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Abstract

G protein-coupled receptors (GPCRs) are critical regulators of human physiology and make up the 

largest single class of therapeutic drug targets. Although GPCRs regulate highly diverse 

physiology, they share a common signaling mechanism whereby extracellular stimuli induce 

conformational changes in the receptor that enable activation of heterotrimeric G proteins and 

other intracellular effectors. Advances in GPCR structural biology have made it possible to 

examine ligand-induced GPCR activation at an unprecedented level of detail. Here, we review the 

structural basis for family A GPCR activation, with a focus on GPCRs for which structures are 

available in both active or active-like states and inactive states. Crystallographic and other 

biophysical data show how chemically diverse ligands stabilize highly conserved conformational 

changes on the intracellular side of the receptors, allowing many different extracellular stimuli to 

utilize shared downstream signaling molecules. Finally, we discuss the remaining challenges in 

understanding GPCR activation and signaling and highlight new technologies that may allow 

unanswered questions to be resolved.
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G protein-coupled receptors (GPCRs) constitute the largest family of transmembrane 

receptors in humans, and they have become the most successful class of therapeutic drug 

targets by virtually any metric. All GPCRs share a conserved seven-pass transmembrane 

fold, which connects an extracellular ligand binding site to an intracellular G protein binding 

surface. Until recently, the myriad challenges associated with biochemical manipulation and 

crystallization of GPCRs made high-resolution structural studies of ligand binding and 

receptor activation difficult or impossible. Over the past decade, a number of technical 

advances have changed this situation, including the use of fusion proteins such as T4 

lysozyme,1 the development of new detergents,2 high-throughput lipidic mesophase 

crystallography,3 microfocus diffraction beamlines,4 and high-energy X-ray free electron 

lasers.5 Structural studies of GPCRs have become increasingly tractable, as evidenced by the 

42 unique receptors that have been characterized by X-ray crystallography to date.

For a few GPCRs, high-quality structural data are available in multiple distinct structural 

states. While crystallography may never be able to fully capture the complete constellation 

of GPCR conformations, structures to date largely fall into two major classes: active or 

Manglik and Kruse Page 2

Biochemistry. Author manuscript; available in PMC 2019 July 08.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



active-like states and inactive states. Active states are those in which the receptor adopts a 

conformation that is competent to interact with heterotrimeric G proteins or other effectors, 

exemplified by the β2 adrenergic receptor bound to the heterotrimeric G protein Gs.6 

Inactive states are representative of conformations that are incapable of catalyzing G protein 

nucleotide exchange and typically show an occluded G protein binding surface. In addition, 

structures are available for several receptors bound to agonists but showing intracellular 

conformations resembling inactive states or with conformations intermediate between active 

and inactive states. These are often called “active intermediate” states and may represent one 

of several steps toward full receptor activation following agonist binding. These have been 

observed with particular frequency in studies of thermostabilized GPCRs such as the β1 

adrenergic receptor7 and A2a adenosine receptor,8 as well as in studies of 5-

hydroxytryptamine receptors bound to arrestin-biased agonists.9–11 Here, we focus on those 

receptors for which structural data are available for both fully active and inactive states 

(Table 1 and Figure 1). These structures offer insights into both shared and divergent aspects 

of GPCR activation. We restrict our discussion to receptors belonging to the rhodopsin-like 

GPCR family (family A), which is the largest and most well understood family.

■ CHALLENGES IN STUDYING GPCR ACTIVATION

GPCRs are inherently challenging targets for structural study due in large part to the 

conformational plasticity that underlies their biological function.12,13 Though the range of 

this plasticity remains to be characterized in detail for the vast majority of GPCRs, 

biophysical studies using the prototypical β2 adrenergic receptor have begun to reveal the 

importance of this plasticity in GPCR function. Some of the earliest evidence supporting 

GPCR protein dynamics came from studies of the β2 adrenergic receptor that revealed 

agonist-dependent changes in signal from the fluorescently labeled receptor.14 Attempts to 

obtain an activated structure of the β2 adrenergic receptor bound to a covalent agonist 

captured the receptor in an inactive conformation,15 suggesting that the active conformation 

is not the lowest-energy state in such preparations. Indeed, this view has been supported by 

long time scale molecular dynamics simulations, which revealed both the complex dynamics 

of the inactive receptor16 and spontaneous relaxation of the agonist-bound, activated 

receptor to the inactive conformation.15,17 Subsequent studies with various spectroscopic 

techniques, including nuclear magnetic resonance (NMR) and electron paramagnetic 

resonance (EPR), have demonstrated that even picomolaraffinity full agonists do not 

completely stabilize the active conformation of the β2 adrenergic receptor.18,19 While such 

agonist-induced dynamics were initially observed for the β2 adrenergic receptor, a similar 

level of conformational heterogeneity has also been observed in the μ-opioid receptor and 

the A2a adenosine receptor, by both spectroscopic methods and simulation.20,21 Further 

supporting the generality of this model are the numerous agonist-bound GPCRs that have 

been crystallized in the inactive or active intermediate states.7–11,15,22–29

The conformational heterogeneity of agonist-bound receptors has made structural study of 

activated GPCRs challenging. Active-state GPCR structures have been determined primarily 

with the aid of proteins that stabilize the active conformation. These include G proteins or 

engineered fragments thereof,6,30–33 visual arrestin,34 and conformation-specific camelid 

antibody fragments called nanobodies.35 In one unusual case, antibody fragment-induced 
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crystal packing was found to stabilize an active-state structure of the 5-HT2B receptor.36 

Among the strategies employed to determine active-state structures, nanobodies have proven 

to be among the most useful tools in interrogating GPCR structure and conformational 

exchange. Nanobodies enabled determination of active-state structures for the β2 adrenergic 

receptor,6,37,38 M2 muscarinic receptor,39 μ-opioid receptor,40 and US28, a viral chemokine 

receptor.41 In each of these cases, nanobodies display pharmacological characteristics 

typical of effector proteins like the heterotrimeric G protein; i.e., they induce comparable 

enhancement of agonist affinity in radio-ligand binding assays. While it is possible in 

principle that nanobody-stabilized active states may differ from G protein-coupled states, the 

pharmacological features of nanobodies suggest they stabilize a conformation similar or 

identical to that which recognizes G proteins. Indeed, in the case of the β2 adrenergic 

receptor, structures of the active state stabilized by an active-state stabilizing nanobody and 

the heterotrimeric G protein revealed a nearly identical receptor conformation in the 

intracellular interface.6,37 It is important to note that while receptor conformations largely 

fall into fairly discrete classes of active and inactive states, structural data represent only a 

subset of receptor conformations, and it is clear from spectroscopic and simulation data that 

additional states exist but remain structurally uncharacterized.12,19,21

■CONSERVED STRUCTURAL FEATURES OF ACTIVATION

GPCRs possess a conserved structural fold, with seven transmembrane helices surrounding 

an extracellular-facing ligand binding site and a G protein binding site on the intracellular 

surface. Agonist binding stabilizes an active conformation on the intracellular side of the 

receptor, causing this conformation to be more frequently sampled among a number of 

conformational states. Importantly, the structural link between agonist binding and 

intracellular changes is not one to one, and thermal fluctuations between the agonist binding 

site and the intracellular domain result in a relatively weak allosteric coupling.12 Agonist 

binding enhances the propensity for intracellular conformational changes that are required 

for G protein binding, but agonist binding is not by itself sufficient to fully stabilize an active 

conformation of the entire receptor molecule.

Comparison of the intracellular changes upon GPCR activation reveals a striking degree of 

structural conservation and suggests a common evolutionary origin for the activation 

mechanism in most or all GPCRs. Without exception, GPCR activation involves a rotation 

and displacement of transmembrane (TM) helix 6 to create a cavity on the receptor 

intracellular face that can accommodate the G protein α subunit C-terminus (Figure 2). TM5 

also rotates away from the receptor, further enlarging the G protein binding cavity. Recent 

structures of activated family B receptors in complex with heterotrimeric G proteins show 

similar overall structural features,30,31,42 including the outward rotation of TM6, suggesting 

that this activation mechanism is shared even among very distantly related receptors with 

few identifiable conserved features at the primary sequence level. Although there are no 

currently available active-state structures of family C and F receptors, it seems likely that 

these receptors will share similar structural features.

Conserved sequence motifs play important roles in GPCR activation. The highly conserved 

DRY/ERY motif found at the intracellular end of TM3 serves to stabilize the inactive 
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conformation of the receptor through a conserved salt bridge to Glu6.40, a feature termed 

the ionic lock43 (all residue numbers are given using the Ballesteros−Weinstein system44). 

Mutagenic disruption of the ionic lock in rhodopsin enhances binding to a peptide derived 

from transducin, further attesting to its role as a barrier to receptor activation.45 Opening or 

closing of this salt bridge distinguishes two spectroscopically and structurally distinct 

inactive conformations for at least some receptors, and this has been experimentally 

observed for the β2 adrenergic receptor and the A2a adenosine receptor. In activated receptor 

conformations, a feature analogous to the ionic lock is formed through hydrogen bonds 

connecting the TM7 sequence motif NPxxY Tyr7.53 to the highly conserved Tyr5.58 via a 

bridging water (Figure 3a). In fact, this feature is observed in all family A GPCRs for which 

active- and inactive-state structural data are available, although the bridging water is not 

always detected in electron density maps because of the modest resolution of many active-

state GPCR structures. In several cases, Tyr5.58 is additionally hydrogen bonded to Arg3.50 

of the DRY/ERY motif, as seen in structures of the μ-opioid receptor and rhodopsin. This 

tyrosine “water lock” may play a role in the active state similar to that of the ionic lock in 

inactive conformations, stabilizing activated states to establish an energy minimum in a 

conformation capable of interacting with G proteins and other effectors. Although 

mutagenesis of Tyr5.58 has not been reported for most GPCRs, in the case of rhodopsin this 

residue has been investigated in depth and has been shown to increase the lifetime of the 

active metarhodopsin II state.46

A related structural feature is a ratchetlike motion of a bulky hydrophobic residue in position 

6.37 past Tyr5.58 coupled to the outward rotation of TM6 (Figure 3b). This exposes the 

tyrosine hydroxyl for hydrogen bonding through water to Tyr7.53, stabilizing the active 

state. The presence of a bulky residue at position 6.37 (most often Leu) may stabilize both 

inactive and active states by providing a kinetic barrier to opening and closing of TM6. 

Mutagenesis of this residue to alanine has thermo-stabilizing effects in some receptors,47 

and in a thermostabilized neurotensin 1 receptor variant, a Leu6.37Ala mutation is one of 

three that are involved in preventing the fully thermostabilized receptor from undergoing 

activation in response to an agonist.27

Nearer to the ligand binding pocket, conformational changes upon receptor activation are 

more variable, although some conserved features are present. Structural and spectroscopic 

data for the β2 adrenergic receptor and other GPCRs have shown an activation-associated 

rearrangement of hydrophobic residues below (i.e., nearer the intracellular side) the ligand 

binding pocket. This rearrangement involves a ratchetlike motion of residue 6.44 (most often 

Phe) past residue 3.40 (most often Ile). Nearly identical rearrangements are seen in diverse 

receptors, including the β2 adrenergic receptor, rhodopsin, the A2a adenosine receptor, and 

the μ-opioid receptor (Figure 3c). Not all receptors share this feature, however, and those 

with smaller side chains in either the 3.40 or 6.44 position show smaller changes in this 

region, as seen in the M2 muscarinic receptor and the CB1 cannabinoid receptor.

Adjacent to this region, a structural sodium is found in most GPCRs, coordinated by side 

chains from TM2, −3, and −7 in the inactive conformation (Figure 3d). Structural 

rearrangements upon activation disrupt this site, requiring breakage of bonds with the 

sodium ion. Consequently, sodium serves as a negative allosteric modulator of receptor 
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activation, stabilizing the inactive state of the receptor and decreasing agonist affinity. In 

fact, this effect of sodium was first identified in radioligand binding assays of opioid 

receptors,48 although it has only recently has been described in high-resolution structural 

detail.49

Within the ligand binding pocket itself, the structural differences between active and inactive 

states are quite diverse, reflecting the wide variety of ligands recognized by GPCRs (Figure 

4). Most receptors seem to show relatively minor structural changes in the ligand binding 

pocket, as seen in the β2 adrenergic receptor, rhodopsin, and the A2a adenosine receptor, for 

instance. Other receptors show much larger changes, such as those seen in the M2 

muscarinic receptor or the CB1 cannabinoid receptor. The ligand binding pockets have a low 

degree of sequence and structure conservation among different GPCRs, and the chemical 

details of ligand recognition are unique in each case with few discernible common themes. 

The only clear general trend is that in most receptors the ligand binding site undergoes a 

contraction when the receptor is in a fully active state. This is perhaps the most remarkable 

feature of GPCR activation: an array of molecules as diverse as lipids, nucleotides, and large 

proteins can trigger activation at highly divergent receptor binding sites. Despite this, the 

structural details of GPCR activation become increasingly similar close to the intracellular 

face of the receptors. In this way, a large family of receptors can serve as signaling adaptors 

to transduce binding of hundreds of different molecules into activation of only a few shared 

effector proteins.

■FRONTIERS OF GPCR ACTIVATION

While recent years have seen increasingly rapid advances in our understanding of the 

structural basis for GPCR activation, many important questions remain to be answered in the 

years ahead. For instance, structural changes upon activation are now well understood for 

many GPCRs with small molecule and peptide agonists, but for receptors that respond to 

other types of stimuli, few structural data of any kind are available. This includes receptors 

that respond to large protein ligands such as the leucine-rich repeat (LRR)-containing 

receptors (LGRs), most of which bind to large protein agonists such as luteinizing hormone 

and thyroid-stimulating hormone. In these receptors, binding of agonist requires interactions 

with the large extracellular LRR domain, as well as with the seven-transmembrane bundle 

and extracellular loops. Other receptors like GPR4, GPR65, and GPR68 respond to changes 

in pH, relying on protonation of histidine side chains to trigger receptor activation under 

mildly acidic conditions such as inflamed tissue or under hypoxic conditions.50 Other 

GPCRs are activated by metal ions,51 odorants,52 or perhaps even mechanical stress,53 none 

of which is well understood in molecular detail.

A second major unresolved challenge is understanding the structural basis for biased 

signaling, in which ligands differentially activate GPCR signaling through downstream 

pathways. For instance, peptide TRV027 activates arrestin signaling through the angiotensin 

II type 1 receptor but has little effect on G protein signaling,54 while the endogenous agonist 

angiotensin II robustly activates both pathways. Currently, little is known about the 

structural or dynamic details that underlie biased signaling. Studies of 5-hydroxytryptamine 

receptors bound to arrestin-biased agonists ergotamine and LSD have provided some insight 
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into this question. These structures show unusual conformations with features intermediate 

between those of fully active and inactive states and may be representative of an arrestin-

preferring signaling conformation. Like every aspect of GPCR structural biology, however, a 

detailed understanding of signaling bias will require structural data for more than one 

receptor in multiple states, to gain insight into which features are shared, general 

mechanisms of biased agonism, and which details are receptor- or ligand-specific.

Finally, it is important to note that while family A is by far the largest GPCR family, many 

important receptors belong to other families, including family B receptors with critical roles 

in endocrinology and regulation of metabolism and family C receptors with pivotal 

importance in neurobiology. While the first structural data regarding activation mechanisms 

of family B receptors are beginning to become available, no active-state structure has yet 

been characterized for a family C GPCR. Despite negligible sequence similarity between 

GPCR families, activation of family B receptors resembles that for family A GPCRs, with an 

outward rotation of TM6 creating a G protein binding cavity. This and other shared 

structural features of receptor activation suggest that the GPCR activation mechanism, like 

the overall 7TM receptor fold, is an inherited ancient feature derived from a common 

ancestral receptor. While the lack of conserved sequence motifs between GPCR families 

implies that the structural basis for activation must necessarily differ in the details, it is likely 

that similar overall principles are important in activation of all GPCRs. In each case, 

sequence and structural diversity in the extracellular region allows GPCRs to recognize a 

wide range of agonists, which stabilize similar conformational changes on the intracellular 

side of the receptors, converging on activation of a small number of effector G proteins, 

arrestins, and kinases.
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Figure 1. 
Family A GPCRs for which structural data are available. Most family A GPCRs that have 

been crystallized to date have been determined in only a single conformational state, usually 

an inactive conformation.
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Figure 2. 
Comparison of active and inactive states for a prototypical GPCR. (a) Inactive-state (gray, 

PDB entry 3UON) and active-state (orange, PDB entry 4MQS) structures of the human M2 

muscarinic acetylcholine receptor are shown in a side view, parallel to the membrane plane. 

Red arrows indicate conformational changes upon activation. (b) Same structure, viewed 

from the intracellular side.
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Figure 3. 
Intracellular motifs involved in GPCR activation. In each case, the inactive receptor is 

colored gray and the active state of the same receptor is colored orange. (a) Side view 

showing Tyr5.58 and Tyr7.53 engaged in a highly conserved hydrogen bond mediated by a 

bridging water molecule (red sphere), often also interacting with Arg3.50 as seen here for 

the μ-opioid receptor (PDB entries 4DKL for the inactive state and 5C1M for the active 

state). (b) Leucine ratchet of Leu6.37 past Tyr5.58 upon activation, exemplified by the β2 

adrenergic receptor viewed from the extracellular direction (PDB entries 2RH1 for the 

inactive state and 4LDE for the active state). (c) Phe-Tyr switch in the β2 adrenergic receptor 

(same PDB entries as in panel b, also viewed from above/extracellular). (d) Structural 

sodium ion stabilization of the inactive-state receptor, shown here for the A2a adenosine 

receptor viewed from above (PDB entries 4EIY for the inactive state and 5G53 for the active 

state).
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Figure 4. 
Agonist recognition. The molecular details of agonist recognition are highly diverse, 

although most agonist-bound activate-state GPCR structures show a modest contraction of 

the ligand binding site relative to their inactive-state counterparts. Here, the structures of the 

inactive and active β2 adrenergic receptor (PDB entries 2RH1 and 4LDL, respectively) and 

the CB1 cannabinoid receptor (PDB entries 5U09 and 5XRA for the inactive and active 

states, respectively) are shown as representative examples, showing contraction of the 

binding site upon activation, as well as the far more extensive nature of structural 

rearrangements upon activation of the CB1 receptor compared to the β2 receptor.
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