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a b s t r a c t 

Background and objective: As a response to the ongoing COVID-19 pandemic, several prediction models in 

the existing literature were rapidly developed, with the aim of providing evidence-based guidance. How- 

ever, none of these COVID-19 prediction models have been found to be reliable. Models are commonly 

assessed to have a risk of bias, often due to insufficient reporting, use of non-representative data, and 

lack of large-scale external validation. In this paper, we present the Observational Health Data Sciences 

and Informatics (OHDSI) analytics pipeline for patient-level prediction modeling as a standardized ap- 

proach for rapid yet reliable development and validation of prediction models. We demonstrate how our 

analytics pipeline and open-source software tools can be used to answer important prediction questions 

while limiting potential causes of bias ( e.g. , by validating phenotypes, specifying the target population, 

performing large-scale external validation, and publicly providing all analytical source code). 

Methods: We show step-by-step how to implement the analytics pipeline for the question: ‘In patients 

hospitalized with COVID-19, what is the risk of death 0 to 30 days after hospitalization?’. We develop 

models using six different machine learning methods in a USA claims database containing over 20,0 0 0 

COVID-19 hospitalizations and externally validate the models using data containing over 45,0 0 0 COVID-19 

hospitalizations from South Korea, Spain, and the USA. 

Results: Our open-source software tools enabled us to efficiently go end-to-end from problem design to 

reliable Model Development and evaluation. When predicting death in patients hospitalized with COVID- 

19, AdaBoost, random forest, gradient boosting machine, and decision tree yielded similar or lower in- 

ternal and external validation discrimination performance compared to L1-regularized logistic regression, 

whereas the MLP neural network consistently resulted in lower discrimination. L1-regularized logistic 

regression models were well calibrated. 

Conclusion: Our results show that following the OHDSI analytics pipeline for patient-level prediction 

modelling can enable the rapid development towards reliable prediction models. The OHDSI software 

tools and pipeline are open source and available to researchers from all around the world. 

© 2021 The Author(s). Published by Elsevier B.V. 

This is an open access article under the CC BY-NC-ND license 

( http://creativecommons.org/licenses/by-nc-nd/4.0/ ) 

h

0

(

∗ Corresponding author. 

E-mail address: jreps@its.jnj.com (J.M. Reps). 

ttps://doi.org/10.1016/j.cmpb.2021.106394 

169-2607/© 2021 The Author(s). Published by Elsevier B.V. This is an open access article

 http://creativecommons.org/licenses/by-nc-nd/4.0/ ) 
1 These authors contributed equally to this work as co-first authors. 
2 These authors contributed equally to this work as co-last authors. 

under the CC BY-NC-ND license 

https://doi.org/10.1016/j.cmpb.2021.106394
http://www.ScienceDirect.com
http://www.elsevier.com/locate/cmpb
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cmpb.2021.106394&domain=pdf
http://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:jreps@its.jnj.com
https://doi.org/10.1016/j.cmpb.2021.106394
http://creativecommons.org/licenses/by-nc-nd/4.0/


S. Khalid, C. Yang, C. Blacketer et al. Computer Methods and Programs in Biomedicine 211 (2021) 106394 

1

p

a

t

d

m

d

e

m

o

y

t

s

r

t

q

r

a

o

c

s

c

p

“

r

e

t

m

(

n

c

o

S

s

O

e

 

(

g

a

c

d

-

P

l

p

p

l

e

i

2

p

s

d

m

d

i

F

m

. Introduction 

THE COVID-19 pandemic continues to cause unprecedented 

ressure on healthcare systems worldwide, and many casualties at 

 global scale [1] . Due to the urgency of the COVID-19 pandemic 

here was increased pressure to efficiently develop COVID-19 pre- 

iction models. Unfortunately, model reliability was often compro- 

ised in order to rapidly develop models. Despite guidelines on 

eveloping and reporting of prediction models [2] , there are sev- 

ral common problems identified in published COVID-19 prediction 

odels including uncertain data quality, unclear target setting, lack 

f large-scale external validation, and insufficient reporting [3–6] . 

This motivates the need for a standardized approach for rapid 

et reliable development and validation of prediction models, one 

hat allows researchers to address various sources of bias. For in- 

tance, such an approach should ensure that the data used are 

epresentative of the population for which the developed predic- 

ion model is intended to be used in clinical practice, and that the 

uality of the phenotypes used is investigated and transparently 

eported. 

Observational Health Data Sciences and Informatics (OHDSI) is 

n international, multi-stakeholder collaboration that has devel- 

ped open-source solutions for large-scale analytics [7] . The OHDSI 

ommunity has used these open-source solutions to generate ob- 

ervational evidence for COVID-19 and has impacted international 

linical guidelines [8–22] . 

In this paper, we demonstrate the OHDSI analytics pipeline for 

atient-level prediction modeling (henceforth also referred to as 

pipeline” or “prediction pipeline”) as a standardized approach for 

eliable and rapid development and validation of prediction mod- 

ls. We show that our pipeline makes it possible to develop predic- 

ion models rapidly without compromising model reliability. The 

ain contributions of our work are summarized as follows: 

1) Reliable and rapid research. 

OHDSI implements a distributed data network strategy where 

o patient-level data are shared. Instead, the analytical source 

ode is shared publicly, run by data partners on their data, and 

nly aggregated results are shared with the study coordinator. 

uch a strategy has proven to enable international collaborative re- 

earch while providing various advantages [23] . Key advantages of 

HDSI’s distributed data network strategy that are particularly rel- 

vant for the current pandemic are: 

• Reliable research The use of open-source software tools and 

publicly shared analytical source code, along with extensive 
ig. 1. The OHDSI distributed data network. As of November 2020, it includes 22 sites

apped to the Observational Medical Outcomes Partnership Common Data Model (OMOP

2 
documentation makes studies conducted with the same anal- 

ysis within this distributed data network fully reproducible ( i.e. , 

same data, same results), as well as replicable ( i.e. , similar data, 

similar results). 
• Rapid research To improve the interoperability of originally het- 

erogenous observational data sources ( e.g. , electronic health- 

care records (EHRs), administrative claims), they are mapped 

to a common data model (CDM). The use of an established 

CDM enables standardized approaches for data curation and en- 

ables standardized analytics pipelines to generate results much 

faster [ 14 , 24 , 25 ]. In addition, the data standardization enables

the ability to externally validate models at scale to investigate 

how reliable the models are across different case-mixes. 

2) Analysis of COVID-19 data from multiple countries around the 

world. 

In March 2020, the OHDSI community began contributing to 

enerating observational evidence for COVID-19 with data from 

round the world. By November 2020, there were 22 databases (in- 

luding EHRs, administrative claims, primary and secondary care 

atabases) in the OHDSI network that incorporated COVID-19 data 

 11 from North America, 8 from Europe, and 3 representing Asia- 

acific ( Fig. 1 ). In total, the mapped data included: 

• 7.4 million patients tested for severe acute respiratory syn- 

drome coronavirus 2 (SARS-CoV-2). 
• 1.6 million patients diagnosed or tested positive for COVID-19. 
• 30 0,0 0 0 patients hospitalized with COVID-19. 

We describe each stage of the prediction pipeline in the fol- 

owing section. We then demonstrate the use of the prediction 

ipeline for the problem of predicting COVID-19 death with results 

resented in section III. This work was reviewed by the New Eng- 

and Institutional Review Board (IRB) and was determined to be 

xempt from board IRB approval, as this research project did not 

nvolve human subject research. 

. Methods 

OHDSI provides a library of open-source software tools for the 

rocess of developing and validating prediction models using ob- 

ervational data. The OHDSI analytics pipeline for patient-level pre- 

iction modeling that we demonstrate in this work can be sum- 

arized as follows ( Fig. 2 ). As a required initial check before a 

atabase is added to the distributed data network and included 

n a study, Data Harmonization and Quality Control: source data 
 spread across North America, Europe, and Asia that have COVID-19 patient data 

 CDM). 
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Fig. 2. An overview of the OHDSI analytics pipeline for patient-level prediction modelling. Orange boxes represent study-specific input or output, blue boxes represent 

non-study-specific input, output, or OHDSI software tools. 

Fig. 3. The step-by-step process for mapping data sources to the Observational Medical Outcomes Partnership Common Data Model (OMOP CDM), using OHDSI software 

tools. ETL: Extraction, Transformation and Load; DQD: Data Quality Dashboard. 
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re harmonized to the Observational Medical Outcomes Partner- 

hip (OMOP) CDM structure and coding system using an Extrac- 

ion, Transformation and Load (ETL) design specification and qual- 

ty control is performed. To conduct a prediction study, the follow- 

ng steps can be followed. (a) Study Protocol Development : we first 

evelop a study protocol by specifying the prediction problem, as- 

essing phenotypes using the OHDSI CohortDiagnostics tool, and 

pecifying machine learning settings; then (b) Model Development 

nd Internal Validation : we develop and internally validate the pre- 

iction models using the ‘Model Development’ R package, a wrap- 

er of the OHDSI PatientLevelPrediction R package, that we gener- 

te via a user-friendly website interface called ATLAS; after which 

c) External Validation: we distribute the automatically generated 

Model Validation’ R package to participating data partners for ex- 

ernal validation of the developed models; finally (d) Open Science 

nd Evidence Sharing: we disseminate our collected results on the 

HDSI Viewer Dashboard. All documentation including the study 

rotocol, generated R packages, and OHDSI software tools, are pub- 

icly available on GitHub. In the rest of this section, we describe 

ach stage of the pipeline in detail. 
3 
.1. Data harmonization and quality control 

OHDSI uses the OMOP CDM which transforms source data into 

 common format using a set of common terminologies, vocabular- 

es, and coding schemes [26] . To support the ETL of the source data

o the CDM, the OHDSI community has developed several open- 

ource software tools ( Fig. 3 ). 

First, the WhiteRabbit tool produces a scan that summarizes ev- 

ry table, column, and value in a given source dataset [27] . This 

rofiling step is important to understand the complexity of the 

ource data. 

Second, the Rabbit-in-a-hat tool is an application for interactive 

esign of an ETL to the OMOP CDM [28] . It reads the WhiteRabbit

can report and displays a graphical user interface containing all 

he source and OMOP CDM tables which need to be connected by 

he user. The final product is a design specification document that 

s then used to guide the implementation. 

Third, the Usagi tool supports the mapping of source vocab- 

laries to the OMOP standardized vocabularies [29] . Based on 

he ETL design specification that is created in Rabbit-in-a-hat the 
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Fig. 4. Prediction problem specification in OHDSI. 
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tify potential missing concept IDs. 
ode is written to transform the source data into the OMOP CDM 

ormat. 

Finally, the Data Quality Dashboard (DQD) and the ACHILLES 

haracterization tool are used to interrogate the quality of the re- 

ulting OMOP CDM-mapped dataset [30] . The DQD uses a system- 

tic approach to run and evaluate over 3300 data quality checks. 

t assesses how well a dataset conforms with OMOP standards 

nd how well source concepts are mapped to standard concepts. 

CHILLES computes over 170 visualizations of the data and dis- 

lays them in an open-source application designed to allow explo- 

ation and identification of potential anomalies and data outliers 

31] . 

.2. Stages of the study 

a) Study Protocol Development. 

Any research team from anywhere around the world can pro- 

ose a study on the OHDSI Forum ( https://forums.ohdsi.org ). In- 

erested investigators co-design a study protocol. The study proto- 

ol must transparently specify the prediction problem of interest 

nd study design choices such as sensitivity analysis, Model Devel- 

pment methods, and evaluation techniques. Next, the collabora- 

ors determine the feasibility of the study across the data network 

nd the validity of the specified study design choices using various 

HDSI software tools. 

1) Specifying the prediction problem. 

The OHDSI community has standardized the prediction prob- 

em specification into three components [32] , which are shown in 

ig. 4: 

• The target population This is the set of patients for whom we 

wish to predict the individual risk. The index date ( t = 0) is 

the reference point in time for each patient in the target pop- 

ulation. Only information from a specified observation window 

preceding the index date is used for engineering the candidate 

predictors. 
• The outcome This is the medical condition or event we wish to 

predict. 
• The time-at-risk This is a time interval on or after the index 

date, within which we wish to predict the outcome occurrence. 

For example, if we wanted to develop a model to predict death 

ithin 30 days in patients hospitalized with COVID-19, then a suit- 

ble target population could be patients with a hospital stay who 

ave COVID-19. The index date would be the first day of the hospi- 

al stay. The outcome would be a patient’s death, and the time-at- 

isk would be the period between index and 30 days after index. 

2) Generating and assessing phenotypes. 

Improving the syntactic and semantic interoperability of the 

ata through the CDM and the standardized vocabularies does not 

olve all interoperability issues. For instance, data may originate 
4 
rom different clinical settings and have different levels of granu- 

arity. As a consequence, identifying the target population and out- 

ome in the data can still be a challenge, even in observational 

ata that are mapped to the OMOP CDM. 

Defining an algorithm to identify patients within a database 

ho have a certain condition or medical event is known as ‘phe- 

otyping’. In general, a phenotype can be defined as an index rule 

ollowed by inclusion/exclusion rules. The rules can use sets of 

MOP-standardized concept IDs to identify certain conditions or 

vents. For example, our target population phenotype could be de- 

ned as follows. 

Patients with an inpatient visit (concept ID 9201 or 262) satis- 

ying the following inclusion criteria: 

• COVID-19 positive test (concept ID 37310282) OR COVID-19 di- 

agnosis (concept ID 439676, 37311061, 410 0 0 65 or 373110 60) 

during the visit, 
• ≥ 365 days of prior observation at index. 

The index date is the date of the qualifying inpatient visit. 

When developing a prediction model, it is important that the 

arget population and outcome phenotypes correctly identify the 

esired individuals. A suitable phenotype is one that is highly 

ensitive (the majority of the patients in the database with the 

ondition or event are correctly identified) and has a high pos- 

tive predictive value (the majority of the patients identified by 

he phenotype have the condition or event). Mis-specifying the 

arget population and/or outcome phenotype definitions is likely 

o lead to poor performance when implementing the prediction 

odel in clinical practice. A significant amount of work is required 

o develop suitable phenotypes and expert knowledge of a specific 

atabase is required to guide this process. 

The OHDSI community has developed a process to generate and 

ssess suitable phenotypes. This process starts with a literature re- 

iew of existing phenotype definitions for the target population 

nd outcome. Commonly used phenotypes identified by the litera- 

ure review are then identified as candidate phenotypes. If no phe- 

otypes exist in the published literature, then a clinician and data 

xpert collaborate to propose new candidate phenotypes. The can- 

idate phenotypes need to be assessed to determine whether they 

re capturing the correct patients. 

The OHDSI CohortDiagnostics tool creates descriptive results 

or each candidate phenotype such as the characteristics of the 

atients identified by the phenotype, the validity of the concept 

D sets, and the number of patients identified by the phenotype 

cross calendar time [33] . This is repeated across the OHDSI net- 

ork of databases. The results are then inspected by a panel of 

linicians to compare the characteristics of the patients identified 

y the phenotype, the temporal trend of the phenotype and the 

umber of patients identified by the phenotype across numerous 

atabases. The specific aspects of a phenotype that are inspected 

re: 

• Generalizability Do the patients captured by the phenotype ap- 

pear to represent the real-world patients with the medical con- 

dition? This requires inspecting the characteristics of the pa- 

tients identified by the phenotype in view of the literature and 

expert consensus. 
• Consistency across the network Is the phenotype identifying pa- 

tients consistently across the network or does it seem to fail 

for one or more database? This may indicate an issue with the 

transportability of the definition. Common issues include un- 

suitable data or incorrect concept ID sets. 
• Correctness of concept ID sets Do we have the correct concept 

IDs for identifying inclusion/exclusion criteria used by the phe- 

notype? OHDSI uses string similarity and associations to iden- 

https://www.forums.ohdsi.org
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If issues are identified with a candidate phenotype, then revi- 

ions to the phenotype are made and the process is repeated until 

o issues are observed. 

3) Assessing suitability of source databases. 

Once the phenotypes are defined and validated, the next step 

s identifying whether each OHDSI observational database is suit- 

ble for Model Development and/or validation. This involves qual- 

tative and quantitative assessment. If issues are identified, then 

ther databases should be considered instead. 

Initial feasibility assessment Consulting with a person who has 

xpert knowledge of the database is important to determine any 

ssues in the way the data are captured that may impact the phe- 

otypes. For example, some databases lack older or younger pa- 

ients or may not capture complete lab results or medication. 

Databases that pass the initial feasibility assessment are then 

eviewed using the CohortDiagnostics tool. The results can be in- 

pected to identify datasets that satisfy: 

• Adequate size Is the number of patients identified by the target 

population phenotype in a given database sufficient for devel- 

oping a prediction model? Our recent but as yet unpublished 

study on generating learning curves to empirically assess the 

sample size at which convergence towards maximum achiev- 

able performance starts shows that, typically, more than 10 0 0 

patients with the outcome are needed for Model Development 

[34] . For accurate Model Validation, at least 100 patients with 

the outcome is recommended [35] . 
• Continuous observation time Are the patients identified by the 

target population phenotype in a given database observed long 

enough to have a sufficient lookback period to capture predic- 

tors, and enough follow-up time to cover the time-at-risk? The 

incidence rate should be inspected for sufficient outcomes dur- 

ing the time-at-risk. 

If there is no suitable database across the network then it may 

e worth exploring alternative prediction specifications (e.g., use a 

roxy for the target population). 

4) Model Development settings. 

The study protocol must specify the settings used for Model De- 

elopment including [32] : 

• The candidate predictors to be included in the model, e.g. , drugs 

(at various ingredient and drug levels), diagnoses, procedures, 

measurements, as well as diagnostics and summary scores. 
• The train/test split design - by default a 25% test set and 75% 

train set is used, where k-fold cross-validation is applied on the 

train set to select optimal hyper-parameters [36] . The user can 

choose to divide patients into the train and test sets randomly 

(stratified by outcome) or based on time. 
• The set of classifiers to be used, including gradient boosting 

machine, random forest, regularized logistic regression, decision 

tree, AdaBoost, and multi-layer perceptron neural network. 
• The hyper-parameter search per selected classifier - if using a 

grid search the user can specify the values to investigate [36] . 
• Sensitivity analysis options - whether to include patients lost to 

follow-up or patients who had the outcome prior to index. 

b) Model Development and internal validation. 

All model development settings can be specified via a user- 

riendly website interface called ATLAS [7] . This includes the pre- 

iction problem components (the target population and outcome 

henotypes and the time-at-risk) in addition to the above model- 

pecific settings ( e.g. , candidate predictor settings and model de- 

elopment settings). 
5 
i) Developing the ‘Model Development’ R package. 

Once the settings have been specified, ATLAS generates a study- 

pecific open-source R package called the ‘Model Development’ R 

ackage. This is a wrapper of the PatientLevelPrediction R package 

37] and can be run on any OMOP CDM database to develop and 

nternally validate the models specified in the study protocol. 

ii) Executing the ‘Model Development’ R package. 

The ‘Model Development’ R package can be implemented 

y providing the connection details to the CDM, the CDM 

atabase name, a database schema with read/write access that 

s used to create temporary tables, and the location where the 

og/data/model will be saved to. The output is a directory contain- 

ng the extracted data, the developed models, all the settings re- 

uired to replicate the study and summary information about the 

nternal validation of the models. In addition, an R Shiny app is 

enerated that displays the results interactively to the user. 

c) External validation 

After developing the models, the ‘Model Development’ R pack- 

ge can automatically generate a ‘Model Validation’ R package for 

xternally validating the models. This package contains the data 

xtraction source code for the various settings (phenotypes, time- 

t-risk, and predictors) and the developed models that need to be 

alidated. The ‘Model Validation’ R package is another wrapper of 

he PatientLevelPrediction R package that uses the stored settings 

o call functions to extract the data, apply the models and as- 

ess the performance using the standard evaluation metrics. There- 

ore, the automatically generated ‘Model Validation’ R package is 

ble to fully replicate the data extraction process used to develop 

he models across any database mapped to the OMOP CDM and 

hen applies and validates the models. Once installed, the user just 

oints the ‘Model Validation’ R package to their OMOP CDM data, 

nd the R package will execute the external validation. The output 

s a collection of .csv files containing evaluation metrics such as 

nformation on the discrimination and calibration of each model. 

d) Open Science and Evidence Sharing 

All study documentation, including the study protocol and au- 

omatically generated R packages, are shared publicly. The ‘Model 

evelopment’ and ‘Model Validation’ R packages can be uploaded 

o the ohdsi-studies GitHub ( https://github.com/ohdsi-studies ) to 

nable any researcher to run the model development and external 

alidation analysis on their data mapped to the OMOP CDM. Re- 

ults for each of the databases participating in the study can be 

ombined in an R Shiny application and then uploaded to the pub- 

icly available OHDSI Viewer Dashboard. 

The open-source OHDSI software tools involved in the predic- 

ion pipeline are regularly updated and revised versions are main- 

ained on GitHub. This allows researchers in the field to imple- 

ent additional settings or methods into our proposed pipeline. 

he PatientLevelPrediction R package has a flexible model integra- 

ion, making it easy for researchers to add custom machine learn- 

ng models. The OHDSI Forum is open for all to join, to contribute 

o the development and use of software tools, and to co-create sci- 

ntific questions. 

.3. COVID-19 demonstration 

In this section, we demonstrate using the prediction pipeline to 

evelop and validate a COVID-19 prediction model. We were inter- 

sted in predicting a patient’s risk of death within 30 days from 

he point they are hospitalized with COVID-19. We demonstrate 

ow this was done using the stages of the prediction pipeline de- 

cribed in Section 2.2 . 

https://www.github.com/ohdsi-studies
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Fig. 5. A snapshot of the CohortDiagnostics tool for assessing phenotypes. Here, Optum SES refers to the Optum Claims database. 

Table 1 

Prediction problem specification. 

Component Specification 

Target Patients hospitalized with COVID-19 

Outcome Death 

Time-at-risk 0 days to 30 days after the hospital visit 

Table 2 

Phenotype definitions. 

Component Phenotype definition 

Target Patients with an inpatient visit on or after December 

2019 with a COVID-19 positive test or COVID-19 

diagnosis within 21 days before the visit or during the 

visit and > = 365 days prior observation. 

Outcome Death record in database 
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a) Study Protocol Development. 

(1) Specifying the prediction problem. 

We studied the following prediction problem: “Within patients 

ospitalized with COVID-19, predict the risk of death on the hos- 

italization date and up to 30 days after using data recorded up to 

 day prior to hospitalization”, defined in Table 1 . 

(2) Generating and assessing phenotypes. 

The phenotypes used to identify ‘patients hospitalized with 

OVID-19’ and ‘death’ are defined in Table 2 . The pheno- 

ype for ‘death’ was defined as any record of death in the 

atabase. The phenotype for ‘patients hospitalized with COVID- 

9’ was previously developed in a large-scale COVID-19 char- 

cteristic study detailed in https://github.com/ohdsi-studies 

Covid19CharacterizationCharybdis . The CohortDiagnostics results 

re available at https://data.ohdsi.org/Covid19Characterization 

harybdis/ for the cohort ‘Persons hospitalized with a COVID-19 

iagnosis record or a SARS-CoV-2 positive test with at least 365 d 

rior observation’. This phenotype was investigated across 16 

MOP CDM databases to ensure transportability ( Fig. 5 ). 
6 
(3) Assessing suitability of source databases. 

Across the OHDSI network, four OMOP CDM databases cap- 

uring death and containing inpatient visit data were identified 

s suitable, as per the database suitability checks (described in 

ection 2.2 ) performed using the CohortDiagnostics tool. Table 3 

escribes the four databases. The largest one, Optum claims, was 

sed to develop the models and Optum EHR, HIRA-COVID, and 

IDIAP were used for external validation. 

4) Model Development settings. 

Two sets of candidate predictors were used. 

• Age and gender: this set included gender and binary indicators 

of age in 5-year groups (40–45, 45–50, …, 95 + ). We used this 

set of candidate predictors to create a benchmark model. 
• All: the second set included 57,627 candidate predictors in- 

cluding binary ones indicating the occurrences of various con- 

ditions, drugs, observations procedures or measurements, that 

were recorded any time prior, as well as in the year prior, to 

the index visit (not including day of the visit date), in addition 

to age and gender. 

We chose a random (stratified by outcome) 75/25 train/test 

plit with 3-fold cross-validation on the train set to select the op- 

imal hyper-parameter settings per classifier. We trained an L1- 

egularized logistic regression model as the reference model, using 

ross-validation to select the strength of regularization. As a sensi- 

ivity analysis, we also trained Gradient Boosting Machine, decision 

ree, random forest, multi-layer perceptron (MLP) neural network, 

nd AdaBoost models. The pipeline supports binary classification 

nd survival analysis. In this demonstration we chose to use binary 

lassification instead of survival analysis due to the short 30-day 

eriod. When predicting outcomes over longer periods of time we 

ecommend using the Cox regression (or alternative survival mod- 

ls) rather than binary classification. 

b) Model Development and internal validation. 

We developed the ‘Model Development’ R package in ATLAS 

 http://atlas-covid19.ohdsi.org/#/prediction/39 ). Within ATLAS, the 

https://github.com/ohdsi-studies/Covid19CharacterizationCharybdis
https://data.ohdsi.org/Covid19CharacterizationCharybdis/
http://www.atlas-covid19.ohdsi.org/#/prediction/39
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Table 3 

The databases used in this research. 

Database full name Database short name Country Data type Time period 

Optum© De-Identified 

Clinformatics® Data Mart 

Database 

Optum Claims USA Claims January 2020 - 

June 2020 

Optum© De-identified 

Electronic Health Record 

Dataset 

Optum EHR USA EHR January 2020 –

October 2020 

The Information System 

for Research in Primary 

Care 

SIDIAP Spain Primary care 

EHR linked to 

hospital 

admissions 

January 2020 –

May 2020 

Health Insurance and 

Review Assessment –

COVID-19 database 

HIRA-COVID South Korea Claims January 2020 –

May 2020 

Fig. 6. A snapshot of the ATLAS tool for prediction model development. 
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henotype definitions specified in Table 2 were created using the 

Cohort Definitions” tab ( Fig. 6 ). Next, the model settings were cre- 

ted using the “Prediction” tab. Once the prediction study was de- 

igned, the ‘Model Development’ R package was automatically gen- 

rated by clicking on “Download Study Package”. The ‘Model De- 

elopment’ R package contains all the functionality to develop and 

nternally validate the prediction model using OMOP CDM data. 

c) External validation. 

The ‘Model Validation’ R package was automatically generated 

sing the ‘Model Development’ R package. 

d) Open science and evidence sharing. 

The protocol is available at https://github.com/ohdsi-studies/ 

ovidDeath/blob/master/inst/doc/protocol.docx . 

The ‘Model Development’ R package is available at https: 

/github.com/ohdsi-studies/CovidDeath/tree/master/CovidDeathDev 

nd the ‘Model Validation’ R package is available at https: 

/github.com/ohdsi-studies/CovidDeath . 
7 
. Results 

Table 4 presents the discriminative performance of the models. 

sing L1-regularized logistic regression, the model including the 

et of all variables resulted in an internal validation AUC of 0.74 

0.72–0.76) for Optum Claims and external validation AUCs of 0.76 

0.75–0.78) for Optum EHR, 0.78 (0.77–0.78) for SIDIAP, and 0.90 

0.87–0.93) for HIRA-COVID. In comparison, the L1-regularized lo- 

istic regression model including only age and gender predictors 

esulted in an internal validation AUC of 0.70 (0.69–0.72) for Op- 

um Claims, and external validation AUCs of 0.75 (0.74–0.77) for 

ptum EHR, 0.79 (0.78–0.80) for SIDIAP, and 0.93 (0.91–0.94) for 

IRA-COVID. For both sets of candidate predictors (age and gender 

nly, and all variables), AdaBoost, random forest, gradient boost- 

ng machine, and decision tree yielded similar or lower internal 

nd external validation AUCs compared to L1-regularized logistic 

egression, whereas the MLP neural network consistently resulted 

n lower AUCs. 

The models were well calibrated with respect to age and gender 

 Figs. 7 and 8 ). 

The internal and external validation results were made publicly 

vailable in the OHDSI Viewer Dashboard at: https://data.ohdsi.org/ 

https://github.com/ohdsi-studies/CovidDeath/blob/master/inst/doc/protocol.docx
https://github.com/ohdsi-studies/CovidDeath/tree/master/CovidDeathDev
https://github.com/ohdsi-studies/CovidDeath
https://data.ohdsi.org/CovidDeathPrediction/
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Table 4 

Discriminative performance (measured using the area under the receiver operating characteristic curve (AUC) with a 95% confidence interval (CI)) of the different classifiers 

in predicting 30-day death outcome in patients hospitalized with COVID-19 (Optum claims is the internal discrimination estimated using the test set; the other databases 

are the external validation discrimination estimates). 

Development 

data sample size 

(Outcome %) 

Candidate 

predictors 

Validation 

Database 

Validation data 

sample size 

(Outcome %) 

AUC (95% CI) 

L1-regularized 

logistic 

regression 

AUC (95% CI) 

AdaBoost 

AUC (95% CI) 

Random Forest 

AUC (95% CI) 

Gradient 

Boosting 

Machine 

AUC (95% CI) 

MLP Neural 

Network 

AUC (95% CI) 

Decision Tree 

16,991 (15.6%) Age and 

gender 

HIRA-COVID 6,445 (2.1) 0.93 

(0.91–0.94) 

0.93 

(0.91–0.94) 

0.80 

(0.75–0.84) 

0.91 

(0.88–0.93) 

0.57 

(0.52–0.62) 

0.85 

(0.81–0.89) 

Optum Claims 5,663 (15.6) 0.70 

(0.69–0.72) 

0.70 

(0.69–0.72) 

0.68 

(0.66–0.70) 

0.70 

(0.69–0.72) 

0.55 

(0.53–0.57) 

0.70 

(0.68-0.71) 

Optum EHR 22,023 (4.3) 0.75 

(0.74–0.77) 

0.75 

(0.74–0.77) 

0.68 

(0.66–0.70) 

0.74 

(0.73–0.76) 

0.52 

(0.50–0.54) 

0.72 

(0.70–0.73) 

SIDIAP 18,201 (12.3) 0.79 

(0.78–0.80) 

0.79 

(0.78–0.80) 

0.74 

(0.73–0.75) 

0.79 

(0.78–0.80) 

0.57 

(0.56–0.58) 

0.78 

(0.77–0.79) 

All HIRA-COVID 6445 (2.1) 0.90 

(0.87–0.93) 

0.87 

(0.83–0.91) 

0.88 

(0.85–0.91) 

0.76 

(0.72–0.80) 

0.59 

(0.54–0.64) 

0.82 

(0.78–0.86) 

Optum Claims 5663 (15.6) 0.74 

(0.72–0.76) 

0.73 

(0.72–0.75) 

0.72 

(0.71–0.74) 

0.69 

(0.67–0.71) 

0.69 

(0.67–0.70) 

0.70 

(0.68–0.72) 

Optum EHR 22,023 (4.3) 0.76 

(0.75–0.78) 

0.74 

(0.72–0.75) 

0.72 

(0.70–0.74) 

0.65 

(0.63–0.67) 

0.65 

(0.63–0.67) 

0.69 

(0.67–0.70) 

SIDIAP 18,201 (12.3) 0.78 

(0.77–0.78) 

0.77 

(0.76–0.78) 

0.77 

(0.76–0.78) 

0.68 

(0.67–0.69) 

0.55 

(0.54–0.57) 

0.73 

(0.72–0.74) 

Fig. 7. Calibration performance for internal validation of the L1-regularized logistic regression model for predicting 30-day death outcome in patients hospitalized with 

COVID-19 on Optum Claims data, overall (left panels) and by age and gender (right panels). 
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ovidDeathPrediction/ , which shows the model summary (includ- 

ng model coefficients or variable importance for non-generalized 

inear models), model performance (including discrimination (AUC, 

1 Score, Precision (also known as Positive predictive value), Recall 

also known as Sensitivity), and more) and calibration (observed 

s predicted risk, overall and by age and gender)), and all model 

ettings ( Fig. 9 ). For instance, the hyperparameter values for all 

odels used in this study are available in the “Settings” tab and 

ig. 10 shows the intercept term and coefficients for the final age 

nd gender L1-regularized logistic regression model in the “Model”

ab. The complete model can also be downloaded from this tab. 

. Discussion 

As an open science initiative, researchers from anywhere in the 

orld can join the OHDSI collaborative, and any data custodian can 

ecome a data partner by mapping their data to the OMOP CDM. 

he fast-growing OHDSI distributed data network enables perfor- 

ance assessment at a scale that can be highly valuable to de- 
8 
elop prediction models that may impact patient care and out- 

ome. The proposed pipeline is an expansion of existing machine 

earning software. It includes software tools and methods for ex- 

racting suitable data for a given prediction problem from big ob- 

ervational healthcare data and provides an easy process for shar- 

ng prediction models. The pipeline is transparent, and the soft- 

are tools are open source. Due to the constant progress in the 

achine learning community, the machine learning part of the 

ipeline was developed to be flexible and different machine learn- 

ng software can be readily integrated. For example, the caret R 

ackage [38] or new state-of-the-art machine learning methods 

39] could be readily integrated into the pipeline. In addition, the 

ypes of prediction problems supported by the pipeline is expand- 

ng, with current support available for both binary classification 

nd survival analysis. 

Once a prediction problem is specified, having suitable phe- 

otypes and data is essential. Our prediction pipeline includes 

he important step of validating phenotypes across a network of 

atabases prior to implementing any model development. This 

https://data.ohdsi.org/CovidDeathPrediction/
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Fig. 8. Calibration performance for external validation of the L1-regularized logistic regression model for predicting 30-day death outcome in patients hospitalized with 

COVID-19 on SIDIAP data, overall (left panels) and by age and gender (right panels). 

Fig. 9. A snapshot of the viewer dashboard. It contains the model summary, model performance, and all model settings. 
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tep aims to ensure phenotypes are transportable and aims to im- 

rove the reliability of the model. External validation across di- 

erse datasets is made possible due to the OHDSI standardizations 

nd collaborative network [37] . This is a key strength of our pre- 

iction pipeline and in this paper, we demonstrated how it was 

ossible to perform external validation of prediction models across 

ultiple countries. The majority of published COVID-19 predic- 

ion models were unable to provide such an extensive set of ex- 

ernal validation results. Finally, our prediction pipeline enforces 

est practices for transparent reporting of prediction models as de- 

cribed in the TRIPOD statement [2] . 

Age and gender were found to be the main predictors of death 

ithin 30-days of hospitalization with COVID-19, which suggests 

ur findings are consistent with the literature [5] . Adding more 

ariables improved the model performance in Optum Claims and 
9 
ptum EHR, with the best performing model being L1-regularized 

ogistic regression. Interestingly, the L1-regularized logistic regres- 

ion, AdaBoost, and gradient boosting machine models that only 

sed age and gender predictors performed the best in the SIDIAP 

ata. 

In HIRA-COVID, we also found that the L1-regularized logistic 

egression models that only used age and gender predictors had 

he highest AUC of all models. This suggests that this model may 

e more transportable across countries and healthcare settings. 

owever, although the Korean COVID-19 patient population itself 

s young, almost all deaths were in elderly patients over 65 years 

f age [8] , and age being a dominant predictor is a possible rea-

on for the better performance of the models using only age and 

ender. Further, a single measure cannot fully evaluate the model’s 

erformance and other measures may provide a different interpre- 
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Fig. 10. A snapshot of a Model Table in the Viewer Dashboard. It contains the complete model specification including intercept term and coefficient values for each covariate 

included in the final model. 
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ation. For instance, the AUPRC scores (in the Viewer Dashboard) 

or HIRA are lower than for the other databases, possibly due to a 

elatively low death rate in South Korea. 

As with studies based on distributed data networks, a limita- 

ion of the approach presented in this paper is that it relies on 

ata partners to map their data to the OMOP CDM. This initial 

apping can be time-consuming. However, once done, a database 

an rapidly be integrated into a network study. Despite including 

ata from three different continents, there are many regions of the 

orld that are not represented in this paper. As more databases 

ctively join the OHDSI data network (including from South Asia 

nd Latin America), we can rapidly extend the external validation 

o them in the near future. 

Using four databases from across the world, we developed and 

xternally validated prediction models for 30-day risk of death in 

atients hospitalized with COVID-19. This study demonstrating the 

roposed pipeline, focusing on COVID-19 mortality, was initiated 

n November 1, 2020, and the results were publicly shared in an R 

hiny app on December 15, 2020, which means it took only weeks 

o complete the study. The speed of the study did not compro- 

ise the quality of the study due to using the proposed reliable 

ipeline. We demonstrated the quality of the developed models via 

xtensive external validation of phenotypes and prediction models. 

he model performances were generally consistent across diverse 

atasets, with AUCs ranging from 0.75 to 0.93, suggesting there 

as minimal bias in model development. The complete analytical 

ource code used for the study is publicly shared for transparency 

nd reproducibility. We hence demonstrated how the OHDSI ana- 

ytics pipeline for patient-level prediction modeling offers a stan- 

ardized approach for rapid yet reliable development and valida- 

ion of prediction models, one that allows researchers to address 

arious sources of bias. This work is a step towards obtaining pre- 

iction models that can provide reliable evidence-based guidance 

or use in clinical practice. 
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