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ABSTRACT 

The quantitative multiplexing capacity of isobaric Tandem Mass Tags (TMT) has increased the throughput of 

affinity purification mass spectrometry (AP-MS) to characterize protein interaction networks of 

immunoprecipitated bait proteins. However, variable bait levels between replicates can convolute interactor 

identification. We compared the Student's t-test and Pearson's R correlation as methods to generate t-statistics and 

assessed the significance of interactors following TMT-AP-MS. Using a simple linear model of protein recovery 

in immunoprecipitates to simulate reporter ion ratio distributions, we found that correlation-derived t-statistics 

protect against bait variance while robustly controlling Type I errors (false positives). We experimentally 

determined the performance of these two approaches for determining t-statistics under two experimental 

conditions: irreversible prey association to the Hsp40 mutant DNAJB8H31Q followed by stringent washing, and 

reversible association to 14-3-3z with gentle washing. Correlation-derived t-statistics performed at least as well 

as Student’s t-statistics for each sample, and with substantial improvement in performance for experiments with 

high bait level variance. Deliberately varying bait levels over a large range fails to improve selectivity but does 

increase robustness between runs. The use of correlation-derived t-statistics should improve identification of 

interactors using TMT-AP-MS. Data are available via ProteomeXchange with identifier PXD016613. 

 

Key Words: isobaric tags; tandem mass tags; quantitative proteomics; protein-protein interactions; affinity 

purification – mass spectrometry; DNAJB8; 14-3-3z  
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INTRODUCTION 

Protein-protein interactions (PPIs) allow the assembly of protein complexes, mediate signaling pathways, and 

define the client distribution of enzymes involved in post-translational modifications1–5. Identifying and 

characterizing PPIs provides valuable molecular insights into cell function and physiology. However, the large 

dynamic range of PPI strength and abundance challenges the discrimination of bona fide from artefactual 

interactions. This challenge is central to the interpretation of most PPI datasets, including those acquired by the 

most prevalent techniques: yeast two-hybrid 6–8, sandwich assays such as LUMIER39,10, microarrays11, chemical 

crosslinking12,13, and Affinity Purification coupled with Mass Spectrometry (AP-MS)14–19. In the latter approach, 

a "bait" protein is isolated, and its co-isolating "prey" interactors are identified by MS. Because many proteins 

associate with beads independent of bait, this approach is prone to false positives (Type I errors). To decrease 

false positives, more stringent wash buffers can be used, but this in turn increases false negatives (Type II errors). 

Alternatively, false positives can be minimized by carefully filtering out potential prey that are known to strongly 

associate with beads, or by comparison to controls obtained under similar conditions20,21. Large datasets 

comprised of dozens to thousands of AP-MS runs reveal the identities and intensities of non-specific binding 

proteins associated with an individual AP-MS platform, which can then be compared to each individual AP-MS 

experiment21–23. This was most dramatically demonstrated in the BioPlex, which determined over 70,000 

interactions from over 5,000 proteins (and counting) using the Comparative Proteomics Analysis (ComPASS) 

methodology24,25. For smaller datasets, however, while aggressive statistical filters ensure that only high-quality 

interactors are reported, they can also lead to few identified prey 26,27. 

TMT-AP-MS allows direct quantitative comparisons of prey recovery across multiple replicates in a single run, 

simplifying evaluation of whether potential interactors are preferentially recovered with the bait22,28. However, 

variation in bait levels between conditions, particularly when using transient transfection, leads to variability in 

recovered prey levels. For experiments comparing interaction networks for a single bait between cellular 

conditions, this variability has been controlled by normalizing prey levels to bait levels28,29; this approach is not 

available when differentiating real vs. artefactual interactors, as minimal bait levels are present under mock 



 

 4 

transfection conditions. Several studies have been successful at identifying protein complex composition by 

global correlation analysis following native protein chromatography. In this approach, proteins are 

chromatographically separated under conditions that preserve native complexes, with the expectation that proteins 

that co-fractionate are likely to interact. A similar approach is to perform a  large number of immunoprecipitations, 

and then to determine which proteins co-IP reproducibly; in this case correlations are made between each 

prey:prey combination rather than solely between prey and bait. 30–33. This approach relies upon the tendency of 

interacting proteins to maintain stoichiometry. However, both of these approaches require large scale experiments 

and probe global interaction maps, while researchers frequently want to identify interactors of a specific bait 

protein with the fewest number of replicates. We thus consider whether using a correlation-based analysis can 

assist in identifying prey following individual TMT-AP-MS runs for a single bait. Herein, we report that 

evaluating potential interactors on the basis of their Pearson’s correlation with bait levels decreases Type II errors 

without increasing Type I errors. 

 

EXPERIMENTAL 

Reagents. Buffer components and other biochemical reagents were all purchased from Fisher, VWR, or 

Millipore Sigma. Nanopure water and sterilized consumables were used for all biochemical experiments. 

Simulations. Calculations were performed in Mathematica (See Supporting Methods). TMT runs were 

simulated by populating reporter ion ratios for three types of protein: bait, non-specific interactors (ni), and 

specific interactors (prey). Background signals for each protein, bait levels in an individual replicate, the ratio of 

each prey to the bait, and replicate-level error for all measurements were drawn from truncated normal 

distributions. For each parameter set, 100 TMT 6-plex samples were populated with 3 channels including “bait” 

and 3 channels serving as “mock”s, with no bait expressed. Area under the curve was calculated by integration of 

a 100-point parametrization of the Receiver Operating Characteristic curve, with prey taken as true-positives and 

non-specific interactors taken as false positives. Mathematica code may be found at 

https://github.com/josephgenereux/ROC-Simulations-in-Mei-et-al. 
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Molecular Cloning. DNAJB8 was amplified from pcDNA5/FRT/TO V5 DNAJB834 and inserted into the 

pFLAG.CMV2 vector by PIPE cloning35. The H31Q mutation was introduced into DNAJB8 using site-directed 

mutagenesis. 14-3-3ζ was amplified from cDNA derived from HepG2 (ATCC) using TRIzol (Fisher), and 

inserted into the pFLAG.CMV2 vector by PIPE cloning. eGFP.pDEST30 has been reported36. All constructs were 

subjected to analytical digest and sequenced (Retrogen) to confirm identity. Primers were purchased from IDT, 

and all cloning enzymes purchased from New England Biolabs. Primer sequences are available in Table S1. 

Human Tissue Culture. HEK293T cells (ATCC) were cultured in DMEM (Corning) supplemented with 10% 

fetal bovine serum (FBS; Seradigm), 2 mM L-Glutamine (Corning), and penicillin (100 IU/mL)-streptomycin 

(100 µg/mL; Corning), and used within 30 passages. Cells were checked monthly for mycoplasma contamination 

by PCR assay. Plasmid DNA was introduced into cells by the method of calcium phosphate transfection. 

Transfection efficiency >80% was confirmed in all experiments by GFP positive control. 

Immunoprecipitation. Cells were harvested from confluent 10 cm dishes at 36 to 48 h post-transfection by 

scraping in TBS buffer with 1 mM EDTA. High stringency lysis was performed in RIPA buffer (150 mM NaCl, 

50 mM Tris pH 7.5, 1% Triton X100, 0.5% sodium deoxycholate, 0.1 % SDS). Low stringency lysis and washes 

was performed with 0.1% Triton X-100 in TBS (10 mM Tris pH 7.5, 150 mM NaCl). For conditions involving 

dithiobis succinimidyl propionate (DSP) crosslinking, cells were incubated in 1 mM DSP/1%DMSO/PBS for 30 

min. with rotating at ambient temperature, and then quenched by addition of Tris pH 8.0 (to 90 mM) and rotating 

for 15 min. at ambient temperature. Cells were lysed for 30 min on ice in lysis buffer supplemented with fresh 

protease inhibitors (Roche). Lysate was separated from cell debris centrifugation at 21,100 x g for 15 min at 4°C. 

Protein was quantified by Bradford assay (Bio-rad). Lysates were pre-cleared with 15 uL sepharose-4B beads 

(Millipore Sigma) for 30 min at 4°C, then centrifuged at 1,500 × g for 1 min to pellet beads, denatured by boiling 

for 10 min at 100 °C in 20% SDS, followed by immunoprecipitation (at 0.1% SDS) with 15 µL M2 anti-FLAG 

Magnetic Beads (Millipore Sigma) and overnight rotation at 4 °C. The denaturation step was excluded for low-

stringency immunopurifications. Immunodepletion was validated by immunoblot. Beads were washed the next 

day four times with lysis buffer, 10 min each wash rotating at ambient temperature. Bound proteins were eluted 



 

 6 

from the beads by boiling for 5 min at 100°C in 30 uL of Laemmli concentrate (120 mM Tris pH 6.8, 60% 

glycerol, 12% SDS, brilliant phenol blue to color). About 17% of eluates were reserved for silver stain analysis, 

while the remainder was prepared for mass spectrometry.   

Silver Stain. Eluates were boiled for 5 min at 100°C with 0.17 M DTT and separated by SDS-PAGE. Gels were 

fixed overnight in 30% ethanol/10% acetic acid or for a few hours with 50% methanol/12% acetic acid. Gels were 

washed in 35% ethanol three times for 20 min each, sensitized for 2 min (0.02% Na2S2O3 in H2O), washed three 

times for 1 min each in H2O, and stained for 30 min to overnight in Ag staining solution (0.2% AgNO3, 0.076% 

formalin). After two 5 min rinses in H2O, gels were developed with 6% NaCO3/0.05% formalin/0.0004% 

Na2S2O3. Development was stopped with 5% acetic acid. Gels were imaged on a white-light transilluminator 

(UVP). 

TMT-MuDPIT. Immunoprecipitates were prepared for TMT-AP-MS according to standard protocols28,37. 

Labeled and pooled digests were fractionated by SCX in line with a reversed-phase analytical column to enable 

two-dimensional separation prior to electrospray ionization. Peptides were analyzed using an LTQ Orbitrap Velos 

Pro in data-dependent mode. The top ten peaks from each full precursor scan were fragmented by HCD to acquire 

fragmentation spectra. Peptide-spectra matches were evaluated by ProLuCID38,39 using a Uniprot proteome 

database supplemented with common contaminants and a full decoy set, and filtered (DTA Select version 

2.0.2740) to 1% false discovery rate for peptide identifications. TMT reporter ion ratios were quantified in 

Census41, and only unique peptides were considered. Full conditions and parameters are provided in Supporting 

Experimental Methods. The mass spectrometry proteomics data have been deposited to the ProteomeXchange 

Consortium via the PRIDE42 partner repository with the dataset identifier PXD016613 and 10.6019/PXD016613. 

Parallel Reaction Monitoring. Human DNAJB8 peptides appropriate for PRM (not including H31) were chosen 

using the Picky online interface43,44 (Table S2). Lysates were prepared for PRM according to standard 

protocols28,37. Digests (20 µg) were injected onto a homemade C18 trapping column for desalting and then 

separated on a reversed-phase analytical column prior to electrospray ionization. Peptides were analyzed 

according to a scheduled isolation method using an LTQ Orbitrap Velos Pro. Chromatograms were integrated in 
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Xcalibur. An internal reference peptide45 (VFFAEDVGSNK) was spiked into each sample and used for 

normalization. Full conditions and parameters are provided in Supporting Experimental Methods. 

Statistical Methods. Ordinary t-statistics for each protein were determined from  where x̄ and 

ȳ are the sample means for TMT reporter ion intensities, sx and sy are the respective sample standard deviations, 

and n is the number of measurements. p-values were then inferred based on the two-tailed Student’s t-distribution. 

Raw TMT intensities ratios were analyzed with the LIMMA package in R to generate moderated t-statistics and 

p-values46,47. This data package transforms TMT reporter ion intensities to a logarithmic scale due to the 

assumption that fold changes are constant between conditions48, and then moderates the standard errors for each 

protein against a global estimated standard error. This moderated standard error is then used to generate a t-

statistic and p-values in the standard manner. 

Because the Pearson's coefficient of non-correlated data (the null hypothesis) is normally distributed49, a simple 

t-statistic can be directly calculated from: (for derivation see ref 50), where n – 2 is the degrees of 

freedom and R is the correlation coefficient, . This t-statistic is equivalent to the ratio 

of the measured slope from the linear fit divided by its standard error. p-values are then inferred by comparing 

the t-statistic to the two-tailed Student’s t-distribution with n – 2 degrees of freedom. 

q-values (qBH) were determined from p-values using the Benjamini-Hochberg methodology, , where 

k is the rank for each protein, arranged as increasing p-value, and N is the total number of proteins examined 

(representing the number of hypotheses)51. These q-values are then adjusted to preserve monotonicity by replacing 

each qi with min{qj|j>i}, a transformation that has been shown to offer greater power without sacrificing false 

discovery rate control52. q-values were originally developed to allow construction of a set {k | qk < Q} such that 

the False Discovery Rate of {k} is below Q. However, individual q-values still provide a measure of the local 

false discovery rate even in the absence of a set value of Q 53. 

t = (x̄� ȳ)
r

n

s2x + s2y

<latexit sha1_base64="449ySARSNAy8zkm+YNgNP9MYI1Q="></latexit>

t = R

r
n� 2

1�R2
<latexit sha1_base64="4orr/sTzXPec6OzzbwdccZ9mUGA=">AAACCHicbVDLSsNAFJ34rPVVdenCwSK4sSS1+FgIRTcua7FVaGOZTCd26GQSZ26EErJ046+4caGIWz/BnX/jtA3i68CFwzn3cu89XiS4Btv+sCYmp6ZnZnNz+fmFxaXlwspqU4exoqxBQxGqS49oJrhkDeAg2GWkGAk8wS68/snQv7hlSvNQnsMgYm5AriX3OSVgpE5hIw/4CNdxW98oSNq+IjSRO+U0cXbqV+U07RSKdskeAf8lTkaKKEOtU3hvd0MaB0wCFUTrlmNH4CZEAaeCpfl2rFlEaJ9cs5ahkgRMu8nokRRvGaWL/VCZkoBH6veJhARaDwLPdAYEevq3NxT/81ox+AduwmUUA5N0vMiPBYYQD1PBXa4YBTEwhFDFza2Y9ogJA0x2+VEIh0Psfb38lzTLJWe3VDmrFKvHWRw5tI420TZy0D6qolNUQw1E0R16QE/o2bq3Hq0X63XcOmFlM2voB6y3T5iXmJk=</latexit>

r =

Pn
i=1(xi � x̄)(yi � ȳ)pPn

i=1(xi � x̄)2
pPn

i=1(yi � ȳ)2

<latexit sha1_base64="4W189TG9vszRC7POt+NcgTm+eZ8="></latexit>

qk = pk
N

k
<latexit sha1_base64="nRUAkJ+i0qEIh44buVoHY0b007E=">AAACBHicbZBNS8MwGMdTX2d9q3rcJTgET6PV4ctBGHrxJBPcC2ylpFm6haVpTVJhlB68+FW8eFDEqx/Cm9/GtBuizj+E/Pg/z0Py/P2YUals+9OYm19YXFourZira+sbm9bWdktGicCkiSMWiY6PJGGUk6aiipFOLAgKfUba/ugir7fviJA04jdqHBM3RANOA4qR0pZnlc1bLx1l8AzGxd0LBMLpVabZ9KyKXbULwVlwplABUzU866PXj3ASEq4wQ1J2HTtWboqEopiRzOwlksQIj9CAdDVyFBLppsUSGdzTTh8GkdCHK1i4PydSFEo5Dn3dGSI1lH9ruflfrZuo4MRNKY8TRTiePBQkDKoI5onAPhUEKzbWgLCg+q8QD5GOQencJiGc5jr6XnkWWgdV57Bau65V6ufTOEqgDHbBPnDAMaiDS9AATYDBPXgEz+DFeDCejFfjbdI6Z0xndsAvGe9fuJqXqA==</latexit>
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Box and whisker plots are presented with lines marking median values, X marking average values, boxes from 

the first to third quartiles, whiskers extending to minimum and maximum values (excluding outliers), and outliers 

defined at points greater than 1.5-fold the interquartile range beyond the first and third quartiles. These outliers 

are shown explicitly. Coefficients of Variation are calculated as the standard deviation divided by the mean. 

 

RESULTS AND DISCUSSION 

We constructed a simple model (See Supporting Methods) for the recovery of prey proteins (defined as 

proteins whose specific recovery is linearly dependent on the bait) and non-interacting proteins (those whose 

recovery is independent of the bait). Simulations indicate that both Pearson’s and Student’s t-statistics perform 

well when bait level variation is low (Figure 1). However, as bait level variance between replicates increases, 

Student’s derived t-statistics are less able to distinguish prey from non-specific interactors, as compared to 

Pearson’s correlation-derived t-statistics. This finding was robust against a wide range of parameters sets 

(Figure S1). Hence, we considered that perhaps Pearson-derived t-statistics would enable better discrimination 

of true and false interactors from TMT-AP-MS data. 
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Figure 1. Box and whisker plots of interactor identification accuracy, as determined using t-statistics derived from 

either Student’s t test or Pearson’s correlation, as indicated. Areas Under the Curve (AUCs) for Receiver 

Operating Characteristic (ROC) Curves, which reflect interactor accuracy, were generated from simulations 

(100 replicates) of 500 non-specific (non-interactor) and 500 specific (prey) proteins recovered from bait 

immunoprecipitation under conditions of bait level variation. For each simulation, we generate a ROC curve. This 

curve compares sensitivity (true positive rate) to 1 – specificity (false positive rate), based on assignment of non-

interactors and prey before the simulation54. The area under this curve represents the accuracy with which non-

specific and specific interactors are distinguished. Areas are averaged across the 100 replicate simulations. The 

abscissa represents the standard deviation of the distribution from which individual bait levels are drawn. Other 

parameters are provided in Table S3. At highly reproducible bait recovery levels (low standard deviation), the 
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bait correlation approach (green) slightly underperforms a traditional t-statistic (orange), while as the variability 

of bait recovery increases, t-statistics derived from Pearson’s correlations outperform Student’s t-statistics. 

To evaluate this hypothesis, we initially designed a TMT-AP-MS experiment that minimizes non-specific 

interactors while providing a large number of true interactors. Hsp40 co-chaperones are responsible for recruiting 

about a third of the proteome to the Hsp70 chaperoning pathway55. These protein clients are then handed off from 

Hsp40 to Hsp70 to promote folding or degradation. Mutation of the Hsp70-binding motif of Hsp40, however, 

inhibits client release56. We constructed FlagDNAJB8H31Q, where the H31Q mutation blocks association with 

Hsp7057. We further employed the cell permeable crosslinker DSP to immortalize interactions between prey and 

FlagDNAJB8H31Q prior to lysis and immunopurification58. Stringent washing with the high-detergent buffer RIPA 

was employed to minimize non-specific interactions with the beads. To evaluate the fidelity of our bait recovery, 

elution, digestion, and labeling protocol, we transfected three concentrations of FlagDNAJB8H31Q DNA into 

HEK293T cells, and compared FlagDNAJB8H31Q TMT bait reporter ion ratios against the amount of 

FlagDNAJB8H31Q in the lysates as measured by Parallel Reaction Monitoring (PRM). Both measures provide 

similar ratios. The two lowest levels of FlagDNAJB8H31Q indicate similar recovery, while recovery decreases for 

the highest level of transfected FlagDNAJB8H31Q (Figure S2a-c). 
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Figure 2. Comparison of p-values obtained through Student’s t vs. Pearson’s correlation analysis. (a) Schematic 

of TMT-AP-MS to characterize DNAJB8H31Q interactors. Cells were crosslinked in 1 mM DSP for 30 min. and 

quenched with Tris buffer prior to lysis. (b-d) Volcano plots for DNAJB8H31Q interactome replicates collected as 

described in panel a, with unadjusted p-values determined from unpaired, two-way moderated Student’s t (top) 
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and Pearson’s correlation (bottom). The large point indicates the bait, using the p-value determined from Student’s 

t analysis. (e) Comparison of identified prey (FDR < 0.01) between replicates for the two analysis methods, with 

FDR determined from the method of Benjamini and Hochberg51. 

We generated three replicate six-plex sets as follows. Nine plates each of HEK293T cells were transfected with 

either bait (FlagDNAJB8H31Q) or mock (GFP) (Figure 2a). After DSP crosslinking, lysing and 

immunopurification, the eluates were reduced, alkylated, digested, and TMT-labeled. TMT-labeled peptides were 

pooled in six-plex to yield three replicates that were then analyzed by shotgun proteomics (Figure 2b-d, 

Figure S2d, and Table S4). Note that here, "replicate" refers to a single run that includes six independent 

"samples". Student’s t-test, followed by Benjamini-Hochberg analysis51 to determine q-values (qBH) and false 

discovery rates (FDR), was applied to determine likely DNAJB8H31Q interactors. When the number of samples is 

low, ordinary t-tests suffer from poor estimation of variance. This estimate is improved by moderating the 

variance of each individual protein's integrated TMT ion intensity with the global variance46,59. Consistent with 

prior reports59, we find that moderation slightly decreases the p-value for most proteins, while sharply increasing 

the p-value for proteins featuring anomalously low variance (Figure S3a). The first two replicates yield several 

dozen significant interactors of DNAJB8H31Q (using a threshold of FDR < 1%), and the second replicate captures 

60% (33 out of 55) of the interactors identified in the first replicate (Figure 2e). In the third replicate, however, 

no significant interactors are identified. This is due to higher bait level variance; the coefficient of variation of 

the bait in this replicate is 60% as opposed to <15% for the first two replicates. Even the DNAJB8H31Q bait is not 

significantly different between the mock and bait transfection conditions (Figure 2d). Rather, in each replicate 

the p-value for the bait itself (large points in Figure 2b-d) defines the approximate lower limit for what p-values 

are calculated for the various prey. The cause of this variance could be due to any number of factors: variance in 

efficiencies of transfection, lysis, immunoprecipitation, elution, and digestion. When we use Pearson’s correlation 

to derive t-statistics, we find little change in p-values for Replicates #1 and #2, where bait variability is low 

(Figure 2b,c and Figure S3b). FlagDNAJB8H31Q interactors in Replicate #3, however, have far lower p-values 

when derived from Pearson's correlation that from a Student’s t-test (Figure 2d and Figure S3b). The qBH values 
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for the high variability sample are similarly decreased when t-statistics are generated from using Pearson’s 

correlation (Figure S3c). Now, 92% (34 out of 37) of prey shared between Replicates #1 and #2 appear in the set 

of Replicate #3 prey with FDR < 1% (Figure 2e). There is little change in the overlap between Replicates #1 and 

#2. Of the 33 proteins that fall below the 1% threshold for both Replicates #1 and #2 using the Student’s t-statistic, 

32 fall below the threshold for both replicates when using the Pearson’s correlation derived t-statistic. This 

demonstrates that using Pearson's correlation to determine t-statistics from TMT-AP-MS data can account for 

bait level variation, as predicted by our simulations (Figure 1).  

 

 

Figure 3. Comparison of p-values obtained through Pearson’s correlation analysis from experiments analyzing 

three bait vs. three mock conditions, or intentional bait dosing for DNAJB8H31Q AP-MS. (a) Transfection 

schematic for the dosed bait approach (upper), and comparison of unadjusted p-values obtained from either the 

combined bait vs. mock experiments (n = 3) and the dosed bait approach (n = 3). (b) Comparison of identified 

prey (FDR < 0.01) between replicates. (c) Histogram of the fraction of identified prey that was found in the given 

number of replicates. 

We hypothesized that deliberately varying the bait level and then determining significance by employing 

Pearson-derived t-statistics might further improve interactor identification. Although this approach loses the 

ability to determine "fold change" between mock and bait expression conditions, this fold change reflects non-
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specific interactions of a potential prey with beads as much as it reflects specific interactions with bait, and hence 

is not inherently useful for determining meaningful interactions. To test our hypothesis, we transfected DNA 

encoding FlagDNAJB8H31Q over a range of concentrations (0 µg, 2 µg, 4 µg, 6 µg, 8 µg, 10 µg DNA per 10 cm 

dish) into HEK293T cells, and quantified interactors by TMT-AP-MS for three replicates (Figure 3a and Figure 

S4). For each replicate and at the highest DNA concentration, the measured amount of FlagDNAJB8H31Q by TMT 

reporter ion ratios decreases as compared to the amount of FlagDNAJB8H31Q protein at lower DNA concentrations, 

suggesting that the cell does not well handle this high amount of FlagDNAJB8H31Q. Surprisingly, this dosing 

strategy yields similar but not superior results to the more traditional bait vs. mock approach (Figure 3a,b). 

Nevertheless, a larger fraction of prey was identified as significant in each run for the dosing approach as opposed 

to the bait vs. mock approach (Figure 3c), indicating that dosing might be valuable when robustness across data 

sets is key. 

 

Figure 4. Average (mean) interactor-to-bait TMT reporter ion intensity ratios for all identified interactors 

(FDR < 0.01) from bait dosing experiments (as in Figure 3a), normalized to the channel with the highest levels 

of DNAJB8H31Q as determined from TMT intensities. The abscissa provides the Bait TMT Intensity for each 

channel, normalized within replicates to the TMT channel with the highest DNAJB8H31Q intensity. Averages are 

performed across all interactors, and then across the three replicates. Error bars represent standard deviation across 

all prey (#1: n = 87; #2: n = 154; #3: n = 184). 
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 In our simulated data (Figure 1), accuracy of interactor assignment using Pearson-derived t-statistics 

increased with higher bait variation, but we did not observe any such improvement in practice, perhaps due to a 

loss of the assumed linearity between recovered prey and bait levels. Within each replicate, we normalized the 

interactor:bait ratio for each recovered interactor to the ratio with the highest levels of DNAJB8H31Q by TMT 

intensity. If an interactor varies linearly with bait levels over this concentration range, then we would expect this 

ratio to remain constant. Instead, we find that the mean interactor:bait ratio decreases with increasing bait levels, 

at least for the lower levels of bait (Figure 4). This non-linearity is severe enough to suppress bait-interactor 

correlation, and explains why deliberately dosing bait over a wide range of levels does not improve interactor t-

statistics. In molecular terms, it is likely that at higher levels of bait expression, the bait begins to saturate 

endogenous interactors, thus decreasing the interactor:bait ratio. 

 

Figure 5. SPROX-derived DGfolding for the DNAJB8H31Q-interacting proteome. (a) Mean DGfolding for likely 

DNAJB8H31Q -interacting prey compared to the rest of the identified proteome in immunoprecipitates. Likely prey 

are those with a qBH < 0.01. b Mean DGfolding for likely (qBH > 0.01) DNAJB8H31Q -interacting prey as compared 

to all other proteins with DGfolding identified by SPROX. Data were assessed by two-tailed Student’s t-test, and 

error bars represent standard deviations. 

A lack of a validated DNAJB8 interactor data set makes it challenging to judge the accuracy of our discovered 

interactors. However, as an Hsp40 chaperone, DNAJB8 should associate with a relatively destabilized proteome. 
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To evaluate that possibility, we compared our results to a recently published data set from Walker et al. that 

directly measured proteome-wide DGfolding by Stability of Proteins by Rate of Oxidation (SPROX)60. In SPROX, 

H2O2 is added to cell lysate, and the relative oxidation of methionines to the sulfoxide is determined by 

quantitative shotgun proteomics61. Methionine oxidation of a peptide reveals the extent to which that peptide is 

solvent exposed. If the dependence of methionine oxidation on chaotrope concentration follows a 2-state 

transition, then DGfolding can be inferred. We divided the identified proteins from DNAJB8H31Q 

immunoprecipitates into likely interactors (qBH < 0.01; 476 proteins) and less reliable interactors (qBH > 0.01; 159 

proteins) on the basis of their Benjamini-Hochberg q-values. Out of these, 163 and 46 proteins respectively had 

stabilities reported in Walker et al. The likely DNAJB8H31Q interactors are significantly destabilized compared to 

the less reliable DNAJB8 H31Q interactors (Figure 5a). The converse holds as well; the DGfolding for peptides found 

in our DNAJB8 interactors is significantly less negative than for the peptides not found in our interactors 

(Figure 5b). Hence, the interactors that we observe co-immunoprecipitating with DNAJB8H31Q represent a more 

destabilized proteome, consistent with DNAJB8H31Q’s functional role as a chaperone for misfolded protein. 



 

 17 

 

Figure 6. Comparison of Student’s and Pearson’s-derived t-statistics for differentiating true and false positive 

interactors of 14-3-3z from TMT-AP-MS. a Areas under the Curve (AUCs) for Receiver Operating Characteristic 

Curves for 14-3-3z interactors identified by Student’s (orange) and Pearson’s-derived (green) t-statistics. Four 

replicates are show for bait vs. mock experiments (as in Figure 2a) and bait dosing experiments (as in Figure 3a). 

Higher AUCs indicate higher accuracy at distinguishing true (from BioGrid62) and false (from CRAPome21) 

interactors. b Histogram of the fraction of identified prey that was found in the given number of replicates. c Box 

and whisker plots of interactor identification accuracy, as determined using t-statistics derived from either 

Student’s t test or Pearson’s correlation, as indicated. Areas Under the Curve (AUCs) for Receiver Operating 

Characteristic Curves, which reflect interactor accuracy, were generated from simulations (100 replicates) of 500 

non-specific (non-interactor) and 500 specific (prey) proteins recovered from bait immunoprecipitation under 

conditions of bait level variation. The abscissa represents the standard deviation of the distribution from which 
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individual bait levels are drawn. Parameters are drawn from the new data sets generated in this work, as described 

in Supporting Methods and Table S6. 

 We considered whether less stringent AP-MS conditions, wherein a substantial number of identified 

proteins will be non-specific interactors, would affect the performance of bait-prey correlation in identifying 

specific prey. Towards this end, we chose a bait protein that reversibly binds its clients, 14-3-3z63. To increase 

the number of potential Type I errors, we did not crosslink and only washed with a gentle, low-detergent wash 

buffer. Twelve plates each of HEK293T cells were transfected with either Flag14-3-3z or mock (GFP) and 

immunoprecipitated with anti-Flag beads. Eluates were reduced, alkylated, digested, and peptides TMT-labeled. 

These peptides were pooled to generate four replicates that each contained 3 samples with bait and 3 mock, and 

each sample was analyzed by MuDPIT LC-MS/MS. Fewer interactors in general are observed in each individual 

replicate, as compared to the FlagDNAJB8H31Q pulldowns (Figure S5a-e and Table S5). There is no global change 

in interactor p-values between the Pearson and Student approaches, nor is there a change in the number of proteins 

passing the FDR < 0.01 threshold (Figure S6a). Unlike DNAJB8, there are many 14-3-3z interaction sets in the 

literature64,65. We generated a true positive interactor list from BioGrid, requiring that proteins be recovered with 

14-3-3z in at least three different AP-MS studies or at least two AP-IB studies (58 total proteins, or which 19 

were found in at least two of our runs)22,62. To generate the true negative interactor list, we considered proteins 

that were reported as significant Dynabead contaminants from total human cell lysate in the Contaminant 

Repository from Affinity Proteomics (CRAPome)21, using a filter of appearing in at least 8/24 reported control 

runs and removing known 14-3-3z interactors (983 total proteins, of which 55 are observed in at least 2 of our 

runs). Most proteins without filtering appear in three or fewer runs, with a steep drop as the threshold is increased. 

We chose 8/24 as the threshold based on the inflection point in the cumulative distribution function relating 

proteins observed vs. number of CRAPome runs. Using these sets, we generated Receiver Operator Characteristic 

Curves for each replicate AP-MS experiment, using either Student’s t-statistics, or incorporating bait correlation 

by using Pearson’s-derived t-statistics (Figure S6b). While bait correlation had no effect on the Area Under the 



 

 19 

Curve for two replicates, it substantially improved differentiation between false and true positives for the other 

two replicates (Figure 6a). Not surprisingly, given our findings with DNAJB8H31Q (Figure 3), dosing in variable 

levels of bait did not improve prey identification as opposed to the bait vs. mock experimental setup. We further 

considered combining all 14-3-3z replicates to identify consistent high-quality interactors (Bonferonni-adjusted 

p-value < 0.001; 34 proteins) and unlikely interactors (unadjusted p-value > 0.7; 42 proteins). Here, we are using 

Bonferonni adjustment because it is a highly conservative metric. With this set of interactors/non-interactors, 

Receiver Operating Curves show larger areas under the curve when evaluated using Pearson’s correlation-derived 

t-statistics as opposed to Student’s t-statistics (Figure S6c,d). Finally, as with DNAJB8H31Q, the dosing approach 

yields more reproducible high-confidence interactors between replicates than the more traditional bait vs. mock 

approach (Figure 6b). 

The large number of non-interactors in the 14-3-3z TMT-AP-MS experiments allow us to estimate the mean 

and standard deviation of non-interactor TMT reporter ion ratios. Nonspecific levels of bait TMT reporter ion 

ratios in non-transfected mock samples, and both levels and distributions of prey in mock samples without bait 

transfection, were similarly determined from the DNAJB8H31Q TMT-AP-MS experimental data (see Supporting 

Methods and Table S4). We used this experimental data to test the normality assumption underlying the data in 

Figure 1, finding that non-interactor mean intensities and prey-bait ratios are both close to a truncated normal 

distribution (Figures S7a,b). Interestingly the mean intensities of DNAJB8H31Q interactors in the bait-free 

conditions deviate sharply below what would be expected from a truncated normal distribution (Figures S7c). 

High levels of protein in one TMT channel can allow quantification of that protein in other channels, even if the 

levels in those channels would not normally be adequate for data dependent isolation or quantification66. In this 

case, high levels of interactors in the bait pull-downs could be allowing quantification of negligible levels in the 

untransfected samples. Using these measured parameters, we revisited the simulations of Figure 1 to determine 

whether under realistic parameters we still observe improvement in prey identification by using bait correlation. 

The use of Pearson’s correlation-derived t-statistics continues to outperform Student’s t-statistics over a wide 

range of bait level variances (Figure 6c). 
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CONCLUSIONS 

To some extent, all proteins that share a compartment interact inside the crowded environment of the cell. After 

membrane disruption, even proteins from separate compartments that would never encounter each other within 

the cell can display high affinities in the lysate. Distinguishing meaningful interactions continues to be 

challenging. The highest-confidence sets include stringent controls, multimodal characterization, and independent 

validation. Practically, however, an individual researcher seeking high-value interactor targets for a single bait 

needs methodology that is simple and reliable. The development of the CRAPome suite enabled reasonable 

confidences to be inferred for individual label-free experiments by spectral counting and comparison to a mock 

experiment database, but this approach does not mitigate the low sensitivity of spectral counting. Isobaric 

quantification provides an accessible approach to quantitatively compare several replicates in a single run. We 

have demonstrated that variation in transfected bait levels poses a challenge to reliable interactor identification 

during TMT-AP-MS. Incorporating bait correlation by deriving t-statistics from Pearson’s correlation improves 

the sensitivity and specificity of prey identification. This approach allows small-scale TMT-AP-MS experiments 

to be “rescued” under conditions of bait variation. 

 

Supporting Information is available free of charge on the ACS Publications website at http://pubs.acs.org: 

•  Detailed experimental methods, code for simulations, Tables S1-3, and S6 and Figures S1-7 (pdf) 

• Tables S4 and S5, TMT reporter ion intensity ratios for immunoprecipitations (xlsx) are included in the 

supporting information as xlsx documents.  
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