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Kinship Network Analysis

K l a u s  H a m b e r g e r ,  M i c h a e l  H o u s e m a n ,  a n d 
D o u g l a s  R .  W h i t e
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KINSHIP IN A NETWORK PERSPECTIVE

Kinship, like language, is a structure, not a sub-
stance.1 The distinctive features of kinship networks 
reside less in how their constitutive ties – be they 
biological, jural, ritual, symbolic, or whatever – are 
defined and established than in the way these 
ties are organized. Kinship network theory 
is thus not just another “application” of general 
network theoretic methods to a particular social 
domain but a specific branch of social network 
theory in itself, defined by its own axioms and 
described by its own theorems.

Kinship networks are characterized by the 
interplay of three fundamental principles: filia-
tion, marriage, and gender. We ordinarily repre-
sent filiation by a set of arcs (descent arcs) that are 
directed from parents to children, and marriage 
by a set of undirected edges (marriage edges) 
between spouses (for alternative representations 
of kinship networks without edges, see 2.2 below). 
Kinship networks thus are mixed graphs, contain-
ing both arcs and edges. Gender is usually taken 
into account by a partitioning of the vertex set 
(the gender partition), usually into two or three 
disjoint classes (male, female, and possibly 
unknown sex).

The characteristic features of kinship networks 
can be described in terms of cyclicity. While kin-
ship networks do not contain oriented cycles 
(nobody can be his or her own descendant2), they 
may contain cycles (where arc direction does not 
matter): people may marry persons with whom 
they are already linked by kinship or affinity. 
Now, such cyclic configurations occur not just 
randomly but in ways that are informative about 
the self-organizing behavior of the network. Some 
kinds of relatives hardly ever marry, while other 

kinds of kinship ties between spouses may be 
overrepresented. Marriage rules and prohibitions, 
but also residential organization, social morphol-
ogy, and so forth, affect the relative frequencies of 
different types of cycles in a kinship network. 
Analyzing the distribution of cycles therefore 
is the key to kinship network classification and 
interpretation.

Paths and cycles in kinship networks

Kinship network theory thus rests on a theory of 
cyclic configurations. We call a path an alternat-
ing sequence of vertices and lines (edges or arcs 
of whatever direction), where every vertex is inci-
dent with the lines that precede and follow it in the 
sequence, and all vertices are distinct. If, by con-
trast, the first and the last vertex are identical (all 
others being distinct), we obtain a cycle. A path is 
said to be closed by a line connecting its first and 
its last vertex, so that adding that line turns the 
path into a cycle. A path or cycle is called oriented 
if all lines are arcs oriented in the same direction.3 
A weakly acyclic network is one that contains no 
oriented cycles and an acyclic network contains 
no cycles whatsoever.

Alternatively to their definition as (open or 
closed) sequences of vertices and lines, paths and 
cycles are also often defined as the graphs made 
up of these vertices and lines (in this perspective, 
a cycle is a connected graph where every vertex 
has degree 2, a path a connected graph where two 
vertices have degree 1, and all others degree 2). 
There is, however, a crucial difference between 
the two concepts. If we define a path as a 
sequence, the starting point matters. A path ABC 
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is distinguished from its inverse CBA, or to take 
a kinship example, the path “father’s wife’s 
daughter” (FWD) is distinguished from its inverse: 
“mother’s husband’s son” (MHS). If, by contrast, 
we define a path as a graph, ABC and CBA are 
only two different notations for one and the same 
mathematical object – for the kinship case, this 
means that FWD and MHS are two different ways 
to express the same kinship chain.

The ambiguity is less severe in the case of 
cycles, where, by convention, graph theorists treat 
starting and ending points as irrelevant: the 
sequences ABCA and BACB are considered to be 
identical. Nevertheless, in kinship network analy-
sis we often need to distinguish them. In an ego-
centric perspective, marrying one’s “father’s 
wife’s daughter” (FWD) is different from marry-
ing one’s “son’s wife’s mother” (SWM). By con-
trast, in a socio-centric perspective – as it is 
required if, for example, we want to count all 
cycles of a given type in a kinship network – we 
have to treat FWD and SWM marriages as two 
different aspects of one and the same configura-
tion. In other words, we should define paths and 
cycles as sequences when adopting an ego-centric 
view and as graphs when adopting a socio-centric 
view. In order to avoid any ambiguity, we shall 
reserve the terms “path” and “cycle” to sequences 
and use the terms “chain” and “circuit” when we 
speak of the corresponding graphs.4 A chain is 
thus a graph made up by the vertices and lines of 
a single path, and a circuit is a graph made up by 
the vertices and lines of a single cycle (alternative 
definitions in terms of degrees and connectedness 
are given below).

A path is an alternating sequence of vertices and 
lines (arcs or edges), where each vertex is inci-
dent to the preceding and the succeeding line, 
the vertices preceding and succeeding a line are 
its endpoints, and all vertices are distinct.

A cycle is a sequence of vertices and lines sharing 
the properties of a path, except that the first and 
the last vertex are identical (all other vertices 
being distinct).

A path or cycle is called oriented if all its lines are 
arcs oriented in the same direction.

A weakly acyclic graph is one that contains no ori-
ented cycles and an acyclic graph contains no 
cycles whatsoever.

A chain is a graph whose vertices and arcs form a 
single path (alternatively, it may be defined as a 
connected graph where two vertices have degree 
1 and all others have degree 2).

A circuit is a graph whose vertices and arcs form 
a single cycle (alternatively, it may be defined 
as a connected graph where every vertex has 
degree 2).

The first and the last vertices of a path are called 
endpoints. Any line connecting the endpoints of 
a path is said to close it; the line’s addition to the 
path transforms the latter into a cycle.

Armed with these basic concepts, we can now 
describe kinship networks entirely in structural 
terms, without making statements regarding the 
nature of the relations involved. Characterizing 
kinship networks by weakly acyclic filiation, acy-
clic gendered descent, nonoccurrence of certain 
types of circuits, and so on, is not equivalent to 
stating that no one can be engendered by his or her 
own offspring, that it takes a man and a woman to 
produce children, or that self-organization is 
brought about by incest prohibitions that prevent 
people in certain kinship relations from having 
sex with each other. Filiation does not necessarily 
involve a biological tie, procreation is not the only 
basis for parenthood, and marriage prohibitions 
are not defined everywhere in terms of sexual 
relations. Kinship network structures may have 
biological explanations, but these are culturally 
determined, variable from one society to another, 
and far from universal.

Biology is the privileged model for kinship 
inasmuch as it affords a universally intelligible 
code for expressing the latter’s fundamental rela-
tions: procreation as a model for filiation, sex as a 
model for marriage, and so forth. However, being 
a model for a relationship does not mean being the 
essence of this relationship. There are many social 
networks that are clearly kinship networks, both 
according to structural criteria and in the minds of 
those concerned, but where filiation, marriage, and 
gender cannot be defined exclusively in reference 
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to biological givens. Kinship is a type of social 
structure, and if people all over the world have 
chosen to express its basic relations in a biological 
idiom, there are numerous cases where these 
relations are defined independently of, and some-
times even in opposition to, biological relation-
ships. Defining kinship in network terms recognizes 
this fact.

NETWORK REPRESENTATIONS 
OF KINSHIP

Ore-graph representation

What we have described in our introductory state-
ment is the most conventional representation of 
a kinship network, where vertices represent 
individuals, arcs represent filial ties, and edges 
represent marriages. Such networks are called 
Ore-graphs.5 If not specified otherwise, kinship 
networks are treated in this article as Ore-graphs. 
Their characteristic feature is that they are weakly 
acyclic.6 As a consequence, kinship networks con-
tain a directed generational hierarchy.

Gender in Ore-graphs is represented by a parti-
tion of the vertex set. This gender partition gives 
rise to an analogous partition of arcs, according to 
the gender of the vertex from which they origi-
nate. The subgraph produced by arcs originating 
from parental vertices of the same gender can be 
termed a descent graph. Cycles in descent graphs 
are ruled out as soon as we impose the condition 
of unique descent, that is, filial arcs for only one 
parent of each gender: one father and one mother. 
Under this condition, descent graphs are acyclic, 
and their connected components are trees (the 
well-known unilinear descent trees of “lineages”). 
This condition is closely related to the condition 
of heterosexual marriage, according to which a 
marriage edge can only link vertices from a differ-
ent gender. We speak of a standard kinship 
network if these two conditions – unique descent 
and heterosexual marriage – are satisfied. This 
allows for the possibility of nonstandard kinship 
networks, which, because they admit multiple 
descent7 and homosexual marriage, require a more 
complex analysis. In this chapter, we will restrict 
ourselves to discussing standard kinship networks.

In many cases, marriage is the correlate, some-
times even the condition or equivalent of having 
children in common. It is therefore useful to dis-
tinguish, as a particular category of standard 
kinship networks, those networks that meet 
the condition of married co-parents: a standard 
kinship network will be called canonical if the 
presence of descent arcs from two parent vertices 

to the same child vertex necessarily implies the 
existence of a marriage edge between the parent 
vertices.

A kinship network is a mixed graph G(V, E, 
A, ~), where V is a set of vertices, called individual 
vertices, E is a set of edges, called marriage 
edges, A is a set of arcs (directed from parents 
to children), called descent arcs, and ~ is an 
equivalence relation on V partitioning it into n 
disjoint classes Vi (i = 1, …, n), called genders 
(usually n = 2 for {male,female}), with the 
following property:

1 the network is weakly acyclic

The descent graph for the ith gender is the subgraph 
of a kinship network produced by all descent arcs 
springing from individuals of the gender i. They 
are called agnatic for male gender and uterine for 
female gender.

A kinship network is regular if

2 no vertex in a subgraph G(V, Ai) (the descent 
graph for the ith gender) has an indegree 
higher than 1 (which rules out cycles in descent 
graphs), where Ai is the subset of arcs with 
origin in Vi [unique descent]. Descent graphs 
of regular kinship networks are acyclic.

A regular kinship network is standard if

3 the subgraphs G(Vi, E ) are empty [hetero-
sexual marriage].

A standard kinship network is canonical if

4 any two vertices that are arc-adjacent to the 
same vertex8 are edge-adjacent to each other 
[married co-parents].

Every kinship network G(V, E, A, ~) is par-
tially ordered on V, as is any weakly acyclic 
graph. This is the generational partial order rela-
tion. In addition, a kinship network may be 
ordered on V by assigning an arbitrary unique 
identity number to each individual (this is impor-
tant for computation issues, but also for data 
storage in general, see below).

Two individuals linked by a descent arc are 
called parent and child with respect to each other. 
Two individuals linked by an oriented path of 
descent arcs are called ascendant and descendant 
with respect to each other. Two individuals linked 
by a marriage edge are called the spouses of each 
other. Two individuals are called co-parents 
if they are parents of the same child (arc-adjacent 
to the same vertex), siblings if they are children 
of the same parent (arc-adjacent from the same 
vertex), and co-spouses if they are spouses 
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of the same spouse (edge-adjacent to the same 
vertex).

We can reformulate conditions (1)–(4) as 
follows:

1 In a kinship network, no individual can be his or 
her own ascendant or descendant.

2 In a regular kinship network, no individual has 
more than one parent of each gender.

3 In a standard kinship network, parents are 
regular and spouses are always of different 
gender.

4 In a canonical kinship network, spouses are 
standard and all co-parents are spouses.

Simple digraph representations

There are a variety of ways of representing stand-
ard kinship networks as digraphs. In addition to an 
Ore-graph, two of these, P-graphs (White and 
Jorion, 1992, Harary and White 2001, also see 
White, this volume) and bipartite P-graphs 
(proposed by White, implemented by Batagelj and 
Mrvar, 2004), are represented in Figure 35.3 
where letters indicate individuals (a married 
couple, wife A and husband B, who have a daugh-
ter C and a son D).9 These are all isomorphic once 
arc-labels for P-graphs are included.

P-graphs

P-graphs10 represent couples as vertices and indi-
viduals as individually and gender-labeled lines. 
As these individuals are at once born of one 
couple and may become partners in another, the 
arcs that represent them run from the couple 
formed by an individual and his or her spouse to 
the couple formed by his or her parents. Unmarried 
individuals are treated like couples.

P-graphs have the advantages of incorporating 
fewer lines and vertices, allowing marriage cycles 
to be more easily detected. An individual who 
marries several times is represented by several 
lines that are numbered with individual IDs or can 
be given names. The way to distinguish two lines 
representing the same individual from those 
representing two same-gender full siblings is by 
either the line IDs or vectors for individual male 
or female IDs for each vertex. Apart from these 
two differences, P-graphs share the structural 
properties of Ore graphs, such as weak acyclicity 
and generational partial ordering.

Bipartite P-graphs

Bipartite P-graphs are two-mode networks 
where individuals and couples are represented by 

Figure 35.2
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vertices. There are therefore no marriage edges, 
but there are arcs that run from individuals to 
couples and from couples to individuals.

Bipartite P-graphs are weakly acyclic and, 
because marriages are represented by vertices, it is 
possible to represent sibling relations even if the 
siblings’ parents are unknown. In addition, mar-
riages can be easily partitioned, for example, 
according to marriage dates.

KINSHIP PATHS, KINSHIP RELATIONS, 
AND MATRIMONIAL CIRCUITS

Kinship paths and relations

The most general definition of a kinship relation 
relies on the existence of a path linking one indi-
vidual to another in a kinship network. If we 
abstract from the individual identity of vertices, 
kinship paths can be characterized by generic 
properties such as the gender of vertices and the 
direction of lines. This abstract form of a kinship 
path is an elementary kinship relation. Elementary 
kinship relations thus can be considered as abstract 
kinship paths (where vertex identity does not 
matter as long as vertex gender, line direction and 
vertex-line incidence are preserved). Whatever 
property we may state of a path without reference 
to individual vertices, we may consider as a 
property of the corresponding elementary kinship 
relation.

We shall call a simple kinship relation one that 
connects Ego and Alter by a single line. By con-
trast, we shall call a relation compound if it con-
nects Ego and Alter by several consecutive lines. 
Compound relations can be defined by the compo-
sition of simple relations. For instance, “father” is 
a simple kinship relation, while “mother’s father” 
is a compound one.

Elementary kinship relations are defined by a 
complete specification of the gender and the 
direction pattern of a single kinship path connect-
ing Ego and Alter. Complex kinship relations are 
obtained by combining elementary relations by 
means of one or more logical operations (“and,” 
“or,” “not,” etc.). If the logical connective is “or,” 
we obtain a disjunctive (or “classificatory”) rela-
tion (e.g., “uterine sibling” is defined as “mother’s 
son or mother’s daughter”). If the connective is 
“and,” we obtain a conjunctive (or “multiple”) 
relation (e.g., “full brother” is defined as 
“mother’s son and father’s son”). If the connective 
is “not,” we obtain a residual relation (e.g., 
“nonagnatic kin”).

Finally, we call a kinship relation mixed if 
properties of vertices and lines other than gender 

and direction enter into its definition; for example, 
the definition of “widow” requires a supplemen-
tary partition of vertices (alive vs. dead), the defi-
nition of “elder brother” makes reference of a 
partial order relation defined on filial arcs, and 
so forth.

A kinship path is a path in a kinship network. The 
first vertex of a kinship path is called Ego; the 
last one is Alter.

The direction of a line in a kinship path is 0 
(“horizontal”) if it is a marriage edge, –1 
(“descending”) if it is an arc directed to the 
successor, and +1 (“ascending”) if it is inversely 
directed.

Two kinship paths are isomorphic if there is a 
bijection between them that preserves the 
gender of vertices and the sequence and direc-
tion of lines.

An elementary kinship relation corresponds to a 
maximal set of isomorphic paths in a kinship 
network. Any of these paths represents the kin-
ship relation. Any invariant property of these 
paths – beginning with the gender and direction 
sequence – can be considered as a property of 
the elementary relation.

A complex kinship relation is any relation that can be 
obtained by logical junction of several elemen-
tary kinship relations.

The notation of kinship paths and relations
The conventional notation of kinship relations 
uses capital letters for indicating direction and the 
gender of Alter (the gender of Ego must be indi-
cated by additional signs such as �

↑ [male Ego] 
or �+ [female Ego] placed before the initial letter): 
ascending arcs are F(ather) and M(other), descend-
ing arcs are S(on) and D(aughter), marriage edges 
are H(usband) and W(ife), plus supplementary 
letters for B(rother) and Z(Sister) relations. 
Examples of this are MBD (mother’s brother’s 
daughter, a matrilateral cross-cousin), ZH (sister’s 
husband, a brother in-law), and FWS (father’s 
wife’s son, a stepbrother).

This conventional notation, a simple abbrevia-
tion of English kinship terminology, has the 
advantage of being easy to learn and to apply, but 
it is hardly the best tool for analysis. It may even 
obscure the structural similarities and the distinc-
tive properties of kinship relations.

In this respect it can be contrasted with the 
alternative, positional notation developed by 
L. Barry (2004). Here, a kinship relation is repre-
sented by a sequence of letters specifying vertex 
labels (gender) and diacritical signs, which indi-
cate the presence of a marriage edge (the point 
or full stop “.”) and a change of arc direction 
(the parentheses “()”). All letters not separated by 
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a point represent vertices connected by arcs, verti-
ces in “apical” position (that is, vertices that are 
not a neighbor’s children) are put into parentheses 
and, by convention, all arcs to the left of an apical 
vertex have ascending direction, all arcs to its 
right have descending direction, and the marriage 
point implies change of direction.

Consider, for example, the kinship path linking 
a male Ego (1) to a female Alter (5) who is Ego’s 
paternal sister’s husband’s daughter (Figure 35.4). 
In positional notation, this relation is written as 1 
(2) 3 . (4) 5 where 2 is Ego’s and 3’s parents, 4 
is Ego’s sister’s husband and 5 is the latter’s 
daughter.

By abstracting the concrete identity of the indi-
viduals concerned (represented by their number) 
and retaining their gender only (H for male and F 
for female11), one obtains the kinship relation in 
question: H(H)F.(H)F.12 See Table 35.1 for an 
example of how standard and positional notations 
(for paths and relations) are used.

The principle of positional notation also applies 
to P-graphs. In P-graph notation, with labels for 
arcs rather than for vertices, the ZHD relation of 
Figure 35.4 is written HfH.hf, where H and F give 
the parents of a male and a female, respectively,13 
relation inverses h=H-1, f=F-1 give sons and daugh-
ters, and marriages are thus written fH and hF, 
respectively. The full stop “.” in H.h identifies the 
same individual in a different couple – a distinc-
tion that is necessary to clarify that 5 is the child 
of 4 but not of 3.

Positional notation has a number of important 
advantages. It incorporates the gender of Ego as 
well as that of Alter, and it provides a clear repre-
sentation of the structural properties of kinship 
relations, which is not radically changed by sym-
metry transformations. Thus, for example, a man 
who marries his HF()HF is his wife’s FH()FH 
(in p-graph version: HFhf and FHfh), whereas 
in conventional notation, a man who marries 
his MBD is his wife’s FZS. Allowing for a 

homogeneous representation of kinship paths 
(with individual numbers), of kinship relations 
(with gender letters), and of kinship relation 
classes (with gender variables), positional nota-
tion may be used not only as a means of notation 
but also as a classificatory or programming tool.

The classification of kinship relations
In order to compare kinship relations, and to 
analyze the ways they combine so as to give rise 
to particular network structures, these relations 
may be classified according to different criteria. 
We restrict ourselves here to some basic defini-
tions (for a more extensive treatment, see 
Hamberger and Daillant 2008 and Hamberger 
forthcoming).

A kinship relation is linear if it is oriented (we speak 
of “oriented” paths but of “linear” relations).

Any linear kinship relation can be represented by a 
characteristic number λ

κ

=∑ ( )σ .2)σ .
0 i

i

i

where κ is the degree of the relation (see note 
15) and σi is the gender number (0 = male, 
1 = female) of the ith individual in ascending 
direction (starting with Ego i=0), for example, 
λ = 1 for male Ego, λ = 3 for F/S, λ = 5 for M/S, 
λ = 7 for FF/SS, λ = 13 for MM/DS, and so on.14 
Characteristic numbers impose an order on all 
linear kinship relations.

A kinship relation is canonical if it contains no link-
ing children positions (that is, if the kinship path 
does not pass through parental triads as defined 
below).

A canonical kinship relation is consanguineous if it 
contains no marriage edge.

A consanguineous component of a kinship network 
is a maximal set of individuals linked to each 
other by consanguineous paths (an individual 

Figure 35.4
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without consanguineous kin constitutes a consan-
guineous component in itself).

The length of a kinship relation is the number 
of arcs and edges it contains. The height of 
a kinship relation is the length of the longest 
linear kinship relation it contains. The width of 
a kinship relation is the number of consanguine-
ous components it contains.15 The kinship rela-
tion represented by the path in Figure 35.4, for 
example, has a length of 4, a height of 2, and a 
width of 2.

Matrimonial circuits

The concept of a matrimonial circuit
Real-world kinship networks grow in two ways. 
On the one hand, new individuals are born, gener-
ally being assigned a father and a mother from 
birth. In other words, a new vertex emerges 

together with two arcs linking it to its parents, 
who are, at the moment of birth, the individual’s 
only direct neighbors in the network. If we assume 
that the parents are already linked by a marriage 
edge (i.e., we are dealing with a canonical kinship 
network), the emergence of a new child vertex 
does not create a chain between individuals who 
are not already linked by a shorter chain. Its 
impact on global structure may thus be said to be 
marginal: it enlarges the network but does not 
alter its connectivity.

On the other hand, kinship networks also grow 
by marriage, that is, by the creation of new edges 
between two vertices, each of which can already 
be linked to a neighborhood of other vertices by 
several different lines going in all directions. The 
new marriage edge creates new connections 
between all these neighbors. In this way, marriage 
changes social structure. But at the same time, the 
way in which social structure would be changed 
by a potential marriage influences the marriage 

Table 35.1 Matrimonial census

111 marriages (2.06%) involving 211 (1.41%) individuals (105 men, 106 women) in 1,114 circuits 
of 37 different types (average frequency 3.08) of width 1 and height 3

ID Standard Positional P-Graph Marriages Circuits % Circuits

  1 FBD HH()HF HHhf  3  3  2.63
  2 FZD HH()FF HHff  5  5  4.39
  3 FFSD HH(H)HF HHH.hhf  4  4  3.51
  4 FFDD HH(H)FF HHH.hff 10 10  8.77
  5 MBD HF()HF HFhf  9  9  7.89
  6 MZD HF()FF HFff  2  2  1.75
  7 MFSD HF(H)HF HFH.hhf 13 13 11.4
  8 MFDD HF(H)FF HFH.hff  2  2  1.75
…

372 marriages (6.89%) involving 667 (4.47%) individuals (339 men, 328 women) in 267 circuits 
of 152 different types (average frequency 1.76) of width 2 and height 2

 46 FWFSD H(H).F(H)HF HH.hfH.hhf  6  3  1.12
 47 FWFDD H(H).F(H)FF HH.hFH.hff  2  1  0.37
 48 FWFFSD H(H).FH(H)HF HH.hFHH.hhf  2  1  0.37
 49 MHBD H(F).H()HF HF.fHhf  2  1  0.37
 50 BW H()H.(F) HhF 20 10  3.75
 51 BWMD H()H.F(F)F HhFF.ff  2  1  0.37
…

62 marriages (1.15%) involving 112 (0.75%) individuals (53 men, 59 women) in 23 circuits 
of 16 different types (average frequency 1.44) of width 3 and height 1

190 FWBWZ H(H).F()H.F()F HH.hFhFf  6  2  8.7
191 FWZHD H(H).F()F.(H)F HH.hFfH.hf  6  2  8.7
192 FWFSWFD H(H).F(H)H.F(H)F HH.hFH.hhFH.hf  3  1  4.35
193 FWFDHD H(H).F(H)F.(H)F HH.hFH.hfH.hf  6  2  8.7
194 BWBWFD H()H.F()H.F(H)F HhFhFH.hf  3  1  4.35
...
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choice itself, be it explicitly (through marriage 
rules and incest prohibitions), implicitly (by virtue 
of preferences or strategies), directly (by taking 
into account kinship ties between potential 
spouses), or indirectly (by taking into account 
other factors that are in turn correlated with 
kinship). The probability of two potential partners 
becoming a couple thus depends upon the nature 
of the kinship chains between them. Now, the 
most direct way to study this dependency is to 
look for those kinship chains that actually connect 
marriage partners – in other words, to look for 
circuits.

It should be clear from the preceding remarks 
that we are not interested in just any type of cir-
cuit, but in those circuits that contain at least one 
marriage edge. However, this restriction is not 
enough. Every triangle formed by a couple and 
their child – a parental triangle – is a circuit con-
taining a marriage edge, and yet the couple’s rela-
tion to their common child is hardly a condition of 
marriage that we wish to consider. More gener-
ally, we want to exclude all circuits containing 
parents together with their children – parental 
triads. We can therefore define the types of cir-
cuits of interest to us as those that contain at least 
one marriage edge and no parental triads. But in 
fact, the second condition implies the first: as 
descent is weakly acyclic, the only way to form a 
circuit in a kinship network without passing 
through a parental triad is to pass through a mar-
riage edge. We thus arrive at a simple definition of 
a matrimonial circuit:

A parental triad is a graph formed by three vertices 
and arcs pointing from two of them to the third 
(that is, by parents and their child). It the parents 
are joined by a marriage edge, the resulting cir-
cuit constitutes a parental triangle.

A matrimonial circuit is a circuit that does not 
contain a parental triad. Alternatively, it can be 
defined as a connected subgraph where every 
vertex has degree 2 but no vertex has arc-
indegree 2. Because of the acycliclity of descent 
(condition 1 in the definition of kinship net-
works), this definition implies that a matrimonial 
circuit necessarily contains at least one marriage 
edge. In P-graph representation (where mar-
riages are vertices and not edges), every circuit is 
a matrimonial circuit.

`Any vertex of a matrimonial circuit that is adjacent 
to a marriage edge (that is, an individual whose 
marriage forms part of the circuit) is called a 
pivot of the circuit.

Any consanguineous chain within a circuit 
connecting two pivots is called an arch of the 
circuit.

A matrimonial path is a kinship path that passes 
through all vertices of a matrimonial circuit as 

well as through all of its lines except the closing 
marriage edge, which links the first and the last 
vertex of the path. For a matrimonial circuit con-
taining n marriage edges, there are 2n different 
matrimonial paths.

If the kinship network is ordered (for instance, by 
arbitrary identity numbers), there is a unique rule 
of selecting, for any matrimonial circuit, a char-
acteristic path: it is the matrimonial path that 
has the lowest possible Ego and (if there are two 
such paths) the lowest possible Alter.

A matrimonial circuit type is a class of isomorphic 
matrimonial circuits. Any matrimonial circuit type 
can be represented as a complex kinship rela-
tion formed by a marriage relation and another 
elementary kinship relation. We can define a 
unique rule for selecting, among these relations, 
the characteristic relation of a matrimonial circuit 
type: for example, the relation that begins with 
the longest sequence of ascending arcs and (if 
there are several sequences of equal length) with 
the lowest characteristic number.

Circuit inclusion and rings
Matrimonial circuits have been defined in a most 
general manner as circuits that do not pass through 
parental triads. However, there may be situations 
where we might want to reduce our analysis to 
only some of these circuits – namely, those that 
have no “shortcut” linking two of its vertices. 
Consider, for example, a marriage with the daugh-
ter of the maternal uncle’s wife (MBWD). Now, if 
this woman is at the same time the maternal 
uncle’s daughter (MBD), many anthropologists 
would consider it improper to count her as an 
MBWD and would want to distinguish such 
marriages form marriages with “true” MBWDs 
(stepdaughters rather than daughters of maternal 
uncles). There is no a priori answer to the question 
of whether or not to count circuits that contain 
“shortcuts” of this kind. The choice depends both 
on the ethnographical context16 and on the type of 
circuit in question.17 In either case, it is useful to 
distinguish circuits that contain shortcuts from 
circuits without shortcuts that link their vertices. 
The latter are called rings (White, 2004).18

We say that a circuit A includes another circuit 
B if all vertices of the circuit B form part of 
the circuit A. This may also be stated by saying 
that B forms part of the subgraph induced by 
the vertices of A, that is, the graph constituted 
by these vertices and all of the lines that 
connect them in the global network (if a circuit 
A contains all the vertices of circuit B, the sub-
graph induced by these vertices also includes the 
lines of B). An induced circuit or ring can thus 
be defined as a circuit that is its own induced 
subgraph.19
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The subgraph of a graph G induced by a vertex set 
V is the maximal subgraph of G having V as its 
vertex set (see Harary, 1969: 11). The subgraph 
induced by a circuit in the kinship network G is 
the subgraph of G induced by the vertices of the 
circuit. We also call it briefly the induced sub-
graph of the circuit.

A circuit A includes a circuit B if every vertex of B is 
also a vertex of A (that is, if B lies in the induced 
subgraph of A).

An induced circuit or ring is a circuit that does not 
include any other circuit (that is, a circuit that is 
its own induced subgraph). Alternatively, it can 
be defined as a circuit such that no two vertices 
of the circuit are connected by a line that is not 
itself part of the circuit.

Circuit intersection and composition
The definition of an induced circuit (or ring) 
rules out circuits whose vertices are connected by 
extra lines. It does not, however, exclude circuits 
whose vertices are connected by extra chains 
(consisting of more than one line). Consider, for 
example, Figure 35.5, in which a man marries his 
MMBDD, while his own mother is his father’s 
FFZD.20

The chains 1-8-9-5 and 2-8-9-5 “shorten” the 
outer circuit 1-2-3-4-5-6-7-1 (of type MMBDD), 
forming two inner rings of type FFZD: 8-9-5-4-3-
2-8 and 1-8-9-5-6-7-1. But note that the outer 
circuit also constitutes a ring: as the vertices 8 and 
9 do not belong to it, neither of the inner rings is 
included in it.21 However, it intersects with the 
two inner rings in the sense that it has one or more 
lines in common with them (for a further discus-
sion of circuit intersection, see section 4.2). 
Moreover, the entire outer ring can be composed 
from the two inner rings and the parental triangle 
1-2-8-1 by taking their union and deleting all lines 
that form part of more than one circuit (an opera-
tion called circuit union). A circuit that in this 

manner can be entirely decomposed into circuits 
shorter than itself is called reducible; if it cannot, 
it is called irreducible. By definition, every irre-
ducible circuit is also a ring.

It should be stressed that reducible circuits are 
not necessarily sociologically less relevant than 
irreducible circuits. If a Fulani man, for instance, 
marries a FFBSD who is at the same time an 
MBD (due to an FBD marriage between the hus-
band’s parents), the apparent cross-cousin mar-
riage MBD may simply be a by-product of 
successive parallel-cousin marriages (FBD and 
FFBSD): it is then the longer and not the shorter 
ring that matters for marriage decisions. Nor does 
the formation of a reducible circuit presuppose the 
previous formation of some irreducible circuit 
(see note 17).

The study of irreducible matrimonial circuits is 
closely related to the idea of a cycle basis in gen-
eral graph theory. A cycle basis for a graph is a 
minimal set of circuits from which all circuits of 
a graph can be composed by a circuit union. 
Different sets of circuits can constitute a cycle 
basis. However, the number of circuits in the 
basis (also called the circuit rank or cyclomatic 
number of the graph) is invariant: we can compute 
it from the numbers of its arcs, edges, and compo-
nents by means of a simple formula (see below). 
In order to find a cycle basis for a kinship 
network, it is reasonable to concentrate on irre-
ducible circuits. Note, however, that the cycle 
basis may well be smaller than the set of irreduc-
ible circuits: if a man marries three sisters, we 
have three irreducible circuits, but the circuit 
rank is only two (as two circuits are sufficient to 
compose the third).

Two circuits intersect if they have lines in common. 
They intersect matrimonially if they have mar-
riage edges in common.

The union of two circuits is the graph that has the 
union of their line (vertex) set as its line (vertex) 
set. The circuit union of two intersecting circuits 
consists in taking their union and deleting the 
lines they have in common.

A circuit is irreducible if it cannot be composed by 
a circuit union from a set of circuits that are all 
shorter than itself.

A cycle basis of a graph is a minimal set of circuits 
whose union contains all the circuits of the 
graph.

The cyclomatic number or circuit rank of a graph is 
the number of circuits constituting its cycle basis 
(which is equivalent to the number of lines one 
has to remove from a graph to make it acyclic). 
For a graph with e lines, v vertices, and c compo-
nents, it is calculated as

γ = e – v + cFigure 35.5
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Counting circuits: The matrimonial 
census

A matrimonial census provides an exhaustive list 
of all matrimonial circuits of specified properties 
in a given kinship network, and it counts the 
occurrences of every distinct circuit type (which 
may or may not be aggregated into broader 
classes).

A circuit search usually has to be restricted to a 
limited set of circuit types. Even if the total 
number of circuits in a finite network is not infi-
nite, it is usually so high that an unbounded search 
exceeds the capacities of the most advanced per-
sonal computers. For exploratory analysis, it is 
recommended to restrict matrimonial circuit 
search by criteria that are as neutral as possible, 
such as maximal width and height of circuits. Do 
not just count first-cousin marriages in order to 
decide whether you are dealing with “generalized 
exchange,” “arab marriage,” and so on – a look at 
higher degree consanguineous marriages, and at 
marriages between affines, may change the entire 
picture! Kinship structures constitute a whole and 
can only be understood if one considers them as 
such; they cannot be characterized by the fre-
quency of this or that circuit type but only by the 
proportions and the interdependency of these 
frequencies. A matrimonial census must therefore 
be comprehensive in order to provide the basis for 
further analysis and interpretation, even if subse-
quent circuit searches may be more restricted and 
refined. It is clear that, even for small networks, 
such a task cannot be accomplished without 
computer support.

Circuit searches can be undertaken on the 
entire network or restricted to certain subsets of 
vertices. This restriction does not imply that all 
vertices of the matrimonial circuit have to belong 
to the subset – but their pivots have to lie within it 
(if, for example, we are interested in consanguine-
ous marriages concluded between people born 
after 1800, we, of course, allow consanguineous 
chains to pass through ancestors born before 
1800). Subsets may be defined according to 
“exogenous” criteria recorded for the individuals 
in the network (dates of birth, death or marriage, 
residence, occupation, etc.) but also according to 
“endogenous” criteria deriving from the kinship 
network itself (e.g., sibling group size, number of 
known ascendants, number of spouses, etc.). Such 
restrictions are not only convenient for compara-
tive analysis and tests of representativity, but they 
may also be helpful in determining the optimal 
network to work with (see 6.2.1).

Table 35.1 presents excerpts from a matrimo-
nial circuit census produced by the software Puck 
(infra) of a kinship network collected among the 
Watchi of Togo,22 restricted to circuits of width 

1 and height 3, circuits of width 2 and height 2, 
and circuits of width 3 and height 1.

NETWORK REPRESENTATIONS OF 
CIRCUIT STRUCTURES

The set of matrimonial circuits thus obtained can 
in turn be studied with genuine network-analytic 
tools.

One of these tools is to construct the network 
that the circuits compose; this gives us a subnet-
work of the original kinship network. A second 
tool consists of constructing the network of the 
structural relations between the circuits them-
selves; this gives us a second order network in 
which the circuits represent the vertices and their 
structural interrelations are represented by lines.

In the following section, we shall discuss one 
network of the first type, the matrimonial net-
work, and one of the second type, the circuit 
intersection network.

Networks derived from circuit sets: The 
matrimonial network

A matrimonial network is a subgraph of a kinship 
network resulting from the union of a set of mat-
rimonial circuits, as, for instance, the circuits 
found by the matrimonial census in Table 35.1. 
Note that this is not equivalent to the subgraph 
induced by this set: for an arc or edge to be in the 
subgraph, it is not enough that each of its end-
points is in some circuit – the arc or edge must 
itself be part of a circuit. The matrimonial network 
derived from a set of matrimonial circuits found in 
a kinship network is thus simply the network com-
posed of these circuits. It consists, in other words, 
of the matrimonially “interesting” regions of the 
original kinship network. The components of the 
matrimonial network (which we call matrimonial 
components) are connected subnetworks of matri-
monial circuits, which may be studied from vari-
ous perspectives. On the one hand, we may 
suppose that the frequent occurrence of particular 
matrimonial patterns is correlated with other prop-
erties of the network region concerned (for 
instance, social class, geographical region, or his-
torical period); we may then apply several parti-
tions to the network in order to evaluate the degree 
to which partition clusters correspond to matrimo-
nial components. On the other hand, we may 
interpret the density of circuits as an effect of self-
reinforcing social mechanisms (behavior trans-
mission, imitation, or the presence of rules) or as 
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a simple network effect (circuits combining to 
compose other circuits) that we did not consider 
when defining the criteria for our initial circuit 
search.

The concept of a matrimonial network is also 
meaningful in and of itself, independent of any 
particular circuit set. Even in cases where it is not 
possible to precisely identify all matrimonial cir-
cuits (without limits of size) that may exist in a 
kinship network, it is possible to determine which 
part of the network is composed of matrimonial 
circuits (of whatever length). The result – the 
largest possible matrimonial network – is the 
nucleus of the kinship network, the union of all 
existing circuits in the network (see Grange and 
Houseman, 2008).

The concept of the nucleus can be more strictly 
delineated by introducing the concept of a matri-
monial bicomponent, that is, a maximal subgraph 
in which every two vertices form part of a matri-
monial circuit (note that this is a stricter condition 
than that of simply forming part of a circuit, as is 
required for the more general notion of a bicom-
ponent). The nucleus is simply the union of all 
matrimonial bicomponents.23

As a result, matrimonial components (consist-
ing only of circuits) are closely related to matri-
monial bicomponents: both are line-biconnected 
(two distinct line series link each vertex to every 
other), but matrimonial bicomponents have the 
additional feature of being vertex-biconnected as 
well (the two interconnecting line series never run 
through the same vertex).

In the kinship network represented in 
Figure 35.6, for example, the shaded individuals 
and their interconnections within the bold bounda-
ries constitute the nucleus, which is composed of 
two matrimonial components (A and B) and three 
matrimonial bicomponents (1, 2, and 3), two of 
which overlap (one individual is included in both 
1 and 2).

Given a set of circuits R in a kinship network K, 
the matrimonial network derived from R is the 
subgraph of K resulting from the union of the 
circuits of R. In other words, it is a subgraph in 
which every line belongs to some matrimonial 
circuit of R. The components of a matrimonial 
network are called the matrimonial components 
of K with respect to R. Matrimonial components 

Figure 35.6
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are line-biconnected but not necessarily vertex-
biconnected.

A matrimonial bicomponent is a subgraph of K in 
which every pair of vertices (no matter how 
distant) belongs to a matrimonial circuit (hence 
no pair of vertices can be separated by removal 
of a single intermediary vertex). In P-graph rep-
resentation, every bicomponent is a matrimonial 
bicomponent.

The nucleus of a kinship network is the network 
resulting from the union of all matrimonial 
circuits in K. The nucleus is equivalent to the 
union of all matrimonial bicomponents of the 
kinship network. The largest of these matrimo-
nial bicomponents constitutes the kernel of the 
kinship network.

Networks of circuits: The circuit 
intersection network

Circuit graphs are tools for analyzing the interde-
pendence of matrimonial circuits. A simple exam-
ple is the circuit intersection network, where 
circuit interdependence is measured by the fre-
quency of shared marriage edges.

It is often the case that a given marriage forms 
part of two or several matrimonial circuits. Such 
overdetermination poses problems of sociological 
interpretation: if a man has married a woman who 
is at the same time his father’s sister’s daughter, 
his maternal aunt, and his sister-in-law, should we 
say that he married his cousin, his aunt, or his 
sister-in-law? And how shall we interpret such a 
situation if, for instance, it is considered to be very 
good to marry one’s cousin but bad to marry one’s 
aunt? Under such circumstances, it is clearly 
insufficient to simply count the frequency of 
maternal aunts that are spouses and affirm the 
presence of a high number of “bad” marriages, 
without considering the fraction of such aunts 
who are at the same time cousins and thus repre-
sent “good” spouses. But there is a further reason 
for wanting to determine the frequencies of circuit 
intersection: if a father’s sister’s daughter is at 
the same time a maternal aunt, such a configura-
tion mathematically implies that the husband’s 
father has married his sister’s daughter. We shall 
therefore necessarily find a high number of niece 
marriages in our network, and if we did not yet 
search for them, such a finding will prompt us to 
do so.

Circuit intersection networks are an easy and 
intuitive way to approach these questions. In these 
networks, vertices represent circuit types, the size 
(or vector value) of vertices represent circuit fre-
quencies, and the values of the lines connecting 
two vertices represent the number of marriages 

that are simultaneously part of a circuit of the two 
corresponding types.

The matrimonial intersection of two circuit types 
A and B is the set of all marriage edges belong-
ing simultaneously to a circuit of type A and to a 
circuit of type B.

The circuit intersection network corresponding to 
a set of circuit types T is a valued graph G, 
such that

1 each vertex of G corresponds to a circuit type 
of T, and the value (size) of the vertex is pro-
portional to the frequency of the corresponding 
circuit type

2 each edge between two vertices corresponds to 
a nonempty matrimonial intersection of the cor-
responding circuit types and the weights of the 
edges correspond to the size of the intersections

ALLIANCE NETWORKS

All matrimonial structures hitherto discussed have 
been defined in terms of filial and marriage rela-
tions between individuals. But kinship also has to 
do with relations between groups derived from 
relations between individuals. One convenient 
tool of analyzing these relations is the alliance 
network.

The alliance network corresponding to a given 
kinship network (real or simulated) is a network 
composed of vertices representing groups of indi-
viduals and arcs representing marriage frequen-
cies between the groups, where the value of an arc 
from A to B indicates the number of marriages of 
a woman of A with a man of B. One can think of 
alliance networks as resulting from “shrinking” 
the kinship network with respect to some parti-
tion, after having transformed marriage edges into 
arcs that point in the husband’s direction, that is, 
from the group of “wife-givers” to the group of 
“wife-takers.” The clusters of the partition are 
those collectivities related by the marriages 
between their respective members. The partition 
used may be exogenous to kinship (for instance, if 
we are dealing with residential units, professional 
categories, or social classes), but it may also be 
derived from the kinship network itself. Thus, for 
example, clusters may represent the components 
of the agnatic or uterine subnetwork, that is, 
“lineages” within the kinship network.

Alliance networks no longer have the particu-
larities of kinship networks. They are simple 
valued digraphs. Circuits in alliance networks 
may be called connubial circuits in order to distin-
guish them from matrimonial circuits in kinship 
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networks, and the connubial circuit structure of an 
alliance network can be represented by its matrix 
(the alliance matrix). In exogamous systems, the 
diagonal will have only zero values; in a perfect 
system of balanced bilateral marriage alliances 
(designated by Lévi-Strauss [1949 (1967)] as 
“restricted exchange”) it will be symmetric; in a 
system having a single directed Hamiltonian cycle 
(“generalized exchange”), it will be asymmetric 
and contain only one nonzero value in each line 
and column. Note, however, that real-world alli-
ance structures are not as clear-cut. On the one 
hand, several circuit patterns may be superim-
posed, such that, for example, the resulting cumu-
lative pattern may appear symmetrical even if 
partial patterns are asymmetric. On the other 
hand, the structure of alliance networks is highly 
sensitive to the definition of wife-giving and wife-
taking groups, connubial circuit structures being 
in general not continuous with respect to changes 
in the level of group aggregation. Thus, what may 
appear to be endogamous unions on one level may 
be exogamous on another, with combinations of 
endogamy and balanced exchange on one level 
giving rise to asymmetrical patterns on another 
(for an example, see Gabail and Kyburz, 2008).

The alliance network corresponding to a partitioned 
kinship network K is a digraph G where

1 veach vertex of G corresponds to a partition 
cluster of K

2 each arc between two vertices of G correspond-
ing to two clusters A and B corresponds to the 
existence of a marriage of a woman of A with a 
man of B, and the weight of the arcs correspond 
to the number of such marriages.

A connubial circuit is a circuit in an alliance 
network.

APPLICATION ISSUES

Data collection and saving

Orientations of data collection
Of course, the way kinship data collection is ori-
ented depends largely on what one wants to find. 
However, in order to minimize biases and to allow 
the data to be used by others, there are some 
criteria that every corpus of kinship data should 
fulfill, regardless of the specific purpose of the 
collection:

• Document the dates and informant(s) for every 
part of the data set; this is not only useful for 

checking possible errors and biases but may be 
an interesting datum in itself, for instance, to 
appraise genealogical memory.

• Document missing data; indicate if the spouses 
and children you have noted for a given individ-
ual are, according to your knowledge, complete.

• In case of contradictory data, keep records 
regarding alternative items of information (and 
their origin) and on the reasons for your choices.

• Try to avoid biases from the start by always fol-
lowing both male and female lines; do not record 
only those kinship ties that are easily given but 
make an effort to search those that are missing, 
even if this may be costly in the case of an exten-
sive matrimonial area.

• If you are interested in the kinship relations 
between two individuals, do not be content to 
ask how they are related but try to establish their 
entire pedigree within given bounds – you will 
surely find quite a number of additional ties your 
informants did not mention spontaneously!

• Try to determine the relative order of births and 
marriages (in particular in the case of polygamy), 
even if absolute dates are not available. In inter-
preting marriages with affines or overlapping 
matrimonial circuits, this may turn out to be very 
important.

• Keep an account of the research method used 
and specify the purpose for which the corpus 
(or part of the corpus) is established.

Storing data without a computer
Data are not only a result but also a means of data 
collection. They should be easily accessible in 
order to guide your research and to cross-check 
informant answers. When dealing with archives, 
this is often fairly simple: you can take a computer 
with you. But in many fieldwork situations this is 
not possible. However, noting kinship “by hand” 
can be extremely fast and efficient, if some basic 
principles are observed.

• Always use a compact medium, such as a note-
book. Do not use filesheets or loose papers. You 
cannot easily use them during interviews, and 
there is a high risk of losing some of them.

• Separate graphics and text. A good method is 
to use a notebook with the left page for draw-
ing genealogies, the right page for listing the 
individuals and their properties, and numbers 
for identifying these individuals (if numbers get 
large, it is recommended to use, in addition, 
initial letters to prevent identification problems 
in case of numbering errors).

• Attribute an identity number to each individual 
and never attribute that number to another 
individual. If you have “duplicates,” make a link 
to the original number but do not re-assign it. 
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Gaps in the series of numbers do not cause any 
damage, but ambiguities in identity numbers 
cause much damage and are extremely difficult 
to detect.

• Do not use identity numbers as codes. Identity 
numbers serve to identify individuals and noth-
ing else (except, perhaps, to recall the order in 
which you have entered them and to document 
the history of your corpus). If you want to convey 
information on individuals’ gender, clan affilia-
tion, residence, and so on, do not use identity 
numbers for that purpose.

• Never forget to make copies and store them 
in different places. This holds for all data, but 
especially for kinship data, due to the network 
properties of kinship: one lost notebook may 
render all other notebooks useless.

Data interpretation

It is necessary to know the biases, gaps, and limits 
of a genealogical corpus. In some cases, this may 
lead one to conclude that certain analyses simply 
cannot reasonably be made. For instance, it makes 
little sense to search for consanguineous marriage 
circuits in a corpus with very shallow genealogies. 
Here, as in all cases, knowledge of the basic 
qualities of the corpus is essential for interpreting 
the findings.

In particular it is important to keep in mind that 
kinship networks are virtually infinite. Every 
corpus is necessarily only a part of a larger whole, 
and incomplete both with regard to individuals 
and with regard to the links that connect them. 
Choices pertaining to the delimitation and compo-
sition of genealogical corpuses arise not only 
during fieldwork but also prior to analysis as 
a means of reducing the collected data to a 
meaningful core.

Choosing bases and boundaries
The usefulness of exogenous reductions bringing 
sociological, geographical, and demographical 
criteria into play is fairly self-evident. However, 
the value of endogenous reductions based on 
structural features of the network itself is perhaps 
less so, and depends on what one is trying to show. 
For example, one cannot first eliminate all unmar-
ried individuals if one later wants to compare 
matrimonial circuit frequencies with those of kin-
ship relations (e.g., White 1999). This applies not 
only to endogenous reductions but also to endog-
enous augmentations of the network, such as the 
creation of fictive individuals in order to preserve 
information on full siblingship in those cases 
where one or both parents are unknown.

A related problem concerns the delimitation of 
the network to be used for analytic purposes. To 
begin with, it is important that results relating to 
unconnected components of the matrimonial net-
work not be combined indiscriminately, as each 
component represents an autonomous matrimo-
nial universe whose patterning may not obey the 
same rules. This also applies, to a lesser degree, to 
matrimonial bicomponents. However, even when 
analysis is limited to the largest matrimonial 
bicomponent (kernel) of the kinship network, 
additional restrictions are often necessary. Because 
bicomponents contain matrimonial circuits of any 
length, height, and width, including those that 
incorporate very distant ties whose sociological 
relevance is questionable, it is helpful to confine 
analysis to subnetworks formed by matrimonial 
circuits of a certain maximal height or width. It is 
not always easy to determine the optimal criteria 
for such restricted matrimonial networks, choices 
being largely guided by two contrary principles. 
On the one hand, the resulting subnetwork should 
be as large as possible so as to be sufficiently 
representative of the wider kinship network from 
which it is drawn. On the other hand, in order to 
avoid redundancies and to keep the number of 
circuits and circuit types at manageable propor-
tions, it is essential that the latter be kept to a 
minimum.

Determining representativity and significance
Once a delimited data set has been chosen and 
first results obtained, another difficulty arises: to 
what extent do the regularities observed in the 
corpus provide information on the organization of 
the real social network? This, of course, is a gen-
eral problem in network analysis; however, 
because issues of incompleteness are so omnipres-
ent in genealogical research, questions regarding 
the representativity of kinship networks are 
particularly pressing.

One central question concerns the extent to 
which a corpus’s boundaries correspond to endog-
enously definable subnetworks of the real kinship 
network. Another, related question concerns the 
over- and underrepresentation of persons belong-
ing to certain kinship categories. These issues 
apply not only to the individuals (vertices) that 
make up the corpus, but to the relations (lines) 
between them. Kinship networks are often biased 
in that they favor some types of relations over 
others (agnatic over uterine relations, for example, 
for a population with patrilocal residence). It 
might be possible to adjust one’s findings so as to 
eliminate such biases. However, these biases may 
themselves be a function of matrimonial behavior: 
kinship ties that form part of matrimonial circuits 
may be more easily remembered than others. 
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The stronger this correlation between network 
structure and collective memory is, the more dif-
ficult it is to do away with the biases concerned.

The problem of network biases is directly 
related to issues of significance: are the observed 
regularities indicative of a behavioral pattern, or 
are they simply due to chance? In order to treat 
this question by means of a comparison with 
random kinship networks, it is necessary to simu-
late a network that not only reproduces the demo-
graphic features of the concerned population but 
also the biases of the corpus itself. Because of 
this, random permutation (see White, 1999; White, 
this volume) or explicit simulation of the data 
collection process (virtual fieldwork) may prove 
more useful than conventional demographic 
simulation.

Interpretation of results
If “interesting” regularities appear in analysis for 
which the known norms and institutions of the 
society do not provide a straightforward account, 
one is immediately tempted to take them as indi-
cators of some hidden norms or institution. The 
most important thing in kinship data analysis is 
to resist this temptation. Before formulating a 
sociological hypothesis, one must always check 
the following:

• First, does the “interesting” structural feature 
simply reflect a bias of the corpus? (for instance, 
high incidences of patrilateral marriages in a 
corpus where uterine genealogies are shallow).

• Second, is the structural feature, if it does not 
correspond to any known rule, the result of a 
combination of known rules? (for example, in 
a society where uterine nieces are preferred 
spouses and maternal aunts are avoided, pat-
rilateral cross-cousins have a greater chance 
of being at the same time maternal aunts and 
therefore avoided, even if no rule states that they 
should be avoided as such).

• Finally, remember that a sociological hypothesis 
is not validated by the simple fact that no other 
interpretation can account for the structural fea-
ture observed. Sociological hypotheses often can 
be validated only in the field.

Resources

A wide variety of commercial software (Brother’s 
Keeper, Family Tree Maker, Legacy, Kith and 
Kin, etc.) and noncommercial programs (Personal 
Ancestral File, Gramps, etc.) exist for entering, 
storing, and outputting genealogical data. Some 
of them are particularly flexible and are used 
extensively by social scientists: Généatique is 

used by many French historians; Alliance Project, 
developed by S. Sugito and S. Kubota in Japan 
(Sugito, 2004), is widely used by Australian 
anthropologists; Kinship Editor, written by 
M. Fischer, is a key element of the European 
Kinship and Social Security (KASS) project, and 
it allows both for systematic data collection and 
the modeling of kinship phenomena such as termi-
nological usage. There are also additional soft-
ware tools developed by demographers or 
historians for managing records and calculating 
demographic and other variables on the basis of 
empirical genealogical data (e.g., CASOAR 
[Hainsworth and Bardet, 1981]). None of these 
programs, however, allow for an in-depth analysis 
of kinship networks as such.

Such analyses may be undertaken using general 
purpose social network analysis tools. Perhaps the 
software most used in this way is the network 
analysis and visualization program Pajek, devel-
oped by V. Batagelj and A. Mrvar (de Nooy et al., 
2005; Batagelj and Mrvar, 2004, 2008 : Mrvar and 
Batagelj 2004). A number of kinship-centered 
macros have been developed for Pajek by the 
authors and by others (e.g., Tip4Pajek pack by 
K. Hamberger).

Finally, certain programs have been specifi-
cally developed for the analysis of kinship net-
works (including matrimonial circuit censuses). 
First attempts, such as Gen-Par by M. Selz (1987; 
see also Héritier, 1974) and Pgraph by D. White 
(1997, White et al. 1999), have since given way to 
more flexible and easier-to-use software such as 
Genos by L. Barry (2004) and, more recently, 
Puck by K. Hamberger (Hamberger et al., 2009).

An open depository of kinship networks from 
historical and anthropological sources, controlled 
by a scientific board, is hosted at the site of the 
kinsources project (http://kinsource.net).

NOTES

1 We are grateful to Isabelle Daillant and 
Vladimir Batagelj as well as to the editors Peter 
Carrington and John Scott for helpful comments and 
discussions.

2 We are talking of individuals and not of classes. 
An individual may well belong to one’s parent’s 
parent’s marriage class, as in Australian alternating 
generation models. 

3 In digraphs, the notions “path” and “cycle” are 
often restricted to oriented paths and cycles, whereas 
the terms “semipath” and “semicycle” are used if 
arcs are not consistently oriented. Because we are 
talking of mixed graphs (containing edges as well as 
arcs), we use “path” and “cycle” as the general 
terms (as in the case of undirected graphs) and 
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specify them as “oriented” if all of their lines are arcs 
pointing in the same direction. 

4 The terms “chain” and “circuit” are equivalent 
to “path graph” and “cycle graph” in graph-
theoretic literature. Note, however, that these terms 
are also sometimes used in a different meaning, 
namely, as synonyms for “walk” (open and closed, 
respectively). 

5 Named after the Scandinavian mathematician 
Oystein Ore (1960). The representation of marriages 
by edges has been introduced by the computer 
program Pajek (see Batagelj and Mrvar, 2008).

6 Note that the weakly acyclic property of kinship 
networks holds for remarriage cycles because a cycle 
consisting entirely of edges is not an oriented cycle.

7 Kinship networks that incorporate adoptive, 
godparent, or co-genitor relations often have to 
allow for the possibility of more than one parent of a 
given gender (multiple descent).

8 A vertex x is arc-adjacent to another vertex y if 
the arc goes from x to y. It is arc-adjacent from y if 
the arc goes from y to x. 

9 The upper and lower vertices of the P-graph 
and bipartite P-graph are reversed in Figure 35.3 
compared to the Ore-graph. This is because their 
arrows run in reverse, from children to parents, usu-
ally as a unique function mapping a child to a unique 
parental couple. The inverse of this function gives the 
relation of parents to children.

10 The “p” stands for parenté (French for 
“kinship”). 

11 From the French homme (man) and femme 
(woman).

12 This positional notation may also be used, 
within limits, to represent complex kinship relations, 
by leaving the parentheses empty (or by putting two 
letters in it) if the relation entails kinship paths that 
pass through apical ancestors of both genders. For 
instance, the MBD (mother’s brother’s daughter) 
relation is represented as HF()HF, the ZH (sister’s 
husband) relation as H()F.H, and the FWS (father’s 
wife’s son) relation as H(H).(F)H.

13 Original P-graph notation (White and Jorion, 
1992) used letters G and F (from the French garçon 
(boy) and fille (girl). In its present version, P-graph 
notation uses the same letters as positional notation 
(but applies them to lines while positional notation 
applies them to vertices).

14 This is a variant of the ahnentafel genealogical 
numbering system. 

15 In the case of consanguineous kinship rela-
tions, length is also called roman (or civil) degree, 
whereas height is also called german (or canonic) 
degree (these terms derive from the history of 
European kinship). In the case of linear kinship rela-
tions, roman and german degree are identical, and 
we can simply speak of its degree. 

16 For example, in the case of a Dravidian kinship 
network from southern India, where cross-cousin 

marriages may be considered as redoublings of alli-
ance relations rather than as consanguineous mar-
riages (Dumont, [1953] 1975), counting all MBWDs, 
whether they are or are not also MBDs, would make 
good sense.

17 For instance, if two brothers marry two sisters, 
one brother dies, and the remaining brother marries 
the widow, the fact that the longer circuit (of type 
BWZ) includes two shorter ones (of types BW and 
WZ) does not in the least make it sociologically less 
relevant: the BWZ marriage clearly precedes the BW 
(and WZ) marriage (we are grateful to Isabelle 
Daillant for this example).

18 The distinction between circuits and rings 
(induced circuits) is a rather recent one. Much of 
what has been said regarding matrimonial rings in 
Hamberger et al. (2004) refers to matrimonial circuits 
in general, while rings in White (2004) refers to 
induced circuits.

19 Note, however, that this restriction may not 
mean the same thing in P-graph and in Ore-graph 
representation. The subgraph induced by the vertices 
of a circuit changes meaning according to whether 
vertices are defined as individuals (Ore-graph) or as 
marriages (P-graph). For instance, a marriage with an 
MMBDD who is at the same time an MBD constitutes 
a ring in Ore-graph but not in P-graph representa-
tion. If the context is not clear, one should therefore 
speak of Ore-rings and P-rings to avoid ambiguities.

20 This example holds in a P-graph as well as in 
Ore-graph representation: in both cases, the outer 
circuit is a ring. In general, Ore-rings are not always 
P-rings (see note 19). 

21 This is equally true in P-graph representation, 
where the two individuals 8 and 9 are represented by 
two lines forming an extra chain between the verti-
ces (representing marriages) of the outer circuit. 

22 See http://kinsource.net/kinsrc/bin/view/
KinSources/Watchi. 

23 Every line of a matrimonial bicomponent is by 
definition in some matrimonial circuit. On the other 
hand, every matrimonial circuit is either a matrimo-
nial bicomponent in itself or forms part of some 
larger matrimonial bicomponent. The concept of the 
nucleus is a restriction of the definition of the core by 
White and Jorion (1996; cf. Houseman and White, 
1996) as the union of all matrimonial bicomponents 
and their single-link connections (equating with 
2-core as defined by Seidman, 1983). Neither is nec-
essarily connected.
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