
UC Berkeley
UC Berkeley Previously Published Works

Title
High-Resolution Spatio-Temporal Estimation of Net Ecosystem Exchange in Ice-Wedge 
Polygon Tundra Using In Situ Sensors and Remote Sensing Data

Permalink
https://escholarship.org/uc/item/3jz0q8wn

Journal
Land, 10(7)

ISSN
2073-445X

Authors
Wainwright, Haruko M
Oktem, Rusen
Dafflon, Baptiste
et al.

Publication Date
2021

DOI
10.3390/land10070722
 
Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/3jz0q8wn
https://escholarship.org/uc/item/3jz0q8wn#author
https://escholarship.org
http://www.cdlib.org/


land

Article

High-Resolution Spatio-Temporal Estimation of Net Ecosystem
Exchange in Ice-Wedge Polygon Tundra Using In Situ Sensors
and Remote Sensing Data

Haruko M. Wainwright 1,* , Rusen Oktem 1,2, Baptiste Dafflon 1, Sigrid Dengel 1, John B. Curtis 3,
Margaret S. Torn 1, Jessica Cherry 4 and Susan S. Hubbard 1

����������
�������

Citation: Wainwright, H.M.; Oktem,

R.; Dafflon, B.; Dengel, S.; Curtis, J.B.;

Torn, M.S.; Cherry, J.; Hubbard, S.S.

High-Resolution Spatio-Temporal

Estimation of Net Ecosystem

Exchange in Ice-Wedge Polygon

Tundra Using In Situ Sensors and

Remote Sensing Data. Land 2021, 10,

722. https://doi.org/10.3390/

land10070722

Academic Editor: Nima Madani

Received: 1 June 2021

Accepted: 6 July 2021

Published: 9 July 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Earth and Environmental Sciences Area, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA;
roktem@lbl.gov (R.O.); bdafflon@lbl.gov (B.D.); sdengel@lbl.gov (S.D.); mstorn@lbl.gov (M.S.T.);
sshubbard@lbl.gov (S.S.H.)

2 Department of Earth and Planetary Science, University of California, Berkeley, CA 94720, USA
3 Department of Geography, University of Colorado, Boulder, CO 80309, USA; john.curtis@colorado.edu
4 Alaska-Pacific River Forecast Center, National Oceanic and Atmospheric Administration,

Anchorage, AK 99502, USA; jessica.cherry@noaa.gov
* Correspondence: hmwainwright@lbl.gov

Abstract: Land-atmosphere carbon exchange is known to be extremely heterogeneous in arctic ice-
wedge polygonal tundra regions. In this study, a Kalman filter-based method was developed to
estimate the spatio-temporal dynamics of daytime average net ecosystem exchange (NEEday) at
0.5-m resolution over a 550 m by 700 m study site. We integrated multi-scale, multi-type datasets,
including normalized difference vegetation indices (NDVIs) obtained from a novel automated mobile
sensor system (or tram system) and a greenness index map obtained from airborne imagery. We
took advantage of the significant correlations between NDVI and NEEday identified based on flux
chamber measurements. The weighted average of the estimated NEEday within the flux-tower
footprint agreed with the flux tower data in term of its seasonal dynamics. We then evaluated the
spatial variability of the growing season average NEEday, as a function of polygon geomorphic
classes; i.e., the combination of polygon types—which are known to present different degradation
stages associated with permafrost thaw—and microtopographic features (i.e., troughs, centers and
rims). Our study suggests the importance of considering microtopographic features and their spatial
coverage in computing spatially aggregated carbon exchange.

Keywords: net ecosystem exchange; ice-wedge polygons; Kalman filter; tram system; normalized
difference vegetation index; greenness index

1. Introduction

Climate change has an amplified effect in the Arctic, which has been reported in both
observational and modeling studies, e.g., [1,2]. For example, air temperature in the Arctic
is expected to increase twice as much as the global average [3]. At the current pace, a
significant portion of permafrost—which has sequestered organic carbon over millennia—
could be lost in this century [4]. Concern has been mounting over the possibility that
increased microbial activity in previously frozen soils could metabolize soil carbon and
release greenhouse gases, leading to a positive feedback to climate [5,6]. At the same
time, increasing temperature and associated changes in plant species could increase the
photosynthetic activity of plants, enhancing the terrestrial CO2 sink [7].

Ice-wedge polygons, which cover much of the high-Arctic regions in the USA, Russia
and others, e.g., [8,9], have unique geomorphic characteristics created by frost cracks in the
ground and the subsequent growth of wedge-shaped ice within these frost cracks [10,11].
The growth of ice wedges moves soil and creates microtopography, e.g., [12]. Typically, ice-
wedge polygons have long narrow depressions (i.e., troughs) along frost cracks and above
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ice wedges. Low-centered polygons (LCPs) have distinct rims or ridges along the troughs,
which create low-elevation areas in the centers (Figure 1a). High-centered polygons (HCPs)
have elevated centers surrounded by the troughs and are considered to represent the
degraded stage of polygon evolution (Figure 1c), after the ridge of the low-center polygons
collapses due to melting of the ice wedges. There are also flat-centered polygons (FCPs)
which are at an intermediate stage of degradation between LCPs and HCPs. Recently,
Liljedahl et al. [13] reported a wide-spread degradation of ice-wedge polygons across
the pan-Arctic region associated with permafrost thaw, with the shifts occurring from
LCPs to HCPs. This shift could result in increased water drainage and reduced water
inundation [13], which could have a significant impact on vegetation-community dynamics,
and on carbon exchange [14].
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Extensive studies have sought to characterize the spatio-temporal heterogeneity of
carbon fluxes in ice-wedge polygon tundra regions, using (1) chamber-based measurements,
e.g., [9,12,15–20], (2) flux towers, e.g., [21] and (3) airborne-based measurements, e.g., [22].
These studies have identified the environmental factors that dictate the spatio-temporal
variability of carbon exchange, including soil moisture, vegetation and soil types. In
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particular, the chamber-based studies have found that these factors are variable on the
scale of several meters associated with microtopography, e.g., [9,12]. Wainwright et al. [12],
for example, observed that soil CO2 effluxes are significantly higher in the centers of HCPs
than in the ones of LCPs, which suggests that future polygon degradation could lead to an
increase in soil CO2 efflux.

Recent advances in remote sensing—particularly using airborne platforms—have
made it possible to capture the spatial variability of the land surface at submeter resolu-
tion. This is particularly important for characterizing heterogeneous ice-wedge polygonal
ground where ecosystem properties vary laterally over the scales of meters [9,12,23,24].
In addition, unmanned aerial vehicles (UAVs) are increasingly being used to characterize
sub-meter topography and vegetation, e.g., [25,26]. Since several studies have established
relationships between certain vegetation indices—such as normalized difference vegeta-
tion indices (NDVIs)—and carbon exchanges [21,27], high-resolution multispectral optical
remote-sensing techniques have been used to facilitate the mapping of carbon exchanges
over the ice-wedge polygon tundra. However, airborne campaigns require human control
and can be costly, which limits data acquisition to typically one or at most a few times
during the growing season.

In parallel, various ground-based sensing technologies have recently been deployed
to measure the temporal variability of terrestrial system behavior continuously and au-
tonomously over time. These sensing systems couple various sensors and platforms such
as in situ soil and optical sensors, flux towers, geophysics and weather stations, e.g., [24,28].
Such time-lapse sensing and remote data acquisition have been enabled by recent ad-
vances in telecommunication technologies and low-cost microcontrollers/computers for
automated data acquisition remotely. In particular, flux towers have made a significant
contribution to our understanding of temporal (from diurnal to seasonal and annual)
changes in land-atmosphere carbon exchanges [29,30]. In addition, robotic technologies
have further enabled the development of automated mobile tram systems that can au-
tonomously move and collect terrestrial datasets at high spatial and temporal resolutions.
Healey et al. [31], for example, developed such a system with multiple sensors (e.g., nor-
malized difference vegetation index, albedo, radiation), which could move autonomously
along a 50-m transect using an above-ground wireline. Such ground-based monitoring
systems have a significant advantage in the Arctic region where frequent cloud coverage
limits the use of optical satellite images.

In spite of our increasing ability to acquire such diverse datasets using different plat-
forms, significant challenges remain when attempting to capture spatio-temporal ecosystem
dynamics continuously over time and space, and to compute the overall or spatially aggre-
gated carbon exchanges. One particular challenge is the integration of different datasets
over different spatial scales (i.e., footprints, resolutions, spatial coverages) and sampling
frequencies, as well as the integration of direct and indirect information. Chamber mea-
surements are the most direct measurements of carbon fluxes with a footprint of less than
one square meter, which can resolve the microtopographic effects. Their spatio-temporal
coverage is, however, often limited; typically to several to several tens of locations in the
domain and several times in the growing season. The flux towers measure carbon fluxes
in a continuous time manner, but their measurements are a spatial aggregate over the
tower footprint without resolving microtopography. Although remotely sensed NDVI
and other indices can provide information over space and time, they are only proxies
for carbon exchanges, and have significant uncertainties. Based on the spatio-temporal
coverage of these measurements, it is desirable but challenging to integrate temporally ex-
tensive but spatially limited datasets (such as from ground-based sensors) with temporally
sparse but spatially extensive datasets (such as from airborne remote sensing platforms).
Although there have been several multiscale data-integration approaches available for
spatial integration [32–34], the integration both in time and space is still at an early stage
of development [35,36]. There have recently been several attempts to estimate the spatio-
temporal distribution of carbon exchange at the flux-tower or site scale based on remote
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sensing data and chamber measurements [37] and mechanistic models [38–41]. However,
the new robotics-based ground-based sensor system sensors mentioned above will open
opportunities for improving the spatio-temporal estimation.

This study aims to develop a new approach for integrating multiscale multi-type
datasets (i.e., airborne images, point measurements and mobile sensors) to quantify the
spatiotemporal variability of land-atmosphere carbon exchanges associated with ice-wedge
polygon geomorphology. We develop and apply a Kalman filter-based approach to inte-
grate multiscale spatio-temporal datasets. Although the Kalman filter has been extensively
applied in various scientific disciplines, including remote sensing and in situ sensor data
applications, e.g., [42,43], it has not been used in the context of multiscale and multi-type
data integration. The Kalman filter provides a flexible framework that can accommodate
multiple datasets with high computational efficiency, as well as integrate the site-specific
knowledge and data correlations. In particular, we make use of the recent observations
indicating that Arctic tundra properties are highly correlated with one another, due to
tightly coupled hydrological, geochemical and ecological processes, e.g., [12,23,44]. Our
datasets include airborne LiDAR and multispectral images (which provide submeter infor-
mation about the variability of topography and vegetation across the site) and a normalized
difference vegetation index (NDVI) obtained from a mobile tram system, capable of pro-
viding high-temporal information along a 68 m transect during the growing season. Using
the Kalman filter, we first estimate NDVI across an ice-wedge-dominated Arctic tundra
site over the growing season, and then estimate the daytime net ecosystem exchange
(NEEday) through the site-specific relationship between NDVI and chamber-based mea-
surements (collected between 11:00 am–20:00 pm). The estimated NEEday for the area is
aggregated over the flux tower footprint, and then compared with the flux-tower NEEday
data (averaged between 11:00 am–20:00 pm).

Using the estimated spatio-temporal maps of NEEday, we quantify the difference in
NEEday depending on the different polygon types that have been considered as proxies
for the different stages of ice-wedge degradation [13,45] as well as microtopographic
features (i.e., polygon troughs, rims and centers). We compute the spatially averaged
NEEday in each polygon type and feature to investigate the spatial aggregation effects.
We demonstrate our approach at the research station developed by the U.S. Department
of Energy’s Next Generation Ecosystem Experiment (NGEE)-Arctic project located near
Utqiaġvik, Alaska, USA. In the last fifty years, the land-cover changes are known to be
minimal in this region compared to other Arctic sites [46], although Liljedahl et al. [13]
reported some ice-wedge degradation in this region based on ground observations. This
site includes different polygon types [12], which provides us with a unique opportunity
to test our approach and to evaluate the impact of polygon geomorphology on spatially
aggregated carbon exchanges.

2. Materials and Methods
2.1. NGEE-Arctic Site

The NGEE-Arctic site is located within the Barrow Environmental Observatory near
Utqiaġvik (formerly called Barrow), AK, USA. Thaw lakes, drained thaw-lake basins
(DTLBs), and ice-wedge polygonal tundra are the main landscape in this region. The
NGEE site is located in the interstitial region of DTLBs—as it has been classified by
Hinkel et al. [47]—which has been unaffected by the thaw-lake cycle for more than
5000 years [22,47]. Mean annual air temperature in this region is −11.3 ◦C, and mean
annual precipitation is 106 mm [23]. The growing season typically starts from snowmelt in
late May or early June, and ends with freezing and snowfall in early-to-mid September.

The site contains different types of ice-wedge polygons (Figure 2). The polygon
types were categorized by Wainwright et al. [12] into low-centered polygons (LCPs), flat-
centered polygons (FCPs) and high-centered polygons (HCPs). Each polygon type includes
distinct microtopographic features—troughs, rims and centers (Figure 1). The vegetation
characteristics depend on polygon types and features [9,48]. In well-developed ice-wedge
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polygons, vascular plants (such as Carex aquatilis) typically fill the wet troughs and centers
of LCPs. In contrast, mosses and lichens dominate relatively dry areas, such as the rims of
LCPs and the centers of HCPs and FCPs.
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2.2. Datasets
2.2.1. Remote Sensing Data

We used the same airborne LiDAR data as Wainwright et al. [12], which were collected
using a manned aircraft on 4 October 2005. The LiDAR provided a digital elevation map
(DEM) over the entire site at 0.5 m by 0.5 m resolution (Figure 2). We measured the ground
surface elevation in September 2011 at 1286 points using a Real-Time Kinematic Global
Positioning System (RTK GPS), and found that the root-mean-square error (RMSE) of the
Lidar DEM was 6.08 cm compared to the RTK GPS data.

High-resolution Red Green Blue (RGB) images were acquired on 7 August 2013 using
a manned aircraft (Figure 2). The image (at 32 cm by 32 cm resolution) was converted to a
map of greenness index (gI) using:

gI = G/(R + G + B), (1)

where R, G and B refer to the red, green, and blue chromatic channels, respectively. The
gI has been used in Wainwright et al. [12] and Dafflon et al. [26] as an effective index to
characterize the vegetation variability based on the RGB image. Before the conversion, we
used low-pass filtering with a cubic kernel to remove the centimeter-scale details that are
beyond the scope of our work to resolve.

2.2.2. Tram and Flux Datasets

The tram system consisted of a motorized cart that carried several sensors including
energy/radiation sensors (Figure 3). The cart was autonomously pulled along a 68 m
long traverse, stopping at 0.5 m intervals to collect data at 137 stations. The footprint
of each measurement is considered to be on the scale of approximately 0.5 m. Its route
spanned different polygon types and features, including HCPs and LCPs. Measurement
height above the ground surface varied depending on surface properties between 1 m
(snow cover) and 2 m depending on microtopography (further information can be found
in [49]). We used the NDVI data measured by an upward- and downward-looking spectral
Red/NIR sensor. The NDVI data were collected at irregular time intervals (up to 8 times
a day, depending on the time of year/season) from 5 June 2014, and to 21 September
2014. We used the mid-day NDVI data collected daily around noon. Although occasional
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problems arose with instruments or communications, we were able to successfully collect
data over 65 days.
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Figure 3. (a) Tram system installed at the NGEE-Arctic site, and (b) the aerial image of the tram track location with the
point-measurement locations. In (a), the tram moves on two rails, carrying a sensor package on its arm. The flux chambers
can be seen on the ground.

In addition to the measurements obtained by the tram sensors, we manually collected
point measurements, including soil moisture (top 20 cm) and chamber CO2 flux data, along
the tram transect on eight different occasions during 2014. The soil moisture (dielectric
permittivity) and fluxes were recorded at 21 of the 137 tram stations. Soil moisture was
estimated using dielectric permittivity measurements from a time domain reflectometer.
Small-scale net CO2 fluxes between tundra surface and atmosphere were measured with a
transparent closed-dynamic chamber connected to a Los Gatos Research, Inc. (San Jose, CA,
USA) portable Greenhouse Gas Analyzer in the same manner as in Wainwright et al. [12]
and Vaughn et al. [17]. For each measurement, the chamber was placed on a PVC base
(30 cm diameter, installed ~15 cm deep) approximately 24 h prior to measurement. Fluxes
were calculated from the slope of the linear section of greenhouse gas concentrations versus
time. The chamber flux measurements were done during the day mostly between 11:00 and
20:00 (73% samples are between 11:00 and 15:00).

Tower-based eddy covariance (EC) CO2 fluxes (AmeriFlux ID US-NGB [18]) were
measured on a 3.75 m tall tripod in the vicinity of the tram setup, employing a Gill R3-
50 sonic anemometer (Gill, Lymington, UK) together with a LI-COR LI-7500A CO2/H2O
gas analyzer (LI-COR, Lincoln, NE, USA). We followed the standard calibration and data
QA/QC procedures as widely applied across the Ameriflux network (ameriflux.lbl.gov,
accessed on 7 July 2021). The tower-based NEE was averaged NEE between 11:00 and
20:00 each day. We assume that NEE in our study is representing the daytime average NEE
(NEEday).

To compute the contribution of each location to the flux tower, we used a footprint
model developed by Kormann and Meixner [50] in determining the spatial extent of the EC
system’s field of view (i.e., footprint). The footprint depends on the measurement height,
surface roughness, atmospheric stability, wind direction and friction velocity. Our foot-
print model is a crosswind-integrated model, which computes the cumulative normalized
contribution and how much of the measured flux comes from a particular distance (along
with a particular wind direction), and also estimates the relative contribution of NEE from
each pixel.

ameriflux.lbl.gov
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2.3. Integration Strategy

Our goal is to estimate NDVI and NEE over space and time, using (1) the temporally
and spatially sparse chamber flux data, (2) the temporally extensive (but spatially limited)
tram NDVI data and (3) the spatially extensive (but temporally limited) airborne greenness
index (gI) data. Our estimation framework consists of a graphical model connecting mul-
tiple datasets at different spatial and temporal scales (Figure 4). Each node represents a
variable (i.e., dataset or a target variable), while each connection represents a correlation
between two variables [51]. We represent this connection based on the site-specific and
general knowledge that a variety of properties are correlated through tightly coupled
above/belowground processes described above, including subsurface properties, vege-
tation, geomorphology and carbon fluxes [12,26]. This estimation framework relies on a
two-step approach: (1) the spatio-temporal dynamics of NDVI are first estimated at daily
time steps based on the temporally extensive tram NDVI data and spatially extensive gI
from the airborne imagery, using the Kalman filter method (described below), and (2) the
NEE is then estimated from NDVI based on the correlations that are found between the
tram NDVI and chamber measurements.
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Previous studies have reported that NDVI is correlated with NEE in terms of seasonal
changes without accounting for diurnal variability [21]. NEE has been estimated from
NDVI and other satellite-derived metrics in the Arctic ecosystems [52,53]. In this study,
we develop a site-specific function to calculate NEEday from NDVI based on the flux
chamber measurements. In addition, we assume that NDVI is correlated with gI because (1)
they both represent plant vigor or photosynthetic activities [54], and (2) Dafflon et al. [24]
documented the correlations between NDVI and gI at our site. The challenge here is that
we have only an estimate of gI at one point in time. With respect to seasonal temporal
dynamics, we take advantage of the observations by Dafflon et al. [24] showing that
spatial correlations were persistent in the ice-wedge tundra over time such that the lower
elevations were consistently wetter and greener (represented by higher gI) over the growing
season relative to the higher elevation regions. Additionally, it is known that polygon
structures did not change significantly between 2013 and 2014. As such, we use the one-
time gI map to represent the spatial variability. Since the correlations between the one-time
gI and daily NDVI changes over time, we compute the temporally variable correlation
parameters between gI and NDVI at the tram locations over the growing season.

The Kalman filter algorithm represents a spatio-temporal process by a linear state-
space model [55]. We assume a state vector xt = {xi,t| i = 1, . . . , n} representing NDVI at all
pixels (the number of pixels is n) at Day t. We denote a data vector by zt = {zj,t| j = 1, . . . ,
m}, which is a collection of data at Day t, including (1) the NDVI measurements at tram
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locations (1 ≤ j ≤ mT; the number of the tram measurements is mT), and (2) the gI data at
pixels (mT + 1 ≤ j ≤ mT + mVI = m; the number of gI data pixels is mVI). At each time step,
the data vector is described as a function of the state vector by the state-observation equation:

zt = H xt + Ku + w(t) (2)

where H is a m-by-n data transfer matrix representing the connection between data and
state vectors, K is the matrix defining the intercept term, and u is a unit vector (a vector
containing all elements equal to one with the length of m). Physically, the observation
equation (Equation (2)) describes all the data as a function of target variables (NDVI in our
case), so that—within the estimation framework—this equation transfers the information
from the data to the target variables. H and K include the correlation parameters describing
the data value as a function of NDVI at each pixel. At the tram pixels, the data are the
direct measurements of NDVI:

zj,t = xi,t + wT, (3)

where wT follows an independent identically distributed (i.i.d.) zero-mean normal distribu-
tion with a fixed variance, representing a measurement error. For the non-tram locations,
we assume that the j-th gI data is linearly correlated with NDVI at the i-th pixel such that:

zj,t = aV(t) xi,t + bV(t) + wV(t), (4)

where aV(t) and bV(t) are the time-varying slope and intercept parameters in the linear
correlations, and wV(t) represents the uncertainty in the correlations. We assume that wV(t)
follows a zero-mean normal distribution with the variance (σV) of the residual in the linear
correlations. In Equation (2), the transfer matrix H is represented by:

Hj,i = 1, if j-th tram station corresponds to i-th pixel (1 ≤ j ≤ mT)
= aV(t), if j-th gI data corresponds to i-th pixel (mT + 1 ≤ j ≤ m).

(5)

The matrix K is an m-by-m matrix where

Kj,j = 0, if j-th tram station corresponds to i-th pixel (1 ≤ j ≤ mT)
= bV(t), if j-th gI data corresponds to i-th pixel (mT + 1 ≤ j ≤ m).

(6)

The parameters aV(t), bV(t), and σV are co-estimated at each time step during the
Kalman filter. At each time step, the linear correlation is evaluated between the NDVI and
gI, at the tram locations, and then the correlation parameters and the residual variance are
calculated.

The temporal evolution of NDVI—the change in NDVI at all the pixels from date t to
t + 1—is described as a transition of the state from t to t + 1 in a state-transition equation as:

xt+1 = A xt + B u + v(t) (7)

The matrices A and B determine the magnitude of changes, while the error vector v(t)
represents the deviation from the linear model such as natural fluctuation. Although the
time evolution of NDVI can be described by a mechanistic model, we use a data-driven,
first-order autoregressive (AR1) model in this study, adapted from the spatio-temporal
integration approach developed by Chen et al. (2013). In our model, the general form of
Equation (7) is changed to:

xi,t+1 = xi,t + vi (8)

This means that the NDVI at the i-th pixel changes from xi,t to xi,t+1 with the magnitude
vi (in Equation (7), the matrix A is an identity matrix, and the matrix B is zero). This
implementation is the same as Rastetter et al. [56] who implemented the temporal evolution
of leaf area index (LAI) using the Kalman filter. Rastetter et al. [56] assumed that the change
of LAI in each time step was small and hence the systematic change component could be
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approximated to be zero, and that the observation equation (equivalent to Equation (2)
above) could transfer the information related to the temporal evolution in LAI from the
data within the Kalman filter. Similarly, we assume that the daily change in NDVI is
relatively small so that vi follows an i.i.d. zero-mean normal distribution with a fixed
variance. The variance of vi is determined from taking the variance of the NDVI difference
(xi,t+1—xi,t) at all the tram locations. Although the systematic increase and decrease are
not included in this formulation, such temporal dynamics are captured based on the tram
information represented in Equation (3) with the Kalman filter.

Once the state and observation equations are defined, the standard Kalman filtering
algorithm can be used to estimate the spatio-temporal dynamics of xt and its estimation
variance (the algorithm is described in Appendix A). The Kalman filter consists of pre-
diction and update at each time step. In the prediction step, the state transition equation
(Equation (7)) is used to predict the state vector (i.e., NDVI at all the pixels) at the next time
step xt+1 from the previous time step xt. In the update step (or correction step), the estimate
of the state vector is improved or corrected by including the tram NDVI and airborne gI
data through the observation equation (Equation (2)). In this update step, the information
transfers from the data to the target variables (e.g., the estimates of NDVI). The covariance
of the state vector is estimated at each step; each diagonal element of the covariance matrix
is the estimation variance σxi,t, representing the uncertainty in the estimates.

After NDVI values are estimated over space and time, NEEday at each pixel is esti-
mated based on the NDVI-NEEday relationship. The NEEday at pixel i and time step t
(yi,t) is a function of NDVI such that:

yi,t = f (xi,t) + ε t, (9)

We assume an i.i.d. zero-mean normal distribution to represent the error and uncer-
tainty ε t in this relationship. To account for the uncertainty in this relationship, we used
the variance propagation formula, in which the variance of yi,t is |f’(xi,t)|2σxi,t + σy, where
f’ is the first derivative of the function f, and σxi,t is the estimation variance of NDVI at
pixel i and time step t derived from the Kalman filter, and σy is the variance of the residual
in the NEEday-NDVI relationship. Once the NEEday map is created, we computed the
weighted average of NEEday (Equation (9)) within the EC flux tower footprint to compare
with the NEEday from the EC flux tower data. The weights were calculated based on the
contribution of each pixel to the tower data in the footprint model.

Our formulation provides a general framework for incorporating multi-type datasets,
including time-varying data and stationary data together in the data vector zt. The Kalman
filtering approach has been used extensively for remote sensing and environmental sci-
ence applications as well as for integrating ecosystem or land surface models with eddy-
covariance flux tower data [39,56]. Our unique contribution is to seamlessly integrate
spatio-temporal disparate datasets sampled over a range of spatial and temporal scales,
which addresses the particular challenge of integrating spatially extensive but temporally
sparse data with high frequency but spatially sparse data.

3. Results

The tram data reveals the spatio-temporal variability of NDVI along the 68-m transect
(Figure 5a), a variability associated with both the polygon features and types which are
associated with distinct plant species as described in Section 2.1. After the snowmelt, NDVI
increases more significantly at the polygon troughs and centers of LCPs than the polygon
rims and the centers of FCPs. The peak NDVI around the day-of-year (DOY) 221 is higher at
the troughs and the centers of LCPs. In parallel, the co-located soil moisture and chamber-
measured NEEday show their dependency on microtopographic features (Figure 5c,d). Soil
moisture does not change significantly over time during the growing season (Figure 5b).
However, the spatial variability of soil moisture (top 20 cm) is significant, with the troughs
and the LCP centers fully saturated and the polygon rims dry. In Figure 5d, NEE exhibits
small spatial variability in the beginning and end of the growing season (DOY 182 and
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256), but the spatial variability becomes larger in the peak season (approximately Day 221)
with a significantly higher NEE (i.e., carbon sink) at the troughs and the LCP centers. The
highest NEE values (Figure 5d) during the growing season correspond to the highest NDVI
timing (i.e., DOY 221 in Figure 5b).
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Figure 5. Spatiotemporal variability of observed properties along the tram transect: (a) LiDAR-based
elevation with the polygon type-feature definition, (b) NDVI on the different day of year (DOY),
(c) soil moisture (as dielectric permittivity Ka) and (d) NEE. In (b), the NDVI data are shown on
selected DOYs. All the measurement dates are shown for soil moisture in (c) and for NEE in (d).

The tram-measured NDVI and chamber-measured NEEday data are significantly
correlated with each other over time (Figure 6a). The NDVI–NEEday correlations at
different sampling times are temporally consistent along the same trend. Since some
nonlinearity is observed in their relationship, we used the Spearman rank correlation that
yielded a correlation coefficient of −0.73 (p-value < 0.01). We fitted a quadratic function
to represent this trend curve (R2 = 0.57 and p-value of <1 × 10−13). On the other hand,
the correlations between the airborne-based gI (one-time acquisition) and the tram-based
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NDVI (multiple acquisitions) change over time (Figure 6b). The Spearman correlation
coefficients are −0.10 (p-value 0.26), 0.63 (p-value < 0.01), 0.65 (p-value < 0.01) and −0.01
(p-value 0.92) on Days 182, 206, 221 and 256, respectively. While the correlations are not
significant in the shoulder seasons, they are higher in the middle of the growing season
when the NDVI and NEE are most spatially heterogeneous.
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Figure 6. Correlations between (a) NDVI and NEEday based the chamber flux measurements on
DOY 182, 206, 221 and 256, and (b) NDVI and gI (measured on 7 August 2013). In (b), NDVI was
measured on different dates, while gI values are from the one-time data acquisition.

Using the Kalman filtering approach and the data-derived correlations, we estimated
NDVI and NEEday over the growing season between the complete snowmelt (DOY 185)
and the first snow accumulation (DOY 250). Although both NDVI and NEE have a diurnal
cycle, we estimated only the daytime values corresponding to the chamber measurements.
There were missing days in the tram data, owing to instrument, power or communication
failures. We interpolated the tram data for each date over the estimation period.

The temporal evolution of NDVI and NEEday over the site (Figure 7) shows a spa-
tial variability consistent with the tram data (Figure 6). In the early growing season
(Figure 7a,d), both NDVI and NEEday are low across the site, and their spatial variability
is small. Both NDVI and NEEday increase significantly in July (between DOY 185 and 210),
as does their spatial variability. The troughs and LCP centers have higher peak NDVI and
NEEday than the HCP centers and rims in the middle of the growing season (DOY 210;
Figure 7b,e). Later in the growing season (Figure 7c,f), both NDVI and NEEday decrease
significantly at the HCP centers and rims, while they continue to be high at the LCP centers
and troughs.

We confirmed the performance of the estimation based on the tram NDVI data at
the ten locations (selected randomly) excluded in the estimation (i.e., validation data).
Validation results showed the root-mean square error (RMSE) of NDVI to be 0.050. In
addition, we compared the distributed NEEday estimates (based on the Kalman filter and
our chamber measurements) with the flux tower data by computing the weighted average
of NEEday within the tower footprint (Figure 8). The comparison shows that the estimated
NEEday closely follows the flux tower data, capturing the seasonal changes and general
trend. The correlation statistics between the EC flux tower data and estimated NEEday
are R of 0.53 and p-value of <1 × 10−4. Since the EC data has large scatter, we smoothed
data with the moving average of the 15-day window to represent the seasonal variability.
Different from earlier studies (e.g., Rasteter et al., 2010), the tower data were not included
in the estimation, and we did not calibrate any parameters according to the flux tower
data. We would note that the flux-tower data often have large deviation and scattering
(Fox et al., 2008).
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We computed the temporal average of NDVI and NEE over the growing season, and
then took the spatial average within the different polygon geomorphic classes (i.e., the
combination of the polygon types and features), shown in Table 1. As shown in the table,
between the highest (LCP troughs) and lowest values (HCP centers), the average NDVI
varies by 37%, while the average NEEday varies by 183%. The polygon troughs have higher
NDVI and NEEday than the other features across the different polygon types. Within the
LCPs and FCPs, the trough region has the highest average NDVI and NEEday, while the
rim area has the lowest. Within the HCPs, the center region has the lowest NDVI and
NEEday. The LCP centers have higher average NEE than the HCP centers by 75%. In
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addition, we computed the spatial coverage of each polygon feature within each polygon
type. The HCP region has a large trough area of 50%, while only 14% of the LCP region is
covered by the troughs. The high-elevation region in microtopography associated with
low NDVI and NEE (i.e., LCP and FCP rims and HCP centers) occupied 50% of the area in
each polygon type.

Table 1. Spatial average of NEEday and NDVI temporal average (Av.) over the growing season in each
polygon type-feature combination. The standard deviation (SD) is also shown. The spatial coverage is
the area of each polygon feature within each polygon type (The total area is normalized to 1).

Av. NDVI (SD) Av. NEEday,
µmol/m2/s (SD) Spatial Coverage

LCP
Trough 0.59 (0.014) −3.4 (0.64) 0.14
Center 0.52 (0.010) −2.1 (0.41) 0.36

Rim 0.44 (0.011) −1.4 (0.34) 0.5

FCP
Trough 0.58 (0.016) −3.2 (0.63) 0.29
Center 0.48 (0.016) −1.7 (0.37) 0.21

Rim 0.41 (0.016) −1.1 (0.27) 0.5

HCP
Trough 0.56 (0.013) −2.8 (0.56) 0.5
Center 0.43 (0.012) −1.2 (0.30) 0.5

Table 2 shows the spatially averaged values of each polygon type for the average
NDVI and NEEday within. Even though there is significant variability depending on the
polygon types and features shown in Table 1, none of the average and peak NDVI and
NEEday varies significantly as a function of polygon types in Table 2 (within the standard
deviation). The average NEEday is slightly higher in the HCPs than others, even though
the HCP centers have lower NEEday (Figure 5). This is because HCPs has the highest areal
coverage of troughs (Table 1) where both NDVI and NEEday are significantly high.

Table 2. Spatial average of NEE and NDVI temporally averaged (Av.) over the growing season in
each polygon type, and the spatial average of peak NEE and NDVI in each polygon type.

Av. NDVI (SD) Av. NEEday, µmol/m2/s (SD)

LCP 0.49 (0.011) −2.4 (0.42)
FCP 0.48 (0.016) −2.3 (0.43)
HCP 0.50 (0.012) −2.6 (0.45)

4. Discussion

In this paper, we have developed an approach to integrate multi-type and multiscale
datasets and to estimate the spatio-temporal dynamics of NDVI and NEEday over the
site at a resolution that can resolve microtopography associated with ice-wedge polygons.
The dynamic maps of NEEday can be compared with the flux-tower data through the
weighted average of the NEEday maps over the flux-tower footprint. Our comparison
shows a reasonable agreement between the estimates and flux tower data in terms of
capturing the seasonal dynamics and trend without any fitting processes. The particular
advantage of using the Kalman filter is its ability to account the uncertainty associated with
the correlations such that we can determine the estimation variance at each time step. This
allows us to use the observations that are only indirectly associated with NEE such as the
one-time gI map.

The estimated peak NDVI over the site is 0.3–0.55 within the dry areas and 0.5–0.85 in
the wet regions, which is similar to the values found at nearby sites by Engstrom et al. [44]
and Beck and Goetz [57]. The peak NEEday ranges from −5.0 to 0.0 umol/m2/s across
the site, the range of which is larger than that of the flux tower-measured NEE across
different drained lake basins in this region [21]. This can possibly be attributed to the
spatial averaging effect that occurs for the flux tower data, which is unable to resolve the
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spatial variability of fluxes associated with microtopography in ice-wedge polygons. Nor
can such microtopographic variability be captured by the low-resolution satellite-based
estimations of NDVI and NEEday.

This study also provides improved understanding of spatiotemporal variability in
ecosystem functioning and carbon exchanges over ice-wedge polygon tundra, specifically
through the correlation between NDVI and NEEday, and their relationship to polygon
features. Consistent with previous studies, e.g., [9,12], we find that NDVI and NEEday are
significantly affected by ice-wedge polygon geomorphology. This variability is primarily
dictated by dry features (i.e., polygon rims, and HCP centers) and wet features (i.e., troughs
and HCP/FCP centers), owing to the soil moisture limitations in ecosystem functioning,
as shown by previous studies, e.g., [9,12]. However, we also find that troughs have
significantly higher plant productivity and CO2 uptake (i.e., high NDVI and NEEday)
than other features across different polygon types, and also that the troughs have higher
values than LCP centers, even though they both had high soil moisture. This is possibly
because low centers tended to have deep ponded water and anoxic conditions that inhibit
vegetation growth [13]. In terms of temporal variability, both NDVI and NEEday were
low at the dry rims and the center of HCPs throughout the season, while they were more
dynamic at the troughs and center of LCPs. Although both NDVI and NEE changed
over time, their correlation was consistent along the same curve. In addition, the spatial
heterogeneity of NDVI and NEEday was persistent during most of the growing season such
that the high NDVI and NEEday regions tended to be the same throughout the season. This
is why a single image of gI was able to describe the spatial heterogeneity. This is consistent
with the previous findings on the relationship between soil moisture and plant vigor by
Dafflon et al. [24], using soil electrical conductivity from electrical resistivity tomography
(ERT), and greenness index from pole- and UAS-mounted cameras.

Some of these spatio-temporal characteristics have contributed to the successful data
integration. First, the persistent spatial heterogeneity allowed us to use one-time gI data
to capture the spatial variability of vegetation vigor, and to use the spatially continuous
tram data for quantifying the time-dependent correlations between gI and NDVI over
time. In addition, the interlink between the spatial heterogeneity and co-variability among
different properties is an important consideration. In general, data requirements and
spatial heterogeneity are coupled in spatial statistics or geostatistics such that we need
more datasets when the spatial heterogeneity is high [58]. During the early growing season,
NDVI and NEEday are relatively spatially homogeneous, even though the data correlation
is not significant (i.e., low Spearman correlation coefficients). In the peak season when
the spatial heterogeneity is high, the data correlation is high and is able to capture the
spatial heterogeneity. This system is suitable for the Kalman filter, which is able to integrate
the two models of temporal evolution and data correlations. These two aspects—the
data correlation is high to constrain the estimation when the heterogeneity is high—can
compensate for one another to reduce estimation uncertainty. In this paper, we focused on
the seasonal variability of NEEday.

Having the high-resolution NDVI and NEEday maps enabled us to compute the
average and peak values over the growing season, and also the spatial average in each
polygon geomorphic class. Our results show that the average NDVI and NEEday vary
significantly as a function of the combination of polygon types and features. In particular,
the average NEEday varies more than 150% between the highest regions (i.e., LCP troughs)
and the lowest regions (i.e., HCP centers). However, the spatial average of NEEday
and NDVI (both the average and peak) within each polygon type did not significantly
differ, despite the fact that the LCP centers have significantly higher values than the HCP
ones, and that the different polygon types were known to have distinct hydrological and
ecosystem functioning [12,13,59]. This is because each polygon type includes high and low
values associated with the features that are integrated during the spatial aggregation, and
because the spatially aggregated effect depends on the spatial coverage of polygon features
within each polygon type. This kind of effect is often called the Simpson’s paradox [60], in
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which a trend or significant effect appears in several groups of data but disappears when
these groups are aggregated (or vice versa). Typically, to obtain a representative value for
each landscape class or zone, the sample average of point-scale measurements is calculated
in each class [12,59]. This approach might, however, may miss a certain feature, or may
not represent the spatial coverage of each feature, creating a bias in the spatially averaged
estimates. At our site, for example, the HCPs tend to be smaller in terms of polygon size,
and to have wider troughs where NDVI and NEEday are both high. This fact highlights
the importance of estimating the spatial distribution of NDVI and NEE at high resolution
over the landscape.

In addition, our results have some implications regarding to the impact of polygon
degradation on carbon exchanges. The HCP centers have significantly lower NEEday than
the LCP centers, which suggests that NDVI and NEE could decrease significantly at the
centers of polygons when permafrost thaws and the LCPs transition to HCPs. At the same
time, our results suggest that we need to consider microtopographic features (e.g., troughs,
rims, centers) and their spatial coverage. During the polygon degradation, the size of
polygons may not change, but the width of troughs may change when ice wedges melt
and the polygon rims collapse [45]. To evaluate such an effect, it would be essential to have
high-resolution images and DEM for delineating local-scale polygon features and changes.
With our approach, it is possible to monitor the changes in carbon exchange associated with
the polygon degradation over space and time, using tram data and infrequent (possibly
annual or every a few years) high-resolution areal images.

In this study, we did not include the flux tower data into the integration, and used
the tower flux data to validate the estimation results based on the integration of the
chamber data, tram data and airborne image. It is possible to expand our framework to
integrating the flux tower data so that the flux tower data provide additional constraints in
the estimation, although it would increase the computational requirements significantly.
Such an approach would enable us to include additional predictors such as temperature or
photosynthetically available radiation (PAR) typically measured at the tower, and possibly
to represent the diurnal variability. The diurnal variability can be captured by the tram
measurements throughout the day, although coordinated chamber measurements are
necessary. In addition, evaluating data over multiple years will be useful to provide
the information on the relationship of NEE with changing air temperature and longer
growing season.

5. Summary

In this study, we first developed the spatio-temporal data integration approach to
estimate NDVI and NEE over ice-wedge polygonal tundra during the growing season. The
datasets included the spatially extensive but temporally sparse high-resolution airborne
RGB image and the temporally extensive but spatially sparse tram data that capture the
spatial and temporal variability of NDVI along the 68-m transect. We first applied the
Kalman filtering algorithm, which is a numerically efficient spatio-temporal estimation
approach, to estimate daily NDVI over the site, and then computed NEEday based on the
site-specific NDVI-NEEday relationship. We obtained the daily maps of daytime NDVI
and NEEday at 0.5-m resolution over the site (750 m × 750 m). The weighted spatial
average of NEEday over the flux tower footprint showed a reasonable agreement with the
flux-tower-derived NEEday.

The estimated high-resolution NEEday maps were then used to evaluate the spatial
variability of the average NDVI and NEEday during the growing season, depending on
the combination of polygon types and features. We found that NDVI and NEEday varied
significantly depending on the combination of the polygon types and features over the
domain. However, the averaged NDVI and NEEday within each polygon type did not
show a significant difference, even though the local effect was significantly different at
the centers of different polygon types. This is because high and low NDVI and NEE
features co-exist within each polygon type, and that they tend to cancel each out within



Land 2021, 10, 722 16 of 19

each polygon type. The averaged NDVI and NEEday were then influenced by the spatial
coverage of microtopographic features within each polygon type. In particular, the HCPs
and LCPs had similar NDVI and NEEday values on average, even though the LCP centers
have significantly higher values than HCPs. This is because the troughs have significantly
higher productivity and CO2 uptake than the centers of LCPs, and the HCP areas have
a larger spatial coverage of troughs. Our results suggest the importance of considering
microtopographic features for carbon exchange, and the need to integrate multi-type multi-
scale datasets to capture the microtopographic effects on the spatio-temporal dynamics of
NDVI and NEE.

Author Contributions: Conceptualization, H.M.W., R.O., B.D., S.D., M.S.T. and S.S.H.; methodology,
H.M.W., R.O., B.D. and S.D.; data acquisition, B.D., S.D., J.B.C. and J.C.; validation, H.M.W.; formal
analysis, H.M.W., R.O., B.D. and S.D.; writing—original draft preparation, H.M.W., R.O., B.D. and
S.D.; writing—review and editing, M.S.T. and S.S.H.; visualization, H.M.W. and J.B.C.; supervision,
M.S.T. and S.S.H.; project administration, B.D., M.S.T. and S.S.H.; funding acquisition, B.D., M.S.T.
and S.S.H. All authors have read and agreed to the published version of the manuscript.

Funding: The Next-Generation Ecosystem Experiments (NGEE Arctic) project is supported by
the Office of Biological and Environmental Research in the DOE Office of Science. This NGEE-
Arctic research is supported through contract number DE-AC0205CH11231 to Lawrence Berkeley
National Laboratory.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The datasets are available through the project website: https://ngee-
arctic.ornl.gov/ (accessed on 7 July 2021). The tram data set is available at Torn et al. (2019;
https://doi.org/10.5440/1558782, accessed on 7 July 2021).
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Appendix A

The Kalman filter algorithm has been widely described in the literatures (e.g., Hamil-
ton, 1994; Schmidt et al., 2018). We describe the algorithm here for completeness. The
Kalman filter consists of a recursive two-step process: (1) a state prediction step and (2) an
update step. The goal is to estimate the state vector xt as x̂t and its error covariance Pt at
each time step t. The diagonal elements of Pt, σ̂i,t, is the estimation variance at each pixel,
representing the uncertainty in x̂t.

The prediction step describes the temporal evolution of the state vector xt from the
previous step. The state transition equation (Equation (7)) is used to predict the expected
value of the state vector as x̂t|t−1 based on the estimate at the previous time step x̂t−1:

x̂t|t−1 = Ax̂t−1 + Bu (A1)

Similarly, the error covariance matrix Pt is predicted as Pt|t−1 based on the covariance
at the previous step Pt−1:

Pt|t−1 = APt−1 AT + Q (A2)

where Q is a diagonal matrix each element of which is the variance of v(t) in Equation (7),
representing the uncertainty in the state transition model.

https://ngee-arctic.ornl.gov/
https://ngee-arctic.ornl.gov/
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The update step improves (or corrects) the estimate of the state vector by including
the data zt. Based on the state-observation equation (Equation (2)), the estimate x̂t is
determined by:

x̂t = x̂t|t−1 + Ct

[
zt −

(
H x̂t|t−1 + Ku

)]
(A3)

where the Kalman gain Ct is determined by:

Ct = Pt|t−1 HT
[
H Pt|t−1 HT + R

]−1
. (A4)

where R is a diagonal matrix each element of which is the variance of w(t) in Equation (2).
The error covariance is updated as:

Pt = (I−Ct H)Pt|t−1(I−Ct H)T + Kt R CT
t (A5)

where I is an identity matrix each diagonal element of which is one.
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