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ABSTRACT

We present posterior sample-based cosmic microwave background (CMB) constraints from Planck LFI and WMAP observations as
derived through global end-to-end Bayesian processing within the BeyondPlanck framework. We first use these samples to study
correlations between CMB, foreground, and instrumental parameters, and we identify a particularly strong degeneracy between CMB
temperature fluctuations and free-free emission on intermediate angular scales (400 . ` . 600), which is mitigated through model
reduction, masking, and resampling. We compare our posterior-based CMB results with previous Planck products, and find generally
good agreement, although with notably higher noise due to our exclusion of HFI data. We find a best-fit CMB dipole amplitude of
3362.7 ± 1.4 µK, in excellent agreement with previous Planck results. The quoted dipole uncertainty is derived directly from the
sampled posterior distribution, and does not involve any ad hoc contributions for Planck instrumental systematic effects. Similarly,
we find a temperature quadrupole amplitude of σTT

2 = 229 ± 97 µK2, which is in good agreement with previous results in terms
of the amplitude, but the uncertainty is an order of magnitude larger than the naive diagonal Fisher uncertainty. Relatedly, we find
lower evidence for a possible alignment between the quadrupole and octopole than previously reported due to a much larger scatter
in the individual quadrupole coefficients, caused both by marginalizing over a more complete set of systematic effects, but also by
our more conservative analysis mask required to mitigate the free-free degeneracy. For higher multipoles, we find that the angular
temperature power spectrum is generally in good agreement with both Planck and WMAP. At the same time, we note that this is
the first time the sample-based asymptotically exact Blackwell-Rao estimator has been successfully established for multipoles up to
` ≤ 600, and it now accounts for the majority of the cosmologically important information. Overall, this analysis demonstrates the
unique capabilities of the Bayesian approach with respect to end-to-end systematic uncertainty propagation, and we believe it can
and should play an important role in the analysis of future CMB experiments. Cosmological parameter constraints are presented in a
companion paper (Paradiso et al. 2022).

Key words. Cosmology: observations, polarization, cosmic microwave background, diffuse radiation
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1. Introduction

Detailed measurements of the cosmic microwave background
(CMB) have revolutionized modern cosmology during the last
three decades. Offering a unique and crystal clear view of the
baby Universe only 380 000 years after the Big Bang (e.g., Ben-
nett et al. 2013; Planck Collaboration I 2020), its tiny tempera-
ture fluctuations allow scientists to measure a range of cosmo-
logical parameters with sub-percent accuracy, and this work has
culminated in a tremendously successful standard model of cos-
mology called ΛCDM (e.g., Hinshaw et al. 2013; Planck Collab-
oration VI 2020). According to this model, the Universe began
with a hot Big Bang some 13.8 billion years ago; it was filled
with Gaussian random density fluctuations during a cataclysmic
quantum mechanical process called inflation taking place only
some 10−34 seconds after the beginning, during which its size
grew exponentially; and it is today populated by about 65 % dark
energy (Λ), 30 % cold dark matter (CDM), and only 5 % ordinary
baryonic matter.

While this model is extremely successful in terms of pre-
dicting cosmological observations quantitatively, it leaves unan-
swered foundational questions, such as “What is dark matter?”
and “What is dark energy?” Perhaps the biggest of them all
is simply, “What exactly did happen during the very first mo-
ments of the Big Bang?” As of 2022, cosmic inflation (e.g.,
Kamionkowski & Kovetz 2016) represents a basic paradigm for
this process that is widely accepted by the community, sim-
ply because it is able to heuristically explain a range of impor-
tant observations in modern cosmology, including cosmological
isotropy, flatness, and the absence of topological defects, and its
predictions are largely consistent with CMB measurements, such
as Gaussianity and a nearly scale-invariant, but slightly tilted,
spectrum of initial perturbations. At the same time, inflation as a
general concept is both heavily criticized for being overly flexi-
ble (e.g., Penrose 1989; Ijjas et al. 2014), to the extent that one
might question whether it has any predictive power, and for lack-
ing a robust theoretical foundation, which may require a proper
theory of quantum gravity.

To make further progress more data are desperately needed.
And the most promising path to such is through deep measure-
ments of large-scale CMB polarization (e.g., Kamionkowski &
Kovetz 2016). A firm prediction of the inflationary paradigm is
that there should exist a background of primordial gravitational
waves that were excited during the period of exponential ex-
pansion. If so, these super-horizon gravitational waves should
also make an imprint on the CMB field in the form of so-called
B-mode polarization. The amplitude of this signal is typically
measured in terms of the tensor-to-scalar ratio, r, and different
inflationary models (corresponding to different inflationary po-
tentials) predict different values for r, with typical values vary-
ing between 10−4 and 0.1 for large model spaces. The strongest
upper limit today is r < 0.0321 at 95 % confidence, as measured

1 Evaluated at a pivot scale of 0.05 Mpc−1.

by the combination of Bicep2/Keck and Planck (Tristram et al.
2022). A robust positive detection of r > 0 would rank among
the greatest discoveries in cosmology, providing a unique sig-
nature of ultra-high energy physics almost at the Planck energy
scale. As a reflection of the fundamental importance of such a
detection, billions of dollars, euros and yen are currently being
invested in detecting this signal (Gerakakis et al. 2022).

However, the technical challenges involved in making such
a discovery are massive. For a typical value of r ∼ 10−3, the am-
plitude of the B-mode polarization signal will not be more than
a few tens of nanokelvins on large angular scales. All sources of
systematic errors must therefore be controlled to unprecedented
levels, whether they are of instrumental or astrophysical origin,
and the corresponding uncertainties must be accurately propa-
gated throughout the entire analysis process. Underestimating
the integrated uncertainty on r by, say, a factor of two could
turn an innocent 2.5σ fluke into a fatal 5σ false claim of new
physics.

Most pre-Planck and early Planck CMB analysis pipelines
have effectively relied on systematic errors being relatively small
compared both with the target signal and the noise level of the
given experiment (e.g., Bennett et al. 2013; Planck Collabora-
tion I 2014). In many cases it has been an acceptable approxi-
mation to account primarily for (correlated and white) noise un-
certainties on the instrument side and sample and cosmic vari-
ance on the CMB side. The impact of astrophysical foregrounds,
whether caused by Milky Way or extra-galactic sources, has typ-
ically been minor, and could often be accounted for through
simple template fitting or internal linear combination methods
(e.g., Bennett et al. 2003; Planck Collaboration XII 2014). How-
ever, as the signal-to-noise ratio of a given dataset increases, the
relative importance of systematic errors increases, to the point
that these eventually totally dominate the error budget. A key
example of this is the strong coupling between calibration and
astrophysical foregrounds; since high-sensitivity CMB experi-
ments, such as Planck, directly exploit the CMB dipole to es-
timate their gain, it is key to establish a robust model of any
Galactic foreground that obscure this signal. At the same time,
such a foreground model can only be derived from the same
high-sensitivity dataset, leading to a highly non-linear analysis
problem. For Planck, this insight eventually led to the develop-
ment of highly integrated analysis pipelines (Delouis et al. 2019;
Planck Collaboration Int. LVII 2020a) that jointly fit instrumen-
tal and astrophysical parameters as part of the mapmaking pro-
cess. It is safe to assume that similar integrated approaches will
be even more important for next-generation inflationary B-mode
experiments, due to their extreme precision requirements.

To understand how error propagation may be improved for
next-generation experiments, it is worth noting that two funda-
mentally different modes of operations have seen widespread use
in the CMB field until today, corresponding either to the use of
simulations or Bayesian statistics, respectively. In the simula-
tion approach, one assumes to precisely know the cosmological
model, the astrophysical foregrounds, and the instrument, and
one derives as realistic time-ordered data (TOD) simulations as
possible of the dataset in question (e.g., Planck Collaboration
XII 2016). Each simulation is then processed with exactly the
same algorithms as the real data, and the scatter in the final quan-
tity is taken as the uncertainty of the point estimate derived from
the data. This mode of operation has traditionally dominated all
lower-level aspects of CMB data processing, including calibra-
tion, mapmaking, and component separation (e.g, Planck Col-
laboration VII 2016; Planck Collaboration IV 2018).
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In contrast, the key elements in the Bayesian approach are
explicit models for the data and likelihood in question, and the
analysis process simply amounts to mapping out the correspond-
ing posterior distribution. In practice, this is typically done using
modern Markov Chain Monte Carlo (MCMC) methods, due to
the high dimensionality of the data model. This approach is typ-
ically preferred for the high-level aspects of the analysis, and
in particular for cosmological parameter estimation (e.g., Lewis
& Bridle 2002). A main reason for this is that it allows more
naturally and efficiently for exploration of degeneracies between
parameters. For Planck, the Bayesian approach was used for the
final cosmological parameter stage, integrating a limited instru-
mental and astrophysical model directly into the corresponding
likelihood (Planck Collaboration V 2020), allowing joint explo-
ration of a few hundred free parameters (Planck Collaboration
VI 2020). However, most instrumental uncertainties were still
estimated using the low-level simulation approach.

In this paper, we consider error propagation within the con-
text of a novel end-to-end Bayesian analysis framework called
BeyondPlanck (BeyondPlanck 2022). This pipeline is in princi-
ple equivalent to the Bayesian cosmological parameter approach
described above, but with one critical difference: In Beyond-
Planck, the entire pipeline is integrated into the core Monte
Carlo sampler (BeyondPlanck 2022). As such, the number of
free model parameters is not hundreds, but billions, and there is
no separation between low-level and high-level analysis. Two
key advantages of this global integrated approach are, firstly,
joint exploration of all free parameters and, secondly, seamless
end-to-end error propagation. In short, it is the ultimate logical
extension of Planck’s approach of adding a handful of critical in-
strumental and astrophysical parameters to the CMB likelihood.
It is also interesting to note that this approach was in fact first
suggested almost 20 years ago by Jewell et al. (2004) and Wan-
delt et al. (2004), and it took almost two decades of algorithmic
and computer developments before it could be realized in prac-
tice.

In this paper, we present CMB results derived from within
the BeyondPlanck pipeline, while a series of companion papers
describes individual instrumental (Herman et al. 2022a; Ihle et
al. 2022; Gjerløw et al. 2022; Galloway et al. 2022b; Svalheim et
al. 2022a) and astrophysical components (Andersen et al. 2022;
Svalheim et al. 2022b; Herman et al. 2022b). An important com-
mon feature in all of these papers, however, is the fact that each
free parameter is quantified in the form of a set of samples drawn
from the joint posterior distribution. At first glance, these look
very similar to the simulations produced in the traditional low-
level approach – but they have a fundamentally different statis-
tical interpretation: While a simulation represents one possible
instrument configuration in a random universe, unconstrained by
the actual measurements, a posterior sample represents one pos-
sible instrument configuration in our universe, as constrained by
the actual measurements.

An important consequence of this difference is that the two
approaches have different aspects of the full analysis problem
in which they excel. For questions that may be formulated in
terms of numerical parameter estimates that requires a robust er-
ror assessment, for instance “what is the best-fit value of r”, the
Bayesian approach is ideal. For questions that may be formu-
lated in terms of statistical agreement with a general paradigm,
such as “how likely is the CMB Cold Spot to appear in a Gaus-
sian and isotropic universe?”, the simulation-based approach is
ideal. That is not to say that either of the two methods cannot ad-
dress questions in the other category – but they are complemen-
tary, and overall better suited to answer different questions. Go-

ing forward, we consider it very likely that most next-generation
experiments will want to implement both pipeline types, and
cross-validate results between them.

In this paper we demonstrate the use of these novel posterior
samples for several classic CMB analysis applications, including
CMB dipole estimation, power spectrum estimation, and low-`
anomaly studies, with special attention paid to robust error prop-
agation. However, we stress that the current BeyondPlanck pro-
cessing primarily focuses on Planck LFI data, and in particular
does not include Planck HFI observations in the 100 − 217GHz
range (BeyondPlanck 2022). The results are therefore signifi-
cantly less sensitive than the main Planck results in most re-
spects. In general, the main purpose of the current paper is to
demonstrate the sample-based CMB analysis from an algorith-
mic point-of-view, while leaving full integration of additional
state-of-the-art datasets to future work.

The rest of the paper is organized as follows. In Sect. 2 we
briefly review the BeyondPlanck data model, and show how
CMB samples are derived within this framework. In Sect. 3 we
inspect the raw outputs from the algorithm in the form of pos-
terior samples, quantify correlations among the various parame-
ters, and identify one particularly strong degeneracy with respect
to free-free emission. In Sect. 4, we consider posterior mean
maps and power spectra, and compare their properties with those
presented by earlier analyses. In Sect. 5 we present the first fully
Bayesian estimate of the CMB Solar dipole from Planck data,
before we revisit selected low-` anomalies in Sect. 6. We con-
clude in Sect. 7.

2. BeyondPlanck and end-to-end CMB analysis

2.1. General model and Gibbs sampling scheme

The starting point of the LFI-oriented Bayesian BeyondPlanck
analysis framework is an explicit parametric model of the time-
ordered data of the following form (BeyondPlanck 2022),

d j,t = g j,tPtp, j

[
Bsymm

pp′, j ssky
p′, j + sorb

j,t + sfsl
j,t

]
+ s1 Hz

j,t + ncorr
j,t + nw

j,t (1)

≡ stot + nw
j,t (2)

In this expression, j is a detector index, t is a time index, p is
a sky pixel index. Further, g represents the time-variable instru-
mental gain; P is a matrix that describes the satellite pointing;
Bsymm denotes a (assumed azimuthally symmetric) beam convo-
lution operator; ssky represents the total astrophysical sky signal;
sorb is the orbital CMB dipole; sfsl are the far sidelobe correc-
tions; s1 Hz represents electronic 1 Hz spike corrections; ncorr is
the correlated noise; and nw represents white Gaussian noise.
For later notational convenience, the last line defines all time-
ordered data components except the white noise as stot.

The total sky signal may be decomposed into individual as-
trophysical emission mechanisms, and we assume the following
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expression in the current analysis,

ssky =
(
aCMB + aquad(ν)

) x2ex

(ex − 1)2 + (3)

+ as
(
ν

ν0,s

)βs

+ (4)

+ aff
(ν0,ff

ν

)2 gff(ν; Te)
gff(ν0,ff ; Te)

+ (5)

+ aame
(ν0,ame

ν

)2 fame

(
ν · 30.0 GHz

νp

)
fame

(
ν0,ame ·

30.0 GHz
νp

)+ (6)

+ ad
(
ν

ν0,d

)βd+1 ehν0,d/kBTd − 1
ehν/kBTd − 1

+ (7)

+ UmJy

Nsrc∑
j=1

a j,src

(
ν

ν0,src

)α j,src−2

, (8)

where h is Planck’s constant, kB is Boltzmann’s constant, and
x ≡ hν/kBTCMB where TCMB = 2.7255 K is the mean CMB tem-
perature (Fixsen 2009). Each line in this expression represents
one specific astrophysical component, each of which is defined
in terms of an amplitude map, a, and a spectral energy density,
f (ν; β), that describe the strength of the component as a func-
tion of frequency, relative to some reference frequency, ν0, and
some set of free spectral parameters, β. From top to bottom,
the six lines describe respectively CMB (including a relativistic
quadrupole correction), synchrotron, free-free, AME, and ther-
mal dust emission, and, finally, a discrete set of point sources.
We assume that only CMB, synchrotron, and thermal dust emis-
sion are polarized. For further information regarding any of these
astrophysical foreground components, see Andersen et al. (2022)
and Svalheim et al. (2022b). In practice, each of these terms is
integrated separately with respect to the instrumental bandpass
of each detector, which itself also is associated with a free cor-
rection parameter ∆bp, as discussed by Svalheim et al. (2022a).

It is convenient to decompose the CMB sky map into spher-
ical harmonics,

aCMB(n̂) =

`max∑
`=0

∑̀
m=−`

a`mY`m(n̂), (9)

where `max denotes an harmonic-space bandwidth limit, and a`m
are the spherical harmonics coefficients. It is common to assume
that the CMB field is statistically isotropic, in which case the
CMB covariance matrix may be defined as

S CMB
`m,`′m′ ≡

〈
a`ma∗`′m′

〉
≡ C`δ``′δmm′ , (10)

where the brackets indicate an ensemble average, and C` is
called the angular power spectrum. (For simplicity, this notation
applies only to CMB temperature analysis, but the generalization
to polarization is straightforward, and described by Zaldarriaga
& Seljak 1997). The angular power spectrum plays a particu-
larly important role in CMB analysis, as this provides a com-
putationally efficient path to cosmological parameter estimation
(e.g., Lewis & Bridle 2002). Estimating the power spectrum dis-
tribution P(C` | d), marginalized over all relevant systematic
effects, may in fact be considered the single most important goal
of any CMB analysis pipeline.

Given this parametric signal model, the BeyondPlanck ap-
proach to CMB analysis follows well-established Bayesian

methods. That is, let us first define ω ≡ {a, β, g,∆bp, ncorr,C`, . . .}
to be the set of all free parameters in the model; instrumental,
astrophysical and cosmological. By Bayes’ theorem, the joint
posterior distribution may then be written as

P(ω | d) =
P(d | ω)P(ω)

P(d)
∝ L(ω)P(ω), (11)

where L(ω) ≡ P(d | ω) is called the likelihood, and P(ω) is a
set of user-specified priors. The likelihood is defined simply by
noting that the white noise, which is equal to d − stot (Eq. 2), is
assumed to be Gaussian, and therefore

−2 lnL(ω) =
(
d − stot(ω)

)t
N−1

wn

(
d − stot(ω)

)
, (12)

where Nwn is the white noise covariance matrix. The prior, P(ω),
is less well defined, and must be specified by the user. For a
summary of the priors adopted in the current analysis, see Be-
yondPlanck (2022).

It is important to note that ω includes a vast number of
parameters with different impact on the final posterior. For in-
stance, the correlated noise, ncorr, contains in principle billions
of degrees of freedom, one for each time sample, but each of
those affect higher-level quantities almost negligibly. Each as-
trophysical sky map contains millions of degrees of freedom,
each of which affect the full posterior noticeably. Then there are
a handful of global parameters, for instance the absolute gain and
bandpass corrections, that have a massive impact on almost all
other model parameters. Both the vast number of free parameters
and their complex relationships make it a significant computa-
tional challenge to map out the posterior distribution efficiently.
The only computationally feasible approach suggested to date is
Gibbs sampling (Geman & Geman 1984), which allows the user
to draw samples from a joint distribution by iterating over all
corresponding conditional distributions. For BeyondPlanck, this
process may be formally written in terms of the following Gibbs
chain,

g ← P(g | d, ξn,∆bp, a, β,C`) (13)
ncorr ← P(ncorr | d, g, ξn,∆bp, a, β,C`) (14)
ξn ← P(ξn | d, g, ncorr, ∆bp, a, β,C`) (15)

∆bp ← P(∆bp | d, g, ncorr, ξn, a, β,C`) (16)
β ← P(β | d, g, ncorr, ξn,∆bp, C`) (17)
a ← P(a | d, g, ncorr, ξn,∆bp, β,C`) (18)

C` ← P(C` | d, g, ncorr, ξn,∆bp, a, β ), (19)

where ← indicates sampling from the distribution on the right
hand side. Bayesian CMB analysis as implemented within the
BeyondPlanck framework is nothing but repeated sampling
from each of these distributions, and the main product from this
process is a discrete set of samples drawn from the joint posterior
distribution, P(ω | d), which naturally and seamlessly allows for
detailed instrumental systematics and astrophysical foreground
marginalization.

CMB sky map and power spectrum estimation are accounted
for in the above Gibbs loop in Eqs. (18) and (19), respectively,
and explicit expressions for these were first derived by Jewell
et al. (2004) and Wandelt et al. (2004). All other steps describe
either instrumental or astrophysical effects, and only affect the
CMB estimates indirectly. Sampling algorithms for each of those
distributions are described in detail in BeyondPlanck (2022) and
references therein, and in the following we only briefly review
the sampling algorithms for Eqs. (18) and (19).
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2.2. CMB sky map sampling, P(aCMB | d, g, β,C`, . . .)

To derive an appropriate sampling algorithm for P(aCMB |

d, g, β, . . .), we start with the general data model defined in
Eqs. (2)–(3), and aim to isolate the component amplitude a pa-
rameter. In principle, we could even isolate the aCMB parameter
alone, but since it generally leads to a shorter Monte Carlo corre-
lation length to sample partially degenerate components jointly,
we will derive a joint sampling step for both CMB and astro-
physical foreground amplitudes; see Andersen et al. (2022) for
further details.

The first step in the algorithm corresponds essentially to
mapmaking. Because all instrumental parameters are condi-
tioned on in this distribution, we may deterministically form the
following residual,

r j,t ≡
d j,t − (s1 Hz

j,t + ncorr
j,t )

g j,t
− Ptp, j

[
sorb

j,t + sfsl
j,t

]
(20)

= Ptp, jBpp′, js
sky
p′, j + nw

j,t/g j,t, (21)

which now represents TOD that contain only astrophysical sig-
nal signal convolved with an (implicitly assumed azimuthally
symmetric, see BeyondPlanck 2022, for an in depth discussion)
beam and white noise, all in calibrated brightness temperature
units. This residual may be compressed nearly losslessly into
a pixelized sky map, mν, by solving the so-called mapmaking
equation,∑

j

Pt
jN
−1
j,wnP j

 mν =
∑

j

Pt
jN
−1
j,wnr j. (22)

For Planck, this equation may be solved pixel-by-pixel, and it is
therefore computationally very fast.

The second step in the algorithm corresponds essentially to
component separation. Given the above frequency maps, the data
model in Eqs. (2)–(3) may now be rewritten compactly in terms
of sky maps,

mν = Bsymm
ν Mν,ca + nwn

ν , (23)

where Mν,c is called the mixing matrix, and encodes the
bandpass-integrated SEDs for the various astrophysical compo-
nents in each column; when multiplied by the amplitude vector,
this matrix generates the full sky signal at frequency ν in the
appropriate units for that channel.

It is now straightforward to sample a, again based on the ob-
servation that the white noise component is Gaussian, and there-
fore that also mν −Bsymm

ν Mν,ca is Gaussian with the same covari-
ance. The necessary sampling equation for this step is therefore
structurally identical to the mapmaking equation in Eq. (22), ex-
cept that it has an additional fluctuation term in order to propa-
gate noise uncertainties,∑

ν

Bt
νM

t
νN
−1
ν,wnMνBν

 a =
∑
ν

Bt
νM

t
νN
−1
ν,wnmν +

∑
ν

Bt
νM

t
νN
− 1

2
ν,wnην,

(24)

where ην is a random vector of N(0, 1) stochastic variates; for
a full derivation of this equation, see Appendix A in Beyond-
Planck (2022). A computationally efficient Conjugate Gradient
(CG) solver for this equation was presented by Seljebotn et al.
(2019).

Equation (24) does not account for priors on a. We support
Gaussian priors in our analyses, as defined in terms of some

mean map, µ, and a corresponding prior covariance matrix, S.
The purpose of this prior is two-fold; firstly, for the CMB compo-
nent it directly defines the connection to the angular power spec-
trum and cosmological parameters, as described by the CMB
covariance matrix in Eq. (10). Secondly, for astrophysical fore-
grounds it both allows us to introduce useful information in the
form of prior knowledge from other datasets to break particularly
difficult degeneracies, and it allows us to impose smoothness on
small angular scales. With such a Gaussian prior in place, the
full sampling equation for a reads

S−1 +
∑
ν

Bt
νM

t
νN
−1
ν,wnMνBν

a =
∑
ν

Bt
νM

t
νN
−1
ν,wnmν+

+S−1µ +
∑
ν

Bt
νM

t
νN
− 1

2
ν,wnην + S−

1
2 η0. (25)

For a derivation of this expression, see Appendix A in Beyond-
Planck (2022), and for a detailed discussion of foreground priors
in BeyondPlanck, see Andersen et al. (2022).

It is worth noting that all of the above equations are gen-
eral in terms of basis sets, and apply equally well to objects de-
fined in terms of pixels or spherical harmonics or any other com-
plete basis on the sphere. In practice, our current codes model all
diffuse components in terms of spherical harmonics up to some
band limit `max. The main reason for this choice is simply that
harmonics are more efficient in terms of the number of free pa-
rameters than pixels; for a HEALPix2 map (Górski et al. 2005)
with a given Nside resolution parameter, there are 12 N2

side pix-
els, while for a typical maximum band limit of `max = 3 Nside,
there are only (`max + 1)2 ≈ 9 N2

side spherical harmonic coeffi-
cients. In addition, it is easier to impose additional smoothness
on a given foreground component in harmonic space, simply by
reducing `max for that component. We emphasize, however, that
this is only a practical choice, not a fundamental one; the algo-
rithm works equally well with both bases.

2.3. Angular power spectrum sampling, P(C` | d, a, . . .)

Next, we need to derive a sampling algorithm for the power spec-
trum distribution, P(C` | d, a, . . .). This was first presented by
Wandelt et al. (2004), and we will only briefly review the main
steps in the following.

Firstly, we make the trivial observation that
P(C` | d, a, . . .) = P(C` | aCMB); if we already know the CMB
map, aCMB, with infinite precision, no further instrumental or
astrophysical knowledge can possibly provide more information
regarding the CMB power spectrum. Secondly, in the previous
sampling step we assumed only that the CMB SED is defined
by a blackbody spectrum; in this step we additionally assume
that the CMB is statistically isotropic, i.e., that its harmonic
space covariance matrix is diagonal and given by C`, and that it
is Gaussian distributed. With these additional assumptions, the

2 https://healpix.jpl.nasa.gov
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relevant distribution may be written as follows,

P(C` | a) ∝
e−

1
2 atS−1 a
√
|S|

(26)

=
e−

1
2
∑
`
|a`m |

2

C`∏
` C

2`+1
2

`

(27)

=
∏
`

e−
2`+1

2
σ`
C`

C
2`+1

2
`

, (28)

where σ` = 1
2`+1 |a`m|

2 is the observed power spectrum of our
specific universe.

The distribution inside the product in Eq. (28) is called an
inverse Gamma distribution with 2` + 1 degrees of freedom. Its
multivariate generalization of this, needed for polarization analy-
sis, is called the inverse Wishart distribution (Larson et al. 2007).
Sampling from an inverse Gamma distribution is trivial; simply
draw 2` − 1 independent Gaussian random variates, ηi, and set
C` = σ`/

∑
i η

2
i (Wandelt et al. 2004).

Unfortunately, as discussed by Eriksen et al. (2004b), this
strict Gibbs sampling algorithm for a and C` has a significant
drawback in the low signal-to-noise regime, namely that the
Monte Carlo step size between two consecutive C` samples is de-
termined by cosmic variance alone, while the full posterior width
is defined by both cosmic variance, sample variance (i.e., mask-
ing), and instrumental noise. In practice, this algorithm therefore
has a prohibitively long correlation length at high multipoles.
This problem was addressed and solved by Jewell et al. (2009)
and Racine et al. (2016), who proposed a joint sampling step for
{a,C`} that moves quickly in the low signal-to-noise regime. Un-
fortunately, this step has not yet been fully implemented in the
latest version of the Commander code (Galloway et al. 2022a),
and it is therefore not used in the BeyondPlanck processing.
This work is, however, on-going, and will be available in the
near future for other projects. An immediate result of this, how-
ever, is that, in the following, we will only present a Beyond-
Planck temperature power spectrum up to `max = 600, while
higher multipoles will, when needed, be taken from the official
Planck processing (Planck Collaboration V 2020).

2.4. BeyondPlanck data selection

As described by BeyondPlanck (2022), the BeyondPlanck pro-
gram has two main goals. The first goal is to implement and
demonstrate the world’s first end-to-end Bayesian sampling al-
gorithm for CMB observations. The second goal is to resolve a
number of outstanding questions regarding the Planck LFI data
that remained after the conclusion of the official Planck consor-
tium. For both of these reasons, the BeyondPlanck processing
includes significantly less data than if the primary goal had been
to establish a new state-of-the-art sky model and CMB sky map.
Explicitly, we only include Planck LFI 30, 44, and 70 GHz data
in the time-domain, which are the main target of the entire anal-
ysis; WMAP Ka, Q, and V data to constrain low-frequency fore-
grounds and poorly observed Planck modes; Haslam 408 MHz
measurements to constrain synchrotron emission; and Planck
PR4 measurements at 857 GHz (in temperature) and 353 GHz
(in polarization) to constrain thermal dust emission.

Critically, the CMB dominated HFI and the WMAP K-band
data are not included: Even though they would clearly result in
a better and less degenerate sky model, they would also obscure

Fig. 1. Temperature (top) and polarization (bottom) confidence masks
used for BeyondPlanck CMB analysis. The mask allow, respectively,
for a sky fraction of 69 % and 68 %.

the impact of the new algorithm because of their high signal-
to-noise ratios, and they could also potentially introduce un-
modelled systematic errors into the LFI results. Instead, gradual
integration of these datasets falls within the scope of the Cos-
moglobe3 framework (Gerakakis et al. 2022; Watts et al. 2022),
which aims to apply these methods to a broad range of state-of-
the-art datasets in the field.

2.5. Masking, degeneracies, and resampling

For an ideal dataset and a well constrained model, the above al-
gorithm could in principle be applied without additional mod-
ifications. However, for real-world data there are several chal-
lenges that must be addressed. The first of these is masking: De-
spite the notable complexity of the astrophysical data model de-
scribed by Eqs. (3)–(8), this is by no means adequate to model
the actual sky to the statistical precision of the Planck data. As a
result, we have to remove parts of the sky, in particular the Galac-
tic plane and bright point sources, before actually estimating the
CMB power spectrum.

The CMB confidence mask used for the current Beyond-
Planck processing is shown in Fig. 1, and is generated in a two-
step process. First, we compute data-minus-signal residual maps
for each CMB-dominated frequency. These are smoothed to 1◦
angular resolution, and thresholded in absolute amplitude. These
maps serve a similar purpose as absolute goodness-of-fit tracers
as the total χ2 map that was used to define the Commander con-
fidence mask in for instance the Planck 2018 analysis. However,
the total χ2 does not provide information on the quality of the in-
dividual components, but only on the capability of the model to
describe the full set of frequencies. By considering only residual
maps for the CMB-dominated frequencies, we instead exclude
potential modeling issues that affect only foreground reconstruc-
tion but are irrelevant for CMB estimation. These partial single-

3 https://cosmoglobe.uio.no
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Fig. 2. Full-resolution CMB temperature constrained realization maps.
(Top:) Single constrained realization, si, drawn from P(s | d,C`, . . .).
(Middle:) Posterior mean map, 〈s〉, as evaluated from the ensemble
of constrained CMB realizations; note that the small-scale signal am-
plitude inside the mask decreases smoothly to zero with increasing
distance from the edge of the mask. (Bottom:) CMB posterior stan-
dard deviation map, as evaluated pixel-by-pixel from the ensemble of
constrained CMB realizations. This map is dominated by instrumental
noise outside the mask, and by random fluctuations informed by the as-
sumptions of isotropy and Gaussianity inside the mask. The CMB Solar
dipole has been removed from the top two panels.

frequency masks are multiplied together to form an overall con-
fidence mask.

The second mask generation step accounts for the resam-
pling procedure after excluding free-free emission from the
model. As discussed in greater detail in Sec. 3 below, sample
fluctuations in CMB maps are correlated with those in the free-
free component at intermediate scales. Intuitively, we do not trust

any pixel for which the CMB map is significantly different de-
pending on whether free-free emission is modelled or not. This
idea is implemented in practice by generating a single resampled
constrained realization; computing the difference between this
constrained realization (without free-free emission in the model)
and the corresponding CMB map from the main Gibbs analysis
(with free-free emission in the model); computing the absolute
value, and smoothing to 4◦ FWHM; and exclude all pixels above
a 10 µK threshold, corresponding to a ∼ 3σ fluctuation for the
difference map defined above. The resulting mask is median fil-
tered with a 4 deg radius to exclude isolated “islands” inside
the Galactic plane, and finally we exclude point sources using
the Planck LFI template point source mask. For polarization, we
adopt the same Planck LFI set of masks described in Planck Col-
laboration V (2020), and adopt the R1.8 (with fsky = 0.68) for
the polarization cosmological analysis; see Paradiso et al. (2022)
for further discussion.

Formally speaking, applying a confidence mask in the sam-
pling algorithms described in Sects. 2.2 and 2.3 is trivial; one
simply sets the masked pixels in the inverse frequency covari-
ance matrix, N−1

ν to zero, and thereby assign the removed pixels
infinite noise. In practice, however, this also carries a high com-
putational cost for solving Eq. (24) by CG, as it massively in-
creases the condition number of the coefficient matrix on the left-
hand side (Seljebotn et al. 2019). At the same time, the Galac-
tic plane region is critically important to estimate other parame-
ters in the full data model, for instance the bandpass corrections
(Svalheim et al. 2022a), and simply excluding these regions en-
tirely from the analysis is therefore both computationally expen-
sive and wasteful in terms of throwing away useful information.

A second complication regards degeneracies between the
various astrophysical components on small angular scales. As
discussed by Andersen et al. (2022), the BeyondPlanck dataset
(comprising Planck LFI, WMAP, two HFI channels, and Haslam
408 MHz observations) simply is not able to robustly constrain
the astrophysical model on its own on multipoles above ` & 300;
on these scales, the LFI 30 GHz and WMAP Ka-band beams start
to drop off exponentially, and their effective signal-to-noise ra-
tio falls quickly. Leaving only intermediate frequency to con-
strain the model, one observes a very strong degeneracy between
CMB, AME, and free-free emission. To solve this problem, An-
dersen et al. (2022) introduce informative Gaussian priors on the
free-free and AME components, effectively using information
from Planck HFI to constrain the spatial morphology of these
components on small angular scales. The impact of these priors
on the CMB component are explored in Sect. 3 in this paper.

To simultaneously mitigate both the masking-induced com-
putational expense and the degeneracy challenges, we introduce
two small but important additions to the Gibbs chain described
in Eqs. (13)–(19) that we refer to as “resampling”. The first step
of this process is to run the algorithm as described in the previ-
ous sections, but without imposing either a confidence mask or
the Gaussian prior on the CMB component. The outputs from
this process are thus full-sky CMB and astrophysical component
maps, together with a full characterization of the various instru-
mental parameters. These preliminary CMB maps are, however,
not suitable for high-precision temperature-based power spec-
trum and cosmological parameter analysis because of unmasked
foreground residuals and the free-free degeneracy on intermedi-
ate scales discussed above; they can, however, be used for large-
angle polarization analysis, as free-free emission is not expected
to be significantly polarized.

To establish CMB intensity maps that actually can be used
for cosmological analysis, we resample the original chain.
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Fig. 3. Trace plots of a set of selected CMB, component separation, and instrument parameters; see main text for full definitions. The different
colors indicate independent Gibbs chains, and ’a’ and ’b’ subscripts indicate HEALPix pixel numbers ’340’ and ’1960’ at resolution Nside = 16 in
ring ordering, respectively.

That is, for each sample in the main chain, we resample the
CMB component while conditioning on the instrumental and
non-linear astrophysical parameters derived in the first main
sampling phase. During this process, we make two important
changes to the data model: We first apply the confidence mask,
as defined above, to suppress the majority of the residual fore-
ground contamination. Secondly, we remove the free-free com-
ponent in its entirety from the model, leaving only synchrotron,
AME, thermal dust, and point sources to account for any non-
masked signal at the unmasked high Galactic latitudes. Since
free-free emission is generally more localized on the sky than
synchrotron or thermal dust emission (Planck Collaboration Int.

XLVI 2016; Andersen et al. 2022), it is possible to eliminate
most of this signal by masking. On the other hand, the con-
fidence mask does have to be considerably larger than if free-
free emission had been explicitly modelled, and this is the main
reason that our temperature confidence mask, as defined above,
has a relatively low accepted sky fraction of only fsky = 0.64.
To account for possible unmasked residual free-free emission
at high latitudes, we also resample the AME component ampli-
tude jointly with the CMB component, such that the resulting
AME component at this stage in reality becomes an “AME-plus-
free-free” component. This is conceptually similar to the single
“low-frequency foreground” component used in the Planck 2018
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Commander analysis, except that in that case also synchrotron
emission was included. We note, however, that this “AME-plus-
free-free” component is never used in any further analysis, but is
only a pure phenomenological nuisance parameter as far as the
CMB component is concerned. A single resampled CMB con-
strained realization sample is shown in the top panel of Fig. 2.
The middle panel shows the corresponding Wiener filter solution
alone, in which structures within the Galactic plane mask may
be partially reconstructed due to the assumptions of statistical
isotropy and Gaussianity. The bottom panel shows the posterior
standard deviation in each pixel.

Finally, we also perform an extra resampling step for the
CMB polarization analysis. In this case, we once again condi-
tion on the instrumental and astrophysical parameters from each
sample in the main Gibbs chain, but in this case we perform
N = 50 additional amplitude sampling steps for each main sam-
ple, as defined by Eq. (18), each of which is computationally
much cheaper than a full sample. This resampling step thus in-
volves no fundamental modifications of the either the algorithm
or data model as such, but is just a computationally convenient
way of marginalizing over white noise, and thereby converging
faster at a modest additional computational cost.

3. Markov chains and correlations

The full BeyondPlanck Gibbs sampler and data configuration
are summarized in BeyondPlanck (2022). The main products
from this process are a set of 4000 end-to-end samples evenly
distributed over four chains. The first 200 samples in each chain
are conservatively rejected as burn-in, although we have not
identified strong evidence for non-stationary behaviour after the
first few tens of samples. A total of 3200 main Gibbs samples are
retained for science exploitation, and we produce one resampled
high-` temperature sample and 50 low-` polarization samples
per main Gibbs sample. The total computational cost of the full
analysis is about 800 kCPU-h (Galloway et al. 2022a). The full
sample set is made publicly available through the Cosmoglobe4
web page.

Figure 3 shows a collection of trace plots, i.e., parameter val-
ues plotted as a function of chain iteration, for various CMB and
selected ancillary parameters. The quantities marked with sub-
scripts ’a’ and ’b’ represent sky map pixel values for pixel num-
ber 340 and 1960, respectively, in maps downgraded by straight
averaging to a HEALPix resolution of Nside = 16 with ring
ordering. Pixel 340 is located in the top right quadrant at high
Galactic latitudes, while pixel 1960 is located near the South-
ern center of the Galactic mask edge. From top to bottom and
left to right, the plotted quantities are the three Stokes param-
eters for CMB pixels 340 and 1960; the same for thermal dust
emission; the synchrotron spectral index for pixel 1960 in tem-
perature and polarization; the CMB quadrupole spherical har-
monic coefficient a21 for T , E, and B; the same for a200,100; the
three components of the CMB dipole in Cartesian coordinates;
the CMB angular temperature power spectrum, D`, for ` = 2,
200, and 500; and the time-independent radiometer gain fluctu-
ation for the 70 GHz 21M radiometer, ∆g21M. Of course, these
represent only 26 parameters out of billions, but they still con-
vey some useful intuition regarding the overall behaviour of the
Gibbs chain as far as the CMB component is concerned.

The first immediate conclusion that can be drawn from these
plots at a visual level is that the overall correlation length is rel-
atively short, and the Markov chain mixing is reasonable. Fur-

4 https://cosmoglobe.uio.no

thermore, all chains appear stationary, suggesting that the burn-
in samples have been successfully removed. Going into slightly
deeper details, we see that while aT

21 appears significantly non-
Gaussian, with a pronounced negative tail, ICMB looks more
Gaussian and symmetric, although with a longer correlation
length. As a result, uncertainties and covariances at low multi-
poles are generally easier to summarize in pixel space than in
harmonic space. Regarding the power spectrum coefficients, D`,
we note that these are not Gaussian distributed at all, but rather
follow an inverse gamma (or inverse Wishart) distribution, which
has a very heavy tail toward positive values at low multipoles.
This behaviour is clearly seen for DTT

2 .
In Fig. 4, we show the corresponding matrix of Pearson’s

correlation coefficients for each pair of parameters. The lower
triangular part shows raw correlations, while the upper triangu-
lar part shows correlations after high-pass filtering each Markov
chain with a boxcar window of 10 samples; the latter highlights
white noise correlation structures, while the former includes also
long trends.

Overall, most correlations are relatively weak, and typically
smaller than 5 %, while three are very strong. The first is a 60 %
correlation between the x- and z-components of the CMB Solar
dipole. This is caused by the relative orientation of the Galactic
plane mask, which directly aligns with the z-component, and the
diffuse foregrounds at high latitudes, which are anti-symmetric
with respect to Galactic longitude l = 0◦, and therefore couples
to the x-direction. In contrast, the Galactic plane is symmetric
with respect to Galactic longitudes l = 90◦ and 270◦, and there-
fore it couples weakly to the y-dipole.

A second strong correlation is between the CMB and dust
Stokes Q and U parameters within a single pixel, which reflects
the internal degeneracies of our sky model given BeyondPlanck
data selection. While we show here only CMB and thermal dust
correlations, similar level of correlations affects also the other
sky model components, see Suur-Uski et al. (2022) and Ander-
sen et al. (2022) for further discussion.

The third important strong (anti-)correlation seen in Fig. 4
is between the large-scale CMB harmonic aT

2,1 (as well as in-
dividual temperature pixel values) and the synchrotron spectral
index, βs. While diffuse foregrounds play only a limited part in
CMB temperature reconstruction as measured relative to CMB
cosmic variance, and even relatively simple foreground cleaning
methods therefore perform very well (e.g., Bennett et al. 2013;
Planck Collaboration IV 2018), the same foregrounds still play
a very important role as measured relative to the noise level of
the experiment, and that is what is probed by these correlations.
For noise-dominated applications, such as CMB B-mode recon-
struction, properly accounting for these foreground uncertainties
is therefore key.

The remaining correlations are, as already mentioned, mod-
est, although not negligible. For instance, there is a 10 % cor-
relation between the two CMB intensity pixels, despite the fact
that they are separated by almost 90◦ on the sky, and not located
on the same Planck scanning ring. This correlation is therefore
due to general global parameters, for instance the overall instru-
ment calibration and gains, the CMB dipole parameters, and the
bandpass corrections.

Moving on from individual pixel values to full sky maps,
the two bottom panels in Fig. 5 show pixel-by-pixel cross-
correlations between the CMB Stokes Q parameter and the time
independent part of the 70 GHz 21M and 21S radiometer gain
variations, ∆g21M and ∆g21S. (We note that there is nothing spe-
cial about the 21M and 21S radiometers in this respect, beyond
the fact that they are 70 GHz detectors, and the BeyondPlanck
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Fig. 4. Correlation coefficients between the same parameters as shown in Fig. 3. The lower triangle shows raw correlations, while the upper
triangle shows correlations after high-pass filtering with a running mean with a 10-sample window. For further explanation of and motivation for
this filtering, see Andersen et al. (2022).

CMB map is strongly dominated by this frequency channel.) In
this case, we see coherent large-scale wave patterns at the 5 %
level, with a wave direction that is loosely aligned with the CMB
Solar dipole direction. This pattern is already known, and ex-
plained in terms of correlations between inter-detector gain vari-
ations and the Solar dipole. An example of this is the LFI gain
residual template (Planck Collaboration II 2020) shown in the
top panel; the morphology of this template is qualitatively very
similar to the correlation structures seen in the BeyondPlanck
CMB–gain cross-correlations. We also note that the 21M and
21S correlations are anti-correlated, as expected by the fact that
the polarization angles of these two detectors are rotated inter-
nally by 90◦.

In Fig. 6, we plot the skewness and kurtosis of the CMB
Stokes Q and U parameters per HEALPix Nside = 8 pixel, which
is the same resolution as used by the BeyondPlanck low-` like-
lihood. It is important to note that these estimates do not mea-
sure non-Gaussianity of the CMB signal itself, but rather of the
uncertainties of the CMB map. Except for a few statistically
significant non-Gaussian pixel distributions in the center of the
Galactic plane, the skewness and kurtosis maps appear noise
dominated, small in amplitude, and statistically isotropic at high

Galactic latitudes. We also note that the standard deviation of
excess skewness and kurtosis of a random Gaussian sample with
Nsamp � 1 are given by

√
6/Nsamp and

√
24/Nsamp, which trans-

late into standard deviations of 0.043 and 0.086, respectively,
for Nsamp = 3200. The observed skewness and kurtosis seen
in Fig. 6 are thus both consistent with zero, and this suggests
that the CMB posterior distribution may be well approximated
in terms of a multi-variate Gaussian distribution (Paradiso et al.
2022).

Finally, we conclude this section by measuring the cross-
correlation power spectra between the CMB intensity map and
each of the four diffuse foregrounds included in the Beyond-
Planck data model. These cross-correlations are defined by

ρXY
` =

〈
CXY
`√

CXX
`

CYY
`

〉
, (29)

where CXY
` ≡

∑
m |ax

`m(aY
`m)∗|/(2` + 1), X denotes CMB and Y

any one of the foreground components, and 〈. . .〉 denotes av-
erage over the chain samples. Note that the cross-correlations
spectra are computed between the residual maps, mi − 〈mi〉, to
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Fig. 5. (Top panel:) LFI DPC 30 GHz Stokes Q gain residual tem-
plate (Planck Collaboration II 2020). (Lower two panels:) Pixel-by-
pixel cross-correlation coefficients between CMB Stokes Q and the
time-independent absolute gain fluctuation of two 70 GHz radiometers,
∆g21M (middle panel) and ∆g21S (bottom panel).

highlight the impact of model degeneracies, rather than chance
correlations between the components. The results from these cal-
culations are summarized in Fig. 7.

Considering these functions in order from weak to strong
correlations, we first note that the thermal dust emission (red
curve) is for all practical purposes statistically uncorrelated with
the CMB component. It is important to stress that this does not
imply that the thermal dust component does not induce fore-
ground modelling errors in the CMB mean map. Rather, it just
shows that the thermal dust uncertainty fluctuations do not corre-
late with the CMB uncertainty fluctuations. The reason for this is
that the BeyondPlanck analysis (BeyondPlanck 2022) relies on
the Planck PR4 857 GHz sky map as a dust tracer, for which the
CMB component is very low, and the only free intensity thermal
dust parameter in the entire model is a single full-sky power law

spectral index. As such, there is in practice no feedback from
the CMB to the thermal dust component in the model, and we
only propagate the thermal dust uncertainties as predicted by the
857 GHz channel to the CMB component, but do not perform a
joint fit. In short, the current analysis effectively assumes that the
Planck PR4 analysis is accurate as far as thermal dust emission
is concerned.

A similar consideration holds true for the synchrotron com-
ponent (green curve). In this case, the very low frequency of the
Haslam 408 MHz effectively decorrelates the synchrotron and
CMB components, although not quite as strongly as the 857 GHz
map for thermal dust emission. The smooth drop around ` ≈ 300
is caused by the algorithmic smoothing prior discussed by An-
dersen et al. (2022), which suppresses small-scale synchrotron
fluctuations.

Significantly higher correlations are seen for the AME com-
ponent. In this case, there is no single frequency map that gives a
clear picture of the component in question, but the spatial struc-
ture of AME has to be estimated from the same maps as the
CMB itself. The particular data selection adopted for Beyond-
Planck, which focuses on Planck LFI and WMAP measurements
between 30 and 70 GHz, leads to correlations at the 15–20 %
range for AME.

It is important to stress that significant correlations, such as
those seen for the AME component, by themselves are no cause
for alarm as far as CMB analysis is concerned, as long as the
assumed statistical model is correct. In this case, the correspond-
ing uncertainties are fully accounted for in terms of the sample
distribution. At the same time, large correlations are neverthe-
less undesirable, because they make the CMB component sus-
ceptible to modelling errors in the correlating component. For
BeyondPlanck, this is most clearly seen in the free-free compo-
nent, which, as seen in Fig. 7, is anti-correlated with the CMB
component at the 50 % level between ` ≈ 400 and 600. The
reason for this are two-fold. First, the free-free emission scales
roughly as ν−2, and therefore falls much more slowly with fre-
quency than both synchrotron emission and AME. Secondly, it
is spatially much more localized than either of the other two
low-frequency components. The maximum multipole required to
model free-free emission without ringing is therefore relatively
high (`max ≈ 800). The only BeyondPlanck frequency channels
that provide useful information at such small angular scales and
high frequencies are, primarily, the LFI 70 GHz channel, and
secondarily the LFI 44 GHz and WMAP V-band channel. These
are also precisely the same channels that are used to constrain the
CMB component, and the two are therefore highly correlated.

As discussed by Andersen et al. (2022), a partial solution
to this problem is the introduction of the HFI-dominated spa-
tial free-free prior from Planck Collaboration X (2016). While
this is effective at breaking the degeneracy in question, which
is necessary for constraining important instrumental parameters
such as calibration and bandpasses, it also introduces an uncon-
trolled level of unmodelled systematic errors and uncertainties,
both because the LFI and WMAP data were in fact used to gen-
erate the free-free prior template in the first place, and because
of unmodelled systematic and statistical uncertainties in the HFI
data. While we consider these unmodelled uncertainties accept-
able for instrument modelling, which only depend weakly on the
free-free model, they are not acceptable for the CMB compo-
nent, which is the main scientific product from the entire anal-
ysis. This is a main reason for performing the BeyondPlanck
analysis in a two-step manner, in which the prior-constrained
free-free component is included during the main Gibbs analy-
sis, but excluded during the CMB resampling stage, while at the
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Fig. 6. Skewness (left column) and kurtosis (right column) of the CMB Stokes Q (top row) and U (bottom row) posterior distributions, evaluated
pixel-by-pixel at a HEALPix resolution of Nside = 8.
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Fig. 7. Cross-correlation spectra between CMB and foreground maps.
Colors indicate cross-correlations with synchrotron (green), free-free
(blue), AME (orange), and thermal dust emission (blue).

same time applying a large Galactic mask that excludes all re-
gions with statistically significant free-free emission. For further
discussion, see Sect. 4.3, Paradiso et al. (2022), and Andersen et
al. (2022).

4. CMB maps, covariance matrices, and power
spectra

4.1. Posterior mean sky maps

The individual parameter samples discussed in the previous sec-
tion represent the most fundamental products from the current
analysis, and we strongly recommending using the set of such
individual Gibbs samples for any high-level statistical analysis.
That ensemble provides the most convenient approach to fully
propagate uncertainties into any given statistic. In order to do so,
one simply analyzes all available samples individually, as if they
were ideal CMB map estimates, and then reports the full distri-
bution as final results. Worked examples of this procedure are
given in Sect. 6 for select previously reported low-` anomalies.

Still, for visualization and comparison purposes it is still con-
venient to consider sample averaged mean and standard devia-
tion maps, which correspond most closely to the best-fit CMB
maps derived with traditional pipelines. These are shown in
Fig. 8. In this figure, each sample is convolved with a Gaussian
azimuthally symmetric beam of 14′ FWHM for temperature and
1◦ FWHM for polarization, before projecting into sky maps. The
first 200 samples from each chain are conservatively discarded
as burn-in, leaving a total of 3200 samples for actual analysis.
The mean and standard deviation is then evaluated pixel-by-pixel
from these samples. (Note that the CMB Solar dipole has been
removed from the temperature maps in these plots; this compo-
nent is discussed separately in the next section).

Starting with the temperature mean map in the top left panel,
we see that this CMB map is visually similar to the Commander
CMB map presented by in the Planck 2015 analysis (Planck
Collaboration X 2016). At high Galactic latitudes, the famil-
iar isotropic CMB fluctuations are visually obvious, while at
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Fig. 8. BeyondPlanck posterior mean (left column) and standard deviation (right column) CMB fluctuation maps. Rows show, from top to bottom,
temperature and Stokes Q and U parameters, respectively. The temperature maps are smoothed to 14′ FWHM resolution, while the polarization
maps are smoothed to 1◦ FWHM.

low Galactic latitudes, there is a clear negative foreground im-
print. This is due to over-subtraction of thermal dust and free-
free emission, and it can be removed through detailed fore-
ground modelling that also includes Planck HFI observations;
see Planck Collaboration IV (2018) for a Commander-based
analysis that successfully eliminates this effect. For the current
analysis, which does not include HFI observations and only fit
the thermal dust SED with a single spectral index, βd, across
the full sky, this foreground leakage represents the main limiting
effect at low Galactic latitudes, and clearly shows why a large
Galactic mask is needed.

The upper right panel shows the corresponding standard de-
viation map, and we see that this is dominated by three main
effects. At high latitudes, the dominant feature is the Planck
scanning strategy, and individual features are associated with the
white noise distribution of the 70 GHz LFI channel (Suur-Uski
et al. 2022). One may also see a number of bright dots, corre-
sponding to individual point sources, as described by Eq. (8). At
low Galactic latitudes, the uncertainties are dominated by dif-
fuse foregrounds, and the morphology is visually dominated by
free-free and thermal dust emission (Andersen et al. 2022).

The two bottom rows show the same for the Stokes Q and
U polarization maps. In these cases, the mean maps are visually
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Fig. 9. Difference maps between the BeyondPlanck CMB temperature map and those derived from the full Planck 2018 data set (Planck Collab-
oration IV 2018). From left to right and from top to bottom, the various panels show differences with respect to Commander, NILC, SEVEM, and
SMICA. All maps are smoothed to a common angular resolution of 1◦ FWHM.

dominated by white noise over most of the sky, as evidenced
by the fact that one may see the Ecliptic pole regions also in
the mean maps. Of course, this is fully expected, given that the
average standard deviation per pixel is about 20 µK, while the
expected CMB signal for an ideal ΛCDM CMB map smoothed
to 1◦ FWHM is . 3 µK. Thus, the signal-to-noise ratio is less
than 0.5 per pixel.

The only obvious visually recognizable features are Galac-
tic plane residuals with an alternating sign, which is a classic
signature of temperature-to-polarization leakage from bandpass
mismatch (Svalheim et al. 2022a). This is, however, confined to
a narrow region of less than 1 % of the full sky. The polariza-
tion CMB confidence mask shown in the bottom panel Fig. 1
is more than sufficient to eliminate these residuals from higher-
level analysis.

In Fig. 9 we show difference maps between the Beyond-
Planck posterior mean CMB temperature map and the four
foreground-reduced CMB maps presented by Planck Collabo-
ration IV (2018), generated by Commander (Eriksen et al. 2008),
NILC (Basak & Delabrouille 2012, 2013), SEVEM (Leach et al.
2008; Fernández-Cobos et al. 2012), and SMICA (Cardoso et al.
2008), respectively. The gray region indicates the BeyondPlanck
temperature CMB confidence mask, and a constant offset has
been removed from each map outside this mask. First, we note
that the color range is ±10 µK, which is the same range as was
used in Figs. 6 and 7 of Planck Collaboration IV (2018) to show
differences between the 2015 and 2018 CMB maps, and inter-
nally among the four Planck component separation algorithms.
As such, the BeyondPlanck CMB map agrees about as well with
either of those maps as the Planck maps do internally. However,
a closer comparison of our Fig. 9 with their Fig. 7 reveals two
important differences, namely a large white noise contribution

at high Galactic latitudes, and a blue edge around the Galactic
plane mask. Both of these effects have fundamentally the same
explanation, namely that the current analysis does not involve the
CMB-dominated and high-sensitivity HFI frequency channels,
and the current map therefore has both higher noise and more
free-free and thermal dust contamination. The latter of these ef-
fects dictates our larger confidence mask for high-level analysis.

4.2. Low-` polarization power spectrum

We now turn our attention to CMB power spectrum estimation,
and we start with low-` polarization. For this task, we adopt the
well-established machinery of multivariate Gaussian likelihood
estimation (e.g., Tegmark et al. 1997; Page et al. 2007; Planck
Collaboration V 2020; Gjerløw et al. 2015), and map out the
following distribution with respect to C`,

P(C` | ŝCMB) ∝
exp (− 1

2 ŝt
CMB (S(C`) + N)−1 ŝCMB)
√
|S(C`) + N|

, (30)

where ŝCMB denotes the posterior mean CMB map, N is the cor-
responding noise covariance matrix, and S(C`) is the signal co-
variance matrix, which is fully defined by the angular power
spectrum. For a detailed review of the implementation used in
BeyondPlanck, we refer the interested reader to Paradiso et al.
(2022).

The main scientific goal of the entire BeyondPlanck frame-
work is precisely to derive estimates of ŝCMB and N for
which astrophysical and instrumental systematic effects are fully
marginalized over. Given the Gibbs samples described above,
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Fig. 10. Single column of the low-resolution CMB noise covariance matrix, as estimated by the LFI DPC (top row) and BeyondPlanck (bottom
row). The column corresponds to the Stokes Q pixel marked in gray, which is located in the top right quadrant near the ‘Q’ label. Note that the
DPC covariance matrix is constructed at Nside = 16 and includes a cosine apodization filter, while the BeyondPlanck matrix is constructed at
Nside = 8 with no additional filter.
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Fig. 11. BeyondPlanck low-resolution and “whitened” CMB polarization map, as defined by N−1/2
CMB sCMB at a HEALPix resolution of Nside = 8 and

masked with the BeyondPlanck analysis mask. Left and right panel shows Stokes Q and U parameters, respectively, and the color scales span
±3σ.

this may be done very conveniently as follows,

ŝCMB = 〈si
CMB〉 (31)

N =

〈(
si

CMB − sCMB

) (
si

CMB − sCMB

)t
〉

(32)

where i indicates sample number, and brackets denote aver-
ages over all available Monte Carlo samples. As described by
Paradiso et al. (2022), we evaluate both these quantities at a
HEALPix resolution of Nside = 8 after smoothing the temper-
ature component to 20◦ FWHM.

The bottom row of Fig. 10 shows a slice through N, centered
on the Stokes Q pixel marked in gray in the upper right quadrant.
This plot effectively summarizes all the various systematics cor-
rections described in Sect. 2 to the extent that they are significant
for large-scale polarization reconstruction. For comparison, the
top row shows the corresponding CMB covariance matrix slice
computed by the Planck DPC Planck Collaboration II (2020);
note that this was evaluated at Nside = 16, and also that the DPC
analysis applied an additional cosine smoothing kernel not used
by BeyondPlanck.
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Fig. 12. Comparison between low-` angular CMB power spectra, as de-
rived by the Planck collaboration using both LFI and HFI data (blue
points; Planck Collaboration V 2020); by the WMAP team using just
WMAP data (red points; Hinshaw et al. 2013); and by BeyondPlanck
using both LFI and WMAP data (black points; this work). Thin black
lines indicate the Planck 2018 best-fit ΛCDM spectrum (Planck Col-
laboration VI 2020). The BeyondPlanck data points are evaluated by
conditionally slicing the posterior distribution `-by-` with respect to the
best-fit ΛCDM model, by holding all other multipoles fixed at the ref-
erence spectrum while mapping out P(C` | d), to visualize the posterior
structure around the peak. For WMAP, the reported BB octopole ampli-
tude is DBB

3 = 1.12 ± 0.03, which is outside the plotted range.

Comparing the BeyondPlanck and DPC covariance matrices
is useful for building intuition regarding these products. First, we
note that the BeyondPlanck covariance appears noisier than the
DPC matrix. This is due to the fact that it is constructed by Monte
Carlo sampling as opposed to analytic calculations. A compu-
tational disadvantage of the sampling approach, relative to the
analytic approach, is that any high-level product derived from
the covariance matrix must be accompanied by a corresponding
convergence analysis that verifies that the final result is robust
with respect to the number of samples; for BeyondPlanck, this
is done explicitly for the optical depth of reionization, τ, by Par-
adiso et al. (2022).

However, this minor disadvantage is more than compensated
for by the fact that the sampling approach is able to jointly ac-
count for many more systematic effects than the analytic ap-
proach, and this is clearly seen in Fig. 10: While the DPC matrix
only models correlated noise (seen as the ring passing through
the gray pixel) and simple template-based foreground correc-
tions, the BeyondPlanck matrix additionally accounts for ab-
solute detector calibration differences (seen as large-scale red
and blue regions aligned along the Solar CMB dipole direction;
Gjerløw et al. 2022; Suur-Uski et al. 2022); time-dependent gain
fluctuations (seen as additional power along the scanning ring
passing through the gray pixel; Gjerløw et al. 2022); and band-
pass leakage (seen as the sharp Galactic plane; Svalheim et al.
2022a). There are also many other effects that are not as visually
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Fig. 13. Gelman-Rubin convergence statistic for the BeyondPlanck TT
angular power spectrum, as evaluated from four independent σ` chains.
The various curves show results for different total number of samples
included in the analysis. A value lower than 1.01 (dotted line) typi-
cally indicates good convergence. Accordingly, BeyondPlanck multi-
poles above ` ∼ 800 should be acceptable for parameter estimation.
However, in the current paper, we conservatively include only modes
` ≤ 600 in the cosmological analysis, see text.

obvious, but they still contribute to the final results, such as spa-
tially varying foreground spectral indices (Andersen et al. 2022;
Svalheim et al. 2022b) and time-dependent noise power spectral
density parameters (Ihle et al. 2022). Propagating all these ef-
fects analytically into a final joint covariance matrix can be for
all practical purposes impossible, while with the novel sampling
approach introduced here it is quite straightforward.

Figure 11 shows the corresponding noise-weighted (or
“whitened”) posterior mean map, N−1/2

CMBsCMB; when plotted di-
rectly in terms of sCMB, the maps are dominated by the Planck
scanning pattern and poorly constrained large-scale modes,
which complicates the visual interpretation of actually statisti-
cally significant features. Note that the color scale ranges over
±3σ. Overall, we see that these maps appear noise dominated,
with most pixels having values below 2σ. However, there are
a handful of saturated pixels as well, in particular close to the
Galactic plane and near the Orion complex (lower right quad-
rant). Most likely, these are due to unmodelled foreground er-
rors, and should in principle be removed. However, since they
are isolated, they only contribute with high-` power, well above
` & 10, and they are therefore of minor concern for the current
low-` focused analysis; Paradiso et al. (2022) explicitly shows
that all main large-scale polarization results are stable with re-
spect to mask variations, from fsky ≈ 0.25 to 0.75. We do also
see some fainter coherent structures on larger angular scales,
but these are all well below 1.5σ. Some of those structures are
real CMB signal, and some are just coherent large-scale noise
fluctuations generated by the same effects as are seen in the co-
variance matrix slices in Fig. 10. As reported by Paradiso et al.
(2022), the total signal-plus-noise χ2 has a probability-to-exceed
of 32 % when evaluated for the best-fit ΛCDM power spectrum
with τ = 0.066 ± 0.013, which indicates that the data are fully
consistent with the model.

Figure 12 compares the low-` BeyondPlanck power spectra
with corresponding results reported by Planck (Planck Collabo-
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Fig. 14. (Top:) Angular CMB temperature power spectrum, DTT
` , as derived by BeyondPlanck (black), Planck (red), and WMAP (blue). The best-fit

Planck 2018 ΛCDM power spectrum is shown in dashed gray. (Middle:) Residual power spectrum relative to ΛCDM, measured relative to full
quoted error bars, r` ≡ (D` − DΛCDM

` )/σ`. For pipelines that report asymmetric error bars, σ` is taken to be the average of the upper and lower
error bar. (Bottom:) Fractional difference with respect to the Planck ΛCDM spectrum. In this panel, each curve has been boxcar averaged with a
window of ∆` = 100 to suppress random fluctuations.

ration V 2020) and WMAP (Hinshaw et al. 2013). The Beyond-
Planck constraints shown here is computed by slicing the full
probability distribution in Eq. (30) `-by-`, while fixing all other
coefficients at their reference values; error bars indicate asym-
metric 68 % confidence ranges. Overall, we find good agree-
ment between BeyondPlanck, Planck, and WMAP. For TT , we
see that the BeyondPlanck uncertainties are generally somewhat
larger than either of the other two, and that is due to the larger
analysis mask. The most notable multipole in this spectrum is
` = 2, with a peak value of 526 µK2, which is substantially
higher than the typical values of about 200 µK2 reported previ-
ously. However, the reason for this is algorithmic in nature, and
driven by our conditioning on ΛCDM T E and EE in this partic-
ular plot; when marginalizing over polarization, we do recover a
quadrupole amplitude of 181 µK2, fully consistent with previous
results; for further discussion of this multipole, see Sect. 6.1.

For both T E and EE, the most notable feature is that our un-
certainties fall between Planck and WMAP in magnitude, which
is expected given that the current analysis include both WMAP

and LFI data, but not HFI. For BeyondPlanck the most signifi-
cant outlier in the full set of results is at ` = 8 in T B. Planck has
not publicly released T B measuremets for the default HFI cross-
spectrum based pipeline, while the LFI pixel-base results show
a qualitatively similar outltier at that multipole, but with a lower
statistical significance. We note, however, that the full probabil-
ity distribution for this multipole is highly asymmetric, and a
full inspection shows that for BeyondPlanck this is discrepant
with respect to ΛCDM at the 3σ level, with a PTE of 0.2 %.
The probability of having one such outlier among 49 measure-
ments by random chance is 9 %. This multipole may thus pro-
vide some slight evidence for residual systematics, for instance
associated with the saturated pixels in Fig. 11, but the statistical
significance is low. In the case of EB, WMAP does not report
any results, while both BeyondPlanck and Planck are consistent
with zero, as they are for BB. In the latter case, WMAP do report
results, but with large error bars; note that ` = 3 and ` = 5 fall
far outside the plotted range.
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Fig. 15. Comparison of power spectra derived with (red) and without
(gray) including prior-constrained free-free emission in the TT resam-
pling procedure.

4.3. High-` temperature power spectrum

Next, we consider the high-` temperature power spectrum, and
in this case we employ the Gaussianized Blackwell-Rao (GBR)
estimator (Chu et al. 2005; Rudjord et al. 2009; Planck Collabo-
ration V 2020) to map out the posterior distribution; for specific
details on the BeyondPlanck implementation of this estimator,
see Paradiso et al. (2022). In short, this estimator is defined by
averaging the inverse Gamma distribution, which is the appro-
priate distribution for the ideal CMB sky,

P(C` | sCMB) =

nsamp∑
i=1

exp(− 2`+1
2

σi
`

C`
)

|C` |
2`+1

2

, (33)

over all available Monte Carlo samples, where σi
` is the mea-

sured full-sky power spectrum of sample i. The resulting
marginal distribution is then Gaussianized through a non-linear
mapping, x`(C`), by matching percentiles to a standard normal
distribution, and the final likelihood expression takes the follow-
ing form,

P(C` | d) ≈

∏
`

∂C`

∂x`

−1

e−
1
2 (x−µ)T C−1(x−µ), (34)

where the first factor denotes the Jacobian resulting from the
change-of-variables.

This expression formed the basis of the default low-` temper-
ature likelihood in both the Planck 2015 and 2018 data releases
(Planck Collaboration XI 2016; Planck Collaboration V 2020)
for ` ≤ 30, and was in the latter also used as an experimen-
tal likelihood up to ` ≤ 250. The main limitation from extend-
ing it to even higher multipoles stemmed from the fact that the
samples that defined the Planck GBR estimator were computed
from foreground-cleaned CMB maps, and those have effectively
smoothed white noise contributions which are difficult to de-
scribe accurately at high multipoles. In contrast, the novel Be-
yondPlanck approach generates the samples from foreground-
subtracted frequency maps, which do have unsmoothed white
noise contributions. As such, there is no noise modelling limita-
tion associated with the new implementation, and the GBR esti-
mator can therefore in principle be used to arbitrary high multi-
poles.

In practice, however, the effective range of the GBR estima-
tor is limited by Monte Carlo convergence. This is illustrated in
Fig. 13, which shows the Gelman-Rubin statistic, R (Gelman &
Rubin 1992), for each power spectrum multipole for different
numbers of Monte Carlo samples. This statistic measures the ra-
tio between the intra-chain and inter-chain variances, and values
of R < 0.01 typically indicate good convergence. In this fig-
ure, we see that R increases rapidly above ` ≈ 800, where the
CMB signal-to-noise ratio of the BeyondPlanck dataset falls be-
low unity. This behaviour is theoretically well understood (e.g.,
Eriksen et al. 2004b), and may be solved by introducing addi-
tional sampling steps (Jewell et al. 2009; Racine et al. 2016);
implementing this in the latest version of Commander is cur-
rently on-going. For now, we conservatively restrict the range
for which this estimator is used to ` ≤ 600.

The final BeyondPlanck temperature power spectrum is
shown in Fig. 14 together with Planck 2018 and WMAP. The top
panel shows the full power spectrum; the middle panel shows the
difference with respect to the best-fit Planck 2018 ΛCDM spec-
trum in units of σ`, and the bottom panel shows the fractional
difference with respect to ΛCDM in units of percent. Overall, we
see that all three analyses agree very well. For BeyondPlanck,
the most significant outliers is ` = 416, which is anomalous at
the 4σ level; we note that this multipole is also low in the HFI-
dominated Planck 2018 spectrum, although at a slightly lower
significance of about 3σ. The probability of having one such
outlier among 599 trials by random chance is about 8 %.

Before concluding this section, we return to the issues
of strong free-free correlations and resampling discussed in
Sect. 2.5. Specifically, Fig. 15 compares the angular power spec-
tra (convolved with a Gaussian smoothing kernel) derived from
chains that samples free-free emission per pixel (red curve) with
the baseline approach that excludes this component. Here we see
a highly statistically significant excess between ` = 300 and 600,
with a general behaviour that overall mirrors the CMB-vs-free-
free cross-correlation shown in Fig. 7. The explanation for this
behaviour is quite simple: Taking into account the beam sizes
and white noise levels of the data involved in the BeyondPlanck
analysis, by far most of the constraining power for ` & 300
comes from the LFI 70 GHz channel alone, with only slight ad-
ditional support from the LFI 44 GHz WMAP Q- and V-bands.
This leaves the free-free and CMB components highly degen-
erate. At the same time, accurate modelling of free-free emis-
sion on larger scales is key for obtaining a robust calibration and
foreground model. As a temporary solution to this problem, the
current main analysis adopts the (HFI-dominated) Planck 2015
free-free map as a spatial template prior (Andersen et al. 2022).
While this prior does regularize the foreground fit as such, it also
biases the CMB component at intermediate angular scales. For
this reason, we only include the prior-constrained free-free com-
ponent while estimating the instrumental and astrophysical pa-
rameters, but exclude it when estimating the final CMB param-
eters. This issue will of course be resolved in a future Bayesian
end-to-end analysis that jointly analyzes both LFI and HFI data
from scratch.

5. The CMB Solar dipole

We now turn our attention to the CMB Solar dipole. In the Be-
yondPlanck framework, this component is in principle estimated
on completely the same footing as any other mode in the CMB
sky, and is represented in terms of three spherical harmonic co-
efficients in sCMB. No special-purpose component separation al-
gorithms are applied to derive the CMB dipole, nor does any
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Fig. 16. Posterior mean CMB BeyondPlanck temperature map, smoothed to an angular resolution of 14′ FWHM.

individual frequency play a more important role than others, ex-
cept as dictated by the relative instrumental noise level in each
channel.

However, as discussed by Ihle et al. (2022), Gjerløw et al.
(2022), and Suur-Uski et al. (2022), this apparent algorithmic
simplicity does by no means imply that robust CMB dipole esti-
mation is easy in the BeyondPlanck procedure. Indeed, the CMB
dipole is quite possibly the single most difficult parameter to es-
timate in the entire model, simply because it both affects, and
relies on, a wide range of partially degenerate parameters. The
first and foremost of these is the absolute calibration, g0. This
parameter directly scales the amplitude of the entire CMB map,
including the Solar dipole. This parameter is itself constrained
from the orbital dipole, which is both weaker in terms of abso-
lute amplitude, and for significant parts of the mission it is nearly
aligned with, and thereby obscured by, the Galactic plane (Gjer-
løw et al. 2022).

Secondly, astrophysical foregrounds have in general both a
non-zero dipole moment, as well as higher-order moments with
unknown parameters, and these must be estimated jointly with
the CMB dipole. Considering that the current data set includes
five astrophysical components, each with a free value in each
pixel, and there are only eight significantly independent fre-
quency channels, the full system is rather poorly constrained.
It is therefore possible to add a significant dipole to the CMB
map and subtract appropriately scaled dipoles from each of the
foreground maps, with only a minimal penalty in terms of the
overall χ2. In practice, we observe particularly strong degenera-
cies between the CMB, AME and free-free components, when
exploring the full system without priors (Andersen et al. 2022).

Thirdly, correlated noise, ncorr, is only weakly constrained
through its 1/ f -style PSD parameters, and this component is
therefore able to account for a wide range of modelling er-
rors, including calibration errors (Ihle et al. 2022; Watts et al.
2022). In particular, incorrectly estimated gains leave a spurious

dipole-like residual in the time-ordered data. Since this resid-
ual is detector-dependent, it will typically be interpreted by the
algorithm as correlated noise, and thereby excite a dipolar struc-
ture in ncorr. Coherent large-scale patterns aligned with the Solar
CMB dipole in ncorr is one of the most typical signs of overall
calibration errors.

Finally, the coupling between the large-scale CMB
quadrupole, foreground, and bandpass corrections all affect
the Solar CMB dipole. While the CMB E-mode polarization
quadrupole by itself is predicted by current ΛCDM models to
have a very small quadrupole, with a variance of typically less
than 0.05 µK2, there is nothing in the current parametric Be-
yondPlanck model that explicitly enforces this. This particu-
lar mode therefore opens up a particularly problematic degen-
eracy for Planck through coupling with the gain and bandpass
shift as follows: An error in the absolute gain leads to an appar-
ently wrong orbital dipole. However, this can be countered by
adding a polarized CMB quadrupole, which has the same SED
and nearly the same spin harmonics as the orbital dipole, due
to the Planck scanning strategy that observes along nearly per-
fect great circles (see Fig. 1 in Gjerløw et al. (2022)).5 Second-
order residuals in the total polarized sky signal as observed at
each frequency can then finally be countered by adjusting the
combination of relative gains, polarized foreground signals, and
bandpass corrections between radiometers, leaving the total χ2

nearly unchanged. To break this degeneracy, we actually do im-
pose a ΛCDM power spectrum prior on the E ` = 2 mode
during gain estimation alone, and marginalize over its ampli-
tude; this prevents the polarization quadrupole from taking on
obviously pathological values. In addition, we note that we in-
clude the large-scale WMAP polarization in the CMB fit, and
this also helps regularizing the large-scale polarization signal.
For comparison, we note that both the Planck LFI DPC and PR4
5 This particular degeneracy does not exist for WMAP, because of its
more complex scanning strategy.
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Fig. 17. CMB dipole parameters as a function of sky fraction. From left to right, the panels show the dipole amplitude, longitude, and latitude.
Gray bands indicate 68 % posterior confidence regions.

pipelines set the entire CMB polarization signal to zero during
the gain estimation process; this is a far more aggressive ap-
proach to resolving this degeneracy, and for Planck PR4 it results
in a non-negligible transfer function on large angular scales (see
(Planck Collaboration Int. LVII 2020a) for full details). For the
Planck LFI detectors alone, the signal-to-noise ratio is too low
to make any measurable difference during gain calibration, re-
sulting in an effectively unbiased algorithm for Planck LFI, even
with this strong prior (Planck Collaboration III 2016).

During the initial test phase of the BeyondPlanck pipeline,
the Markov chain was allowed to explore all the above degenera-
cies freely, without any informative or algorithmic priors. These
early runs resulted in a full marginal uncertainty on the dipole
amplitude of more than 40 µK, as compared to 3 µK reported
by Planck LFI for the 70 GHz channel alone (Planck Collabora-
tion II 2020), or 1 µK as reported by HFI (Planck Collaboration
III 2020). Although this value by itself could be considered ac-
ceptable, given the limited cosmological importance of the CMB
dipole, it was also strikingly obvious that all component maps
were compromised by the poorly constrained calibration, ulti-
mately leading to non-physical Galactic component maps with
large dipolar residuals. With the introduction of the spatial free-
free and AME priors discussed by Andersen et al. (2022), and
the ΛCDM-based E-mode quadrupole prior discussed by Gjer-
løw et al. (2022), these degeneracies are effectively broken.

Figure 16 shows the marginal CMB temperature fluctuation
posterior mean map as derived in BeyondPlanck, given both the
data, model and priors described above. This map is massively
dominated by the CMB Solar dipole, with only a small imprint
of the Galactic plane being visible in the very center. At high lati-
tudes, CMB temperature fluctuations may be seen as tiny ripples
superimposed on the dipole.

Because of the small but non-negligible Galactic plane resid-
uals, we must impose an analysis mask before estimating fi-
nal CMB Solar dipole parameters. For this purpose, we use the
Wiener filter estimator described by Thommesen et al. (2020),
which in-paints the Galactic mask with a constrained realization
prior to parameter estimation; this is necessary in order to ac-
count for, and marginalize over, coupling to higher-order CMB
fluctuations. This method was also adopted for the dipole esti-
mates presented in Planck Collaboration Int. LVII (2020b), al-
though we introduce one significant difference to that analysis:
In the current analysis we estimate the magnitude of systematic
uncertainties directly from the BeyondPlanck Gibbs samples, as
opposed to putting in it by hand. Specifically, instead of pro-
ducing 9000 constrained realizations from a single maximum
likelihood map, as was done by Thommesen et al. (2020) and

Planck Collaboration Int. LVII (2020b), we now produce 100
constrained realizations from each of the 3200 available end-to-
end Gibbs samples. Since each of these realizations have dif-
ferent gain, correlated noise, and foreground residuals, the full
ensemble accounts seamlessly for all relevant systematic uncer-
tainties. The only additional term we put by hand into to the error
budget is a contribution of 0.7 µK from the CMB monopole un-
certainty (Fixsen 2009).

Using this methodology, we estimate the CMB dipole pa-
rameters over a series of Galactic masks, ranging in sky fraction
from 20 to 95 %. The results from these calculations are shown in
Fig. 17. Overall, we see that the posterior distributions are quite
stable with respect to sky fraction. Furthermore, we note that the
uncertainties do not decrease after fsky ≈ 0.75, as they would if
the full error budget could be described in terms of white noise
and sky fraction. Rather, the weight of the additional sky cover-
age is effectively reduced when marginalizing over the various
systematic contributions, as desired. We conservatively adopt a
sky fraction of fsky = 0.68 to define our final dipole estimates,
corresponding to the sky fraction close to that used for the main
CMB temperature analysis. The resulting values are plotted as
black points in Fig. 17, and tabulated together with previous es-
timates in Table 1.

Several points are worth noting regarding these results. First,
we see that the reported best-fit BeyondPlanck dipole amplitude
is 3362.7 ± 1.4 µK, which is slightly lower than the latest LFI
2018 estimate of 3364.4 ± 3.1 µK, which in turn is lower than
the NPIPE estimate of 3366.6 ± 2.6 µK. On the other hand, it
is very close to the latest HFI estimate of 3362.08 ± 0.99 µK,
which is derived from an almost completely independent data
set. Overall, the agreement between these various data sets and
methods is excellent.

Regarding the directional parameters, two observations are
worth pointing out. First, we see that the BeyondPlanck uncer-
tainties are larger than any of the previous Planck-dominated
results. Here it is worth recalling again that no additional sys-
tematic error contributions are added by hand to the Beyond-
Planck directional uncertainties, and the reported values are thus
the direct result of degeneracies within the model itself. Perhaps
the biggest algorithmic difference in this respect is the fact that
the current implementation explicitly marginalizes over the full
foreground and calibration model, while most other approaches
condition on external constraints. The second observation is that
the BeyondPlanck latitude is very slightly higher than any of
the previous results, except COBE. The statistical significance
of this difference is low, only about 1.5σ, but compared with the
remarkable internal agreement between Planck and WMAP, it is
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Table 1. Comparison of Solar dipole measurements from COBE, WMAP, and Planck.

Galactic coordinates

Amplitude l b
Experiment [ µKCMB] [deg] [deg] Reference

COBEa,b. . . . . . . . . 3358 ± 23 264.31 ± 0.16 48.05 ± 0.09 Lineweaver et al. (1996)
WMAP c. . . . . . . . 3355 ± 8 263.99 ± 0.14 48.26 ± 0.03 Hinshaw et al. (2009)
LFI 2015 b . . . . . . 3365.5 ± 3.0 264.01 ± 0.05 48.26 ± 0.02 Planck Collaboration II (2016)
HFI 2015 d . . . . . . 3364.29 ± 1.1 263.914 ± 0.013 48.265 ± 0.002 Planck Collaboration VIII (2016)
LFI 2018 b . . . . . . 3364.4 ± 3.1 263.998 ± 0.051 48.265 ± 0.015 Planck Collaboration II (2020)
HFI 2018 d . . . . . . 3362.08 ± 0.99 264.021 ± 0.011 48.253 ± 0.005 Planck Collaboration III (2020)
Bware . . . . . . . . 3361.90 ± 0.40 263.959 ± 0.019 48.260 ± 0.008 Delouis et al. (2021)
Planck PR4 a,c. . . . . 3366.6 ± 2.6 263.986 ± 0.035 48.247 ± 0.023 Planck Collaboration Int. LVII (2020b)
BeyondPlanck e . . 3362.7 ± 1.4 264.11 ± 0.07 48.279 ± 0.026 This paper

a Statistical and systematic uncertainty estimates are added in quadrature.
b Computed with a naive dipole estimator that does not account for higher-order CMB fluctuations.
c Computed with a Wiener-filter estimator that estimates, and marginalizes over, higher-order CMB fluctuations jointly with the dipole.
d Higher-order fluctuations as estimated by subtracting a dipole-adjusted CMB-fluctuation map from frequency maps prior to dipole evaluation.
e Estimated with a sky fraction of 68 %. Error bars include only statistical uncertainties, as defined by the global BeyondPlanck posterior frame-

work, and they thus account for instrumental noise, gain fluctuations, parametric foreground variations etc.
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Fig. 18. Estimates of the realization-specific quadrupole amplitude of
our universe, σ2, from WMAP, Planck, and BeyondPlanck. The gray
background indicate PTEs relative to the best-fit Planck 2018 ΛCDM
model, and the color of the dots indicate the sky fraction used by the
respective analysis. The radius of the dots correspond to the diagonal
Fisher matrix uncertainty reported by Hinshaw et al. (2013), and pro-
vides a very naive noise-only estimate.

still noteworthy. In this respect, we once again recall that we are
currently using the Planck 2015 free-free map as an informative
prior in the current processing, and CMB and free-free emission
are known to be strongly correlated for the current data set; see
Andersen et al. (2022). Performing a joint analysis of LFI, HFI,
and WMAP without an external free-free prior might be informa-
tive regarding this point.

6. Low-` CMB anomalies

The posterior CMB sky map samples generated by the Gibbs
sampler discussed in Sect. 2 may be used for any scientific

analysis to which standard foreground-reduced CMB maps are
subjected. The main practical difference between these maps
and traditional maximum-likelihood maps is simply that in the
Bayesian case one must analyze an entire ensemble of different
CMB maps, rather than just one, and the resulting answer is typ-
ically defined in terms of a histogram, rather than a single value.

The main advantage of this approach is full propagation of
all modelled systematic effects, some of which are very diffi-
cult to account for with traditional approaches. One important
example of this is time- and detector-dependent gain variations.
As already noted, calibration uncertainties modulate the large
CMB Solar dipole, and can consequently also excite other large-
scale modes through coupling from the satellite scanning strat-
egy, noise weighting, and confidence mask. This issue is par-
ticularly pertinent to the question of large-scale CMB anoma-
lies, several of which were reported after the release of the first
WMAP sky maps, including a low quadrupole amplitude (Ben-
nett et al. 1992), lack of large-scale correlations (Spergel et al.
2003), quadrupole-octopole alignment and octopole planarity
(de Oliveira-Costa et al. 2004), hemispherical power asymmetry
(Eriksen et al. 2004a), a large non-Gaussian cold spot (Vielva
et al. 2004), and a low low-` TT power spectrum (Planck Col-
laboration XV 2014).

Most of these effects are, however, typically only statisti-
cally significant at the 3σ level, and unmodelled systematic er-
rors could therefore often be relevant in ways that are difficult
to quantify with traditional CMB maps. As such, the new CMB
posterior samples presented in this paper offer a unique oppor-
tunity to more fully assess the significance of these anomalies,
and in the following we consider four examples that are im-
plementationally straightforward to evaluate, namely 1) the low
quadrupole amplitude, 2) the quadrupole-octopole alignment, 3)
the octopole planarity, and 4) the low low-` TT spectrum. We
encourage other research groups to revisit the remaining anoma-
lies using their own tools on the new posterior products provided
here.
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Fig. 19. Comparison of the realization-specific quadrupole amplitude
distribution derived from BeyondPlanck (smooth black curve) and the
predicted distribution from the Planck 2018 best-fit ΛCDM power spec-
trum (histogram).

6.1. Low quadrupole amplitude

As already mentioned, the TT quadrupole amplitude has been
measured to be relatively weak compared to the ΛCDM predic-
tions ever since COBE-DMR (Bennett et al. 1992), and this ob-
servation has been confirmed both by WMAP (Hinshaw et al.
2003) and Planck (Planck Collaboration XV 2014). However, it
is interesting to note that the various experiments and analyses
report quite different values when it comes to the precise value
for the quadrupole, as illustrated in Fig. 18. Here we show the
reported quadrupole amplitudes,6 σ2, for WMAP, Planck, and
BeyondPlanck; the gray background indicates the PTE relative
to the best-fit Planck 2018 ΛCDM model, while the color of
the dots indicate sky fraction. For reference, the Hinshaw et al.
(2013) reports a diagonal Fisher uncertainty for this mode of
9 µK2, which is comparable to the dot radius.

All analyses report a generally low amplitude compared to
ΛCDM, with all PTEs except one being higher than 0.95. At the
same time, it is also striking to note that even very similar anal-
yses that rely on highly correlated datasets, use almost identical
techniques, and are performed by the same research group, find
results that vary internally by many sigmas: The 7-year WMAP
analysis reports a best-fit value of 201 µK2 (Larson et al. 2011),
while the corresponding 9-year analysis reports 151 µK2 (Hin-
shaw et al. 2013), which are formally different by more than 5σ.
Furthermore, the confidence sky mask used in these two anal-
yses are identical, and sample variance does therefore not con-
tribute at all to this difference. Likewise, Planck 2013 and 2018
reports values of 299 and 226 µK2, respectively, discrepant at
more than 8σ, as measured by naive Fisher uncertainties, taking
into account Planck’s higher signal-to-noise ratio.

6 Recall that σ2 denotes the realization-specific quadrupole amplitude
of our universe, while C2 (or D2 = C2 · 6/2π) denotes the ensemble-
averaged quadrupole amplitude.

0.65 0.70 0.75 0.80 0.85 0.90 0.95 1.00
P(PTE|d)

0
10

0
20

0
30

0
40

0
50

0
60

0
70

0
Fr

eq
ue

nc
y

Fig. 20. PTE probability distribution, P(PTE | d), for the realization-
specific quadrupole amplitude, σ2 to exceed the ΛCDM prediction after
marginalizing over all modelled uncertainties.

What these results clearly show is simply that white noise
uncertainties only account for a small fraction of the total CMB
temperature quadrupole uncertainty. With the BeyondPlanck
posterior samples, we are finally in a position where this state-
ment may be quantified more precisely in terms of the full
marginal posterior distribution P(σ2 | d), which now accounts
for important contributions from calibration and foreground un-
certainties, and their correlations. This distribution is shown in
Fig. 19 as a solid smooth curve, while the histogram is de-
rived from 105 ideal realizations of σ2 drawn from the Planck
2018 best-fit ΛCDM prediction, CΛCDM

2 = 1064.7 µK2. The
posterior distribution may be summarized as a Gaussian with
σ2 = 229 ± 97, and the full marginal uncertainty, including
contributions from the instrument, astrophysics and confidence
mask, is thus more than 10 times larger than the naive diagonal
Fisher estimate quoted above, despite the fact that more data are
included in the current analysis.

We are now interested in deriving a total significance for the
low quadrupole amplitude. In a classic frequentist simulation-
based analysis this would be done simply by counting how many
of the simulated realizations in the histogram Fig. 19 have a
lower value than the observed peak posterior value. However,
in our case the PTE of the peak position carries no particular
statistical significance, and instead the full distribution of pos-
sible σ2 values must be considered. Accordingly, Fig. 20 show
the probability distribution of PTEs, P(PTE | d), and here we
see that the 95 % confidence limit on this PTE is 0.85. Thus, the
observed quadrupole value is certainly on the low side compared
to the ΛCDM prediction, but the effect is not highly significant
with the current dataset. A smaller confidence mask and a better
constrained instrument model are required to shed further light
on the effect.

To conclude this section, we also turn the question around,
and ask “what is the probability distribution for C2 given the
measured values of σ2”? To answer this, we evaluate the GBR
estimator discussed in Sect. 4.3 as a function of D`, as shown
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Fig. 21. Marginal probability distribution of the ensemble-averaged
quadrupole power spectrum, P(C` | d), estimated in BeyondPlanck
(solid line). The vertical line at C2 = 1064.7 indicates the value pre-
dicted by the Planck 2018 best-fit ΛCDM model; 21.7 % of the marginal
distribution exceeds this value.

in Fig. 21. The PTE for C2 relative to CΛCDM
2 = 1064.7 µK2 is

21.7 %.

6.2. Quadrupole-octopole alignment

A second anomaly regarding the very largest angular scales in
the CMB map was first reported by Tegmark et al. (2003) and de
Oliveira-Costa et al. (2004), who found that the quadrupole and
octopoles appeared morphologically aligned. This was quanti-
fied by first defining a preferred direction, n̂`, for each mode
separately by maximizing the angular momentum dispersion of
the wave function,

〈ψ|(n̂` · L)2|ψ〉 =
∑

m

m2|a`m(n̂)|2, (35)

and then computing the angular separation between n̂2 for the
quadrupole and n̂3. de Oliveira-Costa et al. (2004) found that this
angle was smaller than the isotropic expectation with a PTE of
0.984 for the first-year WMAP data. This observation was quali-
tatively later confirmed by the WMAP team (Bennett et al. 2013),
who found the angle to be around 3◦ in the nine year data, cor-
responding to a probability of 0.14% for such an alignment or
stronger to occur assuming isotropy. The WMAP team did how-
ever note that the foreground removal procedure was a limiting
factor in the measurement of the misalignment. Likewise, Ade
et al. (2014) reported an alignment in the interval 9◦ and 13◦ de-
pending on the component separation method, corresponding to
PTEs in between 1.2 and 3.4%, respectively.

Given the fact that instrumental systematic uncertainties af-
fect the absolute quadrupole amplitude by a large factor, as dis-
cussed in the previous section, it is reasonable to assume that also
the preferred quadrupole direction is affected by the same uncer-
tainties. In this section, we therefore apply the methodology of
de Oliveira-Costa et al. (2004) to the same set of constrained
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Fig. 22. Histogram of the quadrupole-octopole alignment, |n̂2 · n̂3|. The
official WMAP nine-year result reported the value |n̂2 · n̂3| = 0.9986
(Bennett et al. 2013) from a misalignment of 3 degrees, while Planck
(Ade et al. 2014) reported the interval [0.9663, 0.9877] corresponding to
9 and 13 degrees, respectively, depending on the component separation
method.

CMB realizations discussed above, and derive the full distribu-
tion of alignment PTEs after full systematics marginalization.
This is summarized in the form of a histogram in Fig. 22, with
the 9-year WMAP and Planck 2013 results shown as gray verti-
cal bars. The width of the Planck bar indicates the uncertainty
derived among the four Planck component separation codes.

In this figure we see that the agreement between the Be-
yondPlanck results and previous results is excellent in terms
of single-point maximum posterior values. However, we also
see that the full BeyondPlanck posterior distribution is very
broad, to the extent that all possible angles are in fact allowed
by the data, from 0 to 90◦. Part of this larger uncertainty does
come from the somewhat more conservative analysis mask with
fsky = 0.64 employed in the current analysis, as compared to
0.72 for Ade et al. (2014). At the same time, we also note that
foreground modelling details appear to have only a small im-
pact of the final results, as very different methods reach quite
similar conclusions: The WMAP result was derived from an In-
ternal Linear Combination (ILC) map with low-resolution fore-
ground eigenmode error propagation, while the Planck results
were derived using four qualitatively different methods coupled
with end-to-end simulations. All these methods agree internally
qualitatively very well, and they also agree with the maximum-
posterior BeyondPlanck result.

The fundamental difference between the BeyondPlanck and
previous analyses does not lie in different foreground modelling,
but rather in the instrument modelling and the general statistical
treatment and error propagation. Most importantly, while pre-
vious analyses only accounted for relatively simple foreground
and noise uncertainties, the BeyondPlanck processing addition-
ally accounts for full gain uncertainties and their coupling to the
CMB Solar dipole and foregrounds. When doing so, the statis-
tical evidence for a quadrupole-octopole alignment diminishes
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Fig. 23. Histogram of the planarity test statistics t3 derived from the
set of BeyondPlanck constrained CMB realizations. We also mark the
value of t3 = 94% originally reported by de Oliveira-Costa et al. (2004)
from the first-year WMAP ILC map.

significantly. Of course, it is also important to emphasize that a
substantial contributor to this additional variance is the exclusion
of the Planck HFI measurements, which would allow both better
CMB constraints (and thereby indirectly also stronger LFI cali-
bration constraints), as well as a smaller Galactic plane by prop-
erly fitting free-free and thermal dust emission. Future work that
also includes HFI data will therefore need to revisit this question.

6.3. Planar octopole

Tegmark et al. (2003) and de Oliveira-Costa et al. (2004) also
noted that not only is the plane of the temperature octopole
closely aligned with the quadrupole, but the octopole is also in-
trinsically highly planar. de Oliveira-Costa et al. (2004) quanti-
fied this through the test statistic t3,

t3 ≡ max
n̂

|a3−3(n̂)|2 + |a33(n̂)|2∑3
m=−3 |a3m(n̂)|2

, (36)

which measures the ratio of the total octopole power that may
be contributed to a3±3, maximized over all coordinate systems.
This is shown in terms of a histogram for the BeyondPlanck
CMB samples in Fig. 23 together with the original WMAP mea-
surement of t3 = 94% by de Oliveira-Costa et al. (2004). Once
again, we see that the agreement is very good in terms of the
single-point peak value – but we also see that the distribution is
quite broad when marginalizing over the full set of uncertain-
ties. This distribution is in qualitatively good agreement with the
results of Rassat et al. (2014), who measured the octopole pla-
narity for six different foreground-reduced Planck 2013 CMB
maps, and found values ranging between 0.84 and 0.95 (corre-
sponding to PTEs between 7 and 37 %) depending on foreground
cleaning and mask details. When additionally marginalizing over
instrumental systematic effects in BeyondPlanck, we see that the
range broadens further.
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Fig. 24. Best-fit amplitude, q, as a function of maximum multipole, lmax
measured relative to the best-fit Planck ΛCDM power spectrum, as de-
rived for both Planck 2015 (gray) and BeyondPlanck (black).

6.4. Low-` temperature amplitude

Finally, we revisit the “low low-` temperature power spectrum
anomaly”, first reported by Planck Collaboration XV (2014)
(an analogous result at the angular correlation function level
had been previously observed in WMAP data, albeit at lower
significance level, e.g. Bennett et al. 2011). In this case, the
Planck team fitted the low-` temperature power spectrum with an
amplitude-scaled model C`(q) = qCΛCDM

`
between 2 ≤ ` ≤ `max,

and varied `max. Doing so, they found best-fit amplitudes typi-
cally ranging between 0.87 and 0.95, which are low with statis-
tical significances typically at the 1.5–2.5σ level.

Figure 24 shows corresponding results for both Beyond-
Planck and Planck 2015. Once again, we see that the results
generally agree well. In this case, we see on the one hand that
the BeyondPlanckmean results are in fact slightly lower than the
Planck results, possibly hinting towards a stronger anomaly. On
the other hand, the uncertainties are also larger due to the larger
confidence mask and more complete instrument error marginal-
ization, and the overall significance of the effect is therefore es-
sentially unchanged.

7. Discussion and conclusions

In this paper, we have presented the CMB results from the
Bayesian BeyondPlanck analysis (BeyondPlanck 2022). This
represents the first example of an end-to-end posterior sample-
based CMB analysis for which the inputs are defined in terms of
raw time-ordered data and the final outputs are CMB sky maps
and power spectra. This method was first suggested in a CMB
setting by Jewell et al. (2004) and Wandelt et al. (2004), and it
took almost twenty years of computer hardware and algorithm
development to realize this in practice.

Two of the most fundamental advantages of integrated end-
to-end CMB analysis are full joint exploration of all free param-
eters – instrumental, astrophysical, and cosmological – and true
end-to-end error propagation. In principle, this algorithm has a
similar statistical foundation as the traditional low-` brute-force
CMB likelihood approach used by both WMAP (Hinshaw et al.
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2013) and Planck (Planck Collaboration V 2020), but with a few
key differences: Rather than just accounting for correlated noise
and template-based foreground residuals at low angular resolu-
tion, this method can account for all degrees of uncertainty at full
angular resolution. It achieves this through Monte Carlo sam-
pling, as opposed to analytic construction of dense covariance
matrices, and neither angular resolution nor model complexity
therefore carry a similar prohibitive computational cost as the
traditional method.

It is important to note the Bayesian method, whether imple-
mented analytically or through sampling, is fundamentally dif-
ferent from the frequentist forward simulation-based method that
is commonly used in the CMB field for error propagation. Intu-
itively, the main difference lies in that, while forward simulations
describe some random instrument and universe, the Bayesian ap-
proach describes our instrument and universe. Because of this
difference, the two methods are naturally geared toward answer-
ing different types of statistical questions. For the Bayesian ap-
proach, it is easy to address questions like “what are the most
likely ΛCDM parameters for our universe?”, but difficult to ask
“is our data set consistent with the ΛCDM model?”. For the fre-
quentist simulation approach, the opposite holds true. It is also
interesting to note that the simulation-based approach becomes
indistinguishable from the Bayesian approach if constrained re-
alizations are used to generate the instrument and sky model, as
opposed to statistically independent realizations, as is typically
done. Indeed, the current BeyondPlanck implementation may in
many respects simply be considered as a constrained realization-
based simulator.

In this paper, we have used this sampling framework to ad-
dress several classical problems in CMB analysis. We have stud-
ied cross-correlations between the CMB component and instru-
mental and astrophysical parameters, and we have identified and
mitigated a particularly strong degeneracy with free-free emis-
sion. We have compared the resulting posterior mean CMB maps
and power spectra with previously published results, and found
good agreement. We have also derived a CMB Solar dipole am-
plitude of 3362.7± 1.4 µK, which is in excellent agreement with
previous results – but it is important to note that the quoted un-
certainty is derived directly from the global statistical model, and
not associated with any additional Planck-specific systematic er-
ror.

Given that all of the above are in good agreement with pre-
vious results, one may ask, what is the point of this approach?
Does this not simply show that the traditional method works just
as well? The main answer to this question may be formulated in
terms of signal-to-noise ratio: As long as the statistic or quantity
in question is signal dominated, such as the Planck TT spec-
trum on large and intermediate scales, the current method pro-
vides little or no obvious advantage. However, when the statistic
in question is either systematics- or noise-dominated, then these
methods become very powerful through their end-to-end error
propagation capabilities. This was explicitly demonstrated in this
paper by revisiting a number of previously reported large-scale
anomalies in the CMB temperature anisotropies. In many cases,
we found that the significances of these anomalies were signif-
icantly reduced after accounting for both low-level instrumental
parameters and the full non-Gaussian shape of the posterior dis-
tribution. Such effects are very difficult to model accurately by
non-sampling methods.

We posit that the same will also hold true for any next-
generation high-sensitivity CMB B-mode experiment that aims
to detect primordial gravitational waves. These experiments are
looking for a signal that is five or more orders of magnitude

weaker than the CMB dipole, and at least a few orders of mag-
nitude weaker than the Galactic diffuse foregrounds. As such,
accurate and joint error propagation of both instrumental and
astrophysical uncertainties will be key to claiming a robust de-
tection. Indeed, developing methods applicable to this task was
the main motivation behind the BeyondPlanck project in gen-
eral. The current analysis has shown in practice that end-to-end
Bayesian CMB analysis is both computationally and implemen-
tationally feasible.
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