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Department of Psychology, New York University
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Abstract

Interventions, time, and continuous-valued variables are all
potentially powerful cues to causation. Furthermore, when
observed over time, causal processes can contain feedback
and oscillatory dynamics that make inference hard. We
present a generative model and framework for causal infer-
ence over continuous variables in continuous time based on
Ornstein-Uhlenbeck processes. Our generative model pro-
duces a stochastic sequence of evolving variable values that
manifest many dynamical properties depending on the nature
of the causal relationships, and a learner’s interventions (man-
ual changes to the values of variables during a trial). Our
model is also invertible, allowing us to benchmark participant
judgments against an optimal model. We find that when in-
teracting with systems acting according to this formalism peo-
ple directly compare relationships between individual variable
pairs rather than considering the full space of possible models,
in accordance with a local computations model of causal learn-
ing (e.g., Fernbach & Sloman, 2009). The formalism presented
here provides researchers in causal cognition with a powerful
framework for studying dynamic systems and presents oppor-
tunities for other areas in cognitive psychology such as control
problems.
Keywords: causal learning, continuous time, continuous vari-
ables, intervention

Introduction
As observed by Jordan and Rumelhart (1992), “in many en-
vironments the effects of actions are not punctate and instan-
taneous, but rather linger on and mix with the effects of other
actions”. Acting effectively in the real world requires, in
real time, learning and manipulating variables that are related
by rich functional relationships. These functional relation-
ships may take the form of complex systems such as feed-
back loops, cycles, and long chains of variables that result in
unpredictable dynamics (Gleick, 2011; Rehder, 2017). For
example, most people are naturally able to adapt the pace,
volume, and pitch of their voice based on subtle social cues
in conversation.

This paper outlines a formalism for inference in this kind of
complex problem space. It then presents an experiment where
people are allowed to intervene on an idealized system with
unknown causal structure. Unlike previous research, learners
can observe the effects of their interventions in real time, as
moment-by-moment changes in the environment. We find ev-
idence that people compare direct relationships between vari-
ables, rather than attempting to navigate the full space of pos-
sible causal models.

Past research
Research in causal cognition has focused primarily on causal
relationships between binary variables and contexts in which
temporal information is either unavailable or abstracted away.

From this paradigm we have learned much about how people
are able to use covariational information to infer causation
(e.g., Cheng, 1997, Griffiths & Tenenbaum, 2005), yet there
are other factors highly relevant to causation that have not
been combined in a single experiment. The factors we con-
sider in this project are interventions, time, and continuous
variables.

First, manipulations of causal systems, or “interventions”,
can be highly informative about causal structure (Pearl,
2000). Psychological work has established that people are
somewhat adaptive in their intervention behavior, in ways
predicted by information optimal norms (Bramley, Dayan,
Griffiths, & Lagnado, 2017a; Coenen, Rehder, & Gureckis,
2015; Steyvers et al., 2003) although they also exhibit some
biases and are subject to cognitive constraints.

Second, time has long been seen as a powerful cue for cau-
sation (Hume, 2000), especially in being informative about
causal direction (i.e. people rule out backwards causation, as-
suming that effects cannot precede causes, Bramley, Gersten-
berg, & Lagnado, 2014; Greville & Buehner, 2010). Recent
work has demonstrated that people are capable of doing in-
ference over causal models that explicitly encode a generative
model for temporal delays between punctate events (Pacer &
Griffiths, 2015; Bramley et al., 2014).

Finally, given the ubiquity of continuous valued variables,
they have received surprisingly little attention in the study of
causal cognition. One exception–Pacer & Griffiths (2011)–
has shown that people are capable of learning individual
cause-effect relationships between continuous variables. Soo
and Rottman (2016) extended this work to discrete time, find-
ing that people’s causal strength judgments are based on the
correlations between the changes in variables of time rather
than the variables themselves.

While most aforementioned studies investigated one of
these aspects in isolation, Bramley, Mayrhofer, Gerstenberg,
and Lagnado (2017b) combined interventions and time in a
study on people’s learning of causal structure between com-
ponents that exhibited occasional events. They found that
people are sensitive to expected delays, especially when they
also expect the true delays to be reliable.

Our interest in studying the simultaneous effects of inter-
ventions, time, and continuous variables has several motives.
One is that continuous variables that vary in real time enable
the study of a broader range of realistic causal relationships,
including those that result in more interesting dynamics such
as oscillations and feedback loops (see Figure 1 for exam-
ples). Another motive is to investigate the sorts of interven-
tions that people choose when the effects of past interven-
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tions are still reverberating through the system. In contrast,
past studies of interventions on binary variables have involved
systems that reach steady state. Finally, we ask how resource-
limited learners process the vastly larger amount of informa-
tion that flow from such systems.

Ornstein-Uhlenbeck Process
An Ornstein-Uhlenbeck (OU) process is a stationary Gauss-
Markov process in continuous time that reverts to a stable
mean (Uhlenbeck & Ornstein, 1930). It can be conceptu-
alized as Brownian motion, except rather than being a mar-
tingale an OU process implements a “force” that biases ex-
pected value towards the mean of the distribution. Beyond
having convenient mathematical properties that we will out-
line later, OU processes have been used to model a diverse
array of phenomena, from physical systems (Lacko, 2012)
to financial systems (Barndorff-Nielsen & Shepard, 2001) to
work in perception (Vul et al., 2009) showing that people op-
timally allocate attention to track particles moving according
to an OU process.

While the formalism that follows will precisely define our
generative model, it may be helpful to provide a high-level
overview of the model. The generative model is novel, to our
knowledge, in that it has OU processes continuously inter-
acting in a causal Markov graph. The Hookean spring is a
helpful visualization for this type of causation. As the cause
and effect diverge, the spring is stretched and more force is
exerted on the effect to pull back towards the cause. When
the cause and effect are near each other, the spring is com-
pact and not much force is exerted. Causal networks are built
simply by chaining together springs, such that in the network
X → Y → Z, dragging X will first pull Y , which will subse-
quently pull Z.

Formalization
In an OU process, ∆xt—the change in x from time t to t+1—is
defined as follows:

∆xt = θ[µ− xt ]+N(0,σ) (1)

where xt is the value of the process at time t, µ is the mean that
the process will revert to in asymptote, σ is the variance, and
θ is a parameter greater than 0 that determines how sharply
the process reverts to the mean.

OU processes can be generalized to track a variable that
changes over time. Rather than defining a static µ that the pro-
cess reverts to, the effect variable X can be defined as trending
towards a linear function of the value of some cause Y :

∆xt = θ[βY X · yt − xt ]+N(0,σ) (2)

where βY X is a real number multiplied by the value of the
cause Y (subscripts denote βcause effect). While the current
project uses a linear function of the value of the cause, Equa-
tion 2 could of course be generalized to nonlinear functions.

We assume that β values and σ remain constant over time
and value of either cause or effect (although these assump-
tions can be loosened, e.g. Barndorff-Nielsen & Shephard
(2001)). Equation 2 defines the generative model we use for
variable Y causing X .

Inference
When evaluating the hypothesis that Y causes X , the rele-
vant parameter to be inferred is βY X . If βY X =0, Y and X are
causally unrelated, if βY X > 0, X tracks on to some positive
multiple of Y ’s value, and if βY X < 0, X tracks on to some
negative multiple of Y ’s value. Because we assume that β

stays constant throughout the trial, we can use multiple ob-
servations of the process over time to infer the value of β

between cause and effect.
We assume that σ and θ are known to participants and do

not need to be inferred1. For interventions, we implement
Pearl’s (2000) notion of intervention as graph surgery. If the
effect variable X is intervened on, the likelihood of observing
its state is 1 regardless of the βs or values of its parents. The
remainder of this section, then, only deals with observations
where the effect variable is not intervened on.

In essence, inference involves comparing the observed
change in X to the expected change in X , where the expected
change in X is defined as the mean of Equation 2:

E(∆xt) = θ[βY X · yt − xt ] (3)

The likelihood of βY X given some change in X and previ-
ous observation of Y , then, is a comparison of observed ∆xt
and E(∆xt) for a given βY X :

P(βY X |∆xt ,yt) =
1√

2πσ2
e−

(∆x−E(∆xt ))2

2σ2 (4)

Equation 4 implements the intuitive idea of comparing the
observed change in X to the expected change in X if it was
tracking Y .

Multiple variables
For a theory of causal learning to be successful, it must of
course be able to account for graphs with multiple variables.
This is especially important for tasks with a time component,
as timing information can be crucial for distinguishing be-
tween, say, a common cause and chain graph structure. The
generative model for a single variable with multiple potential
causes is:

∆xt = θ

[ n

∑
i=1

βY iX · yi
t − xt

]
+N(0,σ) (5)

Simply put, the mean that the process reverts to is a sum of
the other variables Y i, multiplied by their β weights. This is
another stipulation for the current project that could easily be

1Experimentally, we teach these parameters with familiarization
trials that expose them to the values of θ and σ that obtain throughout
the experiment.
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loosened (e.g. in a continuous version of noisy-or, Pacer &
Griffiths (2011)).

As in the single variable case, inference involves estimat-
ing βββ weights (βββ bolded because we must jointly estimate
multiple β weights). The likelihood is the same as in the sin-
gle variable case, with a slight modification to E(∆xt):

E(∆xt) = θ

[ n

∑
i=1

βY iX yi
t − xt

]
(6)

P(βββ|∆xt ,yt) =
1√

2πσ2
e−

(∆x−E(∆xt ))2

2σ2 (7)

Thus far, we have a formalism for estimating causal
strength (β weights) but not causal structure. To infer struc-
ture, one must have a model for how causal relationships gen-
erate β weights (e.g. a “regular” causal relationship can only
have positive β weights). The full process involves (1) defin-
ing a distribution of β weights for different types of causal
connections, (2) sampling from these distributions, and (3)
multiplying the likelihoods by prior belief in each causal re-
lationship to yield a posterior over causal structures. In this
paper we define three types of causal relationships: “regular”
(β=1), “none” (β=0), and “inverted” (β=-1).

For each observed ∆x, we jointly estimate the full
space of beta values for possible edges. For exam-
ple, for three variables there are six possible edges, βββ =
{βXY ,βXZ ,βY X ,βY Z ,βZX ,βZY}.

Properties
OU processes can implement many intuitively appealing fea-
tures of continuously varying causal relationships. For exam-
ple, a negative β weight would correspond to a decrease in
one variable driving up the value of another (e.g. decreas-
ing interest rates is generally thought to increase inflation).
Both positive and negative feedback loops are also naturally
implemented as β weights of equal sign with absolute value
greater than 1 or absolute value less than 1, respectively. Sim-
ilarly, oscillations can be implemented with β weights of mis-
matched signs (such as 2 and −2). These feedback loops can
be implemented between only two variables, or as part of a
cyclic causal structure with potentially many variables.

Figure 1 demonstrates some of the dynamics that can be
implemented simply by varying β parameters. Cells (A) and
(B) demonstrate regular and inverse connections for a single
cause of an effect. To show the dynamics, for both plots the
mean that the cause trends to is 0 for the first 30 observations,
and 100 for the next 70. This shows that changes in the effect
follow changes in the cause. For cell (C) we simply initiated
both variables at 0 (note that the values get so large that X
and Y are indistinguishable in this plot). To show that nega-
tive feedback trends both variables towards 0, both variables
were initiated at 100 in cell (D). For cell (E) we initiated both
variables at 0. In cell (F) for the chain network X → Y → Z,
the cause variable X spends 10 time points centered around
0, and is then intervened on to set its new value to 100. This
was done to show that changes in Y precede changes in Z.

Figure 1: Examples of the dynamical phenomena resultant
from varying β weights. (A) Regular connection, βXY = 1.
(B) Inverse connection, βXY = −1. (C) Positive feedback
loop, βXY = 2, βY X = 2. (D) Negative feedback loop, βXY =
.5, βY X = .5. (E) Oscillation, βXY = 5, βY X =−5. (F) Chain
network (X → Y → Z), βXY = 1, βY Z = 1.

Experiment: Causal Structure Learning
Method
Participants. 30 participants (13 female, mean age=37.5)
were recruited from Amazon Mechanical Turk using the psi-
Turk framework (Gureckis et al., 2016), which has been
shown to produce comparable results to lab experiments in
cognitive science (Crump, McDonnell, & Gureckis, 2013).
They were paid $4 for approximately 30 minutes.

Materials and procedure. Each of the three variables was
represented by a vertical slider that could be freely manip-
ulated by clicking and dragging anywhere on the slider (see
Figure 2)2. The top of the screen presented a timer counting

2For a demo, see https://zach-davis.github.io/publication/cvct/
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down from 45 seconds, at which point the trial finished. Par-
ticipants responded using six additional (3-state) sliders pre-
sented beneath the trial window, one for each potential causal
relationship. Responses were constrained to be one of three
options: ‘Inverted’, ‘None’, or ‘Regular’ (corresponding to
βs = -1, 0, 1 respectively) and participants were pretrained on
these terms in the instructions.

Figure 2: Sliders used by participants. (A) shows that the
sliders all jitter if no interventions are made. (B) shows that
the sliders do not jitter if intervened on.

Prior to the learning task, participants were shown four
videos of an agent interacting with the structures to famil-
iarize them with the interface. These videos informed partic-
ipants of the underlying causal structure and demonstrated an
agent interacting with the system. To prevent explicit instruc-
tion of any particular strategy, the videos displayed behaviors
such as wobbling the intervened on variable, holding the vari-
ables at a constant level, and maxing out the intervened vari-
able. They were shown examples of (1) a network with no
causal connections, (2) a single “regular” causal relationship,
(3) a single “inverse” causal relationship, and (4) a chain re-
lationship with one “regular” and one “inverse” connection.
Participants were not allowed to proceed to the test phase un-
til they had watched all four videos. Participants were then
presented with a five question comprehension check to en-
sure that they understood the task. Questions established that
participants understood the duration of each trial, the differ-
ence between a regular and inverted connection, that there
can be more than one connection per network, and that they
must provide a response for all possible connections. Partici-
pants could not continue without answering all questions cor-
rectly. The parameters used during training and the learning
task were θ = .1, σ = 5, and βs were either -1, 0, or 1.

In the learning task, participants initiated the trial by press-
ing the “Start” button and the sliders started jittering accord-
ing to an OU process, with unknown β weights driving the
movement (there were no causes outside the network). The
values of the sliders updated every 100ms. At any time, par-
ticipants were free to click, hold, or drag anywhere on the
slider. While the mouse was pressed down it fully determined
the value of the slider, and once the mouse click was released
the process would continue from that point according to the

OU process. The sliders were constrained to be between -100
and 100, and the buttons on the slider presented a rounded in-
teger value in addition to moving up and down. Participants
were instructed to make their judgments at the end of the trial,
but were also free to make their judgments at any point after
initiating the trial (see Figure 3). No feedback was provided
at any point. After seeing a total of 25 causal structures, par-
ticipants completed a brief post-test questionnaire.

Figure 3: Judgment options for participants. Participants
were presented with a trinary choice between “inverted”,
“none”, and “regular”.

Results
As a baseline, participants were significantly better than the
chance probability of .33 for identifying causal relationships
(M=.82, SD=.15); t(29)=17.36, p<.001. They were also
above chance (.001) in selecting the correct causal model
(M=.44, SD=.22); t(29)=10.81, p<.001.

Models. To analyze behavior in this task we will compare
two competing accounts of causal structure learning. The first
is that people are roughly normative in their structure learn-
ing behavior. Such an account would imply, for the current
task, that people update their posteriors over all hypotheses at
every time point. Importantly, learners acting in accordance
with the normative model have to take into account depen-
dencies between the connections, judging whether associa-
tions observed between variables can be explained by other
graphs. For example, in the network X → Y → Z, the X–Z
pair have many of the hallmarks of a direct causal relation-
ship. They are correlated, changes in X precede changes in
Z, and intervening on X later affects Z’s value (but not vice
versa). Only by understanding that Y mediates the relation-
ship between X and Z (for example, through timing informa-
tion) could a learner correctly uncover the underlying struc-
ture and avoid improperly concluding that X causes Z. There
has been much work suggesting that adults and children are
capable learners of causal structures and act roughly in accor-
dance with the normative model, at least in sufficiently sim-
ple scenarios (Gopnik, Glymour, Schulz, Kushnir, & Danks,
2004; Griffiths & Tenenbaum, 2009).

We compare the normative model to a “local computa-
tions” (LC) model that has been advocated as a general-
purpose account of causal learning behavior. The LC model

290



proposes that causal learning is structurally local, meaning
that learners evaluate individual causal links without consid-
eration of the entire graph. In the chain example, then, learn-
ers would not infer that the illusory causation between X and
Z was mediated by Y , and draw a direct link between those
two as well as the links X→Y and Y→ Z. A wide array of ap-
proaches to modeling causal structure learning have provided
converging evidence for the LC model. Fernbach and Sloman
(2009) introduced the local computations model, finding that
it correctly predicted an overabundance of causal links and
order effects in learning. Bramley et al. (2017a) extended
this work to intervention decision-making, finding that people
consider small changes to their currently held best hypoth-
esis in both structure judgments and intervention decisions.
Together, these studies suggest that people act in accordance
with the LC model, testing and evaluating individual causal
links rather than updating the full posterior space.

Model Formalism. Recall that calculating the likelihood of
some β involves comparing observed and expected ∆x:

P(βββ|∆xt ,yt) =
1√

2πσ2
e−

(∆x−E(∆xt ))2

2σ2

The normative and LC models both use this likelihood, but
have different E(∆x). Because the LC model ignores the con-
tribution of other variables, it estimates a single β at a time:

E(∆xt) = θ[βY X · yt − xt ]

In contrast, the normative model jointly estimates the contri-
bution of multiple variables:

E(∆xt) = θ

[ n

∑
i=1

βY iX yi
t − xt

]
As mentioned, participants were exposed to familiarization

trials that showed that β values could be -1, 0, or 1. However,
because this knowledge could only be approximate, we in-
stead model them as believing that a “regular” or “inverse”
connection is consistent with a range of βs. In particular, for
“regular” connections we sample 1,000 β values from a dis-
tribution of positive values centered at 1 (Γ(k = 5,θ = 5)),
for “inverse” we do the same but negate the values, and for
no connection we only sample β=0. Furthermore, we assume
that participants have perceptual noise and therefore set the
value of σ to 7, a higher value than the veridical 5. Note that
neither of these decisions affect the forthcoming conclusions.

Model Results. We analyze results by comparing people’s
performance to the normative and local computations (LC)
models. For both the normative and LC models, we calculate
the posteriors for each of the 36 hypotheses that constitute
every combination of the “inverted”, “none”, and “regular”
judgments that participants made.

To evaluate the models, we performed a recovery experi-
ment by feeding them the slider values for each trial for each
participant, and evaluating the MAP estimate of each model

against the true generative network for that trial. As may be
expected, the MAP estimate of the normative model recov-
ered a higher proportion of the structures (.98) than the MAP
estimate for the LC model (.58).

The first measure we use is to have the models perform
the same task as participants (report the most likely structure,
i.e. the MAP estimate), and compare whether participants
and models draw the same links. In this coarse measure, the
models were roughly equal (82% of links for the normative
model, 80% for LC). The models pull apart, however, on the
more sensitive quantitative measure of the log posteriors of
participant judgments, given slider values, for each model. Of
30 participants, 10 were best fit by the normative model and
19 were best fit by the local computations model (1 partici-
pant could not be estimated due to errors in data collection).

The better quantitative fits of the LC model were strength-
ened by two qualitative predictions that distinguish it from
the global model. The first qualitative prediction is an
over-abundance of causal links (Fernbach & Sloman, 2009).
Eighty-two percent (SD=.17) of the errors that participants
made involved adding extraneous causal links, significantly
greater than chance3 (.59); t(29)=7.33, p<.001. The second
qualitative prediction of the LC model as defined in this pa-
per is an inability to distinguish between direct and indirect
causes (e.g. in the network X→Y → Z, incorrectly also judg-
ing X → Z). While in general participants were correct for
eighty two percent of connections, they were dramatically
worse for indirect effects (M=.16, SD=.21), performing be-
low chance (.33); t(29)=-4.48, p<.001.

Discussion
This paper introduced a generative model of causal systems
relating continuous variables in continuous time that exhibits
familiar real-world dynamic phenomena such as feedback
loops, and periodic oscillation. We explored active inference
in these systems, allowing participants to freely manipulate
the variables over a continuous trial window and comparing
them to both a globally, and locally efficient inference model.
We found that active learners who were free to interact with
the system were better modeled as considering connections
between each variable in isolation than updating beliefs over
full graphs. Supporting the better quantitative fits of the lo-
cal computations model, it also predicted two qualitative ef-
fects. Participants were much more likely to add extraneous
causal links than remove existing ones, a surprising finding
given the evidence for a bias for sparse causal models (Lu
et al., 2008). The local computations model also predicted
that participants would inappropriately draw connections be-
tween indirect effects. The evidence in this paper for the lo-
cal computations model connects with a rich history in causal
learning that suggests that people are limited in their ability
to represent a full hypothesis space of possible models and

3For the structures used in this experiment, a hypothetical subject
who responded “inverse”, “none”, and “positive” with equal proba-
bility would erroneously add a causal link 59% of the time.
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instead consider narrow hypotheses and make alterations to a
currently held model (Bramley et al., 2017a; Quine, Church-
land, & Føllesdal, 2013). Further analysis and experimenta-
tion will be necessary to better understand the mechanisms
and representations used by people in this new class of dy-
namical systems.

There are a number of limitations to the current project that
could be addressed with further experiments. For one, we
heuristically incorporated perceptual noise and assumed that
people can track all three variables in real time. Extensions to
the current project would be to fit perceptual noise or to ac-
count for the possibility that people cannot attend to all three
variables simultaneously4. Both of these problems will likely
become larger issues when more variables are added. Addi-
tionally, the presented analyses in this paper do not address
intervention decision-making, a critical component of the ac-
tive learning of causal structure. Future analyses would nat-
urally involve, as a benchmark to compare against humans,
models for selecting actions that maximize expected infor-
mation gain.

Every day we must learn from and interact with systems
that shift over time. Causal cycles, feedback loops, oscilla-
tions, inverse relationships, and all manner of dynamic prop-
erties are as common as they are difficult to learn. We hope
that the formalism laid out in this paper will be helpful in
studying the mechanisms for learning and action in this im-
portant class of problems.
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