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ABSTRACT OF THE DISSERTATION

Enhancement and Analysis of Nonlinear Optical Processes in Designed

Microstructures

by

Guy Klemens

Doctor of Philosophy in Electrical Engineering (Applied Physics)

University of California San Diego, 2007

Professor Yeshaiahu Fainman, Chair

The efficiency of nonlinear processes are limited by two effects: the small absolute scale

of the nonlinear coefficients and the phase-mismatch effect. Micrometer scale structures

with designed physical parameters offer a means to compensate for these limitations.

This dissertation examines several types of structures that can provide more efficiency

for a nonlinear processes than the same processes carried out in bulk crystal. Many of the

structures use resonance to build the internal electric fields, and therefore increase the

nonlinear response. Since numerous reflected waves exist within a resonant cavity, simple

analysis methods for nonlinear processes do not apply. The reflected beams within the

cavity interfere with each other as well as interact with the nonlinearity in the medium.

No method of analysis for nonlinear processes in a resonator offered the accuracy and

general applicability needed for these designs, so a new method is presented here. The

new method is general and flexible, so that effects such as loss, gain, multiple nonlinear

processes, and multiple cavities can be included in the modeling. The resulting field

solution satisfies all of the imposed conditions and modeled effects, and is therefore as

xii



accurate as the modeling equations. This method is then used to examine complicated

structures that could not be accurately characterized before. Included are multi-cavity

bistable devices and microcavities exhibiting modulation instability.
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Introduction

1.1 Nonlinear Optical Processes

The field of nonlinear optics encompasses many processes in which photons in-

teract with each other through the mechanism of the surrounding medium. As examples,

some nonlinear processes are:

• Wavelength conversion. This includes the combination of two, three or more pho-

tons into one photon (second-, third- or higher harmonic generation), or the cou-

pling of power between beams of different frequencies. Since lasers produce light

in certain set wavelengths, these processes are used to create light in other wave-

lengths that may be needed, and to make tunable wavelength sources.

• Field-dependent propagation. This includes the Pockels effect, in which the refrac-

tive index of the medium (and therefore the wave speed) is affected by an electric

field. The Kerr effect similarly adjusts the refractive index based on the beam in-

tensity (proportional to the squared magnitude of the electric field). These effects,

particularly the Pockels effect, are used to create high-speed optical modulators,

phase-shifters and shutters.

1
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• Optical limiters and multistable cavities. In these devices, the intensity of the input

beam determines the output behavior. In an optical limiter, for example, the Kerr

effect causes a filter structure to change from the passband to the stopband when

the light intensity is high.

• Nonlinear signal propagation. As a wave packet of light travels through a fiber,

it can be distorted by nonlinear effects. Alternatively, by tuning the appropriate

parameters, it is possible for the nonlinear effects to compensate for the material

dispersion. This creates a wave called a soliton, which maintains its shape even

after long propagation distances.

The nonlinear aspect of the interaction of electromagnetic waves with matter

is small and, in general, suppressed by phase mismatch effects. The first demonstration

of a nonlinear optical effect may have been in 1875 when John Kerr showed that the

refractive index of a cell filled with gas or fluid could be changed with an applied electric

field [1]. The development of most useful nonlinear effects, however, came after the in-

troduction of the laser, which provides a high-intensity light source. With high-intensity

light, the small nonlinearity can yield significant output. Most nonlinear effects are still

negligible due to interference effects (the phase-mismatch). This dissertation examines

ways of enhancing nonlinear optical effects through the use of engineered microstruc-

tures. The creation of such microstructures has become possible with recent fabrication

techniques, opening a new subfield in nonlinear optics for exploration. Structures that

would increase nonlinear efficiency are presented and their design process is explained. Of

equal prominence is the novel techniques that are shown for the analysis of the nonlinear

processes in these structures.
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1.2 Origin of Nonlinear Optical Effects

While the interaction of electric and magnetic fields as described by Maxwell’s

equations are linear, the interaction of those fields with matter contains a nonlinear

component. Texts in nonlinear optics (e.g., [2, 3]) commonly use the model of the an-

harmonic oscillator to explain nonlinearity. In this analogy, the valence electron of an

atom is bound to an immobile nucleus with a spring-like force. An impinging electric

field moves the electron, converting the electric energy to kinetic energy. The moving

electron then radiates an electromagnetic wave, returning the energy to the electric field.

In a realistic spring model, the force is written as a power series of the displacement,

including nonlinear terms. While the incoming electromagnetic field may be monochro-

matic, therefore, the radiated field has other frequency components. The nonlinear terms

become increasingly small as the order increases, and therefore have an appreciable effect

only for large displacements. In a general atom model, the electron is bound to a nucleus

with an electric field of approximately 1010 V
m, so the electron displacement caused by

most electromagnetic waves is not large enough to cause noticeable nonlinearity. Sun-

light, for example, has an electric field less than 1000 V
m [2]. With the introduction of

the laser in 1960 [4], light sources with high intensity and narrow wavelength bandwidth

became available, and the study of nonlinear optical effects rose to prominence. For

example, a 1 W beam with a diameter of 1 mm2 has an electric field intensity of approx-

imately 105 V
m, and lasers are available with a higher peak power and can be focused into

smaller spots.

1.3 Limiting Factors in Nonlinear Optics

Although electromagnetic waves interacting with atoms involves nonlinearity,

those effects can be negligibly small due to limiting factors. For a centro-symmetric
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material, some of the overall nonlinear constants are effectively zero. These are the

processes that act on an even power of the electric field. For such processes, there is

no preferred polarization for the generated wave. Neighboring atoms can therefore emit

waves with opposite polarizations, leading to cancelation. Centro-symmetric crystals can,

however, have nonzero nonlinear constants that involve odd powers of the electric field.

For such processes, the sign, positive or negative, of the impinging field is preserved,

so there is a preferred polarization for the output wave. Note that a crystal can be

isotropic, meaning that the refractive index is the same in all directions, but still be

non-centrosymmetric. An example is gallium arsenide, in which the gallium and arsenic

atoms are arranged in a zincblende (diamond-like) structure ([3], p. 49). The structure

appears symmetric in all directions, but the presence of two different atoms with different

nonlinear responses negates the centro-symmetry described above.

The coefficients that describe the nonlinear processes are small, and become

smaller with each order. This can be understood by considering the number of photons

involved. In a second-order nonlinear process, two photons may be combined by an atom

to produce a third photon with energy equal to the sum of the previous two. For this

to occur, two photons must reach the atom simultaneously. More precisely, a photon

will change the electron state, and then a second photon must enter the atom before the

electron has returned to it’s unperturbed state and radiated the first photon. Unless the

photon field is dense (high electric field), the probability of this occurring is low. Each

additional photon required for a nonlinear process lowers the probability of occurrence.

For example in a third-order process after one photon is absorbed by an atom, two more

must be absorbed before the first photon is radiated for the process to occur. Second-

order nonlinear constants are generally of the order 10−13–10−10 m
V , while third-order

nonlinear constants are in the range of 10−20–10−22 m2

V 2 . Despite the small value of these

terms, any nonlinear process could be appreciable if the propagation distance is long



5

enough. There is, however, the further limiting effect of phase matching.

Phase mismatch stops energy from being transferred permanently between

waves of different frequencies. The speed at which electromagnetic waves propagate

through a material is frequency-dependent. The variation of a material’s optical prop-

agation properties with frequency is called dispersion. At some point in the propaga-

tion, the waves are in phase, while at a later point, the waves are exactly 180 degrees

out of phase, and the in-phase and out-of-phase points continue periodically along the

entire propagation distance. The generated wave from the nonlinear process will alter-

natively add constructively and destructively to the existing wave. As an example, in

second-harmonic generation, energy will be transferred from the fundamental wave to its

harmonic (wave with twice the frequency) at the in-phase points, and transfer from the

harmonic to the fundamental at the out-of-phase points. The energy is shuttled between

the two waves and the harmonic wave is unable to build. The distance between in-phase

and out-of-phase points in a typical material is tens of micrometers, so only a negligible

amount of energy is converted before it is returned to the fundamental. Due to the

phase mismatch effect, a long interaction length will not, in general, improve nonlinear

conversion efficiency. Only if the phase mismatch is compensated though some means

will an increase in interaction length be worthwhile.

1.4 Microstructure fabrication

New methods of creating structures with micrometer feature sizes have opened

new areas of study in nonlinear optics. While driven by the microelectronics industry,

the advances in fabrication are also useful for optical structures. Optical wavelengths

are on the order of one micrometer; with this level of detail in fabrication, we can design

structures that use precise interference effects to control the response.
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One fabrication task is the creation of thin films, for which there are several

methods [5]. Evaporation-based methods are one common method. A sample of metal,

such as gold or aluminum, is heated by a filament or an electron beam. The added

kinetic energy leads the atoms to break from their crystal structure (melting) and then

to escape from the metal into space (evaporation). A wafer of material such as silicon

is exposed to the metal vapor. The metal vapor atoms cool on the wafer surface, which

forms the metal layer. While slow, this process can create layers with thicknesses that

are precise to the fraction of a micrometer. A deposition rate accuracy of 1 Å/second

(10−10 m/second) is currently achievable. Chemical vapor deposition (CVD) is similar in

principle, although with multiple sources. To deposit silicon dioxide, for example, silane

(SiH2) is evaporated in a furnace and mixed with oxygen to form silicon dioxide, SiO2,

with a hydrogen by-product. Many such chemical reactions are used in CVD systems,

yielding some variety in the materials that can be deposited. Typical deposition rates

are in the hundreds of Angstroms per minute, so vapor deposition is suited to layer

thicknesses of less than a micrometer.

Many of the structures described in this dissertation are dependent upon depo-

sition of multiple sub-micron layers. By specifying the thickness of each layer in a stack

of a dozen or more layers, we can create a mirror with the complex reflection coefficient

that is needed for an application. By adding enough layers, it is possible to meet reflec-

tion coefficient goals at multiple frequencies. The design of such mirrors is discussed in

Chapter 4.
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1.5 Numerical analysis of nonlinear processes in resonant

microstructures

One of the significant contributions of this dissertation is the introduction of

a new method for calculating the response of resonant cavities with nonlinear effects.

The calculation method for the energy flow between electromagnetic waves of different

frequencies through a nonlinearity has been well-established [6]. This method, which rep-

resents the nonlinear process through a set of coupled differential equations, is outlined

in Section 2.2. This method applies, however, only for the case of waves co-propagating

in an unbounded medium. This assumption is not valid for a resonant cavity. The

one-dimensional resonant cavities examined here consist of a propagation length in a

nonlinear crystal (or multiple materials) with mirrors placed at each end. These simple

structures will contain multiple reflected waves traveling in both directions. These waves

will add to form overall standing waves, and will interact through the nonlinearity. The

early literature introduced a multiplier to the nonlinear process based on the field build-

up in the cavity [7]. Later published research used a more sophisticated two-step method

[8]. First the amplitude and phase distribution of the input waves are calculated inside

the cavity as if the material were linear. Then those results are used as a distributed

source to calculate the waves produced by the nonlinear process. While effective in some

applications, this method will not work for others. For example, in a cavity in which

the Kerr effect is used to produce bistability (described in Chapter 5), there is not a

clear demarcation between input and output waves. Similarly, to calculate modulation

instability in a resonant cavity (as in Chapter 6), a method is needed that simultane-

ously accounts for all the waves in the cavity and all the interference and mirror effects.

Since we were interested in examining such applications, a new analysis method had to

be developed. I found a technique used in circuit simulators to analyze resonant circuits
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containing nonlinear elements. Taking the basic outline of this method and translating

the details to electromagnetic waves propagating in nonlinear crystals, I wrote several

programs to calculate the response of different types of nonlinear processes. The analysis

method is presented in Chapter 3, and calculation results from the programs based on

this method are subsequently shown.

1.6 Dissertation Overview

The goal of this dissertation is to examine the issues related to the design of

structures to create efficient nonlinear processes. Most of the structures presented are

micrometer-size in order to use interference effects that become significant when feature

sizes are near, or less than, optical wavelengths. Besides design considerations, one of

the main contributions is a new calculation method for analyzing nonlinear processes in

resonant structures. The new method is then used to examine several applications that

could not be sufficiently calculated with previous methods.

The subsequent chapters each examine an aspect or application of nonlinear

optics in designed structures. First, Chapter 2 describes the mathematical analysis of

nonlinear optical processes, including explicit statements of the limitations a designer

faces. Two methods are then presented to overcome those limitations. One uses form

birefringence to negate phase-mismatch, and the other uses an applied electric field to

increase the nonlinear constant. The second method was carried out experimentally.

Chapter 3 presents the new method for calculating the response of an optical nonlinear

process in a resonant cavity. The method is explained and details of the implementation

are examined. This includes a brief discussion of optimization methods used. Sample

results are shown for a simple case. Chapter 4 is about the design of such structures. The

conditions that must be met are explained, as are the effects of cavity length and mirror



9

reflection coefficients. A technique for the design of mirrors that meet the requirements

is explained. Chapter 5 presents the use of the new analysis method for the calculation

of the output of multi-stable devices. The analysis of these devices has been approximate

in the previous literature, but is made more exact here. Furthermore, the new method

allows for the design and analysis of new structures that could not be done with past

methods. Chapter 6 examines modulation instability. This effect has been studied

extensively, but not in a resonant cavity because techniques to do so were unavailable.

Finally, a summary and concluding remarks are made in Chapter 7.



2

Techniques for Enhancement of

Second-Harmonic Generation

2.1 Introduction

In second-harmonic generation (SHG), two photons of equal energy are com-

bined to produce one photon [6]. From conservation of energy, the resulting photon has

twice the energy of each input photon, which corresponds to doubling the frequency

of the wave, or halving the wavelength. Efficient SHG was one of the first nonlinear

processes demonstrated (in 1962 [9]) after the invention of the laser, which provides a

high-intensity monochromatic light source. Soon after, the efficiency of the processes

was improved with the addition of a resonant cavity [7].

This chapter presents methods to improve SHG efficiency from two aspects. The

following section presents an analysis of nonlinear frequency mixing in electromagnetic

waves. The derivation of the coupled differential equations that model energy exchange

between waves through the medium nonlinearity is demonstrated. Part of the derivation

is to quantify the limiting factor of phase mismatch. Section 2.3 presents a type of

10
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structure that I analyzed to overcome phase mismatch through the use of engineered

anisotropy. The principle of operation is explained and several examples are given.

Another limiting factor is the small absolute value of the nonlinear constant of most

media. Section 2.4 explains a possible method of creating an artificially large nonlinear

coefficient. A series of experiments I conducted to test this effect is presented.

2.2 Overview of Nonlinear Optical Frequency Conversion

2.2.1 Energy Transfer and Phase Matching

This section presents an overview of the analysis of nonlinear interactions in

propagating electromagnetic waves. The flow of energy between waves of different fre-

quencies, the place of nonlinear constants in the calculations, and the effect of phase-

mismatch will be explained. The analysis method used here is that of [6], which is

also used in many nonlinear optics texts (such as [2, 3]). The analysis below is for an

electromagnetic wave co-propagating with its harmonic, although the techniques can be

extended to multiple waves at multiple frequencies.

The analysis of nonlinear effects in propagating electromagnetic waves begins

with Maxwell’s dynamic equations in a source-free region:

∇×E = −∂B
∂t

, (2.1)

∇×H =
∂D
∂t

, (2.2)

where E is the electric field, H is the magnetic field, D is the electric displacement and

B is the magnetic flux density. Boldface is used here to represent vector field quantities.

Interaction with the surrounding medium is through the constitutive relations

B = µ0H + Pm, (2.3)

D = ε0E + Pe, (2.4)
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where µ0 is the magnetic permeability of free space, ε0 is the electric permittivity of free

space, and Pm and Pe are the polarizations induced in the material by the magnetic field

and the electric field, respectively. The dielectrics discussed here will not be magnetic

materials, so we will assume that the magnetic polarization is uniformly zero. The

electric polarization in dielectrics, however, can be strong and contains the nonlinear

effects. To make these effects explicit, the electric polarization is generally expanded

into the power series form

Pe = ε0χ
(1)E + ε0χ

(2)EE + ε0χ
(3)EEE + . . . , (2.5)

in which the linear effects are grouped into the coefficient χ(1), the second-order nonlinear

effects are grouped into the coefficient χ(2), and similarly for the higher-order coefficients.

The quantities discussed to this point have all been in the frequency domain.

The field variables and constants are all functions of frequency. A time-domain analysis

is also possible, but at the expense of greater complexity since the frequency-domain

multiplications are replaced by superposition integrals in the time domain. Since the

processes are time-invariant, the operations can be further categorized as convolution

integrals. Equation 2.5, for example, takes the form of a Volterra series (a series of

convolution integrals)[2]:

Pe(t) = ε0

∫ t

0
E(t−τ)χ(1)(τ)dτ +ε0

∫ t

0

∫ t

0
E(t−τ1)E(t−τ2)χ(2)(τ1, τ2)dτ1dτ2+. . . . (2.6)

The relation between the time-domain and the frequency-domain representation can be

clarified by considering a monochromatic wave:

E(t) = eiωt. (2.7)

Using this definition in the first integral of Equation 2.6, for example, gives

∫ t

0
χ(1)(τ)eiω(t−τ)dτ = eiωt

∫ t

0
χ(1)(τ)e−iωτdτ = eiωtχ(1)(ω), (2.8)
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where χ(1)(ω) is the Fourier transform of χ(1)(t) evaluated at frequency ω. The subse-

quent terms of Equation 2.6 can be similarly transformed, although with two-dimensional

and higher Fourier transforms. For the cases considered here we will assume that the

nonlinear coefficients are relatively constant over the frequency ranges of interest. So,

for example, χ(2)(ω1, ω2) = χ(2). For monochromatic waves Equations 2.5 and 2.6 are

therefore equivalent.

Combining Equations 2.1 and 2.2, and including 2.5, produces a wave equation,

∇2E− µ0ε0εr
∂2E
∂t2

= µ0
∂2PNL

∂t2
, (2.9)

in which PNL denotes the nonlinear polarization, and the linear terms have been com-

bined into the constant εr = 1 + χ(1). This equation only includes the electric field, E,

since the magnetic field is redundant. For a propagating wave, the electric and magnetic

field amplitudes are fixed together at each point by the ratio

E
H

=
n

Z
, (2.10)

where n is the refractive index of the medium, and Z is the the impedance of free space

(approximately 376.7 Ohms). Equation 2.9 could be written using H, although since the

nonlinearity is dependent on the electric field, the present form is more convenient.

For the specific case of second-harmonic generation, we assume a field made up

of two frequencies, represented as

E(z, t) = E1(z)eiωt + E2(z)ei2ωt + E∗
1(z)e−iωt + E∗

2(z)e−i2ωt, (2.11)

in which ω and 2ω are the two frequencies and ∗ denotes complex conjugation. The

assumption has also been made that the beams are plane waves traveling along the

z-axis. Substituting the expansion of Equation 2.11 into Equation 2.9 yields the two

coupled differential equations

d2E1

dz2
= −

(
ω

c

)2

(ε1E1 + 2χ(2)E∗
1E2), (2.12)
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d2E2

dz2
= −

(
2ω

c

)2

(ε2E2 + χ(2)E1E1), (2.13)

in which the speed of light in free space, c = 1√
µ0ε0

, has been used, and ε1 and ε2 repre-

sent the relative permittivity of the medium at frequencies ω and 2ω, respectively. The

solution of these two equations as a coupled system, given the initial values of E1 and

E2, models the energy transfer between these two waves as they propagate. These equa-

tions can model second-harmonic generation, frequency downconversion, or the transfer

of energy back-and-forth between the two frequencies. The procedure demonstrated here

can be applied to other nonlinear processes, such as those involving beams with three

or more wavelengths, or using higher nonlinearities such as χ(3). Coupled differential

equations similar to Equations 2.12 and 2.13 will be the result, although including more

terms. Furthermore, terms representing power loss or gain could be added to the differ-

ential equations. While Equations 2.12 and 2.13 are adequate for numerical calculation,

their physical meaning can be more clearly understood through approximation.

Second-order differential equations such as Equations 2.12 and 2.13 can be

simplified in some cases by considering the waves to be constant-magnitude plane waves

with a slowly varying amplitude modulation. The representation of the field at ω then

becomes

E1(z) = A1(z)e−ikz, (2.14)

in which k is the wavenumber, equal to ωn
c . In the slowly-varying envelope approxima-

tion, we assume that the overall envelope of amplitude is varying much more slowly than

the plane wave. For example, a one nanosecond optical pulse in glass is approximately

100 centimeters long, while optical wavelengths are on the order of 1 micrometer. The

pulse therefore contains approximately 105 waves. The envelope function, A(z), is nearly

constant in the reference plane of the wave, e−ikz. Using this fact to discard negligibly
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small terms, Equations 2.12 and 2.13 reduce to

dA1

dz
= −i

ωχ(2)

cn1
A∗1A2e

i∆kz, (2.15)

dA2

dz
= −i

2ωχ(2)

cn2
A1A1e

−i∆kz, (2.16)

where n1 and n2 are the refractive indices at the two frequencies, related to the rel-

ative permittivity by n =
√

εr. These equations make explicit the phase mismatch

term, ∆k = k2 − 2k1. They also indicate how the harmonic would grow in the case of

phase matching, ∆k = 0. To make this relation clearer, we can apply the non-depleted

pump approximation, whereby the pump amplitude, A1, remains constant. Then from

Equation 2.16, the harmonic amplitude grows as

A2(z) = CA2
1z, (2.17)

where the constant terms have been accumulated into C. This predicts a linear increase in

the harmonic field and a quadratic increase in the harmonic intensity, since I1 = 1
2

n
Z |E1|2.

This rapid increase in the harmonic field, however, will only occur in a phase-matched

case.

The phase mismatch, ∆k in Equations 2.15 and 2.16, is caused by the dis-

persion (frequency-dependence of the refractive index) in the medium. The effect can

be approximately quantified by integrating Equation 2.16 using the non-depleted pump

approximation, but this time with the phase mismatch term remaining. The resulting

amplitude variation for the harmonic wave is then

A2(z) = DA2
1e
−i

∆kz

2 sin
(

∆kz

2

)
, (2.18)

where D is another collection of constant terms. This relation shows that the harmonic

amplitude will not be able to grow unrestricted, but will return to zero with regular

periodicity. The distance between the point where the waves are in-phase and where
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they are 180 degrees out of phase is commonly referred to as the coherence length. This

corresponds in Equation 2.18 to the distance from a zero to a maximum, or π
∆k

. Some

sources, such as [2], define the coherence length as the distance between points where the

waves are in-phase. This corresponds to the distance between zero points (or between

maxima) in Equation 2.18, or 2π
∆k

. By either definition, the coherence length should be

as long as possible, and the output of the nonlinear medium placed at a maximum, for

efficient energy transfer.

2.2.2 Techniques of Phase Matching

The direction-based method to create phase-match used in 1962 [9] is still a

common technique. In this method, an anisotropic nonlinear crystal is used, in which

the polarization direction of the electric field determines the refractive index seen by a

wave. It may be possible to orient the crystal such that the fundamental and the har-

monic, polarized perpendicular to each other, experience the same refractive index at

their respective frequencies. This method is limited in its application since it can only

be applied to anisotropic crystals. Some materials such as gallium arsenide have rela-

tively high second-order nonlinear coefficients [10], but are excluded from this technique

because they are isotropic. Furthermore, the nonlinear coefficient can be direction-

dependent, and the crystal orientation that produces phase matching may not have the

highest nonlinear coefficient.

Another method of overcoming phase-mismatch is periodic poling, in which the

crystal structure is modulated [11]. As explained in Section 1.3, crystals with a nonzero

second-order nonlinearity are not centro-symmetric, so the generated field has a preferred

polarization direction. Flipping the crystal structure also flips the polarization of the

harmonic field, which is the equivalent of a 180 degree shift. In periodic poling, the

crystal structure is flipped at the point that the phase-mismatch reaches 180 degrees,
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Figure 2.1: Harmonic intensity as a function of propagation length with different phase-
match schemes for a fictional example case. Trends are calculated with approximate
Equations 2.17 and 2.18.

thereby re-zeroing the mismatch. The harmonic field can then grow indefinitely, but

note that this is not phase-match. By Equation 2.18, the harmonic amplitude growth

is as a sinusoid. The crystal structure is flipped upon reaching the maximum, so rather

than begin to decrease, the amplitude can continue rising. Figure 2.1 diagrams the

harmonic amplitude in the crystal for the cases of phase-mismatch, phase-match, and

periodic poling. In the case of periodic poling the harmonic amplitude does not grow as

fast as when phase matched, but is not limited like the phase-mismatch case. For this

reason, periodic poling is also called Quasi-Phase Matching. While simple in principle,

fabricating such structures within tolerance is difficult [11].
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2.3 Phase-Matching with Engineered Anisotropic Struc-

tures

2.3.1 Background

Consider two waves with perpendicular polarization propagating through a

structure made up of two materials. The two materials alternate periodically along

the wave front. If the period of the structure is much smaller than the wavelength of the

waves, we can perform an approximate analysis to determine the refractive index acting

on each wave.

By the boundary conditions of electromagnetic theory, the electric field po-

larized parallel to the periodic boundaries is continuous. We refer to this as the TE

polarization, in analogy with the polarization names used in reflection and transmission.

The overall permittivity for this polarization is defined by the equation DA = εTEEA,

where the subscript A denotes an average across the entire structure. The average electric

displacement is

DA =
D1d1 + D2d2

d1 + d2
, (2.19)

where D1 and D2 are the electric displacement magnitudes in materials one and two,

respectively, and d1 and d2 are the widths of the two materials. By definition, D1 = ε1E1

and D2 = ε2E2. Using the assumption that the material period is much smaller than a

wavelength, we can make the approximation that E1 = E2, then

εTE =
ε1d1 + ε2d2

d1 + d2
. (2.20)

For the other polarization, called TM, the boundary condition states that the

electric displacement, not the electric field, is continuous across the boundaries. We now

use the equation EA = DA/εTM , to find the overall relative permittivity. Assuming

the electric displacement, D, is not only continuous across the boundaries, but constant
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throughout the structure, the relative permittivity is given by

1
εTM

=
d1
ε1

+ d2
ε2

d1 + d2
. (2.21)

Equations 2.20 and 2.21 show that with material choice and by adjusting the

ratio of widths d1 and d2, a structure can be created where the refractive index at one of

the polarizations and at frequency ω matches the refractive index at the perpendicular

polarization and at frequency 2ω. Design parameters have been created that can tune

a structure into a state of phase match for a particular process. This method was first

proposed in 1975 [12], and demonstrated soon afterwards for a structure with 17 pairs

of material layers [13]. Other subsequent published experiments have also been based

on this phase-matching method [14, 15].

2.3.2 Rigorous Coupled Wave Analysis

When the structure feature size is not smaller than a wavelength, the approx-

imate methods of Section 2.3.1 do not apply, necessitating the use of computational

techniques. For the microstructures under consideration, the material periods will be

the same order of magnitude in size as the wavelengths involved. To do the analysis, I

used a technique called Rigorous Coupled Wave Analysis (RCWA).

RCWA is a computational technique applicable to electromagnetic propagation

through a periodic medium that is based on periodic expansions [16, 17]. Assume wave

propagation in the z-direction, and that the periodicity of the medium in the x-direction.

The medium can be expressed by the Fourier series

ε(x) =
∞∑

p=−∞
εpe

i 2π
Λ

px, (2.22)

where Λ is the period of the medium. The coefficients in Equation 2.22 are given by

εp =
1
Λ

∫ Λ
2

−Λ
2

ε(x)e−i 2π
Λ

pxdx. (2.23)
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The propagating wave can also be given as a period expansion. The electric

and magnetic fields are then represented as

E(x, z) =
∞∑

p=−∞
Spe

i 2π
Λ

px, (2.24)

H(x, z) =
1
η0

∞∑

p=−∞
Upe

i 2π
Λ

px, (2.25)

where the direction of the vector coefficients Sp and Up are determined by the input

wave polarization. The term η0 in Equation 2.25 is the impedance of free space, which

is included so that Sp and Up will have consistent units. Unlike Equation 2.22, the

coefficients of Equations 2.24 and 2.25 are unknown; they are the quantities to be solved.

To solve for the fields within the medium, the series of Equations 2.22, 2.24 and

2.25 are substituted into Maxwell’s equations, resulting in one matrix state equation to

solve. While the series have been shown as extending in terms from −∞ to∞, a practical

implementation will truncate the series to −M to M . Each series then has 2M +1 terms,

and the final matrix will be 2(2M + 1) by 2(2M + 1).

A straightforward implementation of the algorithm as it is described here will

be ill-conditioned. This is due to the number of orders used to represent the series. Only

the first few terms around p = 0 in Equations 2.24 and 2.25 represent propagating waves,

which have complex exponentials. The other terms are evanescent waves with exponen-

tially increasing or decreasing magnitude, with the size of the exponentials increasing

with the number of terms. Ideally, the large, positive exponentials are paired with very

small coefficients during the solution. In practice, however, these terms can be hundreds

of orders of magnitude larger than the other terms, and accuracy is lost. The method

of [18, 19] was used to overcome this difficulty. In this method, the matrix set-up is the

same, although the matrix problem is then partitioned into smaller matrix equations, in

which terms of similar magnitude are grouped.
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My contribution was to rewrite this field-solver program for anisotropic mate-

rials, and then to create designs for efficient SHG. In the anisotropic case, the relative

permittivity ε becomes a 3-by-3 matrix, with each element represented by a Fourier

series. This significantly increased the size and complexity of the associated matrix

equations. The design cases were built around using lithium niobate (LiNbO3) as the

nonlinear material. Lithium niobate is an anisotropic material with a relatively high

nonlinear coefficient [10] that is widely used in the electronics industry. Several designs

were simulated [20], although not fabricated due to the difficulty in creating satisfactory

gratings in lithium niobate.

2.3.3 Designs Based on Lithium Niobate

The first design, shown in Figure 2.2, uses fluid with lithium niobate to create

the periodic structure. Conversion in this case is from 1.5 micrometers to 0.75 microm-

eters. Since the period is larger than the wavelength of the beams inside the structure,

the RCWA method is needed for calculation. The calculated refractive indices inside the

structure for the two frequencies are shown in Figure 2.3 as a function of lithium niobate

duty cycle. For fluid with a relative permittivity of 3.9, the indices match when 70% of

each period is made up of lithium niobate. The point of phase matching varies with the

permittivity of the filler, as shown in Figure 2.4. This may be useful if there is variation

in the fabricated duty cycle of the lithium niobate. If the duty cycle differs from the

designed value, the filler could be reformulated to change its permittivity.

A design using solid fillers is shown in Figure 2.5. No single material was

found with dispersion properties that could produce phase-matching. Two materials

were therefore used together. The calculated coherence length, plotted as a function of

lithium niobate duty cycle in Figure 2.6, shows that the phase-matching point occurs

when lithium niobate makes up 75% of each period.
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Figure 2.2: Structure for phase-matched SHG using lithium niobate and oil; the main
crystal axis is shown by the vector C.

Figure 2.3: Refractive indices in the structure of Figure 2.2 for the TM and TE polar-
izations for waves of wavelength 1.5 and 0.75 micrometers, respectively. The relative
permittivity of the filler oil is 3.9. Each point represents an RCWA run.
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Figure 2.4: Coherence length as a function of lithium niobate duty cycle for several filler
permittivities. The structure is as shown in Figure 2.2.

Figure 2.5: Structure for phase-matched SHG using lithium niobate and solid filler
materials; the main crystal axis is shown by the vector C.
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Figure 2.6: Coherence length as a function of lithium niobate duty cycle for the structure
shown in Figure 2.5.

An alternative scheme for using solid filler is to alternate the materials with

lithium niobate, as shown in Figure 2.7. In this case there are four widths that can be

varied in each period. The plot of coherence length in Figure 2.8 shows that the phase-

matching point is where lithium niobate makes up approximately 54% of each period.
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Figure 2.7: Structure for phase-matched SHG using lithium niobate and alternating solid
filler materials; the main crystal axis is shown by the vector C.

Figure 2.8: Coherence length as a function of lithium niobate duty cycle for the structure
shown in Figure 2.7.
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2.4 Creation of Artificial Second-Order Nonlinearity by

Poling a Third-Order Nonlinear Material

This section examines an experiment I conducted to create an artificial second-

order nonlinear coefficient in a material lacking one. To understand why a material may

be lacking a second-order nonlinear coefficient, and how a third-order coefficient can be

made into a second-order coefficient, we can examine the induced polarization in the

material. This polarization can be written as a power series,

Pe = ε0χ
(1)E + ε0χ

(2)EE + ε0χ
(3)EEE + . . . , (2.26)

where the χ terms are the coefficients of first, second and third orders. A physical

limitation to consider is that the second-order nonlinear coefficient, χ(2), is zero in a

centro-symmetric material. Consider a centro-symmetric material in which the electric

field is aligned with the z-axis. Then the nonlinear polarization, P(2) = ε0χ
(2)EE, is also

polarized in the positive-z direction. Now arbitrarily switch the z-axis by 180 degrees.

The electric field magnitude now has a negative value, although since it is squared, the

nonlinear polarization is still positive. The direction defined as positive, however, is

now directly opposite to the previous case. Expecting the physical quantities to be the

same in any arbitrarily declared axis-orientation, the two nonlinear polarizations must

be equal, so P(2) = −P(2), which is true only if P(2) = 0. A physical explanation is that

with no preferred direction of second-order nonlinear polarization, one atom or set of

atoms will produce a field polarized in one direction, and the next atoms may produce

a field in the opposite direction, leading to cancelation. Materials with a second-order

nonlinearity therefore comprise a subset of nonlinear materials. All nonlinear materials

will have a third-order nonlinear coefficient, although that coefficient may be small.

The application of a constant electric field can create a second-order nonlinear
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coefficient in a centro-symmetric material. In such a case, the nonlinear polarization

takes the form

PNL = ε0

(
χ(3)E0

)
EE, (2.27)

with E0 being the applied constant electric field. Parenthesis have been placed in Equa-

tion 2.27 to highlight the term that becomes the effective second-order nonlinear coeffi-

cient,

χ
(2)
eff = χ(3)E0. (2.28)

Physically, the constant electric field distorts the atomic structure and breaks the cento-

symmetry [21].

This effect has been used to create SHG in PLZT, a centro-symmetric mate-

rial. PLZT, Pb1−xLax(ZryTi1−y)1−x/4O3, is a material widely used in the electronics

industry in applications such as digital displays. This material has the advantages of

being transparent for the visible light spectrum, a fast response time, and a wide range

of operating temperatures [22]. Reflected SHG was created using PLZT in [23]. In that

work, electrodes were placed on the PLZT surface, with a gap of 60 micrometers between

them. A beam of 1.064 micrometer wavelength was directed at the space between the

electrodes, and the reflection examined for the harmonic. The experiment I conducted

used transmission through the PLZT sample, rather than reflection from its surface.

During reflection, the field penetrates the surface only a few nanometers, leading to a

weak nonlinear output. Transmission through the bulk of the crystal has the potential

to yield a larger output.

2.4.1 Experimental Setup

The experiment was designed in a straightforward manner of source-device-

detector. A tunable, high-power, pulsed laser was used for the light source. The beam
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was passed through an attenuator and a polarizer, then focused with a lens into a point

at the sample. After the sample was another lens to collect the diverging light, and a

filter to block the infra-red input beam. A silicon detector was used, which normally

would not detect radiation with wavelengths larger than approximately one micrometer,

which includes the input wave. The input beam had a high enough intensity, however, to

create a response in the detector. The infra-red filter blocked this effect by attenuating

the remaining input beam leaving the sample. The signal from the silicon detector was

sent to a lock-in amplifier that was synchronized with the pulsed laser source. Only a

signal at the frequency of the source (1 kHz) would be displayed by the lock-in amplifier.

This adds immunity to ambient light sources such as displays and room lights.

A sample of PLZT approximately 1 mm thick with metallization on the broad-

sides was used. The PLZT composition was 9/65/35 (ratio of La/Zr/Ti), which is similar

to that used in [23]. The propagation distance was approximately 3 mm. Electrodes were

attached to the metallic sides in order to apply a DC voltage to create the static electric

field. The sample was also positioned on a temperature controlled surface to measure

temperature-dependent effects.

2.4.2 Experimental Results

Second-harmonic generation was detected with the application of a voltage to

the sample. The input waves had a wavelength of 1300 nm, well out of the visible

range. Upon applying a voltage, the harmonic at 650 nm would clearly appear as a red

spot, and would grow brighter as the voltage was increased. Sparking would occur at

approximately 600 V applied voltage, so the measurements were taken below that level.

The refractive index as a function of frequency for this sample is unknown.

The variation of the SHG power detected with the applied voltage is shown in

Figure 2.9. The increase in SHG power with the applied voltage is as expected from
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Figure 2.9: Detected SHG vs applied voltage, for different temperatures. The input
wavelength is 1300nm.

Equation 2.27. Different temperature points are included, showing a small increase in

SHG power as the temperature of the sample is lowered. From this limited data set,

the origin of this difference is not known. The lower temperature may be changing the

refractive index of the sample in a way to improve phase matching.

The effect of input frequency is shown in Figure 2.10. While the source fre-

quency was adjustable, the power would vary significantly for different frequencies. The

data in Figure 2.10 have therefore been normalized for each input wavelength. The

highest conversion occurs at 1330 nm.

The final plot of Figure 2.11 shows the dependence of the output SHG on the

input wave power. In this case, a variable attenuator was used to create the variation

in input beam power. The wavelength and temperatures were held constant at 1300 nm

and 30 C, respectively, and the input power was measured with a detector that gives

time averaged power. Figure 2.11 therefore shows power in milliwatts. Since the source

output is actually in .1 psec pulses, the peak power can be in the gigawatts. The plot
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shows a linear increase in SHG power with input power, which is expected from Equation

2.27.

2.5 Summary

Two methods for the enhancement of optical second-harmonic generation have

been analyzed and presented here. The purpose of these methods is to overcome two

limiting factors in nonlinear optical processes: (1) the phase matching problem, and (2)

the small nonlinear coefficients. The first method uses a periodic structure to create

anisotropy that is specifically designed to create a phase match. The designer has some

freedom in choosing materials and the direction of propagation. The case of lithium

niobate was presented, with several designs shown that meet the phase matching criteria.

The analysis required numerical simulation using RCWA in a custom-written program.

The second method is an experimental investigation into the creation of an artificial
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second-order nonlinearity in a third-order nonlinear material. PLZT was used in this

experiment, with electrodes creating a constant electric field through an applied voltage.

Second-harmonic light was produced, and was shown to be voltage-dependent. While

the SHG power was not high, this setup could be used to create a modulated SHG beam,

with the voltage providing the modulation.
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Optimization-Based Analysis of

Nonlinear Optical Processes in

Resonant Structures

3.1 Introduction

Resonant cavities are a commonly used way to enhance the relatively weak

nonlinear optical effects. Such structures are typically constructed by two mirrors facing

each other, with the volume between the mirrors making up the cavity. At resonance,

the cavity creates a significant increase in the nonlinear output. An overview of some of

the relevant properties of resonant cavities is provided in Appendix I. Second-harmonic

generation (SHG) in a cavity was described in 1962 [6] and measured experimentally

soon after [7].

The analysis methods used have been approximate and not generally applicable

to all nonlinear processes. Early papers in the field used an analytically derived mul-

tiplier, typically related to the cavity finesse, to approximate the nonlinear conversion

32
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[7, 24]. A more sophisticated method based on optical transfer matrices was later devel-

oped [8, 25, 26]. In this method, the field distribution of the input beam inside the cavity

is first calculated as if the cavity material is linear. That field is then used to calculate

a nonlinear polarization for each point. Finally, the output from the cavity is found by

assuming the nonlinear polarization to be a distributed source. This method has the

advantage that it can model a cavity made up of any number of layers. It works well for

the cases of second or third harmonic generation, where clear input and output waves

are defined, and the transfer of energy is from the input beam to the output beam. For

processes that transfer energy between multiple beams, however, this method may not

be applicable. This method is also not applicable to cases where the nonlinear effects

alter the initial linear solution. An example is the Kerr effect, in which the refractive

index is changed by the light intensity.

A new method for the analysis of nonlinear processes inside resonant cavities

has been developed [27] and is presented here. This method is general since it can be

applied to any nonlinear optical processes. All of the nonlinear and cavity effects are

simultaneously satisfied to give the steady-state field values for all of the frequencies

involved inside and outside the cavity.

3.2 Representation of Nonlinear Electromagnetic Processes

with Differential Equations

The reduction of Maxwell’s equations of electromagnetics to coupled differen-

tial equations was demonstrated in Section 2.2. Using the specific example of SHG, the

complex field amplitude at the fundamental frequency ω, E1, and the amplitude at the

harmonic frequency 2ω, E2, were included in Maxwell’s equations along with the defi-

nition of electric displacement that was expanded to include the second-order nonlinear
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term:

D = ε0εrE + ε0χ
(2)EE. (3.1)

The equations of amplitude transfer are

d2E1

dz2
= −

(
ω

c0

)2

(ε1E1 + 2χ(2)E∗
1E2), (3.2)

d2E2

dz2
= −

(
2ω

c0

)2

(ε2E2 + χ(2)E1E1), (3.3)

where ε1 and ε2 are the relative permittivities at the fundamental and the harmonic,

respectively. These equations are sufficient for numerical calculation of SHG over some

propagation length. As shown in Section 2.2, these equations can be significantly simpli-

fied by use of the slowly varying envelope approximation, in which the field amplitudes

are represented as plane waves with amplitude modulation functions:

E(z) = A(z)e−ikz, (3.4)

in which k is the wavenumber. If the envelope function A(z) varies slowly relative to the

plane waves, then some small terms can be discarded and Equations 3.2 and 3.3 simplify

to

dA1

dz
= −i

ωχ(2)

c0n1
A∗1A2e

i∆kz, (3.5)

dA2

dz
= −i

2ωχ(2)

c0n2
A1A1e

−i∆kz, (3.6)

where ∆k = k2 − 2k1. This form of the differential equations can significantly decrease

the computational complexity of finding the solution.

As a second example we can consider the case of a parametric process. This

involves three frequencies, such that ω1 = ω2+ω3. The beams are called the pump, signal

and idler, although which frequency is assigned which name varies with the application.

Typically, the pump and idler beams are input in the the nonlinear crystal in order to

produce the signal beam. In other cases, only the pump is input into the nonlinear
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crystal, and the idler builds spontaneously. The output is then the signal beam, with

some energy unavoidably lost to the idler. Using the same procedure as was done for

SHG, the coupled differential equations representing this process are

d2E1

dz2
= −

(
ω1

c0

)2

(ε1E1 + 2χ(2)E2E3), (3.7)

d2E2

dz2
= −

(
ω2

c0

)2

(ε2E2 + χ(2)E∗
1E3), (3.8)

d2E3

dz2
= −

(
ω3

c0

)2

(ε3E3 + χ(2)E∗
1E2). (3.9)

In the simplified form obtained by using the slowly varying envelope approximation,

these equations are

dA1

dz
= −i

ω1χ
(2)

c0n1
A2A3e

i∆kz, (3.10)

dA2

dz
= −i

ω2χ
(2)

c0n2
A∗1A3e

−i∆kz, (3.11)

dA3

dz
= −i

ω3χ
(2)

c0n3
A∗1A2e

−i∆kz, (3.12)

where ∆k = k1 − k2 − k3. Other nonlinear processes could also be described through

similar systems of coupled differential equations. These equations, however, only apply

to co-propagating beams in an infinite medium. The effects of multiple interfering waves,

as in a resonant structure, have not yet been included.

3.3 Optimization-Based Analysis Method

This analysis is based on the consideration of what conditions must be satisfied

for a set of field values to be correct. It is assumed that all transients have dissipated

and inside the cavity for each frequency there is one overall right-traveling wave and one

overall left-traveling wave. The case of a simple cavity is shown in Figure 3.1. The fields

on each side of the cavity are represented by the vectors E1 and E3. The fields can be

translated across the cavity boundary from the inside to the outside using matrix M.
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Figure 3.1: Field analysis of a single cavity. Analysis from left-to-right or right-to-left
will produce self-consistent results for a correct set of vectors.

The field vector E1 is translated across the mirror into the cavity, and then propagated

across the cavity using operator A. For the linear case, A is a phase-transfer matrix. In

the nonlinear case, A will be a set of differential equations. The resulting vector is then

translated across the mirror on the other side of the cavity and compared to E3. The

vector E3 is similarly translated through the cavity and the result compared with E1. For

a self-consistent set of vectors E1 and E3, translation through the cavity of each vector

will yield the other vector. Then all of the boundary conditions as well as the nonlinear

differential equations are satisfied. If the vectors do not match after translation through

the cavity, then an error term can be defined and the vectors adjusted to minimize the

error.

This method is conceptually similar to that used by harmonic balance solvers

in nonlinear circuit design. In that method current values are assumed for all the circuit

branches, and then the resulting voltages found. For the linear elements, the voltages are

found using frequency domain techniques, while time-domain methods may be used for

the nonlinear elements. When all the voltages that are directly connected match, then

the set of currents is correct. Optimization methods are used to iterate the currents in

order to find minimize the voltage differences and find the correct values. This method

has yielded significant improvements in simulation time and accuracy over transient-
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analysis methods [28].

In nonlinear optics, this method has aspects that make it preferable to a time-

domain analysis method. By working in the frequency domain, the nonlinear effects can

be modeled algebraically, rather than with convolution integrals that would be required

for a time-domain analysis, as given by Equation 2.6. A time-domain solution solves

for all frequency components, while a frequency-domain solution focuses on a small

number of frequencies. In the cases described here, the inputs are assumed to be a finite

number of monochromatic waves, and the possible output waves are also a set of waves

at known frequencies. A general time-domain solution is therefore inefficient. A time-

domain analysis of a resonant cavity also has the disadvantage of a long run time as

the transients decay. For a resonator with high-reflectivity mirrors, the simulation may

have to be run for a time interval equivalent to hundreds of passes through the cavity.

Besides a long run-time, this can reduce accuracy by allowing small errors to accumulate.

Further complicating a time-domain analysis is the interference between reflected waves

in the cavity. All of the waves contribute to the nonlinearity and must therefore be

included. Once steady-state is reached, however, the fields inside the cavity combine to

form one single wave traveling in each direction for each wave. For applications in which

the transient response is required, a time-domain simulation may be unavoidable. For

a microcavity, however, the transient may be over in less than a nanosecond. For these

cases the method of this chapter is an efficient solution technique.

3.3.1 Application to Second-Harmonic Generation

As an example, the analysis method is demonstrated here for the case of second-

harmonic generation. We assume a known incident wave of frequency ω, and wish to

find the transmitted and reflected waves for both ω and 2ω. This gives four complex

unknowns, or eight total unknowns considering real and imaginary or magnitude and
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angle. The cavity properties, including the length, refractive index at ω and 2ω and

mirror reflection coefficients are assumed to be known. The problem is diagramed in

Figure 3.2. The vectors E1 and E3 have each been divided into two vectors, one for each

frequency. The first component of each vector is the complex magnitude of the right-

traveling wave, and the second component is the complex magnitude of the left-traveling

wave. On the left side of the cavity, immediately outside the mirrors, are vectors




Aω
+

Aω−




and




0

A2ω−


, representing the incident and reflected wave at ω and the reflected wave

at 2ω. On the immediate right side of the cavity are the vectors




Bω
+

0


 and




B2ω
+

0


,

representing the transmitted waves at ω and 2ω. Of the values listed, only the incident

wave magnitude, Aω
+, is known in advance.

Once an initial value has been assumed for all of the unknowns, the first step

in the analysis is to translate the external field values across the mirrors into the cavity.

This can be done using optical transfer matrices. From the electromagnetic boundary

conditions, the tangential electric field is the same on both sides of the boundary, as is

the tangential magnetic field. These conditions can be converted into a matrix equation.

For example, the external field vector for the wave at ω on the left side of the cavity can

be translated across the mirror to find the internal field values by



Aω
+

Aω−


 =

1
τ




1 ρ

ρ 1







Ãω
+

Ãω−


 , (3.13)

with ρ and τ representing the reflection and transmission coefficients, respectively, of

the mirrors. A tilde is used to denote values inside the cavity. For propagation from

a medium of refractive index n1 to a medium of refractive index n2, the reflection and
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transmission coefficients are given by

ρ = n1−n2
n1+n2

, τ = 2n1
n1+n2

. (3.14)

These mirror coefficients can be made complex to model some mirrors, and the coeffi-

cients can be recalculated at each frequency to model dispersion.

Once the field vectors have been translated into the cavity, the next step is to

propagate the appropriate values across the cavity using the coupled differential equa-

tions. In this case, Ãω
+ and Ã2ω

+ can be propagated from the left side of the cavity to the

right side using Equations 3.2 and 3.3, or using Equations 3.5 and 3.6. The resulting

fields are then compared to B̃ω
+ and B̃2ω

+ , yielding a residual term consisting of the square

of the difference. Similarly, B̃ω− and B̃2ω− are propagated from right to left across the

cavity, and then compared to Ãω− and Ã2ω− . The differences are added to the residual.

The starting values for the external field vectors are then adjusted, with the

exception of Aω
+, to reduce the residual. Once the residual has been made satisfactorily

small, then the field values satisfy all of the relevant boundary conditions and the nonlin-

ear equations. The stopping point at which the residual is sufficiently small varies with

applications. Generally, the residual target should be at least an order of magnitude

smaller than the smallest resulting field value.

For this case, the effects of counter-propagating beams on each other have been

left out. This allowed the separation of the propagation step into left-traveling and right-

traveling equations, which are solved independently. In second-harmonic generation, the

counter-propagating waves are always phase mismatched, so no energy transfer can build

up. For other nonlinear processes, such as the Kerr effect, the total field, which is the

sum of the left- and right-traveling waves, must be found at each point to use in the

differential equations.
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Figure 3.2: Variables in the case of second-harmonic generation in a cavity.

3.3.2 Non-plane Wave Application

The preceding has assumed plane-wave solutions to the wave equation, although

other configurations are possible. In a waveguide, for example, the electric and magnetic

fields in a cross-section are in non-uniform distributions called modes. Each mode prop-

agates along the waveguide at its associated wave speed. The equations of this chapter

can therefore be applied to waveguide modes as well as to plane waves. In the case of

plane waves, the complex amplitude represents the electric field at every point on the

wave front. For a waveguide mode, the complex amplitude denotes the amplitude of

the field distribution in the cross-section. Since the electric field is non-uniform, the

amplitude could represent the peak or the RMS of the field magnitude within the mode.

Besides the significance of the mode amplitude, there are other factors to consider.

When considering waveguide propagation, the extent of mode overlap can affect

the efficiency of the nonlinear interaction. In the case of uniform plane waves, the waves

are all assumed to overlap completely. For a waveguide, in contrast, two modes may reach

peak magnitudes at different parts of the cross-section, so that there is little overlap.

Since the field distribution of the modes is constant with propagation, it is possible to

quantify the overlap with multiplicative factors. For two mode distributions, an overlap
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factor, CM , can be defined as

CM =
∫ ∫

E1(x, y)E2(x, y)dxdy∫ ∫
E1(x, y)dxdy

∫ ∫
E2(x, y)dxdy

, (3.15)

where the cross-section is in the x − y plane and the integrations are carried out over

the entire plane. This factor modifies the nonlinear coefficient used in the differential

equations.

While in the plane wave case there is one wave for each frequency, a waveguide

can contain multiple modes at each frequency. In the absence of a perturbation in the

waveguide cross-section, there is no energy transfer between modes at one frequency. The

nonlinearity, however, can couple any combination of modes at different frequencies. The

modes travel at different speeds, so each combination will have its own phase mismatch,

and the coupling factor defined in Equation 3.15 will also determine which combination of

modes is significant. As an example, consider SHG in a waveguide with one fundamental

mode, A1, and two harmonic modes, B1 and B2. The set of differential equations

modeling the coupling between the three modes is

dA1

dz
= −i

ωχ(2)

c0n

(
C11A

∗
1B1e

i∆11z + C12A
∗
1B2e

i∆12z
)

, (3.16)

dB1

dz
= −i

2ωχ(2)

c0n
C11A1A1e

−i∆11z, (3.17)

dB2

dz
= −i

2ωχ(2)

c0n
C12A1A1e

−i∆12z, (3.18)

where C11 and C12 are the overlap factors between the fundamental mode and each

harmonic mode, and ∆11 and ∆12 are the phase mismatch terms defined similarly. Other

than these modifications to the propagation equations, the solution can proceed as for

plane waves.
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3.3.3 Optimization Methods

There are several algorithms that can be used to adjust the solution vectors in

order to minimize the residual [29, 30]. The optimization algorithms differ in computa-

tional complexity and in their efficiency when applied to a particular residual surface.

In the cases dealt with here, the residual surface is continuous and derivatives exist at

every point, which allows for the use of efficient optimizers. The derivative of the residual

surface with respect to each of the unknowns is not, however, analytically determined.

The derivatives are estimated by sampling the residual function at different points.

While optimization functions are available that can be inserted into a program

as black boxes, two simple optimization algorithms are explained here. These methods

were used for early versions of the programs that generated the results presented here,

and their explanation offers some insight into optimization. For problems with more

than a few unknowns, or for which each call to the residual function is computationally

expensive, an efficient optimization library should be used instead.

In the steepest descent method, the search in the variable space is done along

the gradient. The algorithm can be summarized in these steps:

1. For the point P, find the gradient vector V

2. Search along the line defined by −V for the point with the lowest residual, which

becomes the new point P.

3. The steps are repeated until a point is found with an adequately low residual.

For each step the new gradient vector will be perpendicular to the previous one, so that

VT
2 V1 = 0, (3.19)

where a superscript T denotes transpose.
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This method works well for circular bowl-shaped residual surfaces. For a per-

fectly circular bowl-shaped surface, the direction of maximum gradient would point di-

rectly to the center point with the lowest residual. When the surface is not circular,

however, the gradient line will miss the lowest residual point. This leads to a zig-zag

pattern as the test point approaches the optimal point. For such cases, the conjugate

gradient method can speed convergence.

In the conjugate gradient method, the direction searched is not the gradient,

but rather the conjugate gradient. Two vectors, V1 and V2 are conjugate with respect

to matrix A if they satisfy the condition

VT
2 AV1 = 0. (3.20)

Comparing this relation with Equation 3.19 shows the difference between the steepest

descent method and the conjugate gradient method. Once a vector direction has been

searched for a minimum, the next search vector is not perpendicular to the first vector,

but conjugate to it. The inclusion of A in Equation 3.20 introduces information about

the residual surface into the selection of new search vectors. For a case in which the

residual surface is a distortion of the simple circular bowl shape, the conjugate gradients

point to the minimum at the center. In the cases examined here, however, the matrix

A is not known in advance, necessitating the use of an algorithm that approximates the

conjugate gradient method.

The programs I wrote made use of the nonlinear conjugate gradient method,

which follows the form of the conjugate gradient method, but without any prior knowl-

edge of the residual surface. Any point can be placed into the computational method

of Section 3.3 to find the associated residual, although the number of points calculated

should be kept to a minimum to reduce computation time. Once a point is found, the

residual of neighboring points are evaluated to determine the approximate gradient. This
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must be done along each axis to fill all the components of the gradient vector. For a case

with eight unknowns, for example, at least eight neighboring points must be evaluated

to construct the gradient. In the steepest descent method, once a point and its gradient

are found, a search is then made along that gradient for a new minimum point. In the

nonlinear conjugate gradient method, the new search vector is modified by information

from the previous search direction, in order to approximate Equation 3.20.

The algorithm I used to implement the conjugate gradient method is as follows:

1. For the point P, find the gradient vector V

2. Search along the line defined by −V for the point with the lowest residual, which

becomes the new point P.

3. From point P, calculate the new gradient VT.

4. Rather than search in the direction VT, search along direction V2 =VT + ‖VT‖2
‖V‖2 V

for the new optimal point P2.

5. Set P=P2 and V=V2, and repeat from step 3.

The gradient revision of step 4 is known as the Fletcher-Reeves formula [30], with other

possible formulas given in the literature. If this step is skipped, the algorithm becomes

the steepest descent method.

3.3.4 Example Results

As an example of an application in which this calculation technique could be

used, we consider second-harmonic generation in a singly-resonant microcavity. The

cavity is assumed to consist of gallium arsenide (GaAs), for which dispersion curves

are available [31]. The nonlinear coefficient of GaAs is 100 pm/V, which is relatively

high when compared with the second-order nonlinear coefficients of other materials [10].
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Figure 3.3: Calculated harmonic intensity for a 1.5 micrometer cavity of GaAs. The
pump intensity is 10 MW/m2.

Furthermore, GaAs has low loss due to absorption for energy with a wavelength larger

than approximately 0.9 micrometers [32]. We assume first a single crystal of GaAs

that has been cut at both ends to create flat ends. The refractive index of GaAs is

approximately 3.3, so by Equation 3.14 the reflection coefficient is approximately 0.5.

Since this reflection coefficient is low, a large improvement in conversion efficiency is not

expected. Furthermore, due to dispersion, the cavity will reach resonance at different

points for the fundamental and the harmonic wave. Figure 3.3 shows the SHG generated

by this cavity using the calculation methods of this chapter. The cavity length was set

to 1.5 micrometers, which is the coherence length for this process and this material, so

phase-mismatch does not diminish the output. We see that the output roughly follows

the resonance points of the fundamental and harmonic. The resonance points are not

collocated, however, so the harmonic amplitude does not reach a high peak.

More SHG efficiency can be obtained from this microcavity by using engineered

mirrors. As will be described in Chapter 4, multiple layers of dielectrics can be placed on
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Figure 3.4: Calculated harmonic intensity for a 1.5 micrometer cavity of GaAs resonant
for the pump wave, for different values of cavity finesse at the pump frequency.

a surface to form a mirror. By designing the layer thicknesses, it is possible to create a

mirror that meets reflection coefficient goals at set frequencies. Figures 3.4 and 3.5 and

show the results of using a singly-resonant set of mirrors with the nonlinear cavity. The

mirrors are set to have a real reflection coefficient at the fundamental frequency, and no

reflection at the harmonic frequency. The resonance offers a much higher SHG output

than the case shown in Figure 3.3.
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3.3.5 Multiple Coupled Cavities

The general optimization-based analysis method can be extended to model

multi-layered cavities. A three-layer cavity is shown in Figure 3.6, along with the vari-

ables that define the solution. Each boundary adds two more vectors (four complex

unknowns). The center cavity, consisting of GaAs, was set to a length of 3 micrometers,

which is the coherence length of this process in this material. The two outer cavities

consist of Ga0.6Al0.4As, and their lengths are varied together. At the two ends are placed

non-dispersive mirrors with reflection coefficients of 0.9. The pump beam has a wave-

length of 2 micrometers and an intensity of 10 MW/m2. The plot of harmonic intensity

as a function of the outer cavity lengths is shown in Figure 3.7. The peaks corresponding

to cavity resonances are clearly visible.
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Figure 3.6: Variables in the case of second-harmonic generation in a set of three coupled
cavities.
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3.4 Summary

This chapter introduced a new technique for calculating the fields associated

with nonlinear optical processes in resonant cavities. Included in the results are the

output fields as well as the internal fields within the resonator. The basis of this technique

is that possible field values are tested until a set of valid field amplitudes is found. The

testing process can include boundary conditions, nonlinear propagation equations, loss,

gain, and any other conditions that the fields must satisfy. This technique is therefore

more general than previous calculation methods. Any number of frequencies and cavities

can be included for solving. Furthermore, the calculation method presented here solves

directly for the steady-state, so that the transient solution and the added complexity of

a time-domain solver is avoided.

To demonstrate the application of this technique, the full procedure for SHG

in a single dielectric cavity was described. The fields are translated across the cavity

boundaries using a transfer matrix, and are propagated across the cavity using coupled

differential equations. A residual error term is created from the results of the calculations,

and then the fields are adjusted to lower the error. Sample calculations were presented

for the sample case, although the method is capable of solving for much more complicated

situations.

Another class of resonator for which the technique was demonstrated was those

made up of multiple cavities. While the number of unknowns rises, the procedure is the

same as for the single-cavity resonator. Each interface is represented by a transfer matrix

and the propagation across each cavity is computed using coupled differential equations.

The generality and versatility of this method allows it to be applied to situations in which

there is no other adequate calculation technique. In Chapters 5 and 6 this method is

used to draw new conclusions for certain classes of nonlinear optical resonators.
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Figure 3.8: Schematic representation of a one-dimensional resonant cavity.
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3.6 Appendix: Overview of Resonant Cavity Properties

3.6.1 Definition and Operation

A one-dimensional optical resonant cavity consists of a dielectric material with

mirrors placed at each end, facing each other. A schematic of such a structure is shown

in Figure 3.8.

An analysis of this structure shows that resonance is achieved when the cavity

length is equal to an integer multiple of half-wavelengths [33]. At resonance, the reflected

waves inside the cavity are in phase and add constructively, causing the internal field

strength to be higher than the incident wave. Furthermore, the reflected field is canceled

through destructive interference and the transmitted field approaches the incident wave
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in magnitude. Off resonance, destructive interference between the reflected internal

waves causes the internal field magnitude to be less than that of the incident wave, the

transmitted field magnitude approaches zero and the incident energy is all reflected.

This structure, therefore, acts as a filter allowing waves of some frequencies to pass and

reflecting waves of all other frequencies.

3.6.2 Quantitative Description of Resonant Cavity Performance

Several interrelated figures of merit exist describing cavity performance; the

one used here is the finesse. Defined as the ratio of the distance between passbands to

the width of the passbands, the finesse is given by the formula [33]

F =
πr

1− r2
, (3.21)

with r being the field reflection coefficient of the mirrors.

Another quantity of interest in characterizing resonant cavities is the cavity

lifetime. This is defined as the time taken for the internal field magnitude to reach e−1

of its initial value if the incident field were shut off. We can consider the cavity lifetime

to be the mean time that a photon that enters the cavity spends within it before exiting.

For a cavity of length L and internal refractive index n, the cavity lifetime can be shown

to be related to finesse by the formula [34]

tc =
nL

πc
F . (3.22)

Since the time taken for a wave to cross the cavity is nL
c , Equation 3.22 shows that the

finesse corresponds approximately to the number of times a photon will cross the cavity.

Equivalently, the finesse is the approximate number of beams in the cavity.

A related figure of merit is the cavity Q, which is a measure of the energy loss

from the cavity. The Q is defined as ωU
P , where U is the energy stored in the cavity
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and P is the rate of energy loss. For radiofrequency resonant circuits, the Q is typically

in the range of 10-30, while for optical cavities, the Q can be in the thousands due to

the inclusion of ω in the definition. Besides a measure of loss, the Q can also be shown

to be given by ω0
∆ω , with ω0 a resonance frequency and ∆ω being half the width of the

passband. A high Q, therefore, indicates a small passband. For the resonant cavity the

Q can be shown to be given by [34]

Q = ωtc, (3.23)

which can be related to finesse by Equation 3.22. The longer photons stay within the

cavity, indicating low loss, the more interfering beams will be in the cavity. Frequencies

that are off-resonance are therefore more attenuated, while on-resonance frequencies will

be increased.

3.6.3 Cavity Bandwidth

The filtering effect of the resonant cavity limits the modulation bandwidth that

can pass. The maximum bitrate can be derived in two ways. In the time domain, one

pulse should have left the cavity before the next pulse enters,

bitrate =
1

2tc
. (3.24)

Using the definition of tc, the bitrate is related to the finesse by

bitrate =
πc

2nLF . (3.25)

In the frequency domain, there must be enough bandwidth in the passband around the

carrier frequency, ω, to allow the modulation,

bitrate =
ω

2Q
. (3.26)

This equation can be converted into Equation 3.25 using the definitions given earlier.
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The common result of Equation 3.25 shows that a microcavity will allow for

higher modulation speeds than a longer cavity. As an example, a typical laser diode is

built around a cavity that is approximately one millimeter long. Assuming a refractive

index of 3.2 and a finesse of 100, the maximum bitrate of Equation 3.25 is 1.4 Gbps

(bits-per-second). A similar cavity that is 10 micrometers long (.01 mm), however, allows

modulation up to 140 Gbps. This shows the advantage of microcavities for high-speed

communications applications.

3.7 Appendix II: Pseudo-code Implementation of SHG Solver

This section presents a more detailed implementation of the SHG solver than

what was outlined in Section 3.3. The programs were written in C++, using the GNU

Scientific Library for many of the mathematical functions. The program is presented

here in pseudo-code for readability and generality. For clarity, some lengthy portions

of code have been reduced to one statement, while other portions are written out in

more detail. The program becomes longer if three or more waves are involved, although

the overall outline remains the same. The conjugate gradient method is used to per-

form the optimization. If an externally-written optimization function is used, then the

MAIN function would call the optimization function to find the fields, with the RESID-

UAL CALC function supplied.

MAIN function:
declare parameters:

WAVELENGTH: fundamental wavelength
PIN: input power of fundamental wave
LENGTH: cavity length
INDEX_F: refractive index at fundamental
INDEX_H: refractive index at harmonic
NL: nonlinear coefficient
RHO_F, TAU_F: reflection and transmission coefficients,

fundamental, can be complex
RHO_H, TAU_H: reflection and transmission coefficients,
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harmonic, can be complex
GOAL: maximum residual at which the optimization ends

calculated parameters:
M_F: the interface transfer matrix from RHO_F, TAU_F
M_H: the interface transfer matrix from RHO_H, TAU_H
The matrix inverses of these matrices are also assembled.

main body:
declare FIELD: complex vector containing field magnitudes
FIELD[1]: incident fundamental field from left, found from

PIN and held constant throughout the program
FIELD[2]: fundamental field emerging from the left boundary

(reflected field)
FIELD[3]: fundamental field emerging from the right boundary

(transmitted field)
FIELD[4]: harmonic field emerging from the left boundary
FIELD[5]: harmonic field emerging from the right boundary

optimization loop:
(loop until RESIDUAL < GOAL, or a set number of iterations)

find RESIDUAL for point FIELD, function listed below
find GRAD: complex vector that is the gradient at point FIELD,

found with function listed below

conjugate gradient loop:
% the number of iteration is
% typically approximately the dimension of FIELD, set to 1
% iteration and comment out a few lines below to reduce to
% the method of steepest descent

search a line from point FIELD in the direction of GRAD for
a new minimum residual point, update FIELD

find new GRAD from point FIELD
calculate GRAD=GRAD+ (|GRAD|/|previous GRAD|)^2 *

(previous GRAD)
end conjugate gradient loop

find RESIDUAL for FIELD
if (RESIDUAL = RESIDUAL before conj. grad. loop):

adjust constants used in gradient and linesearch
functions
% using adjustable constants decreases run time;
% the constants are set for a coarse search at first,
% and then set to a finer search as needed;
% this also keeps the program general,
% since different case parameters are best solved with
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% different sets of function constants
end optimization loop

output FIELD and RESIDUAL
% FIELD[4] and FIELD[5] are the output harmonic field

end MAIN function

RESIDUAL_CALC function:
take in point FIELD and parameters describing cavity

% translate field on outside of cavity into interior
multiply vector (FIELD[1];FIELD[3]) by inverse of M_F

-->get PUMP_LEFT_+ and PUMP_LEFT_-
multiply vector (0;FIELD[4]) by inverse of M_H

-->get HARM_LEFT_+ and HARM_LEFT_-
multiply vector (FIELD[2];0) by inverse of M_F

-->get PUMP_RIGHT_+ and PUMP_RIGHT_-
multiply vector (FIELD[5];0) by inverse of M_H

-->get HARM_RIGHT_+ and HARM_RIGHT_-

use Runge-Kutta or similar solver to propagate PUMP_LEFT_+ and
HARM_LEFT_+ from the left cavity boundary to the right cavity
boundary; uses coupled differential equations

-->get PUMP_L_TO_R and HARM_L_TO_R
multiply PUMP_L_TO_R by exp(-i*2*pi*INDEX_F*LENGTH/WAVELENGTH)
multiply HARM_L_TO_R by exp(-i*4*pi*INDEX_H*LENGTH/WAVELENGTH)

%this assumes the envelope-form of the differential
% equations are used,
%so the phase shift is handled separately

RESIDUAL=(real(PUMP_RIGHT_+)-real(PUMP_L_TO_R))^2 +
(imag(PUMP_RIGHT_+)-imag(PUMP_L_TO_R))^2 +
(real(HARM_RIGHT_+)-real(HARM_L_TO_R))^2 +
(imag(HARM_RIGHT_+)-imag(HARM_L_TO_R))^2

use solver to propagate PUMP_RIGHT_- and HARM_RIGHT_- from
the right cavity boundary to the left cavity boundary

-->get PUMP_R_TO_L and HARM_R_TO_L
multiply PUMP_R_TO_K by exp(-i*2*pi*INDEX_F*LENGTH/WAVELENGTH)
multiply HARM_R_TO_L by exp(-i*4*pi*INDEX_H*LENGTH/WAVELENGTH)
RESIDUAL=RESIDUAL+(real(PUMP_LEFT_-)-real(PUMP_R_TO_L))^2 +

(imag(PUMP_LEFT_-)-imag(PUMP_R_TO_L))^2 +
(real(HARM_LEFT_-)-real(HARM_R_TO_L))^2 +
(imag(HARM_LEFT_-)-imag(HARM_R_TO_L))^2

return RESIDUAL
end RESIDUAL_CALC function
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GRAD_CALC function:
take in point FIELD and the corresponding RESIDUAL
GRAD[1]=0 %input remains constant
% simple two-point derivative
real(GRAD[2])=(RESIDUAL_CALC(FIELD[2]+DX)-RESIDUAL)/DX
imag(GRAD[2])=(RESIDUAL_CALC(FIELD[2]+i*DX)-RESIDUAL)/DX
similarly find GRAD[3], GRAD[4], GRAD[5]
return GRAD

end GRAD_CALC function

LINESEARCH function:
take in point FIELD and direction GRAD

% there are many possible search algorithms, a simple
% point-by-point search is presented here

find the residuals of equally-spaced points along the line
of GRAD from point FIELD
--> fill vector POINTS with the residuals

compare each entry in FIELD with its two neighbors to find
points with less residual than their neighbors
--> get minima

find the residuals of points along line GRAD around each minima,
with close spacing between points

get overall minimum
end LINESEARCH function
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Engineered Microstructures for

Nonlinear Optical Processes

4.1 Introduction

Resonant cavities have long been used to increase the efficiency of nonlinear pro-

cesses, particularly second-harmonic generation (SHG) [7]. In a typical setup, the cavity

is set to resonate for the fundamental wavelength, thereby raising the field strength in

the nonlinear medium, or for the harmonic wavelength, which increases conversion effi-

ciency with multiple passes through the cavity. Due to dispersion, however, a cavity that

resonates at one wavelength will not resonate at a multiple wavelength. Improvements

in microfabrication technology have recently allowed for the creation of photonic-crystal

mirrors with engineered dispersion [35]. With these mirrors, it is possible to design

cavities that resonate at multiple wavelengths, making doubly-resonant cavities possi-

ble. Several designs and analyses have been presented showing the enhancement of SHG

in a crystal of gallium arsenide (GaAs) with doubly-resonant cavities [36, 37, 38], and

similarly for third-harmonic generation [26]. The doubly-resonant cavity has also been

57
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applied to the case of parametric oscillation in GaAs involving three frequencies [39],

leaving one non-resonant wavelength. Parametric oscillation in three coupled cavities,

with each cavity set to resonate for one of the frequencies, has been experimentally

demonstrated [40]. Since the resonant cavities were not co-located, the enhancement of

the nonlinear output was not maximized. Presented here is the first analysis and design

of a triply-resonant cavity, and concurrently the first general examination of the design

methods and conditions for nonlinear resonant cavities with designed dispersive mirrors

[41]. The first part of this chapter is an explanation of the conditions that must be

satisfied by a resonant cavity design, applicable to any number of waves and any type of

nonlinearity (second-order, third-order, etc.). Then the design methods are applied to a

nonlinear process involving three waves in a triply-resonant cavity. Finally, the chapter

appendix explains the method that was used to design the dispersive mirrors.

4.2 General Analysis of Dispersive Resonant Cavities for

Efficient Nonlinear Wave Mixing

The resonant cavity design methods discussed in the introduction have not

made use of recent advancements in the design of dispersive dielectric mirrors with ar-

bitrary reflection coefficients. A general configuration of such a structure is shown in

Figure 4.1. Two dielectric mirrors are used to control the resonances of the cavity, allow-

ing operation at set multiple optical frequencies. Wave mixing occurs in the nonlinear

material placed between the two mirrors. For efficient nonlinear wave interaction, two

conditions must be simultaneously satisfied: (i) conservation of momentum, and (ii) con-

servation of energy. When the nonlinear conversion is performed in a cavity, the cavity

parameters must be designed so that the cavity is either transparent or resonant, since

an off-resonance cavity would contain little or no energy. We consider here cavities that
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Figure 4.1: Diagram of a multiply-resonant cavity used for nonlinear wavelength
conversion.

are designed to resonate at all the relevant frequencies of the nonlinear process, which

adds another design condition: (iii) cavity resonance requirements.

Consider a process involving P frequencies, as discussed in Section 3.2, the

differential equation describing the evolution of the complex envelope of each wave q,

with q = 1 . . . P , is

dAq(z)
dz

= −i
ωqχeff

cnq

P∏

p6=q

Ap(z) exp (i∆k z) exp (i∆ωt) , (4.1)

where Ap are the complex envelopes, ωq are the frequencies, χeff is the effective nonlinear

coefficient, c is the speed of light, nq are the refraction coefficients, ∆k is the phase-

mismatch term and ∆ω is the frequency mismatch term. We assume nondegenerate

wave mixing here, although the analysis still applies in the degenerate case with two or

more waves having the same frequency. We define the phase-mismatch by

∆k =
R∑
r

kr −
S∑
s

ks, (4.2)

where the first summation is made over the wavenumbers of the R input photons in

the process, and the second summation is made over the wavenumbers of the S output

photons, with S + R = P . The wavenumber at frequency ωq in a medium of refractive

index nq is defined as kq = ωqnq

c . Some of the complex envelopes may be conjugated

in Equation 4.1, depending on the specific process. We define the frequency mismatch
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term as

∆ω =
R∑
r

ωr −
S∑
s

ωs, (4.3)

where ωr are the frequencies of the input photons and ωs are the frequencies of the output

photons. The slowly varying envelope approximation has been applied, which assumes

that the envelope functions Aq vary slowly on the scale of the optical wavelengths.

4.2.1 Energy Conservation

Conservation of energy determines the frequencies involved in the nonlinear

wave mixing. The condition ∆ω=0 applies to every nonlinear process at every point

in the cavity. Unlike phase-matching, this condition can not be compensated by the

mirrors. All nonlinear processes always meet the condition of conservation of energy.

4.2.2 Phase Matching

Conservation of momentum is equivalent to satisfying the phase matching con-

dition. When ∆k = 0, phase match is achieved and the conversion can continue until

the input beams are fully depleted. When ∆k 6= 0, the photons generated along the

propagation direction will cancel the output signal energy, coupling it back to the in-

put fields. For example, in a three-wave mixing process, the output power will follow

a sin2(x) curve [6], with the distance between the point where the waves are in phase

to where they are 180 degrees out-of-phase defined as the coherence length, Lc. The

distance between in-phase points is two coherence lengths. The designs shown here use

the phase of the reflection of the cavity mirrors to compensate for the phase-mismatch

at multiple frequencies. The phase compensation condition is expressed as

2∆kL +
P∑
p

(
ϕ(left)

p + ϕ(right)
p

)
= 2πa(1), (4.4)
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where L is the cavity length, a(1) is an integer, and ϕ
(left)
p and ϕ

(right)
p are the mirror

phases at the left and right side of the cavity, respectively, at frequency p. The complex

mirror reflection coefficient is

r(ω) = |r(ω)| exp (iϕ(ω)) . (4.5)

When Equation 4.4 is satisfied, the reflection coefficients of the mirrors will reset the

phase-mismatch between the waves to zero, thereby allowing the output wave to continue

growing.

4.2.3 Cavity Resonance Condition

The cavity design must also satisfy the resonance condition at each frequency,

leading to the expression

2kpL− ϕleft
p − ϕright

p = 2πa(2), (4.6)

where a(2) is an integer, and p varies through all the frequencies involved. If Equation

4.6 is not satisfied for a given frequency, destructive interference will minimize the field

strength in the cavity. In applications such as [7], the mirrors at some frequencies have

negligible reflection coefficients to allow those fields to pass through the cavity, thereby

bypassing the resonance condition. The added flexibility of dispersive dielectric mirrors

can be used to satisfy the resonance condition at all the frequencies involved in the

nonlinear wave mixing process. Equation 4.6 applied to each frequency, along with

Equation 4.4 can be solved to find values for the mirror reflection phases.

For efficient nonlinear wave mixing processes in a dispersive resonant cavity,

these three conditions must be satisfied simultaneously. The following examines the

degrees of freedom in the design parameters of dispersive resonant cavities to meet these

conditions and to optimize the output efficiency.
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4.3 Parameters in the Design of Dispersive Resonant Cav-

ities

There are two degrees of freedom available in the design of dispersive resonant

cavities for nonlinear wave mixing: (i) cavity length, and (ii) amplitude and phase of

the mirror reflection coefficients. The mirror reflection coefficients are used to set the

resonance condition, determining the cavity finesse at each frequency. The cavity length

can be optimized to satisfy the phase matching condition and maximize output power.

The importance of these parameters, as well as their optimal values, can be determined

by considering Equation 4.1.

The cavity length significantly affects the output signal efficiency, and any

length beyond the optimal value either has no effect or decreases conversion efficiency,

depending on the exact length used. A solution of coupled-wave equations based on

Equation 4.1 shows that the power in the signal beam follows a sin2(x) relation as the

beams propagate through a crystal [6], with the zero points two coherence lengths apart.

A pulse at the output wavelength passes approximately F times through the cavity,

leading to an approximation for output power of the form

Pout = CF sin2
(

π

2Lc
L

)
, (4.7)

where Lc is the coherence length and C is a constant dependent on the nonlinear co-

efficient of the cavity dielectric, the input field magnitudes within the cavity, and the

transmission of the mirrors. From this equation we deduce that a cavity length of two

coherence lengths will yield no output power, since the converted power will have all

reverted back to the input waves. Furthermore, Equation 4.7 is periodic, so any cavity

length beyond two coherence lengths is redundant. The maximum output power occurs

when L = Lc. For SHG, this is the point at which the fundamental and the harmonic
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fields are 180 degrees apart in phase, and the direction of net energy flow is about to

switch from upconversion to downconversion [11].

4.4 Case Study: Downconversion in a Triply-Resonant GaAs

Dispersive Resonant Cavity

As an example, this section presents a Dispersive Resonant Cavity (DRC) for

efficient wavelength conversion in GaAs. The pump, signal and idler frequencies corre-

sponding to wavelengths of 1.55, 3.8 and 2.617 micrometers (µm), respectively, are used.

The refractive indices at these frequencies are 3.3989, 3.3263 and 3.3427, respectively

[31]. The pump wavelength of 1.55 micrometers is widely available as a laser source,

and the idler wavelength of 2.617 micrometers can be provided by some variable sources.

The signal wavelength of 3.8 micrometers, however, is not commonly available in laser

sources.

The conclusions of Section 4.3 can be numerically demonstrated for the example

case. One design parameter available for optimization is cavity length. Unlike the

domain inversions of Quasi-Phase Matching (QPM), which can only produce a phase

shift of 180 degrees, the mirrors of a DRC can be designed to produce a wide range of

phase shifts. Cavities of arbitrary lengths can therefore be used. Upon consideration of

the physical mechanisms of wavelength conversion along with the effects of the resonant

cavity, conclusions can be drawn concerning optimal cavity length. As described in

Section 4.2, the intensity of the generated signal wave follows a sin2(x) curve, with

the distance from a zero to a maximum being the coherence length. Upon reaching

a maximum, the signal intensity returns to zero after another coherence length. Any

cavity length beyond a coherence length is therefore not useful. For cavity lengths

smaller than the coherence length there is no reconversion depleting the signal beam.
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The conversion approaches the phase matched case as the cavity becomes smaller (i.e.,

sin(x) approaches x); however, the effective cavity length of FL approaches zero, leading

to less conversion. For a cavity length that is very small with respect to the coherence

length, the rate of nonlinear conversion would be high, but the finesse must also be

high in order to have enough effective interaction length for efficient conversion. The

estimated conversion efficiency as a function of cavity length for the example case is

shown in Figure 4.2. The optimal cavity length is at L = Lc, which is similar to quasi-

phase matching. This conclusion applies independently of the cavity finesses. The DRC

has advantages, however, over QPM. While the signal beam reflecting within the cavity

is similar to propagation across multiple poled domains, the beams are all collocated in

one domain which increases the field magnitude, further increasing conversion efficiency.

Furthermore, since only one cavity length must be fabricated for the DRC, the tolerances

involved in creating dozens or hundreds of adjacent inverted domains is avoided.

The advantage of designing a multiply-resonant structure is shown in Figure

4.3. The output conversion efficiency as a function of input power is shown for cases

of singly, doubly and triply resonant structures. Each additional resonance increases

the efficiency by approximately an order of magnitude, demonstrating the advantage

of a multiply-resonant structure over a structure without resonances at each relevant

frequency.
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Figure 4.2: The calculated conversion efficiency as a function of cavity length for a
dispersive resonant cavity for the three-wave process. The cavity finesse is held constant
at 30, 50 and 70, and the input field intensities are 0.5 W/µm2.

4.5 Design Parameters: Asymmetric Mirrors

The examples to this point have assumed the same mirrors on both sides of the

cavity, but different mirrors can be used. This section examines the effects of asymmetric

mirrors using the simple example of SHG in a resonant cavity from Section 3.3.4. The

analysis will show that using symmetric mirrors generally yields the highest output.

First the linear behavior of an asymmetric resonator is explained, and then its effects on

nonlinear processes are demonstrated.

4.5.1 Analysis of Asymmetric Linear Resonators

The transmission and reflection characteristics of a resonant cavity with only

linear response can be derived by summing the reflected waves. This technique could

not be used in the nonlinear case since the effects of the many waves could not be

separated. For dielectric exhibiting only linear effects, however, the reflected waves
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the signal, (iii) the pump and idler, and (iv) the pump, idler, and the signal are resonant.
For the resonant beams, the finesse was set to 50, and was set to 0 for the non-resonant
beams.
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within the cavity can be calculated independently of each other and then summed to

find the total fields. For this analysis method, a single dielectric of length L and index

n is assumed. The phase change in propagating a wave of wavelength λ across the

cavity is therefore φ = 2πn
λ L. On the left of the dielectric is a mirror with reflection and

transmission coefficients of r1 and t1, and on the right is a mirror with coefficients r2

and t2.

The analysis begins by assuming a wave of amplitude 1.0 approaching the cavity

from the left. There is a reflected wave of magnitude −r1 and a transmitted wave of

magnitude t1. The wave transmitted into the cavity propagates across to the right mirror,

at which the amplitude is t1e
−iφ. Some of this amplitude, t1t2e

−iφ, is transmitted across

the right mirror and some, t1r2e
−iφ, is reflected back. The reflected wave crosses the the

cavity from right to left where some is transmitted across the left mirror and some is

reflected. This procedure extends indefinitely to produce an infinite series of waves. The

summation of the waves emerging from the left mirror is the reflection of the cavity, r, and

the summation of waves transmitted across the right mirror is the cavity transmission,

t. These series are

r = −r1 + t21r2e
−i2φ

∞∑

n=0

rn
1 e−i2φn, (4.8)

t = t1t2e
−iφ

∞∑

n=0

rn
1 rn

2 e−i2φn. (4.9)

These series can be seen to converge by applying convergence tests. For example, the

ratio test states that a series will converge if limn→∞
∣∣∣an+1

an

∣∣∣ < 1, with an being the terms

of the series. By this test the series of Equations 4.8 and 4.9 are convergent since both

r1 and r2 are less than one and this analysis assumes no gain. The two series sum to

r = −r1 +
t21r2e

−i2φ

1− r1r2e−i2φ
, (4.10)

t =
t1t2e

−iφ

1− r1r2e−i2φ
. (4.11)
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If the phase advance in propagating across the cavity is a multiple of π, meaning the

cavity length is a multiple of half-wavelengths, resonance is reached and the relations

become

r = −r1 +
t21r2

1− r1r2
, (4.12)

t = ± t1t2
1− r1r2

. (4.13)

For the case of symmetric mirrors, r2 = r1 and t2 = t1, we can use the relation t21 =

1 − r2
1 to find that r = 0 and t = ±1. When the mirrors are asymmetric, however, the

transmission at resonance will be less than 1.0. In this linear analysis, the order of the

mirrors does not affect the results. Placing the higher-reflectivity at the left or the right

will give the same overall reflection and transmission coefficients. The field strength

within the cavity is different for the two cases, but has no effect in a linear analysis. The

internal field strength has a significant influence on nonlinear processes, as is shown in

the following section.

4.5.2 Nonlinear Processes in an Asymmetric Resonant Cavity

The lack of a general, accurate analytical method of calculating nonlinear effects

in a resonant cavity necessitated the creation of the computational method of Chapter

3; therefore, simple representative example cases will be calculated here and general

conclusions drawn from the results. The example used is SHG in a singly resonant

cavity as presented in Section 3.3.4. The cavity consists of a 1.5 micrometer length of

GaAs and mirrors that are reflective for a wavelength of 2.0 micrometers and have low

reflection coefficients for wavelengths around the harmonic at 1.0 micrometers.

Figure 4.4 plots calculated SHG output as a function of fundamental frequency

for different values of left and right mirror reflectivities. Included are points for the

symmetric cases of both mirrors set to r=0.97 (cavity finesse of 50) and r=0.90 (cavity
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Figure 4.4: SHG output of a singly-resonant cavity with different values of left and right
mirror reflection coefficients.

finesse of 15). The plots show that for high SHG output at the resonance point, the

higher-reflection mirror should be placed on the right side, opposite to the incoming

beam. Since the optimization-based calculation method yields the full field solution, we

can examine the fields inside and around the cavity.

The electric field amplitudes of the fundamental frequency wave for the asym-

metric cases are shown in Figure 4.5. While the reflected and transmitted field on either

side of the cavity are the same for the two cases, the internal fields vary significantly.

Placing the higher reflectivity mirror in the left position creates a lower internal field.

In a symmetric cavity the reflected beam is canceled by backward-propagating waves.

When the first mirror has higher reflection, however, the amplitude of the reflected beam

is too high to be fully compensated, leading to a nonzero reflection from the cavity at

resonance. The reflected beam that is left after cancelation does not enter the cavity

and does not contribute to the internal fields. When the second mirror, on the right

of the cavity, has higher reflectivity, the surplus reflected waves are within the cavity.
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Figure 4.5: Calculated field at the fundamental frequency for the asymmetric mirror
cases.

For nonlinear processes in asymmetric resonant cavities, therefore, the lower reflectivity

mirrors should be placed early in the structure to allow the incoming beam to enter the

cavity.

4.5.3 Half-Cavity with Mirror

Another useful configuration makes use of a broadband mirror with total re-

flection. This configuration for SHG in a single cavity is shown in Figure 4.6. This is

an asymmetric mirror configuration with the high-reflectivity mirror placed at the far

end of the incoming beam. Unlike the previous cases, the nonlinear output is only found

in the reflected beam, since there is no transmitted beam. The internal field is also ex-

pected to reach higher values than the case of two partially-reflective mirrors, which can

be understood by considering the cavity lifetime. With a high-reflectivity mirror on one

side of the cavity, half of the cavity loss is eliminated (loss due to nonlinear conversion or

other mechanisms is not considered in this approximate analysis). The cavity lifetime,
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Figure 4.6: A resonant cavity with a broadband, high-reflectivity mirror on one side.

the time after which a group of photons that had entered the cavity takes to reach e−1

of their original number, is approximately doubled. With a higher cavity lifetime, the

fields within the cavity are also higher, increasing the nonlinear effect.

The implementation of the optimization-based analysis method for this type

of structure can follow two separate tracks. In one, the variables as shown in Figure

4.6 are used. The fields to the left of the cavity are translated across the interface into

the cavity, and then propagated to the mirror using coupled differential equations. The

fields are then reflected at the mirror and then propagated back to the left mirror. At the

left side of the cavity the starting values must match the ending values, or else an error

residual can be calculated. The second implementation is to use the all the variables on

the left and right side of the cavity, as shown in Figure 3.2. The reflection coefficient

for the mirror on the right is then set to a high value, such as r = 0.999, for both the

fundamental and the harmonic frequencies.

Plots of converted SHG output are shown in Figure 4.7 for the asymmetric

case with a broadband mirror placed on one side of the cavity. The SHG output is

significantly raised by the inclusion of the high-reflectivity mirror. The internal fields

are predicted to be higher for the asymmetric case, which is confirmed by the field plots

in Figure 4.8. Overall, this configuration offers higher nonlinear conversion and has the
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Figure 4.7: SHG output from a resonant cavity with a broadband, high-reflectivity mirror
on one side.

benefit of only requiring one engineered mirror. A drawback is that the nonlinear output

must be separated from the input beam, which can add loss.
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4.6 Summary

This chapter examined the conditions that must be met in the design of efficient

nonlinear optical resonant structures. These conditions derive from basic laws such as

conservation of energy and conservation of momentum, as well as the resonance effect in

the structure. These conditions translate into equations concerning cavity parameters

such as cavity length and mirror reflection coefficients, as well as material dispersion.

The designer must satisfy all of the equations and the application goals. There will, in

general, be a range of design parameters that satisfy the required conditions. The choice

of specific values is then made to maximize the efficiency of the nonlinear effect.

Example cases were used to determine the effect of design parameters on the

efficiency. If the mirror reflection coefficients can be arbitrarily designed, then any cavity

length can be used. The examples show, however, that the optimal cavity length is one

coherence length. At this length there is no net back-conversion taking place within
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the structure. The magnitude of the mirror reflection coefficients should be as high as

possible, as expected, to increase the positive feedback effects at resonance. For processes

involving more than one frequency, approximately one order of magnitude increase in

the output power can be achieved with each frequency that resonates.

Asymmetric mirrors were also examined through the use of numerical examples.

Using mirrors with different reflection coefficient magnitudes was found to generally yield

lower efficiency than the symmetric-mirror case. In approximate terms, the asymmetric-

mirror cavity can be conceptualized as a symmetric cavity with an extra reflection placed

at one end. The extra reflection degrades the interference effects of resonance. For

example, the reflected field is not completely canceled at resonance. Placing the higher-

reflection mirror first in the cavity is a poor design choice, because the energy is reflected

before it can enter the cavity. In the specific case where the last mirror is a broadband,

completely-reflecting mirror, the efficiency can be as high or higher than the symmetric

case. In that case, however, the output is reflected back in the direction of the input and

must be separated.

4.7 Appendix: Circuit-Simulator Design of Dispersive Mir-

ror Structure

4.7.1 Dispersive Mirrors for Cavity Resonance

The example structure of Section 4.4 requires a mirror that has the correct re-

flection phase angles at 1.55, 2.617 and 3.8 micrometers; this appendix describes a design

method for mirrors meeting these types of requirements. The transmission through the

example structure, when designed mirrors are used, is shown in Figure 4.9. The mirrors

are made up of GaAs and AlAs in alternating layers, with layer thicknesses given by

Figure 4.10. In the following, the circuit simulator-based method that was used to find
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the layer thicknesses of Figure 4.10 is explained.

4.7.2 Transmission Line Representation of Multi-Layered Dielectrics

In order to analyze the optical transmission and reflection from a multi-layer

structure, the structure and the waves must first be represented in circuit terms. An

analogy exists between plane-wave propagation through dielectric layers and electrical

propagation through sections of transmission line. The equations describing the two cases

are identical, if the correct translation of parameters is made. The wave propagation

constant is the same for both cases, and can be related to the operating wavelength, λ,

or the frequency, ω, by

k =
2πn

λ
=

ωn

c
. (4.14)
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Figure 4.10: Layer thicknesses for a dielectric stack to produce the transmission and
reflection response of Figure 4.9. The layers are alternating between GaAs and AlAs.

This term directly translates from the dielectric case to the transmission line case. The

other term describing the media is the characteristic impedance given by

Z =
Z0

n
. (4.15)

For a propagating electromagnetic wave, Z0 is the ratio of electric field to magnetic field

at each point. It has units of resistance and takes the value in a vacuum of approximately

376.76 Ohms. There is more latitude to pick the value of Z0 in the transmission line case.

Traditionally, microwave circuits are based on a characteristic impedance of 50 Ohms,

although a more convenient value such as 1 Ohm can be used. For both the transmission

line and the dielectric layer case, any value of Z0 used will yield the same reflection and

transmission results as long as the value is used consistently. Material dispersion can be

included by specifying the index n as a function of frequency.

The most direct simulation method to use for this application is an S-parameter

analysis. In this simulation, ports are placed on the circuit and electrical waves are
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sent from each port. The waves arriving at each port from every other port are then

normalized to the port impedance and assembled into the S-parameter matrix. For a

two-port system, S11, the wave measured coming out of port one due to a wave being

sent into port one is the reflection coefficient, and S21, the measured wave at port two

from a stimulus at port one, is the transmission coefficient.

The setups for analyzing resonant cavities in a circuit simulator are shown in

Figures 4.11 and 4.12. The setup of Figure 4.11 is to find the reflection from within

the cavity looking out through the mirror. A resistor of value Z0 Ohms represents the

space outside the cavity. Each transmission line segment is characterized by material

parameters Z, the characteristic impedance, and k, the propagation constant. A circuit

analysis for transmission is diagrammed in Figure 4.12. The cavity, represented by

a transmission line, is also included in this case. The goal of the design is to find

transmission line lengths that would yield a high reflection coefficient for the first setup

and a high transmission coefficient for the second setup at the relevant frequencies. By

setting the transmission line lengths to be variables, and by creating goals based on

the reflection and transmission parameters, the circuit simulator’s design optimization

routines can be used to find an adequate set of segment lengths. This method was used

to find the mirror design with the transmission and reflection responses shown in Figure

4.9.
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Intensity-Dependent Nonlinear

Effects in Resonant

Microstructures

5.1 Introduction

Multi-stable resonant cavities have potential uses as optical limiters, all-optical

switches, and in optical computing [42], and have therefore been studied in various ways.

The basic principle of operation is that the field intensity within the cavity determines its

transmission parameters. If the incident field is switched off or significantly lowered, the

field intensity within the cavity will remain high for approximately the cavity lifetime,

creating memory. A bistable optical cavity was first demonstrated in 1969, consisting

of a 2 centimeter long resonator filled with SF6 gas [43]. The gas is highly absorptive,

unless driven to saturation with a high field intensity, thereby providing a response that

varies with the input intensity. Resonators based on semiconductors, such as gallium

arsenide (GaAs) and indium antimonide (InSb), have also been examined [44]. These

79
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devices achieve their bistability through the Kerr effect, where the internal intensity of

the cavity adjusts the refractive index, and therefore changes the resonance condition.

Coupled resonators using Kerr nonlinearities have also been proposed to perform all-

optical signal processing functions, such as optical phase shifting and switching [45, 46].

Analysis methods used to calculate the performance of bistable optical struc-

tures have made use of various approximations and are not generally applicable to every

case. An early method is to assume a static resonator, and introduce the Kerr nonlinear-

ity as a shift in the transmission curve [47]. Another method is to solve the differential

wave equations in the cavity, using either an approximate analytic solution [48], or com-

putationally [49]. These methods are limited in their applicability since they assume one

homogeneous cavity. Coupled cavities, or a single cavity made up of multiple layers of

materials would be difficult to solve, calling for approximate methods [45].

This chapter presents an optimization-based analysis of multistable optical res-

onators. The approach used is similar in principle to that of Chapter 3. For a given

structure, the boundary conditions, resonance conditions, nonlinear effects, loss and gain,

and other relevant effects are represented by equations. A set of field values is assumed

and then tested by placing those values into the equations. The results are evaluated

by physical considerations. For example, the field value incident from one side of the

cavity, when translated through the cavity, should be equal to the assumed field value

exiting the cavity on the other side. If the set of assumed field values does not produce a

self-consistent solution, then an error term can be defined, and the set of values adjusted

to lower the error. This method avoids a direct solution of the equations describing the

structure, which can become prohibitively complex for structures with many features or

if numerous effects are included.

The next section explains the use of this method for a one-dimensional resonant

structure with Kerr nonlinearity. Explicit equations are given for a simple loss-less case,
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Ẽ+
1
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Figure 5.1: Solution method for a single cavity. External fields are translated to internal
cavity values. After propagation, Ẽ+

1 and Ẽ−3 should match Ẽ+
3 and Ẽ−1 , respectively.

and direction is provided for the inclusion of more effects such as loss, gain, or multi-

frequency operation. The following section presents examples of this technique in use

on semiconductor cavities. The first example is a single cavity that could be used as an

optical limiter or as a bistable device. The second example is a device consisting of two

adjacent cavities and three mirrors, meant to demonstrate the flexibility of this method.

5.2 Analysis Method

The analysis method for intensity-dependent effects is similar in outline to the

method presented in Chapter 3. The case of a single cavity, as outlined in Figure 5.1, is

defined by the complex variables representing the incident wave, E+
1 , the reflected wave,

E−1 , the transmitted wave, E+
3 , and any wave incident from the right, E−3 . In a typical

situation, E+
1 is known and E−3 is uniformly set to zero, leaving E−1 and E+

3 to be found.

Considering these two quantities to be complex, there are four unknowns to be found.

5.2.1 Fields at the Cavity Boundaries

The external fields can be translated across the cavity boundaries by matrix

multiplication. The fields on either side of the left cavity boundary, for example, are
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related by 


E+
1

E−
1


 =

1
τ




1 ρ

ρ 1







Ẽ+
1

Ẽ−
1


 , (5.1)

where ρ and τ represent the reflection and transmission coefficients of the boundary,

respectively. These coefficients can be made complex-valued to represent phase-shifting

reflective structures. For a mirror made up of multiple layers, the field propagation

across each layer can be represented by relations such as Equation 5.1. Through matrix

multiplication, the matrices of the multiple layers can be condensed into one overall

transition matrix.

5.2.2 Nonlinear propagation equation

The internal fields are then propagated across the cavity using nonlinear differ-

ential equations. Including the third-order nonlinear polarization in Maxwell’s equations

yields the differential equations to use [6]. The dynamic Maxwell’s equations for electric

and magnetic fields at one frequency are

∇× E = −iωµH, (5.2)

∇×H = iωD. (5.3)

The nonlinearity originates in the electric displacement, D. Including the third-order

nonlinear constant χ(3), the displacement is related to the electric field by

D = ε0εrE + ε0χ
(3)EEE. (5.4)

Taking the curl of Equation 5.2, and substituting Equations 5.3 and 5.4 where

appropriate produces a wave equation. For the case of one-dimensional propagation in

the z-direction the equation is

d2E

dz2
= −ω2

c2

(
n2 + χ(3) |E|2

)
E, (5.5)
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where E is the complex field amplitude, ω is the frequency, c is the vacuum speed of

light, n is the medium refractive index and χ(3) is the medium nonlinear coefficient. The

nonlinear coefficient is commonly given in units of m2/W , although in Equation 5.5 it is

in units of m2/V 2.

Terms can also be included in Equation 5.5 to account for loss or gain in the

cavity. If multiple frequencies are present, the nonlinear interaction between them can

be characterized by a set of coupled differential equations, as was done in the frequency

conversion examples in Chapter 3. Unless the frequencies are phase-matched, however,

the coupled energy will be small. The second-order differential equation can also be

simplified by using the slowly varying envelope approximation. The electric field is

described as a constant amplitude plane wave with an envelope modulation multiplier,

E(z) = A(z)e−ikz, (5.6)

where k = ωn
c . Using this definition in Equation 5.5, and assuming the envelope function

A(z) varies slowly on the optical wavelength scale, some small terms can be discarded.

This yields a first-order differential equation,

dA

dz
= −i

ωχ(3)

2cn
|A|2 A. (5.7)

The solution of Equation 5.7 requires less computation than Equation 5.5; how-

ever, more simplification is possible in many cases. If loss, gain, and frequency conversion

are not included, then the differential equations are unnecessary. For each of the two

waves in the cavity, one going left and one going right, the magnitude |E| remains con-

stant. The propagation calculation only involves advancing the phase of E by

∆φ = −ω

c

√
n2 + χ(3) |E|2∆z, (5.8)

with ∆z being the incremental change in distance. The term
√

n2 + χ(3) |E|2 is the

effective index of the medium, including the intensity-dependent Kerr effect. Note that



84

the term |E|2 in Equations 5.5 and 5.8 is for the total field at point z, including left-

traveling and right-traveling waves, as well as waves at other frequencies. While the

magnitude of each of the two counter-propagating waves remain constant, their sum

does not. Equation 5.8 therefore must be evaluated point-by-point across the cavity.

5.3 Demonstrations

5.3.1 Single Cavity

To demonstrate the use of this method to show bistability, consider a single

cavity of semiconductor material. Assume a 200 micrometer cavity of gallium arsenide

(GaAs) and an operating wavelength of 2 micrometers. The nonlinear coefficient of

GaAs is approximately 10−13m2/W . A higher coefficient can be obtained by operat-

ing near the GaAs bandgap-edge at a wavelength of approximately 885 nm, although

at the expense of increased loss in the cavity [44]. The end mirrors are given a reflec-

tion coefficient of 0.95, and the cavity length is adjusted to be slightly less than that

of resonance. The transmission coefficient and the transmitted intensity are shown in

Figure 5.2. By increasing the internal fields of the cavity, the Kerr effect puts the cav-

ity into resonance. Further increasing the incident intensity moves the cavity beyond

the resonance point. This produces the binary output plot of the transmitted intensity,

with a low-transmission setting for incident intensity of 0 to 0.25 MW/m2, and a high-

transmission setting for incident intensity greater than approximately 0.3 MW/m2. If

the cavity length were set to be at resonance by default, then increasing the incident

intensity would move the cavity off of resonance and lower the transmission, creating an

optical limiter.
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Figure 5.2: Calculated transmission intensity and transmission coefficient as a function of
incident intensity. A single cavity of GaAs is assumed, with operation at 2 micrometers
and end mirrors with reflection coefficients set to 0.95.

5.3.2 Bistability and Hysteresis Loops

Besides the variation of transmission dependent on input intensity discussed in

the previous section, the cavities under consideration here are also able to show bistable

behavior. This occurs when two possible field distributions exist that satisfy the bound-

ary conditions, propagation equations, and any other enforced requirements. The cavity

will remain in the state until a strong enough perturbation causes it to switch states.

In the optimization-based method utilized here, bistability is evident in the

existence of two error residual minima. The minimum that is found is generally the

one that is closest to the starting point. When bistability is expected, a search can be

conducted for the minima by varying the starting point. Once the minima have been

found, they can be used as the starting points to find the new minima for a slightly

different input power. In this manner transmission curves can be created. The plots

of transmission coefficient and transmitted intensity from Figure 5.2 are recreated in
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Figure 5.3: Calculated transmission coefficient as a function of incident intensity for a
single cavity, with hysteresis loop included.

Figures 5.3 and 5.4, with the full bistability shown. The hysteresis loops are evident in

both figures.

5.3.3 Design Parameters

The primary parameters available for the design of a bistable resonant structure

are the cavity length and the cavity finesse. The effect of varying these parameters is

to move the transmission curve inflection point to a lower or higher input power. From

Equation 5.8, a long cavity length is expected to produce a greater index shift for a given

applied intensity. The transmission curves corresponding to different cavity lengths are

shown in Figure 5.5. A long cavity of GaAs allows for the use of lower input intensities to

exhibit the transmission variation. Thick GaAs dies can be difficult to obtain, however,

since typical wafers fabricated for electronics are 200 to 500 micrometers thick [5]. The

wafers can be polished down to lesser thicknesses accurately, but thicker wafers would

require custom fabrication. Also, cavities that are relatively long will not have a high
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Figure 5.4: Calculated transmitted field as a function of incident intensity, showing
hysteresis loop.

bandwidth for modulation, as described in Section 3.6. Transmitting data requires that

a signal leave the cavity before the next signal enters. For example, by Equation 3.25

we can estimate that the maximum bandwidth of a 10 mm long cavity of GaAs with a

finesse of 30 is approximately 130 Mbps (bits per second).

An alternative to increasing the cavity length is to increase the cavity finesse.

A high finesse, with the high mirror reflectivities, corresponds to a long cavity lifetime,

as signals that enter the cavity reflect between the mirrors before exiting. A short

cavity with high finesse is therefore equivalent to a long cavity length. The fabrication

difficulties in creating a long cavity are avoided, but the bandwidth restrictions still apply.

The high finesse cavity, however, also has increased internal field intensity, which lowers

the required input intensity. Due to the higher internal intensity, the effective length

is not required to be as large as a long, low-finesse cavity to meet a particular input

intensity requirement. Plots of transmission coefficient as a function of input intensity

for different cavity finesse values are shown in Figure 5.6. The cavity in this case is only 10
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Figure 5.5: Calculated transmission intensity and transmission coefficient as a function
of incident intensity for different cavity lengths.

micrometers long. For high cavity finesse, the transmission inflection point is less than

that of the low-finesse case. Additionally, in the high finesse case, the internal fields

are suppressed more strongly when off-resonance than in the low-finesse case, resulting

in a steep transmission curve. A relatively short cavity with highly-reflective mirrors is

therefore promising for creating cavities that clearly show intensity-dependent operation.

The flexibility of the solution method employed here allows us to also examine

the effects of asymmetry in the mirrors. Up to this point we have assumed the two

mirrors, one on each end of the cavity, to be identical. An interesting question is which

mirror is most important in determining the cavity nonlinear response. A plot of trans-

mission coefficient as a function of input intensity for two asymmetric cavities is shown

in Figure 5.7. In one trace, the left mirror has a higher reflection coefficient than the

right mirror, and in the other trace the reflection coefficients are exchanged. A reflection

coefficient of 0.95 was used for the low value and 0.975 was used for the high value. In

both cases the internal fields are unbalanced; the waves traveling in one direction have
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Figure 5.6: Transmission coefficient as a function of input intensity for varying finesses
in a 10 micrometer cavity.

higher magnitudes than the waves traveling in the other direction. At resonance, the

reflected field is therefore not completely canceled, and the transmission does not reach

1.0. Between the two cases, placing the high-reflectance mirror on the far side of the

cavity from the input beam yields the strongest cavity response. This is because placing

a high-reflectivity mirror on the input side would reflect much of the input beam before

it can enter the cavity. Another way of framing the asymmetric case is to consider the

cavity to be a combination of a symmetric resonator with both mirror reflectivities set

to 0.95, and an added mirror placed on one side.

5.3.4 Multiple Cavities

A second example that further shows the flexibility of this method is the dual

cavity shown in Figure 5.8. Including the cavity defined by the two outermost mirrors,

there are three interacting cavities. The third interface adds two more complex variables

over that of Figure 5.1, although the solution method is the same. For the example,
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Figure 5.7: Transmission coefficient as a function of input intensity for asymmetric
mirrors in a 10 micrometer cavity

two cavities of GaAs with a length of 400 micrometers was used. The mirror reflection

coefficients from left to right are 0.5, 0.6, and 0.5. As in the previous example, the

wavelength of operation is 2 micrometers. The calculated transmission coefficient as a

function of incident intensity is shown in Figure 5.9 for a range of intensities.

The solution method also allows us to examine the fields internal to the struc-

ture. Figure 5.10 plots the electric field strength as a function of position for three input
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E+

3 and E−
3 . A self-consistent set will yield matching results when propagating across

the cavities right-to-left or left-to-right.
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power intensities. The internal fields form hundreds of waves within the cavity, so only

the field envelopes are plotted for clarity. For low power levels the first cavity is closer

to resonance than the second cavity, and for high power levels the situation is reversed.

We see that at 5.5 MW/m2 the total structure is in resonance, including both cavities.
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5.4 Summary

This chapter has demonstrated an optimization-based method for the calcula-

tion of the optical response of cavities with Kerr nonlinearity. The basis of this method

is that field values are assumed at each interface, and then calculations are made to

determine if that set of values is self-consistent. If the field values are not self-consistent,

the error residual can be minimized using optimization algorithms. This method has

more flexibility and is more generally applicable than previously used calculation meth-

ods. In this chapter, the use of this technique for a single cavity that could be used as

a bistable device or as an optical limiter was demonstrated. Unlike plots in the liter-

ature, which are based on approximate methods, every point in the transmission plots

shown corresponds to a complete solution of all the relevant equations. Bistability and

hysteresis curves can be constructed by searching for multiple field values that satisfy

the conditions. This calculation method can also be applied to more complex cases, such
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as coupled cavities, or cavities with asymmetric mirrors. This technique offers a way to

analyze resonator-based optical nonlinear systems with a level of accuracy that is better

than currently-used approximate methods.



6

Modulation Instability in

Resonant Structures

6.1 Introduction

Wave packets propagating through a nonlinear, dispersive medium can, under

the right conditions, lose energy to nearby frequencies. This effect, called Modulation

Instability (MI), has been theoretically analyzed [50] and experimentally observed [51, 52]

for the case of light propagating through fibers. Due to the dispersion in a medium, waves

at different frequencies travel at different speeds, thereby limiting the coupling of energy

between the waves (the phase-mismatch effect). In a Kerr medium, the local refractive

index is affected by the intensity of the light passing through it. If the dispersion,

the nonlinear Kerr constant, and the amplitude of the propagating wave meet certain

conditions, then the nonlinear effect compensates for the dispersion. Efficient frequency

conversion can then occur, creating MI.

The analysis of MI has followed two tracks, and both have been applicable only

to propagation in an unlimited fiber length. The first analysis method is an analytical

94
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technique in which approximations are applied to the nonlinear wave equation, producing

an expression in the form of a nonlinear Shrödinger equation. Substituting a continuous

wave function with a small perturbation into the equation, it can be shown that there

is gain in the perturbation at frequencies around the that of the main wave. The sec-

ond analysis method uses coupled differential equations to represent the energy transfer

between the waves of different frequencies [53, 54]. This method forms the basis of the

optimization-based technique presented here and is further elucidated in the following

section. Neither of these analysis methods are applicable in the case of a resonant cavity.

In such a cavity, reflections can produce many waves traveling in each direction. All of

the waves, including their amplitudes and relative phases, must be taken into account in

the calculation of the nonlinear effects, which complicates the problem. Alternatively,

a time domain technique, such as the Finite-Difference Time Domain (FDTD) method,

could be used, although with its own complicating factors. The index dispersion becomes

a convolution in the time domain, and nonlinear effects become second and third order

convolutions. Furthermore, obtaining high frequency resolution requires a long run time.

For a high-finesse cavity, the run time will also be long due to the presence of transients

which must dissipate before the steady-state solution is reached.

The procedure used here assumes the steady-state has been reached, and tests

input and output field values to find a set that satisfies all boundary conditions and

nonlinear equations. Balance is reached when the field values at the left of the cavity,

when applied to the boundary conditions and the nonlinear equations, produce the field

values on the right of the cavity, and similarly for propagation from right to left in the

cavity. If the set of field values does not balance, then an error term can be defined and

the set adjusted to lower the error.

The following section explains the use of this method for a one-dimensional

resonant structure. This includes stating the equations involved and showing how vary-
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ing levels of approximation can be used in the calculations. The subsequent section

demonstrates the use of this technique with numerical examples.

6.2 Mathematical Origin of Modulation Instability

6.2.1 Analysis Based on Nonlinear Propagation

This section offers an outline of the derivation of MI that is commonly offered

in the literature and in nonlinear optics texts. Some insight into MI can be gained by

using this method, although the solution method presented in this chapter for MI in

resonant cavities follows another track. As described in Section 6.3, that method will

use a differential equation approach to MI.

As a starting point, consider the definition of wave number with intensity-

dependent nonlinearity included:

k =
ωn

c
=

ω

c

(
n0 + d|E|2

)
. (6.1)

Expanding k for small variations from a central value of k0 yields

k − k0 =
∂k

∂ω
(ω − ω0) +

1
2

∂2k

∂ω2
(ω − ω0)

2 + k0d|E|2, (6.2)

where the variation in frequency from ω0 is expanded to include the second-order deriva-

tive. For a wave based on the function exp [i (ω − ω0) t− i (k − k0) z], the derivative in t

is seen to correspond to multiplication by i(ω − ω0) and the derivative in z corresponds

to multiplication by −i(k− k0). Substituting the derivative operators into Equation 6.2

gives the operator equation

−i
∂

∂z
= i

∂k

∂ω

∂

∂t
− 1

2
∂2k

∂ω2

∂2

∂t2
+ k0d|E|2. (6.3)

Applying this operator to an amplitude function A(z, t) yields

i

(
∂A

∂z
+

∂k

∂ω

∂A

∂t

)
− 1

2
∂2k

∂ω2

∂2A

∂t2
+ k0d|A|2A = 0 (6.4)
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In the absence of group velocity dispersion ( ∂2k
∂ω2 = 0)and a nonlinearity (d = 0), only

the first parenthetical term of Equation 6.4 remains, and the solution will take the

form of A (x− vgt). The group velocity, vg, is seen to be ∂ω
∂k . We can also see that

for certain values of group velocity dispersion and nonlinearity, the second and third

terms of Equation 6.4 will be equal and opposite in sign. For such cases, the two effect

compensate for each other and waves will be able to propagate without distortion.

The MI literature commonly rewrites Equation 6.4 in group velocity coordi-

nates, which simplifies solving for MI gain. Substituting τ = t − 1
vg

z into Equation 6.4

and using ∂z
∂t = vg,

∂A

∂z
− i

1
2
k
′′
0

∂2A

∂τ2
− ik0d|A|2A = 0. (6.5)

This equation describes the evolution of a pulse envelope moving at the group velocity,

from the perspective of moving with the pulse. If the signal is a single continuous wave,

rather than a pulse, the envelope remains constant in the group velocity time coordinates,

so the second term of Equation 6.5 is zero. In other words, if the wave is monochromatic,

the dispersion has no effect. The solution for this case is then

A(z) = A0 exp
(
ik0dA2

0z
)

. (6.6)

The complex exponential indicates self-modulation caused by the varying intensity of the

wave in a material with an intensity-dependent refractive index. To find the MI effect,

assume a constant envelope carrier like the above and a small amplitude perturbation,

a(z, τ):

A(z, τ) = (A0 + a) e(ik0dA2
0z). (6.7)

Substituting Equation 6.7 into Equation 6.5 gives

∂a

∂z
= i

1
2
k
′′
0

∂2a

∂τ2
− ik0d|A0|2(a + a∗), (6.8)
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where it is assumed that A0 >> a, so that higher powers of a could be removed. This

equation determines the evolution of the perturbation. Since we are interested in per-

turbations that take the form of waves, we give a(z, τ) the form

a(z, τ) = m1e
i(Kz−Ωτ) + m2e

−i(Kz+Ωτ). (6.9)

When K is real, Equation 6.9 represents forward and backward traveling waves, while

when it is imaginary, it represents growing and attenuating signals. The appearance of

MI depends on the growth of noise signals, so we look for the conditions that cause K

to be imaginary. Using Equation 6.9 in Equation 6.8, produces the system of equations



K + 1
2k

′′
0Ω2 + k0d|A0|2 k0d|A0|2

k0d|A0|2 −K + 1
2k

′′
0Ω2 + k0d|A0|2







m1

m2


 =




0

0


 . (6.10)

Other than the case of m1 = m2 = 0, the only way to satisfy Equation 6.10 is to

find values that cause the matrix to be singular. Setting the determinant to zero, the

condition on K is

K = ±1
2
|k′′0 |Ω

√
Ω2 +

4k0d|A0|2
k
′′
0

. (6.11)

For K to be imaginary, the group velocity dispersion, k
′′
0 , must be negative and 4k0d|A0|2

k
′′
0

>

Ω2. From this condition we see that as the main signal field amplitude, |A0|, rises, the

frequency at which MI gain appears can also be higher.

6.2.2 Analysis Based on Coupled Differential Equations

The starting point of the analysis is to represent Maxwell’s equations with the

third-order nonlinearity in the form of coupled differential equations [6]. For a plane

wave traveling along the z-axis, the wave equation for the electric field is

∂2E

∂z2
=

∂2

∂t2

[
ε0n

2E + ε0dEEE
]
, (6.12)

where ε0 is the permittivity of free space, n is the (frequency-dependent) refractive index,

and d is the third-order nonlinear coefficient. We consider here a wave at frequency



99

ω0, which we call the pump beam, and two equally-spaced side-band frequencies of

ω+ = ω0 + Ω and ω− = ω0 − Ω. Accordingly, the electric field in Equation 6.12 is

expanded as E = E0e
−iω0t + E+e−iω+t + E−e−iω−t + c.c., with c.c. denoting complex

conjugate. Including this definition, and grouping frequency terms, gives three coupled

differential equations:

d2E0
dz2 = −3ω2

0
c2

[n2
0E0 + d

(|E0|2 + 2|E+|2 + 2|E−|2
)
E0

+2dE+E−E∗
0 ],

(6.13)

d2E+

dz2 = −3ω2
+

c2
[n2

+E+ + d
(
2|E0|2 + |E+|2 + 2|E−|2

)
E+

+dE0E0E
∗−],

(6.14)

d2E−
dz2 = −3ω2

−
c2

[n2−E− + d
(
2|E0|2 + 2|E+|2 + |E−|2

)
E−

+dE0E0E
∗
+].

(6.15)

If needed, terms can be included to account for propagation loss. These equations

are sufficient for solving using a numerical method such as Runge-Kutta. For most

applications, however, they can be simplified, and the solution reached more quickly

and efficiently, by using an envelope representation for the fields. For example, E0 is

represented as a constant plane wave and a varying envelope as E0 = A0(z)e−ik0z, with

k0 the wavenumber at ω0. Using the slowly-varying envelope approximation to discard

second-order derivatives, Equations 6.13-6.15 then simplify to

dA0
dz = −i3ω0d

2cn0
[
(|A0|2 + 2|A+|2 + 2|A−|2

)
A0+

2A+A−A∗0ei∆z],
(6.16)

dA+

dz = −i 3ω0d
2cn+

[
(
2|A0|2 + |A+|2 + 2|A−|2

)
A+

+A0A0A
∗−e−i∆z],

(6.17)

dA−
dz = −i 3ω0d

2cn− [
(
2|A0|2 + 2|A+|2 + |A−|2

)
A−

+A0A0A
∗
+e−i∆z],

(6.18)
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with c being the free-space speed of light and ∆ = 2k0 − k+ − k−. In a case containing

both forward and backward traveling waves there will be six equations. Due to the in-

herent phase mismatch between counter-propagating waves, the three forward-traveling

equations can be decoupled from the three backward-traveling equations. The paren-

thetic intensity terms in Equations 6.13-6.15 or 6.16-6.18 apply to the total field intensity

including forward and backward waves.

Solving these equations numerically will show MI for a propagation length with-

out a cavity. The calculation is done for a set of three frequencies, ω0, ω0 +Ω and ω0−Ω.

By sweeping Ω from a small value to several terahertz we can characterize the MI gain

sidebands. A small initial value of A+ and A− is needed for all cases to show MI out-

put. Without a nonzero initial value for the sideband amplitudes, there are no signals

to experience gain. Physically, these small initial values are noise that exists inherently

in the medium or are provided by the signal source.

The emergence of MI gain from these differential equations can be found with

an approximate analysis. The procedure followed here is similar to that used in [6]

to approximately analyze second harmonic generation. Whereas the case in the cited

literature involved two coupled equations, a pump and a harmonic, MI uses three coupled

equations. The overall analysis method, however, is the same. Applying a non-depleted

pump analysis, we assume that the pump amplitude, A0, remains constant and is always

much larger than the sideband amplitudes of A+ and A−. Equations 6.17 and 6.18 then

approximately become

dA+

dz
= −iC+

(
2|A0|2A+ + A0A0A

∗
−e−i∆z

)
, (6.19)

dA−
dz

= −iC−
(
2|A0|2A− + A0A0A

∗
+e−i∆z

)
, (6.20)

where relatively small terms have been discarded and constant terms have been grouped

into constants C+ and C−. Next the equations are simplified by a moving coordi-
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nate system, which is achieved with the substitutions A+ = B+e−i2C+|A0|2z and A− =

B−e−i2C−|A0|2z:

dB+

dz
= −iC+A0A0B

∗
−ei2|A0|2(C++C−)z−i∆z, (6.21)

dB−
dz

= −iC+A0A0B
∗
+ei2|A0|2(C++C−)z−i∆z. (6.22)

Expanding the complex quantities into a magnitude and angle as B+ = ρ+eiφ+ and

B− = ρ−eiφ− yields three real equations:

dρ+

dz
= C+A0A0ρ− sin θ, (6.23)

dρ−
dz

= C−A0A0ρ+ sin θ, (6.24)

dθ

dz
= 2A0A0 (C+ + C−)−∆ + A0A0 cos θ

(
C+

ρ−
ρ+

+ C−
ρ+

ρ−

)
, (6.25)

with θ = 2A0A0 (C+ + C−) z−∆z− φ+− φ−. The growth of ρ+ and ρ− are maximized

when θ stays constant at π
2 . Setting θ = π

2 and dθ
dz = 0, Equation 6.25 becomes

2A0A0 (C+ + C−) = ∆. (6.26)

MI gain is expected to occur when the condition of Equation 6.26 is satisfied. This is

demonstrated in Section 6.4.

6.3 Resonant Cavity Analysis Method

In this section the analysis method for finding the modulation instability gain

in a resonant cavity is detailed. Section 6.2.2 described the use of coupled differential

equations, solved numerically, to calculate the MI in a freely propagating wave. Mirrors

are now added to each end of the propagation distance to create a cavity that resonates

at some wavelengths.
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6.3.1 Cavity Boundaries

The fields can be translated across the cavity boundaries using matrix tech-

niques. To use this method, we represent the field on each side of a boundary by a

vector consisting of the forward-traveling wave, Ef , and the backward-traveling wave,

Eb. From the electromagnetic boundary conditions, the relation between the vectors is



Ef

Eb




Side1

=
1
τ




1 ρ

ρ 1







Ef

Eb




Side2

, (6.27)

where ρ and τ represent the reflection and transmission coefficients of the boundary,

respectively, from side 1 to side 2. These coefficients can be made complex-valued to

represent phase-shifting reflective structures.

6.3.2 Optimization-Based Solution Method

The solution procedure is outlined in Figure 6.1. There are 12 complex variables

made up of the forward and backward traveling waves at both sides of the cavity at the

three frequencies. We will assume that there are no waves coming in from the right

side, so Eb,R
0 , Eb,R

+ , and Eb,R
− are all held constant at zero. Also, the waves entering

from the left side, Ef,L
0 , Ef,L

+ , Ef,L
− , are set to known values. This leaves six complex

variables, representing the reflected and transmitted waves, to be solved. Since each

complex variable contains two components, there are 12 unknowns.

Values are assumed for the six complex variable and then the calculations are

performed to find if the case is balanced. First the external variables are translated

inside the cavity using Equation 6.27. The internal field values are represented in Figure

5.1 with tildes. Then variables Ẽf,L
0 , Ẽf,L

+ , and Ẽf,L
− are used as starting values in the

coupled differential equations. Either Equations 6.13-6.15 or 6.16-6.18 can be used. The

resulting values are compared with Ẽf,R
0 , Ẽf,R

+ , and Ẽf,R
− for a match. Similarly, the
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Figure 6.1: Solution method for MI in a single cavity. External fields are translated to
internal cavity values.

backward traveling waves at the right interface are propagated across the cavity and the

results compared with the values at the left interface. The six comparisons will show no

differences in values for a balanced case, meaning that the set of values is self-consistent

with all of the boundary conditions and the nonlinear equations. If the comparisons do

not yield a match, then an error term can be defined as the sum of the squares of the

differences. Optimization methods can then be used to re-assign values to the complex

variables to lower the error. I used an algorithm based on the conjugate gradient method

[29] to carry out the optimization. Once calculation shows that the error term associated

with a set of values is below some pre-set, application-dependent threshold, then those

values can be used as the solution.

6.4 Baseline Case

It is instructive to test the equations and methods of Section 6.3 by comparison

with a published example. There are no published examples of MI in a resonant cavity,

but a favorable comparison with measurements from an open propagation length can
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build confidence. Calculations are made here with the parameters presented in [51]. In

that paper, spectral measurements are made after 1 kilometer of propagation in a fiber,

yielding the plot shown in Figure 6.2.

The parameters of the fiber and the signal used in [51] were used with Equations

6.16–6.17. The nonlinear coefficient of the fiber was given as 1.22 × 10−22 m2

V 2 and the

group velocity dispersion is −4psec2

km . The input signal power at the wavelength of 1.319

micrometers is 7.1 W over a fiber area of 60 µm2. Assuming an even power distribution

over the fiber cross-section gives an intensity of 1.2×1011 W
m2 . Initial values of 1 W

m2 were

used for the sidebands.

The results of the simulation run are shown in Figure 6.3 and compare well with

the measurements of Figure 6.2. The gain peaks are evident in both figures, although

they do not align exactly. The discrepancy may be due to variation in the parameters

listed with the experimental data. The amplitudes of the sidebands are difficult to

compare due to the uncertainty in the starting values. The MI process causes gain,

which is what is plotted in Figure 6.3. The measured signal is noise in the fiber that has

been amplified by that gain.

The condition of Equation 6.26 can be tested with this case. Curves represent-

ing the left side and the right side of the equation are plotted in Figure 6.4. Where they

cross is the expected location of the MI gain maximum. The solid curved line is the right

side of the equation, which is determined by the material dispersion. The dotted line

is a plot of the left side of the equation, and is set by the nonlinear coefficient and the

amplitude of the pump wave. Increasing the amplitude of the pump causes the dotted

line to rise, moving the cross-over point away from the pump wavelength.
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Figure 6.2: Measured spectral output of a fiber, showing MI sidebands. Figure from [51].
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Figure 6.3: Calculated MI output of a length of fiber with parameters as given in the
text.
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Figure 6.4: Plot of the two sides of Equation 6.26 for the case of Figure 6.3. The solid line
is the phase mismatch, which is governed largely by the material dispersion. The dotted
line is the left-hand side of the equation, which is determined by the nonlinearity and the
amplitude of the pump wave. The maximum gain is expected to occur approximately
where the two curves meet.

6.5 Examples

6.5.1 Small Cavity Examples

To clearly show the effects of the resonant cavity on MI, it is instructive first

to construct a fictional case. We set the material dispersion and nonlinear coefficient so

that MI can be visible over a propagation length of only 10 centimeters (d=5×10−14 m2

V 2 ,

n
′′

= −10−29sec2, A0 = 4 × 105 V
m). The free spectral range of the resulting resonant

cavity is therefore a visible quantity in the plots. The effect of adding mirrors to the

ends of the propagation length are shown in Figure 6.5. The peak of MI gain occurs at

the same sideband frequency, although the magnitude is changed and the resonances of

the cavity are clearly visible. Increasing the reflection coefficient of the mirrors further

increases the MI output.
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Figure 6.5: Calculated MI output of a 0.01 m cavity, with and without end mirrors. The
sideband initial values were 1 V/m. Fictional values of index dispersion and nonlinear
constant were used to clearly show the effects of the resonant cavity.

6.5.2 Semiconductor Cavity

Semiconductors have a relatively high nonlinear coefficient (on the order of

10−14 cm2

V 2 compared to 10−16 cm2

V 2 for glass). This section considers the calculation of MI

in semiconductor resonant cavities. Specifically, the material used is gallium arsenide

(GaAs), with the pump beam at a wavelength of 1.319 micrometers and amplitude

A0 = 3 × 105 V
m. Figure 6.6 shows the results of several optimization-based calculation

runs. The open propagation length without the cavity is a theoretical 2 meter length

of GaAs, and shows MI gain. The subsequent data points in the figure are for cavity

lengths of 0.2 m and 0.05 m, with the mirror reflectivity increased to compensate for

the shorter propagation lengths. As the reflectivity of the end mirrors increases, the

frequency of maximum MI gain shifts upward. This is predicted by Equation 6.11,

since the pump amplitude, A0, is higher in a resonant cavity due to the constructive

interference of the reflected beams. This analysis shows that MI can be observed in a
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Figure 6.6: Calculated MI output of a GaAs cavity of different lengths and end-mirror
reflectivity. The high-finesse cavities have very narrow and closely-spaced peaks, which
are only approximately indicated in this figure.

realizable semiconductor cavity if the finesse is sufficiently high.

We can approximately predict the frequency shift of the MI gain maximum in

a resonant cavity by using the cavity finesse. The cavity finesse, which is calculated from

the mirror reflection coefficient, r, by F = πr/
(
1− r2

)
, is approximately equal to the

number of interfering beams in the cavity. The pump beam propagating in each direction

is therefore increased by a factor of 0.5 F. The reflection coefficients of 0.86 and 0.95 in

Figure 6.6 correspond to cavity finesses of 10 and 30. In Figure 6.7 the multiplicative

factors of 5 and 15 have been applied to the pump beam amplitude for a propagation

length with no end mirrors. It is seen that the frequencies of peak MI gain occur at the

same locations as for the resonant cavities of Figure 6.6. The amplitudes of output MI

are different, however, due to the different propagation lengths used to generate the two

figures.
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Figure 6.7: Calculated MI output of a GaAs propagation length with no end mirrors.
The pump beam is increased in each data set to correspond with the finesses of the
resonant cavities in Figure 6.6.

6.6 Summary

By testing trial solutions of the field values and converging on a set of values

that satisfies all boundary conditions and propagation equations, we can efficiently solve

for the effects of MI in a resonant cavity. The complications involved in a transient

analysis or an analytic solution are avoided. For modulation instability in a cavity,

the complications can become excessive since each case contains at least six interacting

waves, along with all of their reflections. Furthermore, an optimization-based method

offers flexibility in the level of approximation made and the effects, such as loss, that can

be included. The basic outline of this technique has had success in the field of nonlinear

circuit analysis as the harmonic balance method. Applying this new solution method

to resonant cavities, shows that the resonance increases the MI output over what would

appear in a similar cavity length with no end mirrors. Furthermore, in a high-finesse

cavity the pump beam can be increased in magnitude enough to shift the frequency of
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the MI gain maximum higher. MI could therefore occur in a relatively short propagation

length if there are end-mirrors with sufficient reflectivity and the cavity is in resonance.



7

Conclusions

7.1 Summary

This dissertation has presented a study of several aspects of nonlinear optics in

engineered microstructures. While the field of nonlinear optics has been actively pursued

since the invention of the laser in the early 1960’s, developments in microfabrication have

opened new areas of study. Feature sizes that are on the order of an optical wavelength

or smaller allow the designer to make use of wave interference effects. By designing

these structures, it is possible to overcome the two limiting factors in many nonlinear

processes: the small nonlinear constant and phase mismatch.

Methods of enhancing second harmonic generation (SHG) were discussed in

Chapter 2. This included using form birefringence to achieve phase matching, using a

program based on rigorous coupled wave analysis to perform the calculations. Experi-

ments were also discussed in which SHG was achieved in a material without a second-

order nonlinearity by applying a strong DC electric field across a crystal sample. The

electric field effectively creates a second-order nonlinearity from a third-order nonlinear-

ity. Chapter 3 concerned a new analysis method for calculating nonlinear effects in a

111
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resonant cavity. This is a significant contribution of this dissertation, and is discussed

in more detail below. Chapter 4 then examined the conditions that must be satisfied in

engineered microstructures for efficient nonlinear frequency conversion. A method of de-

signing mirrors that have prescribed complex reflection coefficients was presented. As in

the method of Chapter 3, the mirror design method is based on circuit design techniques.

The new analysis technique is applied to third-order nonlinear processes in Chapter 5.

These effects include bistable devices that can exhibit memory. The design and analysis

of these types of resonant cavities has been limited by the lack of an adequate technique.

Another nonlinear effect in a resonant cavity that has not been adequately calculated

is modulation instability (MI), which is described in Chapter 6. The resonance in the

cavity is able to affect the MI by changing the magnitude and by shifting the frequency

of maximum gain.

A contribution of this dissertation is in the optimization-based analysis method

for nonlinear effects in a resonant cavity. There are no other analysis methods that have

sufficient generality and sufficient accuracy for the cases we are interested in examining,

thereby necessitating the creation of this new method. After a search of available tech-

niques, a method was found that is used by circuit simulators to calculate the response of

resonant circuits containing nonlinear elements. That method, called harmonic balance,

works by making a guess at branch currents and then testing those values. The currents

are used in the linear and nonlinear circuit equations to find the corresponding voltages.

The calculated voltages must satisfy circuit rules such as Kirchhoff’s Voltage Law. If the

set of currents are not satisfactory, an optimization algorithm is used to pick a new set. I

translated the outline of this method to nonlinear optics in order to apply it to the cases

we are interested in running, and implemented the technique in several C++ programs.

A simple optimization algorithm was used which was sufficient for small problems with

few unknowns. For larger problems, efficient optimization routines are available and can
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be used in the solution.

7.2 Future Directions

Nonlinear optics is a broad field and presents many opportunities for develop-

ment. The capability of fabricating micrometer-sized structures with precisely designed

lengths in particular has opened new areas for exploration. This dissertation examined

the design and analysis of several types of nonlinear processes carried out in resonant

microstructures, but many others exist. Some of these applications, such as modulators

and switches, were listed in the Introduction. The analysis methods used here should

be applicable to all of these applications. Besides the design of the nonlinear structure

in isolation, the integration of the structure into an optical processing system is also

an upcoming field. A surface area of several square millimeters could contain several

components such as nonlinear resonators, waveguides, branches and modulators. Ide-

ally, electronic components would also be integrated to create a single processing chip.

Silicon, which is widely used for integrated transistors, however, has high material loss

for the commonly used optical frequencies. Gallium arsenide is transparent for most

infra-red frequencies, and is therefore a more suitable choice for optical components, but

is not as widely used in the electronics industry. Other materials, or compounds created

by mixing or embedding materials within each other may eventually prove useful for this

purpose.

Another conclusion of this dissertation is that much work has been done in

other analysis fields that can be applied to nonlinear optics. The computational method

presented in Chapter 3 is conceptually related to harmonic balance solvers used to find

the performance of oscillating circuits containing nonlinear components. A problem that

was inadequately solved in the optical literature has been thoroughly examined in the
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circuit literature. Besides this method, there are other radiofrequency (RF) techniques

that can be applied to optical applications. For example, cross-modulation effects, when

two or more frequencies and their products all interact, are called two-tone (or multi-

tone) analyses in RF solvers, and have been widely studied. Optimization-based transient

solvers are also in use for nonlinear oscillating circuits and could be applied to nonlinear

optics. Section 4.7 described the translation of a linear optical problem into circuit

terms so that it could be solved in a circuit simulator. A translation of nonlinear optical

problems into circuit terms may also be possible. This would allow the use of commercial

circuit solvers, opening new possibilities in the efficient simulation of nonlinear optical

devices.



Bibliography

[1] N. Bloembergen, “Nonlinear optics: past, present and future,” IEEE Journal on
Selected Topics in Quantum Electronics, vol. 6, pp. 876–880, Nov. 2000.

[2] E. G. Sauter, Nonlinear Optics. New York: Wiley, 1996.

[3] R. W. Boyd, Nonlinear Optics, 2nd Ed. San Diego: Academic Press, 2003.

[4] T. H. Maiman, “Stimulated optical radiation in ruby,” Nature, vol. 187, pp. 493–494,
Aug. 1960.

[5] R. C. Jaeger, Introduction to Microelectronic Fabrication, 2nd Ed. New Jersey:
Prentice Hall, 2002.

[6] J. A. Armstrong, N. Bloembergen, J. Ducuing, and P. S. Pershan, “Interactions
between light waves in a nonlinear dielectric,” Physical Review, vol. 177, pp. 1918–
1939, Sept. 1962.

[7] A. Ashkin, G. D. Boyd, and J. M. Dziedzic, “Resonant optical second harmonic
generation and mixing,” IEEE Journal of Quantum Electronics, vol. 2, pp. 109–
124, June 1966.

[8] D. S. Bethune, “Optical harmonic generation and mixing in multilayer media: anal-
ysis using optical transfer matrix techniques,” Journal of the Optical Society of
America B, vol. 6, pp. 910–916, May 1989.

[9] P. D. Maker, R. W. Terhune, M. Nisenoff, and C. M. Savage, “Effects of dipersion
and focusing on the production of optical harmonics,” Physics Review Letters, vol. 8,
pp. 21–22, Jan. 1962.

[10] I. Shoji, T. Kondo, A. Kitamono, M. Shirane, and R. Ito, “Absolute scale of second-
order nonlinear-optical coefficients,” Journal of the Optical Society of America B,
vol. 14, pp. 2268–2294, Sept. 1997.

[11] M. M. Fejer, G. A. Magel, D. H. Jundt, and R. L. Byer, “Quasi-phase-matched
second harmonic generation: tuning and tolerances,” IEEE Journal of Quantum
Electronics, vol. 28, pp. 2631–2654, Nov. 1992.

115



116

[12] J. P. van der Ziel, “Phase-matched harmonic generation in a laminar structure
with wave propagation in the plane of the layers,” Applied Physics Letters, vol. 26,
pp. 60–61, Jan. 1975.

[13] J. P. van der Ziel and M. Llegems, “Optical second harmonic generation in periodic
multilayer gaas-al0.3ga0.7as structures,” Applied Physics Letters, vol. 28, pp. 437–
439, Apr. 1976.

[14] A. Fiore, V. Berger, E. Rosencher, P. Bravetti, and J. Nagle, “Phase matching using
an isotropic nonlinear material,” Nature, vol. 391, pp. 463–466, Jan. 1998.

[15] L. A. Eyres, P. J. Tourreau, T. J. Pinguet, C. B. Ebert, J. S. Harris, M. M.
Fejer, L. Becouarn, B. Gerard, and E. Lallier, “All-epitaxial fabrication of thick,
orientation-patterned gaas film for nonlinear optical frequency conversion,” Applied
Physics Letters, vol. 79, pp. 904–906, Aug. 2001.

[16] T. K. Gaylord and M. G. Moharam, “Planar dielectric grating diffraction theories,”
Applied Physics B, vol. 28, pp. 1–14, Jan. 1982.

[17] M. G. Moharam and T. K. Gaylord, “Diffraction analysis of dielectric surface relief
gratings,” Journal of the Optical Society of America, vol. 72, pp. 1385–1392, Oct.
1982.

[18] L. Li, “Formulation and comparison of two recursive matrix algorithms for modeling
layered diffraction gratings,” Journal of the Optical Society of America A, vol. 13,
pp. 1024–1035, May 1996.

[19] L. Li, “Use of fourier series in the analysis of discontinous periodic structures,”
Journal of the Optical Society of America A, vol. 13, pp. 1872–1876, Nov. 1996.

[20] G. Klemens, W. Nakagawa, R. C. Tyan, and Y. Fainman, “Phase matching in
anisotropic form-birefringent nanostructures,” OSA Annual Meeting, Long Beach,
2001.

[21] B. P. Antonyuk, “All optical poling of glasses,” Optics Communications, vol. 181,
pp. 191–195, July 2000.

[22] G. H. Haertling, “Plzt electrooptic materials and applications–a review,” Ferroelec-
tric, vol. 75, pp. 25–55, Jan. 1987.

[23] A. Mukherjee, S. R. J. Brueck, and A. Y. Wu, “Electric field induced second har-
monic generation in plzt,” Optics Communications, vol. 76, pp. 220–224, May 1990.

[24] R. G. Smith, “Theory of intracavity optical second-harmonic generation,” IEEE
Journal of Quantum Electronics, vol. 6, pp. 215–223, Apr. 1970.

[25] A. Calderone and J. P. Vigneron, “Computation of the electromagnetic harmonics
generation by stratified systems containing nonlinear layers,” International Journal
of Quantum Chemistry, vol. 70, no. 4, pp. 763–770, 1998.



117

[26] M. G. Martemyanov, T. V. Dolgova, and A. A. Fedyanin, “Optical third-harmonic
generation in one-dimensional photonic crystals and microcavities,” Journal of Ex-
perimental and Theoretical Physics, vol. 98, no. 3, pp. 463–477, 2004.

[27] G. Klemens and Y. Fainman, “Optimization-based calculation of optical nonlinear
processes in a micro-resonator,” Optics Express, vol. 14, pp. 9864–9872, Oct. 2006.

[28] S. El-Rabaie, V. F. Fusco, and C. Stewart, “Harmonic balance evaluation of non-
linear microwave circuits–a tutorial approach,” IEEE Transactions on Education,
vol. 31, pp. 181–192, Aug. 1988.

[29] K. E. Atkinson, An Introduction to Numerical Analysis. New York: Wiley, 1989.

[30] W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery, Numerical
Recipes in C, 2nd Ed. Cambridge: Cambridge, 1999.

[31] W. J. Tropf, M. E. Thomas, and T. J. Harris, Handbook of Optics: Volume II.
McGraw-Hill, 1995.

[32] M. D. Sturge, “Optical absorption of gallium arsenide between 0.6 and 2.75 ev,”
Physical Review, vol. 127, pp. 768–773, Aug. 1962.

[33] M. Born and E. Wolf, Principles of Optics, 7th Ed. Cambridge: Cambridge, 1999.

[34] A. Yariv, Quantum Electronics, 3rd Ed. New York: Wiley, 1989.

[35] C. H. Chen, K. Tetz, W. Nakagawa, and Y. Fainman, “Wide-field-of-view gaas/alxoy
one-dimensional photonic crystal filter,” Applied Optics, vol. 44, pp. 1503–1511,
Mar. 2005.

[36] V. Berger, “Second-harmonic generation in monolithic cavities,” Journal of the Op-
tical Society of America B, vol. 14, pp. 1351–1360, June 1997.

[37] C. Simonneau, J. P. Debray, J. C. Harmand, P. Vidakovic, D. J. Lovering, and
J. A. Levenson, “Second-harmonic generation in a doubly resonant semiconductor
microcavity,” Optics Letters, vol. 22, no. 23, pp. 1775–1777, 1997.

[38] F. F. Ren, R. Li, C. Cheng, H. T. Wang, J. Qiu, J. Si, and K. Hirao, “Giant
enhancement of second harmonic generation in a finite photonic ctrystal with a
single defect and dual-localized modes,” Physical Review B, vol. 70, p. 245109, Dec.
2004.

[39] R. Haidar, N. Forget, and E. Rosencher, “Optical parametric oscillation in micro-
cavities based on isotropic semiconductors: a theoretical study,” IEEE Journal of
Quantum Electronics, vol. 39, pp. 569–576, Apr. 2003.

[40] C. Diederichs, J. Tignon, G. Dasbach, C. Ciuti, A. Lemaitre, J. Bloch, P. Roussignol,
and C. Delalande, “Parametric oscillation in vertical triple microcavities,” Nature,
vol. 440, pp. 904–907, Apr. 2006.



118

[41] G. Klemens, C. H. Chen, and Y. Fainman, “Design of optimized dispersive resonant
cavities for nonlinear wave mixing,” Optics Express, vol. 13, pp. 9388–9397, Nov.
2005.

[42] S. D. Smith, “Optical bistability: towards the optical computer,” Nature, vol. 307,
no. 3, pp. 315–316, 1984.

[43] A. Szoke, V. Daneu, J. Goldhar, and N. A. Kurnit, “Bistable optical element and
its applications,” Applied Physics Letters, vol. 15, pp. 376–379, Dec. 1969.

[44] D. A. B. Miller, S. D. Smith, and C. T. Seaton, “Optical bistability in semiconduc-
tors,” IEEE Journal of Quantum Electronics, vol. 17, pp. 312–317, Mar. 1981.

[45] G. Priem, I. Notebaert, B. Maes, P. Bienstman, G. Morthier, and R. Baets, “De-
sign of all-optical nonlinear functionalities based on resonators,” IEEE Journal of
Quantum Electronics, vol. 10, pp. 1070–1078, Sept. 2004.

[46] G. Priem, I. Notebaert, P. Bienstman, B. Maes, G. Morthier, and R. Baets,
“Resonator-based all-optical kerr-nonlinear phase shifting: Design and limitations,”
Journal of Applied Physics, vol. 97, p. 023104, Dec. 2005.

[47] F. S. Felber and J. H. Marburger, “Theory of nonresonant multistable optical de-
vices,” Applied Physics Letters, vol. 28, pp. 731–733, June 1976.

[48] J. H. Marburger and F. S. Felber, “Theory of a lossless nonlinear fabry-perot inter-
ferometer,” Physical Review A, vol. 17, pp. 335–342, Jan. 1978.

[49] P. K. Kwan and Y. Lu, “Computing optical bistability in one-dimensional nonlinear
structures,” Optics Communications, vol. 238, no. 1, pp. 169–175, 2004.

[50] A. Hasegawa and W. F. Brinkman, “Tunable coherent ir and fir sources utilizing
modulational instability,” IEEE Journal of Quantum Elecronics, vol. 16, pp. 694–
697, July 1980.

[51] K. Tai, A. Hasegawa, and A. Tomita, “Observation of modulation instability in
optical fibers,” Physical Review Letters, vol. 56, pp. 135–138, Feb. 1986.

[52] M. J. Potasek and G. P. Agrawal, “Self-amplitude-modulation of optical pulses in
nonlinear dispersive fibers,” Phys. Rev. A, vol. 36, pp. 3862–3867, Aug. 1987.

[53] W. Huang and J. Hong, “A coupled-mode analysis of modulation instability in
optical fibers,” IEEE Journal of Lightwave Technology, vol. 10, pp. 152–162, Feb.
1992.

[54] T. Tanemura, Y. Ozeki, and K. Kikuchi, “Modulation instability and parametric
amplification induced by loss dispersion in optical fibers,” Physical Review Letters,
vol. 93, no. 16, p. 163902, 2004.




