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Desirable Difficulty in Learning: A Computational Investigation
Aida Nematzadeh, Afsaneh Fazly, and Suzanne Stevenson
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University of Toronto
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Abstract

Certain difficulties of a word learning situation can promote
long-term learning, and thus are referred to as “desirable diffi-
culties”. We use a computational modelling approach to exam-
ine the possible explanatory factors of the observed patterns in
a cross-situational word learning experiment. Our results sug-
gest that the within-trial ambiguity and the presentation du-
ration of each trial in addition to other distributional charac-
teristics of the input (experimental stimuli) may explain these
results. Our findings also emphasize the role of computational
modelling in understanding empirical results.

Introduction
One of the important questions in language acquisition is
how people learn the mappings between words and their
meanings (Quine, 1960). A number of mechanisms and ap-
proaches have been proposed in an attempt to address this
question (e.g., Tomasello, 1992; Pinker, 1989). A widely-
discussed mechanism is cross-situational learning, in which
people learn word meanings by gathering evidence from var-
ious exposures of words in different situations. Recent word
learning experiments also confirm that both adults and chil-
dren keep track of cross–situational statistics across individ-
ually ambiguous learning trials, and infer the correct word–
meaning mappings even in highly ambiguous conditions (Yu
& Smith, 2007; Smith & Yu, 2008). These experiments have
gained popularity in recent years (e.g., Yurovsky & Yu, 2008;
Vlach, Sandhofer, & Kornell, 2008), and provide opportuni-
ties for further investigating the observed patterns in natural-
istic word learning.

One interesting aspect of word learning that can be stud-
ied in such experiments, is its interaction with other cognitive
processes such as memory and attention. An example is the
experiments of Vlach et al. (2008) on children, which exam-
ine the spacing effect, i.e., the observation that people gen-
erally learn better when the presentations of the items to be
learned are distributed (spaced) over a period of time. This
and other similar patterns in human learning are referred to
as “desirable difficulties”: Although a more difficult learning
situation may hinder short-term recall of learned material, it
may promote long-term retention.

In this work, we use a computational model to shed light on
one such case of an observed “desirable difficulty” in cross-
situational word learning, studied by Vlach and Sandhofer
(2010). Notably, Vlach and Sandhofer (2010) attribute their
findings to desirable difficulties in learning, but do not pro-
vide an explanation of why and how the sort of difficulty they
focus on facilitates long-term retention of the learned words.
Computational modelling enables us to investigate the precise

learning mechanisms, and the variations in the input condi-
tions, that might explain these findings. We first introduce our
computational model of cross-situational word learning, and
then explain and analyze the experimental data and results
of Vlach and Sandhofer (2010) in the context of our model.
Finally, we describe the way we simulate these experiments
using our model, and how this enables us to examine the role
of several different factors in the observed pattern of word
learning.

The Computational Model
In this section, we present our computational model of word
learning that was first published in Nematzadeh, Fazly, and
Stevenson (2012a). Our model builds on the word learning
model of Fazly, Alishahi, and Stevenson (2010), which takes
an incremental approach in learning probabilistic associations
between words and their meanings. In Nematzadeh et al., we
integrated new functionality into this model to capture for-
getting (i.e., an effect of memory) and attention to novelty.
Our proposed model accounts for several observed patterns
of the spacing effect in children and adults, in which exper-
imental subjects learn presented items better when they are
spaced apart in time, than when they are shown in immediate
succession. We provide a brief overview of the model before
turning to modelling of other kinds of “desirable difficulties.”

Learning from an Input Pair
Our model learns about the meaning of words by incremen-
tally processing a corpus that contains a sequence of utter-
ances paired with a semantic representation of a scene, which
is the hypothetical perception of a learner upon hearing the
utterance. Each input to the model pairs a set of words (the
representation of the utterance) with a set of semantic features
(the representation of the scene), as in:

Utterance: { she, drinks, milk }
Scene: { ANIMATE, PERSON, FEMALE, CONSUME,

DRINK, SUBSTANCE, FOOD, DAIRY-PRODUCT }
We create corpora drawn from child-directed speech, in
which lemmatized, transcribed utterances are paired with ar-
tificially generated semantics, based on WordNet or other se-
mantic featural representations of the entities and actions cor-
responding to the words. In the experiments here on novel
word learning, nonce words are paired with these naturalis-
tic semantic representations, in which features corresponding
to meaning properties are probabilistically associated with a
word.

When processing an input pair, the model bootstraps its
current knowledge of word meanings to hypothesize the
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strength of association between the words in the current input
and the meaning features in the current scene. These prob-
abilistic alignments between the words and features of the
current input are then used to update the model’s knowledge
of word meanings.

More formally, for each word, the model learns a mean-
ing probability, which is a probability distribution over all
possible semantic features. The model starts with uniform
meaning probabilities for all words; i.e., before processing
any input, all features are equally likely for every word. At
each time step t, the model processes an input pair and cal-
culates an alignment score, at(w, f ), between each word w
and semantic feature f in the input pair. This alignment score
reflects how strongly the w– f pair are associated at time t,
by considering two sources of information: (1) the meaning
probabilities of all the words in the utterance Ut (represent-
ing the knowledge of the model of word meanings up to that
point), and (2) the novelty of words, capturing the attention a
learner might pay to the novel words compared to the familiar
words (explained below). The alignment score is formulated
as:

at(w, f ) =
pt( f |w)

∑
w′∈Ut

pt( f |w′)
∗noveltyt(w) (1)

where pt( f |w) is the probability of f being part of the mean-
ing of word w at time t, right before processing the input pair,
and noveltyt(w) is a multiplicative attentional factor.

This factor, noveltyt(w), taps into empirical studies on at-
tention showing that people attend to novel items in a learning
scenario more than other items, leading to improved learn-
ing of those items (e.g., Snyder, Blank, & Marsolek, 2008;
MacPherson & Moore, 2010; Horst, Samuelson, Kucker, &
McMurray, 2011). In the word learning scenario, this corre-
sponds to a person focusing on determining the meaning of
novel words. We model this observation by incorporating the
multiplicative noveltyt(w) in the above formula, providing an
increase in word–feature association for a more novel word.
The noveltyt(w) measures the degree of novelty of a word
as a simple inverse function of recency: The more recently a
word w has been observed by the model (tlastw ), the less novel
it appears to the model at the current time t:

noveltyt(w) = 1− recency(t, tlastw) (2)

where recency(t, tlastw) is inversely proportional to the differ-
ence between t and tlastw . We set novelty(w) to be 1 for the
first exposure of the word.

Accumulating Evidence over Time
The model keeps track of the accumulation of all the align-
ment scores of all word–feature pairs, and uses these scores to
update the meaning probabilities of the words. These align-
ment scores reflect the model’s knowledge of the associations
between words and various potential meanings. To simulate
the effect of forgetting in memory, these alignments undergo

a decay over time. At each time t, the strength of association
of a word and a feature is formulated as:

assoct( f ,w) = ∑
t ′

at ′(w, f )

(t− t ′)dat′
(3)

where t ′ is the time at which the alignment at ′ is calculated,
and dat′ is the decay rate associated with this alignment. We
note that our formulation of assoc is inspired by the ACT-R
model of memory (Anderson & Lebiere, 1998), in which the
sum of individual memory strengthenings for an item deter-
mines the item’s activation. We assume that stronger align-
ments should be more entrenched in memory and thus decay
more slowly than weaker alignments. Thus, each alignment
undergoes a decay which is dependent on the strength of the
alignment:

dat′ =
d

at ′(w, f )
(4)

where d is a constant parameter. Note that the alignments
between a word and different features may be forgotten at
different rates.

This association score is then normalized using a smoothed
version of the following to yield the meaning probability of
that feature f for that word w at time t:

pt( f |w) = assoct( f , w)

∑
f ′∈M

assoct( f ′, w)
(5)

where M is the set of all observed meaning features.

Desirable Difficulties in Word Learning
Vlach and Sandhofer (2010) — henceforth V&S — explore
the factors involved in “desirable difficulty” through a set of
(now standard) cross-situational word learning experiments
on adults, varying the presentation and testing conditions.
In each N ×N trial, subjects see some number N of novel
objects on a computer screen, while hearing N novel words
(in arbitrary order) that label the displayed objects; see Fig-
ure 1. In testing, subjects hear a single word, and are asked
to select the corresponding object from a display of 4 ob-
jects. Across three presentation conditions, the total num-
ber of word–object pairs, and the number of times each is
seen, are held constant, while there is increasing within-trial
ambiguity — i.e., the number of possible pairings between
the words and the objects within a single presentation: 2×2,
3×3, and 4×4. Furthermore, participants were tested at each
of three times: immediately after training, 30 minutes after,
and one week after.

V&S find that in the immediate testing condition, as ex-
pected, the number of correctly learned pairs decreases as the
within-trial ambiguity increases. That is, the participants per-
formed the best in the 2×2 condition and the worst in 4×4
(Figure 2). However, when tested after 30 minutes of delay,
there was no significant difference between the performance
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Figure 1: Example stimuli from 2×2 condition taken from V&S.

of the participants in the 2×2 and the 3×3 conditions, while
4×4 still had the worst performance. Interestingly, in testing
after one week, the participants performed better in the 3×3
than the 2× 2 condition. (Again, 4× 4 still had the worst
performance.) In summary, what should be the “easiest” con-
dition (2×2) has the best performance in immediate testing,
but a more difficult condition (3× 3) has better performance
one week later.

Figure 2: The results of V&S’s experiment.

V&S relate their findings to “desirable difficulties” in
learning: they argue that the difficulty of a learning situation
might hinder immediate performance, but promote longer
term performance. However, they do not discuss why the per-
formance of the 4×4 condition is the worst compared to the
other conditions for all testing intervals. That is, why is the
level of difficulty in 3× 3 desired, but is not so for 4× 4.
Moreover, they do not explain why and how difficulty can
boost learning in the long term in this learning scenario.

We observe that, in the V&S experiments, the 2×2 condi-
tion has more learning trials, each of which is seen for less
time, than in the 3× 3 condition (and similarly for 3× 3
compared to 4× 4). This occurs because the total number
of word–object pairs, the number of times each is seen, and
the total presentation time of the full set of items, are all held
constant across the three presentation conditions. We can thus
identify three factors that differ across the V&S conditions,
each of which may contribute to the observed pattern: (1) the
within-trial ambiguity, (2) the presentation duration of each
trial, and (3) the average spacing interval (where spacing is

the number of trials between the two presentations of a word–
object pair).

Computational modelling can be used as a tool to study
the necessity and the interaction of these three factors (the
within-trial ambiguity, the presentation time of each trial, and
the average spacing interval) in a cross-situational learning
scenario. In our model, the increase in within-trial ambi-
guity results in more competition among the possible align-
ments since there are more words and meanings to potentially
align; this results in lower association scores and therefore
decreased performance in word learning. We argue that the
second factor, the presentation duration, is related to forget-
ting. In the following section (Methodology), we will explain
how we incorporate differences in the presentation duration
into our model. The third factor (the spacing interval) relates
to the interaction of forgetting and attention to novelty in the
model: As the spacing interval becomes larger, the amount of
forgetting increases, resulting in lower association scores be-
tween words and features; however, the novelty of words and
consequently their association scores increases as the spacing
interval gets larger. Thus, varying the spacing interval affects
the performance of the model (see Nematzadeh et al., 2012a
for more details). We use our model to study the interaction
of these three factors, with the goal of providing a more pre-
cise explanation for the desirable difficulty observed in the
experiments of V&S. Next, we explain our methodology, in-
cluding our input generation, and the simulation of the V&S
experiments.

Methodology
Input Generation
To generate the input stimuli for our model, we need to pair
words with a meaning representation that corresponds to the
depiction of the corresponding object in the experimental sit-
uation of Figure 1. To do so, we draw on the input-generation
lexicon of Nematzadeh, Fazly, and Stevenson (2012b), which
was previously used to automatically annotate corpora of
child-directed utterances with meaning features correspond-
ing to the words in those utterances. Here, we use the lexicon
to provide a source of naturalistic meaning representations
(“novel object descriptions”) for a set of “novel” words (i.e.,
the words in the input stimuli are unknown to the model, as
in the experiments we are modeling).

The true meaning of each word in the lexicon, tm(w), is
a vector of semantic features and their assigned scores or
weights (Figure 3).1 When a word is used in an input trial, its
meaning features are probabilistically sampled from tm(w)
according to the weight of each feature in the lexical entry
of the word. This probabilistic sampling captures our intu-
ition that a participant, when faced with a trial in the cross-
situational experiment of Figure 1, will grasp some features
of the novel objects but not necessarily all. Each trial of the
input is then composed of a set of N words (2, 3, or 4 words,

1We note that this lexicon is only used in input generation and
evaluation, and not in the learning of the model.
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depending on the condition), paired with a set of features
which is the union of the N sets of meaning features sampled
for each of the words in that trial.

apple: { FOOD:1, SOLID:.72, PRODUCE:.63,
EDIBLE-FRUIT:.32, PLANT-PART:.22,
PHYSICAL-ENTITY:.17, WHOLE:.06, · · · }

Figure 3: True meaning features & probabilities for apple.

To produce a full set of experimental trials, we first convert
the exact stimuli of V&S to the format of our input. That is,
in their stimuli, we replace each word with a specific word
from our lexicon, and each object with the probabilistically-
generated meaning representation for its corresponding word
(as explained above). The precise combination of corre-
sponding word/object pairs in each trial, and the order of the
trials, are exactly the same as in the V&S stimuli. We refer to
this data as the input of V&S.

The V&S input includes 18 novel word–object pairs, each
of which occurs 6 times, resulting in 54, 36, and 27 trials
in the 2× 2, 3× 3, and 4× 4 conditions, respectively. We
note that the V&S input, as a specific set of stimuli, might
have particular spacing properties that contribute to their re-
sults. Thus we also randomly generate input stimuli in order
to evaluate the effect of arbitrary variation in the precise pre-
sentation order of the word/object pairs. We randomly gen-
erate 20 sets of input stimuli for each condition, keeping the
number of pairs, their frequency, and the number of trials the
same as in the V&S input. We use the same novel words
that we used in generating V&S data, and randomly generate
their meaning representations as explained. The result is that
we can experiment both with the precise data of V&S, as well
as 20 randomly generated sets of input stimuli with the same
basic properties.

Modeling of the Presentation Duration
One aspect of the V&S experimental conditions that we can-
not directly replicate in our model is the presentation dura-
tion of each trial in a stimulus set. Recall that because of the
various properties of the stimuli, the individual trials in each
of the three conditions (2× 2, 3× 3, and 4× 4) have differ-
ent presentation durations. Our model does not have a no-
tion of “presentation duration” — it simply processes each
input as it receives it. Thus to simulate these differences,
different degrees of forgetting decays are used in the model
(see Eqn. (4)). The intuition is that subjects forget faster in
a condition with a shorter presentation duration, since they
have less time to absorb the stimuli in each trial. The forget-
ting decay is thus set to a larger value in the 2× 2 condition
(where the presentation time is the smallest), and successively
smaller in each of the 3×3 and 4×4 conditions.

Simulation of the V&S Experiments
We train our model by presenting the set of inputs for a given
condition, where it learns incrementally in response to each
trial. Similarly to V&S, we evaluate our model at three points

of time after training: immediately after processing the last
input (time = t), at t + 30, and at t + 350. These times were
chosen to loosely reflect the three time intervals in V&S’s
experiments. We will use the labels “no delay”, “brief delay”,
and “lengthy delay”, to refer to these timings in describing
our results.

To evaluate the performance of the model at each testing
point, we measure how well each word is acquired by com-
paring its learned meaning lm(w) – a vector holding the val-
ues of the meaning probability (Eqn. (5)) – to its true meaning
tm(w) from the input-generation lexicon (see Figure 3):

acq(w) = sim(lm(w), tm(w)) (6)

where sim is the cosine similarity between the two meaning
vectors, tm(w) and lm(w). The higher acq(w) is, the more
similar lm(w) and tm(w) are. We use the average acq score
at time t of all the words in the input to reflect the overall
learning of the model at that time.

Results
We first examine the behavior of our model when trained on
the V&S input, and then compare these with results on our
randomly generated stimuli.

The Input of V&S
The results of training and evaluating our model on the V&S
input are presented in Figure 4. We see the same interesting
pattern as found in V&S (shown in Figure 2) for the 2×2 and
the 3×3 conditions. That is, 2×2 is better with no delay, but
similar with brief delay and worse with lengthy delay, even
though 3× 3 is “harder” due to its higher degree of within-
trial ambiguity. Unlike the V&S results, 3× 3 and 4× 4 are
similar for all delays.

Figure 4: Average acq score of words (from the model) given
the three conditions and three time intervals similar to the
V&S experiments.

We consider these findings in the context of the discussed
factors of presentation duration, within-trial ambiguity, and
average spacing of items, which we proposed might explain
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the desirable difficulty in learning. The differences in presen-
tation duration (shortest for 2×2 and longest for 4×4) entails
that, generally, the learning in the 2×2 condition should de-
cline most steeply over time, and learning in the 4×4 should
decline least steeply: i.e., for each set of same-coloured bars
in Figure 4, we expect learning to decrease over time, and
more rapidly for lower values of N in the N×N conditions.
We see this predicted behaviour with our model, which results
from our modeling of presentation duration with an inversely
proportional decay rate (i.e., the shorter the presentation du-
ration, the greater the degree of forgetting).

It is expected that in the absence of other factors, increas-
ing within-trial ambiguity from the 2× 2 to the 4× 4 condi-
tions results in a decline in average acq score, since greater
ambiguity should lead to decreased learning. However, in
our model, the presentation duration also plays a role. Sim-
ilar to results of V&S, we see the decline pattern in the “no
delay” condition, and in the “brief delay” condition (albeit
with less difference), due to the increased competition for
word–meaning alignments that occurs with a higher number
of items in a trial (see Figure 4). However, we do not see this
pattern in the lengthy delay condition.

To summarize, our results are similar to those of V&S,
who found that while the 2× 2 condition led to best learn-
ing when tested immediately, it led to poorer performance
than the 3× 3 condition given a lengthy delay before testing
— a pattern V&S attribute to the “desirable difficulty”. It
seems that these factors of presentation duration and within-
trial ambiguity may interact, such that the steep decline in
performance in subsequent testing in the 2×2 condition more
than offsets the advantage it has from the lesser within-trial
ambiguity.

In the experiments of V&S, the performance in the 4× 4
condition is always worse than the two other conditions.
However, our model produces very similar results for the
3× 3 and the 4× 4 conditions. Also, the role of the spacing
interval is not clear in these results. The problem is that by
just considering one set of stimuli within each N×N condi-
tion (each of which has a set spacing of items), we do not have
a variation of the average spacing interval that is independent
of the presentation duration and the within-trial ambiguity.
We turn to these issues in the next subsection.

Randomly Generated Input
We observed that the performance of the model in the 3× 3
and 4× 4 conditions on the V&S input is very similar. We
also investigate a condition here with higher within-trial am-
biguity to see if such a condition might be “hard” enough
for the model (because of the higher within-trial ambiguity)
so that it results in a similar patten to the 4× 4 condition in
V&S. As with the others, we generate 20 sets of input stim-
uli for this 6× 6 condition, using 18 word-object pairs, each
of which occurs 6 times, producing 18 trials. Thus the gener-
ated input stimuli for the four conditions allows us to examine
both the role of average spacing interval, and the impact of a
more difficult condition with higher within-trial ambiguity.

We train our model on the randomly-generated inputs (with
different average spacing intervals) for all four N×N condi-
tions. To evaluate the performance of the model, the average
acq score of words for all 20 sets of inputs within a single
N×N condition are averaged (see Figure 5). We can see that
when tested with “no delay”, the 2×2, 3×3, and 4×4 con-
ditions have similar scores. Moreover, we can see a pattern
similar to V&S’s experiments: the 3×3 and 4×4 conditions
have the best results after the “lengthy delay”. We also ob-
serve that by increasing difficulty in the 6×6 condition (due
to the high within-trial ambiguity), the model produces a pat-
tern similar to the pattern observed in the 4× 4 condition in
V&S’s experiments. This confirms our hypothesis that for
our model, the 4×4 condition is not “hard” enough to result
in a steep decline over time intervals as in the V&S’s results.

Figure 5: Average acq score of words (from the model) given
the four conditions and the three time intervals, averaged over
20 sets of stimuli.

However, we also see that, in contrast to V&S’s results (and
our model’s performance on the V&S data), the 2×2 condi-
tion with no delay fails to show better learning than the other
conditions.

To better understand this difference between the two sets
of results, we look more closely at the scores of the individ-
ual randomly-generated stimuli sets. We find that there is a
notable difference in the average acq score across the 20 in-
put files for the 2× 2 condition, which shows its maximum
value of 0.76 for the V&S’s data, while the minimum is 0.50.
This suggests that the characteristics of the particular input
(as a result of varying the average spacing interval) may be
responsible for some of the observed patterns in the V&S’s
results.

We were interested to understand why the V&S data has
the maximum score, especially since there was a sizable gap
between the score of this input and the next best score among
the randomly-generated inputs (of 0.64). In an attempt to
identify the factor behind this variation, we measured vari-
ous statistics for each input set, such as the following: (1) the
average spacing interval of words, which has been shown to
affect learning both in people (Vlach et al., 2008) and in our
model (Nematzadeh et al., 2012a); (2) the average time since
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the last occurrence of words, that impacts the amount of for-
getting that occurs; and (3) the average context familiarity of
words (that is, the familiarity of the words that occur with
a word in an utterance), a factor that has been noted to af-
fect word learning (see, e.g., Fazly, Ahmadi-Fakhr, Alishahi,
& Stevenson, 2010). However, we found that none of these
measures explain the variation of the scores in all the inputs.
Future research is needed to fully understand the impact of
the properties these measures tap into, and whether they may
(individually or in combination) contribute to explaining the
pattern of the results.

Summary
The “desirable difficulty” of a learning condition can pro-
mote the long term retention of the learned items. We have
used a computational model to investigate the possible factors
behind one such case of a “desirable difficulty” in a cross-
situational word learning experiment (Vlach & Sandhofer,
2010). Notably, the experimental results were not clearly
pointing to the factors causing the patterns observed in the
performance of the human participants. Using a computa-
tional model, we have suggested that an interaction between
two factors (the within-trial ambiguity of the learning trials,
and the presentation duration of each trial) might explain the
observed patterns. In addition, our results point to other dis-
tributional characteristics of the input (experimental stimuli)
that might have an impact on the performance of the learner.
These findings illustrate the role of computational modelling,
not only in explaining observed human behaviour, but also
in fully understanding the factors involved in a phenomenon.
There are several factors involved in a cross-situational word
learning experiment, such as the contextual familiarity of
words, and the average spacing interval of words. Our find-
ings signify the importance of controlling for these factors in
order to understand the reasons behind the observed patterns.
But it is difficult do so in human experiments because the fac-
tors can interact in complex ways.

Our work is an initial attempt at shedding light on the in-
teraction of memory, attention and word learning, and under-
standing “desirable difficulty” in learning. Other factors (e.g.,
working memory) might play a role in the performance of
people as well. For example, because the number of items
that people can store in their working memory is limited
(Miller, 1956), the participants might store more trials in their
working memory in the 2× 2 condition, compared with the
other conditions. The participants might use this information
of the multiple trials (in their working memory) to make infer-
ences about word–object mappings that repeat in successive
trials. One future direction would be to incorporate a working
memory module into our word learning model, and examine
the impact of such inferences in a cross-situational learning
scenario.
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