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ABSTRACT OF THE DISSERTATION 

 

Robust Shrinkage Estimation of Effect Sizes for Bayesian Meta-Analysis Models 

 

by 

 

Junok Kim 

Doctor of Philosophy in Education 

University of California, Los Angeles, 2023 

Professor Michael H. Seltzer, Chair 

 

This study introduces a fully Bayesian (FB) approach based on heavy-tailed distributional 

assumptions to overcome the over-shrinkage issue that often occurs under the conventional 

random-effects models for meta-analysis. In a meta-analysis with outlying study results, 

Empirical Bayes (EB) estimates of outliers are often shrunk to an average effect size by an 

excessive amount. This over-shrinkage of outliers can be problematic especially when attempting 

to answer substantive questions concerning how large the largest effect size in a given sample of 

studies might be.  

In order to address this issue, I employ an FB approach specifying t-distributional 

assumptions for random effects (Bayes-t model) based on a normal-gamma formulation of the t-

distribution (Seltzer, 1993; Seltzer et al., 1996). Specifically, the shrinkage estimate of an outlier 

from the Bayes-t model is compared to those from more standard approaches such as the EB 

method and an FB model based on a normal-distributional assumption for random effects 
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(Bayes-normal model). For the implementation of FB random-effects models, a Gibbs sampling 

algorithm is used to obtain marginal distributions of parameters of interest from a complex joint 

distribution of all parameters in the model.  

The findings from the empirical data-analysis and simulation study results highlight the 

advantage of employing a t-distributional assumption for random effects fully Bayesian (FB) 

meta-analysis models to yield robust shrinkage estimates of outliers. Specifically, the empirical 

data-analysis results show that the least amount of shrinkage occurs under the Bayes-t model 

with small degrees of freedom, compared to the EB and Bayes-normal models. The results from 

a targeted simulation study are also consistent with the data-analysis results. The shrinkage 

estimate of outlier from the Bayes-t model have good properties, such as less bias, smaller mean 

squared errors, and actual coverage closer to the nominal coverage of 95%, compared to those 

from the conventional methods. Further, the Bayes risk of the shrinkage estimates of outliers is 

the smallest under the Bayes-t model, while the risk averaged over the entire set of studies in a 

meta-analysis sample is similar across the estimation methods.  

The over-shrinkage problem stemming from EB estimation and the possibility that 

employing heavy-tailed distributional assumptions might alleviate the issue have been discussed 

in some of the early literature on multilevel models and MCMC estimation. Motivated by these 

works, this study demonstrates that the Bayes-t approach is capable of providing improved 

shrinkage estimates of true effect sizes of outliers. Future study should address the sensitivity of 

results to the prior specification and the possible presence of publication bias, and examine 

whether the current findings extend to more complex settings, i.e. meta-analytic datasets with 

dependent effect sizes within each study.  
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CHAPTER 1 

Introduction 

Meta-analysis plays a key role in many disciplines, including education, psychology, 

public health, and medicine. The purpose of meta-analysis is to utilize the findings from multiple 

studies of a treatment or policy of interest in order to obtain an estimate of the average effect size 

and an estimate of the extent to which the study outcomes vary across studies, and to investigate 

how differences in certain study characteristics relate to differences in effect-size estimates. 

Also of importance in conducting a meta-analysis is the question: Among the studies in 

one’s sample, how large might the largest true effect of the program or policy of interest be? To 

answer this question, obtaining sound estimates of outlying studies is important, as it enables a 

close examination of outlying study results that can bring to light key elements or factors for  a 

particularly successful implementation of a program of interest  (Rubin, 1981).   

For meta-analysis, a random-effects model is widely used to estimate key parameters in 

the model, including what are termed Empirical Bayes (EB) estimates, or shrinkage estimates, of 

true effect sizes for individual studies (Raudenbush & Bryk, 2002). Despite many advantages, 

EB estimation can result in substantial over-shrinkage, i.e., substantial bias, in the case of 

outlying effect sizes. This is clearly problematic when one’s interest centers on how large the 

largest true effect of the program or policy of interest might be.  
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This study aims to illustrate the problem associated with EB estimates and assess the 

statistical properties of an alternative estimation approach for meta-analysis models that helps 

overcome the shrinkage problems. While random-effects models for meta-analysis typically 

employ normal distributional assumptions, i.e., the distribution of effect-size parameters across 

studies is assumed to be normal, I show how the use of t-distributional assumptions with small 

degrees of freedom alleviates the over-shrinkage problem, and provides more sound estimates of 

outlying effect sizes.  

 

 

1.1. Random-effects models for meta-analysis 

A random-effects model for standard meta-analysis is often represented as a two-level 

multilevel model consisting of a within-study model at Level-1 and a between-study model at 

Level-2. In the within-study model, for each of  k studies, the observed effect size reported in 

study i, 𝑑𝑖, is viewed as a function of the true effect size for study i, δ𝑖  , plus sampling error, 𝑒𝑖, 

which is assumed to follow a normal distribution with mean zero and known variance, 𝑠𝑖
2: 

di = δ i  +  ei, ei ∼  N(0, si
2). (1. 1) 

In meta-analysis the sampling variance si
2 is often set equal to the squared standard error 

of di. 

In the between-study model, the true effect sizes are viewed as being normally distributed 

around a grand mean μ with variance 𝜏2:  

δi = μ +  ui, uj ∼  N(0, τ2). (1. 2)  
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The level-2 residual  ui  represents the deviation of the true value of the effect size for study i 

from the grand mean 𝜇, and the ui’s are assumed normally distributed with mean 0 and variance  

𝜏2. Note that from a Bayesian perspective, the between-study model in Equation 1.2 can be 

viewed as a prior distribution for the δ i’s. As will be discussed later, the between-study model 

can be expanded to include potential predictors of the variation in study effect sizes. 

Using a program such as HLM 8 (Raudenbush & Congdon, 2021), one can obtain the 

restricted maximum likelihood (REML) estimate of  τ2  (i.e., 𝜏̂2 ), and also a precision-weighted 

estimate of the average effect size  (i.e., 𝜇̂  ), where a weighted average of the observed effect 

sizes (i.e., the  𝑑𝑖’s)  is obtained using weights of the following form:      1/(𝜏2 + 𝑠𝑖
2). Note that 

those observed effect sizes with smaller error variances 𝑠𝑖
2 will receive more weight than those 

with larger 𝑠𝑖
2’s when computing 𝜇̂.  

 

 

1.2. Over-shrinkage problem of outliers 

In the case of the within-study and between-study models outlined above, there are two 

sources of information regarding the magnitude of the true effect size, δ i, for a given study in the 

sample of k studies. The first source of information is based strictly on study i’s data, 𝑑𝑖. The 

second source of information in this example is the estimate of the grand mean based on the 

sample of k studies, 𝜇̂.   

Lindley and Smith (1972) and Box and Tiao, (1973/1992) show that in the case of normal 

data / normal prior models such as the random-effects model outlined in Equations 1.1 and 1.2, 
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with μ  and 𝜏2 as known (i.e., with the prior distribution as known), the optimal estimator is:                             

δi
∗ = 𝜆𝑖 ∗ 𝑑𝑖 + (1 − 𝜆𝑖) ∗ 𝜇, (1.3) 

where 𝜆𝑖 =  𝜏2/(𝜏2 + 𝑠𝑖
2). 

In the case of ML-based programs, e.g., HLM 8 (Raudenbush & Congdon, 2021), a 

REML estimate of 𝜏2 (i.e.,  𝜏̂2 ) is substituted for 𝜏2 in the above equations, and the estimate of 

the grand mean, (i.e., 𝜇̂), described above, replaces 𝜇, in efforts to obtain estimates of δi
∗’s for the 

k studies in one’s sample. The resulting estimates of the δi
∗’s are often termed EB estimates.  

As a simple illustration to help convey the logic of the above estimator, suppose that 𝜏̂2 

and 𝑠𝑖
2 are equal in magnitude. This will result in 𝜆𝑖 equaling a value of 0.5 for study i. Thus in 

computing δi
∗, equal weight of 0.5 will be placed on the data, 𝑑𝑖, and on the estimate of the grand 

mean, 𝜇̂. On the other hand, if 𝑠𝑖
2 is very small relative to 𝜏̂2 as in the situation where 𝑑𝑖 is 

estimated with a relatively high degree of precision, then 𝜆𝑖 will approach a value of 1, resulting 

in a weight close to a value of 1 for 𝑑𝑖 and a value close to 0 for 𝜇̂ that will used in computing 

δi
∗. In contrast, if 𝑠𝑖

2 is very large in relation to 𝜏̂2 (i.e., 𝑑𝑖 is estimated with a relatively low 

degree of precision), then a small weight will be placed on 𝑑𝑖 and a great deal of weight will 

placed on 𝜇̂. This shows that the observed effect-size estimate, 𝑑𝑖, is always pulled or shrunk to 

some degree toward the grand mean under EB approach. As such, EB estimates are sometimes 

termed shrinkage estimates. 

Note that in meta-analysis models that include a study-specific predictor in the between-

study model, e.g., a measure of the duration of the program of interest for each study, each study 

will be shrunk toward a conditional mean given its predictor value, instead of being shrunk 



5 
 

toward an estimate of the grand mean. I will also examine the meta-regression model with a 

single predictor in later chapters. 

In discussing models based on EB estimation, the term “borrowing strength” is often 

used. That is when the error variance connected with an effect size is fairly large relative to 𝜏̂2, a 

large proportion of weight will be placed on the grand mean, i.e., a source of information based 

on all of the studies in the sample. When the error variance is small relative to 𝜏̂2 , only a small 

amount of weight will be placed on the grand mean, and a large amount of weight will then be 

placed on the effect-size estimate of study i based strictly on the data from that study. 

In meta-analysis, the EB estimates of true effect sizes, 𝛿𝑖′𝑠, will on average have smaller 

mean squared errors in a sample when compared to the set of observed data, the 𝑑𝑖’s, in a given 

sample. However, there is no guarantee that the EB estimate for each study will be close to its 

true effect size, as discussed in Efron and Morris (1971, 1972). This will especially be the case 

with respect to outlying effect sizes, for which there tends to be substantial shrinkage toward the 

grand mean.   

For illustration of the over-shrinkage problem for outliers, consider the previous example 

where 𝜏2 and 𝑠𝑖
2 are equal. In this case, 𝜆𝑖 = 𝜏2/(𝜏2 + 𝑠𝑖

2) = 0.5 , and 1 − 𝜆𝑖 = 0.5.  Suppose 

that the grand mean 𝜇 is equal to the standardized mean difference of 0.2. As the standardized 

mean differences are in standard deviation units, the average effects size of 0.2 corresponds to 

the difference of one-fifth of a standard deviation. Note that in the social sciences, an effect size 

of 0.2 represents a small effect, an effect size of 0.5 is interpreted as a moderate effect, and an 

effect size over 0.8 indicates a large effect (Cohen, 1988/2013). This results in a shrinkage 
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estimate as follows:                            

δi
∗ = 0. 5 ∗ 𝑑𝑖  +   0.5 ∗ 0.2.  

First let’s suppose the observed effect size of study i is 0.3, which is one-tenth of an effect size 

larger than the overall mean. The shrinkage estimate of study i’s true effect size will be:  

δi
∗ = 0.5 ∗ 0.3 +   0.5 ∗ 0.2 = 0.25,  

which is slightly smaller than the observed effect size of 0.3 and little larger than the grand mean 

of 0.2.  

Now suppose that for another study in the sample, the observed effect size is 1.2, which 

is substantially larger than the grand mean of 0.2. The weights again are 0.5 as above. The 

resulting shrinkage estimate in this case is:  

δi
∗ = 0.5 ∗ 1.2 +   0.5 ∗ 0.2 = 0.7.  

So while the observed effect size is 1.2, the EB estimate or shrinkage estimate is 0.7. That is a 

marked reduction of half an effect size. In addition, the interpretation of the size of effect size 

will be changed accordingly at a substantive point. Thought the study reports a large effect size 

of 1.2, the corresponding shrinkage estimate of 0.7 indicates that the intervention has a moderate 

effect.  

In both examples, a weight of 0.5 was placed on the grand mean. In the first example, a 

weight of 0.5 was placed on the observed effect size of 0.3, which is slightly larger than the 

grand mean of 0.25, i.e., it is close to the grand mean. In the second case, a weight of 0.5 was 

placed on the observed effect size of 1.2, which is substantially larger than the grand mean. What 
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we see is that in computing the corresponding EB estimate, the effect size of 1.2 was cut in half, 

down to a value of 0.6. This shows that the effect sizes that are substantially larger than the grand 

mean will be reduced substantially in forming EB estimates. Similarly, in the case of effect sizes 

that are substantially smaller than the grand mean, the concern is that they will be pulled toward 

the grand mean by an excessive amount.  

A standard meta-analysis model based on an EB approach often fails to provide sensible 

estimates of outlying study results because of the over-shrinkage problem illustrated above. This 

calls for an alternative approach which will provide more robust results for extreme cases.   

 

1.3. Robust approach assuming a t-distribution for random effects 

A promising approach to alleviate the over-shrinkage issue is employing a heavy-tailed 

distribution for random effects (Dempster, 1983; Seltzer et al., 1996; West, 1984). For example, 

a random-effects model based on a t-distributional assumption provides an improved shrinkage 

estimates of outliers, which are often shrunk toward the overall mean by a large amount under 

the assumption of normally distributed random effects (West, 1984). As will be described in the 

following chapter, an FB model based on a t-distributional assumption with small degrees of 

freedom for the random effects yields weights, which are termed 𝑞𝑖’s, for each study based on 

the distance between the observed effect size for a study and the average effect size of all studies 

in the sample. When 𝑑𝑖 is far from the grand mean, for example, the weight for such a study will 

tend to be close to a value of 0; and  when  𝑑𝑖  is close to the grand mean, the weight for such a 

study will tend to be close to a value of 1.   
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In the Bayes-t approach, the between study variance component 𝜏2 is essentially divided 

by a given study’s weight 𝑞𝑖, yielding the parameter variance for study i, 𝜏2/𝑞𝑖. For an outlier,  

𝑞𝑖 will tend to be close to 0, and this in turn will inflate the parameter variance 𝜏2/𝑞𝑖 for this 

study. For a study whose observed effect size 𝑑𝑖 is close to the grand mean, the parameter 

variance 𝜏2 will be divided by a value approximately equal to a value 1, and hence the parameter 

variance for such a study will be very close to 𝜏2.   

Returning to the issue of forming a compromise estimator δi
∗ based on 𝑑𝑖 and the grand 

mean μ (Equation 1.3), in the Bayes-t formulation with small df, as will be seen, 𝑑𝑖, the 

magnitude of the observed effect size for a study, is now multiplied by: 𝜆𝑖 = 
𝜏2/𝑞𝑖

𝜏2/𝑞𝑖  +𝑠 𝑖
2.  Thus for 

an outlier 𝜆𝑖 will approach a value in the vicinity of 1, and 1 − 𝜆𝑖 will approach a value of 0.   

This will lead to substantially less shrinkage compared to the EB approach. In this way, 

employing t-distributional assumptions in the between-study model provides protection for the 

outlier against the over-shrinkage toward the grand mean (or toward a conditional mean when 

predictors are included in the between-study model). The robust estimates of outliers will be 

particularly valuable if one wishes to investigate and learn from outliers, instead of treating an 

outlier merely as a statistical nuisance.  

To this end, in this dissertation, I demonstrate that employing t-distributional assumptions 

with small degrees of freedom for effect-size parameters within an FB framework helps 

overcome the over-shrinkage problem for outlying effect sizes. Though the FB multilevel models 

assuming t-distributed random effects have been widely used in small-sample settings, the 

primary interests often lie on obtaining robust estimates of fixed effects and their precisions 

(Seltzer, 1993; Seltzer et al., 1996, 2002; Smith et al., 1995; Thompson & Becker, 2020a). An 

early work by West (1984) addresses the over-shrinkage issue, however, his study is based on 
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the  assumption that the parameter variance 𝜏2 is known, which is problematic when the number 

of studies in a meta-analysis, for example, is small and the uncertainty around 𝜏2 is substantial. 

Given the limitations of the previous literature, this study aims to examine the properties of 

shrinkage estimates of outliers under the t-distributional assumption for random effects in FB 

meta-analysis models.  

For the implementation of this approach, I build on the work of Seltzer (1993) and Seltzer 

et al. (1996), who focus on Bayesian analysis employing t-distributional assumptions for random 

effects in standard multilevel settings. Specifically, Markov Chain Monte Carlo (MCMC) will be 

used to implement meta-analysis models based on heavy-tailed distribution for random effects. 

In this way, I will be able to obtain the marginal posterior distribution of the effect-size 

parameter for each study in the dataset. In contrast to the models based on ML, the uncertainty 

regarding the magnitude of parameters, e.g., parameter variance  𝜏2, will be reflected in the 

marginal posterior distributions of the effect-size parameters. Of particular interest will be the 

marginal posterior distributions of outlying effect sizes, which will provide the information 

concerning the probability that the true effect size for the outlying study exceeds a value of 

particular interest from a substantive standpoint.  

 

 

1.4. Outline of dissertation 

The organization of the dissertation is as follows. In Chapter 2, I lay out the steps and 

logic of the MCMC algorithm I will be using to estimate meta-analysis models in which t-

distributional assumptions are specified for the between-study model. In Chapter 3, I will then 
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illustrate the use and value of FB approach based on t-distributional assumptions through 

analyses of the empirical dataset from a meta-analysis focusing on the effects of school-based 

writing-to-learn interventions, conducted by Bangert-Drowns et al. (2004). In Chapter 4, the 

properties of the shrinkage estimates from the EB estimation method and FB models assuming a 

normal distribution as well as two t-distributions with different degrees of freedom are examined 

and compared through a targeted simulation study. In Chapter 5, I will summarize the primary 

findings and will discuss the implications and limitations of the current study.  
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CHAPTER 2 

Fully Bayesian Random Effects Models for Meta-Analysis 

This chapter presents a Gibbs sampling algorithm to estimate random-effects models for 

meta-analysis within a fully Bayesian (FB) framework. In the following sections, I first provide 

an overview of the Gibbs sampler and describe the steps to obtain marginal posterior 

distributions of parameters of interest in FB models. Specifically, I introduce a standard FB 

approach based on a normality assumption for the random effects (e.g., the true effect sizes), and 

then focus on an alternative FB model assuming a heavy-tailed distribution for the random 

effects in a meta-analysis. For simplicity, I mostly focus on the unconditional model without 

predictors. 

 

2.1. Gibbs sampling algorithm to implement fully Bayesian random-effects models 

In this study, I employ an FB approach that has been used to yield robust estimates of 

parameters of interest in meta-analyses with  a small number of studies  (Larose & Dey, 1997; 

Seltzer, 1990; Smith et al., 1995). Within an FB framework, meta-analysis random-effects 

models can be estimated based on t-distributional assumptions with small degrees of freedom for 

the between-study model. Further, the marginal posterior distributions of parameters of interest 

from FB models reflect uncertainty in all other unknowns in the models. FB methods require 
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specifying prior distributions for all of the unknowns in one’s model, which quantifies the prior 

knowledge or belief regarding the unknowns. Combined with the likelihood function for the 

observed data, the full posterior distribution is proportional to the joint distribution of all prior 

distributions in the model and the likelihood. From the joint posterior, the marginal posterior 

distribution of a parameter of interest can be obtained by integrating over all other unknowns. 

However, the required integrations are intractable in most cases, except in certain cases with, for 

example, a very small number of unknowns. As a viable alternative, one can use Markov-Chain 

Monte Carlo (MCMC) to obtain marginal posterior distributions of parameters of interest in 

high-dimensional settings, and in which distributional assumptions other than normality 

assumptions are specified. As noted in the previous chapter, I will demonstrate and explain how 

employing t-distributional assumptions with small degrees of freedom in meta-analysis models 

can alleviate over-shrinkage problems connected with the EB approach based on normality 

assumptions for the random effects.  

To help illustrate the logic of  the MCMC approach for FB models, suppose that one wants 

to estimate three parameters, 𝜃1 , 𝜃2 , and 𝜃3  given the data, 𝐲 . With the likelihood of 

𝑝(𝐲|𝜃1, 𝜃2, 𝜃3)  and the prior distributions for 𝑝(𝜃1) , 𝑝(𝜃2)  and 𝑝(𝜃3) , the joint posterior 

distribution is:  

p(θ1, θ2, θ3|𝐲) ∝ p(𝐲|θ1, θ2, θ3)p(θ1)p(θ2)p(θ3). (2.1) 

Obtaining the marginal posterior distributions, 𝑝(𝜃1|𝐲), 𝑝(𝜃2|𝐲), and 𝑝(𝜃3|𝐲) directly 

from the full joint posterior, or carrying out the required integrations, is typically not feasible, 

especially for complex models such as random-effect models in which t-distributional assumptions 

are specified for random effects.  
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To overcome this difficulty, one can adapt simulation methods to obtain accurate 

simulations of marginal posterior distributions of interest. Note that MCMC methods such as 

Gibbs sampling or Metropolis-Hastings have been widely applied to estimate high-dimensional,  

complex models (Gelman et al., 2013; Gilks et al., 1995). As will be seen, the Gibbs sampler is 

fairly straightforward to implement in the case of FB random-effects models for meta-analysis 

since the conditional distributions of unknowns in the model have known forms (e.g., normal, 

gamma, etc.) (Gelfand et al., 1990; Tanner & Wong, 1987).  

Returning to the example above involving three unknowns, a Gibbs sampling algorithm 

proceeds as follows:  

(1) To initiate a Gibbs sampling algorithm, compute starting values for the unknown 

variables, i.e. 𝜃(0) = {𝜃1
(0)

, 𝜃2
(0)

, 𝜃3
(0)

}. 

(2) A value is drawn or sampled, (i.e., θ1
(1)

) from the full conditional distribution of 𝜃1 

given the current value of all other variables and the data, 𝑝(𝜃1|𝐲, 𝜃2 = 𝜃2
(0)

, 𝜃3 = 𝜃3
(0)

). 

(3) Using the updated value of 𝜃1, 𝜃2
(1)

 is sampled from 𝑝(𝜃2|𝐲, 𝜃3 = 𝜃3
(0)

, 𝜃1 = 𝜃1
(1)

). 

(4) Using the recent updates, 𝜃3
(1)

 is sampled from 𝑝(𝜃3|𝐲, 𝜃1 = 𝜃1
(1)

, 𝜃2 = 𝜃2
(1)

). 

(5) Now we have a complete vector for the first cycle, 𝜃(1) = {𝜃1
(1)

, 𝜃2
(1)

, 𝜃3
(1)

}. 
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(6) Repeating (2) - (5) for 𝑐 times until convergence, and with a large number of  additional 

iterations (i.e., 𝑚 iterations), we essentially have 𝑚 draws from the joint posterior distribution  

𝑝(𝜃1, 𝜃2, 𝜃3|𝐲):  

                                               {𝜃1
(c+1)

, 𝜃2
(𝑐+1)

, 𝜃3
(𝑐+1)

}  

{𝜃1
(c+2)

, 𝜃2
(𝑐+2)

, 𝜃3
(𝑐+2)

} 

. 

. 

. 

                                               {𝜃1
(c+m)

, 𝜃2
(𝑐+𝑚)

, 𝜃3
(𝑐+𝑚)

}. 

If one is interested in the posterior distribution of  𝜃1, a histogram can be constructed using  

the 𝑚 values generated for 𝜃1, i.e., a plot of the set of values 𝜃1
(c+1)

 to 𝜃1
(c+m)

, which provides an 

accurate approximation of the marginal posterior distribution of  𝜃(1) .  The mode of the plot would 

also provide an accurate estimate of the mode of the marginal posterior of  𝜃1. In addition, one 

could calculate the proportion of values generated for 𝜃1 that lie above a value of substantive 

interest, which would provide an accurate estimate of the probability that 𝜃1 lies above that value 

based on the marginal posterior distribution of 𝜃1. Furthermore, one can compute the value below 

which 2.5 percent of the distribution lies, and the value above which 97.5% lies, which would 

provide a range between which 95% of the distribution lies; we might view this as a 95% Credible 

Interval (CI). 

Note that if the marginal posterior distribution of 𝜃2 is of interest, one could go through the 

same steps as above using the 𝑚 set of values generated for 𝜃2 to construct a plot of the marginal 
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posterior distribution of 𝜃2, identify the mode of the distribution, construct a 95% CI, calculate the 

mean and standard deviation of the marginal posterior and the like. In short, we can obtain highly 

accurate approximations of the marginal posterior for each unknown in the model.    

 

2.2. Fully Bayesian meta-analysis models assuming normally distributed random effects 

In this section, I focus on an FB meta-analysis model without any predictors, assuming a 

normal distribution for the random effects in the between-study model. A Gibbs sampling 

algorithm to obtain the marginal posterior distributions of parameters of interest is described 

accordingly. For the illustration, all prior distributions are assumed to be uniform, e.g., 𝑝(𝜏2) ∝ c 

where 𝑐 is a constant. 

In a within-study model in a meta-analysis, a standardized effect-size estimate, 𝑑𝑖, for the 

𝑖𝑡ℎ study, 𝑖 = 1, ⋯ , 𝑘, is assumed to have a normal distribution with a mean equal to the true 

effect size for study i (i.e., 𝛿𝑖), and an error variance of 𝑠𝑖
2,  

𝑑𝑖|𝛿𝑖, 𝑠𝑖
2 ∼ 𝑁(𝛿𝑖, 𝑠𝑖

2). (2.2) 

The observed 𝑠𝑖
2 values in a meta-analysis are typically treated as known values, and the 

corresponding density function for the observed effect size estimates d in the within-study model 

above is only conditioned on 𝜹, i.e., the vector of true effect sizes, which are unknown:  

𝑝(𝒅|𝜹) ∝ ∏ (
1

𝑠𝑖
2)

1
2

exp [−
1

2𝑠𝑖
2 (𝑑𝑖 − 𝛿𝑖)

2]

𝑘

𝑖=1

. (2.3) 

In the between-study model, the effect size parameter 𝛿𝑖 is a function of the average effect 

size, μ, and the random effects, the 𝑢𝑖’s, that capture the differences between the the true effect 
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sizes 𝛿𝑖’s. The 𝛿𝑖’s are assumed to be normally distributed with mean of zero and effect-size 

variance 𝜏2: 

𝛿𝑖|μ, 𝜏2 ∼ 𝑁(μ, 𝜏2). (2.4) 

The density function for 𝜹 is: 

𝑝(𝜹|μ, 𝜏2) ∝ ∏

𝑘

𝑖=1

(
1

𝜏2
)

1
2

exp [−
1

2𝜏2
(𝛿𝑖 − μ)2] . (2.5) 

In meta-analysis models, the unknown parameters to be estimated are study-specific 

effect sizes 𝛿𝑖, the grand mean μ, and the heterogeneity parameter 𝜏2. To implement a Gibbs 

sampler, the joint posterior distribution of these parameters given the data is determined first as 

follows: 

𝑝(𝛅, μ, 𝜏2|𝐝) ∝ 𝑝(𝐝|𝛅) 𝑝(𝛅|μ, 𝜏2) 𝑝(μ) 𝑝(𝜏2). (2.6) 

Note that in a meta-regression model with predictors, which will be used in later analysis, 

𝛿𝑖 is assumed to be normally distributed with a conditional mean 𝐗𝑖𝛃 and a conditional variance 

𝜏2 where 𝐗𝑖 is 1 × 𝑝 study-level covariates, and 𝛃 is 𝑝 × 1 regression coefficients. As such, the 

average effect size μ will be replaced with 𝐗𝑖𝛃 in Equations 2.4, 2.5 and 2.6. In a conditional 

model, the unknown paramters to be estimated are 𝛿𝑖, 𝛃 and 𝜏2. 

As mentioned previously, to obtain the marginal posterior distribution of a parameter of 

interest in complex models with many unknowns as in the above joint posterior, it is generally 

not possible to integrate over all of the unknowns. However, alternatively, the  Gibbs sampler 

provides a viable approach to obtain the marginal posterior distributions of unknowns of interest. 

For each parameter in complex joint posterior distributions, it is possible to sample from the 



17 
 

conditional posterior distribution of each unknown, given the current values of all other 

unknowns. In many cases, the conditional posterior distributions that one needs to sample from 

have a known distributional form (e.g., normal, gamma, etc.), which makes it straightforward to 

generate sample values. 

In this section, each step of a Gibbs sampling algorithm for FB meta-analysis models 

assuming a normal distribution for random effects is described as follows.    

Step 0: Starting values are defined. In order to initialize the Gibbs sampling algorithm, 

one can use  REML estimates of the grand mean μ and paramter variance 𝜏2 as starting values 

for these parameters: μ(0) = μreml and τ2(0) = 𝜏reml
2 . Note that in meta-regression models, the 

REML estimates of fixed effects 𝜷 are used as starting values such that 𝜷(0) = 𝜷reml instead of 

μ(0) = μreml. 

Step 1: Sample 𝜹 from 𝑝(𝜹|𝐝, μ, 𝜏2). 

After dropping parts of the joint posterior distribution that reduce to constants after 

conditioning on the current values of all other unknowns (i.e., μ  and 𝜏2 ) and the data, the  

conditional distribution of 𝛿𝑖 is normal as follows: 

𝛿𝑖|μ, 𝜏2, di ∼ 𝑁 (𝜆𝑖 ∗ 𝑑𝑖   +   (1 − 𝜆𝑖) ∗ μ, (
1

𝑠𝑖
2 +

1

𝜏2
)

−1

) , (2.7) 

where 𝜆𝑖 =
𝜏2

𝑠𝑖
2+𝜏2. 

As in a standard two-level multilevel model with normally distributed data and a normal 

prior, the conditional posterior of 𝛿𝑖 given the current values of μ and 𝜏2 and given the data, di, 

is normal with a mean that is the weighted sum of 𝑑𝑖 and the average effect size, μ. As the form 
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of the weight 𝜆𝑖 implies, more weight will be placed on the observed study result 𝑑𝑖 rather than 

the grand mean μ when the ratio of parameter variance to the total variance is large, i.e., close to 

a value of 1. Note that in the conditional model with the predictors in the between-study model, 

the conditional distribution of 𝛿𝑖 in Equation 2.7 is the same except that the average effect size μ 

would be replaced with the conditional mean for study i, 𝑋𝑖𝛃.  

Step 2: Sample μ from 𝑝(μ|𝐝, 𝜏2, 𝛅).  

The form of  the conditional posterior distribution for the average effect size μ given the 

observed effect sizes in the sample of studies, the current values for the true values of the effect 

sizes 𝛅 and effect-size variance 𝜏2, is a normal distribution as follows: 

μ|𝐝, 𝜏2, 𝜹 ∼ 𝑁 (
1

k
∑

𝑘

𝑖=1

𝛿𝑖, (
k

𝜏2
)

−1

) . (2.8) 

The conditional mean and variance of μ corresponds to the results from a regression 

model in which the current values of 𝜹 are regressed on the intercept. In a meta-regression model 

with predictors, the fixed-effects 𝜷 will be sampled from the conditional posterior distribution of 

𝜷 given 𝛅 and 𝜏2, which is a normal distribution wih mean of (∑𝑘
𝑖=1 𝐗𝑖

′𝐗𝑖)
−1

(∑𝑘
𝑖=1 𝐗𝑖𝛿𝑖)

′
and 

variance of (
1

𝜏2
∑𝑘

𝑖=1 𝐗𝑖
′𝐗𝑖)

−1

. 
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Step 3: Sample 𝜏2 from 𝑝(𝜏2|𝒅, 𝜹, μ). 

The conditional distribution of 𝜏2 is an inverse gamma distribution with shape parameter 

𝛼, and scale parameter 𝛽: 

𝜏2|𝒅, 𝜹, μ ∼ Inv − Gamma (𝛼 =
𝑘

2
− 1, 𝛽 =

∑𝑘
𝑖=1 (𝛿𝑖 − μ)2

2
) . (2.9) 

Note that 𝑘 is the number of studies in the sample. The mode of 𝜏2 is                     

𝜏mode
2 =

𝛽

𝛼+1
=

∑𝑘
𝑖=1 (𝛿𝑖−μ)2

k
, which is determined by the extent to which the study-specific effects 

𝛿𝑖 deviate from the overall mean μ. Under the assumption of normally-distributed random 

effects, the 𝜏mode
2  would be sensitive to outlying effect sizes when the sample size 𝑘 is small. In 

the conditional model, the overall average μ in Equation 2.9 will be replaced with the conditional 

mean 𝑋𝑖𝛃.  

Note that if 𝜏2 ∼ Inv − Gamma(𝛼, 𝛽), then 1/𝜏2 ∼ Gamma(𝛼, 1/𝛽). Often the latter is 

used in Bayesian analysis because it is easier to sample from a gamma distribution rather than 

from its inverse. 

As shown in the case of the posterior distribution of 𝛿𝑖 in Step 1, the weight parameter 

that determines the amount of shrinkage is the variance ratio 𝜆𝑖 =
𝜏2

𝑠𝑖
2+𝜏2

. Under the standard 

assumption of normally-distributed random-effects, the shrinkage of individual effect-size 

estimates, 𝑑𝑖 , toward the grand mean, μ, can be severe especially for outlying effect sizes. A 

large amount of bias in the estimate of the true effect size for an outlying study can be 

problematic if research interests focus on how large the largest true effect size might be for the 

program or policy of interest, and under what conditions this might occur. As such, an alternative 
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approach is requred to reduce the bias in estimates of true effect sizes in the case of outlying 

observed effect sizes. One potentially valuable approach is to replace the standard normal 

distributional assumption for random effects with an alternative distributional assumption with 

heavier tails at both ends of the distribution, specifically, a t-distribution with small degrees of 

freedom, as discussed in the previous chapter. 

 

 

2.3. Fully Bayesian meta-analysis models assuming t-distributed random effects 

In meta-regression analyses, the errors of the between-sttudy model are often assumed to 

be normally distributed. Under the normality assumption, however, the shrinkage of outlying 

effect-size estimates toward the grand mean (or toward a conditional mean based on a study’s 

level-2 covariate values), can be substantial compared to non-outliers. Recall the example in the 

first chapter that focused on a scenario where the average effect size was 0.2, and one of the 

studies in the sample reported an effect-size estimate that was considerbly larger, i.e., 1.2. With 

equal weight placed on the data and the grand mean (i.e.,  𝜆𝑖 = 0.5, and 1 -  𝜆𝑖  = 0.5), the 

resulting shrinkage estimate was 0.7 as follws: 

δi
∗ = 0.5 ∗ 1.2 + 0.5 ∗ 0.2 = 0.7. 

While the observed effect size is 1.2, the EB estimate (or shrinkage estimate) is 0.7. As mentioned 

previously, that is a substantial reduction of half an effect size.   

In order to obtain robust paramter estimates in the presence of outliers, the distribution of 

random effects can be assumed to follow a heavy-tailed distribution, i.e., a t-distribution with the 
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degrees of freemdom 𝜈 set to a small value, e.g., 3, which is capable of accommodating extreme 

values in either tail.  

An FB meta-anlaysis model with t-distributed random effects can be specified by 

reparameterizing the error distributionin in the between-study model. Consider a random variable 

𝑇 distributed according to a standard t-distribution with 𝜈 degrees of freedom, i.e. 𝑇 ∼ 𝑡(0, 𝜏, 𝜈) 

where a scale parameter 𝜏 is equal to 1. The standard t-distribution 𝑇, can be obtained by taking 

the quotient of independent random variables, 𝑍, which follows a standard normal disribution, 

i.e., 𝑍 ∼ 𝑁(0,1) and 𝑄, which is follows a chi-squared distribution with ν degrees of freedom,     

𝑄 ∼ 𝜒𝜈
2: 

𝑇 =
𝑍

√𝑄/𝜈
. (2.10) 

A general t-distribution 𝑈 with scale 𝜏 is: 

𝑈 = 𝜏 ∗ 𝑇 = 𝜏 ∗
𝑍

√𝑄/𝜈
 . (2.11) 

In the same way, a random effect 𝑢𝑖  is assumed to follow a scaled t-distribution, 𝑢𝑖 ∼

𝑡𝜈(0, 𝜏) and can be expressed as follows: 

𝑢𝑖 = 𝜏 ∗
𝑧𝑖

√𝑞𝑖

 , (2.12) 

where 𝑧𝑖 ∼ 𝑁(0,1) and 𝑞𝑖 ∼ 𝜒𝜈
2/𝜈. 
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With t-distributed errors, the between-study model then becomes  

𝛿𝑖 = μ + 𝑢𝑖 = μ + 𝜏
𝑧𝑖

√𝑞𝑖

 . (2.13) 

This between-study model with t-distirbuted random effects can be re-expressed as a 

normal distribution conditioned on μ, 𝜏2, 𝑞𝑖 : 

𝛿𝑖|μ, 𝜏2, 𝑞𝑖 ∼ 𝑁(μ, 𝜏2/𝑞𝑖 ) (2.14) 

where 𝑞𝑖 ∼ 𝜒𝜈
2/𝜈. 

Thus, in the density function for a between-study model, 𝛿𝑖, as before, is viewed as 

following a normal distribution with a mean of 𝜇, which is the average effect size across the 

studies. However, an effect-size variance is now specified as 𝜏2/𝑞𝑖, where 𝑞𝑖 is a parameter 

assumed to be chi-squared distributed with 𝜈 degrees of freedom, and divided by 𝜈 , i.e.,  𝑞𝑖 ∼

𝜒𝜈
2/𝜈  (or equivalently, 𝑞𝑖 ∼ 𝛤 (

𝜈

2
,

𝜈

2
) which is a gamma distribution): 

𝑝(𝜹|𝜇, 𝜏2, 𝒒 ) ∝ ∏𝑘
𝑖=1 (

1

𝜏2/𝑞𝑖
)

1

2
exp [−

1

2𝜏2/𝑞𝑖
(𝛿𝑖 − 𝜇)2] . (2.15) 

This is the normal-gamma mixture of the t-distribution with degrees of freedom 𝜈, 

location parameter 𝜇, and scale parameter 𝜏2, i.e., 𝑡𝜈(𝜇, 𝜏2) (Gelman et al., 2013; Lange et al., 

1989; Seltzer et al., 1996; Spiegelhalter et al., 2003). Note also that as the degrees of freedom 𝜈 

decreases, the tails of the random-effects distributions become heavier, with more capability to 

accommodate  outliers.  

The joint posterior distribution of all prior distributions and the likelihood is 

𝑝(𝜹, μ, 𝜏2, 𝒒|𝒅) ∝ 𝑝(𝒅|𝜹) 𝑝(𝜹|μ, 𝜏2, 𝒒) 𝑝(𝒒) 𝑝(μ) 𝑝(𝜏2). (2.16) 
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The grand mean μ in Equations 2.14, 2.15, and 2.16 is replaced with a conditoinal mean 

𝑋𝑖𝛃 in meta-regression models. The unknown paramters to be estimated would include 𝛃 as well 

as 𝜹, 𝜏2 and 𝒒 . 

As in meta-analysis models assuming normally-distributed random effects, a full 

conditional distribution for each variable is derived from the joint posterior distribution. Most of 

the conditional distributions are similar to the previous example, however, a gamma-variate, 𝑞𝑖, 

is included in the model assuming t-distributed random effects. In my analyses as will be seen, in 

addition to employing normality assumptions in the between-study model, I employ t-

distributional assumptions with 3 and 7 degrees of freedom. The Gibbs sampling algorithm for 

FB models based on heavy-tailed distributions is presented as follows.  

Step 0: As starting values, the REML estimates are obtained from the data, i.e. μ(0) = μ 

and 𝜏2(0) = 𝜏𝑟𝑒𝑚𝑙
2 . For the weight parameter 𝐪, equal weights to all studies as                        

𝐪𝟎 = (𝑞1
(0)

= ⋯ = 𝑞𝑘
(0)

= 1) can be specified as initial values. As in the previous section, the 

starting values of 𝜷(0) = 𝜷reml are used for the fixed-effects in meta-regression models.  

Step 1: Sample 𝜹  from 𝑝(𝛿𝑖|𝑑𝑖, μ, 𝜏2). 

The conditional distribution of the effect-size paramter 𝛿𝑖 is as follows: 

𝛿𝑖|𝑑𝑖, μ, 𝜏2, 𝑞𝑖 ∼ 𝑁 (𝜆𝑖 ∗ 𝑑𝑖 + (1 − 𝜆𝑖) ∗ μ, (
1

𝑠𝑖
2 +

1

𝜏2/𝑞𝑖
)

−1

) . (2.17) 

This is comparable to the normal case except that 𝜆𝑖 is now 
𝜏2/𝑞𝑖

𝑠𝑖
2+𝜏2/𝑞𝑖

. As a consequence, the 

amount of shrinkage is determined by 𝜏2/𝑞𝑖  as well as the degrees of freedom 𝑣𝑖 . In meta-
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regresion models with predictors, the grand mean μ in Equation 2.17 will be replaced with a 

conditional mean 𝑋𝑖𝛃. 

Step 2: Sample μ from 𝑝(μ|𝐝, μ, 𝜏2, 𝐪). 

The full distribution of μ is: 

μ|𝒅, 𝜹, 𝜏2, 𝒒 ∼ 𝑁 ((∑
1

𝜏2/𝑞𝑖

𝑘

𝑖=1

  )

−1

∑(𝜏2/𝑞𝑖)
−1𝛿𝑖

𝑘

𝑖=1

, (∑
1

𝜏2/𝑞𝑖

𝑘

𝑖=1

)

−1

) . (2.18) 

In Equation 2.18, each 𝛿𝑖 is weighted by the inverse of 𝜏2/𝑞𝑖 when computing the 

average effect size μ. As will be detailed in Step 4, a small value of 𝑞𝑖 is assigned to an outlier, 

resulting in a large paramter variance  𝜏2/𝑞𝑖. In turn, (𝜏2/𝑞𝑖)−1 will be very small, 

downweighting the estimate of true effect size of outlier 𝛿𝑖 in computing μ. In this way, the 

Bayes-t model reduces the influence of outliers on the estimates of fixed effects.  

Note that in the conditional model, the fixed effects 𝛃 will be sampled from the 

conditional posterior distribution with a mean of ∑ (𝜏2/𝑞𝑖)−1𝛿𝑖𝐗𝑖 (∑
𝐗𝐢

′𝐗𝐢

𝜏2/𝑞𝑖

𝑘
𝑖=1   )

−1
𝑘
𝑖=1  and a 

variance of (∑
𝐗𝐢

′𝐗𝐢

𝜏2/𝑞𝑖

𝑘
𝑖=1 )

−1

. 

Step 3: Sample 𝜏2 from 𝑝(𝜏2|𝐝, μ, 𝛅, 𝐪). 

The conditional distribution of 𝜏2 is an inverse gamma distribution: 

𝜏2|𝐝, μ, 𝛅, 𝐪 ∼ Inv − Gamma (
𝑘

2
+ 1,

∑ 𝑞𝑖(𝛿𝑖 − μ)

2
) . (2.19) 
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The mode of the conditoinal posterior of 𝜏2 is defined as 𝜏mode
2 =

𝛽

𝛼+1
=

∑𝑘
𝑖=1 𝑞𝑖(𝛿𝑖−𝑋𝑖𝛃)2

k+2
 

under the t-distirbutional assumption. Unlike in the normal model, 𝜏mode
2  is now determined by 

the sum of squared deviations (𝛿𝑖 − μ)2 , where each squared deviation is multiplied by its current 

𝑞𝑖 value. 

Step 4: Sample 𝐪 from 𝑝(𝐪|𝐝, 𝜏2, μ, 𝛅). 

The full conditional distribution of 𝑞𝑖 given all other variables is a gamma distribution as 

follows: 

𝑞𝑖|𝑑𝑖, 𝜏2, μ, 𝛿𝑖 ∼ Gamma (𝛼 =
𝜈 + 1

2
, 𝛽 =

2

𝜈 +
1
𝜏2 (𝛿𝑖 − μ)2

) . (2.20) 

Same as before, the grand mean μ in Equations 2.19 and 2.20 will be replaced with a 

conditional mean 𝑋𝑖𝛃 in meta-regression models with predictors. 

Note that the posterior mode of 𝑞𝑖 in Equation 2.20 is 
𝜈−1

𝜈+
1

𝜏2(𝛿𝑖−𝜇)2
. In a given iteration of 

the Gibbs sampler, if the absolute value of the residual, 𝛿𝑖 − 𝜇 is large, the mode of the 

conditional posterior for 𝑞𝑖 will decrease substantially. In such cases, it is likely that a small 

value for 𝑞𝑖  will be generated by the Gibbs sampler, e.g., a value slightly above 0. This in turn 

will result in a substantial increase in 𝜏2/𝑞𝑖 for study i. As can be seen in Equation 2.18, 𝜆𝑖 is 

now equal to 
𝜏2/𝑞𝑖

𝑠𝑖
2+𝜏2/𝑞𝑖

.  Thus a substantial increase in 𝜏2/𝑞𝑖 that we would obtain for an outlier, 

will result in a value of 𝜆𝑖 that is near a value of 1. This means that a weight in the vicinity of a 

value of 1 will be placed on the data in forming an estimate of 𝛿𝑖 for the outlier, thus overcoming 

the severe shrinkage problems connected with outliers. 
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On the other hand, if the absolute value of the residual  𝛿𝑖 − 𝜇  is very small, the mode of 

the conditional posterior for  𝑞𝑖  will increase. In this situation, it is likely a large value for 𝑞𝑖 is 

generated that is close to a value of 1 or larger. For example, for a value of qi of 1, 𝜏2/𝑞𝑖 = 𝜏2, 

and 𝜆𝑖  would be equal to:  
𝜏2

𝑠i
2+𝜏2 . 

In sum, for the outlier, a large 𝜏2/𝑞𝑖 results in a large 𝜆𝑖 value which places more weight 

on the data, 𝑑𝑖, rather than on μ, when computing 𝛿𝑖. To put it another way, the shrinkage toward 

the overall average is less severe for outliers when a heavy-tailed distribution is assumed for 

random effects. This means that the shrinkage estimate in the Bayes-t models with small df will 

be less biased toward the grand mean, ensuring some robustness against over-shrinkage of 

outliers compared to the EB approach or Bayes-normal models. If there is good evidence that a 

study with an outlying result has been implemented in a careful, rigorous way and thus can 

provide some sound evidence regarding the magnitude of the true treatment effect for the 

program being studies, the Bayes-t approach will yield shrinkage estimates of outliers that are 

more sensible than those based on a Bayes-normal model.  

 

2.4. Software 

In this study, all the Bayesian analyses were conducted using  R 4.2.3 (R Core Team, 2023). 

Specifically, we used an R package R2jags (Su & Yajima, 2021) to call JAGS (Just Another Gibbs 

Sampler; Plummer, 2003) into the R environment. JAGS is a program to analyze Bayesian 

hierarchical models using MCMC, which is compatible with BUGS (Bayesian inference Using 

Gibbs Sampling; Lunn et al., 2000). Extending BUGS to more general settings, JAGS has been 
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widely used across different fields for Bayesian analysis, enabling more flexible modeling 

(Depaoli et al., 2016).  

To implement a Gibbs sampler using JAGS, I set the number of iterations to 11,000 per 

each chain with the first 1,000 samples discarded to reduce the influence of starting values. I ran 

five chains in total, which resulted in 50,000 sample draws to approximate the marginal posterior 

distribution of each variable. The convergence of each parameter was monitored using graphical 

methods, i.e. trace and autocorrelation plots. 

For the EB analysis for empirical and simulated datasets, meta-regression models were 

fitted using HLM8 (Raudenbush & Congdon, 2021). HLM, as in the case of JAGS, is able to 

process the effect-size estimates and the corresponding sampling variance from each study, i.e., it 

does need the full data from each study. That is, it can fit a conventional meta-analysis model using 

the effect-size estimates and the corresponding error variances (V-known model). The EB 

estimates of effect-size parameters obtained from HLM are compared with the shrinkage estimates 

from the FB models based on MCMC in my dissertation. 

 

 

 

 

 

 

 

 



28 
 

 

 

CHAPTER 3 

Empirical Data Analysis Results 

This chapter presents the results from analyses of an actual meta-analysis dataset, using 

the Bayesian approaches described in the previous chapters. The dataset was drawn from a 

published article by Bangert-Drowns et al. (2004). Specifically, this section focuses on shrinkage 

estimates for an outlier in the dataset based on four estimation approaches: (1) empirical Bayes 

(EB), (2) fully Bayes based on normality assumptions in the between-study model (Bayes-

normal model), (3) fully Bayes based on t-distributional assumptions of random effects with 3 

degrees of freedom (Bayes-t model with 3 df), and (4) fully Bayes based on t-distributional 

assumptions with 7 degrees of freedom (Bayes-t model with 7 df). The primary interest lies in 

examining how the amount of shrinkage of the estimate of the true effect size for the outlier 

changes depending on the heaviness of the tails in the various distributional assumptions being 

employed. 

Analyses of the Bangert-Drowns et al. (2004) were used to compare conventional 

methods for meta-analysis with the robust modeling approach using a t-distribution, with an 

emphasis on the results for outliers. The analysis results show that the Bayes-t model with 

heavier tails (e.g., degrees of freedom of 3) provides robust estimates of the effect sizes of 

outliers, by protecting against over-shrinkage that often occurs under standard distributional 
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approaches. This section also demonstrates that this result also holds in the case of meta-

regression models with between-study predictor variables. 

 

3.1. Background  

The meta-analysis of Bangert-Drowns et al. (2004) summarizes the research results that  

examine the effects of writing-to-learn programs on learning outcomes. The original sample 

consists of 48 effect sizes from 46 studies focusing on school-based interventions and 

comparisons between treatment and control conditions. The effect sizes are reported as Cohen’s 

d, the standardized mean differences in academic achievement scores between individuals in 

treatment and comparison conditions, where a positive effect size favors the treatment group. 

This study reveals that the overall effect of writing-to-learn programs is positive and significant 

but small i.e., 0.17 (0.26 when unweighted). Among the moderators of interest that have been 

examined, grade level (elementary school, middle school, high school and college), the length of 

the intervention (in minutes) and the presence of prompts that require metacognitive reflection 

are significantly associated with differences in the magnitudes of the effect sizes. Specifically, in 

a moderator analysis using grade level, the estimate of the average effect size across the studies 

with participants in Grades 6-8 are lower than those based on other grades. For the length of 

intervention materials measured in minutes, longer assignments are associated with smaller 

effect sizes. Lastly, for the moderator indicating whether the writing prompts have components 

for metacognitive reflection, the effect sizes are larger for the studies which use prompts 

requiring in the treatment group in a given study to reflect on the current knowledge they have 

obtained, what they are confused about, and their learning processes, compared to those with 

intervention materials that lack such components.  
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The dataset has a few effect sizes deviating from the rest of the effect sizes, which can 

potentially influence parameter estimates. For illustrating meta-analysis models that are robust to 

outliers, this study analyzed a subset of the meta-analysis data obtained from Bangert-Drowns et 

al. (2004), only including the participants attending high schools and colleges. As the original 

study does not contain information about the error variances of the effect sizes, they are 

approximated following Viechtbauer and Cheung (2010), based on the sample sizes for control 

and treatment groups. The reduced sample consists of 26 effect-size estimates which are 

heterogeneous across studies (Figure 3-1). For illustration, a single predictor, the length of 

treatment measured in weeks, is included in the analysis model to explain the variation across 

effect sizes.  

 

3.2. Dataset 

Table 3-1 presents the effect-size estimates from 26 studies, the error variances and the 

predictor values. As shown in Figure 3-1, the effect-size estimates and the corresponding error 

variances suggest substantial heterogeneity across studies, ranging from a small-to-medium 

negative effect of -0.32, to an outlying effect of 1.46 favoring the treatment group. The error 

variances range from 0.01 to 0.27, which suggest that the precisions of the effect sizes are also 

variable.  

From the plot, it is easily noticeable that the effect size from Study 26 deviates from the 

rest of the data, and is the largest in this study. Possible reasons for this extreme effect include 

more intensive treatment with several distinctive components of writing tasks and higher quality 

of instructors in Study 26 (Willey, 1988), compared to the other studies in the sample that 

reported relatively large effect sizes and certain study characteristics with the outlier, such as a 
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focus on high-school participants and the class subject of science and math. Note that the error 

variance of the outlying study result from Study 26 is moderate as 0.10 compared to those of the 

rest of the studies in the sample, ranging from 0.01 to 0.27. This suggests that the outlier might 

not have much influence on the estimates of fixed effects, i.e., the average effect size.  
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Figure 3-1 Effect-size estimates and their 95% confidence intervals from the meta-analysis 

conducted by Bangert-Drowns, Hurley and Wilkinson (2004).  

The analysis sample consists of 26 effect-size estimates of writing-to-learn interventions implemented in 

high schools and colleges, which are standardized mean differences in achievement scores between 

treatment and control conditions. The size of squares indicates how precise an estimate is, for example, a 

large square means high precision, while a small square represents low precision. The blue polygon is the 

estimate of average effect size from the empirical Bayes method based on restricted maximum likelihood.   

 



33 
 

Table 3-1 Meta-analysis dataset from Bangert-Drowns, Hurley and Wilkinson (2004) 

Study Author (s) Year Effect Size Error Variance 

Duration of 

Treatment  

(In Week) 

1 Mulvaney 1991 -0.316 0.060 11 

2 Greene et al.  1990-1991 -0.164 0.167 4 

3 Langer & Applebee (1) 1987 -0.129 0.037 1 

4 Reaves 1991 -0.119 0.023 1 

5 Rodgers 1996 -0.070 0.033 15 

6 Baker 1994 -0.040 0.019 9 

7 Day 1994 0.000 0.021 15 

8 Becker 1996 0.030 0.009 1 

9 Burton 1986 0.060 0.040 4 

10 Langer & Applebee (2) 1987 0.178 0.069 1 

11 Goss 1998 0.196 0.091 15 

12 Giovinazzo 1996 0.197 0.086 14 

13 Youngberg 1989 0.247 0.072 15 

14 Bell & Bell 1985 0.264 0.106 4 

15 Licata 1993 0.269 0.018 1 

16 Kasparek 1993 0.366 0.060 12 

17 Sharp 1987 0.486 0.039 2 

18 Horton et al. 1985 0.514 0.065 3 

19 Ganguli 1989 0.541 0.083 4 

20 Johnson, L. A. 1991 0.544 0.061 19 

21 Stewart 1992 0.583 0.067 24 

22 Weiss & Walters 1980 0.629 0.168 15 

23 Ashworth 1992 0.651 0.070 15 

24 Ross & Faucette 1994 0.700 0.265 15 

25 Davis,  J. J. 1996 0.774 0.107 15 

26 Willey 1988 1.457 0.099 15 
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The relationship between effect-size estimates and intervention length in weeks is 

illustrated in Figure 3-2. While the outlying study has a duration of 15 weeks, which is larger 

than the average of 9.62, it appears that the outlier is not pulling the slope capturing the 

relationship between duration and effect size toward it. This is due to the fact that besides the 

outlier, there is an appreciable number of studies with a duration of 15 weeks that have effect 

sizes considerably smaller than the outlier that together are exerting a lot of weight on magnitude 

of the slope. In other words, it is unlikely that the presence of the outlier affects the strength of 

relationship between the outcome and the predictor, or how steep the regression line is, in this 

dataset. Regardless of the fixed-effect estimates, the shrinkage estimate of the outlier, which is 

determined by the amount of heterogeneity across the effect sizes in the sample and the error 

variance of the outlying effect size, can still suffer from over-shrinkage issues. Using the current 

dataset, I will demonstrate the problem associated with the conventional approaches such as the 

EB method and an FB model assuming normally distributed random effects, and how employing 

a heavy-tailed distributional assumptions for random effects alleviates the excessive amount of 

shrinkage of the outlier. 
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Figure 3-2 Effect-size estimates of studies by intervention length in weeks from the Bangert-

Drowns, Hurley and Wilkinson (2004) study.  

The average length of treatment of 26 studies in the sample is 9.62, with a minimum length of one week 

and a maximum duration of 24 weeks. The size of each data point represents the precision of the estimate. 

The positive slope between effect-size estimates and treatment length suggests that the treatment effect will 

increase for in the case of a longer intervention.  
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3.3. Empirical Bayes analysis results 

The EB results for the unconditional and conditional models are presented in Table 3-2. 

As mentioned in the previous chapter, the EB estimates of outliers tend to shrink the effect sizes 

of outliers toward the grand mean by a substantial amount. The average effect size for high-

school and college studies in the sample is 0.244 and the estimate of effect-size variance is 

0.064. In this example, the 𝐼2 statistic, a measure of heterogeneity across the studies in a meta-

analysis, is 59.707. The 𝐼2 is the ratio of the effect-size variance to the total variance and 

analogous to the intra-class correlation computed in multilevel models (Higgins & Thompson, 

2002; Raudenbush & Bryk, 2002). The 𝐼2  of 59.707 indicates that the effect-size variance is 

59.707 % of the total variance. These results suggest that there is a substantial amount of 

heterogeneity among effect sizes, although the overall effect size is positive and fairly small.  

 

Table 3-2 Empirical Bayes analysis results of Bangert-Drowns et al. (2004) data 

 Parameter Estimate SE 
95% CI 

Lower Upper 

Unconditional Model 

Intercept, 𝛾00 0.244 0.069 0.109 0.379 

Parameter Variance, 𝜏2 0.064    

EB Estimate, 𝛿26 0.720 0.202 0.325 1.116 

Conditional Model 

Intercept, 𝛾00 0.256 0.067 0.125 0.388 

Trt Length, 𝛾10 0.018 0.010 -0.001 0.037 

Parameter Variance, 𝜏2 0.057    

EB Estimate, 𝛿26 0.756 0.199 0.367 1.145 

Note: The variance ratio, 
τ2

τ2+si
2, λ26 for the unconditional model is 0.392, and 0.364 in the conditional model 

under the EB approach.  

 

 



37 
 

In order to explain the varying effect sizes, the treatment length in weeks is included in 

the model. Table 3-2 shows that the average effect size for studies with an average treatment 

length (9.62 weeks) is 0.256. The regression coefficient for the treatment length is 0.018, 

indicating that the standardized differences between treatment and control conditions increase by 

0.018 of an effect size when there is a one-week increase in treatment length. Put another way, 

the treatment effects are larger for the participants who received the treatment for a longer period 

of time, though this result is border-line significant with a p-value slightly over 0.05. 

Specifically, the fitted value, or the expected effect size, for a study with a minimum treatment 

duration of one week is 0.101, whereas the fitted value for a study with a maximum duration of 

24 weeks is 0.515. This indicates that the predicted effect size increases from the null effect with 

a week of treatment to a medium effect when the treatment is continued for the longest period in 

the sample.  The estimate for the remaining effect-size variance is 0.057, which is a decrease 

from the null model of 11.23%. The 𝐼2 statistic is 56.05 and the Q statistic for the residual 

variance is 50.91, which is still significant after including the predictor. The conditional model 

results suggest that there might be other moderators related to effect sizes which can explain the 

residual variance.  

In both the unconditional and conditional models, the shrinkage estimate of the outlying 

study, 𝛿26, is computed and presented in Table 3-2. The estimate of the true effect size is 0.720 

with  𝜆26 equal to a value of 0.392 in the null model, while it is 0.756 with 𝜆26 equal to a value 

0.364 in the conditional model. In other words, the weight attached to the data is 0.392, and 

0.608 of the weight is attached to the average effect size to compute the shrinkage estimate in the 

null model. The weight in the conditional model placed on the data is 0.364, and 0.636 is placed 

on the average, which is similar to the null model. Given that the original effect size of Study 26 
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is 1.457, it is evident that the estimates of the true effect size are shrunk toward the estimated 

averages by a large amount under EB.  

 

3.4. Fully Bayesian analysis results 

The differences in the shrinkage estimates from EB, Bayes-Normal and Bayes-t models 

with 3 df and with 7 df are shown in Figure 3-3 for the unconditional model. From the plot, it is 

evident that employing the t-distributional assumption based on fewer degrees of freedom leads 

to less shrinkage of the outliers, compared to the more standard approaches. 

Table 3-3 presents the summary of the marginal posterior distributions of all parameters 

in the unconditional model. In terms of the shrinkage estimate of the outlier, the posterior mode 

of the true effect size for Study 26, 𝛿26, is 0.72 with the posterior mode of λ26  equal to 0.47 

under the Bayes-normal model without any predictor. This result means that the effect-size 

estimate from the data, 𝑑26, receives a weight of 0.47 when computing the corresponding 

shrinkage estimate whereas the average effect size, γ̂00, tends to receive  a weight of                  

1-0.47=0.53. It also suggests that the data are shrunk toward the average effect-size estimate by a 

large amount. In the Bayes-t models, the mode of the posterior distribution of 𝛿26 is 1.14 , and 

the posterior mode of 𝜆26 of 0.81 when 3 degrees of freedom are assumed, whereas the posterior 

mode for 𝛿26 is 0.84 and the posterior mode of 𝜆26 is 0.58 when the degrees of freedom are 7. 

The amount of shrinkage is 4.07 times larger under EB than under the Bayes-t model with 3 df 

for the unconditional model. Similarly, the amount of shrinkage is 2.79 times larger under the 

Bayes normal model compared to the Bayes-t model with 3 df without any predictors. 

Meanwhile, the amounts of shrinkage of outlier under the EB, the Bayes-normal model and the 

Bayes-t model with lighter tails are very similar to one another. The amount of shrinkage is 1.15 
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times larger under the EB model when compared to the Bayes-normal model, and it is 1.05 larger 

under the EB model than under the Bayes-t model with 7 df. These results suggest that 

employing the assumption of heavier tails for random effects is most effective in decreasing the 

amount of shrinkage of outliers.  
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Figure 3-3 Shrinkage estimates of true effect sizes from the unconditional meta-analysis model 

based on Empirical Bayes, Bayes-normal and Bayes-t (3 df and 7 df) estimation methods. 

For the Bayesian models, the posterior modes of shrinkage estimates are used for the comparison with EB 

estimates. The shrinkage estimate of the outlier with the largest effect-size estimate (the rightmost data 

point in each plot) shrinks toward the average effect-size estimate by the least amount under the Bayes-t 

model with 3 df. 
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Table 3-3 Fully Bayesian analysis results of Bangert-Drowns et al. (2004): Unconditional model  

  Mean Median Mode 2.5% 97.5% SD p > 0 

𝛾00 Normal 0.25 0.25 0.24 0.10 0.41 0.08 1.00 

t: df3 0.22 0.21 0.21 0.08 0.37 0.07 1.00 

t: df7 0.24 0.23 0.23 0.09 0.39 0.08 1.00 

𝜏2 Normal 0.09 0.08 0.06 0.02 0.22 0.05 1.00 

t: df3 0.05 0.04 0.03 0.01 0.15 0.04 1.00 

t: df7 0.07 0.06 0.05 0.02 0.18 0.04 1.00 

𝜈

(𝜈 − 2)
𝜏2 t: df3 0.16 0.13 0.09 0.03 0.44 0.11 1.00 

t: df7 0.10 0.09 0.07 0.02 0.25 0.06 1.00 

𝑞26 t: df3 0.32 0.19 0.07 0.02 1.48 0.41 1.00 

t: df7 0.62 0.52 0.37 0.11 1.68 0.41 1.00 

𝜏2/𝑞26 t: df3 0.50 0.25 0.10 0.02 2.43 1.40 1.00 

t: df7 0.18 0.13 0.07 0.02 0.63 0.18 1.00 

𝛿26 Normal 0.78 0.77 0.72 0.28 1.34 0.27 1.00 

t: df3 1.05 1.06 1.14 0.34 1.77 0.37 1.00 

t: df7 0.91 0.89 0.84 0.31 1.58 0.33 1.00 

𝜆26 Normal 0.44 0.45 0.47 0.17 0.69 0.13 1.00 

t: df3 0.67 0.72 0.81 0.17 0.96 0.21 1.00 

t: df7 0.55 0.56 0.58 0.17 0.86 0.18 1.00 
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For the conditional model, the posterior distributions of 𝛿26 along with 𝜆26 show that the 

Bayes-t models have an advantage of avoiding the over-shrinkage when a predictor is included 

(Figure 3-4). The conditional model results presented in Table 3-4 show that the mode of the 

posterior distribution of 𝛿26 under the Bayes-normal model is 0.76 with λ26 of 0.42. In the 

Bayes-t models, the posterior mode of 𝛿26 is 1.03 with 𝜆26 of 0.76 when 3 degrees of freedom 

are assumed, and 𝛿26 is 0.85 with 𝜆26 of 0.52 with 7 degrees of freedom.  

The λ’s decrease in the conditional models, when compared to the unconditional models, 

occurs because the conditional effect-size variance is usually smaller than the unconditional one 

due to the variance explained by predictors, resulting in more shrinkage toward the average. 

Even in such a situation, assuming a heavy-tailed distribution for random effects yields shrinkage 

estimates which are robust to the over-shrinkage of random-effects models as illustrated in 

Figure 3-4. Specifically, the amount of shrinkage is 2.65-times larger in the case of the EB 

estimate when compared to the Bayes-t model with 3 df. The amount of shrinkage is 2.21-times 

larger under the Bayes-normal model, than under the Bayes-t model with 3 df. The amount of 

shrinkage is 1.1-times larger under the EB method than under the Bayes-normal model, 

indicating a negligible difference between these two approaches in terms of shrinkage estimates. 

The amount of shrinkage from the Baeys-t model with 7 df is also similar to the results based on 

the Bayes-normal model. 

The results from the conditional model demonstrate a similar pattern with the 

unconditional model results. Specifically, the least amount of shrinkage occurs under the Bayes-t 

model with 3 df, while the amount of shrinkage is not very different across the EB method, the 

Bayes-normal model, and the Bayes-t model with 7 df. This is because the estimate of the 

parameter variance in the unconditional model is similar to the estimate of the conditional 
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variance from the meta-regression model with a predictor. As the ratio of the parameter variance 

to the total variance, which is sum of the parameter variance and error variance, determines the 

amount of shrinkage, the results will be pretty similar across the unconditional and conditional 

model as long as the variance ratios are close to each other.  
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Figure 3-4 Shrinkage estimates of true effect sizes from the conditional meta-analysis model based 

on Empirical Bayes, Bayes-normal and Bayes-t (3 df and 7 df) estimation methods. 

For the Bayesian models, the posterior modes of the shrinkage estimates are plotted to make comparisons 

with EB estimates. In the meta-regression model, the effect-size estimates shrink toward a conditional 

mean based on the predictor value, which is the intervention length in weeks of each study. As in the 

unconditional model, the least amount of shrinkage occurs under the Bayes-t model with 3 df.  
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Table 3-4 Fully Bayesian analysis results of Bangert-Drowns et al. (2004): Conditional model  

  Mean Median Mode 2.5% 97.5% Sd p > 0 

𝛾00 Normal 0.26 0.26 0.26 0.12 0.42 0.08 1.00 

t: df3 0.24 0.24 0.23 0.10 0.39 0.07 1.00 

t: df7 0.25 0.25 0.24 0.11 0.40 0.08 1.00 

𝛾10 Normal 0.02 0.02 0.02 0.00 0.04 0.01 0.96 

t: df3 0.02 0.02 0.02 0.00 0.04 0.01 0.96 

t: df7 0.02 0.02 0.02 0.00 0.04 0.01 0.95 

𝜏2 Normal 0.08 0.07 0.05 0.02 0.20 0.05 1.00 

t: df3 0.05 0.04 0.03 0.01 0.14 0.03 1.00 

t: df7 0.07 0.06 0.05 0.02 0.17 0.04 1.00 

𝜈

(𝜈 − 2)
𝜏2 t: df3 0.15 0.12 0.09 0.02 0.41 0.10 1.00 

t: df7 0.09 0.08 0.06 0.02 0.24 0.06 1.00 

𝑞26 t: df3 0.42 0.24 0.07 0.02 1.83 0.50 1.00 

t: df7 0.69 0.59 0.40 0.13 1.80 0.44 1.00 

𝜏2/𝑞26 t: df3 0.38 0.18 0.12 0.01 1.91 1.06 1.00 

t: df7 0.15 0.10 0.05 0.02 0.54 0.16 1.00 

𝛿26 Normal 0.82 0.81 0.78 0.35 1.37 0.26 1.00 

t: df3 1.02 1.01 1.05 0.36 1.73 0.36 1.00 

t: df7 0.91 0.89 0.84 0.37 1.56 0.31 1.00 

𝜆26 Normal 0.42 0.43 0.43 0.17 0.67 0.13 1.00 

t: df3 0.61 0.64 0.78 0.11 0.95 0.23 1.00 

t: df7 0.51 0.51 0.56 0.14 0.84 0.19 1.00 
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As noted in the previous chapter, in the case of FB t analyses with small degrees of 

freedom, we employ the normal-gamma representation of the t-distribution. Instead of simply 

assuming a common between-study variance 𝜏2, a key quantity in the normal-gamma 

formulation is  𝜏2/𝑞𝑖  where 𝑞𝑖 is Chi-square distributed with 𝜈 degrees of freedom, and divided 

by 𝜈 , i.e.,  𝑞𝑖 ∼ 𝜒𝜈
2/𝜈 .   

As mentioned earlier, the posterior mode of 𝑞𝑖 is 
𝜈−1

𝜈+
1

𝜏2(𝛿𝑖−𝜇)2
. In a given iteration of the 

Gibbs sampler, if the residual | 𝛿𝑖 − 𝜇 | in the denominator is large, the mode of the conditional 

posterior distribution of  𝑞𝑖 will decrease appreciably. As such it is likely that in a given iteration, 

a small value for 𝑞𝑖 will be generated by the Gibbs sampler, for example, a value close to 0. Note 

that this will result in a substantial increase in 𝜏2/𝑞𝑖 for study i. Note that 𝜆𝑖 is  equal to 
𝜏2/𝑞𝑖

𝑠𝑖
2+𝜏2/𝑞𝑖

 

under the Bayes-t model. Thus a substantial increase in 𝜏2/𝑞𝑖 for an outlier will result in a value 

of 𝜆𝑖 that approaches a value of 1. Accordingly, a weight close to 1 will be placed on the data in 

computing a shrinkage estimate of 𝛿𝑖 for the outlier, thus overcoming the over-shrinkage 

problems of outliers.  Note also that in the case of a study in which the residual | 𝛿𝑖 − 𝜇 | is small, 

a 𝑞𝑖 value close to a value of 1 will tend to be generated by the Gibbs sampler, thus resulting in 

𝜏2/𝑞𝑖 values close to a value of 𝜏2. As such, values of 𝜆𝑖 will tend to be small and a larger 

weight will be placed on the grand mean (or on a conditional mean). 

As mentioned above, the differences we see in shrinkage and weight estimates can be 

attributed to the differences in the estimates of effect-size variances across the models. In Figure 

3-5, the Bayes-t model with 3 df yields the largest posterior mode of parameter variance for 𝛿26 

because the estimate of the common scale parameter, 𝜏2, tends to be divided by small weight 

values of 𝑞26, which depend on the residual, 𝛿26 − 𝜇. Specifically, this yields a marginal 
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posterior mode of 𝜏2/𝑞26 = 0.10. Note that the REML estimate of 𝜏2 is 0.06. As a large 

parameter variance places more weight on the data rather than on the overall mean, the mode of 

the posterior distribution of 𝛿26 under the Bayes-t model with 3 df is fairly close to the effect-

size estimate based strictly on the data. Figure 3-6 shows how the effect-size variance is 

connected to the shrinkage estimates, 𝛿𝑖, using the unconditional model results from the Bayes-t 

model with 3 df. In the figure, it is clear that the effect-size estimate 𝑑𝑖   shrinks toward the 

overall mean μ by a larger amount when the estimate of parameter variance, 𝜏2/𝑞𝑖, is small, 

while the shrinkage estimate becomes closer to the study result as 𝜏2/𝑞𝑖 increases. Specifically, 

the shrinkage estimate of the outlier 𝛿26 gets closer to the value of 1.46 from the data, as 𝜏2/𝑞26 

increases.  
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Figure 3-5 Marginal posterior distributions of 𝛿26 and 𝜆26 of the outlying Study 26 based on the 

unconditional and the conditional models. 

As the tails of random effects become heavier, a small value of q26 is assigned for the outlier as shown in 

(d). With small q26’s, τ2/q26’s will increase accordingly, resulting large values for λ26’s. A large value of  
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λ26  places more weight on the data, d26 , rather than on the estimate of average effect size in the 

unconditional model or on the estimate of conditional mean in the meta-regression model with a predictor.  

 

 

  

 
Figure 3-6 The relationship between the effect-size variance of the ith study, 𝜏2/𝑞𝑖, and the ith 

shrinkage estimate, 𝛿𝑖, under the Bayes-t model with 3 degrees of freedom. 

When τ2/qi is very close to 0, all δi’s shrink toward the grand mean, μ. As τ2/qi increases, δi is pulled 

closer to the data, di. For the outlier, Study 26 (red line), the amount of shrinkage is substantial compared 

to other studies (grey lines). A blue dashed line indicates the marginal posterior distribution of  τ2/q26, 

which shows that about a half of the probability mass lies above the posterior mode. In this case, the EB 

estimate based on the maximum likelihood estimate of τ2 doesn’t account for the uncertainty regarding 

the amount of between-study variance.   
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Using the robust posterior distribution of the true effect size for the outlier obtained by 

employing a Bayes-t model, one can obtain an estimate of the probability that 𝛿26  falls into a 

particular range of interest from a substantive standpoint. Figure 3-7 demonstrates the 95% 

Confidence Interval of 𝛿26 from the EB method and the posterior distributions of 𝛿26 obtained 

using FB models. In this example, I focus on the probability that 𝛿26 is above an effect size value 

of 1 and above an effect size value of 1.5 under different distributional assumptions for the 

random effects. Specifically, the probability that 𝛿26 exceeds 1 is the largest, i.e., 0.55 under the 

Bayes-t model with 3 df, while the probability is smallest, i.e., 0.21 under the Bayes-normal 

model. Further, the probability that 𝛿26 lies above a value of 1.5, which is a value similar to the 

effect-size estimate of the outlier is 10 times larger based on the Bayes-t model with 3 df  

compared to the probability computed using the results from the Bayes-normal model. This is 

because the random effects under the Bayes-t model expand to a wider range due to the heavy-

tailed assumption, resulting in less of shrinkage toward the average effect size than the other 

approaches.   
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Figure 3-7 The EB 95% Confidence Interval of the shrinkage estimate of the outlier and the 

posterior distributions of δ26 from the FB models. 

A darkened data point indicates the point estimate based on the EB method and posterior modes based on  

the FB methods. A dashed line in each method indicates Standardized Mean Difference (SMD) of 1and a 

two-dashed line represents an SMD of 1.5. Depending on the distributional assumption, the probability 

that δ26 exceeds 1 or 1.5 differs by a significant amount. For example, more than half of the probability 

mass lies above 1 under the Bayes-t model with 3 df, while the probability of δ26 above 1 is only 0.21 

under the Bayes-normal model.  
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CHAPTER 4 

Simulation Study Results 

The primary purpose of this chapter is to assess the properties of shrinkage estimates of 

outliers computed using the four different estimation approaches examined in the data-analysis 

example. Specifically, this section compares the shrinkage estimates of outliers based on the use 

of Bayes-t models with 3 df and 7 df, with the estimates from more standard approaches, such as 

EB and the Bayes-normal model. This simulation study aims to complement the findings from 

the empirical data analysis in the previous chapter by using hypothetical datasets that will enable 

examining  conditions beyond the Bangert-Drowns et al. (2004) dataset. 

In this simulation study, I primarily focus on how the shrinkage estimates of outliers 

change depending on the ratio of between-study variance (i.e., parameter variance) to total 

variance (i.e., parameter variance plus error variance), denoted as I2. The variance ratio is a key 

factor that determines the amount of shrinkage as discussed in the previous chapters. In 

particular, an interest of this study lies in figuring out the I2’s in which the Bayes-t model with 

small degrees of freedom is more advantageous compared to the Bayes-normal model, which is a 

standard approach widely used in FB meta-analysis. 

As will be detailed later, the true parameter values used to generate hypothetical datasets 

for simulation are drawn from the REML estimates of fixed effects and between-study variance 

from the previous analyses of the Bangert-Drowns et al. (2004) data presented earlier. In 
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addition, the outlying effect-size estimate discussed earlier is included as the true effect size in 

the data sets generated for the simulation study. By virtue of using the parameter estimates based 

on the actual dataset as data-generating values, the targeted simulation approach enables one to 

investigate  practical, real world data analysis settings, and thus has been widely advocated 

across the methodology literature (Browne & Draper, 2006; Bryan & Jenkins, 2016; Burton et 

al., 2006; see also Choi & Seltzer, 2010 for an example in educational research). 

The comparisons between EB and FB methods are motivated by the simulation design 

conducted by Browne and Draper (2006), which uses the summary statistics of posterior 

distributions of parameter estimates, such as the mean, median and mode to assess the 

performances of different estimation approaches. In this simulation study, each evaluation 

criterion, including simple bias, relative bias, Mean Squared Error (MSE) and coverage, is 

computed for each of 200 generated datasets using each estimation approach (i.e., Bayes-t 

models with 3 df and 7 df, Bayes-Normal and EB). For example, in a given generated dataset, I 

obtain a value for simple bias, which is the distance between the posterior mode of the outlier 

from the true value, using the Bayes-t approaches with 3 df and 7 df, the Bayes-normal approach 

and the EB approach. And then the simple bias values based on the Bayes-t model with 3 df is 

averaged across the 200 datasets, the simple bias values based on the Bayes-t with 7 df are 

averaged, and the like. Note that simulation results based on the modes of posterior distributions 

are reported for the FB models following Browne and Draper (2006), who found that the 

evaluation criteria computed using posterior modes yielded the most accurate results. 
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4.1. Simulation conditions 

This simulation study primarily focuses on the performance of each estimation approach 

considered in this dissertation, in the presence of outliers and depending on the ratio of true 

effect-size variance to the total variance, which is the sum of true effect-size variance and error 

variance. In this study, the variance ratio is the form of  I2 =
τ2

τ2+𝑠𝑖
2. A primary goal is to find the 

I2 ratio where the largest differences between the Bayes-normal model and the Bayes-t model 

occur.  

In the simulation study, we set τ2 equal to a value of 0.06, which is the value of  τ2 

obtained in an HLM REML analysis of the dataset from Bangert-Drowns et al. (2004). These 

REML estimates are based on a between-study model in which the true effect sizes were 

modeled as a function of a grand mean 𝜇 and parameter variance τ2. Note that the resulting 

estimate of 𝜇 is 0.24.  

For simplicity, equal error variances are assumed for each study within a generated 

dataset, resulting in I2 = 𝜆𝑖 = τ2/(τ2 + s2) in the current setting (c,f., Higgins & Thompson, 

2002). We consider three I2 values, i.e., three ratios of parameter variance to total variance: 

values of 0.25, 0.5, and 0.75 . With τ2 set to a value of 0.06, which was obtained in the analyses 

of the Bangert-Drowns et al. (2004) dataset presented earlier, we set s2 to a value of 0.18 to 

obtain a variance ratio of 0.25,  a value 0.06 to obtain an I2 value of 0.5, and  a value of  0.02 to 

obtain an I2of 0.75.  

Within a given condition of I2, 200 datasets are generated. In each dataset, there are 26 

effect sizes where 25 cases follow a normal distribution, and one effect size which is an outlier. 

With 200 datasets for each I2 value, four approaches, EB, Bayes-normal and Bayes-t approaches 
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based on 3 df and with 7 df,  are assessed in terms of key evaluation criteria, for example, bias, 

MSE, coverage and Bayes risk, which will be elaborated later in more detail later in the next 

section. This simulation study also examines the properties of shrinkage estimates from these 

four approaches focusing on an unconditional meta-analysis model. The simulation results using 

a conditional model with one predictor are presented as supplementary in a later section.  

 

4.2. Data generation process 

The datasets for the simulation study are generated based on REML estimates of key 

parameters in the analysis of the Bangert-Drowns et al. (2004) presented earlier. Recall that the 

average effect size 𝜇 is 0.24 and the effect-size variance τ2 is 0.06. In this example, the I2 value 

is approximately 0.60, which means that the effect-size variance estimate comprises up to 60% 

of the total variance in effect sizes. In general, there are three components to be sampled to 

create meta-analytic datasets: 1) true effect sizes, δi,  2) error variances attached to each effect-

size estimate 𝑠𝑖
2, and 3) effect-size estimates, di. For simplicity, this simulation study uses equal 

error variances for all studies within each I2. In this section, the specific steps for data generation 

are presented for an unconditional model.  

- Step 1: generate true effect sizes, δi 

In constructing each dataset for the simulation study, 25 true effect sizes, δi, are 

generated following a normal distribution with a mean, 𝜇 and a variance, 𝜏2, for the 

unconditional model:  

δi ∼ 𝑁(𝜇, 𝜏2). (4.1) 
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As noted above, the true values for 𝜇 and 𝜏2 are set equal to the corresponding REML 

estimates from the data-analysis example presented earlier. For the data generation of the 

unconditional model, 𝜇 is set to a value of 0.24 and 𝜏2 is set to a value of 0.06.  

In the meta-analysis dataset of Bangert-Drowns et al. (2004), the estimate of the effect 

size for the outlying study is 1.46. In this simulation study, we treat this as the true effect size for 

the outlier, and this constitutes the 26th true effect size in a generated dataset. 

- Step 2: generate effect-size estimates, di’s, of the 26 true effect sizes  

In Step 2, for a given dataset that is being constructed, each effect-size estimate di  is 

sampled from the corresponding normal distribution based on the true effect sizes, (i.e., the 𝛿𝑖’s) 

generated in Step 1 and the error variance 𝑠𝑖
2 that corresponds to a given condition I2:  

di ∼ 𝑁(𝛿𝑖, 𝑠𝑖
2). (4.2) 

Specifically, the 25 true effect sizes that were generated from Equation 4.1., plus the true value for 

the outlier,1.46, are entered into Equation 4.2, with an 𝑠𝑖
2 value of 0.18, 0.06 or 0.02 depending on 

the I2 = τ2/(τ2 + s2)  value we are focusing on (i.e., 0.25, 0.5. 0.75). Note that the outlier for 

each dataset is generated based on the following distribution: di ∼ 𝑁(1.46, 𝑠𝑖
2) with the mean of 

this normal distribution set to 1.46. Thus in creating each dataset for the simulation study, the true 

effect sizes are perturbed with a certain amount of error. 

Example datasets for the simulation are presented in Figure 4-1. The plot shows that the 

patterns of the generated effect sizes change when the amount of error variance differs depending 

on I2 ratio we are working with.  Specifically, the amount that the study outcome di deviates 
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from true effect size 𝛿𝑖 changes depending on I2. As the error variance 𝑠𝑖
2 decreases, resulting in 

a larger I2, the effect-size estimate di will tend to be closer to its true value, 𝛿𝑖, and vice versa.  

 

 

Figure 4-1 Example datasets for the targeted simulation study (Unconditional model) 

Red data points represent true effect sizes, δi, while blue data points are study outcomes, di, generated 

based on δi from the previous step. As the true effect-size variance is assumed to be the same across the 

conditions, the error variance is the largest when I2 = 0.25 with the widest 95% intervals, while the error 

variance is the smallest when I2 = 0.75, with the narrowest intervals. Note that the true effect size of the 

outlier is fixed at 1.46 for all conditions as seen at the rightmost corner of each plot. 
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4.3. Evaluation criteria 

In order to evaluate the strength of each approach in analyzing a small meta-analytic 

dataset, this simulation study uses the evaluation criteria such as simple and relative bias, Mean 

Squared Error (MSE), and the actual coverage of 95% FB and EB intervals for the true effect 

sizes, especially the effect size of the outlier. For each dataset generated for a given I2 value, the 

usual evaluation criteria for simulation, such as bias, Mean Squared Error (MSE), and coverage 

of the shrinkage estimate of outlier are computed and averaged across the 200 datasets. In order 

to compute these statistics using the FB analysis results, the posterior modes of the marginal 

posterior distributions of the outlier, for example, as well as the corresponding 95% Credible 

Intervals are used to make comparisons with EB estimates of the outlier and their 95% 

Confidence Intervals (Browne & Draper, 2006) For FB models, this study also reports average 

and outlier Bayes risks, following the evaluation criteria in previous studies (Efron & Morris, 

1971, 1972; Raudenbush & Bryk, 2002). In short, Bayes risks are the squared distances between 

the true and estimated values for a parameter of interest. For the Bayes risks, this study computes 

the ensemble risk, which is the Bayes risks averaged across all 𝛿𝑖’s, and the component risk only 

for the outlier. The details of computation of Bayes risks will be presented shortly.  

 

4.3.1. Evaluation criteria for empirical Bayes approach 

Suppose that 𝛿𝑖 is true effect size of study i for a given dataset, 𝛿𝑖 is the shrinkage 

estimate of 𝛿𝑖, and there are 200 datasets in this example. For the simulation results based on 

using the EB estimation approach, two bias measures, simple and relative bias, are computed for 

each I2 condition. The simple bias is the average of the distance between estimates and their true 
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values,  𝛿𝑖 − 𝛿𝑖, across all 200 datasets. The relative bias quantifies the amount of bias in the 

estimates in comparison with their true values. Specifically, the relative bias is the percentage of 

the differences between estimates and true values, proportional to true effect sizes,                

100 ∗ (𝛿̂𝑖 − 𝛿𝑖)/𝛿𝑖, averaged over the datasets. In this way, relative bias enables us to compare 

the results using the same scale of percentage. For both simple and relative biases, positive 

biases indicate that the analysis models overestimate the parameters of interest, while negative 

biases indicate that the parameters are being underestimated.  

In this section, I also compute MSEs of EB estimates. The MSE measures how much the 

estimates vary around the corresponding true values, expressed as (𝛿𝑖 − 𝛿𝑖)
2
 averaged across the 

entire set of datasets. A large MSE indicates that there is a substantial amount of uncertainty 

regarding the parameter estimates. Along with bias and the MSE, the coverage of true parameter 

values are reported for each condition. The coverage is the percentage of 95% Confidence 

Intervals of the shrinkage estimate, 𝛿𝑖, that includes the true value, 𝛿𝑖. An actual coverage value 

close to the nominal coverage of 95% indicates that a 95% CI is estimated well.  

 

4.3.2. Evaluation criteria for fully Bayesian models 

For the marginal posterior distributions from FB models, I modified the usual evaluation 

criteria for simulation under frequentist approaches detailed earlier. Specifically, a draw from the 

marginal posterior sample of δ𝑖 is denoted as δ 𝑖
FB and the marginal posterior mode is denoted as 

δ̃𝑖
𝐹𝐵

. For biases and MSEs, the simulation results based on posterior modes are reported since 

they yield the most accurate results compared to posterior means and medians. While other 
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statistics remain the same as before, the simple bias is computed as the average of δ̃𝑖
𝐹𝐵

− 𝛿𝑖, and 

the relative bias is obtained as the average of 100 ∗ (δ̃𝑖
𝐹𝐵

− 𝛿𝑖)/𝛿𝑖. The MSE is calculated as the 

squared distance between the posterior mode and the true value, (δ̃𝑖
𝐹𝐵

− 𝛿𝑖)
2

, averaged over the 

entire set of datasets. Under an FB approach, the coverage means the proportion of the 95% 

Credible Intervals of the marginal posterior distributions that include the corresponding true 

value, 𝛿𝑖.  

For FB models, the average and outlier Bayes risks are also presented for each simulation 

condition. The Bayes risk is the weighted average of MSE’s, i.e., the expected value of 

(δ 𝑖
FB − 𝛿𝑖)

2
where the expectation is taken over the marginal posterior distribution of 𝛿𝑖. In this 

example, the risks for each dataset are computed as follows. Within a given dataset, we obtain the 

marginal posterior distribution of the squared difference for each effect size, (δ 𝑖
FB − 𝛿𝑖)

2
, and 

focus on its posterior mean,  Ε(δ 𝑖
FB − 𝛿𝑖)

2
. The Bayes risk, or the posterior mean of squared 

differences using the sampled draws, is computed for the average of all 26 effect sizes, as well as 

for the outlier. Then the 200 posterior-mean values for the average risk and the 200 values for the 

outlier risk obtained for a given estimation approach are averaged, thus enabling us to compare the 

amount of risk in effect sizes across the different estimation approaches.  

 

4.4. Simulation results 

In this section, the simulation results are presented for the unconditional model as well as 

the conditional model with one predictor. For each model, the first set of simulation results 

include bias, MSE and coverage of shrinkage estimates. As mentioned earlier, the posterior 
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modes of shrinkage estimates are used to compute the evaluation criteria from FB model results. 

The second set of results include average and outlier Bayes risks. Overall, the simulation results 

show that the Bayes-t model with 3 df outperforms the other estimation approaches in terms of 

the shrinkage estimation of outliers, as well as the average of shrinkage estimates in the sample. 

 

4.4.1. Simulation results Ⅰ: simple bias, relative bias (%), Mean Squared Error (MSE) and 

coverage 

The first set of simulation results include bias, MSE, and coverage of shrinkage estimates 

from the unconditional model. In Figure 4-1, I show that the Bayes-t model with 3 df yields the 

shrinkage estimate of the outlier with the least amount of bias across all conditions of 𝐼2, and the 

smallest MSE for the conditions in which 𝐼2 is 0.5 and 0.75. In addition, the Bayes-t model with 

3 df is most likely to yield 95% CIs that capture the true value of the outlier 95% of the time, and 

this applies across all 𝐼2’s . The evaluation criteria averaged over all shrinkage estimates are 

similar across the estimation approaches.    

The details of the results for each evaluation criterion are described as follows.  
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Figure 4-2 Simulation results of unconditional model Ⅰ: simple bias, relative bias (%), Mean 

Squared Error (MSE), and coverage of shrinkage estimate of outlying effect size, δ26.  

For fully Bayesian models, simple bias, relative bias, and MSE were computed based on the posterior 

modes of these quantities. The results show that the Bayes-t model with 3 degrees of freedom 

outperforms the other approaches by the largest amount when I2 = 0.5.  
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Table 4-1 Simulation results of unconditional model Ⅰ: Simple bias, relative bias (%), Mean 

Squared Error (MSE), and coverage 

 
𝐼2 

EB FB-Normal FB-t: df=3 FB-t: df=7 

 Outlier Average Outlier Average Outlier Average Outlier Average 

Simple Bias 0.25 -0.80 -0.01 -0.79 -0.01 -0.76 -0.01 -0.78 -0.01 

 0.50 -0.44 0.00 -0.42 0.00 -0.22 0.00 -0.32 0.00 

 0.75 -0.16 0.00 -0.15 0.00 -0.04 0.00 -0.08 0.00 

Relative Bias 0.25 -54.66 -168.42 -54.00 -174.91 -52.32 -171.06 -53.67 -173.20 

 0.50 -30.39 -154.16 -29.05 -122.88 -15.33 -198.00 -21.61 -138.08 

 0.75 -11.26 80.23 -10.43 78.18 -2.99 82.24 -5.47 78.19 

Mean Squared Error 0.25 0.72 0.08 0.70 0.08 0.77 0.08 0.73 0.08 

 0.50 0.24 0.05 0.23 0.05 0.12 0.04 0.16 0.04 

 0.75 0.05 0.02 0.04 0.02 0.02 0.02 0.03 0.02 

Coverage 0.25 0.24 0.90 0.42 0.96 0.60 0.96 0.53 0.96 

 0.50 0.36 0.94 0.58 0.95 0.90 0.95 0.82 0.95 

 0.75 0.79 0.95 0.86 0.95 0.94 0.95 0.90 0.96 

 

Simple and Relative Biases. The Bayes-t model with 3 df yields the shrinkage estimate of the 

outlier with the smallest bias both for simple and relative biases whereas the EB estimate of the 

outlier contains the largest simple and relative biases for all 𝐼2’s. The results show that all 

models underestimate the true effect size of the outlier, due to the shrinkage toward the grand 

mean. The amount of bias decreases as 𝐼2 increases for all models. This can be attributed to the 

fact that the amount of shrinkage decreases as 𝐼2 increases, regardless of the estimation 

approaches. For the unconditional model, the difference in biases between the Bayes-normal 

model and the Bayes-t model with 3 df is the largest (i.e.,  0.2) when 𝐼2 = 0.5.  

The shrinkage estimate of the outlier under the Bayes-t model with 3 df contains the least 

amount of biases because the effect-size variance of the outlier is larger in the Bayes-t model 

than the estimate of 𝜏2 from the Bayes-normal model. With a large value of the effect-size 
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variance, there will be less shrinkage for the outlier. This will yield a shrinkage estimate close to 

the data (i.e., the observed effect size), resulting in less bias. 

On the other hand, the average simple bias of all shrinkage estimates is very similar 

across the different 𝐼2’s and the different approaches. This is because the estimates of the non-

outliers under the Bayes-t model will be very similar to those from the Bayes-normal model. For 

example, the values of qi that are generated by the Gibbs sampler for an effect size near the 

grand mean will likely be close to a value of 1, which is larger than the value of qi for the outlier. 

As such 𝜏2/𝑞𝑖 will be approximately equal to 𝜏2 in such situations, yielding the shrinkage 

estimates that are close to each other under the Bayes-normal model and the Bayes-t model. 

Consequently, the average bias of all shrinkage estimates are very similar across the models.  

For the relative bias, the average biases are similar across the models for 𝐼2 = 0.25, 

while the Bayes-t model with 3 df has the largest biases for the other conditions. Note that the 

relative biases are likely to be inflated if some true values for δi’s are generated to be close to 0. 

With the small true values in the denominator, relative biases can appear to be extremely large.  

Mean Squared Error. The shrinkage estimate of the outlier from the Bayes-t model with 3 df 

has the smallest MSE except for the condition 𝐼2 = 0.25, where MSEs across the models are 

similar with the smallest MSE in the Bayes-normal model. In particular, the largest difference 

between the Bayes-normal model and the Bayes-t model with 3 df is observed when 𝐼2 = 0.5, 

where the MSEs of these models are 0.23 and 0.12, respectively. The proportional reduction in 

MSE is similar when 𝐼2 is 0.5 and 0.75, indicating that employing the Bayes-t model with 3 df, 

instead of the Bayes-normal model, leads to approximately a 50% reduction in the MSE. The 
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smallest MSE indicates that the Bayes-t model with 3 df provides the most accurate estimates for 

the outlier.  

For the average MSE, the results are similar across the estimation approaches. As for the 

bias, the average MSE increases as 𝐼2 decreases for all methods, though the difference across  

𝐼2’s is small. The results show that the Bayes-t model with 3 df provides shrinkage estimates 

with MSE similar to the other methods on average, while yielding shrinkage estimates of the 

outlier that contain the least amount of MSE. 

Coverage. The chances that a 95% interval of the shrinkage estimate captures the true effect size 

of the outlier are the highest in the Bayes-t model with 3 df, whereas the EB estimates suffer 

from the lowest coverage across all 𝐼2’s. For the condition 𝐼2 = 0.75, the actual coverage of the 

Bayes-t model with 3 df is 94%, which is very close to the nominal value of 95%. This is 

because a larger value of parameter variance under the Bayes-t model with 3df, compared to the 

estimate of τ2 under the Bayes-normal model, results in a wider interval for the shrinkage 

estimate of the outlier.   

In terms of the average coverage across all shrinkage estimates, the results are similar 

across the various conditions, except that the EB approach yields the intervals with the lowest 

coverage when 𝐼2 = 0.25. The actual coverages of the CI’s from the FB models are close to one 

another, reaching a nominal value of 95% for all 𝐼2’s.  
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4.4.2. Simulation results Ⅱ: average and outlier Bayes risks 

As shown in Table 4-2, the outlier Bayes risks are in line with the MSE results in that the 

risks are similar across the models when I2 = 0.25, whereas in two other conditions the Bayes-t 

model with 3 df yields shrinkage estimates with the smallest risks. The largest differences in 

Bayes risks between the Bayes-normal and the Bayes-t model with 3 df appear when I2 is 0.5 as 

presented in Figure 4-3. The proportional reduction in the outlier Bayes risk is also the largest for 

the condition where I2 is 0.5. Specifically, employing the t-distribution with 3 df for random 

effects, instead of assuming normally distributed random effects, leads to a 30% reduction in the 

Bayes risk for the outlier.  

The average Bayes risks are similar across all I2's and different estimation approaches, 

without further increasing ensemble risks for Bayes-t models at the cost of low outlier risks. It is 

noteworthy that the Bayes-t model with 3 df also yields the shrinkage estimates with lower risks 

on average when compared to the Bayes-normal model, though the difference is minimal. 

Specifically, the average risk decreases under the Bayes-t model with 3 df by the largest amount, 

i.e., 9% for the condition I2 = 0.5, followed by 6% for  I2 = 0.75 and 3% for I2 = 0.25, 

compared to the Bayes-normal model. 
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Table 4-2 Simulation results of unconditional model Ⅱ: Average and Outlier Bayes Risks 

 Normal t: df=3 t: df=7 

I2 Average Outlier Average Outlier Average Outlier  

0.25 0.16 0.69 0.16 0.70 0.16 0.69  

0.50 0.08 0.27 0.08 0.19 0.08 0.22  

0.75 0.04 0.06 0.03 0.05 0.03 0.05  

 

 

 

 

 

Figure 4-3 Simulation results Ⅱ: average and outlier Bayes risks of the shrinkage estimate of 

outlying effect size, δ26, from fully Bayes approaches.  

The average Bayes risks are similar across the models, while the outlier Bayes risk is the smallest for the 

Bayes-t model with 3 degrees of freedom when I2 = 0.5 and I2 = 0.75.  
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4.4.3. Supplementary results from a conditional model 

In order to examine whether the properties of the shrinkage estimates change depending 

on the inclusion of predictors, a supplementary simulation study is conducted using the 

hypothetical datasets generated based on the conditional model. Note that the simulation datasets 

for the conditional model are generated using the results of an empirical data analysis where the 

REML estimate of the remaining variance  𝜏2 is 0.06. When compared to the unconditional 

model, the unexplained variance in the between-study model is reduced by 11% after the 

predictor (i.e., the duration of treatment in weeks) is added to the model.  

The data generation process of a conditional model involves sampling the predictor 

values, xi, from a normal distribution. The details of data generation are presented as follows.  

- Step 1: generate predictor values, xi 

In the first step of data generation for the conditional model, 25 predictor values are 

sampled from a normal distribution with a mean of 0 and standard deviation of 6.62. Note that 

these values are drawn from the simple average and the variance of the centered predictor 

variables which is the intervention length in weeks in the first set of empirical data-analysis 

results.  

xi ∼ 𝑁(𝑀𝑥, 𝑆𝐷𝑥
2). 

The predictor of the outlier, or the 26th effect size, is fixed at 5.38 which is drawn from 

the original dataset. Before centering, the intervention length of the outlying study is 15 weeks 

with predictor values for the other studies ranging from 1 to 24, and the average length of 

interventions 9.62. The reason for fixing the predictor value of the outlier, rather than sampling it 
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from a normal distribution as in other studies, is to avoid the situation where the extreme values 

are assigned to the outlier. If the outlier is located at one of the extremes of the predictor values, 

the estimated slope will not retain the relationship between the study outcomes and the treatment 

length in the data-analysis example (e.g., the REML estimate of slope: 𝛾10 = 0.02). For this 

reason, I use the same value of 5.38 for the intervention length of the outlier across all datasets 

within every condition.  

- Step 2: generate true effect sizes, δi 

For the conditional model, the datasets are generated in a similar way as the 

unconditional model, however, a normal distribution is specified using the conditional mean and 

the conditional variance that depends on the predictor value, as follows: 

δi ∼ 𝑁(𝛾00 + 𝛾10 ∗ 𝑥𝑖 , 𝜏2). 

Using the data-analysis results of the conditional model, 𝛾00 is set to 0.26, 𝛾10 is set to 

0.02, and 𝜏2 is set to 0.06. For the outlier, the true effect size δi is set to 1.46 as in the 

unconditional model.  

- Step 3: generate effect-size estimates, di’s, of the 26 true effect sizes  

In Step 3, study outcomes di’s are generated based on the normal distribution with mean 

𝛿𝑖, generated from Step 2, and variance of 𝑠𝑖
2 which corresponds to a given 𝐼2: 

di ∼ 𝑁(𝛿𝑖, 𝑠𝑖
2). 

Note that the outlier is generated following di ∼ 𝑁(1.46, 𝑠𝑖
2), as in the unconditional 

model.  
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Example datasets for the simulation of the conditional model are presented in Figure 4-4.  

 

Figure 4-4 Example datasets for the targeted simulation study (Conditional model) 

Red data points represent true effect sizes, δi, while blue data points are study outcomes, di, generated 

based on δi from Step 1. A red line in each plot is the REML estimate of the slope based on true effect sizes, 

δi’s, while a blue line indicates the REML estimate of the regression line based on the effect-size estimates, 

di’s. As I2 increases, the degree that the study outcomes deviate from their true effect sizes decreases. For 

example, the δi’s and the corresponding di’s overlap with each other when I2 is 0.75 and the error variance 

is the smallest. Note that the true effect size of the outlier is fixed at 1.46 and the predictor value of the 

outlier is fixed at the treatment length of 15 weeks (5.38 after centering) for all conditions.   
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As presented in Table 4-3, the simulation results of the conditional model demonstrate a 

similar pattern to the unconditional model results. In terms of the shrinkage estimate of the 

outlier, the Bayes-t model with 3 df yields the best results for most of the conditions in terms of 

the smallest bias and MSE, as well as the coverage closest to the nominal value of 95%. The 

average bias, MSE and coverage of all shrinkage estimates are also similar across the different 

estimation approaches, as was the case with the unconditional model results. The large values of 

average relative bias are due to a few true effect sizes which are generated close to 0, as 

described in the unconditional model results. The similar results for the unconditional and the 

conditional models suggests that the Bayes-t approach will yield good shrinkage estimates in  

meta-regression models given the same 𝐼2. 

 

Table 4-3 Simulation results of conditional model Ⅰ: Simple Bias, Relative Bias (%), Mean 

Squared Error, and Coverage 

 
𝐼2 

EB FB-Normal FB-t: df=3 FB-t: df=7 

 Outlier Average Outlier Average Outlier Average Outlier Average 

Simple Bias 0.25 -0.66 0.00 -0.65 0.00 -0.63 0.00 -0.64 0.00 

 0.50 -0.40 0.00 -0.38 0.00 -0.24 0.00 -0.30 0.00 

 0.75 -0.17 0.00 -0.16 0.00 -0.07 0.00 -0.11 0.00 

Relative Bias 0.25 -45.63 101.78 -44.45 110.82 -43.30 75.85 -44.01 95.04 

 0.50 -27.11 -91.35 -25.87 -94.68 -16.42 -97.85 -20.78 -94.57 

 0.75 -11.90 -36.48 -11.02 -33.07 -4.84 -50.47 -7.18 -45.72 

Mean Squared Error 0.25 0.52 0.08 0.50 0.08 0.54 0.08 0.51 0.08 

 0.50 0.20 0.04 0.19 0.04 0.14 0.04 0.16 0.04 

 0.75 0.05 0.02 0.04 0.02 0.02 0.02 0.03 0.02 

Coverage 0.25 0.31 0.89 0.56 0.95 0.71 0.95 0.64 0.96 

 0.50 0.48 0.94 0.68 0.95 0.83 0.95 0.76 0.95 

 0.75 0.70 0.95 0.80 0.95 0.94 0.95 0.91 0.96 
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In terms of the Bayes risks presented in Table 4-4, the Bayes-t model with 3 df 

outperforms the other approaches in terms of the average and outlier risks except the condition 

I2 = 0.5, where the Bayes-normal model has the smallest outlier risk. When the Bayes-t model 

with 3 df and the Bayes-normal model are compared, the proportional reduction is 17% when 

I2 = 0.5 and 33% I2 = 0.75. Overall, the simulation results are very similar across 

unconditional and conditional models. This is because the variance ratio strongly influences the 

amount of shrinkage, regardless of the inclusion of the predictor. In other words, as long as the 

variance ratio remains the same, the properties of the shrinkage estimate of the outlier will be 

also very similar.  

 

Table 4-4 Simulation results of conditional model Ⅱ: Average and Outlier Bayes Risks 

 Normal t: df=3 t: df=7 

I2 Average Outlier Average Outlier Average Outlier  

0.25 0.16 0.52 0.16 0.53 0.16 0.52  

0.50 0.08 0.23 0.07 0.19 0.08 0.20  

0.75 0.03 0.06 0.03 0.04 0.03 0.05  
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CHAPTER 5 

Discussion 

The previous chapters have illustrated the over-shrinkage of outliers which often occurs 

under Empirical Bayes (EB) estimation and demonstrated that a fully Bayesian (FB) meta-

analysis model assuming t-distributed random effects provide robust shrinkage estimates of 

outliers. In the last chapter, I will first summarize the primary findings from the empirical data-

analysis and simulation study and then discuss the implications of study results. Further, I will 

also discuss the limitations of this study, which might guide the directions of future research.  

 

5.1. Summary of the findings 

This study introduces a fully Bayesian (FB) approach for meta-analysis that provides 

robust shrinkage estimates of outlying effect sizes in small-sample settings. Shrinkage 

estimation, in particular Empirical Bayes (EB) estimation, has been widely used in meta-analysis 

to obtain improved estimates of true effect sizes (Raudenbush, 2009). However, even though 

shrinkage estimation decreases the overall bias of ensembles of effect-size estimates, there is no 

guarantee that each individual estimate is close to its true effect size (Efron & Morris, 1971, 

1972). In standard meta-analysis models based on shrinkage estimation, the effect-size estimates 

that are far from the rest of the studies may be shrunk to the overall mean by a substantial 

amount. The over-shrinkage of outlying study results is particularly problematic when 
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researchers are attempting to answer substantive questions concerning how large the largest true 

effect size might be among the studies in one’s sample. To alleviate the over-shrinkage problem 

of outliers, this study employs a heavy-tailed distribution for random effects within FB 

framework. The primary findings are summarized as follows.  

First, this study demonstrates that employing t-distributional assumptions for true effect 

sizes in FB models, rather than normality assumptions, yields improved shrinkage estimates for 

outliers. Specifically, the empirical data-analysis results using the meta-analysis dataset from 

Bangert-Drowns et al. (2004) show that the amount of shrinkage decreases substantially under 

Bayes-t models, compared to Bayes-normal models, and to the EB approach. The data-analysis 

results are in line with the early findings discussed in West (1984) where specifying a t-

distribution for random effects leads to the least amount of shrinkage of outliers.  

Second, the results from a targeted simulation study are also consistent with the data-

analysis results, supporting the advantage of Bayes-t models in avoiding over-shrinkage. The 

simulation study results further reveal that the Bayes-t model with 3 degrees of freedom is more 

advantageous when the variance ratio I2 is 0.5 and 0.75. These conditions correspond to the 

settings where the parameter variance is similar to, or larger than the amount of sampling 

variance. For the condition I2 = 0.25, the shrinkage estimates of outliers are similar across the 

estimation methods. Given these results, the Bayes-t model with small degrees of freedom will 

cover most of the situations where the over-shrinkage of outliers can be problematic.  

In addition, the supplementary simulation results show the good properties of shrinkage 

estimates of outliers under the Bayes-t model with 3 df, specifically the least amount of bias and 

MSE, also hold for meta-regression models with predictors. This is because the amount of 
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shrinkage changes depending on the variance ratio, and will not be influenced by the factors that 

are not relevant to parameter variance or sampling variance. It further suggests that the results 

under the different conditions will be similar to the unconditional model results as long as the 

variance ratio is the same. For example, suppose that a meta-analysis model based on another 

dataset with both a large positive outlier and a large negative outlier yields 𝜆𝑖’s that are around 

0.5 for the outliers. Though the number and location of the outliers are different from this study, 

the difference in the amount of shrinkage between the Bayes-t model with 3 df, and the Bayes-

normal model, will be the largest as presented in the analysis results when I2 = 0.5 in Chapter 3.   

Lastly, the simulation results also show that the outlier Bayes risks are the smallest under 

the Bayes-t model with 3 df, while the average Bayes risks are similar across the EB, Bayes-

normal model, and Bayes-t models with 3 df and 7 df. This can be attributed to the fact that the 

estimates of 𝜏2/𝑞𝑖 under the Bayes-t models will be fairly close  to the posterior mode of 𝜏2 

from the Bayes-normal model for the cases which are non-outliers. In the case of non-outliers the 

relatively similar estimates of 𝜏2/𝑞𝑖 and 𝜏2 will yield  shrinkage estimates that are close to one 

another, resulting in the average risks that are similar across the FB models. The simulation 

results on the Bayes risks suggest that the Bayes-t model with small degrees of freedom is 

capable of providing robust shrinkage estimates of outliers without increasing the average risk 

(c.f., Efron & Morris, 1972).  

 

5.2. Implications of the study 

This study shows that the FB approach based on t-distributed random effects for meta-

analysis yields shrinkage estimates of outliers that are more robust to an excessive amount of 

shrinkage toward the average effect size, compared to the conventional methods. The over-
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shrinkage problem connected to EB estimation and the possibility that employing heavy-tailed 

distributional assumptions might remedy the issue have been discussed in the literature (e.g., 

(Dempster, 1983; Seltzer et al., 1996; West, 1984). Motivated by these earlier works, this study 

demonstrates that the shrinkage estimates from the Bayes-t model have good properties, such as 

less bias, smaller MSE, and actual coverage closer to the nominal coverage of 95% compared to 

results for shrinkage estimates based on normality assumptions. Further, this study also reveals 

situations in which the Bayes-t approach is most needed, i.e., settings in which the parameter 

variance of the effect sizes is similar to or larger than the error variance, i.e. 𝐼2 = 0.5.    

The studies that report large positive treatment effects usually attract a lot of attention as 

they can provide insights regarding how successful a certain intervention might be (Rubin, 

1981). While the standard approaches such as EB and FB models based on normality 

assumptions often fail to provide reliable answers concerning extreme observations, the FB 

approach employing a heavy-tailed assumption will provide robust estimates for outliers. This 

will enable a careful estimation and examination of outliers, that will be beneficial with respect 

to future trials that seek to improve the effects of educational programs.  

Over-shrinkage might be acceptable if one has good evidence that a given outlier belongs 

to the same sub-population of effect sizes with the other cases in the sample, however, the true 

distribution of effect sizes is unknown in most cases. Further, the information to figure out 

whether true effect sizes of extreme study results follow the same distribution with other studies 

in the sample or whether outliers belong to different subpopulations is usually unavailable. When 

ambiguity around the true effect-size distribution exists, an FB approach assuming heavy-tailed 

random effects can provide robust shrinkage estimates as well as 95% Credible Intervals, which 

provide a sensitivity analysis with respect to estimates of true effect sizes from the conventional 
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models. Given the increasing interests in obtaining improved shrinkage estimates from multilevel 

models (Aert et al., 2021; Haaf & Rouder, 2023; Jordan, 2022; Longford, 2010; Wang & Lee, 

2019) , this study provides a promising approach to obtain reliable estimates for outliers.  

Although this study primarily focuses on meta-analysis, the Bayes-t approach expands to 

a wide range of applications such as multisite trials, replication studies, and cross-national 

comparisons. When the sample size is small, the Bayes-t model will yield robust fixed-effect 

estimates by accounting for the uncertainty of the variance estimate (e.g., τ2) as well as by 

reducing the influence of outliers on parameter estimates. In this sense, employing heavy-tailed 

distributional assumptions for random effects would be helpful in drawing sound conclusions 

from a limited number of cases (e.g., a limited number of countries in a cross-national study, or a 

small number of sites in a multisite trial). 

 

5.3. Limitations and future research directions 

This study has demonstrated the advantage of using FB meta-analysis models based on 

heavy-tailed distributional assumptions to guard against the over-shrinkage of outliers. However, 

there are several limitations to the findings, which could be addressed in future research.  

First, this study only considered the situation where the precisions of effect-size estimates 

are fairly similar to each other, both for the empirical data-analysis and the targeted simulation 

study. However, in meta-analysis or in other applications such as multisite studies, the sampling 

errors of outliers might vary substantially from the rest of the cases. If the error variance of an  

outlying effect-size estimate is extremely smaller or larger than the other studies, the I2 statistic 
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will not be equal to the λi’s (i.e., λi =
τ2

τ2+𝑠𝑖
2) for outliers. This is because the I2 statistic is based 

on the expected average of sampling variances when the precision of each study differs (Higgins 

& Thompson, 2002). For example, even if the I2 is around 0.5, the λi of an outlier under the 

Bayes-normal model can be much larger , e.g. λi = 0.9, than I2, when the error variance is 

smaller than the parameter variance as well as than those based on other studies. Thus, the 

shrinkage estimates from the Bayes-normal model or the Bayes-t model with small degrees of 

freedom will be similar with each other, because the λi’s will be close to 1 in both of the models. 

Even in such situations, however, employing t-distributional assumption for random effects 

reduces the impact of outliers on the estimates of fixed effects and variance components (Seltzer, 

1993). Given that the parameter estimates from the EB or the Bayes-normal models are 

susceptible to the influence of outliers with high precisions, the Bayes-t model with small 

degrees of freedom will provide more sensible results than the standard approaches.  

Consider another extreme case where the λi’s of outliers are smaller than the I2 (e.g., 

λi = 0.1 and I2 = 0.5). This occurs when the error variances of outliers are much larger 

compared to the parameter variance and those of the rest of the data. As shown in the simulation 

results for the condition I2 = 0.25, the corresponding shrinkage estimates will be similar across 

the Bayes-normal model and the Bayes-t model with 3 df when λi is small. In such situations, 

one might want to examine the outlying studies carefully to figure out the possible reasons for 

their low precisions, e.g., small sample-sizes or imbalance in sample sizes across treatment 

conditions, the presence of outlying participants within studies, etc. If there is evidence that the 

low precision of the outlier is connected with problems in study designs or treatment 

implementations, one might consider excluding the outlier from the analysis.   
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Second, the primary findings of this study are based on the prior specification of uniform, 

non-informative distributions on all the unknown parameters in the model, such as the average 

effect size μ and the parameter variance τ2. However, in practice, one often encounters datasets 

smaller than the current example which contains 26 study outcomes. With an even smaller 

number of cases, e.g., an international assessment dataset with less than 10 countries, the 

parameter estimates from FB hierarchical models are sensitive to the choice of prior distributions 

for the variance component τ2. In such situations, alternative prior distributions, other than 

uniform distributions, should be examined to see if the conclusions based on the different prior 

distributions agree well with one another.  

One of the promising approaches in small-sample settings is to place a weakly-

informative prior on τ2 (Seltzer et al., 1996; Thompson & Becker, 2020b). When meta-analytic 

datasets only have a small number of studies, the marginal posterior distribution of τ2 is likely to 

be right-skewed, expanding to a very large value. The large values for τ2’s can result in wide 

intervals of fixed-effect estimates. This can be alleviated by specifying a weakly-informative 

prior for τ2, with its mode set to the REML estimate of τ2. Though not addressed in the current 

study, it would be worthwhile to examine if an alternative prior distribution for τ2 like the data-

driven prior can offer improved precisions for the shrinkage estimates of outliers.  

Lastly, the amount of shrinkage is determined only by the variance ratio under the 

approaches considered in this study. However, there is another line of alternative methods that 

are more flexible in terms of the degree of shrinkage. For example, the limited translation rules 

proposed by Efron and Morris (1971, 1972) enable one to set a limit on how much an effect size, 

for example, can be shrunk toward a grand mean, depending on the research contexts and the 
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assumptions related to the data. In addition, one can assume a mixture distribution for the 

random effects to model the outlying studies when the number of studies is small (Beath, 2014); 

or replace the assumption of normally distributed random effects with long-tailed distributions 

by adding extra parameters to accommodate extreme observations (Baker & Jackson, 2008, 

2016). On the other hand, semi-parametric and non-parametric methods are also available for 

meta-analytic datasets, e.g., based on the assumption that the random effects follow multiple 

underlying distributions, which enables more flexible modeling of extreme study results  

(Kleinman & Ibrahim, 1998). Future research should address whether these robust approaches 

for random effects models are capable of providing sensible shrinkage estimates of outliers. 
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