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Abstract 

How do chess players perceive events in a chess game, as 
these events unfold in real time? The study builds upon the 
hierarchical bias hypothesis, stating that observers 
instinctively segment activities in alignment with a 
partonomic hierarchy. The alignment effect observed in 
previous research is replicated, while chess experts 
outperformed novices. Participants watched chess game 
videos and identified event boundaries. Data was analysed 
using discrete, continuous methods, as well as an agreement 
index. The results aim to deepen our understanding of the 
cognitive processes involved in chess expertise and event 
segmentation. They highlight the hierarchical organisation of 
mental representations in strategic contexts. 

Keywords: event segmentation; agreement index; mental 
representations;  event cognition  

Introduction 
The process of perceiving and understanding our 
surroundings often involves breaking down experiences into 
distinct, meaningful units or events, a cognitive process 
known as event segmentation (Zacks, Braver, Sheridan, 
Donaldson, Snyder, Ollinger, Buckner & Raichle 2001; 
Zacks, Speer, Swallow, Braver & Reynolds 2007; Zacks, 
Tversky & Iyer, 2001). This segmentation allows us to make 
sense of the continuous flow of information we encounter in 
our daily lives, enabling us to predict future occurrences and 
adapt our behaviour accordingly (Zacks, 2020).  

Traditionally, researchers have studied event segmentation 
through tasks where participants watch films, view 
slideshows, or engage with stories either by reading or 
listening. However, these tasks aren’t just limited to visual 
or auditory media. In fact, any activity that progresses over 
time and can be broken down into meaningful segments can 
be used to study event segmentation (Zacks, 2020). During 
these tasks, participants mark the boundaries between events 
by pressing a button (Newtson, 1973). Or in other words, 
they mark where one event ends and another begins. Before 
they start, they’re usually told to identify event boundaries 
as either small, detailed segments (referred to as “fine-
grained” events) or larger, broader segments (known as 
“coarse-grained” events). 

Perception of event structure for recurring events is 
influenced by hierarchically organized schemata, known as 
event schemata (Zacks, Tversky, and Iyer, 2001). Event 
schemas guide our understanding of stories, memory for 
events, planning for future activities, and comprehension of 

our past actions. Moreover, the boundaries of coarse units 
(broad, general events) tend to align more closely with the 
boundaries of fine units (specific, detailed events) than 
would be expected by chance. This alignment effect was 
found to be mediated by the familiarity of the activity, 
indicating that the more familiar an individual is with an 
activity, the more likely they are to perceive its structure in a 
way that aligns with their existing event schemas and allows 
them to form expectations about what will happen next 
(Kurby & Zacks, 2012; Radvansky & Zacks, 2017; Zacks, 
Speer, Swallow, Braver, & Reynolds, 2007).  

When a notable change in important features of the 
situation, such as new actions, spatial location, objects, 
causes, and goals, is detected the prediction error tends to 
increase dramatically. For instance, Loucks and Pechey 
(2016) discovered that adults are more likely to identify 
changes in movie clips when these change goal-relevant 
movement features, compared to when the changes are in 
features not linked to the action’s goals. Furthermore, the 
ability to process goals, enhances observers’ predictive 
abilities (Zacks, 2020). Analogously, goal-oriented chunking 
is crucial in areas requiring high levels of expertise, such as 
chess (Chase & Simon, 1973; De Groot, 1965; Gobet & 
Simon, 1996). Chess experts, for instance, don’t just see 
individual pieces on the board. Instead, they perceive 
clusters of pieces, as meaningful units that relate to their 
strategic goals (Gobet & Simon, 1996). This ability to chunk 
information based on goals allows them to process the 
complex configurations of a chess game more efficiently, 
make superior moves and anticipate their opponents’ moves. 

Event Segmentation Theory can be considered as a useful 
framework for measuring this goal-oriented chunking, too. 
Just as adults are more adept at detecting changes in movie 
clips when these changes are related to the action’s goals 
(Loucks & Pechey, 2016), chess experts might be more 
sensitive to changes in the game that are relevant to strategic 
goals. Hence, experts compared to novices are more likely 
to detect a significant change in key aspects of the game, 
such as new unexpected moves, or shifts in strategy. 
Furthermore, the player’s prediction error - the difference 
between what they expected and what actually happened - 
should spike. This will force the player to update their 
current event model, marking an event boundary, just as 
described in previous research on event boundaries (Loucks, 
Mutschler & Meltzoff, 2016; Tauzin, 2015). Therefore, 
chess experts will identify more meaningful events in an 
event segmentation task for a game of chess.  
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Also, experts’ alignment between the fine and coarse 
segmentation should be superior because they can easily 
break down goals into subgoals. This process continues 
recursively until all subgoals are achievable by basic actions 
or a behavioural primitive (Newell & Simon, 1972). For 
example, the high-level goal of checkmate may be 
decomposed into subgoals like controlling the center, 
developing pieces, protecting the king, planning and 
executing an attack. Each goal-subgoal relationship 
manifests as a part-subpart relationship, thereby giving rise 
to what is termed as a partonomic hierarchy and results in 
higher agreement between the segmentation tasks (fine vs 
coarse; Radvansky and Zacks, 2014). 

To investigate this, we employed the segmentation 
procedure outlined by Zacks, Tversky & Iyer (2001) and 
applied it to the perception of two chess games, each 
consisting of 80 moves.  

Event Segmentation in Chess 
Participants were tasked to segment chess games into either 
the largest and most meaningful units (coarse condition) or 
smallest and most meaningful units (fine condition). This 
study investigated the hierarchical bias hypothesis (Zacks, 
Tversky & Iyer, 2001), suggesting that observers 
instinctively segment activities in alignment with a 
partonomic hierarchy. We hypothesised that the fine 
segmentation of chess experts, due to their extensive 
knowledge of event schemata and comprehension of goals 
and sub-goals in chess strategies, would align more closely 
with coarse segmentation than would be expected by 
chance. Furthermore, we anticipated that these experts 
would surpass novices in this aspect. Finally, we utilised the 
Agreement Index to evaluate its suitability for the 
segmentation task in the context of chess. 

Method 

Participants 
The initial pool of participants included 30 individuals who 
played regularly on Chess.com. Participants were recruited 
through E-Mail or directly on the platform. However, 11 
individuals were excluded from the analysis. Among these, 
five discontinued their participation before reaching the 
distraction task, while the remaining six ceased participation 
during the training phase. The final study sample consisted 
of 19 participants (ages 19–77, M = 44.00 years, SD = 
18.32; three females, 16 males) who successfully complied 
with the study instructions. The expert group consisted of 
nine individuals (ages 31–77, M = 49.44 years, SD = 17.59; 
two females, seven males). They started playing chess 
between the ages of six and 14 (M = 9.89, SD = 2.80). The 
novice group included 10 individuals (ages 19–71, M = 
39.10 years, SD = 18.430; one female, nine males). They 
started playing chess between the ages of six and 31 (M = 
15.30, SD = 8.43). Participants were categorised by two 
chess rating systems. 

Blitz rating: This rating system by Chess.com is 
applicable to players participating in games with durations 
exceeding three minutes yet falling short of 10 minutes. In 

the event of a victory, a player earns points, whereas a 
defeat leads to a deduction of points from their rating. As 
the disparity in rating between two players increases, so 
does the magnitude of points gained or lost. Conversely, a 
smaller rating difference corresponds to a lesser gain or loss 
of points. In this study, novices had Blitz ratings ranging 
from 612 to 1200 (M = 794.90, SD = 176.03), while experts 
ranged from 1800 to 2169 (M = 1986.11, SD = 96.26). 

FIDE rating: An internationally recognised chess rating 
system by the Federation Internationale des Echecs (FIDE), 
also known as the World Chess Federation, uses the Elo 
rating system to rank chess players. Six experts had FIDE 
ratings between 2001 and 2101 (M = 2032.50, SD = 42.67). 

The study began with participants giving an informed 
consent and completing the preliminary survey. Participants 
with a Blitz ranking score above 1800 were classified as 
experts (Gagarin, 2013). 

Materials 
Videotapes of Chess Games All games were presented on 
the same chessboard. Each slide was presented for three 
seconds in both training and the main study, resulting in a 
total game time of 78 seconds for training and four minutes 
for a game in the main study. During training, participants 
viewed a 26-move chess game twice. In contrast, the main 
study involved two different games, each presenting 80 
moves. 

In the first training session, the following strategic 
manoeuvres could be observed: The game initiated with a 
Queen’s Pawn Opening, which transitioned into a Queen’s 
Gambit. The gambit was accepted, leading to a series of 
exchanges. The game further progressed with a Castling 
move. Unfortunately, a blunder resulted in a Queen 
sacrifice, subsequentially leading to a checkmate. 

The first game of the main study showcased a variety of 
strategic motives. It began with a King’s Pawn Opening, 
followed by a Sicilian Defense. The game then transitioned 
into a Nyezhmetdinov-Rossolimo Attack. Subsequent 
moves included Castling and an en passant capture, leading 
to further exchanges. A blunder led to a Queen sacrifice, and 
the game concluded with a pawn promotion and the 
immediate check mate event resulting of that promotion. 

The second game featured a different set of strategies. 
The game opened with a King’s Pawn Opening, specifically 
the King’s Knight Variation. This was followed by a Ruy 
López Opening with a Berlin Defense. Both sides performed 
Castling, and the Rio Gambit was accepted. Despite a series 
of exchanges and a Queen sacrifice due to a blunder, the 
game continued without leading to a checkmate. 

The selection of specific chess moves, such as the Queen's 
Gambit and the Nyezhmetdinov-Rossolimo Attack, was 
deliberate, as these moves are commonly recognized among 
chess experts. This deliberate choice aimed to facilitate the 
effective engagement of expert participants in the 
segmentation task. The games utilised in this study were 
reconstructed based on a commentary YouTube video 
featuring Magnus Carlsen. The authors have replicated each 
move from the video using an open-source chessboard 
creator. This approach ensured fair use, as the original video 
was not shown to participants. 
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Procedure 
The experiment was conducted online and participants were 
provided with a link to access it. The entire script for the 
experiment was written in Svelte, a modern, component-
based JavaScript framework. The experiment was designed 
to be accessible across various platforms. It was compatible 
with desktop computers, tablets, and smartphones. The data 
collected during the study was anonymised. 

At the beginning the following information was collected 
from each participant: (1) their current  Chess.com Blitz 
Ranking, (2) their age, (3) their gender, (4) their proficiency 
in  English, (5) the type of  device used  to access the 
experiment (desktop, tablet, or smartphone), (6) their 
nationality, and (7) the age at which they started playing 
chess. If applicable, participants could provide FIDE rating. 

Then participants were given both general training 
instructions and specific instructions for each task. The 
segmentation task involved segmenting a chess game into 
either the largest and most meaningful units or the smallest 
and most meaningful units (akin Zacks et al. 2001a; Zacks 
et al. 2001b). Participants indicated the end of one event and 
the start of another by pressing a red button beneath the 
virtual chessboard. A change in border color from black to 
red confirmed the registration of their response. 

Once they confirmed their understanding of the 
instructions, a three-second countdown began, after which  
the training task with a chess game of 26 moves was 
displayed. Upon completion of the game, participants were 
asked to recall and name as many meaningful units as they 
could, separating them by commas. After submitting their 
responses, they proceeded to the next training video. The 
training was completed with the submission of the training 
survey, which asked participants about instruction clarity, 
response accuracy confidence, preferred segmentation task, 
and video speed. 

In the main part of the study, participants watched videos 
of two chess games. They watched each game twice - once 
for the ‘fine’ condition and once for the ‘coarse’ condition. 
In between these conditions, they did a distraction task. 

Just like in the training, participants were asked to break 
down the games into either the smallest possible units or the 
largest units that still were meaningful to them. The 
instructions before each task told them which type of 
segmentation task to do (fine or coarse) and which color of 
chess pieces to focus on. After they confirmed that they 
understood the task, a three-second countdown appeared. 
Then, they watched an 80-move chess game. When the 
game ended, participants were asked to name as many 
meaningful parts of the game as they could, separating each 
part with a comma. After participants submitted their 
responses for the first video, they moved on to the second 
video. The procedure for the second video was identical to 
the first one. The tasks (i.e., fine vs. coarse segmentation) 
were counterbalanced across participants. The order of the 
videotapes, too. 

Between the second and third games, when the type of 
task changed, participants did a distraction task. In this task, 
they were asked to come up with a random sequence of 
numbers between 0 and 9. They had 100 seconds to do this 
task, and their goal was to come up with at least 100 random 

numbers. When the time was up, participants were 
automatically taken to the instruction for the third and fourth 
games. After they finished the segmentation task for these 
games, they were asked to fill out a short exit survey. It 
mirrored the training survey questions about instruction 
clarity, response accuracy confidence, and video speed and 
in addition, participants were asked which segmentation was 
easier instead of preferred. 

The experiment typically took a participant 40 minutes. 

Results  
Participants were tasked with segmenting chess games as 
they watched them, doing so under both fine and coarse 
coding instructions. The primary objective of this study was 
to empirically test the hierarchical bias hypothesis (Zacks, 
Tversky & Iyer, 2001), which suggests that observers 
naturally segment activities in a way that aligns with a 
partonomic hierarchy. The secondary objective was to 
evaluate whether the Agreement Index is a suitable method 
of analysis for the segmentation task in the context of chess. 
For this paper, we will solely report the results of the event 
segmentation task, excluding surveys and distraction task 
outcomes. 

We will initially present the findings derived from the 
Agreement Index. Subsequently, we will proceed with the 
examination of the hierarchical bias hypothesis, employing 
both discrete and continuous analysis.  

Data preparation   
Button clicks that appeared on the same slide were deemed 
as repeats or misplacements and were therefore discarded. 
This occurred once each in the expert and novice groups. 
There was one outlier identified in the novice group, as 
assessed by boxplot in the discrete analysis. It was removed 
from all further analyses due to the participant’s lack of 
confidence in his replies and understanding of the task, as 
indicated by survey data. In the discrete analysis, both the 
observed measures and predicted by chance measures had to 
undergo a log transformation due to strongly positively 
skewed data. Furthermore, one participant’s data was 
discarded from the continuous analysis due to its 
incompatibility with the equation proposed by Zacks, 
Tversky, and Iyer (2001). It is important to note that this 
equation necessitates a minimum of two fine segmentations 
to yield results. However, this participant only provided a 
single fine segmentation for each chess board examined. 

Agreement Index 
The agreement index, a measure of how well an individual 
agrees with a separate group of observers (Sasmita & 
Swallow, 2022), varied based on the specific chess game 
video being segmented. As the results will demonstrate, it 
successfully differentiated actual segmentation from random 
actions across both coarse and fine data sets. 

In the segmentation task, both experts and novices 
exhibited significant agreement indices, albeit with distinct 
patterns. Experts demonstrated superior performance in 
coarse and in fine segmentation. Specifically, the mean 
Agreement Index for experts was 0.607, with the coarse 
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mean Agreement Index at 0.645 and the fine mean 
Agreement Index at 0.569. In contrast, novices achieved a 
mean Agreement Index of 0.506, with a coarse mean 
Agreement Index of 0.524 and a fine mean Agreement 
Index of 0.489. 

 

Table 1: Mean Agreement Indices of Experts and Novices 

Furthermore, experts' segmentation indices for both 
Boards 1 and 2 were significantly different from zero, 
indicating robust segmentation performance. Specifically, 
the average coarse Agreement Index was 0.635 for Board 1 
and 0.654 for Board 2. Experts exhibited a fine mean 
Agreement Index of 0.648 for Board 1 and 0.490 for Board 
2. Notably, novices achieved a higher fine mean Agreement 
Index of 0.529 compared to experts on Board 2. The 
observed discrepancy in the fine Agreement Index for 
experts on Board 2 is noteworthy.  

Alignment effect  
The alignment effect from Zacks, Tversky, and Iyer’s (2001) 
study was tested with a discrete analysis, which focuses on 
Overlaps (Observed Overlaps vs. Overlaps by Chance) 
representing countable and distinct values, and a continuous 
analysis, which examines the Average Distance (Actual 
vs.  Predicted by Chance) reflecting a range of possible 
values. It is hypothesised that experts will exhibit a greater 
number of Observed Overlaps of fine and coarse 
segmentation compared to novices. It is also hypothesised 
that the Average Distance between fine and coarse 
segmentations will be smaller for experts compared to 
novices. 

In the discrete analyses, we conducted a 2 (Level of 
Expertise: Experts vs. Novices) × 2 (Overlaps: Observed vs. 
Predicted by Chance) mixed-design repeated measures 
ANOVA to assess whether expertise significantly influenced 
the alignment between the coarse and fine segmentation. 

A statistically significant interaction between Overlaps 
and Level of Expertise was found (F(1, 16) = 8.176, p = 
.011, ω2 = .069). Additionally, there was a significant main 
effect for Level of Expertise, F(1, 16) = 7.432, p = .015, ω² 
= 0.159. Post hoc analysis, incorporating the Bonferroni 
correction, revealed a significant difference in segmentation 
task performance based on the Level of Expertise, (M = 
0.254, SE = 0.093, p = .015). In addition, experts 
outperformed novices significantly in observed overlaps (M 
= 0.377, SE = 0.103, p = .008), too. 

 

Figure 1: Interaction between Expertise Level and 
Overlaps in a Segmentation Task. 

In the continuous analysis, we performed another mixed-
design repeated measures ANOVA with two factors - Level 
of Expertise (Experts vs. Novices) and Average Distance 
(Actual vs. Predicted by Chance) -  to assess the impact of 
expertise on alignment effect. 

A statistically significant interaction between Average 
Distance and Level of Expertise was found (F(1, 15) = 
9.974, p = .006, ω² = 0.118). This interaction supports our 
hypothesis, demonstrating that familiarity, as reflected in the 
expertise of chess players, influences segmentation 
behaviour. Then, there was a significant main effect for 
Level of Expertise, F(1, 15) = 21.271, p < .001, ω² = 0.388 
and a significant main effect for Average Distance F(1, 15) 
= 50.399, p < .001, ω² = 0.425. 

Figure 2: Interaction between Expertise Level and 
Average Distance in a Segmentation Task. 
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The post hoc analysis, which included the Bonferroni 
correction, showed a significant difference in performance 
based on the Level of Expertise (M = -5907.15, SE = 
1280.79, p < .001). The performance of experts yielded a 
smaller Actual Average Distance in comparison to the 
Chance Average Distance observed in the performance of 
novices (M = -11007.19, SE = 1468.51, p < .001). In a 
similar manner, the Actual Average Distance was smaller 
than the Chance Average Distance in the performance of 
novices (M = -7368.88, SE = 1045.42, p < .001). Lastly, a 
significant difference was found when comparing the Actual 
Average Distance to the Chance Average Distance (M = 
-5100.05, SE = 718.40, p < .001). 

Consistently with the previous findings for alignment 
effect the boundaries of the coarse units often aligned more 
closely with the fine units of a chess game than what would 
be expected by chance. The superior performance of experts 
in the segmentation tasks, as shown by both discrete and 
continuous analyses, underscores the role of event schemata 
and hierarchical segmentation in chess. 

Discussion  
In our study, we found that chess experts, due to their 

deep understanding of goals and sub-goals in chess, aligned 
their fine segmentation more closely with coarse 
segmentation than novices. Agreement Index effectively 
captured the group segmentation patterns and differentiated 
actual segmentation from random actions across both coarse 
and fine data sets, proving its reliability for future chess 
expertise research involving segmentation tasks. 

While most chess-related studies have concentrated on 
cognitive processes like memory recall, recognition, and 
perception of significant game positions, they often 
overlook the importance of conducting experiments using 
ongoing games  (Chase & Simon, 1973, De Winter, 
Koelmans, Kokshoorn, Van Der Valk, Vos, Dodou, Eisma, 
2023). The ability to analyse and manipulate an ongoing 
game is crucial, as observing games in progress is a 
common practice among chess players preparing for 
tournaments. Our study shows that the segmentation task 
serves as a dependable method for evaluating segmentation 
behaviour in settings with limited experimental control.  

We demonstrated that although there’s no “right” way to 
perform a segmentation task, the performance isn’t arbitrary 
and a segmentation task can indeed be applied to the domain 
of chess. This was underlined by successfully replicating 
Zacks, Tversky, and Iyer’s (2001) alignment effect.  Our 
findings revealed that coarse breakpoints were typically 
closer to the nearest fine breakpoint than expected by 
chance, as shown by both discrete and continuous analyses. 
Notably, the results of experts’ segmentation indicated the 
influence of familiarity, event schemas, and successful sub-
goal creation on segmentation tasks. 

The Event Segmentation Theory can be considered to 
understand how high-level representations are used and 
updated during a game, especially when significant changes 
occur that require the player to revise their current event 
model. Nonetheless, CHREST, or Chunk Hierarchy and 
Retrieval Structures, serves already as one cognitive 

framework in the domain of chess, mimicking human 
processes of perception, learning, memory, and problem-
solving. While CHREST can theoretically incorporate high-
level representations, such as the opening from which a 
position originated and potential plans and moves in the 
position (Gobet & Simon, 1996), it currently incorporates 
minimal information of this nature (Lane & Chang, 
2017). Our discrete analysis found a statistically significant 
interaction between Overlaps and Level of Expertise, 
suggesting that the expertise influences how events are 
segmented in coarse and fine units. This result is in line with 
previous findings that highlight the impact of goals and 
schemas on event segmentation (Loucks & Pechey, 2016; 
Zacks, 2020). Future investigations into event segmentation 
in chess could concentrate on elucidating the emergence of 
these high-level conceptual processes and determining the 
stages at which they become apparent.  

Event segmentation research has traditionally been 
applied to studies featuring videos of daily activities 
(Boggia & Ristic, 2015) and visual or written narratives 
(Bailey, Kurby, Sargent & Zacks, 2017; Sasmita & Swallow, 
2022). However, not in strategic games like chess, which 
requires years of expertise development. Consequently, this 
study pioneers the exploration of chess as a new domain of 
expertise in event segmentation research, while also 
providing a first comparison between chess experts and 
novices. In doing so, we address a gap in the scientific 
literature of event segmentation, by incorporating an 
expertise-related paradigm, a need previously highlighted by 
Bläsing (2015).  

The importance of this method lies in its potential to 
provide a new, implicit measure of expertise. Traditionally, 
studies of expertise, particularly in chess, have focused on 
problem-solving tasks within the domain of expertise 
(Gobet & Charness, 2018). These tasks often involved right 
or wrong decisions, like in a problem-solving task or finding 
the best candidate move task. However, our study, which 
involved event segmentation, does not necessitate 
predetermined correct or wrong decisions.Instead, it 
provides  a new look at expert-novice differences, which 
may push further our understanding of expertise.  

The inclusion of expert moves such as the Queen's pawn 
opening, which may be immediately followed by a Queen's 
Gambit, enables experts to categorise these moves into 
single events. This raises the question of whether the 
segmentation results predominantly reflect the inherent 
expertise of the players or are influenced by the predefined 
expert moves embedded within the games. One way to 
address this limitation is to carefully consider the design of 
future studies. One viable approach could be to incorporate 
a control condition where participants are exposed to chess 
games without expert moves, thereby exposing them to 
novice-level gameplay. By comparing segmentation 
performance between conditions (with and without 
predefined expert moves), future research may assess the 
extent to which expertise versus the presence of expert 
moves drives segmentation behaviour. Furthermore, if chess 
moves were randomly selected or made by novices, any 
meta-game goals that experts rely on could be absent, 
potentially altering their event boundaries to resemble those 
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of novices. However, it's important to note that the lack of 
interaction effects between fine/coarse segmentation and 
familiarity, as shown in previous studies by Zacks, Tversky, 
and Iyer’s (2001), suggests that expertise in event 
segmentation may not necessarily be influenced by 
familiarity with the task or material. McGatlin, Newberry, 
and Bailey (2018) demonstrated that familiarising younger 
participants with scripts improved segmentation agreement, 
whereas their knowledge intervention did not lead to 
improved segmentation agreement among older adults. 
Nevertheless, research exploring the effects of conceptual 
factors on segmentation yields mixed findings, as 
highlighted by Newberry, Feller, and Bailey (2021). 

Finally, future research may investigate two conditions for 
training novices in segmentation tasks: (1) Exposing 
novices to problems directly related to segmentation, similar 
to de Groot's (1946/1965) concept of hierarchical problem-
solving in chess. Herein, he proposed that chess thinking is 
a hierarchical structure where players manage problems by 
breaking them down into smaller, more manageable 
subproblems. (2) Allowing novices to observe how experts 
segment events, followed by describing and labelling the 
segments themselves. This approach can provide novices 
with a deeper understanding of the segmentation process 
beyond simply decomposing a task, potentially leading them 
to discover the underlying relations between elements as 
highlighted by Penn, Holyoak, and Povinelli (2008). 

While both De Groot (1946/1965) and Gobet and Simon’s 
(1996) template theory emphasize pattern recognition and 
decomposition, they may underestimate the human capacity 
for abstract reasoning, generalizing across situations, and 
flexibly adapting to novel challenges – skills crucial for 
identifying relations that go beyond surface features. While 
chess indeed revolves around identifying strong moves, we 
believe that the segmentation task offers a unique 
perspective. It allows us to delve into how players perceive 
and chunk information during a game, providing insights 
into their cognitive processes beyond mere move selection. 
This method offers a novel lens to implicitly assess the 
depth of a player's understanding and expertise in chess, 
which we argue complements the traditional approaches. 

This study employed a post-game recall task for 
segmentation, which can be susceptible to memory biases. 
Participants might forget or misremember their in-game 
segmentation (memory limitations). Additionally, recalled 
units could be influenced by pre-existing chess knowledge 
(schema activation) rather than reflecting real-time 
segmentation. Novice participants, in particular, might 
fabricate units. If the focus is on memory, offline naming 
with specific recall prompts might be relevant. If the goal is 
to understand real-time thought processes, online naming 
(with careful consideration of cognitive load) might be 
preferred. Future research may also consider eye-tracking 
(De Winter et al., 2023) or verbal protocols to capture the 
segmentation processes. 

In conclusion, our study underscores the effectiveness of 
the segmentation task in assessing meaningful behaviour 
and contributes to the growing body of research. Further, we 
highlighted the importance of familiarity and the use of 
ongoing games in chess-related studies. Our findings 

highlight the segmentation task’s robustness in less 
controlled environments like the one of an online setting.  
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