

difficult than simply issuing a prediction in the limit. To issue at the present time T

a prediction through time T + H (H hours ahead) we choose h1 < h2 . . . < hK ; the k-th

classifier uses the time window from time T−hk to T +H, so the k-th classifier has a window

of length hk + H. The information provided to the k-th classifier is simply the information

available at time T ; i.e. the information from time T − hk to the present time T . We then

have this classifier issue a prediction. (Note that this treats the time from T to T +H as if

there were no measurements so non-causal data is not used.) The ensembler then uses the

data from time T − hK (the longest) to the present time T and the predictions of all the

classifiers to issue the prediction for H hours ahead. This is illustrated in Figure 4.2.

12



Figure 4.3: (Norm of) Change in patient features in the last 24 hours before decision

4.3 Window Lengths and Predictions

What window length should we use? If the data generating process were stationary, we would

always prefer a longer window because that would reduce the likelihood of seeing an unrep-

resentative sample. But the data generating process is not stationary: the measurements for

patients who will go the the ICU are deteriorating while the measurements for patients who

will be discharged are stable, or perhaps improving. This can be seen in Figure 4.3 which

provides histograms of the (norm of) the change in the feature vector of patients in the last

24 hours before discharge/ICU. (For each bar, the vertical axis shows the probability that a

patient would experience a features change of that magnitude, conditional on that patient

being of the type identified.)

Thus, newer information is more important. If we asked each classifier to issue a pre-

diction only at the final (discharge/ICU) time, the classifier would learn to upgrade newer

information and downgrade older information. However, because we ask each classifier to

issue a prediction at every time, the process of downgrading old information is slow. Taken

together, these forces suggest that shorter windows might provide more accurate predictions.

13



As Table 4.1 shows, this is exactly what we see: shorter windows do indeed provide more

accurate predictions (in terms of AUSPC for TPR vs PPC).

Table 4.1: Deep Risk predictions within the last 24 hours (AUSPC)

Name TPR vs PPV

8 hour classifier 0.790

12 hour classifier 0.771

16 hour classifier 0.760

20 hour classifier 0.711

24 hour classifier 0.664

However, in addition to the accuracy of the prediction, we are also interested in its

timeliness: a correct prediction one minute before actual admission to ICU would be of little

use. If we restrict to a window of length 4 hours, we can issue a prediction 1 hour ahead

using information from 3 hours in the past, or 3 hours ahead using information from 1 hour

in the past – but we cannot issue a prediction more than 4 hours ahead. Hence to issue

timely predictions, we must use use longer windows. We achieve more accurate predictions

by using shorter windows and more timely predictions by using longer windows. Because we

want predictions that are both accurate and timely, we combine the predictions of various

windows. To do so we train an additional RNN which we call the ensembler to combine

these predictions.

14



CHAPTER 5

Results

We conducted our experiments on the dataset of [AYH17] that provides records for a cohort

of 6,000+ patients in a large medical center.1 The patient population is heterogeneous with

a wide variety of diagnoses. (Extensive details and statistics of the dataset can be found in

[AYH17].)

As in [AYH17], we divided the dataset into training and testing subsets based on admis-

sion date. The training set comprises the 81.0% of the patients who were admitted before

July 1, 2015; the testing set comprises the remaining 19.0% who were admitted after July 1,

2015.

For Table 5.1, we compute the highest risk score for each patient at any time during

the hospital stay, use that risk score as an indicator that the patient will be admitted to

ICU at some (later) point during the hospital stay, and plot the AUSPC for the TPR vs.

PPV trade-off. The left hand side of Table 5.1 compares the performance of Deep Risk with

currently used clinical risk scores; the right hand side compares with competing machine

learning methods. As can be seen, Deep Risk provides an enormous improvement over all

the competitors. The GRU-based RNN benchmark that is used is simply our classifier which

instead of feeding it with the encoder output, we use the original dynamic features.

1We are grateful to the authors of [AYH17] for sharing with us both the datasets and their results.
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Table 5.1: Predictions during the hospital stay

Name TPR vs PPV TPR vs FPR

SOFA 0.123 0.691

APACHE III 0.144 0.662

MEWS 0.158 0.720

Random Forest 0.175 0.774

Logistic Regression 0.209 0.809

Gradient Boosting 0.210 0.816

Deep Risk 0.245 0.933

One aspect of timeliness is making predictions in advance of the actual occurrence of the

event; another is making predictions that the event will occur in a specific time frame (e.g.

within the next h hours). Table 5.2 shows the performance of Deep Risk in making such

predictions, made at a single time during the hospital stay. Because most risk scores cannot

make such comparisons, we show only the performance of Deep Risk using the ensembler, the

performance of Deep Risk using only an unweighted average of the predictions of individual

windows, and the performance of a state-of-the-art GRU-based RNN.

The ensembler does marginally worse than the unweighted average for prediction 6 hours

ahead, marginally better for prediction 8 hours ahead and significantly better 10 hours ahead;

both the ensembler and the unweighted average do much better than the GRU-based RNN

for prediction in all three time frames.

Table 5.2: Prediction for specific time frames (AUSPC)

Name TPR vs PPV 6 hrs TPR vs PPV 8 hrs TPR vs PPV 10 hrs

Deep Risk - Ensemble 0.379 0.370 0.368

Deep Risk - Average 0.384 0.364 0.354

RNN - GRU 0.247 0.246 0.276
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Table 5.3 shows the performance of Deep Risk for predictions in a specific time frame, but

made at a single time within 24 hours of the actual decision (to admit to ICU or to discharge).

For these predictions, the ensembler does significantly better than the unweighted average

in all three time frames; again, both do much better than the GRU-based RNN in all three

time frames.

Table 5.3: Prediction for specific time frames close to decision time (AUSPC)

Name TPR vs PPV 6 hrs TPR vs PPV 10 hrs TPR vs PPV 14 hrs

Deep Risk - Ensemble 0.523 0.522 0.483

Deep Risk - Average 0.500 0.500 0.472

RNN - GRU 0.362 0.381 0.380

The superiority of Deep Risk in issuing timely predictions is perhaps best seen in Figure

5.1 which shows PPV’s (holding TPR fixed at 50%) at various times before the actual

decision time for Deep Risk, the risk score of [AYH16] and medical risk scores.
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Figure 5.1: Prediction in the hours before decision: PPV holding TPR = 50%
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Finally, we return to the effect of temporal regularization. In Table 5.4 we show the mean

square error (MSE) in Deep Risk’s reconstruction of the current input and the prediction

performance (TPR vs PPV). Setting β = γ = 0 amounts to using a standard DAE trained

jointly with the classifier. This has the effect of focusing on the current input and hence

does a very good job of reconstructing the current input (achieves a low MSE) but at the

cost of yielding relatively poor prediction. Perhaps surprisingly, setting α = β = γ = 0 –

i.e., not regularizing at all – does not do badly at prediction. (The decoder is not being

trained and the encoder assumes the role of a simple additional GRU layer.) Performing full

regularization (and choosing α, β, γ using cross-validation) does a good job of reconstructing

the current input and yields the best predictions.

Table 5.4: The effect of regularization

Combination MSE TPR vs PPV

Full Regularization 0.350 0.873

No Regularization 1.173 0.847

β = γ = 0 0.287 0.817
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CHAPTER 6

Conclusions

This paper has presented a Deep Learning architecture (Deep Risk) for predicting adverse

events. The architecture of Deep Risk consists of two levels of RNNs: each of the lower-

level RNNs makes a prediction based on information in its own specific time window; the

higher-level RNN uses information from the longest of these time windows to aggregate those

predictions into a single final prediction. Our methods enable Deep Risk to solve the key

challenges inherent in the problem: non-stationarity of the data, the necessity of personalized

and timely prediction, and unbalanced of data sets. To assess the performance of Deep Risk,

we use it to make predictions about ICU admission, using a clinical dataset. Deep Risk

achieves large and significant performance improvements over existing methods, including

clinical risk scores and state-of-the art machine learning algorithms.
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