
UCLA
UCLA Electronic Theses and Dissertations

Title
On the Robustness of Neural Network: Attacks and Defenses

Permalink
https://escholarship.org/uc/item/3k2780bg

Author
Cheng, Minhao

Publication Date
2021

Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/3k2780bg
https://escholarship.org
http://www.cdlib.org/

UNIVERSITY OF CALIFORNIA

Los Angeles

On the Robustness of Neural Network:

Attacks and Defenses

A dissertation submitted in partial satisfaction

of the requirements for the degree

Doctor of Philosophy in Computer Science

by

Minhao Cheng

2021

© Copyright by

Minhao Cheng

2021

ABSTRACT OF THE DISSERTATION

On the Robustness of Neural Network:

Attacks and Defenses

by

Minhao Cheng

Doctor of Philosophy in Computer Science

University of California, Los Angeles, 2021

Professor Cho-Jui Hsieh, Chair

Neural networks provide state-of-the-art results for most machine learning tasks. Unfortu-

nately, neural networks are vulnerable to adversarial examples. That is, a slightly modified

example could be easily generated and fool a well-trained image classifier based on deep neural

networks (DNNs) with high confidence. This makes it difficult to apply neural networks in

security-critical areas.

To find such examples, we first introduce and define adversarial examples. In the first

part, we then discuss how to build adversarial attacks in both image and discrete domains.

For image classification, we introduce how to design an adversarial attacker in three different

settings. Among them, we focus on the most practical setup for evaluating the adversarial

robustness of a machine learning system with limited access: the hard-label black-box attack

setting for generating adversarial examples, where limited model queries are allowed and only

the decision is provided to a queried data input. For the discrete domain, we first talk about

its difficulty and introduce how to conduct the adversarial attack on two applications.

While crafting adversarial examples is an important technique to evaluate the robustness

ii

of DNNs, there is a huge need for improving the model robustness as well. Enhancing model

robustness under new and even adversarial environments is a crucial milestone toward building

trustworthy machine learning systems. In the second part, we talk about the methods to

strengthen the model’s adversarial robustness. We first discuss attack-dependent defense.

Specifically, we first discuss one of the most effective methods for improving the robustness

of neural networks: adversarial training and its limitations. We introduce a variant to

overcome its problem. Then we take a different perspective and introduce attack-independent

defense. We summarize the current methods and introduce a framework-based vicinal risk

minimization. Inspired by the framework, we introduce self-progressing robust training.

Furthermore, we discuss the robustness trade-off problem and introduce a hypothesis and

propose a new method to alleviate it.

iii

The dissertation of Minhao Cheng is approved.

Amit Sahai

Mani Srivastava

Kai-Wei Chang

Cho-Jui Hsieh, Committee Chair

University of California, Los Angeles

2021

iv

To my parents

v

TABLE OF CONTENTS

1 Introduction . 1

I Adversarial Attacks 7

2 Adversarial Attack on Image Classification 9

2.1 Problem Setting . 9

2.1.1 Distance Metric . 10

2.2 White-box Adversarial Attacks . 11

2.3 Soft-label Black-box Attacks . 15

2.4 Hard-label Black-box Attacks . 17

2.4.1 Difficulty of Hard-label Black-box Attacks 17

2.4.2 Opt-attack: A Query-Efficient Hard-label Black-box based on Opti-

mization Approach . 18

2.4.3 Sign-OPT: Using Gradient Sign to Further Gain Query Efficiency . . 24

2.5 Experimental Results . 27

2.6 Proofs . 35

3 Adversarial Attacks on Discrete Domain . 45

3.1 Seq2Sick: Evaluating the Robustness of Sequence-to-Sequence Models with

Adversarial Examples . 45

3.1.1 Problem Setting . 47

3.1.2 Handling Discrete Input Space . 49

vi

3.1.3 Experimental Results . 51

3.1.4 Empirical Results . 52

3.1.5 Analysis and Discussions . 56

3.2 AdvAgent: Evaluating and Enhancing the Robustness of Dialogue Systems . 57

3.2.1 Competitive Negotiation Dialogues 57

3.2.2 Proposed Black-box Attack Algorithms 61

3.2.3 Proposed White-box Attack Algorithms 63

3.2.4 Adversarial Training . 66

3.2.5 Experimental Results . 67

3.2.6 Analysis and Discussions . 72

II Adversarial defenses 73

4 Attack-dependent Robust Training . 75

4.1 Adversarial Training . 75

4.1.1 Limitation . 76

4.2 CAT: Customized Adversarial Training for Improved Robustness 78

4.2.1 Auto-tuning Perturbation Strength for Adversarial Training 78

4.2.2 Adaptive Label Uncertainty for Adversarial Training 79

4.2.3 Theoretical Analysis . 81

4.2.4 Experimental Results . 83

4.2.5 Proofs . 88

5 Attack-independent Robust Training . 90

vii

5.1 Introduction . 90

5.2 General Framework for Formulating Robust Training 91

5.3 SPROUT: Scalable Robust and Generalizable Training 92

5.3.1 Self-Progressing Parametrized Label Smoothing 93

5.3.2 Gaussian Data Augmentation and Mixup 95

5.3.3 SPROUT Algorithm . 96

5.3.4 Experimental Results . 97

6 Understanding Robustness Trade-off for Generalization 111

6.1 Preliminary and Related Work . 112

6.2 Adversarial Masking . 114

6.2.1 Batch Normalization Acts as Adversarial Masking 114

6.2.2 Controlling Robustness Trade-off via Adversarial Masking 117

6.3 Improving Model Generalization via RobMask 118

6.4 Experimental Results . 122

7 Conclusion . 126

7.1 Adversarial Attacks . 126

7.2 Adversarial Defenses . 127

7.3 Future Directions . 128

viii

LIST OF FIGURES

1.1 Illustration on adversarial examples . 2

2.1 The difficulty of hard-label black-box attack . 18

2.2 Opt-attack boundary-based reformulation illustration 19

2.3 Examples of decision boundary and its corresponding function after reformulation 20

2.4 Single query oracle illustration to estimate gradient sign 24

2.5 Hard-label attack: Experiments on comparison between Sign-OPT and SVM-OPT 29

2.6 Hard-label attack: Experiments on untargeted attack 30

2.7 Hard-label attack: Experiments on targeted attack 30

2.8 Hard-label attack: Experiments on CIFAR10 about success rate 31

2.9 Examples of Sign-OPT and OPT targeted attack 32

4.1 Illustration on why adversarial training works bad on uniformly large ε 78

4.2 CAT: Loss landscape comparison of different adversarial training methods . . . 87

5.1 SPROUT: Multi-dimensional performance comparison of four training methods

using VGG-16 network and CIFAR-10 dataset. 93

5.2 SPROUT: Experiments on CIFAR-10 under PGD-`∞ attack 98

5.3 SPROUT: Experiments on CIFAR-10 under C&W-`2 attack 99

5.4 SPROUT: Loss landscape comparison of different training methods 101

5.5 SPROUT: Experiments on different combinations of the modules 104

5.6 SPROUT: Experiments for ablation study . 105

5.7 SPROUT: Experiments on the network width 106

5.8 SPROUT: correlation on the learned β parameter on CIFAR-10 and VGG-16. . 107

ix

5.9 SPROUT: Experiments on hyperparameters sensitivity and C&W-`∞ attack . . 108

6.1 Investigating batch statistics with and without adversarial fine-tuning 114

6.2 Illustration of the Adversarial Masking effect . 116

6.3 Illustration of Adversarial Masking hypothesis and RobMask 117

x

LIST OF TABLES

1.1 Adversarial examples in text classification . 2

2.1 Opt-attack: Experiments for untargeted attack on gradient boosting decision tree. 33

2.2 Hard-label attack: Experiments on untargeted attack 35

3.1 Seq2sick: Statistics of the datasets. 52

3.2 Seq2sick: Experiments on non-overlapping attack in text summarization 53

3.3 Seq2sick: Experiments on targeted attack in text summarization 54

3.4 Seq2sick: Experiments on attacks in machine translation 55

3.5 Seq2sick: Perplexity score for adversarial example 55

3.6 Seq2sick: Machine translation adversarial examples. 57

3.7 Seq2sick: Text summarization adversarial examples using non-overlapping method 58

3.8 Seq2sick: Text summarization adversarial examples using targeted keywords method 59

3.9 Competitive negotiation dialogue generated between agent and human. 60

3.10 AdvAgent: Experiments on negotiation task evaluation with different adversarial

agent . 69

3.11 AdvAgent: Dialogue example generated by black-box RL attack agent 69

3.12 AdvAgent: Dialogue example generated by reactive attack agent 70

3.13 AdvAgent: Dialogue example generated by RA+PA+DA attack agent 70

3.14 AdvAgent: Experiments on negotiation task evaluation with different adversarial

trained agent . 71

3.15 AdvAgent: Experiments on negotiation task evaluation different choices of n . . 72

4.1 Influence of different fixed ε values used in adversarial training 77

xi

4.2 CAT: Experiments on VGG-16 models trained by various defense methods . . . 83

4.3 CAT: Experiments on Wide Resnet models trained by various defense methods . 84

4.4 CAT: Experiment on transfer attack on CIFAR-10 dataset 86

4.5 CAT: Experiment on transfer attack on Restricted Imagenet dataset 86

4.6 CAT: Experiment on ablation study . 87

5.1 Summary of robust training methods using VRM formulation 92

5.2 SPROUT: Experiments on CIFAR-10 under transfer attack 100

5.3 SPROUT: Experiments on ImageNet under PGD-`∞ attack 100

5.4 SPROUT: Experiments under invariance tests 103

5.5 SPROUT: Experiments on training time . 103

5.6 SPROUT: Exact performance metrics . 106

5.7 SPROUT: Experiments under PGD-`∞ attack using different number of random

starts . 108

5.8 SPROUT: Experiment under PGD-`∞ random targeted attack on ImageNet and

ResNet-50 . 109

5.9 SPROUT: Average pair-wise cosine similarity of the three modules 110

6.1 AdvMask: Experiment on ResNet-18 models trained under different settings on

CIFAR-10 . 115

6.2 AdvMask: Experiment on different combination coefficient p on CIFAR-10 with

ResNet-18. 115

6.3 AdvMask: Experiments on CIFAR-10/100 datasets 121

6.4 AdvMask: Experiments on ImageNet datasets 122

xii

6.5 AdvMask: Experiments on different levels of PGD `∞ attacks and AutoAttack on

CIFAR-10 with ResNet-18 architecture . 123

6.6 AdvMask: Experiment on ablation study . 125

xiii

ACKNOWLEDGMENTS

First and foremost, I would like to thank my advisor Cho-Jui Hsieh. When I started my

Ph.D. study, I have little knowledge about machine learning and struggled to find a research

direction. From the first day, Cho has shown and guided me how to conduct machine learning,

find new ideas and formalize the idea into a successful project. It is impossible for me to

finish my Ph.D. study with him definitely. I am really grateful and enjoy the time working

with him.

I would also thank all of my collaborators throughout the years for the work we have

done and my growth as a researcher. Especially, I want to thank Pin-Yu Chen for guiding

me into the field of adversarial machine learning and being a caring mentor for my internship

at IBM Research. I thank Xiaocheng Tang, Wei Wei, Jinfeng Yi, Sijia Liu. All of you are

tremendously knowledgeable and taught me so much.

Many thanks as well to both the current and past members of Cho’s Lab both in UC

Davis and UCLA. I am grateful to spend a fruitful and enjoyable time with you. Special

thanks to my close collaborators Huan Zhang, Xuanqing Liu, Yao Li, Xiangning Chen, and

Ruochen Wang. I wish you have great success in the future career!

Finally, my family and friends have been the strongest support throughout my Ph.D.

study. It is your encouragement and unconditional support that enabled me to pursue this

journey. I would thank my cousin Hongyang Chen who let me first know what scientific

research is and endless support from the beginning to the end of my graduate study. Also,

I cannot express more gratitude to my parents so that I dedicate this thesis to them. It is

you that encouraged me to pursue my dreams from my childhood, help me overcome any

difficulties when I was growing up, and continues to be my greatest source of strength.

xiv

VITA

2015 B.S. (Computer Science and Technology), University of Electronic Science

and Technology of China.

2015–2018 Teaching Assistant, Computer Science Department, UC Davis.

2015–2018 Research Assistant, Computer Science Department, UC Davis.

2018–present Teaching Assistant, Computer Science Department, UCLA.

2018–present Research Assistant, Computer Science Department, UCLA.

xv

CHAPTER 1

Introduction

It has been shown that neural networks achieve state-of-art results in nearly every task in

both computer vision and natural language processing. Moreover, extensive use of deep

learning-based applications can be seen in safety and security-critical environments, such as

self-driving cars, malware detection, drones, and robotics where the security requirement is

crucial. These developments make security aspects of machine learning increasingly important.

However, recently, it has been shown that neural networks are vulnerable to adversarial

examples (SVI16). For example, a slightly modified image can be easily generated and fool a

well-trained image classifier based on DNNs with high confidence (GSS15; CW17; ACW18).

As shown in Figure 1.1, a bagle image could be turned into a piano classified by neural

networks model by only adding a very small human imperceptible perturbation. This problem

may get worse if a stop-sign could be recognized as an irrelevant object in the self-driving car

system. Similar results could be observed in other domains as well. Table 1.1 has shown a

neural network-based text classification model could be easily fooled with only changing a

single character. The original text is classified as world news with 57% confidence. However,

after changing d in ”mood” to P, the classification result becomes Sci/Tech news.

Consequently, the inherent weakness of lacking robustness to adversarial examples for

DNNs brings out serious security concerns. Since then, a lot of methods have been proposed

to produce those adversarial examples and improve the model’s abilities to counter such

examples. Specifically, given a victim neural network model and a correctly classified example,

an adversarial attack aims to compute a small perturbation such that with this perturbation

1

Figure 1.1: Adversarial examples in image classification

Table 1.1: Adversarial examples in text classification

South Africa’s historic Soweto township marks its 100th birthday on
Tuesday in a mood of optimism.
57% World
South Africa’s historic Soweto township marks its 100th birthday on
Tuesday in a mooP of optimism.
95% Sci/Tech

2

added, the original example will be misclassified. Many adversarial attacks have been proposed

in the literature. In the first part, we discuss how to conduct adversarial attacks in different

settings. We first start with adversarial attacks on image classification in Chapter 2. Most of

them consider the white-box setting, where the attacker has full knowledge about the victim

model, and thus gradient-based optimization can be used for the attack. Popular Examples

include C&W (CW17) and PGD (MMS18) attacks. On the other hand, some more recent

attacks have considered the probability black-box setting where the attacker does not know

the victim model’s structure and weights, but can iteratively query the model and get the

corresponding probability output. In this setting, although gradient (of output probability to

the input layer) is not computable, it can still be estimated using finite differences, and many

attacks are based on this (CZS17; IEA18; TTC19; JLM18). In this thesis, we also introduce

a more piratical setting called hard-label black-box attack, where the attacker can only make

queries to acquire the corresponding hard-label decision instead of the probability outputs.

While finding adversarial examples on image domains has been widely discussed, models

designed for different tasks are not born equal: some tasks are strictly harder to attack than

others. For example, attacking an image is much easier than attacking a text string, since

image space is continuous and the adversary can make arbitrarily small changes to the input.

Therefore, even if most of the pixels of an image have been modified, the perturbations can

still be imperceptible to humans when the accumulated distortion is small. In contrast, text

strings live in a discrete space, and word-level manipulations may significantly change the

meaning of the text. In this scenario, an adversary should change as few words as possible, and

hence this limitation induces a sparse constraint on word-level changes. Likewise, attacking a

classifier should also be much easier than attacking a model with sequence outputs. This is

because different from the classification problem that has a finite set of discrete class labels,

the output space of sequences may have an almost infinite number of possibilities. If we treat

each sequence as a label, a targeted attack needs to find a specific one over an enormous

number of possible labels, leading to a nearly zero volume in search space. In Chapter 3, we

3

introduce the challenge and method to evaluate the model’s adversarial robustness. Moreover,

all the above-mentioned work focus on the static setting, i.e., the input does not depend on

the model’s output so that one agent’s input depends on the other agent’s output, which

makes the input undecidable in the beginning. Therefore, an adversarial sentence or example

is not enough to conduct an attack in dialogue systems. Instead, we, in Section 3.2, propose

novel ways to construct an adversarial agent, which can bait the target agent to step to a

wrong state and make a bad decision. It is still unknown how to evaluate a model with the

interactive input space such as a dialog system or an intelligent agent.

While crafting adversarial examples is an important technique to evaluate the robustness

of DNNs, there is a huge need for improving the model’s robustness as well. Enhancing

model robustness under new and even adversarial environments is a crucial milestone toward

building trustworthy machine learning systems. Therefore, in the second part, we discuss the

adversarial defense methods. In general, adversarial defense methods could be divided into two

categories: attack-dependent defense and attack-independent defenses. For attack-dependent

defense, we start with adversarial training-based methods, one of the state-of-the-art robust

training algorithms in Chapter 4, where we discuss its limitations and possible solution to

overcome them. Specifically, we introduce CAT, a framework that adaptively customizes

the perturbation level and the corresponding label for each training sample in adversarial

training. Albeit effective, attack-dependent methods have the following limitations: (i) poor

scalability – the process of generating adversarial examples incurs considerable computation

overhead. For instance, our experiments show that, with the same computation resources,

standard adversarial training (with 7 attack iterations per sample in every minibatch) of

Wide ResNet on CIFAR-10 consumes 10 times more clock time per training epoch when

compared with standard training; (ii) attack specificity – adversarially trained models are

usually most effective against the same attack they trained on, and the robustness may

not generalize well to other types of attacks (TB19; KSH19); (iii) preference toward wider

network – adversarial training is more effective when the networks have sufficient capacity

4

(e.g., having more neurons in network layers) (MMS18). In Chapter 5, we discuss about the

attack-independent attack. In Section 5.1, we first summarize a lot of data augmentation

methods used to improve the model’s robustness. We then introduce a general framework that

formulates robust training objectives via vicinity risk minimization (VRM), which includes

many robust training methods as special cases in Section 5.2. Inspired by this framework,

we then introduce SPROUT which is short for self-progressing robust training. It is worth

noting that the robust training methodology of SPROUT is fundamentally different from

adversarial training, as SPROUT features self-adjusted label distribution during training

instead of attack generation. In addition to our proposed parametrized label smoothing

technique for progressive adjustment of training label distribution, SPROUT also adopts

Gaussian augmentation and Mixup (ZCD18) to further enhance robustness. We show that

they offer a complementary gain in robustness. However, adversarial defenses often suffer

from inferior performance on clean data (ZYJ19; BGH19). This observation has led prior

work to extrapolate that a trade-off between robustness and accuracy may be inevitable,

particularly for image classification tasks (ZYJ19; TSE19). However, (YRZ20) recently

suggests that it is possible to learn classifiers both robust and highly accurate on real image

data. The current state of adversarial training methods falls short of this prediction, and

the discrepancy remains poorly understood. In Chapter 6, we conduct an in-depth study on

understanding the trade-off between robustness and clean accuracy in adversarial training

and introduce Adversarial Masking, a new hypothesis stating that a widely used technique,

batch normalization (BN), has a significant impact on the trade-off between robustness and

natural accuracy. Specifically, we break down BN into normalization and rescaling operations

and find that the rescaling operation has a significant impact on the robustness trade-off

while normalization only has marginal influence. Built upon this observation, we hypothesize

that adversarial masking (i.e., the combination of the rescaling operation and the follow-up

ReLU activation function) acts as a feature masking layer that can magnify or block feature

maps to influence the performance of robust or clean generalization. In this hypothesis,

5

different rescaling parameters in BN contribute to different adversarial maskings learned

through training. By using a simple linear combination of two adversarial maskings, rather

than using robust features learned by adversarial training (MMS18; IST19; ZYJ19), we show

that a well-balanced trade-off can be readily achieved.

This thesis is organized as follows. In the first part, we talk about how to evaluate

adversarial robustness by conducting adversarial attacks. First, in Chapter 2, we start with

introducing the problem formulation and different attack settings. We take a deep dive

into the hard-label black-box attack where we introduce two optimization-based attacks:

Opt-attack and Sign-Opt. In Chapter 3, we extend the attack into the more challenging

discrete domain and introduce Seq2sick and AdvAgent to evaluate model robustness on

seq2seq model and goal-oriented dialog system. In the second part, we discuss how to enhance

model robustness by conducting adversarial defenses. We talk about attack-dependent and

attack-independent defense respectively in Chapter 4 and Chapter 5. In Chapter 6, we

introduce AdvMask, a hypothesis to explain the adversarial trade-off on generalization, and

RobMask, a better-designed normalization technique to boost model generalization. In the

end, we conclude the thesis with several future directions in Chapter 7.

6

Part I

Adversarial Attacks

7

In this part, we introduce how to evaluate the model’s vulnerability towards adversarial

examples by conducting adversarial attacks. In Chapter 2, we start with adversarial attacks

on image classification tasks. In Section 2.1, we first give an introduction and definition

of adversarial example and attack. And then we discuss three attack setting white-box

(Section 2.2), soft-label black-box (Section 2.3) and hard-label black-box (Section 2.4) ordered

by the available information to attacker. Specifically, we introduce two optimization-based

hard-label black-box attacks in detail. We also show the experimental results of adversarial

attacks in Section 2.5 and their convergence proofs in Section 2.6. Other than image

classification, we extend the discussion on the more challenging discrete domain in Chapter 3.

In Section 3.1, We introduce Seq2sick to evaluate the robustness of seq2seq model in NLP

tasks such as machine translation or text summarization. In Section 3.2, we take a step

further to introduce AdvAgent to evaluate and enhance the robustness of a goal-oriented

dialog system.

8

CHAPTER 2

Adversarial Attack on Image Classification

2.1 Problem Setting

In this section, we introduce and define the adversarial examples and attacks. For classification

task, we consider attacking a K-way multi-class classification model in the thesis. Given the

classification model f : Rd → {1, . . . , K} and an original example x0, the goal is to generate

an adversarial example x such that

x is close to x0 and argmax
i

f(x)i 6= argmax
i

f(x0)i (2.1)

i.e., x has a different prediction with x0 by model f .

That is called untargeted attack since we only search for an input x so that f(x) 6= f(x0)

and x, x0 are close. The closeness of x, x0 is defined in some distance metrics according

different tasks. We defer the discussion in Sec 2.1.1. However, a more powerful attack

requires to fool the classifier to any specified class t, i.e target class , instead of any class.

Usually, t 6= argmaxi f(x0). Instead, we define targeted attack as we want to generated an

adversarial example x such that

x is close to x0 and argmax
i

f(x)i = t (2.2)

i.e., x is classified as a target class t by model f .

9

2.1.1 Distance Metric

In the definition of adversarial examples, we require use of a distance metric to quantify

similarity. A common choice of the metric would be Lp norm. Formally,

‖x‖p = (|x1|p + |x2|p + · · ·+ |xn|p + xn+1|p + . . .)1/p (2.3)

Among them, L2 and L∞ are the most used metric in the image domain. To be specific,

• L2 distance measures the standard Euclidean (rootmean-square) distance between x

and x0. The L2 distance can remain small when there are many small changes to many

pixels. This distance metric was used in the initial adversarial example work (GSS14).

• L∞ distance measures the maximum change to any of the coordinates:

‖x‖∞ = sup(|x1|, |x2|, . . .) (2.4)

For images, we can imagine there is a maximum budget,and each pixel is allowed to be

changed by up to this limit, with no limit on the number of pixels that are modified.

In other domains such as text related domain like Natural Language Processing (NLP),

the story becomes different. For example, since image space is continuous and the adversary

can make arbitrarily small changes to the input, therefore, even if most of the pixels of an

image have been modified, the perturbations can still be imperceptible to humans when

the accumulated distortion is small. In contrast, text strings live in a discrete space, and

word-level manipulations may significantly change the meaning of the text. In this scenario,

an adversary should change as few words as possible, and hence this limitation induces a

sparse constraint on word-level changes.

However, there is no certain conclusion to judge which distance metric is optimal. Con-

structing and evaluating a good distance metric is an important research direction need to

10

be explored.

2.2 White-box Adversarial Attacks

In this section, we discuss the most discussed attack algorithms in the literature: white-box

setting.

In the white-box setting, the classifier f is exposed to the attacker. For neural networks,

under this assumption, back-propagation can be conducted on the target model because both

network structure and weights are known by the attacker. For classification models in neural

networks, it is usually assumed that model prediction is argmaxi(Z(x)i) or argmaxi f(x)i,

where Z(x) ∈ RK is the final (logit) layer output, and Z(x)i is the prediction score for the i-th

class. The objectives in (2.1) can then be naturally formulated as the following optimization

problem:

argmin
x

{Dis(x,x0) + cL(Z(x))} := h(x), (2.5)

where Dis(·, ·) is some distance measurement (e.g., L2, L1 or L∞ norm in Euclidean space),

L(·) is the loss function corresponding to the goal of the attack, and c is a balancing parameter.

For untargeted attack, where the goal is to make the target classifier misclassify, the loss

function can be defined as

L(Z(x)) = max{[Z(x)]y0 −max
i 6=y0

[Z(x)]i,−κ}, (2.6)

where y0 is the original label predicted by the classifier, κ is the margin (usually set to be 1

or 0) of the hinge loss. For targeted attack, where the goal is to turn it into a specific target

class t, the loss function can also be defined accordingly as

L(Z(x)) = max{[Z(x)]t −max
i 6=t

[Z(x)]i,−κ}, (2.7)

11

For Non-overlapping Attack, we let s = {s1, . . . , sM} be the original output sequence,

where si denotes the location of the i-th word in the output vocabulary ν. {z1, . . . , zM}

indicates the logit layer outputs of the adversarial example. In the non-overlapping attack,

the output of adversarial example should be entirely different from the original output S, i.e.,

st 6= argmaxy∈ν z
(y)
t , ∀t = 1, . . . ,M,

which is equivalent to

z
(st)
t < maxy∈ν, y 6=st z

(y)
t , ∀t = 1, . . . ,M.

Given this observation, we can define a hinge-like loss function L to generate adversarial

examples in the non-overlapping attack, i.e.,

Lnon-overlapping =
∑M

t=1
max{−ε, z(st)

t −max
y 6=st
{z(y)

t }}, (2.8)

where ε ≥ 0 denotes the confidence margin parameter. Generally speaking, a larger ε will lead

to a more confident output and a higher success rate, but with the cost of more iterations

and longer running time.

For Targeted Keywords Attack, we do not specify the positions of the targeted keywords

in the output sentence. Instead, it is more natural to design a loss function that allows the

targeted keywords to become the top-1 prediction at any positions. The attack is considered

as successful only when ALL the targeted keywords appear in the output sequence. Therefore,

the more targeted keywords there are, the harder the attack is. To illustrate our method, we

start from the simpler case with only one targeted keyword k1. To ensure that the target

keyword word’s logit z
(k1)
t be the largest among all the words at a position t, we design the

12

following loss function:

L = min
t∈[M]
{max{−ε, max

y 6=k1
{z(y)

t } − z
(k1)
t }}, (2.9)

which essentially searches the minimum of the hinge-like loss terms over all the possible

locations t ∈ [M]. When there exist more than one targeted keywords K = {k1, k2, . . . , k|K|},

where ki denotes the i-th word in output vocabulary ν, we follow the same idea to define the

loss function as follows:

Lkeywords =

|K|∑
i=1

min
t∈[M]
{max{−ε,max

y 6=ki
{z(y)

t } − z
(ki)
t }}. (2.10)

However, the loss defined in (2.10) suffers from the “keyword collision” problem. When

there are more than one keyword, it is possible that multiple keywords compete at the same

position to attack. To address this issue, we define a mask function m to mask off the position

if it has been already occupied by one of the targeted keywords:

mt(x) =


+∞ if argmaxi∈ν z

(i)
t ∈ K

x otherwise

(2.11)

In other words, if any of the keywords appear at position t as the top-1 word, we ignore

that position and only consider other positions for the placement of remaining keywords. By

incorporating the mask function, the final loss for targeted keyword attack becomes:

|K|∑
i=1

min
t∈[M]
{mt(max{−ε, max

y 6=ki
{z(y)

t } − z
(ki)
t })}. (2.12)

Therefore, attacking a machine learning model can be posed as solving this optimization

problem (CW17; CSZ18), which is also known as the C&W attack or the EAD attack

depending on the choice of the distance measurement. To solve (2.5), one can apply any

13

gradient-based optimization algorithm such as SGD or Adam, since the gradient of L(Z(x))

can be computed via back-propagation.

At the same time L could be defined by using other loss function as well. Fast Gradient

Sign Method: (GSS14) proposed an algorithm called fast gradient sign method (FGSM)

to craft adversarial examples. Originated from an L∞ constraint on the maximal distortion,

FGSM uses the sign of the gradient w.r.t the input image x0 to generate adversarial examples.

The formula for generating FGSM adversarial example is shown below:

x = Πx∈B(x0,ε)

{
x0 + α · sign

(
∇xf(x0)

)}
,

where ∇xf(x0) denotes the gradient of the classifier w.r.t the input image x0. α represents

the step-size of the one step distortion, B(x0, ε) denotes the `p-norm ball centered at x0 with

radius ε and ΠΦ is the projection to the set Φ. The final adversarial image xadv will be a

point within the ε-ball around the original image x0. Larger ε makes it easier to get successful

attack but the adversarial image will be further from the original image.

The Basic Iterative Method and Projected-Gradient Descent Attack: The Basic

Iterative Method (BIM) (KGB16) and the projected gradient descent attack (PGD) (MMS18)

could be seen as a iterative variants of FGSM. The PGD attack updates in the direction

that decreases the probability of the original class most, then projects the result back to the

ε-ball of the input. PGD can be viewed as iterative-FGSM. An advantage of PGD attack

over C&W attack is that it allows direct control of distortion level by changing ε, while for

C&W attack, one can only do so indirectly via hyper-parameter tuning.

Starting from x0 = x0, PGD attack conducts projected gradient descent iteratively to

update the adversarial example:

xt+1 = Πx∈B(x0,ε)

{
xt + α · sign

(
∇xf(xt)

)}
,

14

where α is the step size. The number of iterations depends on the data.

The ability of computing gradient also enables many different attacks in the white-box

setting. For example, eq (2.5) can also be turned into a constrained optimization problem,

which can then be solved by projected gradient descent (PGD) (MMS18). Other algorithms

such as Deepfool (MFF16) also solve similar optimization problems to construct adversarial

examples.

2.3 Soft-label Black-box Attacks

In this section, we discuss a practical attack setting called soft-label Black-box attack.

In real-world systems, usually the underlying machine learning model will not be revealed

and thus white-box attacks cannot be applied. This motivates the study of attacking machine

learning models in the black-box setting, where attackers do not have any information

about the function f . And the only valid operation is to make queries to the model and

acquire the corresponding output f(x). The first approach for black-box attack is using

transfer attack (PMG17) – instead of attacking the original model f , attackers try to construct

a substitute model f̂ to mimic f and then attack f̂ using white-box attack methods. This

approach has been well studied and analyzed in (LCL16; BHL17). However, recent papers

have shown that attacking the substitute model usually leads to much larger distortion and

low success rate (CZS17). Therefore, instead, (CZS17) considers the soft-label black-box

setting, where attackers can use x to query the softmax layer output in addition to the final

classification result. It generate adversarial examples based on the approximated gradient

based on the approximated gradient.

Zeroth Order Optimization Based Attack (ZOO): (CZS17) proposed to use a finite

difference method to approximate the gradient of loss w.r.t the input image. Then C&W

15

attack is applied to generate the adversarial image. The formula of estimating the gradient is:

∂f(x)

∂x(i)

≈ f(x+ hei)− f(x− hei)
2h

,

where h is a small constant and ei is a standard basis vector with only the ith component as

1, and i ranges from 1 to the dimension of input image.

The time used to estimate the gradient grows with the dimension of the input image.

When the dimension of the image is large, the author introduced several techniques to scale-up

the method. The method is able to craft adversarial examples in reasonable time for large

Deep Neural Networks trained on ImageNet consists of large natural images.

NES Attack: (IEA18) introduced a score-based adversarial attack method, which uses

natural evolutionary strategies (NES) to estimate the gradient of loss w.r.t the input image

then generates adversarial examples based on the estimated gradient.

Algorithm 1 NES Gradient Estimate

1: Input: classifier f(·), image x, variance σ.

2: Output: ∇xf(x)

3: for i = 1 to T do

4: ui ← N (0D, ID·D)

5: g ← g + f(x+ σ · ui) · ui

6: g ← g − f(x− σ · ui) · ui

7: Return 1
2nσ
g

Note that D = w · h · c is the dimension of the input image.

The author also extends the method to partial-information setting, where only part of

the probabilities or top-k sorted labels are given.

In this case, they can reconstruct the loss function (2.6) and evaluate it as long as the

objective function h(x) exists for any x. Thus a zeroth order optimization approach can

16

be directly applied to minimize h(x). (TTC18) further improves the query complexity

of (CZS17) by introducing an autoencoder-based approach to reduce query counts and an

adaptive random gradient estimation to balance query counts and distortion.

2.4 Hard-label Black-box Attacks

In this section, we discuss a stricter and more practical attack setting called hard-label

black-box attack where only the top-1 predicted label is available to attackers.

2.4.1 Difficulty of Hard-label Black-box Attacks

The hard-label black-box setting refers to cases where real-world ML systems only

provide limited prediction results of an input query. Specifically, only the final decision (top-1

predicted label) instead of probability outputs is known to an attacker.

Attacking in this setting is indeed very challenging. In Figure 2.1a, we show a simple

3-layer neural network’s decision boundary. Note that the L(Z(x)) term is continuous as in

Figure 2.1b because the logit layer output is real-valued functions. However, in the hard-label

black-box setting, only f(·) is available instead of Z(·). Since f(·) can only be a one-hot

vector, if we plug-in f into the loss function, L(f(x)) (as shown in Figure 2.1c) will be

discontinuous and with discrete outputs.

Optimizing this function will require combinatorial optimization or search algorithms,

which is challenging given the high dimensionality of the problem. The only two current

approaches (BRB17; IEA18) are based on random-walk on the boundary and random trails

on the loss function. Although these “Boundary attack” and “Limited attack” can find

adversarial examples with comparable distortion with white-box attacks, they need lots of

queries to explore the high-dimensional space and lack convergence guarantees. We show

that our optimization-based algorithm can significantly reduce the number of queries, and

has guaranteed convergence in the number of iterations (queries) when the objective function

17

(a) Decision bound-
ary of f(x)

(b) L(Z(x)) (c) L(f(x)) (d) g(θ)

Figure 2.1: (a) A neural network classifier. (b) illustrates the loss function of C&W attack,
which is continuous and hence can be easily optimized. (c) is the C&W loss function in the
hard-label setting, which is discrete and discontinuous. (d) our proposed attack objective
g(θ) for this problem, which is continuous and easier to optimize. See detailed discussions in
Section 3.

is lipschitz smooth.

2.4.2 Opt-attack: A Query-Efficient Hard-label Black-box based on Optimiza-

tion Approach

Now we introduce a novel way to re-formulate hard-label black-box attack as another

optimization problem, show how to evaluate the function value using hard-label queries, and

then apply a zeroth order optimization algorithm to solve it.

A Boundary-based Re-formulation For a given example x0, true label y0 and the hard-

label black-box function f : Rd → {1, . . . , K}, we define our objective function g : Rd → R

depending on the type of attack:

Untargeted attack: g(θ) = min
λ>0

λ s.t f(x0 + λ
θ

||θ||
) 6= y0 (2.13)

Targeted attack (given target t): g(θ) = min
λ>0

λ s.t f(x0 + λ
θ

||θ||
) = t (2.14)

In this formulation, θ represents the search direction and g(θ) is the distance from x0

to the nearest adversarial example along the direction θ. The difference between (2.13) and

(2.14) corresponds to the different definitions of “successfulness” in untargeted and targeted

18

attack, where the former one aims to turn the prediction into any incorrect label and the

later one aims to turn the prediction into the target label. For untargeted attack, g(θ) also

corresponds to the distance to the decision boundary along the direction θ. In image problems

the input domain of f is bounded, so we will impose corresponding upper/lower bounds in

the definition of (2.13) and (2.14).

Figure 2.2: Illustration

Instead of searching for an adversarial example, we search the

direction θ to minimize the distortion g(θ), which leads to the

following optimization problem:

min
θ

g(θ). (2.15)

Finally, the adversarial example can be found by x∗ = x0 +

g(θ∗) θ∗

‖θ∗‖ , where θ∗ is the optimal solution of (2.15).

Note that unlike the C&W or PGD objective functions, which are discontinuous step

functions in the hard-label setting, g(θ) maps input direction to real-valued output (distance

to decision boundary), which is usually continuous – a small change of θ usually leads to a

small change of g(θ), as can be seen from Figure 2.2.

Moreover, we give three examples of f(x) defined in two dimension input space and their

corresponding g(θ). In Figure 2.3a, we have a continuous classification function defined as

follows

f(x) =


1, if ‖x‖2

2 ≥ 0.4

0, otherwise.

In this case, as shown in Figure 2.3c, g(θ) is continuous. Moreover, in Figure 2.3b and

Figure 2.1a, we show decision boundaries generated by GBDT and neural network classifier,

which are not continuous. However, as showed in Figure 2.3d and Figure 2.1d, even if the

classifier function is not continuous, g(θ) is still continuous. This makes it easy to apply

zeroth order method to solve (2.15).

Compute g(θ) up to certain accuracy. We are not able to evaluate the gradient of

19

(a) Decision bound-
ary of continuous
function

(b) Decision bound-
ary of GBDT

(c) g(θ) of (a) (d) g(θ) of (b)

Figure 2.3: Examples of decision boundary of classification function f(x) and corresponding
g(θ).

g, but we can evaluate the function value of g using the hard-label queries to the original

function f . For simplicity, we focus on untargeted attack here, but the same procedure can

be applied to targeted attack as well.

First, we discuss how to compute g(θ) directly without additional information. This is

used in the initialization step of our algorithm. For a given normalized θ, we do a coarse-

grained search and then a binary search. In coarse-grained search, we query the points

{x0 +αθ,x0 + 2αθ, . . . } one by one until we find f(x+ iαθ) 6= y0. This means the boundary

lies between [x0 + (i− 1)αθ,x0 + iαθ]. We then enter the second phase and conduct a binary

search to find the solution within this region (same with line 11–17 in Algorithm 2). Note

that there is an upper bound of the first stage if we choose θ by the direction of x− x0 with

some x from another class. This procedure is used to find the initial θ0 and corresponding

g(θ0) in our optimization algorithm. We omit the detailed algorithm for this part since it is

similar to Algorithm 2.

Next, we discuss how to compute g(θ) when we know the solution is very close to a

reference point v. This is used in all the function evaluations in our optimization algorithm,

since the current solution is usually close to the previous solution, and when we estimate the

gradient using (2.16), the queried direction will only be a slight modification of the previous

one. In this case, we first increase or decrease v in the local region to find the interval that

20

contains the nearby boundary (e.g, f(x0 + vθ) = y0 and f(x0 + v′θ) 6= y0), then conduct

a binary search to find the final value of g. Our procedure for computing the g value is

presented in Algorithm 2.

Algorithm 2 Compute g(θ) locally

1: Input: Hard-label model f , original image x0, query direction θ, previous solution v,
increase/decrease ratio α = 0.01, stopping tolerance ε (maximum tolerance of computed
error)

2: θ ← θ/||θ||
3: if f(x0 + vθ) = y0 then
4: vleft ← v, vright ← (1 + α)v
5: while f(x0 + vrightθ) = y0 do
6: vright ← (1 + α)vright

7: else
8: vright ← v, vleft ← (1− α)v
9: while f(x0 + vleftθ) 6= y0 do

10: vleft ← (1− α)vleft

11: ## Binary Search within [vleft, vright]
12: while vright − vleft > ε do
13: vmid ← (vright + vleft)/2
14: if f(x0 + vmidθ) = y0 then
15: vleft ← vmid
16: else
17: vright ← vmid

18: return vright

Hard-label Black-box Attacks with L∞ norm constraint Although we could let

‖θ‖ = ‖θ‖∞ in (2.13) and (2.14) directly, g(θ) will be harder to optimize in practice because

of introducing the max term in ‖ · ‖∞. Instead, with an L∞ constraint ε , we design a smooth

approximation loss as follows:

Untargeted attack: g(θ) = min
λ
{

d∑
i=1

(max{λ |θi|
‖θ‖∞

− ε, 0})2} s.t f(x0 + λ
θ

‖θ‖∞
) 6= y0

Targeted attack: g(θ) = min
λ
{

d∑
i=1

(max{λ |θi|
‖θ‖∞

− ε, 0})2} s.t f(x0 + λ
θ

‖θ‖∞
) = t.

21

Here θi is the i-th coordinate of θ. Notably, when λ ≤ ε, we have g(θ) = 0. That’s to say,

we have obtained a legitimate θ to make a valid adversarial example x0 + λ∗ θ
‖θ‖∞ .

Zeroth Order Optimization To solve the optimization problem (2.15) for which we

can only evaluate function value instead of gradient, zeroth order optimization algorithms

can be naturally applied. In fact, after the reformulation, the problem can be potentially

solved by any zeroth order optimization algorithm, like zeroth order gradient descent, genetic

algorithm (ASC19) or coordinate descent (see (CSV09) for a comprehensive survey).

Here we propose to solve (2.1) using Randomized Gradient-Free (RGF) method proposed

in (NS17; GL13). In practice, we found it outperforms zeroth-order coordinate descent. At

each iteration, the gradient is estimated by

ĝ =
g(θ + βu)− g(θ)

β
· u (2.16)

where u is a random Gaussian vector, and β > 0 is a smoothing parameter (we set β = 0.005

in all our experiments). The solution is then updated by θ ← θ − ηĝ with a step size η. The

procedure is summarized in Algorithm 3.

Algorithm 3 RGF for hard-label black-box attack

1: Input: Hard-label model f , original image x0, initial θ0.

2: for t = 0, 1, 2, . . . , T do

3: Randomly choose ut from a zero-mean Gaussian distribution

4: Evaluate g(θt) and g(θt + βu) using Algorithm 2

5: Compute ĝ =
g(θt + βu)− g(θt)

β
· u

6: Update θt+1 = θt − ηtĝ

7: return x0 + g(θT)θT

Also, if g(θ) is Lipschitz-smooth, we are able to bound the number of iterations needed

with O(d
δ2

) for our algorithm to achieve stationary points.

22

Theoretical Analysis If g(θ) can be computed exactly, it has been proved in (NS17)

that RGF in Algorithm 3 requires at most O(d
δ2

) iterations to converge to a point with

‖∇g(θ)‖2 ≤ δ2. However, in our algorithm the function value g(θ) cannot be computed

exactly; instead, we compute it up to ε-precision, and this precision can be controlled by

binary threshold in Algorithm 2. We thus extend the proof in (NS17) to include the case of

approximate function value evaluation, as described in the following theorem.

Theorem 1. In Algorithm 3, suppose g has Lipschitz-continuous gradient with constant

L1(g). If the error of function value evaluation is controlled by ε ∼ O(βδ2) and β ≤ O(δ
dL1(g)

),

then in order to obtain 1
N+1

N∑
k=0

EUk(‖∇g(θk)‖2) ≤ δ2, the total number of iterations is at

most O(d
δ2

).

Detailed proofs can be found in Section 2.6.0.1. Note that the binary search procedure

could obtain the desired function value precision in O(log δ) steps. By using the same idea

with Theorem 1 and following the proof in (NS17), we could also achieve O(d
2

δ3
) complexity

when g(θ) is non-smooth but Lipschitz continuous.

Implementation details There are several implementation details when we apply this

algorithm. First, for high-dimensional problems, we found the estimation in (2.16) is very

noisy. Therefore, instead of using one vector, we sample q vectors from Gaussian distribution

and average their estimators to get ĝ. We set q = 20 in all the experiments. Second, instead

of using a fixed step size (suggested in theory), we use a backtracking line-search approach to

find step size at each step. This leads to additional query counts, but makes the algorithm

more stable and eliminates the need to hand-tuning the step size. Third, instead of using

a random direction θ as initialization, we sample t vectors from Gaussian distribution and

choose the one with smallest g(θ) as our initialization. It helps us to find a good initialization

direction and thus get a smaller distortion in the end with limited number of additional

queries. We set t = 100 in all the experiments.

23

2.4.3 Sign-OPT: Using Gradient Sign to Further Gain Query Efficiency

In this part, we introduce an algorithm that hugely improves the query complexity over

Opt attack. Our algorithm is based on the following key ideas: (i) one does not need very

accurate values of directional derivative in order to make the algorithm converge, and (ii)

there exists an imperfect but informative estimation of directional derivative of g that

can be computed by a single query.

Original Image X0

Class Y0

Figure 2.4: Illustration

A single query oracle As mentioned before, the pre-

vious approach requires computing g(θ + εu) − g(θ)

which consumes a lot of queries. However, based on the

definition of g(·), we can compute the sign of this value

sign(g(θ+ εu)− g(θ)) using a single query. Considering

the untargeted attack case, the sign can be computed

by

sign(g(θ+εu)−g(θ)) =


+1, f(x0 + g(θ) (θ+εu)

‖θ+εu‖) = y0,

−1, Otherwise.

(2.17)

This is illustrated in Figure 2.4. Essentially, for a new direction θ+ εu, we test whether a

point at the original distance g(θ) from x0 in this direction lies inside or outside the decision

boundary, i.e. if the produced perturbation will result in a wrong prediction by classifier. If

the produced perturbation is outside the boundary i.e. f(x0 + g(θ) (θ+εu)
‖θ+εu‖) 6= y0, the new

direction has a smaller distance to decision boundary, and thus giving a smaller value of g. It

indicates that u is a descent direction to minimize g.

24

Sign-OPT attack By sampling random Gaussian vector Q times, we can estimate the

imperfect gradient by

∇̂g(θ) ≈ ĝ :=
∑Q

q=1
sign(g(θ + εuq)− g(θ))uq, (2.18)

which only requires Q queries. We then use this imperfect gradient estimate to update our

search direction θ as θ ← θ − ηĝ with a step size η and use the same search procedure to

compute g(θ) up to a certain accuracy. The detailed procedure is shown in Algorithm 4.

Algorithm 4 Sign-OPT attack

Input: Hard-label model f , original image x0, initial θ0

for t = 1, 2, . . . , T do

Randomly sample u1, . . . , uQ from a Gaussian or Uniform distribution

Evaluate g(θt)

((((((((((((hhhhhhhhhhhh
ĝ = g(θt+βu)−g(θt)

β
· u ⇒ sign(g(θt+βu)−g(θt)

β
) · u

Update θt+1 ← θt − ηĝ

Evaluate g(θt) using the same search algorithm in Algorithm 2

We note that (LCC19) designed a Zeroth Order SignSGD algorithm for soft-label black

box attack (not hard-label setting). They use ∇̂g(θ) ≈ ĝ :=
∑Q

q=1 sign(g(θ + εuq)− g(θ)uq)

and shows that it could achieve a comparable or even better convergence rate than zeroth

order stochastic gradient descent by using only sign information of gradient estimation.

Although it is possible to combine ZO-SignSGD with our proposed single query oracle for

solving hard-label attack, their estimator will take sign of the whole vector and thus ignore

the direction of uq, which leads to slower convergence in practice (please refer to Section 4.4

and Figure 5(b) for more details).

To the best of our knowledge, no previous analysis can be used to prove convergence of

Algorithm 4. In the following, we show that Algorithm 4 can in fact converge and furthermore,

with similar convergence rate compared with (LCC19) despite using a different gradient

estimator.

25

Assumption 1. Function g(θ) is L-smooth with a finite value of L.

Assumption 2. At any iteration step t, the gradient of the function g is upper bounded by

‖∇g(θt)‖2 ≤ σ.

Theorem 2. Suppose that the conditions in the assumptions hold, and the distribution

of gradient noise is unimodal and symmetric. Then, Sign-OPT attack with learning rate

ηt = O(1
Q
√
dT

) and ε = O(1
dT

) will give following bound on E[‖∇g(θ)‖2]:

E[‖∇g(θ)‖2] = O(

√
d√
T

+
d√
Q

).

The proof can be found in subsubsection 2.6.0.2. The main difference with the original

analysis provided by (LCC19) is that they only only deal with sign of each element, while

our analysis also takes the magnitudes of each element of uq into account.

Other gradient estimations Note that the value sign(g(θ + εu) − g(θ)) computed by

our single query oracle is actually the sign of the directional derivative:

sign(〈∇g(θ),u〉) = sign(lim
ε→∞

g(θ + εu)− g(θ)

ε
) = sign(g(θ + εu)− g(θ)) for a small ε.

Therefore, we can use this information to estimate the original gradient. The Sign-OPT

approach in the previous section uses
∑

q sign(〈∇g(θ),uq〉)uq as an estimation of gradient.

Let yq := sign(〈∇g(θ),uq〉), a more accurate gradient estimation can be cast as the following

constraint optimization problem:

Find a vector z such that sign(〈z,uq〉) = yq ∀q = 1, . . . , Q.

Therefore, this is equivalent to a hard constraint SVM problem where each uq is a training

sample and yq is the corresponding label. The gradient can then be recovered by solving the

following quadratic programming problem:

min
z

zTz s.t. zTuq ≥ yq, ∀q = 1, . . . , Q. (2.19)

By solving this problem, we can get a good estimation of the gradient. As explained earlier,

each yq can be determined with a single query. Therefore, we propose a variant of Sign-OPT,

which is called SVM-OPT attack. The detailed procedure is shown in Algorithm 5. We will

present an empirical comparison of our two algorithms in subsubsection 2.5.0.4.

26

Algorithm 5 SVM-OPT attack

Input: Hard-label model f , original image x0, initial θ0

for t = 1, 2, . . . , T do
Sample u1, . . . ,uQ from Gaussian or orthogonal basis
Solve z defined by (2.19)
Update θt+1 ← θt − ηz
Evaluate g(θt) using search algorithm in (CLC19)

2.5 Experimental Results

We evaluate the SIGN-OPT algorithm for attacking black-box models in a hard-label setting

on three different standard datasets - MNIST (LBB98), CIFAR-10 (KH09) and ImageNet-

1000 (DDS09) and compare it with existing methods. For fair and easy comparison, we use the

CNN networks provided by (CW17), which have also been used by other previous hard-label

attacks as well. Specifically, for both MNIST and CIFAR-10, the model consists of nine layers

in total - four convolutional layers, two max-pooling layers and two fully-connected layers.

Further details about implementation, training and parameters are available on (CW17). As

reported in (CW17) and (CLC19), we were able to achieve an accuracy of 99.5% on MNIST

and 82.5% on CIFAR-10. We use the pretrained Resnet-50 (HZR16a) network provided by

torchvision (MR10) for ImageNet-1000, which achieves a Top-1 accuracy of 76.15%.

In our experiments, we found that Sign-OPT and SVM-OPT perform quite similarly in

terms of query efficiency. Hence we compare only Sign-OPT attack with previous approaches

and provide a comparison between Sign-OPT and SVM-OPT in subsubsection 2.5.0.4. We

compare the following attacks:

• Sign-OPT attack (black box): The approach presented in (CSC19).

• Opt-based attack (black box): The method proposed in (CLC19) where they use

Randomized Gradient-Free method to optimize the same objective function.

• Boundary attack (black box): The method proposed in (BRB17). This is compared

only in L2 setting as it is designed for the same. We use the implementation provided

27

in Foolbox (https://github.com/bethgelab/foolbox).

• Guessing Smart Attack (black box): The method proposed in (BDL18). This attack

enhances boundary attack by biasing sampling towards three priors. Note that one of the

priors assumes access to a similar model as the target model and for a fair comparison

we do not incorporate this bias in our experiments. We use the implementation provided

at https://github.com/ttbrunner/biased_boundary_attack.

• C&W attack (white box): One of the most popular methods in the white-box setting

proposed in (CW17). We use C&W L2 norm attack as a baseline for the white-box

attack performance.

For each attack, we randomly sample 100 examples from validation set and generate

adversarial perturbations for them. For untargeted attack, we only consider examples that

are correctly predicted by model and for targeted attack, we consider examples that are

already not predicted as target label by the model. To compare different methods, we mainly

use median distortion as the metric. Median distortion for x queries is the median adversarial

perturbation of all examples achieved by a method using less than x queries. Since all the

hard-label attack algorithms will start from an adversarial exmample and keep reduce the

distortion, if we stop at any time they will always give an adversarial example and medium

distortion will be the most suitable metric to compare their performance. Besides, we also

show success rate (SR) for x queries for a given threshold (ε), which is the percentage of

number of examples that have achieved an adversarial perturbation below ε with less than

x queries. We evaluate success rate on different thresholds which depend on the dataset

being used. For comparison of different algorithms in each setting, we chose the same set of

examples across all attacks.

Implementation details: To optimize Algorithm 4, we estimate the step size η using the

same line search procedure implemented in (CLC19). At the cost of a relatively small number

of queries, this provides significant speedup in the optimization. Similar to (CLC19), g(θ) in

28

https://github.com/bethgelab/foolbox
https://github.com/ttbrunner/biased_boundary_attack

last step of Algorithm 4 is approximated via binary search. The initial θ0 in Algorithm 4 is

calculated by evaluating g(θ) on 100 random directions and taking the best one. We provide

our implementation publicly1.

2.5.0.1 Untargeted attack

0k 5k 10k 15k 20k
Queries

1

2

3

4

L 2
 D

ist
or

tio
n

Targeted

Untargeted

MNIST
Sign-OPT
SVM-OPT

0k 5k 10k 15k 20k
Queries

1

2

3

4

TargetedUntargeted

CIFAR-10

0k 10k 20k 30k 40k
Queries

0.2

0.5

0.8

1.0

1.2 CIFAR-10
Q=10
Q=20
Q=50
Q=100
Q=200
Q=400
Q=800
Q=1000

Figure 2.5: Median L2 distortion vs Queries. First two: Comparison of Sign-OPT and
SVM-OPT attack for MNIST and CIFAR-10. Third: Performance of Sign-OPT for different
values of Q.

In this attack, the objective is to generate an adversary from an original image for which

the prediction by model is different from that of original image. Figure 2.6 provides an

elaborate comparison of different attacks for L2 case for the three datasets. Sign-OPT attack

consistently outperforms the current approaches in terms of queries. Not only is Sign-OPT

more efficient in terms of queries, in most cases it converges to a lower distortion than what

is possible by other hard-label attacks. Furthermore, we observe Sign-OPT converges to a

solution comparable with C&W white-box attack (better on CIFAR-10, worse on MNIST,

comparable on ImageNet). This is significant for a hard-label attack algorithm since we are

given very limited information.

We highlight some of the comparisons of Boundary attack, OPT-based attack and Sign-

OPT attack (L2 norm-based) in Table 2.2. Particularly for ImageNet dataset on ResNet-50

1https://github.com/cmhcbb/attackbox

29

model, Sign-OPT attack reaches a median distortion below 3.0 in less than 30k queries while

other attacks need more than 200k queries for the same.

0k 10k 20k 30k 40k
Queries

1

2

3

4

5

L 2
 D

ist
or

tio
n

MNIST
Sign-OPT
OPT
Boundary
Guessing Smart
CW

0k 10k 20k 30k 40k
Queries

0.5

1.0

1.5 CIFAR-10

0k 20k 40k 60k 80k
Queries

10

20

30

40

50 ImageNet

Figure 2.6: Untargeted attack: Median distortion vs Queries for different datasets.

0k 10k 20k 30k 40k 50k
Queries

0

1

2

3

4

5

L 2
 D

ist
or

tio
n

(a)

MNIST
Sign-OPT
OPT
Boundary
Guessing Smart
CW

0k 10k 20k 30k 40k
Queries

0.5

1.0

1.5

2.0 CIFAR-10

0k 5k 10k 15k 20k
Queries

0.2

0.4

0.6

0.8

1.0

(b)

CIFAR-10
Sign-OPT
OPT
ZO-signSGD with SQO
ZO-signSGD w/o SQO
CW

Figure 2.7: (a) Targeted Attack: Median distortion vs Queries of different attacks on MNIST
and CIFAR-10. (b) Comparing Sign-OPT and ZO-SignSGD with and without single query
oracle (SQO).

2.5.0.2 Targeted attack

In targeted attack, the goal is to generate an adversarial perturbation for an image so that

the prediction of resulting image is the same as a specified target. For each example, we

randomly specify the target label, keeping it consistent across different attacks. We calculate

the initial θ0 in Algorithm 4 using 100 samples in target label class from training dataset and

this θ0 is the same across different attacks. Figure 2.9 shows some examples of adversarial

examples generated by Sign-OPT attack and the Opt-based attack. The first two rows show

30

0k 20k 40k 60k0.0

0.2

0.4

0.6

0.8

1.0

L 2
 S

uc
ce

ss
 R

at
e

= 0.6

Sign-OPT
OPT
Boundary
Guessing Smart

0k 20k 40k 60k0.0

0.2

0.4

0.6

0.8

1.0

L 2
 S

uc
ce

ss
 R

at
e

= 0.3

0k 20k 40k 60k0.0

0.2

0.4

0.6

0.8

1.0

L 2
 S

uc
ce

ss
 R

at
e

= 0.6

0k 20k 40k 60k0.0

0.2

0.4

0.6

0.8

1.0

L 2
 S

uc
ce

ss
 R

at
e

= 0.3

Figure 2.8: Success Rate vs Queries for CIFAR-10 (L2 norm-based attack). First two and
last two depict untargeted and targeted attacks respectively. Success rate threshold is at the
top of each plot.

comparison of Sign-OPT and Opt attack respectively on an example from MNIST dataset.

The figures show adversarial examples generated at almost same number of queries for both

attacks. Sign-OPT method generates an L2 adversarial perturbation of 0.94 in ∼ 6k queries

for this particular example while Opt-based attack requires ∼ 35k for the same. Figure 2.7

displays a comparison among different attacks in targeted setting. In our experiments, average

distortion achieved by white box attack C&W for MNIST dataset is 1.51, for which Sign-OPT

requires ∼ 12k queries while others need > 120k queries. We present a comparison of success

rate of different attacks for CIFAR-10 dataset in Figure 2.8 for both targeted and untargeted

cases.

31

d = 7.77

n = 0

d = 3.48

n = 618

d = 2.41

n = 1241

d = 1.65

n = 2141

d = 1.13

n = 3509

d = 0.94

n = 6037

d = 0.86

n = 20163

Original

d = 7.77

n = 0

d = 3.48

n = 618

d = 3.46

n = 1002

d = 3.11

n = 2134

d = 2.56

n = 3667

d = 1.88

n = 6153

d = 1.14

n = 20149

Original

d = 15.18

n = 0

d = 9.02

n = 1091

d = 6.96

n = 1447

d = 2.98

n = 2877

d = 1.12

n = 5556

d = 0.73

n = 10052

d = 0.61

n = 15104

Original

d = 805.46

n = 0

d = 436.17

n = 1091

d = 368.92

n = 1381

d = 255.75

n = 2101

d = 88.83

n = 6156

d = 39.63

n = 12248

d = 7.36

n = 20024

Original

Figure 2.9: Example of Sign-OPT targeted attack. L2 distortions and queries used are shown
above and below the images. First two rows: Example comparison of Sign-OPT attack
and OPT attack. Third and fourth rows: Examples of Sign-OPT attack on CIFAR-10 and
ImageNet

32

2.5.0.3 The power of single query oracle

In this subsection, we conduct several experiments to prove the effectiveness of our proposed

single query oracle in hard-label adversarial attack setting. ZO-SignSGD algorithm (LCC19)

is proposed for soft-label black box attack and we extend it into hard-label setting. A

straightforward way is simply applying ZO-SignSGD to solve the hard-label objective proposed

in (CLC19), estimate the gradient using binary search as (CLC19) and take its sign. In

Figure 5(b), we clearly observe that simply combining ZO-SignSGD and (CLC19) is not

efficient. With the proposed single query sign oracle, we can also reduce the query count of

this method, as demonstrated in Figure 5(b). This verifies the effectiveness of single query

oracle, which can universally improve many different optimization methods in the hard-label

attack setting. To be noted, there is still improvement on Sign-OPT over ZO-SignSGD

with single query oracle because instead of directly taking the sign of gradient estimation,

our algorithm utilizes the scale of random direction u as well. In other words, signSGD’s

gradient norm is always 1 while our gradient norm takes into account the magnitude of

u. Therefore, our signOPT optimization algorithm is fundamentally different (LCC19) or

any other proposed signSGD varieties. Our method can be viewed as a new zeroth order

optimization algorithm that features fast convergence in signSGD.

Table 2.1: Results of (L2-norm based) untargeted attack on gradient boosting decision tree.

HIGGS MNIST
Avg L2 # queries Avg L2 # queries

Opt-attack
0.3458 4,229 0.6113 5,125
0.2179 11,139 0.5576 11,858
0.1704 29,598 0.5505 32,230

2.5.0.4 Comparison between Sign-OPT and SVM-OPT

In our experiments, we found that the performance in terms of queries of both these attacks

is remarkably similar in all settings (both L2/L∞ & Targeted/Untargeted) and datasets. We

33

present a comparison for MNIST and CIFAR-10 (L2 norm-based) for both targeted and

untargeted attacks in Figure 2.5. We see that the median distortion achieved for a given

number of queries is quite on part for both Sign-OPT and SVM-OPT.

Number of queries per gradient estimate: In Figure 2.5, we show the comparison

of Sign-OPT attack with different values of Q. Our experiments suggest that Q does not

have an impact on the convergence point reached by the algorithm. Although, small values

of Q provide a noisy gradient estimate and hence delayed convergence to an adversarial

perturbation. Large values of Q, on the other hand, require large amount of time per gradient

estimate. After fine tuning on a small set of examples, we found that Q = 200 provides a

good balance between the two. Hence, we set the value of Q = 200 for all our experiments in

this section.

2.5.0.5 Attacking Gradient Boosting Decision Tree (GBDT)

To evaluate our method’s ability to attack models with discrete decision functions, we conduct

our untargeted attack on gradient booting decision tree (GBDT). In this experiment, we use

two standard datasets: HIGGS (BSW14) for binary classification and MNIST (LBB98) for

multi-class classification. We use popular LightGBM framework to train the GBDT models

and use suggested parameters in https://github.com/Koziev/MNIST_Boosting. To be

more specific, for MNIST model, it has 100 trees and the max number of leaves in each tree

is 100. For Higgs model, it has 255 trees and the max number of leaves in each tree is 500.

And we don’t limit the max depth on both models. We could achieve 0.8457 AUC for HIGGS

and 98.09% accuracy for MNIST. The results of untargeted attack on GBDT are given in

Table 2.1.

As shown in Table 2.1, by using around 30K queries, we could get a small distortion

on both datasets, which firstly uncovers the vulnerability of GBDT models. Tree-based

methods are well-known for its good interpretability. And because of that, they are widely

used in the industry. However, we show that even with good interpretability and a similar

34

https://github.com/Koziev/MNIST_Boosting

Table 2.2: L2 Untargeted attack - Comparison of average L2 distortion achieved using a given
number of queries for different attacks. SR stands for success rate.

MNIST CIFAR10 ImageNet (ResNet-50)
#Queries Avg L2 SR(ε = 1.5) #Queries Avg L2 SR(ε = 0.5) #Queries Avg L2 SR(ε = 3.0)

Boundary attack
4,000 4.24 1.0% 4,000 3.12 2.3% 4,000 209.63 0%
8,000 4.24 1.0% 8,000 2.84 7.6% 30,000 17.40 16.6%
14,000 2.13 16.3% 12,000 0.78 29.2% 160,000 4.62 41.6%

OPT attack
4,000 3.65 3.0% 4,000 0.77 37.0% 4,000 83.85 2.0%
8,000 2.41 18.0% 8,000 0.43 53.0% 30,000 16.77 14.0%
14,000 1.76 36.0% 12,000 0.33 61.0% 160,000 4.27 34.0%

Guessing Smart
4,000 1.74 41.0% 4,000 0.29 75.0% 4,000 16.69 12.0%
8,000 1.69 42.0% 8,000 0.25 80.0% 30,000 13.27 12.0%
14,000 1.68 43.0% 12,000 0.24 80.0% 160,000 12.88 12.0%

Sign-OPT attack
4,000 1.54 46.0% 4,000 0.26 73.0% 4,000 23.19 8.0%
8,000 1.18 84.0% 8,000 0.16 90.0% 30,000 2.99 50.0%
14,000 1.09 94.0% 12,000 0.13 95.0% 160,000 1.21 90.0%

C&W (white-box) - 0.88 99.0% - 0.25 85.0% - 1.51 80.0%

prediction accuracy with convolution neural network, the GBDT models are vulnerable under

our Opt-attack. This result raises a question about tree-based models’ robustness, which will

be an interesting direction in the future.

2.6 Proofs

2.6.0.1 Convergence guarantee for OPT-attack

If g(θ) can be computed exactly, it has been proved in (NS17) that RGF in Algorithm 3

requires at most O(d
δ2

) iterations to converge to a point with ‖∇g(θ)‖2 ≤ δ2. However, in our

algorithm the function value g(θ) cannot be computed exactly; instead, we compute it up to

ε-precision, and this precision can be controlled by binary threshold in Algorithm 2. We thus

extend the proof in (NS17) to include the case of approximate function value evaluation, as

described in the following theorem.

Theorem 3. In Algorithm 3, suppose g has Lipschitz-continuous gradient with constant L1(g)

and g∗ (optimal value) is finite. If the error of function value evaluation is controlled by

ε = O(βδ2) and β ≤ δ
dL1(g)

, then in order to obtain 1
N+1

N∑
k=0

EUk(‖∇g(θk)‖2) ≤ δ2, the upper

bound of total number of iterations is O(d
δ2

).

35

Note that the binary search procedure could obtain the desired function value precision

in O(log δ) steps. By using the same idea with Theorem 1 and following the proof in (NS17),

we could also achieve O(d
2

δ3
) complexity when g(θ) is non-smooth but Lipschitz continuous.

Because there is a stopping criterion in Algorithm 2, we couldn’t achieve the exact

g(θ). Instead, we could get g̃ with ε error, i.e., g(θ)− ε ≤ g̃(θ) ≤ g(θ) + ε. Also, we define

ĝ(θ) = g̃(θ+βu)−g̃(θ)
β

· u to be the noise gradient estimator.

Following (Nes11), we define the Guassian smoothing approximation over g(θ), i.e,

gβ(θ) =
1

κ

∫
E

g(θ + βu)e−
1
2
||u||2du. (2.20)

Also, we have the upper bounds for the moments Mp = 1
κ

∫
E
||u||pe− 1

2
||u||2du from (Nes11)

Lemma 1.

For p ∈ [0, 2], we have

Mp ≤ dp/2. (2.21)

If p ≥ 2, we have two-sided bounds

np/2 ≤Mp ≤ (p+ n)p/2. (2.22)

Proof of Theorem 1 Suppose f has a lipschitz-continuous gradient with constant L1(g),

then

|g(y)− g(x)− 〈∇g(x), y − x〉| ≤ 1

2
L1(g)||x− y||2 (2.23)

We could bound Eu(||ĝ(θ)||2) as follows,

Since

(g̃(θ + βu)− g̃(θ))2 = [g̃(θ + βu)− g̃(θ)− β〈∇g(θ), u〉+ β〈∇g(θ), u〉]2

≤ 2(g(θ + βu)− g(θ) + εθ+βu − εθ − β〈∇g(θ), u〉)2 + 2β2〈∇g(θ), u〉2

(2.24)

Because |εθ+βu − εθ| ≤ 2ε,

[g̃(θ + βu)− g̃(θ)]2 ≤ 2(
β2

2
L1(g)||u||2)2 + 4β2L1(g)||u||2ε+ 8ε2 + 2β2〈∇g(θ), u〉2 (2.25)

Take expectation over u, and with Theorem 3 in (Nes11), which is Eu(||g′(θ, u) · u||2) ≤

36

(d+ 4)||∇g(θ)||2

Eu(||ĝ(θ)||2) ≤ β2

2
L2

1(g)Eu(||u||6) + 2Eu(||g′(θ, u) · u||2) + 4L1(g)εEu(||u||4) + 8
ε2

β2
Eu(||u||2)

≤ β2

2
L2

1(g)(d+ 6)3 + 2(d+ 4)||∇g(θ)||2 + 4εL1(g)(d+ 4)2 + 8
ε2

β2
d

(2.26)

With ε = O(δ2β), we could bound Eu(||g̃(θ)||2)

Eu(||ĝ(θ)||2) ≤ β2

2
L2

1(g)(d+ 6)3 + 2(d+ 4)||∇g(θ)||2 + 4βL1(g)(d+ 4)2δ2 + 8dδ4 (2.27)

And with

||∇g(θ)||2 ≤ 2||∇gβ(θ)||2 +
β2

2
L2

1(g)(d+ 4)2 (2.28)

Which is proved in (Nes11) Lemma 4.

Therefore, since (n+ 6)3 + 2(n+ 4)3 ≤ 3(n+ 5)3, we could get

Eu(||ĝ(θ)||2) ≤ β2

2
L2

1(g)(d+ 6)3 + 2(d+ 4)||∇g(θ)||2 + 2(d+ 4)||∇g(θ)||2

+ 4βL1(g)(d+ 4)2δ2 + 8dδ4

≤ β2

2
L2

1(g)(d+ 6)3 + 2(d+ 4)(2||∇gβ(θ)||2 +
β2

2
L2

1(g)(d+ 4)2)

+ 4βL1(g)(d+ 4)2δ2 + 8dδ4

≤ 4(d+ 4)||∇gβ(x)||2 +
3β2

2
L2

1(g)(d+ 5)3 + 4βL1(g)(d+ 4)2δ2 + 8dδ4

(2.29)

Therefore, since gβ(θ) has Lipshcitz-continuous gradient:

|gβ(θk+1)− gβ(θk) + α〈∇gβ(θk), ĝβ(θk)〉| ≤
1

2
α2L1(gβ)||ĝβ(θk)||2 (2.30)

So that

gβ(θk+1) ≤ gβ(θk)− α〈∇gβ(θk), ĝβ(θk)〉+
1

2
α2L1(gβ)||ĝβ(θk)||2 (2.31)

Since

Eu(ĝ(θk)) =
1

κ

∫
E

g(θ + βu)− g(θ) + εθ+βu − εθ
β

ue−
1
2
||u||2du

= ∇gβ(θk) +
1

κ

∫
E

εθ+βu − εθ
β

ue−
1
2
||u||2du

≤ ∇gβ(θk) +
2ε

β
n1/2 · 1

(2.32)

37

where 1 is a all-one vector. Taking the expectation in uk, we obtain

Euk(gβ(θk+1)) ≤ gβ(θk)− αk||∇gβ(θk)||2 + αk〈∇gβ(θk),
2ε

β
d1/2 · 1〉

+
1

2
α2
kL1(gβ)Euk ||ĝβ(θk)||2

Euk(gβ(θk+1)) ≤ gβ(θk)− αk||∇gβ(θk)||2 + αk
2ε

β
n1/2||∇gβ(θk)||

+
1

2
α2
kL1(g)(4(d+ 4)||∇gβ(θk)||2 +

3β2

2
L2

1(g)(d+ 5)3

+ 4βL1(g)(d+ 4)2δ2 + 8dδ4)

(2.33)

Choosing αk = α̂ = 1
4(d+4)L1(g)

, we obtain

Euk(gβ(θk + 1)) ≤ gβ(θk)−
1

2
α̂||∇gβ(θk)||2 + α̂

2ε

β
d1/2||∇gβ(θk)||+

3β2

64
L1(g)

(d+ 5)3

(d+ 4)2

+
β

8
δ2 +

d

4(d+ 4)2L1(g)
δ4

(2.34)

Since (d+ 5)3 ≤ (d+ 8)(d+ 4)2, taking expectation over Uk, where Uk = {u1, u2, . . . , uk}, we

get

φk+1 ≤φk −
1

2
α̂EUk(||∇gβ(θk)||2) +

3β2(d+ 8)

64
L1(g) +

β

8
δ2 +

d

4(d+ 4)2L1(g)
δ4

+ α̂d1/2EUk(||∇gβ(θk)||)δ2

(2.35)

Where φk = EUk−1(g(θk)), k ≥ 1 and φ0 = g(θ0).

Assuming g(x) ≥ g∗, summing over k and divided by N+1, we get

1

N + 1

N∑
k=0

EUk(||∇gβ(θk)||2) ≤ 8(d+ 4)L1(g)[
g(x0)− g∗

N + 1
+

3β2(d+ 8)

16
L1(g) +

β

8
δ2

+
d

4(d+ 4)2L1(g)
δ4 +

1

N + 1

N∑
k=0

EUk(||∇gβ(θk)||)δ2]

(2.36)

Clearly, 1
N+1

N∑
k=0

EUk(||∇gβ(θk)||) ≤ δ2.

Since ϑ2
k = EUk(||∇g(θk)||2) ≤ 2EUk(||∇gβ(θk)||2) + β2(d+4)2

2
L2

1(g), ϑ2
k is in the same order

of EUk(||∇gβ(θk)||2). In order to get 1
N+1

N∑
k=0

ϑ2
k ≤ δ2, we need to choose β ≤ δ

dL1(g)
, then N

is bounded by O(d
δ2

)

38

2.6.0.2 Convergence guarantee for Sign-OPT attack

Define following notations:

∇̂g(θt;uq) := sign(g(θt + εuq)− g(θt))uq

∇̇g(θt;uq) :=
1

ε
(g(θt + εuq)− g(θt))uq

∇̄g(θt;uq) := sign(
1

ε
(g(θt + εuq)− g(θt))uq)

Thus we could write the corresponding estimate of gradients as follow:

ĝt =
1

Q

Q∑
q=1

sign(g(θt + εuq)− g(θt))uq =
1

Q

Q∑
q=1

∇̂g(θt;uq)

ġt =
1

Q

Q∑
q=1

1

ε
(g(θt + εuq)− g(θt))uq =

1

Q

Q∑
q=1

∇̇g(θt;uq)

ḡt =
1

Q

Q∑
q=1

sign(
1

ε
(g(θt + εuq)− g(θt))uq) =

1

Q

Q∑
q=1

∇̄g(θt;uq)

Clearly, we have ∇̄g(θt;uq) = sign(∇̇g(θt;uq)) and we could relate ∇̄g(θt;uq) and

∇̂g(θt;uq) by writing ∇̂g(θt;uq) = Gq � ∇̄g(θt;uq) where where Gq ∈ Rd is absolute value

of vector uq (i.e. Gq = (|uq,1|, |uq,2|, · · · , |uq,d|)T).

Note that Zeroth-order gradient estimate ∇̇g(θt;uq) is a biased approximation to the

true gradient of g. Instead, it becomes unbiased to the gradient of the randomized smoothing

function gε(θ) = Eu[g(θ + εu)] (DBW12).

Our analysis is based on the following two assumptions:

Assumption 1 function g is L-smooth with a finite value of L.

Assumption 2 At any iteration step t, the gradient of the function g is upper bounded by

‖∇g(θt)‖2 ≤ σ.

To prove the convergence of proposed method, we need the information on variance of

the update ∇̇g(θt;uq). Here, we introduce a lemma from previous works.

39

Lemma 1 The variance of Zeroth-Order gradient estimate ∇̇g(θt;uq) is upper bounded by

E
[
‖∇̇g(θt;uq)−∇gε(θt)

∥∥2

2
] ≤ 4(Q+ 1)

Q
σ2 +

2

Q
C(d, ε),

where C(d, ε) := 2dσ2 + ε2L2d2/2

Proof of Lemma 1 This lemma could be proved by using proposition 2 in (LCC19) with

b = 1 and q = Q. When b = 1 there is no difference between with/without replacement, and

we opt for with replacement case to obtain above bound.

By talking Q = 1, we know that E
[
‖∇̇g(θt;uq)−∇gε(θt)

∥∥2

2
] is upper bounded. And by

Jensen’s inequality, we also know that the

E
[
|(∇̇g(θt;uq)−∇gε(θt))l

∣∣] ≤√E
[
((∇̇g(θt;uq)−∇gε(θt)

)
)2
l] := δl, (2.37)

where δl denotes the upper bound of lth coordinate of E
[
|∇̇g(θt;uq)−∇gε(θt)|

]
, and δl is

finite since E
[
‖∇̇g(θt;uq)−∇gε(θt)

∥∥2

2
] is upper bounded.

Next, we want to show the Prob[sign((ḡt)l) 6= sign((∇gε(θt))l)] by following lemma.

Lemma 2 |(∇gε(θt))l|Prob[sign((ḡt)l) 6= sign((∇gε(θt))l)] ≤ δl√
Q

Proof of Lemma 2 We first relax Prob[sign((∇̇g(θt;uq))l) 6= sign(∇gε(θt))l] by Markov

inequality:

Prob[sign((∇̇g(θt;uq))l) 6= sign((∇gε(θt))l)] ≤ Prob[|∇̇g(θt;uq)l)| ≥ |∇gε(θt)l|]

≤
E
[
|(∇̇g(θt;uq)−∇gε(θt))l

∣∣]
|∇gε(θt)l|

≤ δl
|∇gε(θt)l|

,

where the last inequality comes from eq (2.37). Recall that (∇̇g(θt;uq))l) is an unbiased

estimation to (∇gε(θt))l. Under the assumption that the noise distribution is unimodal and

symmetric, from (BWA18) Lemma D1, we will have

Prob[sign((∇̇g(θt;uq))l) 6= sign(∇gε(θt))l] := M ≤


2
9

1
S2 , S ≥ 2√

3

1
2
− S

2
√

3
, otherwise

<
1

2
,

40

where S := |∇gε(θt)l|/δl.

Note that this probability bound applies uniformly to all q ∈ Q regardless of the magnitude

|(uq)l|. That is,

Prob[sign(

Q∑
q=1

|(uq)l|sign((∇̇g(θt;uq))l) 6= sign(∇gε(θt))l] =

Prob[sign((

Q∑
q=1

sign(∇̇g(θt;uq))l) 6= sign(∇gε(θt))l]. (2.38)

This is true as when all |(uq)l| = 1, Prob[sign((
∑Q

q=1 sign(∇̇g(θt;uq))l) 6= sign(∇gε(θt))l] is

equivalent to majority voting of each estimate q yielding correct sign. This is the same as

sum of Q bernoulli trials (i.e. binomial distribution) with error rate M. And since error

probability M is independent of sampling of |(uq)l|, calculating

Prob[sign(
∑Q

q=1 |(uq)l|sign((∇̇g(θt;uq))l) 6= sign(∇gε(θt))l] could be thought as taking Q

bernoulli experiments and then independently draw a weight from unit length for each of

Q experiment. Since the weight is uniform, we will have expectation of weights on correct

counts and incorrect counts are the same and equal to 1/2. Therefore, the probability of

Prob[sign(
∑Q

q=1 |(uq)l|sign((∇̇g(θt;uq))l) 6= sign(∇gε(θt))l] is still the same as original non-

weighted binomial distribution. Notice that by our notation, we will have sign(∇̇g(θt;uq)l) =

∇̄g(θt;uq)l thus 1
Q

∑Q
q=1 sign(∇̇g(θt;uq))l = (ḡt)l. Let Z counts the number of estimates

∇̇g(θt;uq)l yielding correct sign of ∇gε(θt)l. Probability in eq (2.38) could be written as:

Prob[sign(sign((ḡt)l) 6= sign(∇gε(θt))l] = P [Z ≤ Q

2
].

Following the derivation of theorem 2b in (BWA18), we could get

P [Z ≤ Q

2
] ≤ 1√

QS

⇒ |(∇gε(θt))l|Prob[sign((ḡt)l) 6= sign((∇gε(θt))l)] ≤
δl√
Q

(2.39)

We also need few more lemmas on properties of function g.

Lemma 3 gε(θ1)− gε(θT) ≤ gε(θ1)− g∗ + ε2L

41

Proof of Lemma 3 The proof can be found in (LKC18) Lemma C.

Lemma 4 E[‖∇g(θ)‖2] ≤
√

2E[‖∇gε(θ)‖2] + εLd√
2

, where g∗ = minθ g(θ).

Proof of Lemma 4 The proof can be found in (LCC19).

Theorem 1 Suppose that the conditions in the assumptions hold, and the distribution

of gradient noise is unimodal and symmetric. Then, Sign-OPT attack with learning rate

ηt = O(1
Q
√
dT

) and ε = O(1
dT

) will give following bound on E[‖∇g(θ)‖2]

E[‖∇g(θ)‖2] = O(

√
d√
T

+
d√
Q

)

Proof of Theorem 1 From L-smoothness assumption we could have

gε(θt+1) ≤ gε(θt) + 〈∇gε(θt),θt+1 − θt〉+
L

2
‖θt+1 − θt‖2

2

= gε(θt)− ηk〈∇gε(θt), ĝt〉+
L

2
η2
t ‖ĝt‖2

2

= gε(θt)− ηt � Ḡt‖∇gε(θt)‖1 +
dL

2
η2
t � Ḡt

2

+ 2ηt � Ḡt

d∑
l=1

|(∇gε(θt))l|Prob[sign((ḡt)l) 6= sign((∇gε(θt))l)],

42

where Ḡt is defined as (Ḡt)l =
∑Q

q=1 (Gq)l∇̄g(θt;uq)l =
∑Q

q=1 |(uq)l|∇̄g(θt;uq)l. Continue

the inequality,

gε(θt)− ηt � Ḡt‖∇gε(θt)‖1 +
dL

2
η2
t � Ḡt

2

+ 2ηt � Ḡt

d∑
l=1

|(∇gε(θt))l|Prob[sign((ḡt)l) 6= sign((∇gε(θt))l)]

≤ gε(θt)− ηt � Ḡt‖∇gε(θt)‖1 +
dL

2
η2
t � Ḡt

2
+ 2ηt � Ḡt

d∑
l=1

δl√
Q

≤ gε(θt)− ηt � Ḡt‖∇gε(θt)‖1 +
dL

2
η2
t � Ḡt

2
+ 2ηt � Ḡt

‖δl‖1√
Q

≤ gε(θt)− ηt � Ḡt‖∇gε(θt)‖1 +
dL

2
η2
t � Ḡt

2
+ 2ηt � Ḡt

√
d
√
‖δl‖2

2√
Q

= gε(θt)− ηt � Ḡt‖∇gε(θt)‖1 +
dL

2
η2
t � Ḡt

2
+ 2ηt � Ḡt

√
d
√

E
[
((∇̇g(θt;uq)−∇gε(θt)

)
)2
l]√

Q

Thus we will have,

gε(θt+1)− gε(θt) ≤ −ηt � Ḡt‖∇gε(θt)‖1 +
dL

2
η2
t � Ḡt

2

+ 2ηt � Ḡt

√
d
√

E
[
((∇̇g(θt;uq)−∇gε(θt)

)
)2
l]√

Q

⇒ ηt � Ḡt‖∇gε(θt)‖1 ≤ gε(θt)− gε(θt+1) +
dL

2
η2
t � Ḡt

2

+ 2ηt � Ḡt

√
d
√

E
[
((∇̇g(θt;uq)−∇gε(θt)

)
)2
l]√

Q

⇒ η̂t‖∇gε(θt)‖1 ≤ gε(θt)− gε(θt+1) +
dL

2
η̂t

2 + 2η̂t
√
d

√
E
[
((∇̇g(θt;uq)−∇gε(θt)

)
)2
l]√

Q
,

43

where we define η̂t := ηt � Ḡt. Sum up all inequalities for all ts and take expectation on both

side, we will have
T∑
t=1

η̂tE[‖∇gε(θt)‖1] ≤ E[gε(θ1)− gε(θT)] +
dL

2

T∑
t=1

η̂t
2

+
T∑
t=1

2η̂t
√
d
√

E
[
((∇̇g(θt;uq)−∇gε(θt)

)
)2
l]

≤ E[gε(θ1)− gε(θT)] +
dL

2

T∑
t=1

η̂t
2 +

T∑
t=1

2η̂t
√
d

√
4(Q+ 1)

Q
σ2 +

2

Q
C(d, ε)

by Lemma 1.

Substitute Lemma 3 into above inequality, we get
T∑
t=1

η̂tE[‖∇gε(θt)‖1] ≤ gε(θ1)− g∗ + ε2L+
dL

2

T∑
t=1

η̂t
2 +

T∑
t=1

2η̂t
√
d

√
4(Q+ 1)

Q
σ2 +

2

Q
C(d, ε).

Since ‖ · ‖2 ≤ ‖ · ‖1 and we could divide
∑T

t=1 η̂t on both side to get
T∑
t=1

η̂t∑T
t=1 η̂t

E[‖∇gε(θt)‖2] ≤ gε(θ1)− g∗ + ε2L∑T
t=1 η̂t

+
dL

2

∑T
t=1 η̂t

2∑T
t=1 η̂t

+
T∑
t=1

2
√
d√
Q

√
4(Q+ 1)σ2 + 2C(d, ε).

Define a new random variable R with probability P (R = t) = ηt∑T
t=1 ηt

, we will have

E[‖∇gε(θR)‖2] = E[ER[‖∇gε(θR)‖2]] = E
[T∑
t=1

P (R = t)‖∇gε(θt)‖2

]
.

Substitute all the quantities into Lemma 4, we will get

E[‖∇g(θ)‖2] ≤
√

2(gε(θ1)− g∗ + ε2L)∑T
t=1 η̂t

+
dL√

2

∑T
t=1 η̂t

2∑T
t=1 η̂t

+
εLd√

2
+

T∑
t=1

2
√

2
√
d√

Q

√
4(Q+ 1)σ2 + 2C(d, ε).

By choosing ε = O(1
dT

) and ηt = O(1
Q
√
dT

), then the convergence rate as shown in above

is O(d
T

+ d√
Q

).

44

CHAPTER 3

Adversarial Attacks on Discrete Domain

3.1 Seq2Sick: Evaluating the Robustness of Sequence-to-Sequence

Models with Adversarial Examples

Models designed for different tasks are not born equal: some tasks are strictly harder to attack

than others. For example, attacking an image is much easier than attacking a text string,

since image space is continuous and the adversary can make arbitrarily small changes to the

input. Therefore, even if most of the pixels of an image have been modified, the perturbations

can still be imperceptible to humans when the accumulated distortion is small. In contrast,

text strings live in a discrete space, and word-level manipulations may significantly change the

meaning of the text. In this scenario, an adversary should change as few words as possible, and

hence this limitation induces a sparse constraint on word-level changes. Likewise, attacking a

classifier should also be much easier than attacking a model with sequence outputs. This is

because different from the classification problem that has a finite set of discrete class labels,

the output space of sequences may have an almost infinite number of possibilities. If we treat

each sequence as a label, a targeted attack needs to find a specific one over an enormous

number of possible labels, leading to a nearly zero volume in search space. This may explain

why most existing works on adversarial attacks focus on the image classification task since

its input space is continuous and its output space is finite.

In this chapter, we study a harder problem of crafting adversarial examples for sequence-

to-sequence (seq2seq) models (SVL14). This problem is challenging since it combines both

45

aforementioned difficulties, i.e., discrete inputs and sequence outputs with an almost infinite

number of possibilities. We choose this problem not only because it is challenging, but also

because seq2seq models are widely used in many safety and security sensitive applications, e.g.,

machine translation (BCB14), text summarization (RCW15), and speech recognition (CJL16),

thus measuring its robustness becomes critical. Specifically, we aim to examine the following

questions in this study:

1. Is it possible to slightly modify the inputs of seq2seq models while significantly change

their outputs?

2. Are seq2seq models more robust than the well-evaluated CNN-based image classifiers?

We provide an affirmative answer to the first question by developing an effective adversarial

attack framework called Seq2Sick. It is an optimization-based framework that aims to learn

an input sequence that is close enough to the original sequence (in terms of distance metrics

in word embedding spaces or sentiment classification) while leads to the desired outputs

with high confidence. To address the challenges caused by the discrete input space, we

propose to use the projected gradient descent method combined with group lasso and gradient

regularization. To address the challenges of almost infinite output space, we design some

novel loss functions for the tasks of non-overlapping attack and targeted keyword attack.

Our experimental results show that the proposed framework yields high success rates in

both tasks. However, even if the proposed approach can successfully attack seq2seq models,

our answer to the second question is “Yes”. Compared with CNN-based classifiers that are

highly sensitive to adversarial examples, seq2seq model is intrinsically more robust since it

has discrete input space and the output space is exponentially large. As a result, adversarial

examples of seq2seq models usually have larger distortions and are more perceptible than the

adversarial examples crafted for CNN-based image classifiers.

46

3.1.1 Problem Setting

For sequential output task such machine translation and text summarization, we have to use a

different strategy. Obviously, attacking a classifier should also be much easier than attacking

a model with sequence outputs. It is because different from the classification problem that

has a finite set of discrete class labels, the output space of sequences may have an almost

infinite number of possibilities. If we treat each sequence as a label, a targeted attack needs

to find a specific one over an enormous number of possible labels, leading to a nearly zero

volume in search space.

We consider the sequence-to-sequence (seq2seq) model as follows. Let xi ∈ Rd be the

embedding vector of each input word, N be the input sequence length, and M be the

output sequence length. Let ω be the input vocabulary, and the output word yj ∈ ν where

ν is the output vocabulary. The seq2seq model has an encoder-decoder framework that

aims at mapping an input sequence of vectors X = (x1, . . . ,xN) to the output sequence

Y = {y1, . . . ,yM}. Its encoder first reads the input sequence, then each RNN/LSTM cell

computes ht = f(xt, ht−1), where xt is the current input, ht−1 and ht represent the previous

and current cells’ hidden States, respectively. The next step computes the context vector

c using all the hidden layers of cells h1, . . . ,hN , i.e c = q(h1, · · · ,hN), where q(·) could

be a linear or non-linear function. In this chapter, we follow the setting in (SVL14) that

c = q(h1, · · · ,hN) = hN .

Given the context vector c and all the previously words {y1, . . . ,yt−1}, the decoder is

trained to predict the next word yt. Specifically, the t-th cell in the decoder receives its

previous cell’s output yt−1 and the context vector c, and then outputs

zt = g(yt−1, c) and pt = softmax(zt), (3.1)

where g is another RNN/LSTM cell function. zt := [z
(1)
t , z

(2)
t , . . . , z

(|ν|)
t] ∈ R|ν| is a vector of

the logits for each possible word in the output vocabulary ν.

Crafting adversarial examples against the seq2seq model can be formulated as an opti-

47

mization problem:

minδ L(X + δ) + λ ·R(δ), (3.2)

where R(·) indicates the regularization function to measure the magnitude of distortions.

L(·) is the loss function to penalize the unsuccessful attack and it may take different forms

in different attack scenarios. A common choice for R(δ) is the `2 penalty ‖δ‖2
2, but it is, as

we will show later, not suitable for attacking seq2seq model. λ > 0 is the regularization

parameter that balances the distortion and attack success rate – a smaller λ will make the

attack more likely to succeed but with the price of larger distortion.

Here I introduce two kinds of attacks: non-overlapping attack and targeted keywords attack.

The first attack requires that the output of the adversarial example shares no overlapping

words with the original output. This task is strictly harder than untargeted attack, which only

requires that the adversarial output to be different from the original output (ZDS17; ERL17).

We ignore the task of untargeted attack since it is trivial for the proposed framework, which

can easily achieve a 100% attack success rate, while (ERL17) could achieve 76.24% attack

success rate for text summarization and 98.8% success rate for machine translation with 1

word change. Targeted keywords attack is an even more challenging task than non-overlapping

attack. Given a set of targeted keywords, the goal of targeted keywords attack is to find

an adversarial input sequence such that all the keywords must appear in its corresponding

output

Non-overlapping Attack: To formally define the non-overlapping attack, we let s =

{s1, . . . , sM} be the original output sequence, where si denotes the location of the i-th word

in the output vocabulary ν. {z1, . . . , zM} indicates the logit layer outputs of the adversarial

example. In the non-overlapping attack, the output of adversarial example should be entirely

different from the original output S, i.e.,

st 6= argmaxy∈ν z
(y)
t , ∀t = 1, . . . ,M,

48

Targeted Keywords Attack Given a set of targeted keywords, the goal of targeted

keywords attack is to generate an adversarial input sequence to ensure that all the targeted

keywords appear in the output sequence. This task is important since it suggests adding

a few malicious keywords can completely change the meaning of the output sequence. For

example, in English to German translation, an input sentence “policeman helps protesters to

keep the assembly in order” should generate an output sentence “Polizist hilft Demonstranten,

die Versammlung in Ordnung zu halten”. However, changing only one word from “hilft” to

“verhaftet” in the output will significantly change its meaning, as the new sentence means

“police officer arrested protesters to keep the assembly in order”.

3.1.2 Handling Discrete Input Space

As mentioned before, the problem of “discrete input space” is one of the major challenges

in attacking seq2seq model. Let W be the set of word embeddings of all words in the input

vocabulary. A naive approach is to first learn X + δ∗ in the continuous space by solving the

problem (3.2), and then search for its nearest word embedding in W. This idea has been

used in attacking sequence classification models in (GWL18). Unfortunately, when applying

this idea to targeted keywords attack, we report that all of the 100 attacked sequences on

Gigaword dataset failed to generate the targeted keywords. The main reason is that by

directly solving (3.2), the final solution will not be a feasible word embedding in W, and its

nearest neighbor could be far away from it due to the curse of dimensionality (Fri97).

To address this issue, we propose to add an additional constraint to enforce that X + δ

belongs to the input vocabulary W. The optimization problem then becomes

min
δ

L(X + δ) + λ ·R(δ)

s.t. xi + δi ∈ W ∀i = 1, . . . , N

(3.3)

We then apply projected gradient descent to solve this constrained problem. At each iteration,

we project the current solution xi + δi, where δi denotes the i-th column of δ, back into W to

ensure that X + δ can map to a specific input word.

49

Group lasso Regularization: `2 norm has been widely used in the adversarial machine

learning literature to measure distortions. However, it is not suitable for our task since

almost all the learned {δt}Mt=1 using `2 regularization will be nonzero. As a result, most of

the inputs words will be perturbed to another word, leading to an adversarial sequence that

is significantly different from the input sequence.

To solve this problem, we treat each δt with d variables as a group, and use the group

lasso regularization

R(δ) =
∑N

t=1
‖δt‖2

to enforce the group sparsity: only a few groups (words) in the optimal solution δ∗ are

allowed to be nonzero.

Gradient Regularization When attacking the seq2seq model, it is common to find that

the adversarial example is located in a region with very few or even no embedding vector.

This will negatively affect our projected gradient method since even the closest embedding

from those regions can be far away.

To address this issue, we propose a gradient regularization to make X + δ close to the

word embedding space. Our final objective function becomes:

min
δ
L(X+δ)+λ1

N∑
i=1

‖δi‖2+λ2

N∑
i=1

min
wj∈W
{
∥∥xi + δi −wj

∥∥
2
}

s.t. xi + δi ∈ W ∀i = 1, . . . , N (3.4)

where the third term is our gradient regularization that penalizes a large distance to the

nearest point in W. The gradient of this term can be efficiently computed since it is only

related to one wj that has a minimum distance from xi + δi. For the other terms, we

use the proximal operator to optimize the group lasso regularization, and the gradient of

the loss function L can be computed through back-propagation. The detailed steps of our

approach, Seq2Sick, is presented in Algorithm 6. Our source code is publicly available at

50

Algorithm 6 Seq2Sick algorithm

Input: input sequence x = {x1, . . . , xN}, seq2seq model, target keyword {k1, . . . , kT}
Output: adversarial sequence x∗ = x+ δ∗

Let s = {s1, . . . , sM} denote the original output of x.
Set the loss L(·) in (3.4) to be (2.8)
if Targeted Keyword Attack then

Set the loss L(·) in (3.4) to be (2.12)

for r = 1, 2, . . . , T do
back-propagation L to achieve gradient ∇δL(x+ δr)
for i = 1, 2, . . . , N do

if
∥∥δr,i∥∥ > ηλ1 then

δr,i = δr,i − ηλ1
δr,i

‖δr,i‖
else

δr,i = 0

yr+1 = δr + η · ∇δL(x+ δr)
δr+1 = argmin

x+δr+1∈W

∥∥yr+1 − δr+1
∥∥

δ∗ = δT

x∗ = x+ δ∗

return x∗

https://github.com/cmhcbb/Seq2Sick.

3.1.3 Experimental Results

We conduct experiments on two widely-used applications of seq2seq model: text summarization

and machine translation.

Datasets We use three datasets DUC2003, DUC2004, and Gigaword, to conduct our attack

for the text summarization task. Among them, DUC2003 and DUC2004 are widely-used

datasets in documentation summarization. We also include a subset of randomly chosen

samples from Gigaword to further evaluate the performance of our algorithm. For the

machine translation task, we use 500 samples from WMT’16 Multimodal Translation task.

The statistics about the datasets are shown in Table 3.1.

51

https://github.com/cmhcbb/Seq2Sick

Table 3.1: Statistics of the datasets. “# Samples” is the number of test examples we used for
robustness evaluations

Datasets # samples Average input lengths

Gigaword 1,000 30.1 words
DUC2003 624 35.5 words
DUC2004 500 35.6 words
Multi30k 500 11.5 words

Seq2seq models We implement both text summarization and machine translation models

on OpenNMT-py. Specifically, we use a word-level LSTM encoder and a word-based attention

decoder for both applications (BCB14). For the text summarization task, we use 380k training

pairs from Gigaword dataset to train a seq2seq model. The architecture consists of a 2-layer

stacked LSTM with 500 hidden units. We conduct experiments on two types of models, one

uses the pre-trained 300-dimensional GloVe word embeddings and the other one is trained

from scratch. We set the beam search size to be 5 as suggested. For the machine translation

task, we train our model using 453k pairs from the Europal corpus of German-English

WMT 15, common crawl and news-commentary. We use the hyper-parameters suggested

by OpenNMT for both models, and have reproduced the performance reported in (RCW15)

and (HNW16).

3.1.4 Empirical Results

Text Summarization For the non-overlapping attack, we use the proposed loss (2.8) in

our objective function. A non-overlapping attack is treated as successful only if there is no

common word at every position between output sequence and original sequence. We set λ = 1

in all non-overlapping experiments. Table 3.2 summarizes the experimental results. It shows

that our algorithm only needs to change 2 or 3 words on average and can generate entirely

different outputs for more than 80% of sentences. We have also included some adversarial

52

examples in Table 3.7. From these examples, we can only change one word to let output

sequence look completely different with the original one and change the sentence’s meaning

completely.

Table 3.2: Results of non-overlapping attack in text summarization. # changed is how
many words are changed in the input sentence. The high BLEU scores and low average
number of changed words indicate that the crafted adversarial inputs are very similar to their
originals, and we achieve high success rates to generate a summarization that differs with the
original at every position for all three datasets.

Dataset Success% BLEU # changed

Gigaword 86.0% 0.828 2.17
DUC2003 85.2% 0.774 2.90
DUC2004 84.2% 0.816 2.50

For the targeted keywords attack, we randomly choose some targeted keywords from

the output vocabulary after removing the stop words like “a” and “the”. A targeted

keywords attack is treated as successful only if the output sequence contains all the targeted

keywords. We set λ1 = λ2 = 1 in our objective function (3.4) in all our experiments. Table

3.3 summarizes the performance, including the overall success rate, average BLEU score

(PRW02), and the average number of changed words in input sentences. Average BLEU

score is defined by exponential average over BLEU 1,2,3,4, which is commonly used in

evaluating the quality of text which has been machine-translated from one natural language

to another. Also, we have included some adversarial examples crafted by our method in

Table 3.8. In Table 3.8, some adversarial examples with 3 sets of keywords, where “##”

stands for a two-digit number after standard preprocessing in text summarization. Through

these examples, our method could generate totally irrelevant subjects, verbs, numerals and

objects which could easily be formed as a complete sentence with only several word changes.

Note that there are three important techniques used in our algorithm: projected gradient

method, group lasso, and gradient regularization. Therefore, we conduct experiments to

53

verify the importance of each of these techniques.

Table 3.3: Results of targeted keywords attack in text summarization. |K| is the number
of keywords. We found that our method can make the summarization include 1 or 2 target
keywords with a high success rate, while the changes made to the input sentences are relatively
small, as indicated by the high BLEU scores and low average number of changed words.
When |K| = 3, this task becomes more challenging, but our algorithm can still find many
adversarial examples.

Datasest |K| Success% BLEU # changed

Gigaword
1 99.8% 0.801 2.04
2 96.5% 0.523 4.96
3 43.0% 0.413 8.86

DUC2003
1 99.6% 0.782 2.25
2 87.6% 0.457 5.57
3 38.3% 0.376 9.35

DUC2004
1 99.6% 0.773 2.21
2 87.8% 0.421 5.1
3 37.4% 0.340 9.3

Machine Translation We then conduct both non-overlapping and targeted keywords

attacks to the English-German machine translation model. We first filter out stop words

like “Ein”(a), “und”(and) in German vocabulary and randomly choose several nouns, verbs,

adjectives or adverbs in German as targeted keywords. Similar to the text summarization

experiments, we set λ1 = λ2 = 1 in our objective function. The success rates, BLEU scores,

and the average number of words changed are reported in Table 3.4, with some adversarial

examples shown in Table 3.6.

3.1.4.1 Analysis of Syntactic structure and Semantic Meaning Preservation

In our algorithm we aim to make adversarial examples having similar meaning to original

examples by constraining the number of changed words and enforcing the changed words are

54

Table 3.4: Results of non-overlapping method and targeted keywords method in machine
translation.

Method Success% BLEU # changed

Non-overlap 89.4% 0.349 3.5
1-keyword 100.0% 0.705 1.8
2-keyword 91.0 % 0.303 4.0
3-keyword 69.6% 0.205 5.3

Table 3.5: Perplexity score for adversarial example

DUC2003 DUC2004

Original 102.02 121.09
Non-overlap 114.02 149.15
1-keyword 159.54 199.01
2-keyword 352.12 384.80

close to the original words in the embedding space. However, depending on the implemented

word embedding techniques, in general there is no guarantee that every word pair close

in the embedding space have similar meanings. Therefore, we have conducted additional

experiments to verify the syntactic and semantic quality of our generated adversarial examples.

For syntactic structure part, as showed in Table 3.5, we measure the perplexity of generated

adversarial sentences in DUC2003 and DUC2004 dataset. It shows that our examples keeps

the original syntactic structure. For the semantic meaning part, We use DeepAI’s online

sentiment analysis API to test whether our attack changes the sentiment of 500 sentences from

DUC2003 dataset in summarization task. The results show that only 2.2% of adversarial

examples have semantic meaning differ from the original sentences. It proves that

almost all adversarial examples keep the same semantic classification unchanged.

55

3.1.5 Analysis and Discussions

Observation from adversarial example As shown in Table 3.8, our targeted keyword

attack wouldn’t just directly replace the keyword with some word in the source input. However,

the word changed in the adversarial example and the target keyword are co-occurrent in

the training dataset. It infers that seq2seq model learns the relationship between changed

word and target keyword. However, the model fails to decide where it should focus on,

which is strongly related with attention layer used in the model. It encourages us to use

self-attention such as transformer (VSP17) instead to extract all the attentions between any

two words.When attacking subword transformer model, the target 1 keyword attack has 17%

lower success rate and 0.13 lower BLEU score. It shows transformer model has a greater

adversarial robustness.

Robustness of Seq2Seq Model Although our algorithm can achieve very good success

rates (84% − 100%) in both non-overlapping and targeted keywords attacks with 1 or 2

keywords, we also recognize some strengths of the seq2seq model: (i) unlike CNN models

where targeted attack can be conducted easily with almost 100% success rate and very small

distortion that cannot be perceived by human eyes (CW17), it is harder to turn the entire

seq2seq output into a particular sentence – some sentences are even impossible to generate

by seq2seq models; and (ii) since the input space of seq2seq is discrete, it is easier for human

to detect the differences between the adversarial sequence and the original one, even if we

only change one or few words. Therefore, we conclude that, compared with the DNN models

designed for other tasks such as image classification, seq2seq models are more robust to

adversarial attacks. The main reason, as pointed out in the introduction, is that the seq2seq

model has a finite and discrete input space and almost infinite output space, so it is more

robust than visual classification models that have an infinite and continuous input space and

a very small output space (e.g., 10 categories in MNIST and 1,000 categories in ImageNet).

56

Table 3.6: Machine translation adversarial examples. Upper 4 lines: non-overlap; Bottom 4
lines: targeted keyword ”Hund sitzt”

Source input seq A child is splashing in the water.

Adv input seq A children is unionists in the water.

Source output seq Ein Kind im Wasser.

Adv output seq Kinder sind in der Wasser @-@ <unk>.

Source input seq Two men wearing swim trunks jump in the air at a moderately popu-
lated beach.

Adv input seq Two men wearing dog Leon comes in the air at a moderately popu-
lated beach.

Source output seq Zwei Männer in Badehosen springen auf einem mäßig belebten Strand
in die Luft.

Adv output seq Zwei Männer tragen Hund , der in der Luft sitzt , hat <unk> <unk>
.

3.2 AdvAgent: Evaluating and Enhancing the Robustness of Dia-

logue Systems

3.2.1 Competitive Negotiation Dialogues

We use the negotiation agent developed in (LYD17) as the running example in this chapter.

Note that our algorithm can be generalized to other goal-oriented dialogue systems by

designing a different scoring function according to the task.

In a competitive negotiation dialogue setting, two agents are negotiating with each other

over a set of items. We adopt the same setting as (LYD17), in which case items can be

categorized into either a ball, a hat or a book. Each agent is given the goal of the conversation

(denoted by g), which contains the initial values and the quantities of each of the three

items. Agents then negotiate to maximize the total value of their possessed items. Agents

are allowed to negotiate up to a maximum of 10 turns. Scores will be granted to agents based

on the total value of the items if they reach an agreement. If they choose not to agree, 0

score will be granted to both agents. A competitive negotiation dialogue example played by

57

Table 3.7: Text summarization adversarial examples using non-overlapping method. Surpris-
ingly, it is possible to make the output sequence completely different by changing only one
word in the input sequence.

Source input seq among asia ’s leaders , prime minister mahathir mohamad was notable
as a man with a bold vision : a physical and social transformation
that would push this nation into the forefront of world affairs .

Adv input seq among lynn ’s leaders , prime minister mahathir mohamad was notable
as a man with a bold vision : a physical and social transformation
that would push this nation into the forefront of world affairs.

Source output seq asia ’s leaders are a man of the world

Adv output seq a vision for the world

Source input seq under nato threat to end his punishing offensive against ethnic albanian
separatists in kosovo , president slobodan milosevic of yugoslavia has
ordered most units of his army back to their barracks and may well
avoid an attack by the alliance , military observers and diplomats say

Adv input seq under nato threat to end his punishing offensive against ethnic albanian
separatists in kosovo , president slobodan milosevic of yugoslavia has
jean-sebastien most units of his army back to their barracks and
may well avoid an attack by the alliance , military observers and
diplomats say.

Source output seq milosevic orders army back to barracks

Adv output seq nato may not attack kosovo

Source input seq flooding on the yangtze river remains serious although water levels on
parts of the river decreased today , according to the State headquarters
of flood control and drought relief .

Adv input seq flooding that the yangtze river becomes serious although water
levels on parts of the river decreased today , according to the State
headquarters of flood control and drought relief .

Source output seq floods on yangtze river continue

Adv output seq flooding in water recedes in river

58

Table 3.8: Text summarization examples with targeted keywords “police arrest ”

Source input seq north korea is entering its fourth winter of chronic food shortages with
its people malnourished and at risk of dying from normally curable
illnesses , senior red cross officials said tuesday.

Adv input seq north detectives is apprehended its fourth winter of chronic food
shortages with its people malnourished and at risk of dying from
normally curable illnesses , senior red cross officials said tuesday.

Source output seq north korea enters fourth winter of food shortages

Adv output seq north police arrest fourth winter of food shortages.

Source input seq after a day of fighting , congolese rebels said sunday they had entered
kindu , the strategic town and airbase in eastern congo used by the
government to halt their advances.

Adv input seq after a day of fighting , nordic detectives said sunday they had
entered UNK , the strategic town and airbase in eastern congo used
by the government to halt their advances.

Source output seq congolese rebels say they have entered UNK.

Adv output seq nordic police arrest ## in congo.

Source input seq president boris yeltsin stayed home tuesday , nursing a respiratory
infection that forced him to cut short a foreign trip and revived
concerns about his ability to govern.

Adv input seq president boris yeltsin stayed home tuesday , cops cops respiratory
infection that forced him to cut short a foreign trip and revived
concerns about his ability to govern.

Source output seq yeltsin stays home after illness

Adv output seq yeltsin stays home after police arrest

59

Input
Human 3xbook value 2 3xhat value 1 1xball value 1
Agent 3xbook value 1 3xhat value 2 1xball value 1

Human I’d like the books and the hats.
Agent I will take the books and hats.
Human I need the books and at least one other object.
Agent Ok, you can have one book and one ball
Human If I can have all books, I can leave you the rest.
Agent Deal
Human 〈selection〉
Output Reward
Human 3xhat 1xball 7/10
Agent 3xbook 6/10

Table 3.9: Competitive negotiation dialogue generated between agent and human.

human and agent could be found in Table 3.9.

We assess the robustness of a trained end-to-end negotiation agent used in (LYD17). In

the negotiation chatbot setting, agents first chat using natural language and then make a

selection based on what they have chatted with. We refer to the first phase as negotiation

phase and the second phase as decision phase.

In the negotiation phase, conversation response at time t, xt is generated word by word

based on chat history x0..t−1 and the goal of the conversation g. The conversation model

is controlled by a speaking module θ and tokens are randomly sampled from probability

distribution pθ. This process continues recursively until an end-of-sentence token 〈EOS〉

or selection token 〈selection〉 token is generated. When 〈EOS〉 is encountered, the turn

terminates and the conversation is handled to another agent. When 〈selection〉 is encountered,

the negotiation phase terminates and the negotiation will reach the decision phase.

xt ∼ pθ(xt|x0...t−1, g) (3.5)

In the decision phase, both agents will output a decision o based on a decision module

probability distribution p′θ. Agents’ decisions will be based on conversation history x0...T up

to the current time step T and the goal of the conversation g. Here O is a set of all legitimate

60

selections, which is defined to be a space of where each selection must be greater or equal

than 0 and the sum of selections for the same item must be equal to its original quantity.

Since we only have a few items, it is possible to enumerate all the possibilities to get the set

O.

o∗ = argmax
o∈O

∏
i

p′θ(oi|x0...T , g) (3.6)

Agents will then collect rewards (i.e. scores) from the environment (which will be 0

if they output conflicted decisions, e.g. the total number of items are different from the

initial amount). It is important to keep the agent producing sentences that are correct both

grammatically and semantically and keeping them competitive at the same time. Therefore,

a common strategy is to train agents using supervised learning to learn natural language

and to use reinforcement learning to optimize models’ performance using on goal-oriented

learning. We measure two statistics score and agreement. score is the average score for

each agent (0-10). agreement is the percentage of dialogues where both agents agreed

on the same decision. To measure the extent of success of our adversarial agent, we use

advantage which is easy to compute directly from adversarial agent score minus target agent

score, i.e. Sadv − Sori.

3.2.2 Proposed Black-box Attack Algorithms

We first build our adversarial agent in black-box setting. Black-box setting in goal-oriented

dialogue system is defined where the target agent is unknown to the attacker, but it is possible

to make queries to obtain the final decision made by the target agent. To be noted, our aim is

to test the robustness of the target agent. Therefore, in the decision phase we let adversarial

agent chooses the complementary of target agent’s choice, so those two agents will always

reach agreement. The adversarial agent thus only has the speaking module and there is no

decision network needed. In this section we proposed two adversarial agents in the black-box

61

setting.

3.2.2.1 Reinforcement learning attack

Inspired by the procedure of goal-based reinforcement learning, we modified the reward

function of our adversarial agent with the advantage instead of the score he got:

radv = Sadv − Sori (3.7)

where Sadv and Sori are adversarial agent score and target agent score respectively. After a

complete dialogue has been generated, we update adversarial agent’s parameters based on

the outcome of the negotiation.

To learn the adversarial agent’s speaking network by reinforcement learning, we denote

the subset of tokens generated by the adversarial agent as Xadv. In the completed dialogue,

γ is the discount factor that rewards actions at the end of the dialogue more strongly, and µ

is a running average of completed dialogue rewards so far. We define the future reward R for

an action xt ∈ Xadv as follows:

R(xt) =
∑

xt∈Xadv

γT−t(radv − µ). (3.8)

Then by a standard policy gradient algorithm, we could train our adversarial agent. Note

that this attack doesn’t require the knowledge on the target agent’s structure/weights, and

the experimental results demonstrate significant attack performance over regular agents.

3.2.2.2 Transfer attack

Transfer attack is a popular idea for attacking black-box models (PMG17). In dialogue

systems, we can also consider the following transfer process: a sentence that leads to low radv

in one dialogue might also lead to similar results in another dialogue. To implement this idea,

we first collect a list of last sentences spoken by the adversarial agent from dialogues with

high reward, denoted by L. In the conversations, we let our adversarial agent and the target

agent negotiate n turns using the regular speaking module, and then plug in one sentence in

62

L at the (n+ 1)-th turn. Our experimental results show that this transfer attack does not

work well in practice.

3.2.3 Proposed White-box Attack Algorithms

In the white-box setting, we assume that the attacker can access every part of the target

agent, including the weights of both speaking and decision models, and the decision output

in every dialogue. Similar to the black-box attacks, we let the adversarial agent choose

the complementary of target agent’s choices to ensure 100% agreement. By exploiting the

knowledge of the target agent’s model, white-box attacks can achieve much higher advantage

than black-box attacks.

3.2.3.1 Force target agent to select at a fixed turn

To begin with, we consider a simplified strategy where we first let our adversarial agent and

the target agent negotiate n turns using regular speaking module. For the (n+ 1)-th turn, we

propose the following two ways to modify the output of regular speaking module to maximize

the rewards of adversarial agent.

3.2.3.2 Reactive attack

The first strategy is that the adversarial agent produces a sentence that forces the target

agent to say 〈selection〉. The conversation will then enter the decision phase. At the same

time, the sentence produced by the adversarial agent should guide the target agent to make a

bad selection that would be in favor of the adversarial agent. We call this method reactive

attack.

We formulate this strategy as an optimization problem. Let x̂ = xtn...T−1 be the output

sentence generated by adversarial agent in the speaking model after n -th turn. Specifically,

we define x0...T−1 as all the tokens in the dialogue history before 〈selection〉. Zr(x0...T−1)

63

indicates the logit layer outputs for predicting xT based on chat history x0...T−1 in the speaking

model. Zo(x0...T) indicates the logit layer outputs on conversation history x0...T in the decision

model. Because we have a constraint to force the target agent to say the end-of-dialog token

〈selection〉, we could format this constraint as

[Zr(x0...T−1)]ksel − max
i 6=ksel

[Zr(x0...T−1)]i ≥ 0 (3.9)

where ksel is the corresponding index of end-of-dialog token 〈selection〉.

At the same time, the score of output o should be in favor of our adversarial agent.

Assume the original decision output is o′,

L(x̂) = max{[Zo(x0...T)]o′ −max
o∈Ō

[Zo(x0...T)]o,−κ} (3.10)

where Ō is the set of outputs that score of adversarial agent is greater than target agent i.e.

Ō = {o ∈ Ō|Sadv(o) > Sori(o)}, and κ ≥ 0 denotes the confidence margin parameter. Note

that x̂ is a sub-sequence in x0...T , so the right hand side of (3.10) is a function of x̂.

Combining these two equations together, we can get our final objective function:

min
x̂

L(x̂) (3.11)

s.t. [Zr(x0...T−1)]ksel−max
i 6=ksel

[Zr(x0...T−1)]i ≥ 0

Eq (3.11) is a discrete optimization problem since x̂ is the sentence produced by adversarial

agent.

In this chapter, we use a modified version of the greedy algorithm to optimize (3.11).

Although the original algorithm proposed in (YCH18) only considered the unconstrained

discrete problem, we show that the following slightly modified version performs well for

solving (3.11). At each iteration, we try to replace each word in x̂ by the special token

〈PAD〉. A word that achieves minimal loss after swapping with 〈PAD〉 is then selected as

the word to be replaced. Then we try to replace the selected word with each word in the

vocabulary. For all the trials that satisfy the constraint, we choose the one with minimal

loss and conduct the actual change. We run this procedure iteratively to minimize (3.11). In

the experiments, we only replace two words in x̂ to ensure the fluency and correctness of the

adversarial sentences.

64

3.2.3.3 Preemptive attack

The other attack strategy is to produce a sentence to guide the target agent to lower its

demand in the reply instead of making target agent say end-of-dialog token. And after the

reply from target agent, the adversarial agent speaks the end-of-dialogue token to enter the

decision phase. Similar to the reactive attack, adversarial agent’s score should be greater

than target agent’s score in the decision phase. Clearly, this strategy is more challenging

than the previous one because there is an intermediate sentence spoken by the target agent

before end-of-dialogue. We call this preemptive attack.

Let x̂ = xtn...tnT
be the output sentence generated by adversarial agent in the speaking

model after turn n, where tn is the first word and tnT
is the last word of the sentence.

Similarly, we could formally turn the intuition into optimization problem as follows:

L(x̂) = max{[Zo(x0...T)]o′ −max
o∈Ō

[Zo(x0...T)]o,−κ} (3.12)

Since we do not need to force target agent to say end-of-dialogue, the problem becomes

an unconstrained discrete optimization problem. We then directly apply the unconstrained

version of greedy algorithm (YCH18) to solve it.

3.2.3.4 Force target agent to select at arbitrary turn

While we could let our adversarial agent and the target agent negotiate n turns, it is still

unknown which n should be chosen to get the best performance. In other words, we aim to

not only know what to say but also when to say to fool the target agent.

We propose two strategies to force target agent to make bad decisions at arbitrary turn.

The details are presented in Algorithm 7. When it is the turn for adversarial agent to speak,

we first try to apply reactive and preemptive attacks. If both attacks couldn’t make the loss

L(·) less than 0, there are two strategies: 1) just output the sentence generated by the regular

speaking module (delayed attack), and 2) conduct transfer attack. The comparisons can be

found in the experiments.

65

Algorithm 7 Arbitrary turn attack algorithm

Input: Target agent B, Input goal g
Output: Dialogue x0...T , Agent score Sadv and Sori
while 〈selection〉 is not generated do

Set the loss L(·) to be (3.11)
Optimize the Loss L(·)
if L(·) < 0 then

Add the output into the dialogue
else

Set the loss L(·) in to be (3.12)
Optimize the Loss L(·)
if L(·) < 0 then

Add the output into the dialogue
else

if Transfer Attack then
Randomly add a sentence in L (malicious sentences) into the dialogue.

else
Add the sentence generated by regular speaking model into the dialogue

(delayed attack).

Generate o using dialogue x0...T

Calculate Sadv and Sori
Return: x0...T ,Sadv,Sori

3.2.4 Adversarial Training

Adversarial training is a popular method to improve the robustness of machine learning

models (MDG16; MMS18). In this section, we use the agents designed in the previous sections

to improve the robustness of the target agent.

In standard adversarial training for neural network models (GSS14; JL17), adversarial

examples (images or sentences) generated by an attack are added to the training procedure to

refine the model. Since our setting is interactive and there is no fixed data used in selfplay, we

should conduct training with adversarial agents instead of adversarial examples. Moreover,

as pointed out by (JL17), training on the examples generated by a single attack will lead to

over-fitting to a particular attack, so we should do adversarial training iteratively.

Taking the black-box RL agent as an example, we consider the following min-max

66

formulation:

min
θori
{max
θadv

Sadv − Sori}, (3.13)

where θori is the weights for the target agent and θadv is the weights for the adversarial

black-box agent. We solve (3.13) by the following alternating minimization procedure. At

each iteration, we first update the target agent (θori) using the standard policy gradient

algorithm, and then use our RL algorithm in Section 3.2.2.1 to update adversarial agent

to counter the target model. We iteratively conduct these updates until convergence. The

experiments show that the adversarial training procedure can improve the robustness not

only under RL attack but also under other white-box attacks.

3.2.5 Experimental Results

We perform extensive experiments on evaluating the robustness of the negotiation agents

developed in (LYD17). Furthermore, we show that the robustness of negotiation agents can

be significantly improved using the proposed adversarial training procedure. Our codes are

publicly available at https://github.com/cmhcbb/Robustness-of-Dialogue-systems.

Experimental Setup We use the code released by the authors (LYD17) and follow their

instructions to get the target end-to-end negotiation agents. More specifically, we first train

the model on 5808 dialogues, based on 2236 unique scenarios in supervised way to imitate

the actions of human users. We call this model supervised model (SV agent). Then we use

reinforcement learning to conduct goal-oriented training in order to maximize the agent’

reward. The second model is called the reinforcement learning model (RL agent). As a

result, when doing selfplay between RL agent and SV agent, we could get RL agent with 5.86

perplexity, 89.57% agreement and 7.23 average score, while SV agent achieves 5.47 perplexity

and 4.55 average score. These numbers are similar to the numbers reported in (LYD17).

To evaluate the robustness of these agents, we conduct all the proposed attacks on both

supervised model (SV agent) and reinforcement learning model (RL agent). The successfulness

67

 https://github.com/cmhcbb/Robustness-of-Dialogue-systems

of an attack is measured by average score advantage and positive advantage rate (PAR).

Average score advantage is defined by averaged adversarial agent’s score minus average target

agent’s score. The value is in the region of [−10, 10] since the total values are controlled to

be 10 for both sides, and a larger advantage indicates a more successful attack. Also, we

define positive advantage rate (PAR) as the ratio of dialogues that the adversarial agent

gets a higher score than the target agent. We will see that most attacks developed in this

chapter will improve both average score advantage and PAR. Note that this is the first work

on attacking a goal-oriented dialogue agent so there is no previous method that could be

included in the comparisons.

Results on Black-box Attacks As introduced in Section 4, we have two black-box attacks:

reinforcement learning attack (RL attack) and Transfer attack.

RL Attack. In the reinforcement learning attack, we use a learning rate of 0.1, clip

gradients above 1.0, and set the discount factor γ = 0.95 in (3.8). We train the adversarial

agent for 4 epochs on all scenarios. From Table 3.10, we observe that with 100% agreement

rate, our adversarial agent could gain 2.32 score advantage against the RL agent and 4.25

advantage against the SV agent. Also, our agent achieves a relatively high positive advantage

rate at 84.45% and 69.35% respectively. We show some adversarial dialogues played by

adversarial agent and target agent in Table 3.11. It shows that RL agent is able to identify

the weak point of target agent by saying ”take book you get rest”, which could easily let

the agent accept the deal and make a bad selection that is inconsistent with the context of

dialogue.

Transfer attack. In transfer attack, we first let our adversarial agent speak the sentence

generated by the speaking model with target agent for 3 turns. If the end-of-dialog token has

never been mentioned, in the 4th turn, the adversarial agent speaks the sentence generated

by our RL agent. The detailed results are shown in Table 3.10. We observe that the transfer

68

attack is not successful—only -0.13 and -1.189 score advantage are achieved. We found

that transferring sentences between dialogues is not successful because the item values and

conversation histories are quite different between dialogues.

vs SV agent vs RL agent
Model PAR% Score(advantage) Agreement% PAR% Score(advantage) Agreement%
RL model(w/o attack) 75.79 7.23 vs 4.55 (2.68) 89.57 44.70 5.05 vs 5.00 (0.05) 76.36
Transfer attack 44.43 6.41 vs 6.54 (-0.13) 100 36.10 5.65 vs 6.84 (-1.19) 100
RL attack 84.45 8.28 vs 4.03 (4.25) 100 69.35 7.11 vs 4.79 (2.32) 100
Reactive attack 87.00 8.83 vs 3.43 (5.40) 100 90.23 8.72 vs 3.77 (4.95) 100
Preemptive attack 71.86 7.76 vs 4.95 (2.81) 100 69.23 6.78 vs 6.01 (0.77) 100
RA+PA+DA 84.33 8.79 vs 2.96 (5.83) 100 86.93 8.73 vs 2.95 (5.78) 100
RA+PA+TA 83.12 8.67 vs 3.05 (5.62) 100 89.74 8.62 vs 2.92 (5.70) 100

Table 3.10: Negotiation task evaluation with different adversarial agent on 2000 randomly
generated scenarios, against the supervised model and reinforcement learning model. The
maximum socre is 10. When agents failed to agree, all agents get 0 score. PAR stands
for positive advantage rate. RA+PA+DA stands for the combination of reactive attack,
preemptive attacka and delayed attack. RA+PA+TA stands for the combination of reactive
attack, preemptive attacka and transfer attack.

Input
Adv agent 1xbook value 1 4xhat value 1 1xball value 5
RL agent 1xbook value 2 4xhat value 1 1xball value 4

Adv agent i want the hats and 2 balls
RL agent i need the balls and the hat
Adv agent take book you get rest
RL agent deal
Adv agent 〈selection〉
Output Reward
Adv agent 4xhat 1xball 9/10
RL agent 1xbook 2/10

Table 3.11: Dialogue example generated by black-box RL attack agent against RL agent.

Results on White-box Attacks We conduct the white-box attacks introduced in Section

3.2.3.

Force target agent to select at a fixed turn. There are two types of algorithms

(reactive attack and preemptive attack) introduced in Section 3.2.3.1. The detailed results

69

are shown in Table 3.10. We observe that the reactive attack could achieve better results

than black-box method with 5.40 score advantage against SV agent and 4.98 score advantage

against RL agent. On the other hand, preemptive attack is not that successful—it gets 2.81

advantage against SV agent and 0.77 score advantage against RL agent. Furthermore, we

have included some adversarial dialogues played by white-box adversarial agent and target

agent in Table 3.12. From these examples, we could see that white-box adversarial agent

could generate the adversarial sentences, slightly unnatural however still readable, that could

fool the target agent to make terrible decisions.

Input
Adv agent 1xbook value 0 1xhat value 1 3xball value 3
RL agent 1xbook value 1 1xhat value 0 3xball value 3

Adv agent i would like the balls and the hat
RL agent i need the balls and the book
Adv agent i need the balls and fine book
RL agent 〈selection〉
Output Reward
Adv agent 1xhat 1xbook 3xball 10/10
RL agent 0/10

Table 3.12: Dialogue example generated by reactive attack agent against RL agent.

Input
Adv agent 1xbook value 4 2xhat value 1 2xball value 2
RL agent 1xbook value 8 2xhat value 0 2xball value 1

RL agent i would like the book and the hat.
Adv agent i want reasonable balls and book
RL agent 〈selection〉
Output Reward
Adv agent 1xbook 2xball 8/10
RL agent 2xhat 0/10

Table 3.13: Dialogue example generated by RA+PA+DA attack agent against RL agent.

Force target agent to select at arbitrary turn. To determine when should we begin

the attack, we design combinations of reactive attack, preemptive attack and transfer attack or

70

delayed attack in Section 3.2.3.4. Here, we conduct experiments to validate the effectiveness of

these two attack combinations. From Table 3.10, the combinations achieve better results than

all the previous attacks. The best result is achieved by the combination of reactive attack,

preemptive attack and delayed attack (RA+PA+DA), which gets 5.83 advantage against SV

agent and 5.78 score advantage against RL agent, with very high positive advantage rates at

84.33% and 86.93% respectively. We have included some adversarial dialogues played by this

adversarial agent and the target agent in Table 3.13. We observe that with the delayed attack,

the adversarial agent can decide when to attack, thus achieves much better performance

than attacking at a fixed turn.

3.2.5.1 Adversarial Training

Using the algorithm proposed in Section 6, we conduct adversarial training using the black-box

RL attack model. The results are shown in Table 3.14. First, we observe that the adversarial

trained model achieves much better performance against black-box RL attack; the advantage

of RL attack drops from 2.32 to −1.8. Moreover, the model achieves consistently better

performance against other white-box attacks. For instance, the advantage of the strongest

RA+PA+DA attack is reduced from 5.78 to 3.98.

vs advtrain model
Model PAR% Score(advantage) Agreement%
RL model(w/o attack) 48.67 6.51 vs 6.64 (-0.13) 91.75
Transfer attack 23.05 4.93 vs 7.59 (-2.66) 100
RL attack 62.61 5.71 vs 7.51 (-1.80) 100
Reactive attack 80.76 8.83 vs 4.31 (4.52) 100
Preemptive attack 34.39 5.64 vs 7.41 (-1.77) 100
RA+PA+DA 73.96 8.05 vs 4.07 (3.98) 100
RA+PA+TA 73.45 8.06 vs 4.13 (3.93) 100

Table 3.14: Negotiation task evaluation with different adversarial agent on 2000 randomly
generated scenarios, against adversarial trained model.

71

3.2.6 Analysis and Discussions

RL agents are more robust than SV agents. From Table 3.10, we could see that all

the attack methods perform better when facing SV agents than RL agents. It is because

that SV agents only learn to mimic human’s action and are trained only on human data.

Therefore, it is reasonable that RL agents are more robust than SV agents.

The importance of arbitrary turns. In reactive attack and preemptive attack, we begin

our attack at the n-th turn and we set n = 2 in the experiments. Here we show the results

with different n in Table 3.15. We observe that the performance of white-box attacks are

quite consistent with different choices of n. This probably indicates that there the best n

varies for different cases. Therefore, if we could change the n from case to case adaptively,

which is done by delayed attack, we could see a performance boost.

n PAR% Score(advantage) Agreement%

1 94.02 8.84 vs 3.32 (5.52) 100
2 90.23 8.72 vs 3.77 (4.95) 100
3 92.02 8.81 vs 3.62 (5.19) 100
4 90.35 8.71 vs 3.87 (4.84) 100

Table 3.15: Negotiation task evaluation with different choices of n against RL model.

Adversarial training helps to improve the robustness. We then try to investigate

the robustness of the adversarial trained model. We found that in the original model, it is

easy for an attacker to find a sentence to quickly end the dialogue. However, after adversarial

training, it becomes much harder to find such sentences. Moreover, although we only conduct

adversarial training on black-box RL model, the adversarial trained model still achieves better

performance against other white-box attacks. This indicates that the adversarial trained

model could probably detect the slight unnaturalness of those sentences and thus have a

better reading comprehension ability.

72

Part II

Adversarial defenses

73

In this part, we introduce the mainstream defense methods to improve the model’s adver-

sarial robustness. This part is composed by two chapters: Attack-dependent defense and

Attack-independent defense. In Chapter 4, we start with the widely used attack-specific

adversarial training in Section 4.1 and its limitations. To counter the aforementioned

limitations, we then introduce CAT in Section 4.2 which adaptively customizes the perturba-

tion level and the corresponding label for each training sample in adversarial training. In

Chapter 5, We then briefly cover other attack-independent robust training in Section 5.1.

Then we summarize the aforementioned method into a general framework inspired by vicinal

risk minimization in Section 5.2. In Section 5.3, we introduce a new defense method called

SPROUT and show its effectiveness from different perspectives. Although many algorithms

have been proposed to improve the robustness of machine learning models, all of them

sacrifice performance on natural data. In Chapter 6, we talk about this issue and introduce a

hypothesis in Section 6.2 that Batch Normalization, one of the widely used techniques in

convolution neural networks, has a great impact on the robustness trade-off. Following the

hypothesis, we introduce RobMask in Section 6.3 to improve the model’s generalization to

improve the model’s performance over both natural data and adversarial examples.

74

CHAPTER 4

Attack-dependent Robust Training

4.1 Adversarial Training

(SZS13) shows model robustness could improve when augmented with adversarial examples.

However, it is limited by its usage of expensive L-BFGS method to generate adversarial

examples. (GSS14) proposes a more efficient attack method FGSM that could significantly

improve the model robustness. Later, (MMS18) finds L∞ based PGD could achieve the best

performance that generates a 92.76% accuracy with ε = 0.3 constraint in MNIST dataset.

Specifically, adversarial training can be formulated as a min-max optimization problem. For

a K-class classification problem, let D = {(xi, yi)}i=1,...,n denote the set of training samples in

the dataset with xi ∈ Rd, yi ∈ {1, . . . , K} =: [K]. Let fθ(x) : Rd → [K] denote a classification

model parameterized by θ. We denote by hθ(x) : Rd → [0, 1]K as the prediction output for

each class, i.e., fθ(x) = argmaxi[hθ(x)]i. We use standard O(·) notation to hide universal

constant factor, and a . b to indicate a = O(b).

Adversarial training can be formulated as:

min
θ

1

n

n∑
i=1

max
x′i∈B(xi,ε)

`(fθ(x
′
i), yi), (4.1)

where B(xi, ε) denotes the `p-norm ball centered at xi with radius ε. The inner maximization

problem aims to find an adversarial version of a given data point xi that achieves a high

loss. In general one can define B(xi, ε) based on the threat model, but the `∞ ball is the

most popular choice adopted by recent works (MMS18; ZYJ19; Wan19), which will also be

used in this section. For a deep neural network model, the inner maximization does not

75

have a closed form solution, so adversarial training methods typically use a gradient-based

iterative solver to approximately solve the inner problem. The most commonly used choice

is the multi-step PGD (MMS18) and C&W attack (CW17). It has since inspired many

advanced adversarial training algorithms with improved robustness. For instance, TRADES

(ZYJ19) is designed to minimize a theoretically-driven upper bound on prediction error of

adversarial examples, which led to the first-ranked defense in the NeurIPS 2018 Adversarial

Vision Challenge. Bilateral adversarial training (Wan19) finds robust models by adversarially

perturbing the data samples and as well as the associated data labels. A feature-scattering

based adversarial training method is proposed in (ZW19). Another line of recent works uses

an adversarially trained model along with additional unlabeled data (CRS19; SFK19) or

self-supervised learning with adversarial examples (HMK19) to improve robustness.

4.1.1 Limitation

Intuitively, if adversarial training can always find a model with close-to-zero robust error, one

should always use a large ε for training because it will automatically imply robustness to any

smaller ε. Unfortunately, in practice a uniformly large ε is often harmful. In the following we

empirically explain this problem and use it to motivate our proposed algorithm.

We use a simple linear classification case to demonstrate why a uniformly large ε is

harmful. In Figure 4.1a, we generate a synthetic linearly separable dataset with the margin

set to be 1.75 for both classes, where the correct linear boundary can be easily obtained by

standard training. In Figure 4.1b, we run adversarial training with ε = 1, and since this ε is

smaller than the margin, the algorithm can still obtain near-optimal results. However, when

we use a large ε = 4 for adversarial training in Figure 4.1c, the resulting decision boundary

becomes significantly worse. It is because adversarial training cannot correctly fit all the

samples with a margin up to 4, so it will sacrifice some data samples, leading to distorted

and undesirable decision boundary. This motivates the following two problems:

• We shouldn’t set the same large ε uniformly for all samples. Some samples are intrinsi-

76

cally closer to the decision boundary and they should use a smaller ε. Without doing

this, adversarial training will give up on those samples, which leads to worse training

and generalization error (see more discussions in Section 4.2.3 on the generalization

bounds).

• The adversarial training loss is trying to force the prediction to match the one-hot label

(e.g., [1, 0] in the binary classification case) even after large perturbations. However, if a

sample is perturbed, the prediction shouldn’t remain one-hot. For instance, if a sample

is perturbed to the decision boundary of a binary classification problem, the prediction

of a perfect model should be [0.5, 0.5] instead of [1, 0], which also makes adversarial

training fail to recover a good decision hyperplane.

Furthermore, we observe that even if adversarial training can obtain close-to-zero training

error with large ε (e.g., (GCL19) proves that this will happen for overparameterized network

with large-enough margin), a uniformly large ε will lead to larger generalization gap. This

could be partially explained by the theoretical results provided by (YRB18), which shows that

the adversarial Rademacher complexity has a lower bound with an explicit dependence on the

perturbation tolerance. The empirical results in Table 4.1 also illustrate this problem. When

conducting adversarial training with ε = 0.3 on CIFAR10 VGG-16, we found that the model

achieves close-to-zero robust training error on all ε ≤ 0.3, but it suffers larger generalization

gap compared to training with smaller ε. This also demonstrates that a uniformly large ε is

harmful even when it achieves perfect training error.

Table 4.1: The influence of different fixed ε values used in adversarial training on the robust
accuracy with ε = 0.01.

Testing ε Error Type
Training ε

0.01 0.02 0.03

0.01
Train 99.96% 99.99% 99.16%
Test 69.79% 69.06% 66.04%

77

12 10 8 6 4 2 0 2

6

4

2

0

2

4

6

8

(a) Standard training

12 10 8 6 4 2 0 2

6

4

2

0

2

4

6

8

(b) Adv-train with ε =
1

12 10 8 6 4 2 0 2

6

4

2

0

2

4

6

8

(c) Adv-train with ε =
4

12 10 8 6 4 2 0 2

6

4

2

0

2

4

6

8

(d) CAT (ours) with
εmax = 4

Figure 4.1: Different training methods on a linearly separable binary classification dataset
with 1.75 margin for both classes. Adversarial training with small ε works fine, but for a
large ε beyond the true margin, adversarial training would ruin the classifier’s classification
performance, while our proposed adaptive customized adversarial training method still keeps
a good generalization performance.

4.2 CAT: Customized Adversarial Training for Improved Robust-

ness

In this section, we propose the Customized Adversarial Training (CAT) framework that

improves adversarial training by addressing the above-mentioned problems. First, our

algorithm has an auto-tuning method to customize the ε used for each training example.

Second, instead of forcing the model to fit the original label, we customize the target label

for each example based on its own ε. In the following we will describe these two components

in more detail.

4.2.1 Auto-tuning Perturbation Strength for Adversarial Training

The first component of our algorithm is an ε auto-tuning method which adaptively assigns

a suitable ε for each example during the adversarial training procedure. Let εi be the

perturbation level assigned to example i. Based on the intuition mentioned in Section 4.1.1,

we do not want to further increase ε if we find the classifier does not have capacity to robustly

78

classify the example, which means we should set

εi = argmin
ε
{ max
x′i∈Bp(xi,ε)

fθ(x
′
i) 6= yi} (4.2)

and the adversarial training objective becomes

min
θ

1

n

n∑
i=1

max
x′i∈Bp(xi,εi)

`(fθ(x
′
i), yi). (4.3)

Note that εi in (4.2) depends on θ, while θ in (4.3) also depends on εi. We thus propose an

alternative update scheme — conducting one SGD update on θ, and then updating the εi in

the current batch. However, finding εi exactly requires brute-force search for every possible

value, which adds significant computational overhead to adversarial training.

Therefore, we only conduct a simplified update rule on εi as follows. Starting from an

initial perturbation level of zero, at each iteration we conduct adversarial attack (e.g., PGD

attack) with perturbation tolerance εi + η where η is a constant. If the attack is successful,

then we reset current εi to 0 to encourage model learning a more robust classifier towards

those examples. While if the attack is unsuccessful, which means an attacker still cannot find

an adversarial example that satisfies maxx′i∈Bp(xi,εi+η) fθ(x
′
i) 6= yi, then we increase εi = εi + η.

The attack results will also be used to update the model parameter θ, so this adaptive scheme

does not require any additional cost. In practice, we also have an upper bound on the final

perturbation to ensure that εi remains bounded for each i.

4.2.2 Adaptive Label Uncertainty for Adversarial Training

As mentioned in Section 4.1.1, the standard adversarial training loss is trying to enforce

a sample being classified as the original one-hot label after ε perturbation. However, this

may not be ideal. In the extreme case, if a sample is perturbed to the decision boundary,

the prediction must be far away from one-hot. This problem is more severe when using

non-uniform εi, since each different εi will introduce a different bias to the loss, and that may

be one of the reasons that purely adaptive ε-scheduling does not work well (see our ablation

study in Section 4.2.4 and also the results reported in (BGH19)).

79

In the following, we propose an adaptive label smoothing approach to reflect different

perturbation tolerance on each example. (SVI16) introduced label smoothing that converts

one-hot label vectors into one-warm vectors representing low-confidence classification, in order

to prevent the model from making over-confident predictions. Specifically, with a one-hot

encoded label y, the smoothed version is

ỹ = (1− α)y + αu,

where α ∈ [0, 1] is the hyperparameter to control the smoothing level. In the adaptive

setting, we set α = cεi so that a larger perturbation tolerance would receive a higher label

uncertainty and c is a hyperparameter. A common choice of u is u = 1
K

. However, this strict

requirement tries to enforce every other labels having the same probability, which may not

make sense in practice. On the other hand, as shown Section 4.1.1, adversarial training is easy

to overfit and generate a large generalization gap. To better address these issues, we sample

from a distribution instead. Specifically, we use u = Dirichlet(β) where Dirichlet(·) refers

to the Dirichlet distribution and β ∈ RK is concentration hyperparamter. With different

perturbation tolerance, the adaptive version of label smoothing is

ỹi = (1− cεi)yi + cεiDirichlet(β). (4.4)

The final objective function: Combining the two aforementioned techniques, our

Customized Adversarial Training (CAT) method attempts to minimize the following objective:

min
θ

1

n

n∑
i=1

max
x′i∈Bp(xi,εi)

`(fθ(x
′
i), ỹi)

s.t. εi = argmin
ε
{ max
x′i∈Bp(xi,ε)

fθ(x
′
i) 6= yi},

(4.5)

where ỹi is defined in (4.4). As described in Section 4.2.1, we approximately minimize

this objective with an alternative update scheme, which incurs almost no additional cost

compared to the original adversarial training algorithm. The detailed algorithm is presented

in Algorithm 8.

Choice of loss function. In general, our framework can be used with any loss function

`(·). In the previous works, cross entropy loss is commonly used for `. However, the model

80

trained by smoothing techniques tends to have a smaller logit gap between true label and

other labels. Therefore, in order to encourage model to generate a larger logit gap, we propose

a mixed loss to enhance the defense performance towards C&W∞ attack. That is,

CE(fθ(x
′
i), ỹi) + max{max

j 6=y0
{[Z(x′i)]j − [Z(x′i)]y0},−κ}, (4.6)

where Z(x) ∈ RK is the final (logit) layer output, and [Z(x)]i is the prediction score for the

i-th class and y0 is the original label. The parameter κ encourages the adversary to find

higher confident adversarial examples in training.

Algorithm 8 CAT algorithm

Input: Training dataset (X, Y), cross entropy loss or mix loss `, scheduling parameter η,
weighting factor c, perturbation upperbound εmax
Initial every sample’s εi with 0
for epoch=1, . . . , N do

for i=1, . . . , B do
ỹi ← (1− cεi)yi + cεiDirichlet(β)
εi ← εi + η
δi ← 0
for j = 1 . . .m do

δi ← δi + α · sign(∇δ`(fθ(xi + δi), ỹi)
δi ← max(min(δi, εi),−εi)

if fθ(xi + δi) 6= yi then
εi ← 0

εi ← min(εmax, εi)
ỹi ← (1− cεi)yi + (1− cεi)Dirichlet(β)
θ ← θ − γθ∇θ`(fθ(xi + δi), ỹi)

return θ

4.2.3 Theoretical Analysis

To better understand how our scheme improves generalization, we now provide some theoretical

analysis. Recall we denote by hθ(x) : Rd → [0, 1]K as the prediction probability for the K

classes. We define the bilateral margin that our paper is essentially maximizing over as

follows.

Definition 1 (Bilateral margin). We define the bilateral perturbed network output by

81

Hθ(x, δ
i, δo):

Hθ(x, δ
i, δo) := hθ

(
x+ δi‖x‖

)
+
∥∥∥x+ δi‖x‖

∥∥∥ · δo.
The bilateral margin is now defined as the minimum norm of (δi, δo) required to cause the

classifier to make false predictions:

mF (x, y) := min
δi,δo

√
‖δi‖2 + ‖δo‖2

s.t. max
y′

Hθ(x, δ
i, δo)y′ 6= y.

(4.7)

This margin captures both the relative perturbation on the input layer δi and the soft-max

output δo.

Theorem 4. Suppose the parameter space Θ we optimize over has covering number that

scales as logN‖·‖op(η,Θ) ≤ bC2/η2c for some complexity C. Then with probability 1− δ over

the draw of the training data, any classifer fθ, θ ∈ Θ which achieves training error zero

satisfies:

E[fθ(x) = y] .
C log2 n√

n

√√√√ 1

n

n∑
i=1

1

mF (xi, yi)
+ ζ,

where ζ is of small order O
(

1
n

log(1/δ)
)
.

We defer the proof later, which is adapted from Theorem 2.1 of (WM19). We observe the

population risk is bounded by two key factors, the average of 1
mF (xi,yi)

and C, the covering

number of the parameter space. On one side, the average of 1
mF (xi,yi)

is dominated by the

samples with the smallest margin. Therefore when we do adversarial training, it is important

that we not only achieve higher overall accuracy, but also make sure the samples closer to

the decision boundary have large enough margin. This can not be achieved by simply using

constant and large ε that will maintain a large margin for most samples but sacrifice the

accuracy of a small portion of data. On the other hand, the covering number of the network’s

parameter space can be roughly captured by a bound of product of all layers’ weight norms.

We hypothesize that with more flexibility in choosing ε, our algorithm will converge faster

than using larger constant ε and will have more implicit regularization effect. To testify this

82

Table 4.2: The clean and robust accuracy of VGG-16 models trained by various defense
methods. All robust accuracy results use ε = 8/255 `∞ ball. (X) denotes using a X-step PGD
attack. X random denotes X times random restart.

Methods No attack Deepfool PGD100 C&W100 20 PGD1000 20 C&W1000

Natural train 93.34% 16.39% 0.6% 0.0% 0.0% 0.0%
Adv train (MMS18) 80.32% 44.65% 36.36% 37.89% 36.12% 36.8%
TRADES (ZYJ19) 84.85% 48.37% 38.81% 39.49% 37.95% 38.94%
CAT (ours) 85.44% 70.19% 75.54% 51.81% 75.17% 50.08%

hypothesis, we roughly measure the model complexity C by the product of the weight norms

of different models. In comparison to our model, when training with constant ε = 0.01, 0.02

and 0.03, it respectively yields C as large as 2.54, 3.53 and 1.39 times of that of our model,

which means our model indeed has more implicit regularization effect among others.

4.2.4 Experimental Results

In this section, we conduct extensive experiments to show that CAT achieves a strong result

on both clean and robust accuracy. We include the following methods into our comparison:

• Customized Adversarial Training (CAT): Our proposed method.

• Adversarial training: The adversarial training method proposed in (MMS18) where

they use a K-step PGD attack as adversary.

• TRADES: TRADES (ZYJ19) improves adversarial training by an additional loss on

the clean examples and achieves the state-of-art performance on robust accuracy.

• Natural: the natural training which only minimizes the cross entropy loss.

Furthermore, since many recently proposed adversarial training methods have considered

CIFAR-10 with Wide-ResNet structure as the standard setting for reporting their numbers,

we also compare our performance with 7 previous methods on this specific setting.

83

Table 4.3: The clean and robust accuracy of Wide Resnet models trained by various defense
methods. All robust accuracy results use ε = 8/255 `∞ ball. We reported the best performance
listed in the papers. (∗) denotes random-restart is applied in the testing attack. (X) denotes
using a X-step PGD attack. × denotes not reported.

Methods Clean accuracy PGD accuracy C&W accuracy
Natural training 95.93% 0% 0%
Adversarial training (MMS18) 87.30% 52.68% 50.73%
Dynamic adversarial training (WMB19) 84.51% 55.03% 51.98%
TRADES (ZYJ19) 84.22% 56.40%(20) 51.98%
Bilateral Adv Training (Wan19) 91.00% 57.5%(∗20) 56.2%(∗20)

MMA (DSL18) 84.36% 47.18% ×
MART (WZY19) 84.17% 58.56%(20) 54.58%
IAAT (BGH19) 91.34% 48.53%(∗10) 56.80%
CAT (ours) 89.61% 73.16%(∗20) 71.67%(∗20)

4.2.4.1 Experimental Setup

Dataset and model structure. We use two popular dataset CIFAR-10 (KH09) and

Restricted-ImageNet (DDS09) for performance evaluation. For CIFAR-10, we use both

standard VGG-16 (SZ15) and Wide ResNet that is used in both vanilla adversarial training

(MMS18) and TRADES (ZYJ19). For VGG-16, we implement adversarial training with the

standard hyper-parameters and train TRADES with the official implementation. For Wide

ResNet, since the model has become standard for testing adversarial training methods, we

use exactly the same model structure provided by (MMS18; ZYJ19). We use the models’

checkpoint released by TRADES official repository and implement the Madry’s adversarial

training using the standard hyper-parameters. For Restricted-ImageNet, we use ResNet-50.

All our experiments were implemented in Pytorch-1.4.

Implementation details. We set the number of iterations in adversarial attack to be

10 for all methods during training. Adversarial training and TRADES are trained on PGD

attacks setting ε = 8/255 with cross entropy loss (CE). All the models are trained using SGD

with momentum 0.9, weight decay 5× 10−4. For VGG-16/Wide ResNet models, we use the

84

initial learning rate of 0.01/0.1, and we decay the learning rate by 90% at the 80th, 140th,

and 180th epoch. For CAT, we set epsilon scheduling parameter η = 0.005, εmax = 8/255

and weighting parameter c = 10. We set β = 1 for the distribution Dirichlet(β), which is

equal to a uniform distribution. Also, we set κ = 10.

4.2.4.2 Robustness Evaluation and Analysis

White-box attacks results. For CIFAR10, we evaluate all the models under white-box

ε = 8/255 `∞-norm bounded non-targeted PGD and C&W attack. Specifically, we use both

PGDX (X-step PGD with step size ε/5) and C&W∞. As suggested, we test our model under

different steps PGD and multiple random restarts.

The experimental results are shown in Table 4.2, where we can easily see that CAT

clearly outperforms other methods. CAT achieves a significant better robust accuracy at

the standard 8/255 perturbation threshold considered in the literature, and also have better

clean accuracy. We also test the performance of CAT under attacks with 20 restarts and

1,000 iterations to confirm the robustness of the model. Futhermore, we visualize the loss

landscape and perform PGD attack with different strength.

Wide-ResNet has become a standard structure for comparing adversarial training methods,

and it’s standard to train and evaluate with 8/255 `∞ norm perturbation. For this setting,

we collect the reported accuracy from 7 other adversarial training methods, with several of

them published very recently, to have a detailed full comparison. As shown in Table 4.3, our

method achieves state-of-art robust accuracy while maintaining a high clean accuracy. Due

to the page limit, we put the Restricted ImageNet result.

Black-box transfer attacks results. We follow the criterion of evaluating transfer

attacks as suggested by (ACW18) to inspect whether the models trained by CAT will cause

the issue of obfuscated gradients and give a false sense of model robustness. We generate

10,000 adversarial examples of CIFAR-10 from natural models with ε = 8/255 and evaluate

85

their attack performance on the target model. Table 4.4 shows that CAT achieves the best

accuracy compared with adversarial training and TRADES, suggesting the effectiveness of

CAT in defending both white-box and transfer attacks.

Table 4.4: Robust accuracy under transfer attack on CIFAR-10

Method VGG 16 Wide ResNet
Adv train 79.13% 85.84%
TRADES 83.53% 83.90%

CAT 86.58% 88.66 %

Restricted Imagenet Result In addition to CIFAR, we also test the performance on

the Restricted Imagenet dataset, which has been used in previous papers such as (SSK19).

This dataset consists of a subset of imagenet classes which have been grouped into 9 different

classes. The experimental results are shown in Table 5. All the results except our methods

are reported in (SSK19). Similarity, we could see CAT have a clear performance boost over

listed methods.

Table 4.5: The clean and robust accuracy of Resnet50 models trained by various defense
methods. All robust accuracy are measured under ε = 8/255 `∞ ball. We reported the best
performance listed in the papers. (∗) denotes random-restart is applied in the testing attack.
(X) denotes it use a X-step PGD attack

Methods Clean accuracy PGD accuracy C&W accuracy

Adversarial training (MMS18) 91.83% 17.52% ×
FAT (SSK19) 91.59 % 18.81% ×
LAT (SSK19) 89.86 % 22.00% ×
CAT (ours) 88.63% 58.4%(∗20) 58.4%(∗20)

4.2.4.3 Ablation study

The importance of adaptive label uncertainty. Here we discuss and perform an ablation

study using VGG-16 and CIFAR-10 on the importance of adaptive label uncertainty and

86

Table 4.6: Ablation study on CAT by changing the loss function and removing Label Adaption
(LA). All robust accuracy results use ε = 8/255 `∞ ball.

Methods Clean acc PGD acc
Adv train 80.32% 36.63%
Adv+LS 80.25% 43.0%
Adp-Adv 87.91% 38.59%
CAT 84.22% 75.54%

adaptive instance-wise ε. In Table 4.6, Adv train denotes the original adversarial training,

Adv+LS denotes adversarial training with label smoothing (setting y by Eq (4.4)), Adp-Adv

denotes adversarial training with adaptive instance-wise ε, and CAT is the proposed method

which is a combination of these two tricks. We found that only applying adaptive instance-wise

ε or label smoothing cannot significantly boost the robust accuracy over standard adversarial

training, but the proposed method, by nicely combining these two ideas, can significantly

improve the performance. This explains why CAT significantly outperforms some instance

adaptive ε methods like IAAT and MMA.

Loss Landscape Exploration To further verify the superior robustness using CAT,

0.10 0.050.00 0.05 0.10 0.10
0.05

0.00
0.05

0.10
0.00
2.00
4.00
6.00
8.00

(a) Natural

0.10 0.050.00 0.05 0.10 0.10
0.05

0.00
0.05

0.10
0.00
2.00
4.00
6.00
8.00

(b) Adv train

0.10 0.050.00 0.05 0.10 0.10
0.05

0.00
0.05

0.10
0.00
2.00
4.00
6.00
8.00

(c) TRADES

0.100.050.000.050.10 0.10
0.05

0.00
0.05

0.10
0.00
2.00
4.00
6.00
8.00

0.0

2.5

5.0

7.5

(d) CAT

Figure 4.2: CAT: Loss landscape comparison of different adversarial training methods

we visualize the loss landscape of different training methods in Figure 4.2. Following the

implementation in (EIA18), we divide the data input along a linear space grid defined by

the sign of the input gradient and a random Rademacher vector, where the x- and y- axes

represent the magnitude of the perturbation added in each direction and the z-axis represents

the loss. As shown in Figure 4.2, CAT generates a model with a lower and smoother loss

landscape. Also, it could be taken as another strong evidence that we have found a robust

87

model through CAT training.

4.2.5 Proofs

4.2.5.1 Proof of Theorem 4

In this section we provide the omitted proof for Theorem 4, which is adapted from Theorem

2.1 from (WM19). They defined the all layer margin for a k-layer network hθ(x) = fk ◦ fk−1 ◦

· · · f1(x) and perturbation δ = (δ1, δ2, · · · δk) as follows:

h1(x, δ) =f1(x) + δ1‖x‖2

hi(x, δ) =fi(hi−1(x, δ)) + δi‖hi−1(x, δ)‖2

Hθ(x, δ) =hk(x, δ).

They define the all-layer margin as the minimum norm of δ = (δi)
k
i=1 required that causes

the classifier to make a false prediction.

mF (x, y) := min
δi,δo

√
‖δi‖2 + ‖δo‖2

subject to max
y′

Hθ(x, δ
i, δo)y′ 6= y.

(4.8)

They consider the function class F = {fk ◦ fk−1 · · · ◦ f1 : fi ∈ Fi} be the class of compositions

of functions from function classes F1, · · · Fk. They achieve the generalization bound as follows:

Theorem 5 (Theorem 2.1 from (WM19)). In the above setting, with probability 1− δ over

the draw of the data, all classifiers F ∈ F which achieve training error 0 satisfy

E[fθ(x) = y] .

∑
i Ci log2 n√

n

√√√√ 1

n

n∑
i=1

1

mF (xi, yi)
+ ζ,

where ζ is of small order O
(

1
n

log(1/δ)
)
.

For our problem, we define hθ(x) := f2 ◦ f1(x), where f1 is identity mapping, and f2 is

88

the original function hθ. Therefore the all layer margin is reduced to our bilateral margin:

h1(x, δi) =f1(x) + δi‖x‖2 = x+ δi‖x‖

Hθ(x, δ) = h2(x, δi, δo) =f2(h1(x, δi)) + δo‖h1(x, δi)‖

=hθ(x+ δi‖x‖) + δo‖x+ δi‖x‖‖.

Next, notice since f1 is identity mapping, and composition with hθ doesn’t affect the overall

complexity. We apply Theorem 5 and get our result.

89

CHAPTER 5

Attack-independent Robust Training

5.1 Introduction

Here we first discuss some attack-independent robust training methods on Gaussian data

augmentation, Mixup and label smoothing. Gaussian data augmentation during training

is a commonly used baseline method to improve model robustness (ZNR17). It is revisited

in (CRK19) as a scalable and certifiable defense method called random smoothing. Mixup

(ZCD18) and its variants (VLB18; TCB19) are a recently proposed approach to improve

model robustness and generalization by training a model on convex combinations of data

sample pairs and their labels. Label smoothing was originally proposed in (SVI16) as a

regularizer to stabilize model training. The main idea is to replace one-hot encoded labels

by assigning non-zero (e.g., uniform) weights to every label other than the original training

label. Although label smoothing is also shown to benefit model robustness (SGH19; GD19),

its robustness gain is relatively marginal when compared to adversarial training. In contrast

to currently used static (i.e., pre-defined) label smoothing functions, in SPROUT we propose

a novel parametrized label smoothing scheme, which enables adaptive sampling of training

labels from a parameterized distribution on the label simplex. The parameters of the label

distribution are progressively adjusted according to the updates of model weights.

90

5.2 General Framework for Formulating Robust Training

The task of supervised learning is essentially learning a K-class classification function f ∈ F

that has a desirable mapping between a data sample x ∈ X and the corresponding label

y ∈ Y . Consider a loss function L that penalizes the difference between the prediction f(x)

and the true label y from an unknown data distribution P , (x,y) ∼ P . The population risk

can be expressed as

R(f) =

∫
L(f(x),y)P (x,y)dxdy (5.1)

However, as the distribution P is unknown, in practice machine learning uses empirical risk

minimization (ERM) with the empirical data distribution of n training data {xi, yi}ni=1

Pδ(x,y) =
1

n

n∑
i=1

δ(x = xi,y = yi) (5.2)

to approximate P (x,y), where δ is a Dirac mass. Notably, a more principled approach is to

use Vicinity Risk Minimization (VRM) (CWB01), defined as

Pν(x,y) =
1

n

n∑
i=1

ν(x̃, ỹ|xi,yi) (5.3)

where ν is a vicinity distribution that measures the probability of finding the virtual sample-

label pair (x̃, ỹ) in the vicinity of the training pair (xi,yi). Therefore, ERM can be viewed

as a special case of VRM when ν = δ. VRM has also been used to motivate Mixup training

(ZCD18). Based on VRM, we propose a general framework that encompasses the objectives

of many robust training methods as the following generalized cross entropy loss:

H(x̃, ỹ, f) = −
K∑
k=1

[log g(f(x̃)k)]h(ỹk) (5.4)

where f(x̃)k is the model’s k-th class prediction probability on x̃, g(·) : R→ R is a mapping

adjusting the probability output, and h(·) : R→ R is a mapping adjusting the training label

distribution. When x̃ = x, ỹ = y and g = h = I, where I denotes the identity mapping

function, the loss in (5.4) degenerates to the conventional cross entropy loss.

Based on the general VRM loss formulation in (5.4), in Table 5.1 we summarize a large

body of robust training methods in terms of different expressions of g(·), h(·) and (x̃, ỹ).

91

Table 5.1: Summary of robust training methods using VRM formulation in (5.4). PGDε(·)
means (multi-step) PGD attack with perturbation budget ε. Dirichlet(b) is the Dirichlet dis-
tribution parameterized by b. GA/LS stands for Gaussian-Augmentation/Label-Smoothing.

Methods g(·) h(·) x̃ ỹ attack-specific

Natural I I x y ×
GA (ZNR17) I I N (x,∆2) y ×
LS (SVI16) I (1− α)y + αu x y ×
Adversarial training (MMS18) I I PGDε(x) y X
TRADES (ZYJ19) I (1− α)y + αf(x̃) PGDε(x) y X
Stable training (ZSL16) f(x) ◦ f(x̃) I N (x,∆2) y ×
Mixup (ZCD18) I I (1− λ)xi + λxj (1− λ)yi + λyj ×
LS+GA (SGH19) I (1− α)y + αu N (x,∆2) y ×
Bilateral Adv Training (Wan19) I I PGDε(x) (one or two step) (1− α)yi + αPGDε′(y) X
SPROUT (ours) I Dirichlet((1− α)y + αβ) (1− λ)N (xi,∆

2) + λN (xj,∆
2) (1− λ)yi + λyj ×

For example, the vanilla adversarial training in (MMS18) aims to minimize the loss of

adversarial examples generated by the (multi-step) PGD attack with perturbation budget ε,

denoted by PGDε(·). Its training objective can be rewritten as x̃ = PGDε(x), ỹ = y and

g = h = I. In addition to adversarial training only on perturbed samples of x, (Wan19)

designs adversarial label perturbation where it uses x̃ = PGDε(x), ỹ = (1−α)y+αPGDε(y),

and α ∈ [0, 1] is a mixing parameter. TRADES (ZYJ19) improves adversarial training with

an additional regularization on the clean examples, which is equivalent to replacing the label

mapping function h(·) from identity to (1 − α)y + αf(x̃). Label smoothing (LS) alone is

equivalent to the setup that g = I, x̃ = x, ỹ = y and h(·) = (1 − α)y + αu, where u is

often set as a uniform vector with value 1/K for a K-class supervised learning task. Joint

training with Gaussian augmentation (GA) and label smoothing (LS) as studied in (SGH19)

is equivalent to the case when x̃ = N (x,∆2), ỹ = y, g = I and h(y) = (1− α)y + α/K. We

defer the connection between SPROUT and VRM to the next section.

5.3 SPROUT: Scalable Robust and Generalizable Training

In this section, we formally introduce SPROUT, a novel robust training method that auto-

matically finds a better vicinal risk function during training in a self-progressing manner.

92

L_inf Acc

C&W Acc
Scalibility

Invariance
Clean Acc

0%
20%

40%
60%

80%

(a) Natural

L_inf Acc

C&W Acc
Scalibility

Invariance
Clean Acc

0%
20%

40%
60%

80%

(b) Adversarial train-
ing

L_inf Acc

C&W Acc
Scalibility

Invariance
Clean Acc

0%
20%

40%
60%

80%

(c) TRADES

L_inf Acc

C&W Acc
Scalibility

Invariance
Clean Acc

0%
20%

40%
60%

80%

(d) SPROUT (ours)

Figure 5.1: Multi-dimensional performance comparison of four training methods using
VGG-16 network and CIFAR-10 dataset. All dimensions are separately normalized by the
best-performance method. The average score of each method is 0.6718 for natural (standard
training), 0.6900 for PGD-`∞ based adversarial training (MMS18), 0.7107 for PGD-`∞ based
TRADES (ZYJ19), and 0.8798 for SPROUT (ours). The exact numbers are reported in
Section 5.3.4.7.

State-of-the-art robust training algorithms are primarily based on the methodology of ad-

versarial training (GSS14; MMS18), which calls specific attacking algorithms to generate

adversarial examples during model training for learning robust models. Albeit effective,

these methods have the following limitations: (i) poor scalability – the process of generating

adversarial examples incurs considerable computation overhead. For instance, our experi-

ments show that, with the same computation resources, standard adversarial training (with 7

attack iterations per sample in every minibatch) of Wide ResNet on CIFAR-10 consumes

10 times more clock time per training epoch when compared with standard training; (ii)

attack specificity – adversarially trained models are usually most effective against the same

attack they trained on, and the robustness may not generalize well to other types of attacks

(TB19; KSH19); (iii) preference toward wider network – adversarial training is more effective

when the networks have sufficient capacity (e.g., having more neurons in network layers)

(MMS18).

5.3.1 Self-Progressing Parametrized Label Smoothing

To stabilize training and improve model generalization, (SVI16) introduces label smoothing

that converts “one-hot” label vectors into “one-warm” vectors representing low-confidence

93

classification, in order to prevent a model from making over-confident predictions. Specifically,

the one-hot encoded label y is smoothed using

ỹ = (1− α)y + αu (5.5)

where α ∈ [0, 1] is the smoothing parameter. A common choice is the uniform distribution

u = 1
K

, where K is the number of classes. Later works (Wan19; GD19) use an attack-driven

label smoothing function u to further improve adversarial robustness. However, both uniform

and attack-driven label smoothing disregard the inherent correlation between labels. To

address the label correlation, we propose to use the Dirichlet distribution parametrized by

β ∈ RK+ for label smoothing. Our SPROUT learns to update β to find a training label

distribution that is most uncertain to a given model θ, by solving

max
β

L(x̃, ỹ,β; θ) (5.6)

where ỹ = Dirichlet((1− α)y + αβ). Notably, instead of using a pre-defined or attack-driven

function for u in label smoothing, our Dirichlet approach automatically finds a label simplex

by optimizing β. Dirichlet distribution indeed takes label correlation into consideration as its

generated label z = [z1, . . . , zK] has the statistical properties

E[zs] =
βs
β0

, Cov[zs, zt] =
−βsβt

β2
0(β0 + 1)

,
K∑
s=1

zs = 1 (5.7)

where β0 =
∑K

k=1 βk and s, t ∈ {1, . . . , K}, s 6= t. Moreover, one-hot label and uniform

label smoothing are our special cases when β = y and β = u, respectively. Our Dirichlet

label smoothing co-trains with the update in model weights θ during training (see Algorithm

9). The advantage of our proposed self-progressing Dirichlet label smoothing over uniform

label smoothing will be justified in our ablation study (see Figure 5.5 in Section 5.3.4.6). In

addition, we illustrate the label correlation learned from our Dirichlet label smoothing in

Section 5.3.4.8.

94

5.3.2 Gaussian Data Augmentation and Mixup

Gaussian augmentation. Adding Gaussian noise to data samples during training is a

common practice to improve model robustness. Its corresponding vicinal function is the

Gaussian vicinity function ν(x̃i, ỹi|xi,yi) = N (xi,∆
2)δ(ỹi = yi), where ∆2 is the variance of

a standard normal random vector. However, the gain of Gaussian augmentation in robustness

is marginal when compared with adversarial training (see our ablation study in Section

5.3.4.6). (SGH19) finds that combining uniform or attack-driven label smoothing with

Gaussian smoothing can further improve adversarial robustness. Therefore, we propose to

incorporate Gaussian augmentaion with Dirichlet label smoothing. The joint vicinity function

becomes ν(x̃i, ỹi|xi,yi,β) = N (xi,∆
2)δ(ỹi = Dirichlet((1− α)yi + αβ)). Training with this

vicinity function means drawing labels from the Dirichlet distribution for the original data

sample xi and its neighborhood characterized by Gaussian augmentation.

Mixup. To further improve model generalization, SPROUT also integrates Mixup

(ZCD18) that performs convex combination on pairs of training data samples (in a minibatch)

and their labels during training. The vicinity function of Mixup is ν(x̃, ỹ|xi,yi) = δ(x̃ =

(1− λ)xi + λxj, ỹ = (1− λ)yi + λyj), where λ ∼ Beta(a, a) is the mixing parameter drawn

from the Beta distribution and a > 0 is the shape parameter. The Mixup vicinity function

can be generalized to multiple data sample pairs. Unlike Gaussian augmentation which is

irrespective of the label (i.e., only adding noise to xi), Mixup aims to augment data samples

on the line segments of training data pairs and assign them convexly combined labels during

training.

Vicinity function of SPROUT. With the aforementioned techniques integrated in

SPROUT, the overall vicinity function of SPROUT can be summarized as ν(x̃, ỹ|xi,yi,β) =

δ(x̃ = λN (xi,∆
2) + (1− λ)N (xj,∆

2), ỹ = Dirichlet((1− α)((1− λ)yi + λyj) + αβ).

In Section 5.3.4.6, we will show that Dirichlet label smoothing, Gaussian augmentation

and Mixup are complimentary to enhancing robustness by showing their diversity in input

95

Algorithm 9 SPROUT algorithm

Input: Training dataset (X, Y), Mixup parameter λ, Gaussian augmentation variance
∆2, model learning rate γθ, Dirichlet label smoothing learning rate γβ and parameter α,
generalized cross entropy loss L
Initial model θ: random initialization (train from scratch) or pre-trained model checkpoint
Initial β: random initialization
for epoch=1, . . . , N do

for minibatch XB ⊂ X, YB ⊂ Y do
XB ← N (XB,∆

2)
Xmix, Ymix ← Mixup(XB, YB, λ)
Ymix ← Dirichlet(αYmix + (1− α)β)
gθ ← ∇θL(Xmix, Ymix, θ)
gβ ← ∇βL(Xmix, Ymix, θ)
θ ← θ − γθgθ
β ← β + γβgβ

return θ

gradients.

5.3.3 SPROUT Algorithm

Using the VRM framework, the training objective of SPROUT is

min
θ

max
β

n∑
i=1

L(ν(x̃i, ỹi|xi,yi,β); θ), (5.8)

where θ denotes the model weights, n is the number of training data, L is the generalized

cross entropy loss defined in (5.4) and ν(x̃, ỹ|xi,yi,β) is the vicinity function of SPROUT.

Our SPROUT algorithm co-trains θ and β via stochastic gradient descent/ascent to solve the

outer minimization problem on θ and the inner maximization problem on β. In particular,

for calculating the gradient gβ of the parameter β, we use the Pytorch implementation based

on (FMM18). SPROUT can either train a model from scratch with randomly initialized θ or

strengthen a pre-trained model. As shown in Section 5.3.4.2, we find that training from either

randomly initialized or pre-trained natural models using SPROUT can yield substantially

robust models that are resilient to large perturbations. The training steps of SPROUT are

summarized in Algorithm 9.

96

We also note that our min-max training methodology is different from the min-max for-

mulation in adversarial training (MMS18), which is minθ
∑n

i=1 maxδi:‖δi‖p≤ε L(xi + δi,yi; θ),

where ‖δi‖p denotes the `p norm of the adversarial perturbation δi. While the outer mini-

mization step for optimizing θ can be identical, the inner maximization of adversarial training

requires running multi-step PGD attack to find adversarial perturbations {δi} for each data

sample in every minibatch (iteration) and epoch, which is attack-specific and time-consuming

(see our scalability analysis in Table 4.6). On the other hand, our inner maximization is

upon the Dirichlet parameter β, which is attack-independent and only requires single-step

stochastic gradient ascent with a minibatch to update β. We have explored multi-step

stochastic gradient ascent on β and found no significant performance enhancement but

increased computation time.

Advantages of SPROUT. Comparing to adversarial training, the training of SPROUT

is more efficient and scalable, as it only requires one additional back propagation to update

β in each iteration (see Table 4.6 for a run-time analysis). As highlighted in Figure 5.1,

SPROUT is also more comprehensive as it automatically improves robustness in multiple

dimensions owing to its self-progressing training methodology. Moreover, we find that

SPROUT significantly outperforms adversarial training and attains larger gain in robustness

as network width increases (see Figure 5.7), which makes SPROUT a promising approach to

support robust training for a much larger set of network architectures.

5.3.4 Experimental Results

5.3.4.1 Experiment Setup

Dataset and network structure. We use CIFAR-10 (KH09) and ImageNet (DDS09)

for performance evaluation. For CIFAR-10, we use both standard VGG-16 (SZ15) and

Wide ResNet, where the latter is used in both vanilla adversarial training (MMS18) and

TRADES (ZYJ19). The Wide ResNet models are pre-trained PGD-`∞ robust models given

97

by adversarial training and TRADES. For VGG-16, we implement adversarial training with

the standard hyper-parameters and train TRADES using the official implementation. For

ImageNet, we use ResNet-152. All our experiments were implemented in Pytorch-1.2 and

conducted using dual Intel E5-2640 v4 CPUs (2.40GHz) with 512 GB memory with a GTX

1080 GPU.

Implementation details. As suggested in Mixup (ZCD18), we set the Beta distribution

parameter a = 0.2 when sampling the mixing parameter λ. For Gaussian augmentation,

we set ∆ = 0.1, which is within the suggested range in (ZNR17). Also, we set the label

smoothing parameter α = 0.01. A parameter sensitivity analysis on λ and α is given in

Section 5.3.4.9. Unless specified otherwise, for SPROUT we set the model initialization to be

a natural model. An ablation study of model initialization is given in Section 5.3.4.6.

0.00 0.02 0.04 0.06
PGD attack tolerance

0

20

40

60

80

Ac
cu

ra
cy

 u
nd

er
 a

tta
ck

VGG PGD 20

CAT-CE
CAT-MIX
TRADES
Natural
Adv train

0.00 0.02 0.04 0.06
PGD attack stregth

0

20

40

60

80

Ac
cu

ra
cy

 u
nd

er
 a

tta
ck

VGG PGD 100

SPROUT
TRADES
Natural
Adv train

0.00 0.02 0.04 0.06
PGD attack tolerance

0

20

40

60

80

100

Ac
cu

ra
cy

 u
nd

er
 a

tta
ck

Wide ResNet PGD 20

CAT-CE
CAT-MIX
TRADES
Natural
Adv train

0.00 0.02 0.04 0.06
PGD attack stregth

0

20

40

60

80

100

Ac
cu

ra
cy

 u
nd

er
 a

tt
ac

k

Wide ResNet PGD 100

SPROUT
TRADES
Natural
Adv train
Free Adv train

Figure 5.2: Robust accuracy of CIFAR-10 under PGD-`∞ attack. SPROUT significantly
outperforms other methods.

98

0.00 0.05 0.10 0.15 0.20 0.25 0.30
C&W attack stregth

20

40

60

80

Ac
cu

ra
cy

 u
nd

er
 a

tta
ck

VGG

SPROUT
TRADES
Natural
Adv train

0.00 0.05 0.10 0.15 0.20 0.25 0.30
C&W attack stregth

0

20

40

60

80

100

Ac
cu

ra
cy

 u
nd

er
 a

tta
ck

Wide Resnet

SPROUT
TRADES
Natural
Adv train

Figure 5.3: Robust accuracy of CIFAR-10 under C&W-`2 attack

5.3.4.2 Adversarial Robustness under Various Attacks

White-box attacks. On CIFAR-10, we compare the model accuracy under different strength

of white-box `∞-norm bounded non-targeted PGD attack, which is considered as the strongest

first-order adversary (MMS18) with an `∞-norm constraint ε (normalized between 0 to 1).

All PGD attacks are implemented with random starts and we run PGD attack with 20 and

100 steps in our experiments. The (robust) accuracy under different ε values are shown

in Figure 5.2. When ε = 0.03 and under PGD attack with 20 steps, we find SPROUT

achieves 62.24% and 66.23% robust accuracy on VGG16 and Wide ResNet respectively,

while TRADES and adversarial training are 10-20% worse than SPROUT. We also find that

SPROUT is significantly more robust to PGD-`∞ attacks with large ε values. In addition to

the substantially improved robustness, the clean accuracy (i.e., when ε = 0) of SPROUT is

5-10 % higher than TRADES and adversarial training, and it is only 2-4% lower than natural

model, suggesting SPROUT better balances the robustness-accuracy trade-off. Similar trends

are observed in robust accuracy under PGD attack with 100 steps. On Wide ResNet we

also report the robust accuracy of the “free adversarial training” (Free Adv Train) method

(SNG19), which features similar robust accuracy as adversarial training but can reduce

training time.

We also compare the robust accuracy against PGD-`∞ attacks with multiple random

99

Table 5.2: Robust accuracy of CIFAR-10 under transfer attack

Method VGG 16 Wide ResNet
Adv Train 79.13% 85.84%
TRADES 83.53% 83.9%
SPROUT 86.28% 89.1%

Table 5.3: Accuracy of ImageNet under PGD-`∞ attack

Method Clean Acc ε = 0.005 ε = 0.01 ε = 0.015 ε = 0.02
Natural 78.31% 37.13% 9.14% 2.12% 0.78%

SPROUT 74.23% 65.24% 52.86% 35.04% 12.18%

starts. The results are consistent with the vallina PGD-`∞ attack, i.e., SPROUT attains

the highest accuracy (see Section 5.3.4.10). Moreover, we report the results of C&W-`∞

attack (CW17) in Section 5.3.4.11, where SPROUT again shows high robust accuracy for

large ε values. Next, we compare against `2-norm based C&W attack by using the default

attack setting with 10 binary search steps and 1000 iterations per step to find successful

perturbations while minimizing their `2-norm. Figure 5.3 verifies that SPROUT can improve

`∞ robustness by a large margin without degrading `2 robustness. SPROUT’s accuracy

under C&W-`2 attack is similar to TRADES and is better than both natural and adversarial

training. The results also suggest that the attack-independent and self-progressing training

nature of SPROUT can prevent the drawback of failing to provide comprehensive robustness

to multiple and simultaneous `p-norm attacks in adversarial training (TB19; KSH19).

Transfer attack. We follow the criterion of evaluating transfer attacks in (ACW18) to

inspect whether the models trained by SPROUT will cause the issue of obfuscated gradients

and give a false sense of robustness. We generate 10,000 PGD-`∞ adversarial examples from

CIFAR-10 natural models with ε = 0.03 and evaluate their attack performance on the target

model. Table 5.2 shows SPROUT achieves the best accuracy when compared with adversarial

training and TRADES, suggesting the effectiveness of SPROUT in defending both white-box

and transfer attacks.

100

0.10 0.050.00 0.05 0.10 0.10
0.05

0.00
0.05

0.10
0.00
2.00
4.00
6.00
8.00

(a) Natural

0.10 0.050.00 0.05 0.10 0.10
0.05

0.00
0.05

0.10
0.00
2.00
4.00
6.00
8.00

(b) Adv Train

0.10 0.050.00 0.05 0.10 0.10
0.05

0.00
0.05

0.10
0.00
2.00
4.00
6.00
8.00

(c) TRADES

0.100.050.000.050.10 0.10
0.05

0.00
0.05

0.10
0.00
2.00
4.00
6.00
8.00

0.0

2.5

5.0

7.5

(d) SPROUT

Figure 5.4: SPROUT: Loss landscape comparison of different training methods

ImageNet results. As many ImageNet class labels carry similar semantic meanings, to

generate meaningful adversarial examples for robustness evaluation, here we follow the same

setup as in (ACW18) that adopts PGD-`∞ attacks with randomly targeted labels. Table 5.3

compares the robust accuracy of natural and SPROUT models. SPROUT greatly improves

the robust accuracy across different ε values. For example, when ε = 0.01, SPROUT boosts

the robust accuracy of natural model by over 43%. When ε = 0.015 ≈ 4/255, a considerably

large adversarial perturbation on ImageNet, SPROUT still attains about 35% robust accuracy

while the natural model merely has about 2% robust accuracy. Moreover, comparing the

clean accuracy, SPROUT is about 4% worse than the natural model but is substantially more

robust. We omit the comparison to adversarial training methods as we are unaware of any

public pre-trained robust ImageNet models of the same architecture (ResNet-152) prior to

the time of our submission, and it is computationally demanding for us to train and fine-tune

such large-scale networks with adversarial training. On our machine, training a natural model

takes 31,158.7 seconds and training SPROUT takes 59,201.6 seconds. Comparing to the

run-time analysis in Section 5.3.4.5, SPROUT has a much better scalability than adversarial

training and TRADES. However, instead of ResNet-152, we use SPROUT to train the same

ResNet-50 model as the pretrained Free Adv Train network and compare their performance

in Section 5.3.4.12.

101

5.3.4.3 Loss Landscape Exploration

To further verify the superior robustness using SPROUT, we visualize the loss landscape of

different training methods in Figure 5.4. Following the implementation in (EIA18), we vary

the data input along a linear space defined by the sign of the input gradient and a random

Rademacher vector, where the x- and y- axes represent the magnitude of the perturbation

added in each direction and the z-axis represents the loss. One can observe that the loss

surface of SPROUT is smoother. Furthermore, it attains smaller loss variation compared

with other robust training methods. The results provide strong evidence for the capability of

finding more robust models via SPROUT.

5.3.4.4 Invariance test

In addition to `p-norm bounded adversarial attacks, here we also evaluate model robustness

against different kinds of input transformations using CIFAR-10 and Wide ResNet. Specifically,

we change rotation (with 10 degrees), brightness (increase the brightness factor to 1.5), contrast

(increase the contrast factor to 2) and make inputs into grayscale (average all RGB pixel

values). The model accuracy under these invariance tests is summarized in Table 5.4. The

results show that SPROUT outperforms adversarial training and TRADES. Interestingly,

natural model attains the best accuracy despite the fact that it lacks adversarial robustness,

suggesting a potential trade-off between accuracy in these invariance tests and `p-norm based

adversarial robustness.

5.3.4.5 Scalability

As illustrated in Section 5.3.3, SPROUT enjoys great scalability over adversarial training

based algorithms because its training requires much less number of back-propagations per

iteration, which is a dominating factor that contributes to considerable run-time in adversarial

training. Table 5.5 benchmarks the run-time of different training methods for 10 epochs.

102

Table 5.4: Accuracy under invariance tests

Method Rotation Brightness Contrast Gray
Natural 88.21% 93.4% 91.88 % 91.95%

Adv Train 82.66% 83.64% 84.99% 81.08%
TRADES 80.81% 81.5 % 83.08% 79.27%
SPROUT 85.95% 88.26 % 86.98% 81.64%

Table 5.5: Training-time (seconds) for 10 epochs

Methods
CIFAR-10

VGG 16 Wide ResNet
Natural 146.7 1449.6

Adv Train 1327.1 14246.1
TRADES 1932.5 22438.4
SPROUT 271.7 2727.8

Free Adv Train(m=8) 2053.1 20652.5

On CIFAR-10, the run-time of adverarial training and TRADES is about 5× more than

SPROUT. We also report the run-time analysis using the default implementation1 of Free

Adv Train (SNG19). Its 10-epoch run-time with the replay parameter m = 8 is similar to

TRADES. But we also note that Free Adv Train may require less number of epochs when

training to convergence.

5.3.4.6 Ablation Study

Dissecting SPROUT. Here we perform an ablation study using VGG-16 and CIFAR-10

to investigate and factorize the robustness gain in SPROUT’s three modules: Dirichlet

label smoothing (Dirichlet), Gaussian augmentation (GA) and Mixup. We implement all

combinations of these techniques and include uniform label smoothing (LS) (SVI16) as

another baseline. Their accuracies under PGD-`∞ attack are shown in Figure 5.5. We

highlight some important findings as follows.

• Dirichlet outperforms uniform LS by a significant factor, suggesting the importance of our

1https://github.com/mahyarnajibi/FreeAdversarialTraining

103

https://github.com/mahyarnajibi/FreeAdversarialTraining

0.00 0.02 0.04 0.06
PGD attack stregth

0

20

40

60

80

Ac
cu

ra
cy

 u
nd

er
 a

tt
ac

k
VGG PGD 20

0.00 0.02 0.04 0.06
PGD attack stregth

0

20

40

60

80

Ac
cu

ra
cy

 u
nd

er
 a

tt
ac

k

VGG PGD 100

SPROUT
GA
Mixup
Dirichlet
GA+Mixup
Mixup+Dirichlet
GA+Dirichlet
Uniform LS
GA+Mixup+LS

Figure 5.5: Robust accuracy with different combinations of the modules in SPROUT

proposed self-progressing label smoothing in improving adversarial robustness.

• Comparing the performance of individual modules alone (GA, Mixup and Dirichlet), our

proposed Dirichlet attains the best robust accuracy, suggesting its crucial role in training

robust models.

• No other combinations can outperform SPROUT. Moreover, the robust gains from GA,

Mixup and Dirichlet appear to be complimentary, as SPROUT’s accuracy is close to the sum

of their individual accuracy. To justify their diversity in robustness, we compute the cosine

similarity of their pairwise input gradients and find that they are indeed quite diverse and

thus can promote robustness when used together. The details are given in Section 5.3.4.13.

PGD attacks with more iterations. To ensure the robustness of SPROUT is not an

artifact of running insufficient iterations in PGD attack (ACW18), Figure 5.6a shows the

robust accuracy with varing number of PGD-`∞ attack steps from 10 to 500 on Wide ResNet

and CIFAR-10. The results show stable performance in all training methods once the number

of attack steps exceeds 100. It is clear that SPROUT indeed outperforms others by a large

margin.

Model weight initialization. Figure 5.6b compares the effect of model initialization

using CIFAR-10 and VGG-16 under PGD-`∞ attack, where the legend A+B means using

Model A as the initialization and training with Method B. Interestingly, Natural+SPROUT

attains the best robust accuracy when ε ≥ 0.02. TRADES+SPROUT and Random+SPROUT

104

0 100 200 300 400 500
Num of PGD steps

45

50

55

60

65

70
Ac

cu
ra

cy
 u

nd
er

 a
tt

ac
k

VGG = 0.03
CAT-CE
TRADES
Adv train

(a)

0.00 0.02 0.04 0.06
PGD attack stregth

20

40

60

80

Ac
cu

ra
cy

 u
nd

er
 a

tta
ck

VGG PGD 20

Natural+SPROUT
TRADES+SPROUT
Random+SPROUT
Adv train+SPROUT
Natural+Adv train
Natural+TRADES

(b)

Figure 5.6: Stability in PGD-`∞ attack and the effect of model initialization. Left: (a)
Robust accuracy with different PGD steps. Right: (b) Robust accuracy with different model
initialization.

also exhibit strong robustness since their training objective involves the loss on both clean

and adversarial examples. In contrast, Adv Train+SPROUT does not have such benefit since

adversarial training only aims to minimize adversarial loss. This finding is also unique to

SPROUT, as neither Natural+Adv Train nor Natural+TRADES can boost robust accuracy.

Our results provide novel perspectives on improving robustness and also indicate that

SPROUT is indeed a new robust training method that vastly differs from adversarial training

based methods.

Effect on network width. It was shown in (MMS18) that adversarial training (Adv

Train) will take effect when a network has sufficient capacity, which can be achieved by

increasing network width. Figure 5.7 compares the robust accuracy of SPROUT and Adv

Train with varying network width on Wide ResNet and CIFAR-10. When the network has

width = 1 (i.e. a standard ResNet-34 network (HZR16a)), the robust accuracy of SPROUT

and Adv Train are both relatively low (less than 47%). However, as the width increases,

SPROUT soon attains significantly better robust accuracy than Adv Train by a large margin

(roughly 15%). Since SPROUT is more effective in boosting robust accuracy as network

width varies, the results also suggest that SPROUT can better support robust training for a

broader range of network structures.

105

2 4 6 8 10
ResNet width

40

45

50

55

60

65

Ac
cu

ra
cy

 u
nd

er
 a

tta
ck

ResNet PGD-20 attack with = 0.03

SPROUT
Adv train

Figure 5.7: Effect of network width against PGD-`∞ attack on CIFAR-10 and ResNet-34.

Table 5.6: Performance comparison between different training methods on VGG-16 and
CIFAR-10

Method Clean Acc `∞ Acc (ε = 0.03) C&W Acc Invariance (Contrast) Scalibility (10 epochs)
Natural 95.93% 0% 26.95% 91.88% 146.7 (secs)

Adv Train 84.92% 36.29% 70.13% 84.99% 1327.1 (secs)
TRADES 88.6% 38.29% 75.08% 83.08% 1932.5 (secs)
SPROUT 90.56% 58.93% 72.7% 86.98% 271.7 (secs)

5.3.4.7 Exact Performance Metrics for Figure 5.1

The performance metrics of Figure 5.1 are shown in Table 5.6.

5.3.4.8 Learned Label Correlation from SPROUT

Based on the statistical properties of Dirichlet distribution in (5.7), we use the final β

parameter learned from Algorithm 9 with CIFAR-10 and VGG-16 to display the matrix of

its pair-wise product βs · βt in Figure 5.8. The value in each entry is proportional to the

absolute value of the label covariance in (5.7). We observe some clustering effect of class

labels in CIFAR-10, such as relatively high values among the group of {airplane, auto, ship,

truck} and relatively low values among the group of {bird, cat, deer, dog}. Moreover, since

the β parameter is progressively adjusted and co-trained during model training, and the final

β parameter is clearly not uniformly distributed, the results also validate the importance of

106

using parametrized label smoothing to learn to improve robustness.

airplane auto ship truck bird cat deer dog frog horse

airplane

auto

ship

truck

bird

cat

deer

dog

frog

horse

1e+021e+021e+021e+02 99 98 99 99 1e+021e+02

1e+021e+021e+021e+021e+02 99 1e+02 99 1e+021e+02

1e+021e+021e+021e+021e+02 99 1e+02 99 1e+021e+02

1e+021e+021e+021e+02 99 99 1e+02 99 1e+021e+02

99 1e+021e+02 99 98 98 98 98 99 99

98 99 99 99 98 97 98 97 98 98

99 1e+021e+021e+02 98 98 99 98 99 99

99 99 99 99 98 97 98 98 99 99

1e+021e+021e+021e+02 99 98 99 99 1e+021e+02

1e+021e+021e+021e+02 99 98 99 99 1e+021e+02

Correlogram of

97.6

98.4

99.2

100.0

100.8

Figure 5.8: Matrix plot of the product βs · βt of the learned β parameter on CIFAR-10 and
VGG-16.

5.3.4.9 Parameter Sensitivity Analysis

We perform an sensitivity analysis of the mixing parameter λ ∼ Beta(a,a) and the smoothing

parameter α of SPROUT in Figure 5.9a. When fixing a, we find that setting α too large may

affect robust accuracy, as the resulting training label distribution could be too uncertain to

train a robust model. Similarly, when fixing α, setting a too large may also affect robust

accuracy.

5.3.4.10 Performance with different number of random starts for PGD attack

As suggested by (MMS18), PGD attack with multiple random starts is a stronger attack

method to evaluate robustness. Therefore, in Table 5.7, we conduct the following experiment

107

0.00 0.02 0.04 0.06
PGD attack stregth

40

50

60

70

80

90

Ac
cu

ra
cy

 u
nd

er
 a

tta
ck

VGG PGD 20
= Beta(0.2, 0.2), = 0.01
= Beta(0.5, 0.5), = 0.01
= Beta(1.0, 1.0), = 0.01
= Beta(0.2, 0.2), = 0.1

(a)

0.00 0.02 0.04 0.06
PGD attack stregth

0

20

40

60

80

100

Ac
cu

ra
cy

 u
nd

er
 a

tt
ac

k

Wide ResNet CW 20
SPROUT
TRADES
Natural
Adv train

(b)

Figure 5.9: Left: (a) Sensitivity of hyperparameters λ and α in SPROUT under PGD-`∞
attack Right: (b) Robust accuracy under C&W-`∞ attack.

on CIFAR-10 and Wide ResNet and find that the model trained by SPROUT can still attain

at least 61% accuracy against PGD-`∞ attack (ε = 0.03) with the number of random starts

varying from 1 to 10 and with 20 attack iterations. On the other hand, the accuracy of

Adversarial training and TRADES can be as low as 45.21% and 56.7%, respectively. Therefore,

The robust accuracy of SPROUT is still clearly higher than other methods. We can conclude

that increasing the number of random starts may further reduce the robust accuracy of all

methods by a small margin, but the observed robustness rankings and trends among all

methods are unchanged. We also perform one additional attack setting: 100-step PGD-`∞

attack with 10 random restarts and ε = 0.03. We find that SPROUT can still achieve 61.18%

robust accuracy.

Table 5.7: Robust accuracy of different training methods under PGD-`∞ attack with ε = 0.03
using different number of random starts

random start 1 3 5 8 10
Adversarial training 45.88% 45.67% 45.52% 45.52% 45.21%

TRADES 57.02% 56.84% 56.77% 56.7% 56.7%
SRPOUT 64.58% 62.53% 61.98% 61.38% 61.00%

108

5.3.4.11 Performance on C&W-`∞ attack

To further test the robustness on `∞ constraint, we replace the cross entropy loss with

C&W-`∞ loss (CW17) in PGD attack. Similar to the PGD-`∞ attack results in Figure 5.2,

Figure 5.9b shows that although SPROUT has slightly worse accuracy under small ε values,

it attains much higher robust accuracy when ε ≥ 0.03.

5.3.4.12 Performance comparison with Free Adversarial training on ResNet-50

and ImageNet

Here we compare the performance of SPROUT with a pre-trained robust ResNet-50 model on

ImageNet, which is shared by the authors in (SNG19) proposing the free adversarial training

method (Free Adv Train). We find that SPROUT obtains similar robust accuracy as Free

Adv Train when ε ≤ 0.01. As ε becomes larger, Free Adv Train has better accuracy. However,

comparing to the performance of ResNet-152 in Table 5.3, SPROUT’s clean accuracy on

ResNet-50 actually drops by roughly 13%, indicating a large performance gap that intuitively

shound not be present. Therefore, based on the current results, we postulate that the training

parameters of SRPOUT for ResNet-50 may not have been fully optimized (we use the default

training parameters of ResNet-152 for ResNet-50), and that it is possible that SPROUT has

larger gains in robust accuracy as the RestNet models become deeper.

Table 5.8: Robust accuracy under PGD-`∞ random targeted attack on ImageNet and ResNet-
50

Method Clean Acc ε = 0.005 ε = 0.01 ε = 0.015 ε = 0.02
Natural 76.15% 24.37% 3.54% 0.90% 0.40%

Free Adv Train 60.49% 51.35% 42.29% 32.96% 24.45%
SPROUT 61.23% 51.69% 38.14% 25.98% 18.52%

109

5.3.4.13 Diversity Analysis

In order to show the three modules (Dirichlet LS, GA and Mixup) in SPROUT lead to

robustness gains that are complimentary to each other, we perform a diversity analysis

motivated by (KQ19) to measure the similarity of their pair-wise input gradients and report

the average cosine similarity in Table 5.9 over 10,000 data samples using CIFAR-10 and VGG-

16. We find that the pair-wise similarity between modules is indeed quite small (< 0.103).

The Mixup-GA similarity is the smallest among all pairs since the former performs both

label and data augmentation based on convex combinations of training data, whereas the

latter only considers random data augmentation. The Dirichlet LS-GA similarity is the

second smallest (and it is close to the Mixup-GA similarity) since the former progressively

adjusts the training label ỹ while the latter only randomly adjusts the training sample x̃.

The Dirichlet LS-Mixup similarity is relatively high because Mixup depends on the training

samples and their labels while Dirichlet LS also depend on them and the model weights. The

results show that their input gradients are diverse as they point to vastly different directions.

Therefore, SPROUT enjoys complimentary robustness gain and can promote robustness when

combining these techniques together.

Table 5.9: Average pair-wise cosine similarity of the three modules in SPROUT

Dirichilet LS Mixup GA
Dirichilet LS NA 0.1023 0.0163

Mixup 0.1023 NA 0.0111
GA 0.0163 0.0111 NA

110

CHAPTER 6

Understanding Robustness Trade-off for Generalization

Albeit effective in countering adversarial examples, adversarial training often suffers from

inferior performance on clean data (ZYJ19; BGH19). This observation has led prior work to

extrapolate that a trade-off between robustness and accuracy may be inevitable, particularly

for image classification tasks (ZYJ19; TSE19). However, (YRZ20) recently suggests that

it is possible to learn classifiers both robust and highly accurate on real image data. The

current state of adversarial training methods falls short of this prediction, and the discrepancy

remains poorly understood.

In this chapter, we conduct an in-depth study on understanding the trade-off between

robustness and clean accuracy in adversarial training, and introduce Adversarial Masking,

a new hypothesis stating that a widely used technique, batch normalization (BN), has a

significant impact on the trade-off between robustness and natural accuracy. Specifically,

we break down BN into normalization and rescaling operations, and find that the rescaling

operation has a significant impact on the robustness trade-off while normalization only has

marginal influence. Built upon this observation, we hypothesize that adversarial masking (i.e.,

the combination of the rescaling operation and the follow-up ReLU activation fucntion) acts as

a feature masking layer that can magnify or block feature maps to influence the performance

of robust or clean generalization. In this hypothesis, different rescaling parameters in BN

contribute to different adversarial maskings learned through training. By using a simple

linear combination of two adversarial maskings, rather than using robust features learned by

adversarial training (MMS18; IST19; ZYJ19), we show that a well-balanced trade-off can be

111

readily achieved.

Based on the Adversarial Masking hypothesis, we further propose RobMask (Robust

Masking), a new training scheme that learns an adaptive feature masking for different

perturbation strengths. We use the learned adaptive feature masking to incorporate different

features so that we could improve model generalization with a better robustness trade-off.

Specifically, in each training iteration, we first randomly sample a perturbation strength, and

generate a mini-batch of adversarial examples by conducting PGD attacks. This perturbation

strength is also encoded as a low-dimensional vector,1 which is taken as input of a learnable

linear projection layer to obtain the rescaling parameter of BN (i.e., adversarial masking

when combined with the follow-up ReLU) for processing adversarial examples generated

under the corresponding perturbation strength. Both clean and adversarial examples are

used for model training. By doing so, rather than hurting the performance on clean test

data, we use adversarial examples as powerful regularization to boost model generalization.

Experiments on multiple benchmarks demonstrate that RobMask achieves not only better

natural accuracy, but also a better trade-off between robustness and generalization.

6.1 Preliminary and Related Work

Trade-off between Robustness and Accuracy While effective in improving model

robustness, adversarial training bears a performance drop on clean test data. (TSE19)

provides a theoretical example of data distribution where any classifier with high test

accuracy must also have low adversarial accuracy under `∞ perturbations. They claim

that high performance on both accuracy and robustness may be unattainable due to their

inherently opposing goals. (ZYJ19) decomposes the robust error as the sum of natural

(classification) error and boundary error, and provides a differentiable upper-bound using

1e.g., if ε0 = 0 is encoded as [1.0, 0.0], εmax = 8/255 is encoded as [0.0, 1.0], then ε = 6/255 can be encoded
as [0.25, 0.75]. See Sec. 6.3 for details.

112

the theory of classification-calibrated loss, based on which they further propose TRADES to

achieve different trade-offs by tuning the regularization term. However, (YRZ20) shows that

real image datasets are actually separated so that there should exist a robust and perfectly

accurate classifier. It suggests that the robustness-accuracy trade-off in deep learning is

not inherent but a consequence of current methods for training robust networks. (RXY20)

suggests that robust training tends to fit the local structure and lose the generalization on

the global structure. By adding more unsupervised data like self-training, it could achieve a

better robustness and clean accuracy trade-off.

Adversarial Examples Improve Training Adversarial training could be naturally

regarded as a data augmentation technique and brings additional features to training neural

networks. (MFU19) shows that adversarial training leads to a significant decrease in the

curvature of the loss surface with respect to inputs, resulting in a drastically more “lin-

ear” behavior of the network. Therefore, other than treating adversarial examples as an

augmentation method, it could serve as a regularizer to make the loss smoother. It has

been used on a wide range of applications from reinforcement learning (ZCX20), language

understanding (ZCG19; LCH20), vision-and-language understanding (GCL20), to neural

architecture search (CH20a). Most recently, (XTG20) proposes AdvProp to assign another

batch normalization for generating adversarial examples, and shows improved performance

on clean data in image classification tasks.

Batch Normalization Batch Normalization is a widely adopted technique that enables

faster and more stable training of deep neural networks. Below, we provide a brief overview

of batch normalization, which paves the way to introduce our method. Specifically, batch

normalization (IS15) is proposed to reduce the internal covariate shift to ease neural network

training. However, several works later (STI18; BGS18) show the performance boost is brought

by the regularization effect to improve the smoothness of the loss function and the ability to

enable a larger learning rate, instead of reducing the internal covariate shift. Considering

113

(a) Running mean µ (b) Running variance
σ

(c) Rescaling γ (d) Rescaling β

Figure 6.1: Batch statistics in the first batch normalization (BN) layer of an adversarial
trained ResNet18 model on CIFAR10, with and without further standard fine-tuning of
BN (orange and blue lines, respectively). The running mean µ and variance σ, as well as
the rescaling shift parameter β are almost the same (overlapped in the figure), while the
rescaling weight γ has a significant difference, which has a notable contribution to the clean
and robustness trade-off.

a convolutional neural network, we can define the input and output as Ib,c,x,y and Ob,c,x,y,

respectively. The dimensions correspond to examples with a batch b, channel c, and two

spatial dimensions x, y. A neural network applies the same normalization for all activations

in a given channel:

Ob,c,x,y ← γ
Ib,c,x,y − µc√

σ2
c + ε

+ β ∀b, c, x, y, (6.1)

where µc = 1
|B|
∑

b,x,y Ib,c,x,y denotes the mean for channel c, and σc denotes the corresponding

standard deviation. γ and β are two learnable parameters for the channel-wise affine

transformation, i.e., rescaling operations. ε is a small number to control numerical stability.

6.2 Adversarial Masking

6.2.1 Batch Normalization Acts as Adversarial Masking

(IST19) disentangles adversarial examples as a natural consequence of non-robust features.

Specifically, they construct robust features from an adversarial trained “robust model” directly.

Therefore, a common belief is that adversarial robustness comes from feature representations

learned through adversarial training (IST19; SIT19). An interesting question we would like

to ask is: can we learn robust features from a vanilla standard-trained model, or, can we

114

Method Clean Acc. Robust Acc.

Standard Training 91.97% 0.0%
+ Adv. Finetuning of BN 53.96% 26.51%

Adv. Training 78.47% 48.67%
+ Standard Finetuning of BN 86.96% 5.83%

Table 6.1: Clean and robust accuracy of ResNet-18 models trained under different settings
on CIFAR-10. All robust accuracy results are obtained using the ε = 8/255 `∞ ball. (BN:
Batch Normalization)

Model p 1.0 0.8 0.6 0.4 0.2 0.0

Adv. Training with and
w/o Std. Finetuning of BN

Clean Acc. 78.47% 81.16% 82.8% 84.66% 86.06% 86.96%
Robust Acc. 48.67% 44.88% 37.2% 24.79% 12.85% 5.83%

Std. Training with and
w/o Adv. Finetuning of BN

Clean Acc. 91.97% 88.66% 74.87% 58.76% 53.89% 53.96%
Robust Acc. 0.0% 0.0% 0.12% 5.73% 19.93% 26.51%

Table 6.2: The clean and robust accuracy using different combination coefficient p on CIFAR-
10 with ResNet-18. The 1st block uses adversarial trained models with and without further
standard finetuning of batch normalization (BN). The 2nd block uses standard trained models
with and without further adversarial finetuning of BN. All robust accuracies are obtained
using ε = 8/255 `∞ ball.

obtain non-robust features from an adversarial trained “robust model”?

Deep Analysis of BN To answer this question, we design the following experiments.

We first train a ResNet-18 model with standard and adversarial training, then finetune the

networks by allowing only the parameters of batch normalization (BN) to be updated while

freezing other parameters. Specifically, we finetune BN in a standard trained model using

adversarial training, and finetune BN in an adversarial trained model with standard training,

respectively, with the same optimizer, learning rate, learning rate scheduler and number

of epochs. Results are summarized in Table 6.1. Given a standard trained model, by only

performing adversarial finetuning of the BN layers, the resulting model can already achieve

a reasonably good robust accuracy of 26.51% (the 1st block in Table 6.1). Similarly, given

an adversarial trained model, by only performing standard finetuning of the BN layers, the

clean accuracy of the model increases significantly from 78.47% to 86.96% (the 2nd block).

115

(a) Adv. training with
further standard fine-
tuning of BN

(b) Adversarial train-
ing

Figure 6.2: Illustration of the Adversarial Masking effect. We highlight several feature maps
(red and green boxes), that are blocked out or magnified when comparing (a) and (b), which
can be viewed as a selection mask on “non-robust” and “robust” features.

These experiments demonstrate that we can control the trade-off between clean and robust

errors by only tuning the BN layer, so here comes a natural question: which part in BN has

contributed to this performance trade-off? To investigate this, we take a step further to check

the difference of every parameter used in BN. In particular, we study the first BN layer after

the first convolution layer.

As well known, BN uses a running average of the mean and variance during testing.

Figure 6.1a and 6.1b illustrate the difference on the running mean µ and running variance σ.

The batch statistics with and without further standard finetuning of BN (under the setting in

the 2nd block of Table 6.1) are nearly identical across all the dimensions. Figure 6.1c and 6.1d

plot the learned rescaling parameters γ and β. We can see that the fine-tuned rescaling

parameter γ is completely different from the original one, with β unchanged, indicating that

γ has a significant impact on the clean and robust trade-off while still performing similar

normalization on both sides. It clearly shows that the rescaling weight contributes more than

other parameters in the batch normalization.

Analysis of the Feature Maps After BN On the other hand, Rectified Linear Unit

(ReLU) (Aga18) is the most commonly used activation function in deep neural networks. The

function returns 0 if it receives any negative input, and for any positive value x it returns

116

(a) Adversarial Masking. (b) The proposed RobMask method.

Figure 6.3: Illustration of (a) Adversarial Masking hypothesis, and (b) RobMask method
for improving the generalization performance. Instead of just using a single masking for
both clean and adversarial examples, we use the linear combination of k primary rescaling
parameters {wj}kj=1 and {w′j}kj=1 to incorporate different perturbation strength εi.

that value back (i.e., f(x) = max(0, x)). During the rescaling operation, γ would magnify or

shrink the magnitude of feature maps. Together with β, after ReLU activation, features that

become negative will be blocked as 0. By combining the rescaling operation with the following

ReLU activation function, the resulting layer can be viewed as a masking layer to magnify or

block the features maps from the convolution layer (see Figure 6.3(a) for illustration).

To further validate this, we plot the feature maps after ReLU activation functions in

Figure 6.2. Specifically, we extract the feature maps after the first BN and ReLU layer. Note

that only a few changes are highlighted. 16/64=25% feature maps have changed dramatically;

and in fact, all the feature maps have changed to some extent. Some feature maps are

blocked after finetuning BN (completely black when all pixels are set to 0) as well as some

are magnified significantly. We term the above observation as Adversarial Masking, and

hypothesize that this leads to the trade-off between robustness and natural accuracy.

6.2.2 Controlling Robustness Trade-off via Adversarial Masking

The above analysis suggests that, rather than feature representations, rescaling in the BN

layer together with ReLU activation function serves as a masking layer for selecting different

117

feature combinations that can achieve different performance trade-offs between clean and

perturbed test sets. From this hypothesis, a different combination of BN and ReLU can be

regarded as a different adversarial masking. With such a masking, we can readily achieve a

series of trade-offs without training the model from scratch like the conventional adversarial

training. In the following experiment, we use a simple linear combination of two learned

adversarial maskings to achieve this trade-off, and empirically, we observe that this simple

design is sufficient. Specifically, denote (γ, β) and (γ′, β′) as two learned adversarial maskings

(i.e., the learned rescaling parameters in the BN layer), and we have γ̂ = pγ + (1− p)γ′ and

β̂ = pβ + (1− p)β′. We then use the new adversarial masking (γ̂, β̂) for evaluation. Table 6.2

shows that different clean and robust accuracies can be readily achieved by selecting different

p values.

Previous work (ZYJ19) uses regularization hyperparameter λ to balance between clean

error and robust error. By tunning λ, they could achieve different robustness trade-offs.

However, it takes enormous time and effort to retrain the model from the scratch. Instead,

this finding inspires us that we can just store one model and employ a series of learned

adversarial maskings to control the robustness trade-off at real time.

6.3 Improving Model Generalization via RobMask

As mentioned in Section 6.2, different trade-offs can be achieved by linearly combining

two pre-trained batch normalization layers. However, this may not be ideal due to several

deficiencies. First, the “clean” mask learned by fine-tuning is not distilled and may partially

override the mask learned from adversarial examples, leading to a sub-optimal solution.

Second, since every perturbation strength tends to have a different masking, if we only utilize

one perturbation strength, we lose all the other maskings generated by the perturbation

strength in-between. Third, it requires a careful selection of what the maximum perturbation

strength is. In the extreme case, if a sample is perturbed to the decision boundary, the learned

118

adversarial mask might be completely meaningless. If the chosen perturbation strength is too

small, there will not be enough regularization for improving generalization. To address these

issues, we propose RobMask (Robust Masking), a new framework that aims to actively

learn the adversarial masking to boost generalization performance.

Specifically, we propose to incorporate different perturbation strengths for model training

instead of just one. Note that we could treat ε = 0 for the unperturbed data. A straightforward

way is to just learn a set of γi, βi independently for every perturbation strength εi. However,

due to the limited number of sampled perturbation strengths, each γi could have poor

generalization due to over-fitting. At the same time, it weakens the correlation between all

the generated maskings.2 Instead, we need to learn the corresponding maskings jointly.

To this end, we assume that every rescaling parameter γi can be well-approximated by a

linear combination of k basic rescaling parameters {wj}kj=1, where k is a small number. By

encoding perturbation strength εi into a k-dimensional vector ui, we can linearly combine

wj using ui to obtain a rescaling parameter for strength εi as:

γi =
k∑
j=1

uijwj ,

ui = (1− pi)u0 + piuεmax ,

εi = pi · εmax . (6.2)

Take k = 2 as an example: we can encode u0 = [1.0 0.0]T for ε = 0, and uεmax = [0.0 1.0]T for

εi = εmax, respectively. Naturally, the intermediate perturbation strength εi = pi · εmax can be

encoded as ui = (1− pi)u0 + piuεmax . Therefore, instead of learning γi separately for every

εi, we learn a low-rank matrix W = [w1,w2, . . . ,wk] to incorporate different perturbation

strengths and learn a series of maskings. Similarly, we learn another matrix W’ for βi. During

training, in every iteration, with a randomly selected perturbation strength εi = pi · εmax, we

first generate a mini-batch of adversarial examples by conducting PGD attacks. Then, we

learn the rescaling parameter of BN by using a low-rank linear layer (W and W’) and encoded

2A certain degree of correlation still exists since all the other parameters besides BN are still shared.

119

Algorithm 10 The proposed RobMask method for improving model generalization.

Input: Training dataset {xi, yi}ni=1, perturbation upper bound εmax.
for epoch= 1, . . . , N do

for i = 1, . . . , B do
Sample a random number p from 0 to 1
obtain the perturbation strength in this mini-batch
εi ← p · εmax
encode the perturbation strength as a vector
ui ← Encode(εi)
δi ← 0
for j = 1, . . . ,m do

PGD adversarial attack
δi ← δi + α · sign(∇δ`(fθ(xi + δi), yi)
δi ← max(min(δi, εi),−εi)

the rescaling parameters in BN
γi ←

∑k
j=1 uijwj, βi ←

∑k
j=1 uijw

′
j

update W and W’
W←W− η1 · ∇W`(fθ(xi + δi, γi, βi), yi)
W’←W’− η2 · ∇W’`(fθ(xi + δi, γi, βi), yi)
update neural network parameters θ
θ ← θ − η3 · ∇θ`(fθ(xi + δi, γi, βi), yi)

return θ,W,W’

attack strength ui. Finally, we minimize the total loss using stochastic gradient descent

(SGD) to update model parameters. We summarize the detailed algorithm in Algorithm 10.

Connection with AdvProp (XTG20) hypothesizes that the performance degradation

on unperturbed test dataset is mainly caused by the distribution mismatch between adversarial

examples and clean images. They propose AdvProp to assign an auxiliary batch normalization

for adversarial examples, and show that adversarial examples can be useful to achieve better

performance on clean test data. However, as shown in Figure 6.1, the running mean and

variance are kept the same after fine-tuning. We argue that the improved model generalization

is realized by a different adversarial mask learned by auxiliary batch normalization in the

AdvProp procedure.

Although we utilize adversarial training to boost generalization as well, our approach

120

Model #Epochs
CIFAR-10 CIFAR-100

BN AdvProp RobMask BN AdvProp RobMask

ResNet-18
20 92.59% 93.45% 94.64% 75.88% 76.15% 77.61%
100 94.87% 95.3% 96.10% 77.7% 76.82% 78.77%

DenseNet-121
20 93.26% 94.61% 95.30% 74.79% 73.61% 75.11%
100 94.71% 94.61% 96.47% 77.63% 76.88% 80.18%

Preact-18
20 91.93% 92.55% 94.04% 70.79% 72.71% 73.59%
100 94.37% 95.33% 95.97% 76.14% 76.87% 78.19%

ResNeXt-29
20 93.12% 93.37% 95.03% 74.26% 72.18% 74.65%
100 95.15% 95.29% 96.06% 78.60% 76.35% 79.54%

Table 6.3: Comparison on CIFAR-10/100 over ResNet-18, DenseNet-121, Preact-18, and
ResNeXt-29. Models are trained for 20 and 100 epochs using normal Batch Normalization
(BN), AdvProp and our RobMask. RobMask shows a significant performance improvement
on all model architectures. Also, RobMask trained with 20 epochs achieves a comparable
performance to 100-epoch training using BN and AdvProp.

has clear differences. First, in AdvProp, there is no connection between the traditional

and auxiliary batch normalization (BN). The traditional BN only obtains inputs from clean

data, and the auxiliary BN only obtains inputs from adversarial examples. This type of

disentanglement would completely separate different masks, which violates the reality that

some masks can be useful for both clean and robust performance. Second, AdvProp has

to designate a perturbation strength that should not be too large or too small, which is

difficult to tune in practice. To be noted, while AdvProp fixed one perturbation strength

to one batch-norm, each wk in RobMask denotes a “basis” and all the BN parameters for

each different epsilon are based on a linear combination of these bases. Also, the proposed

RobMask method is more general than Advprop, and AdvProp can be considered as one

special case of RobMask when we set the linear layer rank k to 2 and freeze p = 1 in the

whole training process.

121

Model
ImageNet

BN AdvProp RobMask

ResNet-18 69.76% 69.79% 70.14%

Table 6.4: Comparison on ImageNet over ResNet-18. Models are trained for 105 epochs using
normal Batch Normalization (BN), AdvProp and our RobMask.

6.4 Experimental Results

In this section, we conduct experiments to show that RobMask can successfully improve gen-

eralization performance. We also provide additional robustness evaluation for completeness.

Experimental Setup Datasets and Model Architectures We use two popular datasets

CIFAR-10 and CIFAR-100 (KH09) and one large-scale dataset ImageNet (DDS09) for experi-

ments. For model architectures, we use the popular ResNet (HZR16a) family including Preact

ResNet (HZR16b), ResNeXt (XGD16) and the recent well-performed DenseNet (HLW16).

Baselines We compare RobMask with two baselines: (i) AdvProp: Dual batch normal-

ization (XTG20), where different batch normalizations are used for clean and adversarial

examples during training; and (ii) BN: Standard training with normal batch normalization

enabled. Note that as our main goal is to improve the generalization performance instead of

robust test accuracy, we do not compare against standard adversarial training methods, as

they are reported to largely decrease generalization performance (MMS18; ZYJ19; BGH19).

Implementation Details For CIFAR-10 and CIFAR-100, we set the number of iterations

in adversarial attack to 7 for all the methods during training. All PGD attacks are non-

targeted attacks with random initialization. We set the PGD attack strength ε = 8/255 with

cross-entropy (CE) loss and the step-size to ε/5. All models are trained using SGD with

momentum 0.9, weight decay 5× 10−4. We use cosine learning rate scheduling with initial

learning rate γ1 = γ2 = γ3 = 0.1. For ImageNet, we follow the PyTorch implementation at a

122

ε Attack 0 2/255 4/255 6/255 8/255

Adv. Training PGD 78.86% 72.61% 65.27% 57.15% 47.97%
AutoAttack 78.86% 70.99% 62.94% 53.83% 44.66%

AdvProp PGD 85.98% 78.34% 69.24% 57.61% 46.04%
AutoAttack 85.98% 77.73% 67.57% 55.36% 43.13%

RobMask PGD 89.99% 82.91% 72.23% 58.63% 44.50%
AutoAttack 89.99% 81.87% 70.99% 55.90% 41.70%

RobMask (ε = 10/255) AutoAttack 86.50% 78.47% 68.08% 56.89% 44.69%

Table 6.5: Robust accuracy under different levels of PGD `∞ attacks and AutoAttack on
CIFAR-10 with ResNet-18 architecture. RobMask clearly outperforms AdvProp and standard
adversarial training in all the test perturbation strengths except ε = 8/255 on which AdvProp
and standard adversarial training are trained.

Github repo.3 To have a fair comparison, for RobMask, we set k = 2 and εmax = 8/255 in all

our experiments, which has the same number of model parameters and same regularization

strength as AdvProp. All our experiments are implemented in PyTorch.

Experimental Results Generalization Table 6.3 summarize the results of all the eval-

uated methods on CIFAR-10 and CIFAR-100. Across all the tested model architectures,

RobMask shows a significant improvement over both normal batch normalization (BN) and

AdvProp. Specifically, as shown in Table 6.3, for 100-epochs training on CIFAR-10, Rob-

Mask achieves around 1.5% test accuracy improvement over BN and 0.8% over AdvProp,

respectively. Similar improvements can also be observed on the CIFAR-100 dataset. Further,

when comparing results between Table 6.3, we observe that RobMask also leads to faster

convergence: 20-epochs training using RobMask leads to results that are comparable to

100-epochs training using BN. Additionally, we add the large-scale dataset ImageNet into the

comparison. Table 6.4 summarize the results with ResNet-18 on ImageNet dataset. Clearly,

while AdvProp has a very limited improvement on ResNet-18, RobMask has around 0.4

percent improvement, which further shows RobMask’s effectiveness on generalization.

3https://github.com/tingxueronghua/pytorch-classification-advprop

123

https://github.com/tingxueronghua/pytorch-classification-advprop

Robustness Evaluation In addition to improved generalization performance, our

method can also achieve a better robust and natural accuracy trade-off over adversar-

ial training. For CIFAR-10 and CIFAR-100, we evaluate all the methods under the white-box

ε = 8/255 `∞-norm bounded non-targeted PGD attack. Specifically, we use 100-step PGD

with step size ε/5) that is equipped with random start. Moreover, to further verify the robust

accuracy achieved, we use AutoAttack (CH20b) to evaluate the performance. Note that, when

ε = 0, robust accuracy is reduced to the test accuracy of unperturbed (natural) test samples,

i.e, clean accuracy. Results are summarized in Table 6.5. RobMask clearly outperforms other

methods among ε from 0 to 6/255. However, RobMask performs slightly worse on ε = 8/255.

It is because both AdvProp and adversarial training models are trained with adversarial

examples generated with ε = 8/255, while our methods use a random perturbation where

εmax = 8/255. That is, we use a weaker perturbation strength compared to both AdvProp

and adversarial training.

To achieve a better result on ε = 8/255, we relax the max epsilon constraint from 8/255

to 10/255. From Table 6.5, we can see that the clean performance drops slightly with an

increasing robust accuracy on ε >= 6/255 so that we now can achieve a better robust accuracy

on ε = 8/255. Even with the slight degrading performance on clean accuracy, RobMask

achieves a better adversarial robustness trade-off over other methods.

Importance of Low-rank Matrix We conduct an ablation study on DenseNet-121

over CIFAR-10 to investigate the importance of using a low-rank matrix and to incorporate

multiple perturbation strengths. Also, we show the impact of choosing different rank k in

AdvProp. Specifically, we add another dimension and set k = 3. Note that, even if AdvProp

could use many BNs simultaneously, they assume every BN is independent. Here, we extend

AdvProp to use a randomly selected strength εi = pi · εmax to generate adversarial examples,

and then feed into auxiliary batch normalization. AdvProp can also be generalized using

multiple auxiliary BNs when given multiple perturbation strengths. In experiments, instead of

an auxiliary batch normalization for adversarial examples generated by ε = 8/255, we also give

124

Method Clean Acc.

AdvProp 94.61%
with random perturbation strength 94.50%
with 2 auxiliary BNs 95.10%

RobMask (k = 2) 96.47%
RobMask (k = 3) 96.40%

Table 6.6: Comparison on CIFAR-10 over DenseNet-121 on AdvProp, its extensions, and
RobMask with k = 3. Models are trained for 100 epochs.

another batch normalization for adversarial examples generated under ε = 4/255. Table 6.6

shows AdvProp has degenerated performance when using random perturbation strength.

When adding more auxiliary batch normalization, the performance improves slightly, also

observed in (XTG20). However, RobMask still significantly outperforms AdvProp variants.

When k = 3, RobMask could achieve a comparable accuracy 96.40% and still have a better

performance than AdvProp with a large margin.

125

CHAPTER 7

Conclusion

Neural networks provide state-of-the-art results for most machine learning tasks. Unfortu-

nately, neural networks are vulnerable to adversarial examples. That is, a slightly modified

example could be easily generated and fool a well-trained image classifier based on deep neural

networks (DNNs) with high confidence. This makes it difficult to apply neural networks in

security-critical areas like autonomous driving. This area is known as adversarial robustness

in machine learning. The central focus of this thesis is to understand when and why this

phenomenon happens and make a way to improve its ability to counter such examples.

7.1 Adversarial Attacks

To understand when the adversarial examples appear, first, we start with adversarial attacks

on image classification tasks. Specifically, we first formulate the attack into an optimization

problem and introduce how to find to solve the problem into different settings including

white-box, soft-label black-box, and hard-label black-box. Then we take a deep dive into

the most practical setup for evaluating the adversarial robustness of a machine learning

system with limited access: the hard-label black-box attack setting for generating adversarial

examples, where limited model queries are allowed and only the decision is provided to

a queried data input. While all previous works either use a transfer-based attack (which

has a very low success rate) or random walk (which is extremely slow and lack theoretical

guarantees), we are the first to formalize this problem into an optimization problem and

developed OPT-attack and Sign-OPT, two state-of-art methods which could be widely used

126

to test the robustness of many real-world models in the industry. Second, other than image

classification, we also extend this discussion to the more challenging discrete domains such

as natural language processing (NLP) tasks. Since the inherent discreteness nature of text

strings, we propose Seq2Sick to evaluate the robustness of the seq2seq model, which has

inspired many follow-up works and has been cited since its debut. Moreover, we take a step

further to study how to evaluate the robustness of a goal-oriented dialogue system where

there can be many turns of interactions between adversarial and target agents, while all of

the previous work consider attacking a static model, where except input image/sentence there

is no interaction between the attacker and the target model. These two works first point out

the current deep learning-based seq2seq model like machine translation and dialog agent has

serious concerns on facing noisy inputs and malicious agents.

7.2 Adversarial Defenses

While crafting adversarial examples is an important technique to evaluate the robustness of

DNNs, there is a huge need for improving the model’s robustness as well. Enhancing model

robustness under new and even adversarial environments is a crucial milestone toward building

trustworthy machine learning systems. In general, it could be divided into two categories:

attack-dependent defense. and attack-independent defenses. As one of the most effective

ways to improve the model’s robustness in attack-dependent defense methods, although many

variants have been proposed, adversarial training sacrifices huge performance on natural data.

We think the loss of clean accuracy in adversarial training is mainly due to the inductive

biases introduced in the training methods. For instance, enforcing all the samples to have a

uniform-robust region may be a wrong assumption. So we develop CAT which adaptively

customizes the perturbation level and the corresponding label for each training sample in

adversarial training. Also, as one of the most effective methods to improve robustness,

adversarial training suffers from poor scalability and attack specificity. Therefore, on the

127

other hand, we take a different perspective on attack-independent defenses, which attempts to

add the out-of-distribution data into the training to gain the property of adversarial examples.

We, therefore, propose a new framework SPROUT that adjusts training label distribution

via our proposed parametrized label smoothing technique, making training free of attack

generation and more scalable. We also motivate SPROUT using a general formulation based

on vicinity risk minimization, which includes many robust training methods as special cases.

7.3 Future Directions

Building better tools to evaluate robustness: Despite many adversarial attacks have

been proposed in different settings, they are insufficient to measure the model’s adversarial

robustness because nearly all of them are gradient-based. Without a good gradient, where

following the gradient does not successfully optimize the loss, those attacks cannot succeed.

Therefore, some of the current defense methods would cause gradient masking or obfuscated

gradient so that it could achieve good performance to counter those attacks, while the

adversarial robustness is not truly improved. On the other hand, machine learning verification

has been a reliable measurement of robustness by bounding the prediction behavior of the

model within a certain input region. However, all existing verification approaches only focus

on ReLU networks, and the bounds need to be re-derived and re-implemented for every

different network architecture and activation, which is very time-consuming and scale-limited.

Therefore, it is a great idea to develop a reliable, fast way to measure the model’s adversarial

robustness.

Robust models without sacrificing clean accuracy: Although many algorithms have

been proposed to improve the robustness of machine learning models, all of them sacrifice

performance on natural data. Despite some previous work reveals the difficulty of adversarial

generalization, recent work has proved that a robust neural network actually exists but it’s

128

hard to find it. I think the loss of clean accuracy in adversarial training is mainly due to the

inductive biases introduced in the training methods. For instance, enforcing all the samples to

have a uniform robust region may be a wrong assumption. Furthermore, in certified defense,

since the bounds are usually tight in some sub-regions, training procedure will bias the model

towards those regions, leading to degenerated models (many neurons are never activated).

We will thus develop ways to improve existing methods by mitigating the inductive biases

and try to obtain robust models without sacrificing the performance on natural data.

Harnessing robustness to improve model performance: Adversarial training was

originally proposed as a means to enhance the security of machine learning systems. Despite

it has been shown it would cause the accuracy decreasing in the image classification domain,

however, recently, it has been shown that adversarial training significantly improves the

performance of state-of-the-art image classification and language understanding tasks when

being correctly applied. Theoretically, adversarial training makes the loss smoothness so that

it helps to avoid model converging to bad local optimal. Intuitively, adversarial examples

make network representations align better with salient data characteristics and the learned

representations are less sensitive to texture distortions and focus more on shape information.

Moreover, adversarial examples could be thought as special data augmentation and strong

regularization. With the aforementioned benefits, it is promising for us to use adversarial

robustness as a tool to understand neural networks’ behavior and enable us to build a better

performed and trustworthy artificial intelligent model.

129

Bibliography

[ACW18] Anish Athalye, Nicholas Carlini, and David Wagner. “Obfuscated gradients

give a false sense of security: Circumventing defenses to adversarial examples.”

International Coference on International Conference on Machine Learning, 2018.

[Aga18] Abien Fred Agarap. “Deep learning using rectified linear units (relu).” arXiv

preprint arXiv:1803.08375, 2018.

[ASC19] Moustafa Alzantot, Yash Sharma, Supriyo Chakraborty, Huan Zhang, Cho-Jui

Hsieh, and Mani B Srivastava. “Genattack: Practical black-box attacks with

gradient-free optimization.” In Proceedings of the Genetic and Evolutionary

Computation Conference, pp. 1111–1119, 2019.

[BCB14] Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Bengio. “Neural machine trans-

lation by jointly learning to align and translate.” arXiv preprint arXiv:1409.0473,

2014.

[BDL18] Thomas Brunner, Frederik Diehl, Michael Truong Le, and Alois Knoll. “Guessing

smart: Biased sampling for efficient black-box adversarial attacks.” arXiv preprint

arXiv:1812.09803, 2018.

[BGH19] Yogesh Balaji, Tom Goldstein, and Judy Hoffman. “Instance adaptive adver-

sarial training: Improved accuracy tradeoffs in neural nets.” arXiv preprint

arXiv:1910.08051, 2019.

[BGS18] Johan Bjorck, Carla Gomes, Bart Selman, and Kilian Q Weinberger. “Understand-

ing batch normalization.” arXiv preprint arXiv:1806.02375, 2018.

[BHL17] Arjun Nitin Bhagoji, Warren He, Bo Li, and Dawn Song. “Exploring the Space of

Black-box Attacks on Deep Neural Networks.” arXiv preprint arXiv:1712.09491,

2017.

130

[BRB17] Wieland Brendel, Jonas Rauber, and Matthias Bethge. “Decision-Based Adver-

sarial Attacks: Reliable Attacks Against Black-Box Machine Learning Models.”

arXiv preprint arXiv:1712.04248, 2017.

[BSW14] Pierre Baldi, Peter Sadowski, and Daniel Whiteson. “Searching for exotic particles

in high-energy physics with deep learning.” Nature communications, 5:4308, 2014.

[BWA18] Jeremy Bernstein, Yu-Xiang Wang, Kamyar Azizzadenesheli, and Animashree

Anandkumar. “signSGD: Compressed Optimisation for Non-Convex Problems.”

In Jennifer Dy and Andreas Krause, editors, Proceedings of the 35th International

Conference on Machine Learning, volume 80 of Proceedings of Machine Learning

Research, pp. 560–569, Stockholmsmässan, Stockholm Sweden, 10–15 Jul 2018.

PMLR.

[CH20a] Xiangning Chen and Cho-Jui Hsieh. “Stabilizing differentiable architecture search

via perturbation-based regularization.” In International Conference on Machine

Learning, pp. 1554–1565. PMLR, 2020.

[CH20b] Francesco Croce and Matthias Hein. “Reliable evaluation of adversarial ro-

bustness with an ensemble of diverse parameter-free attacks.” arXiv preprint

arXiv:2003.01690, 2020.

[CJL16] William Chan, Navdeep Jaitly, Quoc Le, and Oriol Vinyals. “Listen, attend and

spell: A neural network for large vocabulary conversational speech recognition.”

In Acoustics, Speech and Signal Processing (ICASSP), 2016 IEEE International

Conference on, pp. 4960–4964. IEEE, 2016.

[CLC19] Minhao Cheng, Thong Le, Pin-Yu Chen, Huan Zhang, JinFeng Yi, and Cho-Jui

Hsieh. “Query-Efficient Hard-label Black-box Attack: An Optimization-based

Approach.” In International Conference on Learning Representations, 2019.

131

[CRK19] Jeremy M Cohen, Elan Rosenfeld, and J Zico Kolter. “Certified adversarial

robustness via randomized smoothing.” International Conference on Machine

Learning, 2019.

[CRS19] Yair Carmon, Aditi Raghunathan, Ludwig Schmidt, Percy Liang, and John C

Duchi. “Unlabeled data improves adversarial robustness.” Neural Information

Processing Systems, 2019.

[CSC19] Minhao Cheng, Simranjit Singh, Pin-Yu Chen, Sijia Liu, and Cho-Jui Hsieh.

“Sign-OPT: A Query-Efficient Hard-label Adversarial Attack.” arXiv preprint

arXiv:1909.10773, 2019.

[CSV09] Andrew R Conn, Katya Scheinberg, and Luis N Vicente. Introduction to derivative-

free optimization, volume 8. Siam, 2009.

[CSZ18] Pin-Yu Chen, Yash Sharma, Huan Zhang, Jinfeng Yi, and Cho-Jui Hsieh. “EAD:

elastic-net attacks to deep neural networks via adversarial examples.” In AAAI,

2018.

[CW17] Nicholas Carlini and David Wagner. “Towards evaluating the robustness of neural

networks.” In Security and Privacy (SP), 2017 IEEE Symposium on, pp. 39–57.

IEEE, 2017.

[CWB01] Olivier Chapelle, Jason Weston, Léon Bottou, and Vladimir Vapnik. “Vicinal risk

minimization.” In Advances in neural information processing systems, pp. 416–422,

2001.

[CZS17] Pin-Yu Chen, Huan Zhang, Yash Sharma, Jinfeng Yi, and Cho-Jui Hsieh. “Zoo:

Zeroth order optimization based black-box attacks to deep neural networks without

training substitute models.” In Proceedings of the 10th ACM Workshop on Artificial

Intelligence and Security, pp. 15–26. ACM, 2017.

132

[DBW12] John C Duchi, Peter L Bartlett, and Martin J Wainwright. “Randomized smoothing

for stochastic optimization.” SIAM Journal on Optimization, 22(2):674–701, 2012.

[DDS09] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. “Imagenet:

A large-scale hierarchical image database.” In Computer Vision and Pattern

Recognition, 2009. CVPR 2009. IEEE Conference on, pp. 248–255. IEEE, 2009.

[DSL18] Gavin Weiguang Ding, Yash Sharma, Kry Yik Chau Lui, and Ruitong Huang.

“Max-margin adversarial (mma) training: Direct input space margin maximization

through adversarial training.” arXiv preprint arXiv:1812.02637, 2018.

[EIA18] Logan Engstrom, Andrew Ilyas, and Anish Athalye. “Evaluating and understanding

the robustness of adversarial logit pairing.” arXiv preprint arXiv:1807.10272, 2018.

[ERL17] Javid Ebrahimi, Anyi Rao, Daniel Lowd, and Dejing Dou. “HotFlip: White-Box

Adversarial Examples for NLP.” arXiv preprint arXiv:1712.06751, 2017.

[FMM18] Mikhail Figurnov, Shakir Mohamed, and Andriy Mnih. “Implicit reparameter-

ization gradients.” In Advances in Neural Information Processing Systems, pp.

441–452, 2018.

[Fri97] Jerome H Friedman. “On bias, variance, 0/1—loss, and the curse-of-dimensionality.”

Data mining and knowledge discovery, 1(1):55–77, 1997.

[GCL19] Ruiqi Gao, Tianle Cai, Haochuan Li, Cho-Jui Hsieh, Liwei Wang, and Jason D

Lee. “Convergence of Adversarial Training in Overparametrized Neural Networks.”

In Advances in Neural Information Processing Systems, pp. 13009–13020, 2019.

[GCL20] Zhe Gan, Yen-Chun Chen, Linjie Li, Chen Zhu, Yu Cheng, and Jingjing Liu. “Large-

Scale Adversarial Training for Vision-and-Language Representation Learning.”

arXiv preprint arXiv:2006.06195, 2020.

133

[GD19] Morgane Goibert and Elvis Dohmatob. “Adversarial Robustness via Adversarial

Label-Smoothing.” arXiv preprint arXiv:1906.11567, 2019.

[GL13] Saeed Ghadimi and Guanghui Lan. “Stochastic first-and zeroth-order methods for

nonconvex stochastic programming.” SIAM Journal on Optimization, 23(4):2341–

2368, 2013.

[GSS14] Ian J Goodfellow, Jonathon Shlens, and Christian Szegedy. “Explaining and

harnessing adversarial examples.” arXiv preprint arXiv:1412.6572, 2014.

[GSS15] Ian Goodfellow, Jonathon Shlens, and Christian Szegedy. “Explaining and har-

nessing adversarial examples.” In International Conference on Learning Represen-

tations, 2015.

[GWL18] Zhitao Gong, Wenlu Wang, Bo Li, Dawn Song, and Wei-Shinn Ku. “Adversarial

Texts with Gradient Methods.” arXiv preprint arXiv:1801.07175, 2018.

[HLW16] Gao Huang, Zhuang Liu, and Kilian Q Weinberger. “Densely connected convolu-

tional networks. CoRR abs/1608.06993 (2016).” arXiv preprint arXiv:1608.06993,

2016.

[HMK19] Dan Hendrycks, Mantas Mazeika, Saurav Kadavath, and Dawn Song. “Using

Self-Supervised Learning Can Improve Model Robustness and Uncertainty.” Neural

Information Processing Systems, 2019.

[HNW16] Thanh-Le Ha, Jan Niehues, and Alexander Waibel. “Toward multilingual neu-

ral machine translation with universal encoder and decoder.” arXiv preprint

arXiv:1611.04798, 2016.

[HZR16a] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. “Deep residual learning

for image recognition.” In Proceedings of the IEEE conference on computer vision

and pattern recognition, pp. 770–778, 2016.

134

[HZR16b] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. “Identity mappings in

deep residual networks.” In European conference on computer vision, pp. 630–645.

Springer, 2016.

[IEA18] Andrew Ilyas, Logan Engstrom, Anish Athalye, and Jessy Lin. “Black-box Adver-

sarial Attacks with Limited Queries and Information.” In International Conference

on Machine Learning, pp. 2142–2151, 2018.

[IS15] Sergey Ioffe and Christian Szegedy. “Batch normalization: Accelerating

deep network training by reducing internal covariate shift.” arXiv preprint

arXiv:1502.03167, 2015.

[IST19] Andrew Ilyas, Shibani Santurkar, Dimitris Tsipras, Logan Engstrom, Brandon

Tran, and Aleksander Madry. “Adversarial examples are not bugs, they are

features.” In Advances in Neural Information Processing Systems, pp. 125–136,

2019.

[JL17] Robin Jia and Percy Liang. “Adversarial examples for evaluating reading compre-

hension systems.” arXiv preprint arXiv:1707.07328, 2017.

[JLM18] Kwang-Sung Jun, Lihong Li, Yuzhe Ma, and Jerry Zhu. “Adversarial attacks on

stochastic bandits.” In Advances in Neural Information Processing Systems, pp.

3640–3649, 2018.

[KGB16] Alexey Kurakin, Ian Goodfellow, and Samy Bengio. “Adversarial machine learning

at scale.” arXiv preprint arXiv:1611.01236, 2016.

[KH09] Alex Krizhevsky, Geoffrey Hinton, et al. “Learning multiple layers of features

from tiny images.” 2009.

[KQ19] Sanjay Kariyappa and Moinuddin K Qureshi. “Improving Adversarial Robustness

of Ensembles with Diversity Training.” arXiv preprint arXiv:1901.09981, 2019.

135

[KSH19] Daniel Kang, Yi Sun, Dan Hendrycks, Tom Brown, and Jacob Steinhardt. “Testing

Robustness Against Unforeseen Adversaries.” arXiv preprint arXiv:1908.08016,

2019.

[LBB98] Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick Haffner. “Gradient-based

learning applied to document recognition.” Proceedings of the IEEE, 86(11):2278–

2324, 1998.

[LCC19] Sijia Liu, Pin-Yu Chen, Xiangyi Chen, and Mingyi Hong. “signSGD via Zeroth-

Order Oracle.” In International Conference on Learning Representations, 2019.

[LCH20] Xiaodong Liu, Hao Cheng, Pengcheng He, Weizhu Chen, Yu Wang, Hoifung Poon,

and Jianfeng Gao. “Adversarial training for large neural language models.” arXiv

preprint arXiv:2004.08994, 2020.

[LCL16] Yanpei Liu, Xinyun Chen, Chang Liu, and Dawn Song. “Delving into transferable

adversarial examples and black-box attacks.” arXiv preprint arXiv:1611.02770,

2016.

[LKC18] Sijia Liu, Bhavya Kailkhura, Pin-Yu Chen, Paishun Ting, Shiyu Chang, and Lisa

Amini. “Zeroth-Order Stochastic Variance Reduction for Nonconvex Optimization.”

In S. Bengio, H. Wallach, H. Larochelle, K. Grauman, N. Cesa-Bianchi, and

R. Garnett, editors, Advances in Neural Information Processing Systems 31, pp.

3727–3737. Curran Associates, Inc., 2018.

[LYD17] Mike Lewis, Denis Yarats, Yann N Dauphin, Devi Parikh, and Dhruv Batra.

“Deal or no deal? end-to-end learning for negotiation dialogues.” arXiv preprint

arXiv:1706.05125, 2017.

[MDG16] Takeru Miyato, Andrew M Dai, and Ian Goodfellow. “Adversarial training methods

for semi-supervised text classification.” arXiv preprint arXiv:1605.07725, 2016.

136

[MFF16] Seyed-Mohsen Moosavi-Dezfooli, Alhussein Fawzi, and Pascal Frossard. “Deepfool:

a simple and accurate method to fool deep neural networks.” In Proceedings of the

IEEE conference on computer vision and pattern recognition, pp. 2574–2582, 2016.

[MFU19] Seyed-Mohsen Moosavi-Dezfooli, Alhussein Fawzi, Jonathan Uesato, and Pascal

Frossard. “Robustness via curvature regularization, and vice versa.” In Proceedings

of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp.

9078–9086, 2019.

[MMS18] Aleksander Madry, Aleksandar Makelov, Ludwig Schmidt, Dimitris Tsipras, and

Adrian Vladu. “Towards deep learning models resistant to adversarial attacks.”

In ICLR, 2018.

[MR10] Sébastien Marcel and Yann Rodriguez. “Torchvision the Machine-vision Package of

Torch.” In Proceedings of the 18th ACM International Conference on Multimedia,

MM ’10, pp. 1485–1488, New York, NY, USA, 2010. ACM.

[Nes11] Yurii Nesterov. “Random gradient-free minimization of convex functions.” Techni-

cal report, 2011.

[NS17] Yurii Nesterov and Vladimir Spokoiny. “Random gradient-free minimization of

convex functions.” Foundations of Computational Mathematics, 17(2):527–566,

2017.

[PMG17] Nicolas Papernot, Patrick McDaniel, Ian Goodfellow, Somesh Jha, Z Berkay

Celik, and Ananthram Swami. “Practical black-box attacks against machine

learning.” In Proceedings of the 2017 ACM on Asia Conference on Computer and

Communications Security, pp. 506–519. ACM, 2017.

[PRW02] Kishore Papineni, Salim Roukos, Todd Ward, and Wei-Jing Zhu. “BLEU: a

method for automatic evaluation of machine translation.” In Proceedings of the

137

40th annual meeting on association for computational linguistics, pp. 311–318.

Association for Computational Linguistics, 2002.

[RCW15] Alexander M Rush, Sumit Chopra, and Jason Weston. “A neural attention model

for abstractive sentence summarization.” arXiv preprint arXiv:1509.00685, 2015.

[RXY20] Aditi Raghunathan, Sang Michael Xie, Fanny Yang, John Duchi, and Percy Liang.

“Understanding and mitigating the tradeoff between robustness and accuracy.”

arXiv preprint arXiv:2002.10716, 2020.

[SFK19] Robert Stanforth, Alhussein Fawzi, Pushmeet Kohli, et al. “Are Labels Required

for Improving Adversarial Robustness?” Neural Information Processing Systems,

2019.

[SGH19] Ali Shafahi, Amin Ghiasi, Furong Huang, and Tom Goldstein. “Label Smoothing

and Logit Squeezing: A Replacement for Adversarial Training?” arXiv preprint

arXiv:1910.11585, 2019.

[SIT19] Shibani Santurkar, Andrew Ilyas, Dimitris Tsipras, Logan Engstrom, Brandon

Tran, and Aleksander Madry. “Image synthesis with a single (robust) classifier.”

In Advances in Neural Information Processing Systems, pp. 1262–1273, 2019.

[SNG19] Ali Shafahi, Mahyar Najibi, Amin Ghiasi, Zheng Xu, John Dickerson, Christoph

Studer, Larry S Davis, Gavin Taylor, and Tom Goldstein. “Adversarial Training

for Free!” Neural Information Processing Systems, 2019.

[SSK19] Mayank Singh, Abhishek Sinha, Nupur Kumari, Harshitha Machiraju, Balaji

Krishnamurthy, and Vineeth N Balasubramanian. “Harnessing the vulnerability

of latent layers in adversarially trained models.” arXiv preprint arXiv:1905.05186,

2019.

138

[STI18] Shibani Santurkar, Dimitris Tsipras, Andrew Ilyas, and Aleksander Madry. “How

does batch normalization help optimization?” arXiv preprint arXiv:1805.11604,

2018.

[SVI16] Christian Szegedy, Vincent Vanhoucke, Sergey Ioffe, Jon Shlens, and Zbigniew

Wojna. “Rethinking the inception architecture for computer vision.” In Proceedings

of the IEEE conference on computer vision and pattern recognition, pp. 2818–2826,

2016.

[SVL14] Ilya Sutskever, Oriol Vinyals, and Quoc V. Le. “Sequence to Sequence Learning

with Neural Networks.” In Advances in Neural Information Processing Systems

27: Annual Conference on Neural Information Processing Systems 2014, December

8-13 2014, Montreal, Quebec, Canada, pp. 3104–3112, 2014.

[SZ15] Karen Simonyan and Andrew Zisserman. “Very deep convolutional networks for

large-scale image recognition.” International Conference on Learning Representa-

tions, 2015.

[SZS13] Christian Szegedy, Wojciech Zaremba, Ilya Sutskever, Joan Bruna, Dumitru Erhan,

Ian Goodfellow, and Rob Fergus. “Intriguing properties of neural networks.” arXiv

preprint arXiv:1312.6199, 2013.

[TB19] Florian Tramèr and Dan Boneh. “Adversarial Training and Robustness for Multiple

Perturbations.” Neural Information Processing Systems, 2019.

[TCB19] Sunil Thulasidasan, Gopinath Chennupati, Jeff Bilmes, Tanmoy Bhattacharya,

and Sarah Michalak. “On Mixup Training: Improved Calibration and Predictive

Uncertainty for Deep Neural Networks.” Neural Information Processing Systems,

2019.

[TSE19] Dimitris Tsipras, Shibani Santurkar, Logan Engstrom, Alexander Turner, and

139

Aleksander Madry. “Robustness may be at odds with accuracy.” In International

Conference on Learning Representations, 2019.

[TTC18] Chun-Chen Tu, Pai-Shun Ting, Pin-Yu Chen, Sijia Liu, Huan Zhang, Jinfeng Yi,

Cho-Jui Hsieh, and Shin-Ming Cheng. “AutoZOOM: Autoencoder-based Zeroth

Order Optimization Method for Attacking Black-box Neural Networks.” CoRR,

abs/1805.11770, 2018.

[TTC19] Chun-Chen Tu, Paishun Ting, Pin-Yu Chen, Sijia Liu, Huan Zhang, Jinfeng Yi,

Cho-Jui Hsieh, and Shin-Ming Cheng. “AutoZOOM: Autoencoder-based Zeroth

Order Optimization Method for Attacking Black-box Neural Networks.” AAAI,

2019.

[VLB18] Vikas Verma, Alex Lamb, Christopher Beckham, Amir Najafi, Ioannis Mitliagkas,

Aaron Courville, David Lopez-Paz, and Yoshua Bengio. “Manifold mixup: Better

representations by interpolating hidden states.” International Conference on

Machine Learning, 2018.

[VSP17] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones,

Aidan N Gomez, Lukasz Kaiser, and Illia Polosukhin. “Attention is all you need.”

In Advances in neural information processing systems, pp. 5998–6008, 2017.

[Wan19] Jianyu Wang. “Bilateral Adversarial Training: Towards Fast Training of More Ro-

bust Models Against Adversarial Attacks.” International Conference on Computer

Vision, 2019.

[WM19] Colin Wei and Tengyu Ma. “Improved sample complexities for deep networks and

robust classification via an all-layer margin.” arXiv preprint arXiv:1910.04284,

2019.

[WMB19] Yisen Wang, Xingjun Ma, James Bailey, Jinfeng Yi, Bowen Zhou, and Quan-

140

quan Gu. “On the Convergence and Robustness of Adversarial Training.” In

International Conference on Machine Learning, pp. 6586–6595, 2019.

[WZY19] Yisen Wang, Difan Zou, Jinfeng Yi, James Bailey, Xingjun Ma, and Quanquan

Gu. “Improving adversarial robustness requires revisiting misclassified examples.”

In International Conference on Learning Representations, 2019.

[XGD16] Saining Xie, Ross Girshick, Piotr Dollár, Zhuowen Tu, and Kaiming He. “Aggre-

gated residual transformations for deep neural networks. 2016.” arXiv preprint

arXiv:1611.05431, 2016.

[XTG20] Cihang Xie, Mingxing Tan, Boqing Gong, Jiang Wang, Alan L Yuille, and Quoc V

Le. “Adversarial examples improve image recognition.” In Proceedings of the

IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 819–828,

2020.

[YCH18] Puyudi Yang, Jianbo Chen, Cho-Jui Hsieh, Jane-Ling Wang, and Michael I Jordan.

“Greedy Attack and Gumbel Attack: Generating Adversarial Examples for Discrete

Data.” arXiv preprint arXiv:1805.12316, 2018.

[YRB18] Dong Yin, Kannan Ramchandran, and Peter Bartlett. “Rademacher complexity

for adversarially robust generalization.” arXiv preprint arXiv:1810.11914, 2018.

[YRZ20] Yao-Yuan Yang, Cyrus Rashtchian, Hongyang Zhang, Ruslan Salakhutdinov, and

Kamalika Chaudhuri. “A Closer Look at Accuracy vs. Robustness.” arXiv preprint

arXiv:2003.02460, 2020.

[ZCD18] Hongyi Zhang, Moustapha Cisse, Yann N Dauphin, and David Lopez-Paz. “mixup:

Beyond empirical risk minimization.” International Conference on Learning

Representations, 2018.

141

[ZCG19] Chen Zhu, Yu Cheng, Zhe Gan, Siqi Sun, Tom Goldstein, and Jingjing Liu. “Freelb:

Enhanced adversarial training for natural language understanding.” In ICLR,

2019.

[ZCX20] Huan Zhang, Hongge Chen, Chaowei Xiao, Bo Li, Duane Boning, and Cho-Jui

Hsieh. “Robust deep reinforcement learning against adversarial perturbations on

observations.” arXiv preprint arXiv:2003.08938, 2020.

[ZDS17] Zhengli Zhao, Dheeru Dua, and Sameer Singh. “Generating natural adversarial

examples.” arXiv preprint arXiv:1710.11342, 2017.

[ZNR17] Valentina Zantedeschi, Maria-Irina Nicolae, and Ambrish Rawat. “Efficient defenses

against adversarial attacks.” In ACM Workshop on Artificial Intelligence and

Security, pp. 39–49, 2017.

[ZSL16] Stephan Zheng, Yang Song, Thomas Leung, and Ian Goodfellow. “Improving the

robustness of deep neural networks via stability training.” In Proceedings of the

ieee conference on computer vision and pattern recognition, pp. 4480–4488, 2016.

[ZW19] Haichao Zhang and Jianyu Wang. “Defense Against Adversarial Attacks Using

Feature Scattering-based Adversarial Training.” Neural Information Processing

Systems, 2019.

[ZYJ19] Hongyang Zhang, Yaodong Yu, Jiantao Jiao, Eric P Xing, Laurent El Ghaoui,

and Michael I Jordan. “Theoretically principled trade-off between robustness and

accuracy.” International Conference on Machine Learning, 2019.

142

	Introduction
	I Adversarial Attacks
	Adversarial Attack on Image Classification
	Problem Setting
	Distance Metric

	White-box Adversarial Attacks
	Soft-label Black-box Attacks
	Hard-label Black-box Attacks
	Difficulty of Hard-label Black-box Attacks
	Opt-attack: A Query-Efficient Hard-label Black-box based on Optimization Approach
	Sign-OPT: Using Gradient Sign to Further Gain Query Efficiency

	Experimental Results
	Proofs

	Adversarial Attacks on Discrete Domain
	Seq2Sick: Evaluating the Robustness of Sequence-to-Sequence Models with Adversarial Examples
	Problem Setting
	Handling Discrete Input Space
	Experimental Results
	Empirical Results
	Analysis and Discussions

	AdvAgent: Evaluating and Enhancing the Robustness of Dialogue Systems
	Competitive Negotiation Dialogues
	Proposed Black-box Attack Algorithms
	Proposed White-box Attack Algorithms
	Adversarial Training
	Experimental Results
	Analysis and Discussions

	II Adversarial defenses
	Attack-dependent Robust Training
	Adversarial Training
	Limitation

	CAT: Customized Adversarial Training for Improved Robustness
	Auto-tuning Perturbation Strength for Adversarial Training
	Adaptive Label Uncertainty for Adversarial Training
	Theoretical Analysis
	Experimental Results
	Proofs

	Attack-independent Robust Training
	Introduction
	General Framework for Formulating Robust Training
	SPROUT: Scalable Robust and Generalizable Training
	Self-Progressing Parametrized Label Smoothing
	Gaussian Data Augmentation and Mixup
	SPROUT Algorithm
	Experimental Results

	Understanding Robustness Trade-off for Generalization
	Preliminary and Related Work
	Adversarial Masking
	Batch Normalization Acts as Adversarial Masking
	Controlling Robustness Trade-off via Adversarial Masking

	Improving Model Generalization via RobMask
	Experimental Results

	Conclusion
	Adversarial Attacks
	Adversarial Defenses
	Future Directions

