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RESEARCH ARTICLE
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Abstract
Familial combined hyperlipidemia (FCH) is a complex and common familial dyslipidemia

characterized by elevated total cholesterol and/or triglyceride levels with over five-fold risk

of coronary heart disease. The genetic architecture and contribution of rare Mendelian and

common variants to FCH susceptibility is unknown. In 53 Finnish FCH families, we geno-

typed and imputed nine million variants in 715 family members with DNA available. We

studied the enrichment of variants previously implicated with monogenic dyslipidemias and/

or lipid levels in the general population by comparing allele frequencies between the FCH

families and population samples. We also constructed weighted polygenic scores using

212 lipid-associated SNPs and estimated the relative contributions of Mendelian variants

and polygenic scores to the risk of FCH in the families. We identified, across the whole allele

frequency spectrum, an enrichment of variants known to elevate, and a deficiency of vari-

ants known to lower LDL-C and/or TG levels among both probands and affected FCH indi-

viduals. The score based on TG associated SNPs was particularly high among affected

individuals compared to non-affected family members. Out of 234 affected FCH individuals
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across the families, seven (3%) carried Mendelian variants and 83 (35%) showed high

accumulation of either known LDL-C or TG elevating variants by having either polygenic

score over the 90th percentile in the population. The positive predictive value of high score

was much higher for affected FCH individuals than for similar sporadic cases in the popula-

tion. FCH is highly polygenic, supporting the hypothesis that variants across the whole allele

frequency spectrum contribute to this complex familial trait. Polygenic SNP panels improve

identification of individuals affected with FCH, but their clinical utility remains to be defined.

Author Summary

Familial combined hyperlipidemia (FCH) is a familial dyslipidemia and the most common
familial risk factor for premature coronary heart disease. Its genetic architecture is poorly
understood. Rare high-impact variants have been identified in some patients, but have not
explained a substantial portion of the trait. FCH has previously been speculated to be a
polygenic disorder, but genetic data supporting this hypothesis have so far been incom-
plete. We provide experimental evidence for the polygenicity and heterogeneity of FCH in
a large set of affected families using comprehensive genome-wide variant data. Approxi-
mately a third of the affected FCH individuals in our sample had high polygenic burden,
and only a minority carried high-impact variants identifiable by genotyping. We show
that the polygenic burden of affected FCH family members is comparable to that observed
in individuals with similar lipid phenotypes in the general population. Genetic variants
identified in large-scale population studies can also underlie the typical phenotypes
observed in complex familial diseases such as FCH. Advances in genetic diagnosis based
on population samples may thus also benefit FCH families. Families without high poly-
genic burden are good candidates for sequencing studies to identify rare variants not
observable with genotyping.

Introduction
Familial combined hyperlipidemia (FCH), classically defined by elevations in serum total cho-
lesterol (TC), triglycerides (TG), or both, in two or more first degree relatives, displays a preva-
lence of greater than 1% in Western populations [1, 2]. It is the most common familial risk
factor for premature coronary heart disease (CHD), occurring in 11–14% of individuals with
this condition, and raising by up to five-fold the CHD risk in first- and second-degree relatives
of affected individuals [3, 4]. In clinical practice, FCH is characterized by elevations of low-den-
sity lipoprotein cholesterol (LDL-C), TG, or both [5]. The phenotype within a family shows
high inter- and intraindividual variability of lipid values (TG, LDL-C, high-density lipoprotein
cholesterol [HDL-C], and apolipoprotein B) and therefore the diagnosis is commonly missed.
Despite attempts to identify rare high-impact variants underlying FCH, no such variant has
explained a substantial proportion of the trait [6]. Also, so far the genetics of FCH has not been
addressed using high-density genotyping panels [7].

Here, we present a comprehensive evaluation of the genetic background of FCH using a
dense-marker genotyping panel. We hypothesized that FCH risk could derive in part from a
combination of common variants associated, in population cohorts, with LDL-C and/or TG as
well as uncommon variants in genes that have been implicated in Mendelian lipid syndromes.
To test our hypothesis we evaluated Finnish FCH families to determine if they demonstrated
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an enrichment of known lipid-associated variants, compared to Finnish general population
samples, and assessed whether such variants could account for differences in lipid levels and
degree of aggregation of disease observed between the FCH families. Additionally, following
the logic of recent studies that have demonstrated the combined impact of multiple small effect
variants (polygenic scores) on risk for familial hypercholesterolemia (FH) and other lipid dis-
orders [8–11], we measured, in these families, the relative contributions of LDL-C and TG
associated polygenic scores to the lipid traits and the FCH phenotype.

Results
We evaluated the contribution of lipid-level associated genetic variation to FCH in 715 geno-
typed individuals (234 of whom were considered affected by FCH; Table 1, S1 Table, and S1
Fig) from 53 FCH families (average family size 13 individuals). Of the 234 FCH-affected indi-
viduals, 78 (33%) were identified because of elevated (� 90th age- and sex-specific population
percentile) TC without elevated TG, 76 (32%) had elevated TG without elevated TC, and 80
(34%) had both lipids elevated. FCH probands (n = 48, because five probands had DNA
unavailable) and other FCH affected individuals showed higher mean levels of both LDL-C
(4.45 and 4.29 mmol/l, respectively) and TG (4.06 and 2.51 mmol/l, respectively) compared to
all FCH family members (LDL-C and TG 3.64 and 1.60 mmol/l, respectively) and to the gen-
eral Finnish population (LDL-C and TG 3.43 and 1.43 mmol/l, respectively) (Fig 1). The
median LDL-C and TG values of the genotyped family members ranged from 1.08 to 4.69
mmol/l for LDL-C and from 0.70 to 4.44 mmol/l for TG demonstrating considerable variation
among families (S2 Fig).

Compared to 18,715 random Finnish population samples, alleles that elevated LDL-C and
TG levels in the population were overall enriched and alleles that lowered LDL-C and TG levels
were depleted in 234 affected FCH individuals (sign test p = 0.0025 for LDL-C and p = 0.0016
for TG). We included in this analysis all SNPs with at least one affected carrier (194 of the 212
SNPs previously associated with either LDL-C or TG in population genome-wide association
(GWA) studies or with monogenic dyslipidemias). In total, 60 out of 95 LDL-C elevating SNPs
were more common in EUFAM than in population samples, and 57 out of 99 of LDL-C lower-
ing SNPs were less common. Similarly, 61 out of 96 TG elevating SNPs were enriched and 57

Table 1. Clinical andmetabolic characteristics of genotyped individuals.

FCH affected FCH unaffected

Characteristic n Mean ± SD n Mean ± SD p-value

n (male/female) 234 (108/126) 481 (243/238) 0.27

Smoking, n (%) 75 (32) 122 (25) 0.50

Age (year) 233 42.7±14.2 477 40.6±14.8 0.08

BMI (kg/m2) 232 27.6±4.7 464 25.5±4.7 2.21x10-6

Waist circumference (cm) 190 93±14 370 86±14 3.80x10-7

Total cholesterol (mmol/l) 211 6.64±1.36 403 5.18±0.92 1.97x10-53

LDL-C (mmol/l) 211 4.29±1.23 403 3.30±0.89 6.64x10-29

Triglyceride (mmol/l) 211 2.51±1.85 403 1.13±0.48 3.77x10-45

HDL-C (mmol/l) 208 1.23±0.40 395 1.40±0.41 1.23x10-6

Apolipoprotein B (mg/dl) 192 126±32 378 87±22 5.74x10-65

Non-HDL-C 208 5.41±1.39 395 3.78±0.95 1.99x10-62

P-values were calculated using Wald test by a linear mixed model correcting for sample relatedness. FCH, familial combined hyperlipidemia.

doi:10.1371/journal.pgen.1006078.t001

The Contribution of GWAS Loci in Familial Dyslipidemias

PLOS Genetics | DOI:10.1371/journal.pgen.1006078 May 26, 2016 3 / 14



out of 98 TG lowering SNPs were depleted (Fig 2, S3 Table). S3 Fig shows the enrichment ratios
for probands and all family members compared to the population samples.

Fig 1. Distributions of lipid levels in subsets of the Finnish general population and the FCH samples. Distributions of (a) LDL-C and (b) TG are shown
for the Finnish FINRISK population cohort (FINRISK all, blue), hyperlipidemic Finnish population samples (FINRISK hyperlipidemic, green), all FCH family
members (FCH all, brown), affected family members (FCH affected, red), and proband individuals (FCH probands, purple). Hyperlipidemia in the population
samples is defined as TC or TG� 90th age- and sex-specific population percentile, analogously with the FCH diagnostic criteria. In (b) the x-axis is cut at 9
mmol/l. FCH, familial combined hyperlipidemia; FINRISK, The National FINRISK Study.

doi:10.1371/journal.pgen.1006078.g001
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We then examined if high-impact variants implicated in monogenic dyslipidemias would be
enriched and contribute to FCH. APOA5 rs3135506, which predisposes to hypertriglyceride-
mia in homozygous form [12], was 1.8–fold more frequent in the affected individuals of the
FCH families than in the general population (minor allele frequency [MAF] in affected FCH
individuals = 0.11, MAF in population = 0.062). In all FCH family members, there were 105
heterozygotes (43 of them affected) and six homozygotes (five of them affected). Homozygotes
had a mean TG level (mmol/l) of 2.61, heterozygotes 1.97 and wild type carriers 1.55 (S4 Fig).
APOE variations have a well-established role in dyslipidemias yet incompletely defined contri-
bution to FCH. By genotyping rs7412 and imputing rs429358 we were able to determine the
phenotyped apolipoprotein E isoform with a minimum accuracy of 95% (Table 2). The APOE
ε2ε2 haplotype that predisposes to type III hyperlipoproteinemia [13], was observed in three
FCH family members (two of them affected), all with elevated cholesterol and TG concentra-
tions in very low-density lipoprotein and intermediate-density lipoprotein fractions (Table 2).
Its frequency was 0.0023 in the Finnish population, 0.0045 in all FCH families and 0.0085
among FCH affected individuals. LIPC rs28933094 predisposes to hepatic lipase deficiency, the

Fig 2. Enrichment of LDL-C or TG associated SNPs in FCH affected individuals by their frequency and effect on LDL-C and TG levels. Enrichment
ratio is the ratio of the allele frequencies in the affected individuals (n = 234) to the allele frequencies in the Finnish FINRISK population cohort (n = 18,715).
Only individuals without diabetes or other relevant confounders were included (S1 Text). Under the null hypothesis of no enrichment, a 95% credible interval
(shaded area) was estimated by calculating the enrichment statistic (enrichment ratio) for all variants with MAF > 0.001% across the genome excluding the
loci of the 212 SNPs. Variants are designated as either lipid level elevating (red) or lowering (blue) for (a) LDL-C and (b) TG based on β estimates from linear
regression in the FINRISK samples. Point size and color intensity reflect the magnitude of the effect. Only SNPs with at least one heterozygous carrier are
shown (n = 194). *The enrichment ratio for LPL rs1801177 fell within the 95% credible interval.

doi:10.1371/journal.pgen.1006078.g002
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cardiovascular effects of which are unclear but may be dependent on the underlying lipid phe-
notype [14, 15]. It is 4.8–fold more frequent in Finns compared to other Europeans and addi-
tionally 2.6–fold more frequent in affected FCH individuals compared to the Finnish
population (MAF in affected FCH individuals = 0.041, MAF in Finnish population = 0.016,
MAF in Non-Finnish Europeans = 0.0033). Finally, it is of special interest whether the FCH
families carry any of the classical FH variants. In the Finnish population there are five major
extensively documented, FH-associated LDLR variants [16]. As the genotyping array does not
capture these, we successfully imputed one out of the five variants (FH-Pogosta), but observed
no carriers. In summary, variants that are strongly linked to known forms of dyslipidemia (in
APOA5 and APOE), could at most explain only 7 (3.0%) of all 234 affected FCH individuals,
thus being of minor importance in our FCH family sample.

We then estimated what proportion of the affected FCH individuals had a high cumulative
burden of enriched LDL-C and TG elevating variants or carried high-impact variants. Out of
the 234 affected FCH individuals, 83 individuals (35%) showed high accumulation of known
LDL-C or TG elevating variants, having either one or both polygenic lipid scores over the 90th

percentile in the population (Table 3). Three additional FCH affected individuals carried Men-
delian variants and did not have elevated polygenic scores. In 14 out of the 53 (25%) families,
over half of the affected individuals had high polygenic scores or carried knownMendelian var-
iants (Fig 3). In six out of the 53 (11%) families, all affected members had high polygenic scores
or carried knownMendelian variants. This did not appear to be driven by differences in genetic
correlation between affected individuals in the families (S5 Fig).

Finally, we evaluated how well the high polygenic scores predicted FCH affectedness in the
families or among hyperlipidemic individuals in the population (Table 4). Having a high poly-
genic score (� the 90th population percentile) for either LDL-C or TG had a positive predictive
value (PPV) of 0.45 in the FCH families and 0.23 in the general population. Negative predictive
values (NPV) were 0.71 and 0.89, respectively.

Table 2. Apolipoprotein E phenotypes, imputed haplotypes, and the carriers’ lipid profiles.

Apolipoprotein E phenotype (n = 557)

ε2ε2 ε2ε3 ε2ε4 ε3ε3 ε3ε4 ε4ε4

n (%) 3 (0.5) 54 (9.7) 16 (2.9) 272 (48.8) 191 (34.3) 21 (3.8)

Imputed APOE haplotype, n (%) 3 (0.5) 52 (9.3) 16 (2.9) 269 (48.3) 184 (33.0) 20 (3.6)

Accuracy of imputation* (%) 100 96.3 100 98.9 96.3 95.2

rs429358 alleles T/T T/T C/T T/T C/T C/C

rs7412 alleles T/T C/T C/T C/C C/C C/C

VLDL-C (mmol/l) 4.94±0.83 0.68±0.60 0.87±0.81 0.44±0.39 0.57±0.56 0.64±0.63

VLDL-TG (mmol/l) 3.95±1.19 1.25±0.99 2.12±3.12 0.89±0.79 1.04±1.05 1.28±1.21

LDL-C, measured (mmol/l) 1.73±0.30 2.82±0.83 3.63±0.82 3.53±0.89 3.63±0.93 3.90±1.10

LDL-TG (mmol/l) 0.29±0.08 0.26±0.13 0.32±0.18 0.26±0.09 0.29±0.13 0.28±0.11

IDL-C (mmol/l) 1.23±0.27 0.24±0.12 0.28±0.15 0.20±0.12 0.21±0.15 0.20±0.17

IDL-TG (mmol/l) 0.33±0.10 0.13±0.06 0.16±0.11 0.12±0.06 0.12±0.07 0.12±0.07

Values are presented for all FCH family members whose apolipoprotein E phenotypes were determined (n = 557). The APOE haplotype of an individual

was determined only if the posterior probability of rs429358 was > 0.9 for any allele. Lipoprotein values are presented as mean ±SD. VLDL-C = very low-

density lipoprotein cholesterol. VLDL-TG = very low-density lipoprotein triglyceride. IDL-C = intermediate-density lipoprotein cholesterol.

IDL-TG = intermediate-density lipoprotein triglyceride. LDL-C = low-density lipoprotein cholesterol. LDL-TG = low-density lipoprotein triglyceride.

*Accuracy of imputation is the quotient of the n of the observed apolipoprotein E phenotype and the n of the accordingly imputed APOE haplotype.

doi:10.1371/journal.pgen.1006078.t002
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Table 3. Number of affected individuals with high polygenic lipid score or Mendelian SNPs.

High* LDL-C
score

High* TG
score

Either score
high

Both scores
high

OMIM
SNP†

Either score high or OMIM
SNP†

FCH affected (n = 234) 40 (17%) 59 (25%) 83 (35%) 16 (6.8%) 7 (3.0%) 86 (37%)

FCH probands (n = 48) 2 (4.2%) 13 (27%) 13 (27%) 2 (4.2%) 2 (4.2%) 14 (29%)

FINRISK hyperlipidemic‡

(n = 2663)
479 (18%) 479 (18%) 839 (32%) 119 (4.5%) 29 (1.1%) 850 (32%)

FINRISK statin users (n = 6300) 934 (15%) 777 (12%) 1504 (24%) 207 (3.3%) 39 (0.62%) 1516 (24%)

OMIM, Online Mendelian Inheritance in Man; FCH, familial combined hyperlipidemia; FINRISK, The National FINRISK Study.

*Polygenic lipid score � 90th Finnish population percentile, calculated in the Finnish FINRISK population cohort.
†Carriers of SNPs that cause Mendelian dyslipidemias and are observed in the FCH families (APOE ε2ε2 or APOA5 rs3135506 homozygotes).
‡Hyperlipidemia in the FINRISK population samples is defined as TC or TG (non-fasting) � 90th age- and sex-specific population percentile, analogously

with the FCH diagnostic criteria.

doi:10.1371/journal.pgen.1006078.t003

Fig 3. Number of affected and unaffected individuals with high polygenic lipid scores or carriers of high-impact Mendelian variants. The black
shading presents the number of (a) affected, and (b) unaffected individuals with high polygenic lipid scores (LDL-C, TG, or both polygenic scores over the
90th percentile in the population) or carriers of a high-impact Mendelian variant (APOE ε2ε2, n = 2; or homozygosity for APOA5 rs3135506). The families are
sorted by the number of affected individuals with high polygenic lipid scores or a high-impact Mendelian variant in (a). The grey shading presents the number
of other (a) affected, and (b) unaffected individuals in the family.

doi:10.1371/journal.pgen.1006078.g003

The Contribution of GWAS Loci in Familial Dyslipidemias

PLOS Genetics | DOI:10.1371/journal.pgen.1006078 May 26, 2016 7 / 14



In summary, we observed enrichment of both common and uncommon lipid-elevating vari-
ants in the FCH families. Only a minority (7 out of 234, 3%) of affected individuals were carri-
ers of high-impact variants of Mendelian dyslipidemias. The polygenic lipid scores contribute
to FCH in over one third of 234 FCH subjects in these families, with considerable heterogeneity
between families. In more than half of the families we did not observe either an increased load
of common variants or carriers of high-impact variants.

Discussion
Our results demonstrate an enrichment of many known lipid-level elevating variants in FCH
families. This enrichment was observed for both uncommon and common variants known to
affect either LDL-C or TG levels in populations. When the known variants were combined into
polygenic lipid scores for each individual, 17% and 25% of the affected individuals had poly-
genic scores that were higher than the 90th percentile of the population for LDL-C and TG,
respectively. In 13 families three or more affected individuals had high polygenic score and in
22 families none of the affected individuals had polygenic score above the 90th percentile of the
population.

Our results allow us to draw several conclusions about the genetic background of FCH.
First, variants across the whole frequency spectrum were enriched and contribute to the high
LDL-C and/or TG levels in the affected FCH individuals. This emphasizes the polygenic nature
of FCH and is in line with previous results with familial hypercholesterolemia demonstrating
that this less prevalent syndrome has a polygenic component [9]. Genes in which we observed
enriched variants include APOE, LIPC and APOA5, whose role in dyslipidemias is already
established, but also include several genes whose function in lipid metabolism is not yet clear
(e.g. UBR1,MTHFD2L and the PIGV-NR0B2 region).

Second, the majority of the enriched variants were originally identified in random popula-
tion samples. This finding confirms that variants identified in population screens play a consid-
erable role also in the complex familial disease FCH, and highlights the potential of using
variants identified in population-based GWA studies to characterize familial dyslipidemia
cases genetically.

Third, the observed enrichment was stronger for TG loci than for LDL-C loci. Many of the
enriched TG SNPs were located in genes known to contribute to hypertriglyceridemia, such
as the APOA1-C3-A4-A5 cluster, showing the central role of genetically driven TG in FCH
[7, 17].

Fourth, over a third of the affected FCH individuals had a high load (polygenic lipid scores
over the 90th percentile of the population) of either known LDL-C or TG associated variants.
This proportion with high polygenic score was comparable to the population samples with

Table 4. Positive and negative predictive values of high polygenic lipid scores.

Prevalence PPV of high* score NPV of high* score

LDL-C TG Either Both LDL-C TG Either Both

FCH affected (n = 234) 33% 0.46 0.46 0.45 0.55 0.69 0.70 0.71 0.68

FINRISK hyperlipidemic† (n = 2663) 13% 0.23 0.23 0.23 0.30 0.88 0.88 0.89 0.87

PPV, positive predictive value; NPV, negative predictive value; FCH, familial combined hyperlipidemia; FINRISK, The National FINRISK Study.

*Polygenic lipid score � 90th Finnish population percentile, calculated in the Finnish FINRISK population cohort.
†Hyperlipidemia in the FINRISK population samples is defined as TC or TG (non-fasting) � 90th age- and sex-specific population percentile, analogously

with the FCH diagnostic criteria.

doi:10.1371/journal.pgen.1006078.t004
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similar levels of high LDL-C or TG in the population. This observation suggests that the role of
the known variants is similar in familial hyperlipidemias and randomly ascertained high
LDL-C and/or TG individuals. However, the accumulation of LDL-C or TG-elevating alleles in
families was highlighted by the prediction analysis results. High load of known LDL-C or TG
associated variants predicted affectedness in FCH families almost two times better than compa-
rable hyperlipidemia in the population.

There were large differences among families in the proportion of affected individuals with
high polygenic scores. While in nine families more than two thirds of the affected individuals
had high polygenic score, in over a third of the families, none of the cases had high score and
the underlying genetic architecture remains unexplained in the majority of families. As geno-
typing and imputation allow for the evaluation of only a portion of catalogued high-impact
variants, future sequencing studies might pinpoint rare causal variants in these families.

Our study supports the hypothesis that FCH is a genetically heterogeneous disease, reflected
by its heterogeneous lipid phenotype [18–20]. large number of LDL-C associated variants are
mainly responsible for the elevation of LDL-C in the FCH lipid profile. In contrast, a handful
of low- to moderate-impact TG variants drive the elevation of triglycerides. Our study provides
support for the polygenic rather than monogenic nature of FCH, and highlights the central
role of genetically driven TG in FCH.

Materials and Methods

Ethics statement
Written informed consent was obtained from all study participants. All samples were collected
in accordance with the Helsinki declaration and study protocols were approved by the ethics
committees of the participating centers (The Hospital District of Helsinki and Uusimaa Coor-
dinating Ethics Committee, approval number 184/13/03/00/12).

Subjects and measurements
As part of the European Multicenter Study on Familial Dyslipidemias in Patients with Prema-
ture Coronary Heart Disease (EUFAM), the Finnish FCH families were identified from
patients admitted to university hospitals with a diagnosis of premature CHD who demon-
strated levels of TC, TG, or both that were� 90th Finnish age- and sex-specific population per-
centile (S4 Table) [21, 22]. Families that contained at least one other first-degree relative
affected with hyperlipidemia (according to the same lipid-level criteria as used for the pro-
bands) were included in the study. Additionally, in the included families, at least one of the
affected individuals had high TG. All family members with hyperlipidemia were then consid-
ered affected by FCH. Probands with a diagnosis of FH (screened with a functional LDL recep-
tor test), and any subjects with diabetes or other chronic diseases were considered unaffected
and did not contribute to establishing the family’s FCH status (S1 Text).

For analyses of continuous lipid traits, individuals using lipid-lowering or estrogen medica-
tion at the time of sampling were excluded. Samples from the Finnish National FINRISK study
were used as a Finnish population-specific comparison group, and individuals with known dia-
betes or cancer were excluded from the analyses (S1 Text). For the FCH families, venous blood
samples were obtained after an overnight fast. FINRISK participants were advised to fast for
four hours before the examination and avoid heavy meals earlier during the day. For both the
EUFAM and FINRISK samples, circulating biochemical markers were measured from the
venous blood samples using standard methods, as described in the S1 Text.
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Genotyping and imputation
All FCH individuals with DNA available (715 out of 1161 from all 53 FCH families) and the
FINRISK samples (n = 20,626) were genotyped with the HumanCoreExome BeadChip (Illu-
mina Inc., San Diego, CA, USA) using standard methods (S1 Text). Additionally, over nine
million variants were imputed using a combined reference panel of 1000 Genomes Phase I inte-
grated haplotypes and 1943 Finnish genomes (S1 Text).

Polygenic lipid score calculation
To construct a polygenic lipid score, we catalogued and used 212 SNPs, representing either the
lead SNPs for genome-wide significant associations to LDL-C or TG from GWA studies of
these traits (171 SNPs), or SNPs catalogued in the Online Mendelian Inheritance in Man
(OMIM) database as located in genes implicated in primary and secondary monogenic dyslipi-
demic syndromes (44 SNPs, four of which overlap with the GWA lead-SNPs, S2 Table) [23–
26]. The SNPs were assigned to LDL-C and TG scores based on their previously reported asso-
ciations (S1 Text). The scores were calculated as the sum of the risk alleles weighted by their
effect estimates drawn from a multiple linear model estimating all SNP effects on the trait
(LDL-C or TG) at the same time in the FINRISK samples (S1 Text). The FINRISK samples
used to estimate the weights were independent from the FCH samples.

Statistical analysis
We estimated allele frequencies for all 212 SNPs in the 234 affected FCH individuals and in
18,715 FINRISK samples after excluding individuals with known diabetes or cancer similarly
to the EUFAM exclusion criteria. The minor allele in FINRISK was designated as the effect
allele. We then calculated enrichment ratios by dividing the effect allele frequencies in affected
FCH individuals with the effect allele frequencies in the FINRISK samples. Under the null
hypothesis of no enrichment, we estimated the null distribution for enrichment testing by cal-
culating the enrichment statistic (enrichment ratio) for all variants with MAF> 0.001%
(12,234,754 SNPs) across the genome excluding regions within 50 000 base pairs from the
lipid-associated SNPs. We estimated the null distribution in MAF bins across the genome
while keeping the family structure fixed (FINRISK minor allele frequency intervals
[0.1%,0.5%); [0.5%,1%); [1%,1.5%); [1.5%,2%); [2%,2.5%), [2.5%,5%); [5%,10%); [10%,15%);
[15%,20%); [20%,25%); [25%,30%); [30%,35%); [35%,40%); [40%,45%); and [45%,50%)). The
observed lipid SNP allele frequency enrichment ratios were compared to the null distribution
to provide one-sided p-values for each SNP. We used sign test for all SNPs together to estimate
whether the direction of enrichment (more or less common in the affected FCH individuals
than in the population) was associated with the SNPs’ effects on the lipid in question (elevating
or lowering).

We applied linear mixed models to test for differences in metabolic and clinical characteris-
tics between FCH affected and unaffected individuals (S1 Text). An empirical genetic correla-
tion matrix between individuals was included as the covariance structure of a random effect.
Linear mixed models were applied with MMM (version 1.01) [27], and the other statistical
analyses were performed using R (version 3.2.1) [28].

Supporting Information
S1 Text. Supplementary Materials and Methods. The recruitment, assessment, and genotyp-
ing of study subjects, the calculation of polygenic lipid scores, and the statistical analyses
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performed are described in more detail.
(DOCX)

S1 Fig. Number of affected and unaffected individuals in FCH families. The number of gen-
otyped affected (black) and unaffected individuals (white) is presented for each FCH family.
The families are sorted by the number of affected individuals in each family, but the family
numbers on the x-axis correspond to those presented in Fig 3.
(PDF)

S2 Fig. Lipid level median values and ranges in FCH families in genotyped individuals.
Median values of (a) LDL-C and (b) TG for genotyped individuals in all families (n = 53). Ver-
tical lines represent the range of values within the families. The families are sorted by the medi-
ans of LDL-C and TG levels, respectively, but the family numbers on the x-axis correspond to
those presented in Fig 3. In (b) the y-axis is cut at 7 mmol/l.
(PDF)

S3 Fig. Enrichment of LDL-C or TG associated SNPs in FCH probands and all FCH family
members by their frequency and effect on LDL-C and TG levels. Enrichment ratio is the
ratio of effect allele frequency in FCH probands (n = 48, (a), (b)), or in all FCH family members
(n = 715, (c), (d)), to allele frequencies in the Finnish FINRISK population cohort (n = 20,626
in c) and d); n = 18,715 in a) and b) after excluding individuals with diabetes and cancer).
Under the null hypothesis of no enrichment, a 95% credible interval (shaded area) was
estimated by calculating the enrichment statistic (enrichment ratio) for all variants with
MAF> 0.001% across the genome excluding the loci of the 212 SNPs. Variants are designated
as either lipid level elevating (red) or lowering (blue) for LDL-C ((a), (c)) and TG ((b), (d))
based on β estimates from linear regression in the FINRISK samples. Point size and color
intensity reflect the magnitude of the effect. Only SNPs with at least one heterozygous carrier
are shown (n = 191 for probands and n = 196 for all family members). FINRISK, The National
FINRISK Study. �The enrichment ratio for LPL rs1801177 fell within the 95% credible interval.
(PDF)

S4 Fig. Triglyceride levels in carriers and wild type individuals of APOA5 rs3135506 and
APOE rs7412.Homozygosity for (a) APOA5 rs3135506 predisposes to hypertriglyceridemia
and homozygosity for (b) APOE rs7412 predisposes to type III hyperlipoproteinemia, which
typically presents in elevated levels of VLDL and TG species. Only individuals without diabetes
and other relevant confounders were included in this comparison. In (b) the y-axis is log-
scaled.
(PDF)

S5 Fig. Mean genetic correlation between affected family members in FCH families. For
each family with at least two genotyped affected members (n = 51), we calculated mean empiric
genetic correlation of all combinations of pairs of affected subjects. Families are ranked on the
x-axis as in Fig 3, with higher ranking representing a higher number of affected subjects with
high polygenic lipid scores or high-impact Mendelian variants. A significance estimate for the
relationship was derived from simple linear regression.
(PDF)

S1 Table. Clinical and metabolic characteristics of all individuals. P-values were calculated
using Wald test by a linear mixed model correcting for sample relatedness. FCH, familial com-
bined hyperlipidemia.
(PDF)
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S2 Table. LDL-C or TG associated variants included in the study.NFE, non-Finnish Europe-
ans; FINRISK, The National FINRISK Study; FCH, familial combined hyperlipidemia. �Effect
allele. †Global minor allele. ‡MAF in non-Finnish Europeans calculated from the public ExAC
data set (version 0.3) for coding SNPs (those present in the ExAC data set), and from the public
1000 Genomes Phase 3 data set for non-coding SNPs (S1 Text). §MAF in the FINRISK cohort
after excluding those with known diabetes or cancer. kCommon: MAF> 5%, low-frequency:
0.5%<MAF� 5%, rare: MAF� 0.5%. ¶SNPs were selected based on OMIM entries for genes
implicated in monogenic dyslipidemia, and recent genome-wide association studies (S1 Text).
♦Effect allele weight not estimated due to only one copy of minor allele present in FINRISK.
(PDF)

S3 Table. Enrichment ratios and observed p-values for all score SNPs with at least one
affected carrier.Under the null hypothesis of no enrichment, we established the null distribu-
tion for enrichment testing by calculating the enrichment statistic (enrichment ratio) for all
variants with effect allele (minor allele in the FINRISK cohort) frequency> 0.001% across the
genome excluding the loci of the 212 SNPs. Enrichment ratios were calculated for each of the
212 SNPs if at least one carrier was identified (194 SNPs for affected individuals, 191 SNPs for
probands), and one-tailed p-values were estimated from the null distribution. Enrichment
ratios are presented for the affected individuals. The carrier counts were calculated from all
genotyped FCH family members who passed exclusion criteria and did not have diabetes or
other relevant confounders (n = 661), and did not account for non-independence within fam-
ily. The + and—symbols denote elevating and lowering effects on the lipid in question, respec-
tively. FCH, familial combined hyperlipidemia; FINRISK, The National FINRISK Study. J.A.K,
J. A. Kuivenhoven; C.J.W., C. J. Willer; T.M.T., T. M. Teslovich; I.S., I. Surakka (S1 Text).
†Effect allele frequencies in non-Finnish Europeans were calculated from the public ExAC data
set (version 0.3) for coding SNPs (those present in the ExAC data set), and from the public
1000 Genomes Phase 3 data set for non-coding SNPs (S1 Text). ‡Effect allele frequencies in the
FINRISK cohort after excluding those with known diabetes or cancer. §Enrichment ratio is the
ratio of the effect allele frequencies in affected individuals (n = 234) to the Finnish population
(n = 18,715).
(PDF)

S4 Table. The 90th age- and sex-specific Finnish population percentiles for total cholesterol
and triglycerides. In the EUFAM study, dyslipidemia was established based on levels of total
cholesterol, triglycerides, or both that were� 90th Finnish age- and sex-specific population
percentile. The population percentiles were derived from FINMONICA, a large population
survey performed in 1992. The percentile estimates and a description of the polynomial regres-
sion analyses used to establish them have been reported in detail previously [21].
(PDF)
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