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Abstract

A new methodology for optimal linear prediction of a stationary time series is introduced.
Given a sample X1, . . . , Xn, the optimal linear predictor of Xn+1 is X̃n+1 = φ1(n)Xn +
φ2(n)Xn−1 + . . .+φn(n)X1. In practice, the coefficient vector φ(n) ≡ (φ1(n), φ2(n), . . . , φn(n))′

is routinely truncated to its first p components in order to be consistently estimated. By contrast,
we employ a consistent estimator of the n×n autocovariance matrix Γn in order to construct a
consistent estimator of the optimal, full-length coefficient vector φ(n). Asymptotic convergence
of the proposed predictor to the oracle one is established, and finite sample simulations are pro-
vided to support the applicability of the new method. As a by-product, new insights are gained
on the subject of estimating Γn via a positive definite matrix, and four ways to impose positivity
are introduced and compared. The closely related problem of spectral density estimation is also
addressed.

1 Introduction

Let X1, . . . , Xn be the realization of a covariance stationary time series with mean zero and auto-
covariance function γk = E [XtXt−k]. We consider the problem of predicting Xn+1 based on these
observed data. With respect to Mean Squared Error (MSE), the optimal linear predictor is

X̃n+1 = φ1(n)Xn + φ2(n)Xn−1 + . . .+ φn(n)X1, (1)

where the coefficients φi(n) are given by

φ(n) ≡

 φ1(n)
...

φn(n)

 = Γ−1n γ(n); (2)

(see e.g. p. 167 in Brockwell and Davis, 1991). In equation (2), Γn = [γ|i−j|]
n
i,j=1 is the autocovari-

ance matrix of X1, . . . , Xn, and γ(n) = [γ1, . . . , γn]′ is the vector of covariances at lags 1, . . . , n.
Predictor (1) is an oracle because the coefficients φ1(n), . . . , φn(n) are unknown. In practice, the
coefficient vector φ(n) ≡ (φ1(n), φ2(n), . . . , φn(n))′ is routinely truncated to its first p components
in order to be consistently estimated; this procedure is equivalent to fitting an auto-regressive
AR(p) process to the data. The resulting predictor is

X̂AR
n+1 = φ̂1Xn + φ̂2Xn−1 + . . .+ φ̂pXn−p+1, (3)
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where the coefficient vector is typically estimated by the Yule-Walker equations

[φ̂1, . . . , φ̂p]
′ = Γ̆−1p γ̆(p). (4)

In (4), γ̆k = n−1
∑n−|k|

t=1 XtXt+|k| is the sample autocovariance at lag k, γ̆(p) = [γ̆1, . . . , γ̆p]
′, and

Γ̆p = [γ̆|i−j|]
p
i,j=1.

Interestingly, Γ̆p is positive definite for any p as long as γ̆0 > 0, which is a sine qua non.
In addition, for any finite p, γ̆(p) and Γ̆p are consistent for their respective targets γ(p) and Γp.
Unfortunately, when p is large, problems ensue. For example, when p = n, Wu and Pourahmadi
(2009) showed that the sample autocovariance matrix Γ̆n = [γ̆|i−j|]

n
i,j=1 is not a consistent estimator

of Γn in operator norm. Hence, equation (4) cannot be used with p = n to give a consistent estimator
of the full coefficient vector φ(n).

In the present work, we investigate an alternative approach to estimating all n coefficients in
the oracle predictor (1); this allows for the complete process history to be used in prediction.
The estimated prediction coefficients φ̂1(n), . . . , φ̂n(n) are given by the n-dimensional Yule-Walker
equations:

φ̂(n) = (Γ̂∗n)−1γ̂(n), (5)

where Γ̂∗n is a positive definite version of the n×n banded and tapered estimate of the autocovariance
matrix Γn introduced in McMurry and Politis (2010, 2012), and γ̂(n) is the corresponding estimate
of the autocovariance vector; see Section 3.2 for details.

It has been widely thought until now that an estimate such as the one in (5) is not feasible.
For example, on p. 717 of the recent work by Bickel and Gel (2011) it is stated that “given n
observations, it is impossible to estimate n AR parameters sufficiently well for prediction purposes.”
The present work demonstrates that this is not the case. In addition, we discuss an intermediate
approach, i.e., an analog of (4) but with p that can be arbitrarily large as long as p ≤ n.

The remainder of the paper is structured as follows. Section 2 provides the background on the
estimators Γ̂∗n and γ̂(n) that are required in order to estimate the prediction coefficients. Section 3
contains our main asymptotic results; in particular, the consistency of φ̂(n) is shown, and the
resulting predictor is shown to be asymptotically equivalent to the oracle predictor (1). Section 4
presents four ways to correct our matrix estimator in order to ensure positive definiteness—and
therefore invertibility—in finite samples. Section 5 contains the results of finite-sample simulation
studies and a real data experiment. Section 6 summarizes our results. All technical proofs have been
placed in Section 7. Our paper concludes with an Appendix that shows how the positive definiteness
corrections described in Section 4 can find application in the related problem of spectral density
estimation.

2 Estimation set-up

2.1 Estimating the n× n autocovariance matrix Γn

The accuracy of the coefficients estimated by equation (5) rests on the ability to accurately estimate
Γn = [γ|i−j|]

n
i,j=1. However, as mentioned in the introduction, Wu and Pourahmadi (2009) showed

that the sample autocovariance matrix Γ̆n = [γ̆|i−j|]
n
i,j=1 is not a consistent estimator of Γn in

operator norm. In order to achieve consistency, they introduced an l-banded estimate that leaves
the 2l+1 main diagonals of the sample autocovariance matrix intact, and sets the remaining entries
to 0. Under conditions on l and short range dependence assumptions on {Xt}t∈Z they established
the asymptotic consistency of the banded matrix.
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McMurry and Politis (2010) proposed a banded and tapered matrix estimator in which the
2l+1 main diagonals of the sample autocovariance matrix are kept intact but the remaining entries
are gradually tapered to zero. The gradual taper substantially improves finite sample performance,
although the asymptotic convergence rates given in McMurry and Politis (2010) were similar to
those in Wu and Pourahmadi (2009). Recently, however, Cai et al. (2013) showed that the banded
and tapered estimator also enjoys an improved rate of convergence as compared to the purely
banded estimator; for their proof, they used the trapezoidal taper proposed by Politis and Romano
(1995) but it is conjectured that the same holds true for the family of so-called ‘flat-top’ tapers as
long as they are continuous—see Politis (2001) for more details.

For the above reasons, we focus on the general matrix estimator proposed by McMurry and
Politis (2010) given by

Γ̂n =
[
γ̂|i−j|

]n
i,j=1

(6)

with
γ̂s = κ(|s|/l)γ̆s for |s| ≤ n, and γ̂(n) = [γ̂1, . . . , γ̂n]′. (7)

In the above, κ(·) can be the aforementioned trapezoidal taper, i.e.,

κ(x) =


1 if |x| ≤ 1

2− |x| if 1 < |x| ≤ 2
0 if |x| > 2.

(8)

More generally, κ(·) can be any member of the flat-top family of functions defined in Politis (2001),
i.e., κ(·) is given as

κ(x) =


1 if |x| ≤ 1

g(|x|) if 1 < |x| ≤ cκ
0 if |x| > cκ,

(9)

where the function g(·) satisfies |g(x)| < 1, and cκ is a constant satisfying cκ ≥ 1.
The matrix estimator (6) has a banding parameter l ≥ 0. The flat-top tapering leaves the

2l + 1 main diagonals of the sample autocovariance matrix intact, and gradually down-weights
more distant diagonals. In order to cover the possibility of the data at hand being uncorrelated, it
is useful to adopt the convention that when l = 0, the resulting Γ̂n matrix is given by γ̆0I; this is
equivalent to adopting that 0/0=0 in the context of eq. (7).

The trapezoidal taper given in (8) is very convenient, and has been shown to have good per-
formance in different practical settings; we will also employ it in the numerical work in this paper.
Nevertheless, our theoretical results apply to a broad class of weight functions including pure
banding (no taper) as used in Wu and Pourahmadi (2009), and ultra-smooth tapers such as that
suggested in McMurry and Politis (2004). These possibilities are captured by different choices of
the function g(·) and the constant cκ in (9); e.g., letting cκ = 1 corresponds to pure banding.

Note that Γ̂n as defined by (6) is asymptotically positive definite, but for finite samples it can
have negative eigenvalues. For the remainder of the paper, we assume that it has been corrected to
positive definiteness—if needed—as described in Section 4. The positive definite version of matrix
Γ̂n will be denoted by Γ̂∗n.

2.2 Estimating the length n vector φ(n)

After the above preparatory work, we are able to define the proposed new predictor as

X̂n+1 = φ̂1(n)Xn + φ̂2(n)Xn−1 + . . .+ φ̂n(n)X1, (10)
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where the coefficients φ̂1(n), . . . , φ̂n(n) are given by equation (5) in conjunction with the estimates
from equations (6) and (7). We can call predictor (10), the Full-Sample Optimal (FSO) predictor
since—as shown in Section 3—it is a consistent proxy for the oracle optimal predictor (1).

By comparison, Bickel and Gel (2011) have recently investigated a predictor for Xn+1 that uses
the upper-left pn × pn submatrix of the banded sample autocovariance matrix Γ̂n with pn = o(n).
Their estimator is designed for an “on-line” prediction problem that allows for the parameters
to be updated after each new observation at relatively low computational cost, and the resulting
prediction for Xn+1 is a linear combination of Xn, . . . , Xn−pn+1. This is still an AR-type predictor
as in (3) but they use a higher order pn than the one obtained by minimizing AIC or a related
criterion.

Letting
γ̂(pn) = [γ̂1, . . . , γ̂pn ]′ and Γ̂pn =

[
γ̂|i−j|

]pn
i,j=1

(11)

we can construct an alternative predictor that is based on a partial sample, i.e., a predictor as
in (3) with pn that can be arbitrarily large as long as pn ≤ n. This new predictor is defined as

X̂pn
n+1 = φ̂pn1 (n)Xn + φ̂pn2 (n)Xn−1 + . . .+ φ̂pnpnXn−pn+1 (12)

where the length-pn coefficient vector φ̂pn(n) = [φ̂pn1 (n), . . . , φ̂pnpn(n)]′ is obtained from

φ̂pn(n) = (Γ̂∗pn)−1γ̂(pn) (13)

where Γ̂∗pn is the matrix that results after Γ̂pn in (11) is corrected to positive definiteness. We
can call predictor (12), the Partial-Sample Optimal (PSO) predictor as it will be shown to be a
consistent proxy for the oracle optimal Partial-Sample predictor, i.e., the optimal linear predictor
of Xn+1 given the last pn observations; recall that the oracle predictor is constructed using the
(unrealistic) knowledge of the whole autocovariance structure.

2.3 Data-based choice of the banding parameter l

The FSO and PSO predictors of equations (10) and (12) clearly depend on the choice of the banding
parameter l. One possible approach to choosing it in a data-dependent way is the following rule,
which was introduced for density and spectral density estimation in Politis (2003). McMurry and
Politis (2010) further showed this rule produces approximately correct rates for autocovariance
matrix estimation and good finite sample performance.

Empirical rule for picking l. Let %k = γk/γ0 and %̆k = γ̆k/γ̆0. Let l̂ be the smallest positive
integer such that |%̆l̂+k| < c(log n/n)1/2 for k = 1, . . . ,Kn where c > 0 is a fixed constant, and Kn

is a positive, nondecreasing sequence that satisfies Kn = o(log n).

Remark 1. The empirical rule for picking l remains valid for all c > 0 and 1 ≤ Kn ≤ n, although
different choices of c and Kn can lead to very different finite sample performances. Nonetheless,
there are some guidelines for practically useful choices. The factor (logn)1/2 varies slowly, so it
has little influence. For example, if log is taken to denote base 10 logarithm, then for sample
sizes between 100 and 1000, as is quite typical, (log n)1/2 varies between 1.41 and 1.73. Thus,
if c is chosen to be around 2 and Kn about 5, Bonferroni’s inequality implies that the bound
±c(log n/n)1/2 can be used as the critical value of for an approximate 95% test of the null hypothesis
that %(l̂+ 1), . . . , %(l̂+Kn) are all simultaneously equal to zero. We have found values in this range
work well in practice.
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3 Asymptotic results

3.1 Basic assumptions

The convergence of Γ̂∗n to Γn, the primary result underpinning our present work, is established in
McMurry and Politis (2010) under physical dependence measure conditions (Wu, 2005). In order
to define our results, we briefly describe these conditions.

Let {εi, i ∈ Z} be a sequence of i.i.d. random variables. Assume that Xi is a causal function of
{εi}, i.e.,

Xi = f(. . . , εi−1, εi),

where f is a measurable function such that Xi is well defined and E
[
X2
i

]
< ∞. In order to

quantify dependence, let ε′i be an independent copy of εi, i ∈ Z. Let ξi = (. . . , εi−1, εi), ξ
′
i =

(. . . , ε−1, ε
′
0, ε1, . . . , εi), and X ′i = g(ξ′i). For α > 0, define the physical dependence measure

δα(i) := E
[
|Xi −X ′i|α

]1/α
.

Note that the difference between Xi and X ′i is due only to the difference between ε0 and ε′0, and
therefore δα(i) measures the dependence of Xi on an event i units of time in the past. To measure
the cumulative dependence across all time, the quantity

∆α :=

∞∑
i=1

δα(i)

is helpful. We will say that {Xi} is short-range dependent with moment α if ∆α <∞.
These notions of dependence underlie the following assumptions which, in conjunction with

further assumptions about the weight function κ(·), the bandwidth l, and the underlying process,
will be sufficient to establish the consistency of FSO predictor (10).

Assumption 1. E
[
X4
i

]1/4
<∞ and ∆4 <∞.

Assumption 2. The weight function κ is a ‘flat-top’ taper defined by eq. (9) where the function
g(·) and the constant cκ satisfy |g(x)| < 1 for all x, and cκ ≥ 1.

Assumption 3. The quantity

rn = ln−1/2 +
∞∑
i=l

|γi| (14)

converges to zero as n→∞.

All asymptotic results and order notations in the paper will be understood to hold as n → ∞
without explicitly denoting it. In fact, Assumption 3 necessitates that n → ∞; furthermore, the
banding parameter l may have to diverge at an appropriate rate to ensure the convergence of (14).
However, if it so happens that γi = 0 for all i > some q, e.g., under a moving average MA(q) model,
l does not need to diverge; any finite value of l would be acceptable as long as it is at least q.

Assumption 4. The spectral density of {Xt}t∈Z, defined as

f(ω) = (2π)−1
∞∑

k=−∞
γ(k)e−iωk,

satisfies 0 < c1 ≤ f(ω) ≤ c2 <∞ for all w, and some positive constants c1 and c2.
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We now recall one of the main results in McMurry and Politis (2010).

Theorem 1 (McMurry and Politis (2010)). Under Assumptions 1–4,∣∣∣∣∣∣Γ̂n − Γn

∣∣∣∣∣∣
2

= Op(rn) and
∣∣∣∣∣∣Γ̂−1n − Γ−1n

∣∣∣∣∣∣
2

= Op(rn),

where ||·||2 denotes operator norm and rn is as given in eq. (14).

3.2 Estimating the length n vector γ(n)

Implicit in the n-dimensional Yule-Walker equations (5) is the need for consistent estimation of
the length n vector of auto-covariances γ(n) = [γ1, . . . , γn]′. The vector of sample auto-covariances
γ̆(n) = [γ̆1, . . . , γ̆n]′ is not a consistent estimator of γ(n); in fact, γ̆(n) misbehaves. To see why,
recall that the periodogram of the centered data vanishes at frequency zero; this implies the identity∑n

i=1 γ̆i = −γ̆0/2 which, of course, has no reason to hold for the true γi.
By contrast, the flat-top weighted estimator γ̂(n) = [γ̂1, . . . , γ̂n]′ defined in equation (7) is

consistent, as the following Lemma shows. Let |~v|2 denote the l2 norm of the vector ~v. Then,

Lemma 1. Under Assumptions 1–4, |γ̂(n)− γ(n)|2 = Op(rn).

Notice γ̂(n) is closely related to the first row of Γ̂n which is a consistent estimator of Γn; the
only difference is that while γ̂(n) = [γ̂1, . . . , γ̂n]′, the first row of Γ̂n is [γ̂0, γ̂1, . . . , γ̂n−1]

′. However,
the Yule-Walker equations (5) require a positive definite version of Γ̂n, denoted Γ̂∗n (see Section 4).
By looking at the first row of such a Γ̂∗n, we can obtain alternative estimates of γ̂(n) that are also
consistent as the following Lemma shows.

Lemma 2. Let Γ̂∗n denote a positive definite version of Γ̂n that satisfies∣∣∣∣∣∣Γ̂∗n − Γn

∣∣∣∣∣∣
2

= Op(rn) and
∣∣∣∣∣∣(Γ̂∗n)−1 − Γ−1n

∣∣∣∣∣∣
2

= Op(rn).

Let (Γ̂∗n)i,j denote the ij’th entry of Γ̂∗n, and define

γ̂∗(n) = [(Γ̂∗n)1,2, · · · , (Γ̂∗n)1,n, 0]′.

Then, under Assumptions 1–4, we have |γ̂∗(n)− γ(n)|2 = Op(rn).

3.3 Optimal prediction using the full sample

Assumptions 1–4 are sufficient to ensure the vector convergence of the estimated prediction coeffi-
cients φ̂(n) given by (5) to the optimal prediction coefficients φ(n) given by (2).

Theorem 2. Under Assumptions 1–4,

|φ̂(n)− φ(n)|2 = Op(rn). (15)

Corollary 2 of Wu and Pourahmadi (2009) establishes the same rate of convergence for the
vector of prediction coefficients resulting from purely banded estimates of Γn and γ(n). In addition,
Corollary 1 of Bickel and Gel (2011) establishes the convergence of a vector of prediction coefficients
of length pn to the optimal vector of the same length; this is similar in spirit to our Theorem 2 but
using pn of smaller order than n.

The vector convergence of estimated prediction coefficients φ̂(n) to φ(n) shown in Theorem 2 is
important but it is not by itself sufficient to establish the convergence of the resulting predictor to
the oracle predictor; this convergence is the subject of our Theorem 3 and is our main theoretical
result. To show that the FSO predictor X̂n+1 converges to the oracle predictor X̃n+1 we will need
two modest additional assumptions.
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Assumption 5. There exists a rate kn →∞ satisfying

i. kn/(ln
ε)→∞ for some ε > 0.

ii. rnk
1/2
n → 0, where rn is as given in (14).

iii. n
∑∞

i=kn+1 φ
2
i → 0, where φi are the AR(∞) coefficients of the process {Xt}t∈Z.

Assumption 6. n1/2
∑∞

i=n+1 |φi| → 0.

Remark 2. The rate kn described in Assumption 5 is required to exist in order to establish the
asymptotic optimality of the FSO predictor (10). However, it is not a tuning parameter, and does
not need to be estimated and/or chosen by the practitioner.

Remark 3. It can easily be seen that Assumptions 5 and 6 impose few additional restrictions on
the process {Xt}t∈Z, as the following discussion shows.

i. Assumption 5i requires that kn grows slightly faster than l. The optimal l depends on the
rate of decay of |γi| (see Corollary 1 of McMurry and Politis, 2010). If |γi| = O(i−d) for some
d > 1, then the optimal l is proportional to n1/(2d); if |γi| decays exponentially, then it is
sufficient for l to grow logarithmically.

ii. Assumption 6 is satisfied whenever |φi| ≤ Cφi−k for i > I0, some k > 3/2, and some Cφ > 0.

iii. Assumptions 5ii and 5iii require some balancing of convergence rates, but they can be achieved
with only modest restrictions on the underlying process. As long as |φi| decays at a rate
faster than i−3/2 (as required by Assumption 6), the term in Assumption 5iii will converge
to 0 provided kn > Cknn

1/2+ε for some Ckn > 0 and some ε > 0. As long as |γi| < Cγi
−k for

i > I0 for some I0 and some k > 2, this allows for convergence of the prediction when l is
the asymptotically asymptotically optimal bandwidth. If φi and γi decay faster, conditions
5ii and 5iii will be satisfied by a wider range of kn and continue to allow for the optimal l.

Theorem 3. Under Assumptions 1–6,

|X̂n+1 − X̃n+1| = op(1). (16)

In other words, the FSO predictor (10) converges in probability to the theoretically optimal oracle
predictor (1).

Remark 4. Our Theorems 2 and 3 are expected to hold true verbatim if the estimated autocovari-
ances γ̂s that constitute the entries of matrix (6) are also thresholded as described in Section 2.3
of Paparoditis and Politis (2012). It is less clear how the estimator will perform if the entries of
autocovariance matrix are only thresholded without use of the flat-top weight function κ(·), i.e., a
thresholded version of the sample autocovariance matrix as in Xiao and Wu (2012) and Section 2.2
of Paparoditis and Politis (2012). The reason is that our proof of Theorem 3 relies on the rapid
decay of the φ̂i(n) as i increases; this is in part ensured because the non-zero diagonals of Γ̂n are
constrained to a band of width proportional to l which grows slowly with n.
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3.4 Optimal prediction using the partial sample

Theorem 3 demonstrates the asymptotic consistency of the estimated prediction coefficients when
the n×n covariance matrix Γ̂∗n is used. An approach more in line with traditional AR model fitting
or the work of Bickel and Gel (2011) would be to fit an AR model of order pn < n, where pn could
potentially grow with n. This would entail one-step ahead prediction that uses only the last pn
observations; the prediction coefficients φ̂(pn) are given by (13).

Theorem 2 carries over to this lower order setting without modification, although it should
be emphasized that if pn grows slowly enough, faster convergence rates than the one given below
are possible; for example, if pn is constant, then the actual convergence rate will be n−1/2, i.e.,
|φ̂(pn)− φ(pn)|2 = Op(n

−1/2).

Corollary 1. Let 1 ≤ pn ≤ n. Under Assumptions 1–4,

|φ̂(pn)− φ(pn)|2 = Op(rn).

The extension of Theorem 3 requires a strengthening of Assumption 6. Our arguments depend
on the closeness of φ(pn) to the corresponding AR(∞) coefficients; this closeness improves as pn
increases, necessitating the following assumption.

Assumption 7. Let kn be as in Assumption 5. Then either
a. pn ≤ kn for all n, or
b. pn > kn and n1/2

∑∞
i=pn+1 |φi| → 0.

Remark 5. In the case where pn > kn, Assumption 7b is only a modest strengthening of Assump-
tion 5iii.

Corollary 2. Let 1 ≤ pn ≤ n. Under Assumptions 1–5 and 7,

|X̂pn
n+1 − X̃

pn
n+1| = op(1),

where X̂pn
n+1 is the PSO predictor of eq. (12) with coefficients φ̂pn(n) obtained from eq. (13), and

X̃pn
n+1 is its oracle counterpart of order pn.

Corollary 1 is quite similar to Corollary 1 in Bickel and Gel (2011); however, their result requires
pn = o(n) whereas ours is valid for all non-negative sequences pn ≤ n. In addition, neither Bickel
and Gel (2011) nor Wu and Pourahmadi (2009) provide a result similar to Corollary 2.

Remark 6. The FSO predictor (10) and the PSO predictor (12) are based on eq. (5) and (13)
respectively that employ the matrix estimator Γ̂∗n, and the vector estimator γ̂(n). Of course, using
the positive definite matrix estimator is necessary because the finite-sample inverse is needed. Note,
however, that we could equally have chosen the vector estimator γ̂∗(n) of Lemma 2 instead of γ̂(n)
in the Yule-Walker equations (5) and (13). All our asymptotic results of Section 3 on FSO/PSO
predictors remain true verbatim with such a choice.

4 Corrections towards positive definiteness

Under Assumptions 1–4, the matrix Γ̂n of eq. (6) will have eigenvalues bounded away from zero
with probability tending to one as n → ∞. However, for finite samples, Γ̂n will occasionally have
eigenvalues that are negative and/or positive but too small. Since the inverse of Γ̂n is a key element
in prediction, the matrix Γ̂n must be corrected to achieve finite-sample positive definiteness and

8



avoid ill-conditioning. In this section, we present four ways to implement such a correction. The
method presented in Section 4.1 was originally proposed in McMurry and Politis (2010); we now
complete that proposal by observing the need to rescale the matrix after its being corrected. The
methods in Sections 4.2, 4.3, and 4.4 are novel.

4.1 Eigenvalue thresholding

In the context of the Linear Process Bootstrap, McMurry and Politis (2010) suggested correcting
the eigenvalues obtained in the spectral decomposition

Γ̂n = TnDT
′
n (17)

where Tn is an orthogonal matrix, and D is diagonal with ith entry denoted di. Letting Dε =
diag(dε1, . . . , d

ε
n) with dεi = max{di, εγ̂0/nβ}, McMurry and Politis (2010) showed that the adjusted

estimate
Γ̂εn = TnD

εT ′n (18)

is positive definite but maintains the same asymptotic rate of convergence as Γ̂n; in the above,
ε > 0 and β > 1/2 are some fixed numbers. For the purposes of Linear Process Bootstrap, it had
been found that the simple choices ε = 1 and β = 1 worked well in practice. In the present context,
however, we found that ε = 1 sometimes produced unstable predictions. A much larger ε, of the
order of 10 or 20, seems to solve the problem; we used ε = 20 and β = 1 in the simulations.

Note that the average eigenvalue of Γ̆n equals γ̆0, which is our best estimator of var [Xt]; simi-
larly, the average eigenvalue of Γ̂n equals γ̂0 = γ̆0. However, the threshold correction (18) increases
the average eigenvalue of the estimated matrix, implicitly suggesting an increased estimate of
var [Xt] (see Appendix A for the connection of the eigenvalues of Γn to the spectral density, and
therefore also to var [Xt]). Consequently, it is intuitive to rescale the estimate Γ̂εn in order to ensure
that its average eigenvalue remains equal to γ̂0 = γ̆0.

Another way to motivate rescaling the corrected matrix estimate is to note that the Yule-Walker
equations (5) should be scale invariant, i.e., invariant upon changes of var [Xt]. In fact, they are
often defined via a correlation matrix and vector instead of a covariance matrix and vector. To turn
γ̂(n) into a vector of correlations, we just divide it by γ̂0. Dividing Γ̂∗n by γ̂0 should then provide a
correlation matrix—hence the need for rescaling.

The rescaled estimate is thus given by

Γ̂∗n = cΓ̂εn where c = γ̂0/d̄
ε (19)

and d̄ε = n−1
∑n

i=1 d
ε
i is the average eigenvalue of Γ̂εn.

4.2 Shrinkage of problematic eigenvalues towards positive definiteness

Section 4.1 described a hard-threshold adjustment to the eigenvalues of Γ̂n in order to render it
positive definite. An alternative approach is to make the adjustment based on a positive definite
estimate of Γn; this approach is novel in the literature of estimating large Toeplitz matrices and/or
spectral densities—for the latter see Appendix A.

If the flat top weight function (8) is replaced by a weight function with a positive Fourier
transform satisfying κ(0) = 1, such as Parzen’s piecewise cubic lag window (Brockwell and Davis,

1991, p. 361), the resulting estimator Γ̂pdn will be positive definite and consistent—albeit with a

slower rate of convergence than Γ̂n. Since Γ̂pdn and Γ̂n are both Toeplitz, they are asymptotically
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diagonalized by the same orthogonal matrix (Grenander and Szegő, 1958). Therefore, letting Tn
be the orthogonal matrix from equation (17), the matrix defined as

D̃ = T ′nΓ̂pdn Tn

will be close to diagonal, and its diagonal entries will approximate the eigenvalues of Γ̂pd. Let
d̃1, . . . , d̃n be the diagonals of D̃. We then produce adjusted eigenvalues d∗i of D (as in (17)) by the
following shrinkage rule. Let d+i = max{di, 0}. Then

d?i =

{
di if di ≥ d̃i

(1− kn)d+i + knd̃i if di < d̃i,
(20)

where kn = c/na for constants c > 0 and a > 1/2. Let D? be a diagonal matrix with diagonal
elements d?1, . . . , d

?
n, and define the shrinkage estimator

Γ̂?n = TnD
?T ′n

that is positive definite, and maintains the same asymptotic properties as Γ̂n as long as the constant
a in (20) is greater than 1/2. However, if a is chosen too large, the shrinkage correction will be
ineffective for small samples. Finally, note that a rescaling step as given in eq. (19) must be
performed here as well; hence, our final estimator is given by

Γ̂∗n = cΓ̂?n where c = γ̂0/d̄
? (21)

and d̄? = n−1
∑n

i=1 d
?
i is the average eigenvalue of Γ̂?n.

Remark 7. Shrinking the PSO predictor towards a positive definite estimator is not expected to
perform well when pn << n; this is because Γ̂pdpn and Γ̂pn are less close to being diagonalizable by
the same orthogonal matrix when pn is not large.

4.3 Shrinkage towards white noise

Section 4.2 proposed shrinking Γ̂n towards the positive definite estimator Γ̂pdn . The shrinking was
selective: only problematic eigenvalues were corrected as in the threshold method of Section 4.1.
We now propose a different correction that is based on shrinking the corresponding spectral density
estimate toward that of a white noise with the same variance—in effect adjusting all eigenvalues.
This approach is novel in the literature of estimating large Toeplitz matrices and spectral densi-
ties, and provides substantial computational benefits. However, the notion of shrinking covariance
matrices towards the identity has been previously employed by Ledoit and Wolf (2003, 2004) in a
different context, namely as a tool to regularize the sample covariance matrix based on a sample
consisting of multiple i.i.d. copies of a random vector.

Recall that, up to a factor of 2π, the eigenvalues of Γ̂n are asymptotically given by the values
of the corresponding spectral density estimate evaluated at the Fourier frequencies; see e.g. Gray
(2006). Thus, negative eigenvalues correspond to negative values in the estimated spectral density.
The estimated spectral density can be made positive—while keeping γ̂0 fixed—by shrinking γ̂i (for
i 6= 0) towards zero by a constant factor s ∈ (0, 1], chosen to ensure that the minimum of the
estimated spectral density is greater or equal to εγ̂0/(2πn

β). To elaborate, if the minimum of the
estimated spectral density happens to be greater or equal to εγ̂0/(2πn

β), then no correction is
needed; if not, then s is chosen so that the the minimum of the corrected spectral density is exactly
equal to εγ̂0/(2πn

β). See Appendix A for more details.
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The same adjustment can be applied to the estimated autocovariance matrix, resulting in the
shrinkage corrected version of Γ̂n given by

Γ̂∗n = sΓ̂n + (1− s)γ̂0In, (22)

where In is the identity matrix and s ∈ (0, 1]. If all the eigenvalues di are greater or equal to
εγ̂0/n

β, then we let s = 1. Otherwise, we let s be the maximum value that ensures that the
minimum eigenvalue of Γ̂∗n is exactly equal to εγ̂0/n

β.
Estimator (22) has several appealing properties. Firstly, it keeps the estimated variance of the

process fixed to γ̂0, i.e., there is no need for rescaling. Secondly, the shrinkage estimator Γ̂∗n remains
banded and Toeplitz, so fast Toeplitz matrix inversion algorithms (Brent et al., 1980) can always
be used. Thirdly, the estimate itself does not require numerical diagonalization of Γ̂n since s can
be estimated by evaluating the corresponding spectral density estimate.

4.4 Shrinkage towards a 2nd order estimate

Section 4.2 suggested shrinking the smaller eigenvalues of Γ̂n towards a second order target. Sec-
tion 4.3 introduced the idea of shrinking all the eigenvalues of Γ̂n towards those of a white noise
process. An approach that combines the most appealing features of these methods is to shrink the
whole of Γ̂n towards a positive definite, 2nd order estimate of Γn.

Let Γ̂pdn be as defined in Section 4.2, and define the corrected estimator by

Γ̂∗n = sΓ̂n + (1− s)Γ̂pdn . (23)

The shrinkage factor s ∈ [0, 1] is chosen to raise the minimum eigenvalue of Γ̂n as close as possible
to εγ̂0/n

β while keeping s in the desired range. Our algorithm exploits the connection between
Toeplitz matrices and the spectral density and is described in detail in Appendix A.3.

Estimator (23) is particularly appealing because Γ̂∗n remains banded and Toeplitz, and thus can
be inverted via a fast algorithm. In addition, Γ̂∗n has no need for rescaling as it has γ̆0 on the main
diagonal. Finally, using the second order estimator as the target feels less arbitrary than shrinking
towards white noise. But the reason that both corrections work well, both asymptotically and in
simulations, is that the correction is a small one, i.e., s tends to one in large samples; thus, the
target is not meant to be achieved but gives only a general direction for the correction—see the
Appendix for more discussion in the spectral density analog.

4.5 Remarks on the four correction methods

Let Γ̂∗n denote the corrected (and rescaled—if needed) matrix according to one of the methods
presented in Sections 4.1, 4.2, 4.3, or 4.4. By construction, Γ̂∗n is positive definite but maintains
the same fast asymptotic rate of convergence as Γ̂n. The proof of the following corollary is similar
to the proofs of Corollaries 2 and 3 in McMurry and Politis (2010).

Corollary 3. Under Assumptions 1–4, the estimator Γ̂∗n satisfies∣∣∣∣∣∣Γ̂∗n − Γn

∣∣∣∣∣∣
2

= Op(rn) and
∣∣∣∣∣∣(Γ̂∗n)−1 − Γ−1n

∣∣∣∣∣∣
2

= Op(rn)

where ||·||2 denotes operator norm, and rn is as given in eq. (14).

In addition, the positive definite estimator Γ̂∗n may find other applications when a consistent
estimator of Γ−1n is needed. For example, in the aforementioned Linear Process Bootstrap of
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McMurry and Politis (2010) the un-scaled threshold estimator Γ̂εn discussed in Section 4.1 was
employed. We conjecture that using the rescaled estimator Γ̂∗n of eq. (19) may improve the finite-
sample performance of the Linear Process Bootstrap by better capturing/preserving the scale of
the problem. In addition, the estimators Γ̂∗n from Sections 4.2, 4.3, and 4.4 are directly applicable
to the Linear Process Bootstrap, and may also also improve its performance.

5 Simulations and numerical experiments

We tried a variety of simulation experiments. For each simulated data set, we used the first n
observations to predict the n+ 1’st observation. Each prediction was made using 12 approaches:

• The FSO predictor with the threshold correction to positive definiteness described in Sec-
tion 4.1 together with rescaling to keep the average eigenvalue the same. Two versions of
γ̂(n) were considered: The first was the version given by (7), and the second given by the
first row of Γ̂∗n, i.e., ([Γ̂∗n]1,2, . . . , [Γ̂

∗
n]1,n−1, 0)′; see Section 3.2 for details. In the simulation

tables, these estimates are denoted FSO-Th-Raw and FSO-Th-Shr respectively.

• The FSO predictor with shrinkage to positive definiteness described in Section 4.2. Both
raw and shrunken versions of γ̂n were considered. These predictions are denoted respectively
FSO-PD-Raw and FSO-PD-Shr.

• The FSO predictor with shrinkage towards white noise, as described in Section 4.3. Both raw
and shrunken versions of γ̂n were considered. In the simulation tables, these estimates are
denoted respectively FSO-WN-Raw and FSO-WN-Shr.

• The FSO predictor with shrinkage towards a 2nd order estimate described in Section 4.4. Both
raw and shrunken versions of γ̂n were considered. In the simulation tables, these estimates
are denoted respectively FSO-2o-Raw and FSO-2o-Shr.

• The PSO predictor with a threshold correction and pn = (npaic)
1/2 together with the raw

estimate of γ̂n; this estimator is denoted PSO-Th-Raw. We found the shrunken version of γ̂n
preformed erratically in this setting, and the results are omitted. Note that paic denoted the
AR order chosen by minimization of the AIC criterion.

• The PSO predictor with shrinkage towards white noise and pn = (npaic)
1/2 together with the

shrunken estimate of γ̂n. This estimator is denoted PSO-WN-Shr.

• An AR(paic) prediction with paic chosen by AIC minimization, denoted AR.

• A version of the method described in Bickel and Gel (2011), denoted BG, with pn = n1/2.

Accuracy of all predictions is described by root mean square prediction error (RMSPE) taken across
all simulations. The trapezoidal taper of equation (8) was used throughout.

The predictor described in Bickel and Gel (2011) has coefficients given by

φ̂BG(n) =
(

Γ̂kpn

)−1
γ̆(pn),

where Γ̂kpn is the k-banded version of the pn×pn autocovariance matrix with pn = o(n), and γ̆(pn) is

the vector of autocovariances at lags 1, . . . , pn. In our simulations, we found that Γ̂kpn was frequently
not positive definite. Bickel and Gel (2011) recommend either considering a reduced set of banding
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parameters k or tapering Γ̆pn with a positive definite taper (Xiao and Wu, 2012). We found the first
approach to produce unstable predictions, so we focused on the second. In particular, we tapered
the entries of Γ̆pn by the Parzen piecewise cubic lag window (Brockwell and Davis, 1991, p. 361),
and chose the width of the lag window by cross-validation over the values from 1 to 3pn plus ∞
(no tapering).

For the implementation of the FSO predictor (10), the employed threshold correction used
constants ε = 20 and β = 1. When shrinking towards a positive definite estimator, we used
constants c = 6 and a = 0.55. For shrinkage towards white noise, we scaled the off-diagonals of
Γ̂n until the smallest eigenvalue was at least max{10γ̂0/n, 0.5 × λmin(Γ̂pdn )}. Shrinkage towards a
2nd order estimate used threshold of 10γ̂0/n. All second order estimates used the Parzen piecewise
cubic lag window and bandwidth chosen by the plug-in approach proposed by Politis (2003).

5.1 AR(1) prediction

For the first experiment, we simulated AR(1) time series of length 201 and used the first 200 data
points to predict the 201’st. Each simulation was repeated 1000 times, and the root mean square
prediction errors are shown in Table 1. This simulation should favor the AR predictor (3) since it
directly fits an AR model.

The banding of Γ̂n implies that the FSO predictor (10) is based on a model whose autocovari-
ances vanish for lags bigger than 2l, in effect an MA model of order 2l. Hence, if a dataset can be
well approximated by a low-order AR model, it is expected that the AR predictor (3) will have an
advantage over a method that is trying to approximate the low-order AR by a high-order MA.

Table 1 shows that FSO predictor (10) is competitive (and even better) than the AR(p) model
for small values of the AR coefficient but becomes less competitive as the AR coefficient becomes
larger; this is not surprising since accurate approximation of such models by a moving average
would require a very high order MA model.

Standard errors for the RMSPE estimates are shown in parentheses in Table 1. The standard
errors for the differences in RMSPE between our methods and the AR predictions tend to decrease
with the magnitude of the AR parameter. When the AR parameter is −0.1 or 0.1, the standard
errors for these differences tend to be around 0.005. When the AR parameter is −0.5 or 0.5, the
standard errors for these differences tend to be around 0.009. When the AR parameter is −0.9 or
0.9, the standard errors for these differences tend to be around 0.014.

φ = −0.9 φ = −0.5 φ = −0.1 φ = 0.1 φ = 0.5 φ = 0.9

FSO-Th-Raw 1.155 (0.054) 1.044 (0.023) 1.026 (0.024) 0.976 (0.023) 1.050 (0.025) 1.132 (0.046)
FSO-Th-Shr 1.073 (0.025) 1.040 (0.023) 1.026 (0.024) 0.976 (0.023) 1.046 (0.024) 1.074 (0.024)

FSO-PD-Raw 1.103 (0.025) 1.029 (0.023) 1.026 (0.024) 0.976 (0.023) 1.032 (0.024) 1.083 (0.024)
FSO-PD-Shr 1.076 (0.024) 1.020 (0.022) 1.026 (0.024) 0.976 (0.023) 1.025 (0.024) 1.063 (0.023)

FSO-WN-Raw 1.071 (0.025) 1.017 (0.022) 1.026 (0.024) 0.976 (0.023) 1.019 (0.024) 1.078 (0.024)
FSO-WN-Shr 1.078 (0.025) 1.014 (0.022) 1.026 (0.024) 0.976 (0.023) 1.018 (0.023) 1.071 (0.024)
FSO-2o-Raw 1.056 (0.024) 1.035 (0.022) 1.026 (0.024) 0.976 (0.023) 1.044 (0.025) 1.052 (0.023)
FSO-2o-Shr 1.037 (0.023) 1.030 (0.022) 1.026 (0.024) 0.976 (0.023) 1.038 (0.024) 1.042 (0.023)

PSO-Th-Raw 1.018 (0.023) 1.043 (0.023) 1.026 (0.024) 0.976 (0.023) 1.050 (0.025) 1.040 (0.023)
PSO-Sh-Shr 1.037 (0.024) 1.014 (0.022) 1.026 (0.024) 0.976 (0.023) 1.018 (0.023) 1.047 (0.023)

AR 0.985 (0.022) 0.986 (0.021) 1.030 (0.024) 0.977 (0.023) 1.004 (0.023) 1.013 (0.022)
BG 1.080 (0.029) 1.036 (0.022) 1.071 (0.025) 1.014 (0.024) 1.045 (0.024) 1.092 (0.029)

Table 1: Root mean square prediction errors (standard error in parentheses) for AR(1) processes.
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5.2 MA(1) prediction

For the second experiment, we simulated time series of length 201 and used the first 200 data
points to predict the 201’st. Each simulation was repeated 1000 times, and the root mean square
prediction errors are shown in Table 2. This simulation should favor the FSO predictor (10) since
it estimates the correlation structure of an MA model directly.

Note that the FSO predictor (10) is competitive with the AR(p) model for all values of the MA
coefficient, and frequently shows slightly better performance.

Standard errors for the RMSPEs are shown in parentheses in Table 2. Standard errors for the
differences in RMSPEs between our methods and the AR(p) predictions were approximately 0.004
when the MA parameters were −0.1 or 0.1, 0.006 when the MA parameters were −0.5 or 0.5, and
0.010 when the MA parameters were −0.9 or 0.9

θ = −0.9 θ = −0.5 θ = −0.1 θ = 0.1 θ = 0.5 θ = 0.9

FSO-Th-Raw 1.041 (0.024) 1.007 (0.021) 0.986 (0.022) 1.023 (0.024) 1.019 (0.023) 1.041 (0.023)
FSO-Th-Shr 1.037 (0.024) 1.006 (0.021) 0.986 (0.022) 1.023 (0.024) 1.019 (0.023) 1.039 (0.023)

FSO-PD-Raw 1.052 (0.024) 1.003 (0.021) 0.986 (0.022) 1.023 (0.024) 1.017 (0.023) 1.032 (0.023)
FSO-PD-Shr 1.040 (0.024) 1.001 (0.020) 0.986 (0.022) 1.023 (0.024) 1.017 (0.023) 1.025 (0.023)

FSO-WN-Raw 1.025 (0.024) 0.999 (0.020) 0.986 (0.022) 1.023 (0.024) 1.017 (0.023) 1.023 (0.024)
FSO-WN-Shr 1.032 (0.024) 0.996 (0.020) 0.986 (0.022) 1.023 (0.024) 1.017 (0.023) 1.026 (0.024)
FSO-2o-Raw 1.025 (0.024) 1.004 (0.021) 0.986 (0.022) 1.023 (0.024) 1.020 (0.023) 1.022 (0.023)
FSO-2o-Shr 1.028 (0.024) 1.003 (0.021) 0.986 (0.022) 1.023 (0.024) 1.020 (0.023) 1.023 (0.024)

PSO-Th-Raw 1.041 (0.024) 1.008 (0.021) 0.986 (0.022) 1.023 (0.024) 1.019 (0.023) 1.040 (0.023)
PSO-Sh-Shr 1.032 (0.024) 0.997 (0.020) 0.986 (0.022) 1.023 (0.024) 1.017 (0.023) 1.026 (0.024)

AR 1.036 (0.024) 1.009 (0.021) 0.985 (0.022) 1.023 (0.025) 1.022 (0.023) 1.024 (0.023)
BG 1.033 (0.024) 1.040 (0.021) 0.997 (0.023) 1.052 (0.025) 1.038 (0.024) 1.021 (0.023)

Table 2: Root mean square prediction errors (standard error in parentheses) for MA(1) processes.

Remark 8. The AR(1) simulations suggest that the shrunken estimate of γn tends to outperform
the raw estimate when the AR parameter is large. The improvement seems to come at little to no
cost, so the shrunken estimate seems advisable in practice; further evidence to support this point
is provided in Sections 5.4 and 5.6.

5.3 MA(2) prediction

In the next simulation, we considered a wide range of MA(2) processes, with coefficients θ1 and θ2
ranging from −1 to 1 in steps of 1/3. Several of these combinations of parameters, for example
θ1 = −1 and θ2 = 0, have MA polynomials with roots on the unit circle causing the spectral density
to have a corresponding zero. These simulations are expected to cause trouble for all approaches
to prediction since Γn is not invertible for large n, but the troubles have been somewhat masked
by the correction to positive definiteness.

For the simulation, 1000 data sets of sizes 101 and 501 were generated for each combination
of θ1 and θ2, and the final observation was predicted using all preceding observations; results are
given in Tables 3 and 4. Note that for the larger sample size, one of our estimators was the best
performing in more than half of the MA(2) cases under consideration. For the smaller sample size,
our estimators were consistently competitive except for the case θ2 = 1.

Standard errors for the RMSPEs in the MA(2) case were again consistently close to 0.024. The
five-number summary for the simulations of size 100 was: min = 0.021, Q1 = 0.024, Q2 = 0.026,
Q3 = 0.029, max = 0.051. Standard errors for the simulations of size 500 were almost identical.
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Remark 9. The shrinkage corrected FSO and PSO predictors produced very similar results across
most of the simulations; this is not surprising since in general φ̂i(n) decays rapidly as i increases.
As long as pn >> l, the coefficients of the FSO and PSO predictors that are significantly different
from zero agree almost exactly.

5.4 Real data experiment

For our final prediction experiment, we tried our methods on real data using time series from
the M3 competition database (Hyndman et al., 2013). In order to avoid the need for seasonal
adjustment, we first selected only those time series measured yearly. We then further restricted to
those time series which were not found to be nonstationary, i.e., for which the test of Kwiatkowski
et al. (1992) could not reject the null hypothesis of absence of a unit root at the α = 0.05 level.
The end result was 105 time series of lengths between 20 and 47. Each of these time series was
then rescaled to have variance 1 so that prediction errors would have approximately the same scale.
The experiment consisted of predicting the second to last and the last value in each series using all
preceding observations, i.e., having a testing set of size 2 for each series; this resulted in 210 total
predictions. Root mean square prediction errors (obtained as an average of the 210 predictions)
corresponding to the different methods are shown in Table 5.

To corroborate and add weight to these findings, we then reversed time and used the later times
in each series to predict the first and second observations. Time reversal produces stationary time
series with the same covariance structures, allowing us to perform an additional 210 predictions.
Results are shown in Table 6.

In both the original and time reversed real data experiments, three of our methods out-
performed the benchmark AR prediction, with the FSO and PSO shrinkage to white noise producing
the best results. It is notable that although our procedure is nonparametric—and is analogous to
nonparametric spectral estimation—it performs competitively with AR-based prediction in such
small sample settings, i.e., sample sizes ranging rom 20 to 47. In addition, estimators using
shrunken estimates of γ(n) substantially out-performed those using raw estimates, which is an
important finding in its own right.

5.5 Relative performance of different matrix estimators

Rescaling of the threshold corrected matrix given in eq. (19) is a new proposal in the literature.
Similarly, the shrinkage corrected matrices described in Sections 4.2, 4.3, and 4.4 are also novel.
For this reason, we also carried out a small simulation study demonstrating their ability to improve
estimates of Γn. Data sets of size n = 200 were used throughout using some simple AR(1) and
MA(1) models, along with the ARMA(2,1) model Xt−0.7Xt−1+0.5Xt−2 = εt−0.3εt−1. Each data
set was used to estimate the autocovariance matrix, and the estimate was then compared to the
true autocovariance matrix in operator norm. 1,000 replications were performed for each model.

Average differences in operator norm are shown in Table 7. The estimators that have been
corrected to positive definiteness and then scaled to keep the average eigenvalue unchanged show
a consistent advantage over the initial estimate Γ̂n and the unadjusted threshold corrected matrix.
Shrinkage to white noise and to a second order estimate both show strong performance, with the
former particularly strong for the MA processes, and the latter stronger for the AR processes.

5.6 Relative performance of autocovariance vector estimators

Section 3.2 introduced two estimates of the autocovariance vector γ(n). The first, γ̂(n) is the raw or
unadjusted banded and tapered estimate. The second, γ̂∗(n) is the shrunken version taken from the
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first row of the estimated autocovariance matrix after correction to positive definiteness. These two
estimators have similar theoretical performance, but it is unclear which is preferable in application.

In order to compare performance, we conducted a small simulation study using a selection of
AR(1) and MA(1) models, along with the ARMA(2,1) model Xt−0.7Xt−1+0.5Xt−2 = εt−0.3εt−1,
each with a sample size of n = 200. l2 norm errors are shown in Table 8. All the shrinkage type
estimators, except possibly the selective shrinkage towards a positive definite estimate, seem to
consistently improve on the raw estimate γ̂(n); shrinkage towards white noise is a particularly
strong performer here.

6 Conclusions

The thrust of this paper was to demonstrate the viability and asymptotic consistency of the FSO
linear predictor (10) that uses the complete process history. A key element here is an accurate
estimate of the full n×n autocovariance matrix given a sample of size n. As a by-product, we also
show the consistency of the PSO linear predictor (12) which is an AR(p) predictor based on the
last p data values for any p ≤ n; this is a substantial strengthening of previous results which had
required p = o(n). In simulations, it is shown that the FSO and PSO predictors are competitive
as compared to the state-of-the-art linear predictor which amounts to fitting an AR(p) model with
p chosen by AIC minimization.

As part of our investigations, we have introduced several refinements to the current state of the
art in estimating large autocovariance matrices under the restriction that they are finite-sample
positive definite and not ill-conditioned. In particular, when using the eigenvalue threshold correc-
tion, we noted the necessity of rescaling the matrix so that the mean eigenvalue remains unchanged.
In addition, we introduced three new corrections to positive definiteness, namely shrinking towards
positive definiteness, shrinking towards the (rescaled) identity/white noise, and shrinking towards a
2nd order estimate. All three corrections are shown to work well with the shrinkage towards white
noise appearing to have a small finite sample performance advantage over shrinking towards a 2nd
order estimate. Furthermore, because the estimators resulting from shrinkage towards either white
noise or a second order estimate both result in a banded Toeplitz matrix, they can be calculated
easily, stored efficiently, and inverted rapidly.

Finally, in Appendix A we use these insights into large covariance matrix estimation to refine
flat-top kernel spectral density estimates in order to ensure their positivity.

7 Technical proofs

Let ||A||2 ≡ max {|A~x|2 : ~x ∈ Rn with |~x|2 = 1} denote the matrix 2-norm of an n× n matrix A.

Proof of Lemma 1.

|γ̂(n)− γ(n)|2 =

{
n∑
i=1

[κ(i/l)γ̆i − γi]2
}1/2

≤
n∑
i=1

|κ(i/l)γ̆i − γi|

≤
l∑

i=1

|γ̆i − γi|+
bcκlc∑
i=l+1

|κ(i/l)γ̆i − γi|+
n∑

i=bcκlc+1

|γn|
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Bounds for the above three terms are obtained in the proof of Theorem 1 in McMurry and Politis
(2010); using those bounds, we have

E
[
|γ̂(n)− γ(n)|22

]1/2 ≤ d2(bcκlc+ 1)n−1/2 +
1

n

bcκlc∑
i=1

i|γi|+
n∑

i=l+1

|γi|,

where d2 is a constant depending on E
[
X4
i

]
and ∆4 but not l or n; this establishes the convergence

of γ̂(n) to γ(n) with the same rates as Γ̂n converges to Γn, described in Corollary 1 of McMurry
and Politis (2010).

Proof of Theorem 2.

φ̂(n)− φ(n) = (Γ̂∗n)−1γ̂(n)− Γ−1n γ(n)

= (Γ̂∗)−1n γ̂(n)− Γ̂−1n γ(n) + (Γ̂∗n)−1γ(n)− Γ−1n γ(n)

= (Γ̂∗n)−1[γ̂(n)− γ(n)] + [(Γ̂∗n)−1 − Γ−1n ]γ(n)

Therefore

|φ̂(n)− φ(n)|2 ≤
∣∣∣∣∣∣(Γ̂∗n)−1

∣∣∣∣∣∣
2
|γ̂(n)− γ(n)|2 +

∣∣∣∣∣∣(Γ̂∗n)−1 − Γ−1n

∣∣∣∣∣∣
2
|γ(n)|2

= A1 +A2.

We investigate term A1 first. With probability tending to one,
∣∣∣∣∣∣(Γ̂∗n)−1

∣∣∣∣∣∣
2

is bounded.

|γ̂(n)− γ(n)|2 =

{
n∑
i=1

[γ̆iκ(i/l)− γi]2
}1/2

≤
n∑
i=1

|γ̆iκ(i/l)− γi|

= Op(rn)

The final equality is established in the proof of Theorem 1 in McMurry and Politis (2010); see also
Section 3.2.

We now turn our attention to A2. By Corollary 3 in McMurry and Politis (2010),∣∣∣∣∣∣(Γ̂∗n)−1 − Γ−1n

∣∣∣∣∣∣
2

= Op(rn).

Since
∑∞

i=1 |γ(i)| <∞, the result follows.

Proof of Theorem 3. We compare the FSO predictor X̂n+1 to the oracle optimal prediction X̃n+1

based on the following decomposition:

X̂n+1 − X̃n+1 =

kn∑
i=1

[φ̂i(n)− φi(n)]Xn−i+1 +

n∑
i=kn+1

φ̂i(n)Xn−i+1 −
n∑

i=kn+1

φi(n)Xn−i+1

= A+B + C. (24)

The basic idea of the proof is that we can let kn → ∞ slowly enough that the first term goes
to 0 by the Cauchy-Schwarz inequality. Since the coefficients φ̂i(n) and φi(n) decay quickly as i
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increases, by allowing kn to grow fast enough the second two terms can also be shown to converge
to 0, again by Cauchy-Schwarz.

We begin with term A. By the Cauchy-Schwarz inequality∣∣∣∣∣
kn∑
i=1

[φ̂i(n)− φi(n)]Xn−i+1

∣∣∣∣∣ ≤ |φ̂(n)− φ(n)|2

[
kn∑
i=1

X2
n−i+1

]1/2
= Op(rnk

1/2
n )

By Assumption 5ii this term tends to 0.
Term B will be handled by Proposition 2.2 of Demko et al. (1984) which shows that as long as

Γ̂∗n is a banded matrix, which it will be with probability tending to 1, (for small samples Γ̂∗n may
be corrected to positive definiteness, and depending on the technique used, no-longer banded)

|(Γ̂∗n)−1ij | ≤ C2λ
|i−j|/l, (25)

where C2 and λ < 1 depend only on the largest and smallest eigenvalues of Γ̂∗n. Since with
probability tending to 1, these are bounded away from 0 and from above, for large enough n, C2

and λ can be chosen independent of n with (25) holding with probability tending to 1.
Since by Assumption 5i, kn grows faster than l, there is no loss in considering only i > 2l. In

this case

|φ̂i(n)| =

∣∣∣∣∣∣
cκl∑
j=1

(Γ̂∗n)−1ij γ̂j

∣∣∣∣∣∣ ≤ C3

cκl∑
j=1

λ(i−j)/l ≤ C4lλ
i/l, (26)

where the bound above holds with probability tending to 1.
By (26), 

n∑
i=kn

|φ̂i(n)|2


1/2

≤ C5l
3/2λ(kn−1)/(2l). (27)

By (27) and the Cauchy-Schwarz inequality, term B converges to 0 by Assumption 5i.
By the Cauchy-Schwarz inequality, Term C can be bounded by

|C| =

∣∣∣∣∣∣
n∑

i=kn+1

φi(n)Xn−i+1

∣∣∣∣∣∣ =

∣∣∣∣∣∣
n∑

i=kn+1

[φi(n)− φi + φi]Xn−i+1

∣∣∣∣∣∣
≤


 n∑
i=kn+1

|φi(n)− φi|

+

 n∑
i=kn+1

φ2i

1/2
Op(n1/2)

≤

C7

∞∑
i=n+1

|φi|+

 ∞∑
i=kn+1

φ2i

1/2
Op(n1/2) (28)

where φi denotes the corresponding AR(∞) coefficient, and inequality (28) follows from the variant
of Baxter’s inequality (Baxter, 1962, 1963) given in Lemma 2.2 of Kreiss et al. (2011) and holds for
all n > N0 for some positive N0. The first term in (28) converges by Assumption 6. The second
term in (28) converges by Assumption 5iii.
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Proof of Corollary 1. For any sequence pn < n, Γ̂∗pn converges to Γpn as fast or faster than the
convergence of the larger n×n matrices; this is because the absolute row sum norm of the difference
of the smaller matrices is bounded from above by the maximum absolute row sum norm of the
difference of the larger matrices. Similarly, the convergence of γ̂(pn) to γ(pn) is not made worse;
see Section 3.2. Finally, the eigenvalues of Γ̂∗pn and Γpn have the same positive upper and lower
bounds as their larger counterparts; see Lemma 4.1 in Gray (2006). Therefore, the proof of Theorem
2 carries over directly.

Proof of Corollary 2. In the case that pn ≤ kn, terms B and C in (24) are 0, and the Cauchy-
Schwarz inequality can be used directly on term A, giving the desired result. If pn > kn, term B
in decomposition (24) is again handled by Proposition 2.2 of Demko et al. (1984) with the only
change being that the sum (27) stops at pn. The challenge comes with term C, where Baxter’s
inequality is now used to compare φi(pn) and φi. Since pn < n, this approximation becomes worse,
and the first half of term C becomes

n1/2C ′7

∞∑
i=pn+1

|φi|,

which converges to 0 by Assumption 7.
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A Positivity corrections in spectral density estimation

Let

f̂io(ω) =
1

2π

n∑
s=−n

κ(s/l)γ̆je
−iωs ≡ 1

2π

n∑
s=−n

γ̂je
−iωs (29)

denote the infinite-order estimate of f(ω) using flat-top weight function κ(·). As is well-known,
f̂io(ω) achieves the fastest rate of convergence possible in a given smoothness class; see Politis (2011)
and the references therein. However, although f(ω) ≥ 0 for all ω, the same is not guaranteed to
be true for f̂io(ω). The usual correction is to clip the negative values, i.e., define the corrected
estimator

f̂+io (ω) = max{0, f̂io(ω)}

that is nonnegative while maintaining the same fast rate of convergence of f̂io(ω).
Nevertheless, in situations where an estimate of the inverse of f(ω) is needed, a more dramatic

correction must take place. For example, recall that the large-sample variance of the sample mean
n−1

∑n
t=1Xt is given by 2πf(0)/n under standard conditions. Hence, to create a t–statistic for

testing and/or confidence intervals, the practitioner must be able to divide by an estimate of f(0).
In this Appendix we discuss analogs of the three matrix corrections given in Section 4 as

they apply to the problem of spectral density estimation. The analogy is made possible due to
the aforementioned fact that the eigenvalues of Γn are asymptotically given by the values of the
spectral density function evaluated on the Fourier frequencies; see e.g. Gray (2006).
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A.1 Selective shrinkage to positive definiteness

As in Section 4.2, we can employ a second order kernel estimator to provide a target lower bound
for the estimated spectral density. Recall that a positive definite spectral estimator is by necessity
based on a second order kernel, and is therefore asymptotically inefficient. Let

f̂2o(ω) =
1

2π

n∑
s=−n

κ2o(s/l)γ̆je
−iωs

denote a second-order, positive definite spectral density estimate such as the one that results when
the weight function κ2o(·) is chosen to be Parzen’s piecewise cubic lag window.

Then we can define a corrected flat-top spectral density estimator as

f̂?io(ω) =

{
f̂io(ω) if f̂io(ω) ≥ f̂2o(ω)

(1− kn)f̂+io (ω) + knf̂2o(ω) if f̂io(ω) < f̂2o(ω)

where kn = c/na for constants c > 0 and a > 1/2. Since a > 1/2, the correction by factor kn is
asymptotically negligible so that f̂?io(ω) enjoys the same fast rate of convergence as f̂io(ω) .

Using the formula for the Fourier coefficients and noting that κ(0) = κ2o(0) = 1, it follows that

γ̆0 = γ̂0 =

∫ π

−π
f̂io(ω)dω =

∫ π

−π
f̂2o(ω)dω,

i.e., the area under any choice of spectral density estimate equals the sample autocovariance at
lag zero which is our best estimate of var [Xt]. Note, however, that the shrinkage estimator f?io(ω)
has an area that is larger than γ̂0, therefore implying a bigger estimate for var [Xt]. This is not
intuitive, and hence f̂?(ω) should be appropriately rescaled. Our final, rescaled shrinkage estimator
is given by

f̂∗io(ω) = cf̂?io(ω) where c = γ̂0/

∫ π

−π
f̂?io(ω)dω. (30)

A.2 Shrinkage toward white noise

As described in Section 4.3, we may shrink γ̂i (for i 6= 0) towards zero by a factor s ∈ (0, 1] chosen
to ensure that the minimum of the estimated spectral density is greater or equal to εγ̂0/(2πn

β).
The resulting estimator

f̂∗io(ω) ≡ (1− s) γ̂0
2π

+ sf̂io(ω)

is positive definite while maintaining the same fast asymptotic rate of convergence as f̂io(ω). Note
that by construction, f̂∗io(ω) ≥ εγ̂0/(2πnβ) for all ω. By analogy to Section 4.3, the estimator f̂∗io(ω)
has no need for rescaling as it maintains the same area under the curve as f̂io(ω), and therefore is
associated with an estimate of var [Xt] given by γ̂0 = γ̆0.

A.3 Shrinkage towards a 2nd order estimate

A spectral density estimator can also be corrected to non-negativity by shrinking it towards a
positive definite, 2nd order estimate as described for matrices in Section 4.4. The resulting estimator
is

f̂∗io(ω) ≡ sf̂io(ω) + (1− s)f̂2o(ω).
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Note that the above amounts to shrinking f̂io(ω) towards f̂2o(ω) for all ω ∈ [−π, π]; thus, it should
be contrasted with the method of Section A.1 where it was proposed to shrink f̂+io (ω) towards

f̂2o(ω) only for ω such that f̂+io (ω) < f̂2o(ω).
The shrinkage factor s ∈ [0, 1] is chosen to be the minimum of s(ω), where s(ω) is a “point-

wise” shrinkage factor, calculated as follows. If fio(ω) ≥ f2o(ω) or if fio(ω) ≥ εγ̂0/(2πn
β), then

s(ω) = 1; in words fio(ω) is bigger than either the threshold or the second order estimator,
so it is left untouched. Otherwise, we calculate the shrinkage factor needed to raise fio(ω) to
the minimum of the threshold and the second order estimator, making s(ω) the maximum of[
εγ̂0/(2πn

β)− f2o(ω)
]
/[fio(ω)− f2o(ω)] and 0.

The reason that both shrinking towards white noise and shrinking towards a 2nd order estimate
work well—asymptotically and in finite samples—is explained in the following remark.

Remark 10. Spectral estimators such as f̂io and f̂2o can be alternatively expressed as weighted
local averages of the periodogram (see Brockwell and Davis, 1991). Since the periodogram is
(approximately) unbiased, the bias in spectral estimation is due to the local averaging that, in
effect, “trims the hills, and fills the valleys”. The fact that f̂io(ω) is less biased than f̂2o(ω) implies
that f̂io(ω) can follow “the hills and the valleys” better than f̂2o(ω). In that sense, shrinking f̂io(ω)
towards the spectral density of a white noise is tantamount to shrinking f̂io(ω) towards f̂2o(ω) for
all ω ∈ [−π, π]; the goal of shrinkage towards either target is a flatter version of f̂io(ω). Of course
these targets are not meant to be achieved — just to give a general direction for the correction.

A.4 Thresholding correction

Politis (2011) proposed a threshold correction for the spectral density that is analogous to the
eigenvalue thresholding of Section 4.1. To elaborate, the threshold corrected spectral density esti-
mate is f̂ εio(ω) = max{f̂io(ω), εγ̂0/(2πn

β)} for some ε > 0 and β > 1/2. Note, however, that this
threshold estimator could also benefit from rescaling due to the arguments leading to eq. (30). We
may thus propose a new rescaled threshold corrected flat-top spectral density estimator given by

f̂∗io(ω) = cεf̂
ε
io(ω) where cε = γ̂0/

∫ π

−π
f̂ εio(ω)dω. (31)

A.5 Numerical illustrations

Although asymptotically negligible, the corrections discussed in Sections A.1–A.4 can dramatically
improve finite sample performance. Figure 1 provides an illustration using a dataset simulated from
the ARMA(2,1) model Xt − 0.7Xt−1 + 0.5Xt−2 = εt − 0.3εt−1 with n = 100. Notably, this was not
a dataset selected at random; it was chosen among many realizations of datasets from this ARMA
model because for this particular dataset f̂io behaves poorly at ω = 0 necessitating substantial
correction.

In addition, we tried a formal simulation experiment to compare the various corrections to
positive definiteness in spectral density estimation using difference AR(1) and MA(1) models, as
well as the aforementioned ARMA(2,1) model of Figure 1. For each simulated dataset of size
n = 200, we estimated the spectral density using the uncorrected infinite order estimate and the
methods described in Sections A.1–A.4. The thresholds for correction were the same as those used
in the corresponding autocovariance matrix simulations.

Mean integrated square errors are shown in Table 9. All of the new correction methods show
substantial improvement over f̂io. As in the matrix estimation set-up of Section 5.5, shrinkage
towards white noise and towards a 2nd order estimator appear particularly powerful. Shrinkage
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Figure 1: The 2nd order, infinite order, and shrinkage-corrected spectral density estimates.

towards white noise seems to perform better for MA processes, while shrinkage towards the 2nd
order estimator appears to have a small edge for AR processes.
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θ2 = −1 θ2 = −2/3 θ2 = −1/3 θ2 = 0 θ2 = 1/3 θ2 = 2/3 θ2 = 1

FSO-Th-Raw θ1 = −1 1.696 1.517 1.380 1.137 1.036 1.162 1.313
FSO-Th-Shr θ1 = −1 1.696 1.515 1.380 1.143 1.036 1.131 1.267

FSO-PD-Raw θ1 = −1 1.694 1.519 1.377 1.123 1.240 1.574 1.537
FSO-PD-Shr θ1 = −1 1.693 1.516 1.372 1.119 1.106 1.328 1.386

FSO-WN-Raw θ1 = −1 1.692 1.515 1.376 1.127 1.030 1.154 1.286
FSO-WN-Shr θ1 = −1 1.691 1.513 1.376 1.138 1.066 1.179 1.294

FSO-2o-Raw θ1 = −1 1.695 1.516 1.377 1.125 1.017 1.177 1.327
FSO-2o-Shr θ1 = −1 1.694 1.513 1.375 1.132 1.026 1.106 1.242

PSO-Th-Raw θ1 = −1 1.696 1.516 1.380 1.138 1.031 1.161 1.313
PSO-Sh-Shr θ1 = −1 1.691 1.513 1.376 1.138 1.065 1.179 1.295

AR θ1 = −1 1.687 1.476 1.333 1.127 1.032 1.105 1.119

BG θ1 = −1 1.703 1.499 1.347 1.111 1.065 1.132 1.124

FSO-Th-Raw θ1 = −2/3 1.435 1.275 1.112 1.048 1.073 1.137 1.241
FSO-Th-Shr θ1 = −2/3 1.431 1.275 1.113 1.046 1.035 1.105 1.239

FSO-PD-Raw θ1 = −2/3 1.431 1.280 1.111 1.051 1.141 1.178 1.227
FSO-PD-Shr θ1 = −2/3 1.430 1.278 1.106 1.045 1.072 1.124 1.212

FSO-WN-Raw θ1 = −2/3 1.426 1.271 1.109 1.038 1.026 1.101 1.218

FSO-WN-Shr θ1 = −2/3 1.424 1.272 1.110 1.037 1.022 1.087 1.221
FSO-2o-Raw θ1 = −2/3 1.430 1.272 1.110 1.039 1.065 1.133 1.226
FSO-2o-Shr θ1 = −2/3 1.425 1.274 1.110 1.037 1.017 1.088 1.216

PSO-Th-Raw θ1 = −2/3 1.436 1.274 1.111 1.048 1.071 1.136 1.241
PSO-Sh-Shr θ1 = −2/3 1.424 1.272 1.110 1.037 1.021 1.087 1.222

AR θ1 = −2/3 1.441 1.262 1.058 1.042 0.994 1.025 1.171

BG θ1 = −2/3 1.463 1.265 1.058 1.056 1.020 1.036 1.169

FSO-Th-Raw θ1 = −1/3 1.209 1.062 1.086 0.989 1.060 1.059 1.191
FSO-Th-Shr θ1 = −1/3 1.208 1.062 1.085 0.988 1.057 1.057 1.197

FSO-PD-Raw θ1 = −1/3 1.214 1.063 1.083 0.986 1.049 1.059 1.185
FSO-PD-Shr θ1 = −1/3 1.210 1.062 1.080 0.984 1.041 1.053 1.183

FSO-WN-Raw θ1 = −1/3 1.202 1.056 1.082 0.987 1.051 1.054 1.182
FSO-WN-Shr θ1 = −1/3 1.204 1.059 1.080 0.985 1.049 1.052 1.189

FSO-2o-Raw θ1 = −1/3 1.203 1.054 1.083 0.989 1.062 1.052 1.180

FSO-2o-Shr θ1 = −1/3 1.206 1.055 1.080 0.988 1.061 1.050 1.187
PSO-Th-Raw θ1 = −1/3 1.209 1.061 1.086 0.990 1.060 1.059 1.190

PSO-Sh-Shr θ1 = −1/3 1.204 1.059 1.080 0.985 1.049 1.052 1.189

AR θ1 = −1/3 1.213 1.083 1.056 0.983 1.028 1.062 1.190
BG θ1 = −1/3 1.227 1.083 1.065 1.004 1.053 1.060 1.191

FSO-Th-Raw θ1 = 0 1.163 1.047 1.077 0.950 1.047 1.060 1.183
FSO-Th-Shr θ1 = 0 1.168 1.040 1.077 0.950 1.047 1.059 1.190

FSO-PD-Raw θ1 = 0 1.160 1.053 1.075 0.950 1.046 1.064 1.164
FSO-PD-Shr θ1 = 0 1.157 1.045 1.074 0.950 1.044 1.063 1.165

FSO-WN-Raw θ1 = 0 1.158 1.034 1.076 0.950 1.046 1.060 1.169
FSO-WN-Shr θ1 = 0 1.172 1.034 1.075 0.950 1.046 1.061 1.177

FSO-2o-Raw θ1 = 0 1.153 1.034 1.077 0.950 1.046 1.057 1.165

FSO-2o-Shr θ1 = 0 1.167 1.032 1.078 0.950 1.046 1.057 1.173
PSO-Th-Raw θ1 = 0 1.161 1.044 1.077 0.950 1.047 1.061 1.183

PSO-Sh-Shr θ1 = 0 1.172 1.034 1.075 0.950 1.047 1.062 1.177

AR θ1 = 0 1.183 1.065 1.070 0.959 1.032 1.068 1.183
BG θ1 = 0 1.173 1.081 1.078 0.989 1.070 1.076 1.181

FSO-Th-Raw θ1 = 1/3 1.251 1.061 1.019 1.036 1.097 1.031 1.168
FSO-Th-Shr θ1 = 1/3 1.250 1.062 1.018 1.035 1.093 1.028 1.171

FSO-PD-Raw θ1 = 1/3 1.251 1.054 1.022 1.035 1.091 1.032 1.165
FSO-PD-Shr θ1 = 1/3 1.246 1.052 1.020 1.034 1.081 1.029 1.164

FSO-WN-Raw θ1 = 1/3 1.246 1.051 1.016 1.035 1.090 1.026 1.157
FSO-WN-Shr θ1 = 1/3 1.252 1.054 1.017 1.035 1.087 1.024 1.163

FSO-2o-Raw θ1 = 1/3 1.243 1.050 1.017 1.036 1.098 1.026 1.154

FSO-2o-Shr θ1 = 1/3 1.247 1.057 1.015 1.036 1.094 1.023 1.155
PSO-Th-Raw θ1 = 1/3 1.252 1.061 1.018 1.036 1.097 1.031 1.167

PSO-Sh-Shr θ1 = 1/3 1.252 1.054 1.017 1.035 1.087 1.024 1.163

AR θ1 = 1/3 1.269 1.071 0.995 1.024 1.039 1.031 1.148

BG θ1 = 1/3 1.273 1.073 1.008 1.055 1.065 1.048 1.145

FSO-Th-Raw θ1 = 2/3 1.425 1.301 1.137 1.047 1.092 1.154 1.228
FSO-Th-Shr θ1 = 2/3 1.421 1.297 1.139 1.045 1.056 1.127 1.229

FSO-PD-Raw θ1 = 2/3 1.429 1.315 1.138 1.053 1.154 1.175 1.212
FSO-PD-Shr θ1 = 2/3 1.427 1.306 1.134 1.050 1.091 1.131 1.199

FSO-WN-Raw θ1 = 2/3 1.421 1.295 1.138 1.041 1.059 1.121 1.212

FSO-WN-Shr θ1 = 2/3 1.419 1.292 1.140 1.038 1.055 1.113 1.218
FSO-2o-Raw θ1 = 2/3 1.423 1.295 1.137 1.042 1.097 1.152 1.223
FSO-2o-Shr θ1 = 2/3 1.421 1.291 1.139 1.040 1.054 1.111 1.217

PSO-Th-Raw θ1 = 2/3 1.425 1.302 1.138 1.047 1.090 1.154 1.228
PSO-Sh-Shr θ1 = 2/3 1.419 1.292 1.141 1.038 1.054 1.114 1.218

AR θ1 = 2/3 1.444 1.283 1.087 1.057 1.015 1.042 1.150

BG θ1 = 2/3 1.446 1.280 1.083 1.065 1.062 1.055 1.178

FSO-Th-Raw θ1 = 1 1.690 1.521 1.398 1.146 1.101 1.131 1.290
FSO-Th-Shr θ1 = 1 1.687 1.518 1.398 1.153 1.106 1.094 1.232

FSO-PD-Raw θ1 = 1 1.685 1.521 1.398 1.123 1.294 1.568 1.539
FSO-PD-Shr θ1 = 1 1.677 1.518 1.394 1.122 1.169 1.316 1.370

FSO-WN-Raw θ1 = 1 1.684 1.517 1.397 1.133 1.094 1.122 1.266
FSO-WN-Shr θ1 = 1 1.681 1.513 1.397 1.140 1.144 1.144 1.266

FSO-2o-Raw θ1 = 1 1.687 1.519 1.396 1.128 1.088 1.147 1.317
FSO-2o-Shr θ1 = 1 1.685 1.515 1.395 1.135 1.092 1.082 1.211

PSO-Th-Raw θ1 = 1 1.688 1.520 1.398 1.145 1.099 1.131 1.290
PSO-Sh-Shr θ1 = 1 1.680 1.513 1.397 1.140 1.143 1.144 1.266

AR θ1 = 1 1.650 1.495 1.343 1.117 1.089 1.071 1.129

BG θ1 = 1 1.683 1.519 1.348 1.115 1.111 1.075 1.123

Table 3: Root mean square prediction errors for MA(2) process with n = 100.

24



θ2 = −1 θ2 = −2/3 θ2 = −1/3 θ2 = 0 θ2 = 1/3 θ2 = 2/3 θ2 = 1

FSO-Th-Raw θ1 = −1 1.638 1.570 1.289 1.098 1.300 1.026 1.115
FSO-Th-Shr θ1 = −1 1.638 1.570 1.288 1.093 1.184 1.022 1.115

FSO-PD-Raw θ1 = −1 1.636 1.568 1.287 1.103 1.958 1.053 1.128

FSO-PD-Shr θ1 = −1 1.636 1.567 1.284 1.090 1.637 1.039 1.122
FSO-WN-Raw θ1 = −1 1.637 1.567 1.280 1.063 0.996 1.016 1.111
FSO-WN-Shr θ1 = −1 1.636 1.567 1.279 1.068 1.010 1.017 1.115
FSO-2o-Raw θ1 = −1 1.638 1.570 1.284 1.054 1.028 1.017 1.101

FSO-2o-Shr θ1 = −1 1.638 1.570 1.284 1.059 0.996 1.014 1.103
PSO-Th-Raw θ1 = −1 1.638 1.570 1.289 1.099 1.297 1.026 1.115

PSO-Sh-Shr θ1 = −1 1.636 1.567 1.279 1.068 1.010 1.017 1.115

AR θ1 = −1 1.639 1.570 1.258 1.043 0.988 1.028 1.092

BG θ1 = −1 1.649 1.582 1.279 1.048 1.009 1.043 1.090

FSO-Th-Raw θ1 = −2/3 1.349 1.217 1.065 1.005 1.094 1.013 1.080
FSO-Th-Shr θ1 = −2/3 1.349 1.216 1.064 1.003 1.078 1.012 1.077

FSO-PD-Raw θ1 = −2/3 1.347 1.213 1.066 1.004 1.058 1.007 1.093
FSO-PD-Shr θ1 = −2/3 1.348 1.211 1.064 1.001 1.043 1.006 1.086

FSO-WN-Raw θ1 = −2/3 1.347 1.197 1.060 0.989 1.002 0.996 1.078

FSO-WN-Shr θ1 = −2/3 1.347 1.196 1.061 0.989 1.002 0.995 1.082

FSO-2o-Raw θ1 = −2/3 1.346 1.203 1.050 0.995 1.042 1.004 1.062
FSO-2o-Shr θ1 = −2/3 1.346 1.201 1.051 0.994 1.027 1.004 1.066

PSO-Th-Raw θ1 = −2/3 1.349 1.217 1.065 1.005 1.093 1.013 1.080
PSO-Sh-Shr θ1 = −2/3 1.347 1.196 1.061 0.989 1.002 0.995 1.082

AR θ1 = −2/3 1.351 1.205 1.052 0.994 0.993 1.010 1.064

BG θ1 = −2/3 1.378 1.221 1.049 1.003 0.994 1.022 1.065

FSO-Th-Raw θ1 = −1/3 1.227 1.033 1.014 0.957 0.981 0.985 1.067
FSO-Th-Shr θ1 = −1/3 1.223 1.030 1.014 0.957 0.981 0.984 1.064

FSO-PD-Raw θ1 = −1/3 1.213 1.038 1.007 0.957 0.981 0.983 1.058
FSO-PD-Shr θ1 = −1/3 1.209 1.032 1.006 0.957 0.981 0.982 1.052

FSO-WN-Raw θ1 = −1/3 1.196 1.009 1.001 0.957 0.981 0.979 1.056

FSO-WN-Shr θ1 = −1/3 1.197 1.010 0.999 0.957 0.981 0.979 1.059
FSO-2o-Raw θ1 = −1/3 1.200 1.005 1.011 0.957 0.981 0.979 1.039

FSO-2o-Shr θ1 = −1/3 1.198 1.003 1.010 0.957 0.981 0.978 1.041
PSO-Th-Raw θ1 = −1/3 1.226 1.033 1.014 0.957 0.981 0.985 1.067

PSO-Sh-Shr θ1 = −1/3 1.197 1.010 0.999 0.957 0.981 0.979 1.059

AR θ1 = −1/3 1.207 1.015 1.002 0.961 0.983 0.982 1.033
BG θ1 = −1/3 1.218 1.012 1.023 0.989 1.001 0.999 1.036

FSO-Th-Raw θ1 = 0 1.142 1.027 1.023 1.025 1.053 1.014 1.080
FSO-Th-Shr θ1 = 0 1.135 1.024 1.023 1.025 1.053 1.012 1.077

FSO-PD-Raw θ1 = 0 1.158 1.018 1.023 1.025 1.053 0.999 1.083
FSO-PD-Shr θ1 = 0 1.145 1.014 1.023 1.025 1.053 0.995 1.079

FSO-WN-Raw θ1 = 0 1.128 0.998 1.023 1.025 1.053 0.977 1.078

FSO-WN-Shr θ1 = 0 1.134 0.998 1.023 1.025 1.053 0.974 1.082
FSO-2o-Raw θ1 = 0 1.112 1.010 1.023 1.025 1.053 0.999 1.066
FSO-2o-Shr θ1 = 0 1.116 1.008 1.023 1.025 1.053 0.997 1.067

PSO-Th-Raw θ1 = 0 1.142 1.026 1.023 1.025 1.053 1.014 1.080
PSO-Sh-Shr θ1 = 0 1.134 0.998 1.023 1.025 1.053 0.974 1.082

AR θ1 = 0 1.109 1.011 1.027 1.022 1.056 0.981 1.044

BG θ1 = 0 1.108 1.012 1.051 1.028 1.071 0.988 1.043

FSO-Th-Raw θ1 = 1/3 1.204 1.067 1.028 1.000 1.034 1.050 1.059
FSO-Th-Shr θ1 = 1/3 1.201 1.066 1.028 1.000 1.034 1.049 1.054

FSO-PD-Raw θ1 = 1/3 1.198 1.058 1.026 0.999 1.034 1.043 1.056

FSO-PD-Shr θ1 = 1/3 1.193 1.055 1.025 1.000 1.034 1.042 1.049
FSO-WN-Raw θ1 = 1/3 1.182 1.059 1.025 1.000 1.034 1.035 1.040

FSO-WN-Shr θ1 = 1/3 1.182 1.061 1.025 0.999 1.034 1.034 1.043

FSO-2o-Raw θ1 = 1/3 1.183 1.050 1.027 1.000 1.034 1.041 1.027

FSO-2o-Shr θ1 = 1/3 1.181 1.051 1.026 1.000 1.034 1.040 1.029
PSO-Th-Raw θ1 = 1/3 1.204 1.068 1.028 1.000 1.034 1.050 1.060

PSO-Sh-Shr θ1 = 1/3 1.182 1.061 1.025 0.999 1.034 1.034 1.043
AR θ1 = 1/3 1.192 1.046 1.034 1.002 1.042 1.044 1.032

BG θ1 = 1/3 1.197 1.042 1.032 1.015 1.058 1.055 1.034

FSO-Th-Raw θ1 = 2/3 1.465 1.237 1.095 1.027 1.102 1.067 1.111
FSO-Th-Shr θ1 = 2/3 1.465 1.236 1.094 1.025 1.085 1.066 1.108

FSO-PD-Raw θ1 = 2/3 1.460 1.236 1.096 1.020 1.054 1.068 1.125

FSO-PD-Shr θ1 = 2/3 1.458 1.233 1.092 1.016 1.041 1.065 1.120

FSO-WN-Raw θ1 = 2/3 1.459 1.223 1.083 1.002 1.002 1.057 1.107

FSO-WN-Shr θ1 = 2/3 1.458 1.222 1.085 1.001 1.004 1.057 1.110
FSO-2o-Raw θ1 = 2/3 1.464 1.225 1.076 1.012 1.046 1.064 1.092
FSO-2o-Shr θ1 = 2/3 1.464 1.224 1.078 1.009 1.033 1.062 1.093

PSO-Th-Raw θ1 = 2/3 1.465 1.238 1.095 1.027 1.100 1.067 1.111
PSO-Sh-Shr θ1 = 2/3 1.458 1.222 1.085 1.001 1.004 1.057 1.110

AR θ1 = 2/3 1.459 1.240 1.080 1.007 0.991 1.057 1.094

BG θ1 = 2/3 1.477 1.246 1.069 1.019 1.010 1.061 1.091

FSO-Th-Raw θ1 = 1 1.585 1.441 1.319 1.090 1.383 1.042 1.093
FSO-Th-Shr θ1 = 1 1.585 1.441 1.318 1.085 1.253 1.038 1.094

FSO-PD-Raw θ1 = 1 1.585 1.440 1.320 1.092 2.109 1.066 1.087

FSO-PD-Shr θ1 = 1 1.584 1.441 1.318 1.082 1.761 1.055 1.084

FSO-WN-Raw θ1 = 1 1.585 1.440 1.317 1.073 1.028 1.035 1.093
FSO-WN-Shr θ1 = 1 1.585 1.441 1.318 1.077 1.037 1.036 1.099
FSO-2o-Raw θ1 = 1 1.585 1.441 1.319 1.064 1.081 1.037 1.081
FSO-2o-Shr θ1 = 1 1.585 1.441 1.319 1.067 1.031 1.033 1.081

PSO-Th-Raw θ1 = 1 1.585 1.441 1.319 1.090 1.380 1.042 1.093
PSO-Sh-Shr θ1 = 1 1.585 1.441 1.318 1.077 1.037 1.036 1.099

AR θ1 = 1 1.584 1.448 1.319 1.033 1.017 1.026 1.064
BG θ1 = 1 1.620 1.466 1.327 1.039 1.037 1.037 1.064

Table 4: Root mean square prediction errors MA(2) process with n = 500.
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FSO-Th-Raw FSO-Th-Shr FSO-PD-Raw FSO-PD-Shr FSO-WN-Raw FSO-WN-Shr FSO-2o-Raw FSO-2o-Shr PSO-Th-Raw PSO-Sh-Shr AR BG

1.064 0.958 1.047 0.997 1.033 0.945 1.000 0.974 1.054 0.942 0.987 1.049

Table 5: Root mean square prediction errors for M3 competition data.

FSO-Th-Raw FSO-Th-Shr FSO-PD-Raw FSO-PD-Shr FSO-WN-Raw FSO-WN-Shr FSO-2o-Raw FSO-2o-Shr PSO-Th-Raw PSO-Sh-Shr AR BG

1.284 1.138 1.249 1.187 1.247 1.133 1.204 1.165 1.274 1.135 1.158 1.145

Table 6: Root mean square prediction errors for reversed M3 competition data.

Model Γ̂n Thresh Thresh+Scl PD-Shrink WN-Shrink 2o-Shrink

AR(1) φ = −0.9 10.9908 10.9892 10.7440 10.8142 9.9991 10.0414
AR(1) φ = −0.5 0.9203 0.9203 0.9221 0.9083 0.9469 0.9156
AR(1) φ = −0.1 0.2933 0.2933 0.2933 0.2922 0.2932 0.2933
AR(1) φ = 0.1 0.2959 0.2959 0.2959 0.2951 0.2959 0.2959
AR(1) φ = 0.5 0.9027 0.9027 0.9041 0.8923 0.9277 0.8988
AR(1) φ = 0.9 9.4473 9.4461 9.4021 9.4426 9.2832 9.5232

MA(1) θ = −0.9 0.2847 0.2918 0.2816 0.2864 0.2582 0.3169
MA(1) θ = −0.5 0.2633 0.2631 0.2617 0.2647 0.2513 0.2645
MA(1) θ = −0.1 0.2860 0.2860 0.2860 0.2856 0.2860 0.2860
MA(1) θ = 0.1 0.2866 0.2866 0.2866 0.2856 0.2865 0.2866
MA(1) θ = 0.5 0.2531 0.2528 0.2518 0.2561 0.2424 0.2540
MA(1) θ = 0.9 0.2810 0.2876 0.2784 0.2837 0.2581 0.3077

ARMA(2,1) 1.4666 1.4658 1.4646 1.4521 1.4477 1.4595

Table 7: Average operator norm loss for autocovariance matrix estimates using various corrections
to positive definiteness.

Model Raw Thresh PD-Shrink WN-Shrink 2o-Shrink

AR(1) φ = −0.9 5.6039 5.4784 5.5408 5.1983 5.2220
AR(1) φ = −0.5 0.3065 0.3063 0.2950 0.3096 0.3036
AR(1) φ = −0.1 0.1050 0.1050 0.1044 0.1050 0.1050
AR(1) φ = 0.1 0.1057 0.1057 0.1052 0.1057 0.1057
AR(1) φ = 0.5 0.3103 0.3101 0.3007 0.3142 0.3077
AR(1) φ = 0.9 5.1638 5.0941 5.1448 5.0233 5.1086

MA(1) θ = −0.9 0.1590 0.1518 0.1584 0.1357 0.1652
MA(1) θ = −0.5 0.0994 0.0985 0.0985 0.0903 0.0986
MA(1) θ = −0.1 0.1035 0.1035 0.1030 0.1035 0.1035
MA(1) θ = 0.1 0.1038 0.1038 0.1035 0.1038 0.1038
MA(1) θ = 0.5 0.0945 0.0940 0.0957 0.0882 0.0941
MA(1) θ = 0.9 0.1531 0.1468 0.1533 0.1314 0.1567

ARMA(2,1) 0.4694 0.4628 0.4476 0.4493 0.4519

Table 8: Average l2 norm differences between estimates and true values of vector γ(n).
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Model f̂io Thresh PD-Shrink WN-Shrink 2o-Shrink

AR(1) φ = −0.9 17.9650 14.9053 16.6295 13.1493 13.8172
AR(1) φ = −0.5 0.0435 0.0429 0.0405 0.0443 0.0425
AR(1) φ = −0.1 0.0054 0.0054 0.0053 0.0054 0.0054
AR(1) φ = 0.1 0.0054 0.0054 0.0054 0.0054 0.0054
AR(1) φ = 0.5 0.0414 0.0408 0.0389 0.0425 0.0406
AR(1) φ = 0.9 11.9050 11.0747 11.4999 10.4461 11.0301

MA(1) θ = −0.9 0.0215 0.0208 0.0205 0.0187 0.0204
MA(1) θ = −0.5 0.0085 0.0080 0.0082 0.0078 0.0084
MA(1) θ = −0.1 0.0053 0.0053 0.0053 0.0053 0.0053
MA(1) θ = 0.1 0.0051 0.0051 0.0050 0.0051 0.0051
MA(1) θ = 0.5 0.0093 0.0088 0.0090 0.0087 0.0092
MA(1) θ = 0.9 0.0226 0.0225 0.0218 0.0203 0.0215

ARMA(2,1) 0.0648 0.0635 0.0618 0.0647 0.0648

Table 9: Mean integrated square errors for spectral density estimates.
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