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Abstract 

Mathematicians often describe arguments as “beautiful” or 
“dull,” and famous scientists have claimed that 
mathematical beauty is a guide toward the truth. Do 
laypeople, like mathematicians and scientists, perceive 
mathematics through an aesthetic lens? We show here that 
they do. Two studies asked people to rate the similarity of 
simple mathematical arguments to pieces of classical piano 
music (Study 1) or to landscape paintings (Study 2). In 
both cases, there was internal consensus about the pairings 
of arguments and artworks at greater than chance levels, 
particularly for visual art. There was also some evidence 
for correspondence to the aesthetic ratings of 
undergraduate mathematics students (Study 1) and of 
professional mathematicians (Studies 1 and 2). 

Keywords: Psychology of mathematics; Explanation; 
Aesthetics; Reasoning; STEM education  

Introduction 
Explanations in science and mathematics are often 
imbued with aesthetic qualities. They can be “elegant” or 
“beautiful”; they can be “dull” or “trivial.” Moreover, many 
scientists appear to adopt John Keats’ maxim that “beauty 
is truth, truth beauty.” Albert Einstein “was quite 
convinced that beauty was a guiding principle in the 
search for important results in theoretical physics” (Zee, 
1999), while the physicist Paul Dirac (1963) even claimed 
that “it is more important to have beauty in one’s 
equations than to have them fit experiment.” 

Is there a deep psychological reality underlying the 
perception that certain mathematical arguments are 
beautiful? One affirmative piece of evidence comes from 
a neuroimaging study (Zeki, Romaya, Benincasa, & 
Atiyah, 2014), in which professional mathematicians’ 
brains were scanned while contemplating either 
“beautiful” or “ugly” mathematical equations. Individual 
judgments of mathematical beauty were correlated with 
activity in the same region of the medial orbito-frontal 
cortex that is known to track aesthetic judgments in other 
domains such as visual art and music (Ishizu & Zeki, 
2011). This suggests that the underlying experience of 
mathematical beauty, at least for mathematicians, has a 
kinship with other forms of aesthetic experience. 

However, it is plausible that these aesthetic experiences 
are unique to professional mathematicians. Indeed, in 
Zeki et al.’s (2014) study, the effort to scan layperson 
participants’ brains was abandoned after an initial 
behavioral study failed to find any equations that 
participants found beautiful. Perhaps, then, the aesthetic 

experiences in mathematics are merely a by-product of 
the social practices of scientists and mathematicians. 

Might it nonetheless be possible that novices share the 
aesthetic perception of career mathematicians? Previous 
research suggests that people do have intuitions about the 
acceptability of simple mathematical explanations 
(Johnson, Johnston, Koven, & Keil, 2017) and that such 
intuitions broadly track principles derived from 
philosophy of mathematics (e.g., Bolzano, 1817; Kitcher, 
1975). But little is known about the intuitive aesthetics of 
such explanations, despite longstanding philosophical 
interest in the aesthetics (Lipton, 2004) and 
phenomenology (Gopnik, 1998) of explanation. 

We report two behavioral studies of laypersons’ 
aesthetic perception of mathematical arguments. 
Specifically, participants examined simple mathematical 
arguments and rated their similarity to various pieces of 
art—either music (in Study 1) or paintings (Study 2). This 
approach assumes that people can track broad aesthetic 
similarities across domains. Indeed, there is evidence for 
this broad capacity. Laypeople can detect which piece of 
music inspired which artwork (Ranjan, Gabora, & 
O’Connor, 2013), and students of painting can detect 
which of their peers created particular non-painting art 
(e.g., poetry; Gabora, O’Connor, & Ranjan, 2012). Our 
question is whether such abstract cross-domain aesthetic 
correspondences could also be detected for mathematics. 

We seek answers to three broad questions: Are 
participants’ responses internally consistent? Does 
education in higher mathematics alter this pattern? And to 
what extent are these layperson judgments consistent with 
those of professional mathematicians? 

Study 1 
Commentators have long noted an affinity between 
mathematics and music (Fauvel, Flood, & Wilson, 2006). 
Music has a mathematical structure, and the Greek 
mathematician Pythagoras worked out aspects of Western 
theory that persist to this day. Study 1 tests whether, in 
keeping with this affinity, the aesthetics of specific 
mathematical arguments intuitively correspond to 
different pieces of music.  

Method 
Participants were recruited from the online crowdsourcing 
platform Amazon Mechanical Turk (N = 299) and were 
from the United States. A subset of these participants (N = 
90) had taken a university-level math course above the 
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level of calculus, while a larger subset reported not having 
taken such coursework (N = 207). Given the lack of 
previous work on this topic, the sample size was chosen 
arbitrarily such that it was reasonably large (target N = 
300); the same sample size was used in Study 2 to prevent 
experimenter degrees of freedom 

Participants each read four mathematical arguments 
(see Table 1). For each argument, they were asked to first 
read and reflect on the argument. Then, on subsequent 
pages, participants rated the similarity of the argument to 
four different 20-second clips of classical music (see 
Table 2) on a scale from 0 (“not at all similar”) to 10 
(“very similar”). The arguments were presented in a 
random order, as were the musical clips, with each clip on 
a separate page. 

 
Table 1: Arguments Used in Studies 1 and 2 

Geometric Sum of an infinite geometric series 

Gauss Gauss’s summation trick for positive 
integers 

Pigeonhole Pigeonhole principle 

Faulhaber Geometric proof of a Faulhaber 
formula 

Note. The exact text of these arguments can be found in Johnson 
and Steinerberger (2018). 

 
Table 2: Musical Pieces Used in Study 1 

Schubert Moment Musical No. 4 (D 780), 
played by David Fray 

Bach Fugue from Toccata in E Minor 
(BWV 914), played by Glenn Gould 

Beethoven Diabelli Variations (Op. 120), played 
by Grigory Sokolov 

Shostakovic
h 

Prelude in D-flat Major (Op. 87 No. 
15), played by Adrian Brendle 

Note. Participants listened to the first 20 seconds of each piece. 
 

After the main task, a series of memory check questions 
was included to monitor whether participants had been 
attending to the materials. Participants were excluded 
from analysis if they incorrectly answered one-fourth or 
more of these questions (N = 73). 

In addition to the Mechanical Turk sample, two 
additional sets of individuals were asked to complete the 
study for comparison. First, a sample of Yale 
undergraduates (N = 28) was recruited from Mathematics 
and Applied Mathematics courses, including Calculus, 

Linear Algebra, Abstract Algebra, and Probability 
Theory. Second, a sample of professional mathematicians 
(N = 4) was recruited from the first author’s professional 
network. For these samples, participants were contacted 
by email and we included all participants who completed 
the principal measures. 

Results and Discussion 
The rankings of the pieces of music were not random: 
They reflected a degree of consensus which was shared to 
some extent across samples. This suggests that people 
have stable intuitions about the aesthetics of mathematics. 

The mean ratings and consensus ranks assigned to each 
piece of music, separated by argument, are given in Table 
A1 (left side). These are computed for the Mechanical 
Turk sample as a whole, separately for the portions of the 
sample with and without higher mathematics coursework, 
for the sample of Yale undergraduates, and for the 
professional mathematicians. For statistical tests, we 
focus on the larger Mechanical Turk sample. 

Did participants give similar ratings to one another? 
We tested this question in two ways. First, we calculated 
for each participant the correlation between that 
participant’s ratings of the 16 items (i.e., 4 arguments x 4 
pieces of music) and the mean ratings across the sample 
(leaving out that participant from the mean). These 
correlations were positive significantly more often than 
they were negative [145 out of 219 were positive; p < 
.001, sign test; 95% CI[.59, .72] on the proportion of 
positive correlations]. This was also true if we repeat the 
analysis separately on the participants who had taken 
higher mathematics [45 out of 68; p = .010; 95% CI[.54, 
.77]] and those who had not [93 out of 149; p < .001; 95% 
CI[.54, .70]] or if Spearman correlations are used instead. 

A second way of testing this question is to compute 
Cronbach’s alpha, treating each of the 16 ratings as an 
observation and each participant as a scale component. 
(This is similar to calculating the average correlation 
between each participant’s scores and every other 
participant’s scores.) These scores were fairly high (a = 
.72), indicating consistency across participants. 

Did participants come to the same consensus as the 
experts? We tested this question too in two ways. First, 
similar to our above analysis, we computed for each 
participant the correlation between that participant’s 
ratings of the 16 items and the mean rating for the other 
groups (expert mathematicians and students). The 
Mechanical Turk sample as a whole did not significantly 
agree with the mathematicians at greater than chance 
levels [120 out of 219 correlations were positive; p = .18; 
95% CI[.48, .62]]. However, there was a marginally 
significant tendency for agreement among the higher-
math sample [42 out of 68; p = .068; 95% CI[.49,.73]] but 
not the non-higher-math sample [76 out of 149, p = .87, 
95% CI[.43,.59]]. The results were similar, albeit more 
statistically robust, for agreement with the student 
consensus. These correlations were positive significantly 
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more often than chance for the sample as a whole [126 
out of 219; p = .030, 95% CI[.51,.64], but this was driven 
principally by the higher-math subsample [42 out of 68; p 
= .068, 95% CI[.49,.73]] rather than the non-higher-math 
subsample [83 out of 149, p = .19, 95% CI[.47,.64]].  

Second, we computed the correlations between the 
mean (consensus) ratings for the 16 items across different 
groups. First, there was a moderate but non-significant 
correlation between the higher-math and non-higher-math 
consensuses [r(14) = .40, p = .12]. The Mechanical Turk 
sample as a whole was not significantly correlated with 
either the mathematicians [r(14) = .06, p = .81] or the 
students [r(14) = .40, p = .12]. Consistent with the above 
analysis, however, the correlations were numerically 
somewhat stronger for the higher-math subsample [r(14) 
= .27, p = .31 with mathematicians and r(14) = .58, p = 
.012 with students], with the student correlation reaching 
statistical significance. These correlations were all 
nonsignificant for the non-higher-math subsample [r(14) 
= –.09, p = .75 and r(14) = .21, p = .43]. 

Discussion. Overall, these results suggest that 
laypeople have intuitions about the aesthetics of 
mathematical arguments, which were internally consistent 
within the sample of laypeople. For those who had taken 
higher mathematics (but not those who had not), there 
was some consensus with undergraduate math students 
and possibly with professional mathematicians. This 
overall pattern suggests that although even laypeople have 
intuitions about the aesthetics of mathematical arguments, 
these intuitions may sharpen with math instruction. 

Study 2 
Study 2 tested whether the aesthetic structure of 
mathematical arguments is limited to music—which has 
long invited mathematical comparisons—or whether 
people can also perceive similarities in the aesthetics of 
mathematics with other artistic mediums. Here, we used 
landscape paintings as an aesthetic medium that is not 
frequently imbued with mathematical character. 

Method 
Participants were recruited from Mechanical Turk (N = 
300). Similar to Study 1, a subset of these participants (N 
= 99) had taken a higher mathematics course, while most 
participants had not (N = 201). Participants were excluded 
if they failed the same check questions used in Study 1 (N 
= 67) or did not produce a complete set of ratings (N = 1). 

The procedure was identical to Study 1, except 
participants rated the similarity of each argument to four 
different landscape paintings (see Table 3). 

In addition to the Mechanical Turk sample, a sample of 
professional mathematicians (N = 8) was recruited from 
the first author’s professional network.  

 
 
 
 

Table 3: Paintings Used in Study 2 

Yosemite Looking Down Yosemite Valley, 
California (Albert Bierstadt) 

Rockies A Storm in the Rocky Mountains, Mt. 
Rosalie (Albert Bierstadt) 

Suffolk The Hay Wain (John Constable) 

Andes The Heart of the Andes (Frederic 
Edwin Church) 

Results and Discussion 
The similarity ratings were lower overall in Study 2 

than in Study 1, consistent with the idea that music is 
imbued with a more mathematical character. However, 
the associations between different artworks and different 
arguments followed a consistent pattern, indeed to a 
greater degree than in Study 1. The mean ratings and 
consensus ranks are given in Table A1 (right side). 

Using the same method as Study 1, we calculated the 
correlations between each participant’s ratings and the 
sample consensus (leaving that participant out). As in 
Study 1, these correlations were more often positive than 
negative [156 out of 211; p < .001, sign test; 95% CI[.67, 
.80]]. Alpha was even higher than in Study 1 [a = .93], 
indicating strong consistency across participants. 

This consensus was also consistent across groups of 
participants. Using the same method as Study 1, 
participants’ individual ratings in the Mechanical Turk 
sample were correlated with above-chance frequency with 
the mean ratings of the professional mathematicians [135 
out of 211 correlations were positive; p < .001; 95% 
CI[.57, .70]]. Further, the mean ratings across groups 
were very similar. The subsamples with and without 
higher mathematics training were correlated at a 
remarkable r(14) = .94 [p < .001], while the Mechanical 
Turk group as a whole correlated significantly with the 
mathematicians [r(14) = .51, p = .046]. 

Discussion. Mathematical arguments are more often 
associated with musical rather than visual aesthetics, yet 
participants were even more able to associate arguments 
with landscape paintings in Study 2 than to associate them 
with classical music in Study 1. This suggests that there is 
a deep aesthetic structure to mathematics that even 
laypeople can perceive, and which is not limited to 
comparisons with a single aesthetic medium. 

General Discussion 
Mathematicians have strong intuitions about the beauty of 
mathematics. Our studies suggest that laypeople too have 
intuitions about the aesthetics of arguments. Participants’ 
ratings of how mathematical arguments corresponded to 
different pieces of classical music internally consistent 
and correlated somewhat with expert judgments (Study 
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1), while such ratings were even more consistent for 
visual art (Study 2). These internally reliable judgments 
complement recent findings in other aesthetic domains. 
For instance, people share aesthetic knowledge within a 
culture for geometric figures (Westphal-Fitch & Fitch, 
2017) and people can form stable aesthetic judgments 
about paintings on time-scales as short as 50ms 
(Verhavert, Wagemans, & Augustin, 2018). 

One general concern about these results is that we are 
conflating reliability with validity. That is, we have 
shown that participants’ judgments are internally 
consistent, but have not shown that these are driven by the 
“objective” aesthetics of the arguments. While we 
recognize this concern, several observations ameliorate 
this problem. First, we can treat the ratings of expert 
mathematicians as most closely approaching the aesthetic 
ground truth. When we do so, we find either that both 
participant groups track these expert judgments (in Study 
2) or that only the more experienced participants track the 
expert consensus (in Study 1). These are the sort of results 
one would expect if lay participants are tapping into the 
same underlying truth as the experts. Second, we can 
exploit differences in the consistency of aesthetic 
intuitions themselves, which are known to be stronger for 
less abstract stimuli (Vessel & Rubin, 2010). 
Correspondences were indeed stronger between 
mathematical arguments and (less abstract) paintings, 
compared to (more abstract) music—even though the 
similarity ratings themselves were higher for music. 

A related concern is that participants’ similarity 
judgments may have been based on superficial rather than 
deep (e.g., aesthetic) similarities. For example, two proofs 
involved pictures of squares (Geometric and Faulhaber), 
so perhaps participants could have matched both proofs to 
paintings including more right angles. The data do not 
bear out this specific example (lay participants favored 
different paintings for these two proofs), but we could not 
possibly enumerate, much less eliminate, all such 
possibilities. That said, several findings suggest this is 
unlikely to be the main driver. First, very few of the 
participants’ debriefing comments could be interpreted as 
supporting such superficial strategies (see below for more 
discussion about participants’ reported strategies). 
Second, one would expect mathematicians’ judgments to 
be relatively less contaminated by such superficial 
similarities, yet laypersons’ judgments tended to be 
similar to the professionals’. Finally, although such 
superficial similarities are plausible for visual art, it is 
harder to generate such accounts for pieces of classical 
music, which is itself highly abstract.      

These results inform longstanding issues in the 
philosophy of explanation and mathematics. Some have 
argued that people infer that an explanation is true when it 
strikes them as elegant, beautiful, or satisfying—that is, 
aesthetically pleasing (Johnson, 2017; Lipton, 2004). 
Previous studies do suggest that people find explanations 
likely to the extent that they are satisfying (Khemlani, 

Sussman, & Oppenheimer, 2011; Lombrozo, 2007) and 
that satisfying explanations are often “truth-tracking” in 
the sense that they conform to the laws of probability 
(Johnson, Rajeev-Kumar, & Keil, 2016; Johnson, Valenti, 
& Keil, 2017; Johnston et al., 2016). However, the current 
studies are the first, to our knowledge, to directly 
demonstrate an aesthetic component to lay explanation. 
Future research can build on these results in several ways. 

First, a key question is whether these results are cross-
culturally universal. In some cases, aesthetic preferences 
do appear to be similar across cultures (e.g., Palmer et al., 
2013). However, given evidence that individuals from 
Western and East Asian cultures differ in their approach 
to logical reasoning (e.g., Peng & Nisbett, 1999), might 
people from different cultures have different aesthetic 
sensibilities about mathematical arguments? 

Second, what is the relationship between aesthetic 
preferences and the ability of children to evaluate 
mathematical arguments? Given that other forms of 
explanatory reasoning seem to arise by age 4 (Bonawitz 
& Lombrozo, 2012; Johnston et al., 2017), might aesthetic 
preferences underlie the development of these broader 
capacities? If they are early-emerging, can aesthetic 
preferences be harnessed to facilitate math education? 

Third, what cues are people relying on to form these 
aesthetic judgments? For example, beauty is strongly 
associated with pleasure (Brielmann & Pelli, 2017), and 
aesthetic experiences are often mediated by emotion more 
generally (Palmer et al., 2013). In other domains, such as 
photography, semantic content is known to be an 
important driver of aesthetic preferences (Vessel & 
Rubin, 2010). Eliciting more multi-dimensional ratings 
from participants (e.g., Blijlevens et al., 2017) would help 
to uncover the basis for the correspondences. 

One intriguing possibility is that participants were 
relying on “collative properties” (e.g., Cupchik & 
Berlyne, 1979; Marin & Leder, 2013). These are broad 
aesthetic properties about the organization of a stimulus—
such as order, complexity, and ambiguity—which 
generate affective reactions and generalize across 
different modalities, such as music and visual art (and 
perhaps mathematical arguments). Many participants 
cited such dimensions when asked to describe their 
strategies, particularly invoking complexity and clarity as 
useful dimensions that drove cross-domains judgments. 

Finally, given the parallels between laypeople and 
mathematicians, would laypeople also rely on the same 
brain regions for appreciating mathematical arguments as 
for appreciating other forms of beauty, as mathematicians 
do (Zeki et al., 2014)? Might there even be specific neural 
correspondences between particular artworks and 
arguments, as we found here for similarity ratings? 

While mathematics is important to society because it is 
useful, some have argued that it is the beauty of 
mathematics that justifies its importance as a field of 
study (Hardy, 1940). Indeed, these results suggest, the 
beauty of mathematics may be deeply human. 
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Appendix 
 

Table A1: Results of Studies 1 and 2 
 

 Schubert Bach Beethoven Shostakovich Yosemite Rockies Suffolk Andes 

Mechanical Turk Sample (All)     

Geometric 4.76 (1) 4.39 (3) 4.36 (4) 4.62 (2) 3.51 (1) 2.99 (4) 3.30 (2) 3.05 (3) 

Gauss 4.61 (3) 5.11 (1) 4.67 (2) 4.31 (4) 2.38 (2) 2.23 (3) 2.43 (1) 1.96 (4) 

Pigeonhole 4.52 (3) 4.42 (4) 4.89 (1) 4.83 (2) 2.42 (2) 2.21 (4) 2.25 (3) 2.49 (1) 

Faulhaber 4.32 (4) 4.59 (3) 5.04 (2) 5.06 (1) 2.97 (2) 2.75 (3) 3.21 (1) 2.44 (4) 

Mechanical Turk Sample (No Higher Math Background)     

Geometric 4.66 (2) 4.38 (4) 4.49 (3) 4.79 (1) 3.41 (1) 2.88 (4) 3.08 (2) 2.88 (3) 

Gauss 4.47 (3) 5.01 (1) 4.63 (2) 4.29 (4) 2.31 (1) 2.15 (3) 2.28 (2) 1.88 (4) 

Pigeonhole 4.33 (4) 4.35 (3) 4.98 (1) 4.96 (2) 2.23 (2) 1.99 (4) 2.09 (3) 2.37 (1) 

Faulhaber 4.53 (4) 4.58 (3) 5.07 (2) 5.19 (1) 2.77 (2) 2.64 (3) 3.06 (1) 2.35 (4) 

Mechanical Turk Sample (Higher Math Background)     

Geometric 5.04 (1) 4.43 (2) 4.11 (4) 4.30 (3) 3.76 (2) 3.27 (4) 3.79 (1) 3.44 (3) 

Gauss 4.91 (2) 5.32 (1) 4.71 (3) 4.32 (4) 2.55 (2) 2.40 (3) 2.77 (1) 2.13 (4) 

Pigeonhole 4.97 (1) 4.60 (3) 4.73 (2) 4.58 (4) 2.85 (1) 2.71 (3) 2.62 (4) 2.75 (2) 

Faulhaber 3.91 (4) 4.61 (3) 5.06 (1) 4.78 (2) 3.45 (2) 3.01 (3) 3.56 (1) 2.66 (4) 

Students     

Geometric 5.17 (2) 5.86 (1) 4.72 (4) 4.78 (3)     

Gauss 5.21 (2) 5.51 (1) 4.76 (4) 5.20 (3)     

Pigeonhole 4.99 (2) 4.96 (3) 5.09 (1) 4.76 (4)     

Faulhaber 4.04 (4) 4.34 (3) 6.01 (1) 5.11 (2)     

Professional Mathematicians     

Geometric 5.30 (2) 5.80 (1) 3.50 (3) 2.62 (4) 4.19 (1) 3.30 (2) 3.20 (3) 2.17 (4) 

Gauss 3.38 (4) 7.75 (1) 3.95 (3) 5.72 (2) 3.40 (2) 3.46 (1) 2.84 (3) 2.34 (4) 

Pigeonhole 6.80 (1) 5.20 (2) 4.88 (3) 4.47 (4) 2.27 (2) 2.59 (1) 2.31 (3) 2.08 (4) 

Faulhaber 5.95 (2) 6.28 (1) 3.75 (4) 5.62 (3) 4.19 (1) 3.61 (2) 2.95 (3) 2.81 (4) 
Note. Entries are the mean ratings assigned to each artwork, with consensus ranks for each argument given in parentheses. Entries 
are bolded if they are the highest ranked piece or 0.1 or fewer scale points away from the highest rank. 

 
 

577




