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ABSTRACT

The results of electronic machine studies of equilibrium configurations
of an idealized charged drop are presented. The symmetric family of saddle-
point shapes has been tracéd as a function of the fissionability parameter x.
The. properties of the saddle-point shapes have been tabulated in the interval
x = 0.30 to x = 1.00 in steps of 6.02. The appearance of these shapes changes
from dumbbell-like for x < 0.67 to gylindef—like for x2 0.67. The transition
is fairly rapid, but not discontinuous. ‘The properties tabulated include the
energies, moments of inertia and quadrupole moments of the saddle-point
shépes- In addition, the elastic constants (stiffnesses) of the symmetric |
saddle-point shapes for different types of »symmetric and asymmetric dis-
tortions.have been determined. The shapes were found to be stable against
asymmetry down to x =0.394, at which point an asymmetric family of equi- -
librium shapes bifurcates.

A simple formula is given which reproduces the calculated liquid-

drop thresholds with fair accuracy.
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THE DEFORMAT’EON ENERGY OF A CHARGED DROP:
PART V: RESULTS OF ELECTRONIC COMPUTER STUDIES

Stanley Cohen

Argonne National Laboratdry
Argonne, Illinois

and
Wladyslaw J. Swiatecki

Lawrence Radiation Laboratory'
University of California
Berkeley, California

August 30, 1962
I. INTRODUCTION

In this part, we present the results of qp.antitativé studies of the prop- -
erties of saddle point shapes of a uniformly chargéd .drop possessing a‘sharp
surfac‘é.l Within the idealization adopted in the pr‘es:ent series of papers the
total potential energy of the dro;; is made up of two p’arvts, the elgctréstatic
and surface energies. The dimensionless parameter x, defined by

2
(charge)
10 (volume) (surface tension)

X =

specifies the relative magnitudes of the two energies. Th‘e qualitative aspects
of a number of families of equilibrium shapes.resulting from the balancing of
the electric repulsion and the attractive surface tension were discussed ‘in
.Part IV, to which the present paper serves as a quantitative sequel.

The principal qualitative result of Part IV was that a distinction was
drawn between cylinder-like shapes of equilibrium (the Bohr-Wheeler family)
for x 2 0.7, and strongly necked-in shapes of equi_librium (the Fraﬁkel-
M-etropolis family) for x £ 0.7. A second qualitative' result concerned the
asymmetric shapes of equilibrium (the Businaro—Galione family) which were

found to appear for x > Xp o with e Ye estimated to be in the neighbourhood

of 0.4 or 0.5. This family governs the stability against asymmetry of the
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symmetric saddle-point shapes and provides a distinction between fission and
spallation. o

The discussion in Part IV indicated that it was not certain whether the
distinction between the cylinder-like and necked-in families of vsymmetric
saddle-point shapes was of a qualitative or quantitative nature, 1 e., whether
the transition from one type to the other was discontinuous in a plot against
the fissionability paramefer X, or continuous but rapid, .so that it occurred
withinh . a narrow‘interval of x values. The balance of the evidence presenfed
there was taken to indicate the first alternative. The quantitati'v:e studies
desqribéd, here have clarified this ambiguity and the result is that there is a
rapid transition from oﬁe type of saddle shape to the other, but that the chaLnge
is not di_sco_ntinuéug.

. Concerning the question of the stability of the symmefric saddlel—poi_nt
shapes against asymmetry, the qualitative discussion given in Part IV has
.been confirmed and the critical value Xp where stability against asymmetry
is lost and a distinction between fission and spallation disappears, has been
deterrmined to be" Xpo T 0.394.

‘The other families of equilibrium discussed in Part IV, corresponding

to shapes with more than one neck, are not considered in the present paper

-

E A
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II. DESCRIPTION OF THE CALCULATIONS

The method used to find the shapes of equilibrium of the drop was as
follows. The configuration of the drop, assumed axially symmetric, was

parametrized in terms of an expansion of the radius vector R(f) in Legendre

polynomials:
R N _
R(0) = —— L1+ 2 a_P (cos®)] ,
1

where the set of N coefficients o.h specifies the shape, a_nd A is a param-
eter normalizing the volume of theidrop.to the standard value 4/3 TR, 3 (s'ee
Parts 111 and IV. T'hé highest value of N used in the present ;:alculations'
was Nl = 18.) The surface and electrostatic energies of the drop were then
calculated by numerical integrations and, for a given vaiue of the fission-
ability parameter x, fhe total energy was made stationary with respect to
small ch‘angés of all an's, This was accomplished by a suitable search in
the N-dimensional space of the :-qn‘s.- |

‘The procedure for tracing out the behavioufcdf"the family of syrnrhgtric
equilibrium shapes as function of x was usualiy to' start Wifh the known
members of this faﬁlily for x =1 (a spheré) or x = 0 {two sp‘heres in contact)
and to decrease (Qr in;:rease) the value of x- ‘in s;hall' stlep's, using thevkno.w'n
shape as a Startiﬁg point of thé sea’réh at thfé ﬁzew':;c value. (Once several
consecutive solutions had been determined,‘ ‘a more refined extrapolation was
used to predict: the r'le'xt'un"kno.wn éhapeo) Each ‘tirlne a syrﬁmet}_ric shape of

equilibrium was determined in this way, its properties were subjected to a

~detailed study. This included the determination of the shape and its energy

(surface, electrostatic; and.tbtal)g the nrorments ©f inertia about different axes,

. and the quadrupole moment. In addition, the degree of instability of the shape
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was determined, i.e., the number of degrees of freedom with res'pect.to
which the shape was unstable (see Part IV). This meant the determination of
the number of linearly indep'endent combinations of the ands with respect to

which there was instability. At this stage small deformations with and with-

. L ': ‘_ : B ) . 1
out reflection symmetry were included, i.e., small changes in all a_ s with-

n from 1l to N were considered, so that the degree,of instability with respect

to symmetric as well as asymmetric displacements could be ascertained.
A byproduct of this study was the determination for each shape of equilibrium

of those linear combinations of the an!s that make the potential energy in the

vicinity of the saddle a sum of squares (without cross terms of the type ano‘rﬁ)°

The numbgr of negative terms in this sum is the degree of instability of the
shape in qﬁestion, the coefficients in the sum are proportional to the elaétic
constants of.f:he shape. and thg linear ;mnbinations of anvs ‘that make the
potential energyv a sum of squares are the eigenvector displacements asso-
ciated with the elastic constants. The distortions of the drop corresponding
to the eigenvector displacements are not invariant with respect to a change
of the expansion parameters a_ to another set; “andvtheir significance is,
therefore, only relative to the particular choice of the expansionlparameters
(in our case coefficients in an expansion of the radius vector in Legendre
polYnomi,als)a The number of negative elastic constants (and thus tHe degree
.of inst_ability) is_,v, however, an invariant (_}L) andlis la fund'amental intrinsic
property of each shape of equilibrium. It follows also that the critical value
of x at which an elastic constant changes sign does not depend on the partic—
ular parametrization of the shape in terms of Legendre polynomials but is an
intrinsic property. of the family of equ‘ilib‘r,ti-»um shapes.

A discussion :of the reliability and accuracy of the calculations if given

in the Appendix. The situation is roughly that the results are generally very
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accurate in the range of x values'from 1.0 down to 0.7, moderately accurate
from 0.7 to 0.5, and of uncertain accﬁracy, in some respects at least, be-
tween 0.5 and 03 Dliffiyculties were experienced in obtaining solutions
below x = 0.28, élthough in the vicinity o:f x = 0 itself excellent representa-

tions of the correct saddle shape (a pair of tangent spheres) were obtained.

II1. THE RESULT-:S

. Table I is a comprehensive summary of the properties of éaddle point
shapes from x = 1.0 down to small values of x. It consists of a set of sﬁb—
tables, one for each value of x, as listed on the left. Each subté.ble consists
of foﬁrj rows to be read from left to right. The format of the subtables is
indicated at the head of Table I. The first row giv‘es the nine even anqs
(from a, to 0’18) specifyingvthe symmetric saddle shape, followed By the
normalizing faétor A. The next two rows, apart from the last two entries,
gi§e sixteen YValues of the radius vector R(8), for 6 from 0 to 90 deg, in
steps of 6 deg. The last two entries in row 3 give the relative qqadrupole
moment Q .of the shape and an index of accuracy (labeled "R.M.S.") de-
signed as a g‘uide to the reliability of the solution'in question. If this number
is small compared to unity the. solutic;n is accurate (see Appendix A-1 for
details). . f’he last row gives §, .the relative deformation energy in units of
the surface energy of the sphere, and BS and BC, the surface and electro-
static energies in units of their respecti{/e values for the spherical configura-
tion (see Part IV). These are followed by the ela_-stic_cons‘tanfs c, and c,
for two principal.symmetric distortions and < and sy for two principal
asymmetric distortions. (The coefficients c  are related to the 'eigenvalues'
)\n of Part III by c = Z)\n-) T-'he: last three eptries give the relative moments

of inertia taken about the axis of symmetry and about an axis at right angles,
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and the reciprocal .of the effective moment of inertia, defined by (2):
q ot g9t
= eff AT 1
.Tlhel_un'it here is the 'I‘nAomentv of inerfia 6f the sphere.
‘ ‘Figure 1A shovs}s a number of saddle-point shapes for x=0, 0.3, 0.4,
0.5, (.).6,. 0.7, 6.8, 07.9 and 1.0. Figure 1B compares the necked-in shai)evs' '
for x=0.3, 0.4, 0.5, and 0.6, .and Fig. IC the cylinder-like shapes for x=0.7,.
‘, 0.8, 0.9 and 1.0.. In the first ca~se‘th.e overall length of the shapes incfééseé
with x; v'in the second ca_sé it decreases. .T..vhe transition from one type of be-
ha:\*/ioii‘lri:to the other is farily rapid, as shown in F1g 2, where the major and : .
minor axes of the Shapes‘ are plotted against x. The transition occurs arbund»
X = 0.6"-(; and is marked, in addition to the reversal of the trend in the overéll
length of the shapes, by a rapid change in the radius éf the neck, which is
doubled between x=0.6 and x=0.72.
The deformation energy of the above symmetric configurations is shown
in Fig. 3. As discussed in Part IV, the p_oi'tion of the curve between x =Xpe
: -=0.394-see below) represents threshold energies for

G

fission. The part of the curve between x = 0 and x = XpaG corresponds to

and x = 1.0 (with Xp

saddle shapes with instability in two degrees of freedom (one symmetric and
one asymmetric) and does not have thé significance ofra threshold for any
reactio_n.. We noté again the different behavior of the curve in Fig. 2 for x
below and above about 0.67. In the former case the deformation energy &

" is almost é. straight line (not quite—there is actually a point of inflexion at

X = 0.547). In the latter case the threshold énergy is closely represented by
a constant times '(_1 - x)3. The transition from one trend to the other occurs
within a few hundredths of a unit around x = 0.67.. A s'imple'forn;lula that
reproduces approximately the calculated values of § may be written as

follows: T i
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urn
|

=0.38 (3 - x), for Lsex< i

0.83 (1 - x)3, for 123—5‘-,< x< 1.

wr
I

(As a mnemonic we suggest the name '"Tlhree-Four Threshold Formula" for
this expression: apart from a single four all the coefficients in the formula
can be made up from threes—considering, that is, an eight as made up of a

three and its reflection! The numbers Three and Four are themselves sug-

gested by the first few letters of "Threshold Formula." Further properties

of interest to numerologists are that the lower limit of validity of the formula
may be taken as one-third (or x = 0.33), and that the transition from the first
to the second expression occurs at l-x-= ‘1/3 (or at 1 - x = 0.33). The value
of £ atx=1-0.331is 0.030. The formula is accurate to one unit in the.

third decimal, which means in practice that thresholds calculated will be in

error by less than three-fourths of a MéeV)

The approximate distinction between the region for x < 0.67 and x> 0.67
ié reflected also in other properties of the saddle-point shapes. T'};e upper.
part of Fig. 4 shows a plot of the moment of inertia g_!_ taken about an axis
at right angles to the axis of symmetry and the lower part shows the moment
of inertia g” about the axlisv of symmetry. Figure 5 shows the reciprocal of
the ''effective moment of inertia" caeff*, Figure 6 shows the behavior of the
quadrupole moment. |

Figure 7 shows the values of a, specifying the saddle -point shapes,
as functions of x. We note that down to about x = 0.7, aé and 0.4 are the
only coefficients with appreciable magnitudes. Beiow 07 all the higher aﬁ's
come in rather sudde'nly,'vand soon even 'a18 'is not negligible. The con-~
vergence of our calculations as a function of the number of Legendre poly-

nomials retained changes raipidliy from excellent for x 2 0.7 to poor for

x £ 0.7. This is discussed more fully in the Appendix.

~
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Figures 8A and 8B show the stiffness coevfficients ("elastic constants'')
of ‘the saddle shapeé. é,gainst different tyi)es of small distc;rtions:. ‘Fig. 8A
, correfsponlds to the two principal symmetric distortions, and Fig. 8B to the
two principal asgrinmefric distorti.o‘.ns.‘ For x values close to 1,.the calcu- -
lated x}alﬁes agree with the ela’stic constants deduced from expansions in
powérs of (1 - x) (seé vPa.rt I11). |

We note the rather complicated behaviéumdf‘(the stiffnesses as. functions of
x. The stiffn‘es.s cy is the only negativ'e'.svymm_etric one, and is as.so‘c'ia’_ced |
~with a division or fission coordinate. The value of <, is-zero at x :‘1 v
(where the potential energy hag a point of inflection as func_titbv‘n. of the division
coordinate 0‘2) and thenvbecome.s hegat_ive, reachiné a .rriaxifnum negétive _
value.around x = 0.83. The stiffness <, then decreases ‘rapidly in absolute
magnitude until, quite suddenly, it flattehs out at’ a .sméll negative value, the
flattening-out occurring close to x = 0.67. (A change i‘n sign of the stiffness
c. would havé been as solciated with a '"doubling back'' of the Bohr-Wheeler
farﬁily of shapeé—see Part IV.)

| T'’he next higher symrhetric stiffness Cy» asséciated at x =1 with a

P4 (cos 0) type of rippling, 'decreaseﬁ until about x = 0.67, and then flattens
out at a small positiveAvalue‘. I-‘rhe lowest asymmetric stiffness <1 is asso-
ciated with a displac-e'méntA 'of.t'hé shape along the polar axis (at x = 1, when
the drop is spherical, a'Pl' (cos 9‘) distortion representé such a displacement). v
The value of cy» which in an ideal éalculation with ipfi.nite accuracy would be
exactly zero, remains small, though finite, for all values of x. The next
highér _asymfhetrié stiffness C3» bassociated witil the first intrinsic asymz.<"
metric distortion (of Py (cos 8) type at % = 1),‘ decreasgs.vwith decreasing X.
The variation is not‘ smooth, a sudden decrease .arovund x = 0.67 being

followed by a more gradual one, the sign of Cy changing at x = 0.394.
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Below this value of x there are thus two negative stiffnesses, cz(symmetric)
and c, (asymmetric). B

Figure 9 illustrates the distortions associated with the lowest symmetric
stiffness Cyr 2 fission coordinate. Figure 10 shows an example of the asym-
metric distortion associated with ¢y an almost pure shift of the center of
mass without intrinsic distortions. The distortion associated Wifh c3 is.
illustrated in Fig. 11 for the particularly important case of x = 0.4, where the
symmetric saddle point shape (the dashed figure) is about to become unstable
against asymmetry. The nature of this asymmetry is indicated by the solid

qurve‘ in Fig. 11 and may be identified with a "sucking up'' of one fragment by

the other. Asymmetric shapes, of which the one shown in Fig. 11 is an

‘example, constitute the Businaro-Gallone family of equilibrium configurations

discussed in Part IV.

IV. DISCUSSION

e

These results, although not yet exhé.ustive and of uneven é.ccuracy,
clarify in;a quantitative way certain aspects of the potential energy of an
ideali'zed charged drop. VInvparticular, the fate of the conventional family of
equilibrium shai)es, coinciding with the sphere at x = 1, has been traced
down to small values of x." The ﬁldst fundamental va'operty of- this family of

shapes, its degree of instability, has been found to be 1 from x = 1 down to

x = 0.394, and 2 below x = 0.394. This defines the range of x values where

the conventional family of saddle shapes has the physical significance of a
thresho.ld (see Part IV). The nature of t.he>i‘ns'_cabi_lit3‘r that comes in at x = 0.39,
has been determined and found tb correspond to an asymmetric degree of
freedom, suggesting. the :sucking-;ia of one fragment by the other. (At x =0

the symmetric shape of equilibr.ium"'of two tangent spheres is known to be
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unstable against such an asymmetric sucking-up.) Assurmin;g that there are

no points of bifurcation in the inade'quately studied region around x = 0.2, the
( . _ ;

only place in the range . 0 < x < 1, where the nature of the conventional

family of equilibrium shape‘s changes_fundamentally, is at the bifurcation

point Xp

G 0.394. Above this Qalue the symmetric equilibriurﬁ shapes are
stable against ésymmetry and define a threshold energy; below this value
they are unstable against‘ asymmetry and do not define a threshold ene‘vr'gy.

_Ih é.ddition to the qualitative chénge in the properties of the conven-
tional saddle-point shapes at x = 0.394, we have already noted the quantitative
cha.'nges that take place in the region around x = 0.67, where a rapid transi-
tion occurs from necked-in to cylinder-like configuratiohs_. Viewed against
the background of the discussion in Part IV, where .a discontinuous transition
between the necked-in (Frankel-Metropolis) and cylinder-like (Bohr-Wheeler)
families of shapes was anticipated around x = 0.7, the present results repre--
sent a step back in the direction of the conventional picture of fission, with
a continuous family of saddle-point shapes spanning the necked-in configura-
tions at low x and thé cylinder-like shaﬁes at high x. In particular, the Bohr-
Wheeler family does not "doutbl‘ev up' in a plot against x, and there is no
se;:ond. branch of this family with complete stabilii:y agains.t all small dis-
tortions. Therefore the more extreme modif;cations_of the conventional
picture-of‘f_ission, considered in Part IV, have not been confirmed.

On the other hand the rapid. change in the properties of the saddle-point
shapés in the neighbourhood of x = 0.67, found in this paper, is in line with
the semiquantitative estimates of Part IV. Considering the approximate
nature of th‘ose-estimates, ‘we may regard them as not inconsistent with the

present quantitative results. The physical reasons for the occurrence of a

critical region of charge values in the neighbourhood of x = 0.7 were
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considered in Part IV and were associated with the transition from an essen-

tially two-body process at low x values, where the necked-in form of the

saddle shape determines to a large extent the outcome of the division, to a

more complicated situation at high x, where the cylinder-like (or spheroidal)
saddle shape does not determine the ¢haracteristics of the disintegration.

The present results have made fhe nature of the distinction clearer, and
the following conclusions are suggested. Bel_ow”about x = 0.67 the fission of
an idealize’d drop would be relatvivelly simple, with many general properties
of the division determined to a large extent by the saddle shape, vv‘vhich may

be épproximated by two deformed fragments (for example two spheroids)

‘connected by a thin neck. “In p'articular the number of fragments (two) and:

their most probable relative sizes (equal) may be predicted with some con-

fidence. Moreover, the avera.g'e kinetic energy of the fragments after divi-

.sion, and their average internal excitations, should be closely related to the

- effective separation of the two halves of the saddle shape, and to the distor-

tions of the fragments. A description of more refined features of the div-
ision, such as the spreads in the kinetic energies and internal excitations

around their average values, could also be attempted on the basis of an

analysis of the neighbourhood.of the saddle-point configurations. - This seems

particularly promising since the saddle shapes are in some respects well

represented by simple confi'gurations of two spheroids. Configurations of

tangent spheroids, whose total energy was minimized with respect to their

eccentricities_, were considered in Part IV. A somewhat better approximation
is obtained by minimizing the energy for two spheroids whose tips are held
fixed at a.suita;ble constant sepération. The separa;cion that reproduced well
the exact threshold enérgies'for x % 0.67 was found to be

(0.2) (4_1T/3)1/3 Ro =0.3224 R, where R0 is the radius of the sphere of equal



-12- \ UCRL-10450

volume (see Fig. 3). The similarity of the saddle shapes and the two-sphe-
roid configurgtio_n’_s is illustrated in Fig. 12 for x=0.5 (a) and 0f6 (b). The
energies and shapes of the two-spheroid configurations were obtained from
more extensive tables prepared by Milton and Wilber (3).

For x greater than about 0.67, the description of the division of an _.
idealized drbp would become more complicated, the essential reason for the
complication being the necessity to give an account of the stage of the process
between the saddle and the moment of division (scission). This stage becomes
rapidly more extended as | X increases above about 0.67, and it soon becomes
impossible to predict with any confidence, on the basis of the proper'ti‘es of
the saddle shape;, the relative sizes or even the number of fragments to be
expected in the division.

The discussion of the stége between the saddle and scission presents
a problem of quite a different nature than the calculation of the static equilib-
rium 'shapes with which the present series of papers is concerned. In partic-
ular, the dynamics of the process would be involved; and the physical prop-
erties of the drop, such as viscosity, determining the ﬁature of the hydro-
dynamics, would have to be considered. These com.pliCat_ions, which would
not play an essential role for low x values on éccount of thé committed form .
of the saddle shapes, would come to the fore at values of x greaf.:er than
abQut 0.67.
| - The following summary of the situation is suggested. For x less than
about 0.67 the theoretical description of the fission of a.liquid drop promises
to be relatively simple and the fe_qhireme'nt”for- further progress is, on the

‘theoretical side, the working out of the consequences implied by the necked-
in, two-fragment saddle shapes: The use of the approximation of two spheroids

provides perhaps a suitable'technique for handling this problem. The real
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difficulty in this region of x valg.e_:vis; lie.svo,n the experivment‘al side, the cross
sections for obse.rving the fi\s'si:o:n reaction being relatively small compared
with competing processes.

For x greater than about 0.67 the situation is reversed. Accﬁra’ce and |
exhaustive experimeﬁts on many aspects of fis sion have been available for a
long time and further information may be readily obtained owing td the ease
of observing the fission of heavy elements. The real difficulties lie on the
theoretical side, wherve fundamental questions on the nature of the process,
such as the dynamical characteristics of the division, have to be exp’lo.red;}_..
and settled before a theory of the division can be worked out. In'the"absence‘
of more fundamental theoretical progress in this difficult region of x values,
perhaps the best prospects for a limited advance in our understanding of
fission lies in an effort to clarify the situation at the lower x values. This
could be achieved, on the one hand, by extending the fa;nge and comprehen-
siveness of the experiments in this region and, on the other, by a fuller work-
ing out:of the details of the theOry,. which for ‘x below abovut 0.67, would
appear to be rather clear in its broad features, and amenable to an approx-

imate quantitative treatment.
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" APPENDICES

Coea e RGN ‘~.‘ i
A. Numerical Procedures

’

The calculation of the energiess and saddle-point sthapes of the axially
symmetric liquid drop Wex;e cafried c;ut on an IBM 7090. In this appendix
we describe the 1;nethod by which the surface and electrostatic energies of a
shape ﬁaré;neteri;ed by the an's were ca.lculatedv.4 We will also expl;in
how the positions of‘ the:_saddle points in the multidimensioﬁal a-space were

located.

(1). Calculation of the Surface and Electrostatic Energies

Given a set of the an's which parameterizes the shape of the drop in

terms of its radius vector R (6) by the ej;pression

R, 18 7 _
R (6) = {1+ z a P (cosb) ,
v R n n

n=1

the v‘aluesl of R(6) and dR (9)/(_16 | Jwere numerically e.valuated for equally
spaced Qralueslof fhe angle 6, where 0 r‘.ahges from 0 to .180 dég. ~The
volume of the resultant figuré was then obtained by numerical integration and
used to de‘termine the normalization constant N\. The surface area, and hence
the relative surface energy BS of the normalized shape, was then evaluated.
This part of the c.élcula.tion was carried out with 199 equally spa;ed values_of
angle 6. All numer'ical integra.f:ions in these calculations were éarried out
using a six-point numerical integration scheme.

‘The calculation of the electrostatic energy was a more time-consuming
operation. It was therefore performed for a smaller number 6f grid points,

usually 41.



15 UCRL-10450

The value of th.e electrostatic energy was obtained by first calculating
the value of the electrostatic potential at each grid point Gi on the surface
of the shape. This was done by evaluating the following single integral,
equivalent to that used by Hill and Wheeler (4):

V(Gi) _ 3

Vo 4T R 2

ollo; +o) 7 + (o - 2) Gl KG9 - Flip;+p) 4 (55 -2)° ] S DO

1
l(pi+p)2+(zi-Z)2]2

Here" p =R (0) sinf, 'z =R(0) cosb, pizR(Gi)s‘inOi,- zi=R(9i) cosei-o

and v, is the surface potential of the original sphere. The elliptic integrals -

0
K (k) and D (k) (the latter defined as [K (k) - E (k)] /k2 in standard notation)
have as argument the quantity k given by

2 4pyp

k =
Wi+P)2+(zi-Zﬁ

They were evaluated using the approximate representations of Ref. (_§) .

The relative electrostatic energy Bc was obtained from the expression

| 3
B = 4 j' v(8) [___R(G) } sin6 d8,
c 2 Vo R,

derived from Eq. (9) in Ref. (6).
If the calculation described above was being performed for a -
saddle-point shape, additional results were obtained. The curvature « at

each grid p.oint was calculated analytically. For a true shape of equilibrium

the quantity

b (0) = % € (8) /x, + x v(8 )/v,
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should be constant, and should be equal to
. :
~(B_ -1+x(B_-1).
5 S C
(See Part III. The quantity K, is the total curvature of a sphere.)

The quantity ¢ (8) and its deviation from the correctvaluewereevaluated
for each grid point. As an index of accuracy the root-mean-square value of
this deviation was calculated. This is the 'R.M.S.*' of Table I. This quantity
should be close to zero if the saddle point has been correctly'described by the
set .of. a vs..

n
For the saddle-pdint shape, the moments of inertia and the quadrupole

moment were also obtained. Note that the 'quadrupole moment' Q of Table I

= is. a.dimensionless quantity defined by

Q= ! I'r! (3z2 - rz)d(VOIume)~.

5
R,

It is related to the conventional quadrupole moment, defined by

Qconventional NI (3z2 - rz) (charge density)d(volume),

Q

2
conventional Q(total charge} R, /(4n/ 3).

2. Location of the Saddle Point

Locating the saddle points in the multidimensional ea-space was auto-
matically performed by a réthe.r straightforward numerical scheme. An
approximate locatipn of'thev saddle point was used to define the starting co- -
ordinates a_. Values of the energy in the neighborhood of this location werie
then computed and a quadratic expfession in the coordinates was fitted to these
values. The location of the extremum in the energy for this Iquadratic ex-

pression was determined and the calculation repeated using this location as -
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a better approximation to the saddle point. When this iterative scheme led

. to changes in.each of the coordinates of less than some prescribed amount,

the calculation was terminated and the coordinates were assumed to be those

-of the saddle point.

In order to fit a quadratic expression in n variables it is necessary to
have (n'Z +3n+2)/2 linéarly independe_ﬁt evaluations of the function. In our
case these were obtained by incrementing each of the n variables by plus
and minus a fixed number (2n evaluations), and incrementing the variables
in pai’rvs,‘ (n{n-1)/2 e\}aluations). The value of the unincremented point
supplied the last term needed. The size of the increment in each variable - .
could be chosen independehtly. For the results presented here the increments |

were as follows:

Aa, = £0.02
Aa4 = +0.02
Aa6 = £0.01
Aag = £0.01
Aay,= %0.01
| AalZ: +0.005
Ao, = +0.005
Aa, = 0.005
Ba g = £0.005

After a saddle point had been'located, additional results were obtained
to determine the behavior of the potential energy surface in the neighborhood
of the saddle point. TLhe ei'genvalues and eigendirections for the qp_;d-r_atic
form that represents locally the .energy surface were caléulated. -In the

neighborhood of the symmetric saddle points the quadratic form consists of
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two independent parts without'cross terms, one for symmetric and.one for
asymmetric distortions. Both parts were brought to.principal axes and the

eigendirections ‘and .eigenvalues determined..

B. Tests of Accuracy

1. Accuracy of the Numerical Procedures
In ordertoascertainthe accuracy of the numerical results obtained for

a shape specified by a set of a s several test calculations were performed.

In.eac:hv:p_fvthebs_‘e (‘:a_.se‘s the dependenée of the results on the number of grid
pc!)il_jlt_s' used in the nuir}efica_l integrations was studied. In certain of these
.'test cases the numerical results could. be compared directly with those known
from exact solutions.

In the results that follow, the quantity in parentheses refers to the
number of grid pointé used in the calculation of that result.

Of the shapes for which the results are known, the simplest is a sphere.

The results of the calculations for this shape are as follows
B - 1.000009 (99) 1.000000 (199) 1.000000 (Exact)
B_ | 0.9999982 (41) 0.9999993 (61) 1.0000000 (Exact).

In this particular case the electrostatic potential on the surface is
known. The numerical values for this potential were found to differ from
the exact result by less than 1 part in-106, "when 41 grid points were uséd-

A spheroid is also a shape for which the results can be calculated
“exactly (see Part III). A s‘pheroid.with a ratio o.f axes of 0.7 to 10 was
approximated by the first five even terms in the expansion in Legendre -

- polynomials. Using the formula of Part II,:these were found to. be .- .
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a, = 0.231693, a, = 0.041'883,'(16 =0.007451, ag = 0.001314, and-

4
nldz 0.000232.. The results for this shape were as follows: SRR
B_ 1.0213834(99) 1.0213833 (199) , 1.0213836 (Exac';) -
B_ 0.9886766 (41) 0.9886784(61)  0.9886786 (81) 0.9886789 (Exact)
§i 1.198668(41) 1.198651(61) ©1.198649(81) 1.198650(Exact)
ST 0.788372(41) 0.788374(61) 0.788374(81) - 0.788374 (Exact)
Quac: 1.374916 (41)  1.374852 (61) 1.374847 (81)  1.374848 {Exadt)

For x=0.0, the s‘addle-p‘d'int shape is two spheres in contact. This
shape can be represented exactly as [R(6)] 2 - constant '(P;)’+ 2P,). Using

‘this expression, the results for the numerical calculation were:

B, 1.260027(99)  1.259868 (199) 1.259921 (Exact)
B_ 0.892437(41)  0.892442(61)  0.892443(81)  0.892444 (Exact)
Q9i 2.20491 (41) 2.20487 (61) 2.20486(81) 2.20486 (Exact)
QQH 0.62995 (41) 0.62996 (1)  0.62996(81) 0.62996 (Exact)

fﬂ‘;ﬁ: 5.27775 (41) 5.27756 (61) 5.27755 (81) 5.2775§(Exagt).

This saddle-point shape can also be represented by an expansioh of R () in

Legendre polynomialé, the first nine even terms of which are (see Part IV):

a, = 1.25 ' a, = -0.375 ag = 0.20:3.125
ag = -0.1328125 ay0° 0.0957031 a,,= -0.0732422
a4 = 0.0584106 | ayq = -0.0480042 ag= 0.0403€>71.

The results of the numerical calculations for this set of an's were

B, 1.259271(99) 1.259228(199) 1.v25992‘1(Exact)
B_ 0.892441(41)  0.892430(61) .0.892434(81) 0.892444 (Exact)
QJ_ 2.20366(41) 2.20483 (61) 2,_20486(81) ~2.20486 (Exact)
CQH 0.62995 (41) 0.62998 (61) 0.62997(81) 0.62996 (Exact)
(Quad. g 59355 (41) 5.27739 (61) 5.27749(81) 5.27755 (Exact)
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As a further test of thevn'um,erical integration schemes, typical .7 -

saddle-point shapes'(tho’s"e_.'fo_r x=0.4, 0.6, and 0.8) were selected from .

Table I, (based on 41 grid point integ-rat.io‘n’s for the electrostatic energy),

and their properties were recalculated using 61 and _81 grid points. The

results were as follows:

J|

Quad.
Mom.

1.280248(99)

1 0.815730 (41)
3.90878 (41)
©0.54877 (41)

11.2595 (41)

1.285576 (99)
. 0.809449 (41) -
©4.17560(41)

0.49089 (41)

12.3476 (41)

Saddle Shape for x = 0.4

1.280248 (199)

0.815739(@1)> 

3.90920(61)
0.54883 (61)

11.2607 (61)

For x = 0.6

1.285576 (199)

0.809476 (61) :

4.17357 (61)

0.49085 (61)

12.3409(61)

0.815744 (81)

3.90924 (81)

'0.54884 (81)

11.2608 (81).

0.809477(81)
4.17344 (81)

0.29086 (81)

12.3404 (81).
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.For x= 0.8

B - .1.080026 (99) .. . 1.080025 (199)

S
B, 0.95367 (41) 0 0.95368 (61) . - 0.95368 (81)
é)l 1.61846 (41) 1.61840 (61) 1.61840 (81)
QC}H . 0.62401 (41) 0.62402 (61) 0.62402 (81)
Quad. ' » . ' -
Mom. 3.3324 (41) . 3.3322 (61) . 3.3322 (81)

2. Accuracy of the Multidimensional Search Procedure

The determination of the location of a saddle point in the multidimen-
sional an"space depends on the assumptiqh that a quadratic expression is an
adequate-local app‘i"oximation to the potential energy ovér the range of the
scan defined by the set of Aan's. ‘The p'fesence of appreciable cubic and
higher order terms would show up as a dependence of the results on the scan

size Aan. In order to test the results of Table I againsf inaccuracies arising

"from this source, the whole calculation was re-run twice, ‘once with all-

Aan's doubled, and once with all Aan's halved. As an-illustration of the

changesy produced in the results, we show in Table II the values of BS and
Bc for the saddle shapes at x = 0.9 through 0.4, as found using the three

different scan sizes. No important changes in the solutions are apparent.

- The total energy £, being stationary with respect to small deviations from

the saddle point configuration, is even less sensitive to.small errors in the
location of the saddle-and was found to be independent to six decimal places

of the scan size 'Ao.'n'-'
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3. Convergence as a Function of the Nurrib‘é_r'_of o.n's

. The foregoing analys.is of thé 'a;ccur‘a(:y of the numerical integrations and. -
search procedure.-‘s- shows that at:all x values there is no a'p:pvr_ecia‘ble uncer-
tainty in the final results arising out of t_};ose a'spect‘s of the calcula‘t'io.ns. The
question of iﬁaccuracies due té the retention of a limited nurﬁber of terms in
the expansion of the shape in Legendre polynomials is not as clear-cut. The
effect of the neglect of higher Pn's may be estimated by studying the converg-
ence of the solutions as a function of the highest retained polynomial, o.NPN.V
Such solutions were obtained, as function of X, for_y N=2, 4, 6, 8, 10, 12, 14,
16, 18, i.e., the Wh01¢ calculation of the symmetric saddle shapes was re- .
peated.seve(ral times, first'ir:l.one dimension (0.2), then in tW(;; -dimen,si.on_s
(0'2’ a4), three dimensions,'etc. »_up to nine dimensions (0.2 through a18), and ’
various aspects of the results were compared: | Figure 13 shows the major
and minot axes of the saddie point shapes obtained from calculations with
varying nu_mioers of an'é, and Fig. 14 shqws a more complete comparison of
the convergence of the saddie shape at a particula_r value of x (equal to ,O,Sj.
Table IIl illustrates the convergence with N of the relative energy g, and

. Table IV. is a study of the ch{/ergenqe of the'moﬁient of inertia. Q_L ) Th¢
following conclusions are suggeéted. Fé_r x values gi‘eater than about 0.7 the
convergence of the results is ve'ry vsatisfactory, the increase in thé number
of even 'ah's_ ‘beyond four (o,2 through as)\producing very little effect. The
convergence is not uniform, the transition from one to two dimensions pro-
ducing a large .change, but the.trans-ition_'from two to_f:hree bnly a small
change. Upto thr.ee dimension.s_(o.z-through 0.6) the results exhibit the mul-
tiple—val};ed features discussed i‘n‘APart IV, the critical region of x being
around 0.89 for the one-dimensional solution, around 0:72 in two dimensions,

and 0.70 in three. The introduction of ag and higher o.rll"s removes the multiple-

valuedness.
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The convergence of the solutions below :aboutvx = 0.7 is quite different
than abox./e 0.7, additioﬁal anfs producing sméll but not rapidly decreasing
changes. This results in soi’ﬁe uﬁcer'taiih‘tjvf regarding the true appéa;rance of
the 'saddle'.poiht shapés at low values of x. In particulé.r; srhall-scale fea-
tures like the size and s_hape, of the h'_eck are probably representéd poorly and |
the treﬁ_d with x of the neck radius below about x = 0;'4 is almost certainly in
error by an appreciable amount (see Fig. 2). (The 'inclusionbof pro'gressively’

higher o.n's continues to improve the appearance of the néck-see Fig. 14)

On t‘he other hand, overall fea_tures"o.f the saddle-point 'Ashapes,"’such as the

moments of inertia and, in particular, the energy, chaﬁge relatively little

with increasing' N, even for low values of x. We were especially interested
in satisfying ourselves that the fundamental jcritical'qua.nfcity' Xpg? where the

loss of stability against asymmetry takes place, doés not change much with

. the addition of higher an's- Figure 15 illustrates the result of determining

! 1
using different numbers of even and odd a_ s- The -sequence of esti-

mates, XBG:O,_398, 0.389, 0.395, 0.389, 0.394, makes it unlikely that the

BG 0.39, is in error by more than a fé\.N; units in the third
decimal place.

The convergence of the radius vector R(6) at several values of 0 is

further illustrated in Fig. 16 for the saddle-point shape at x = 0.5.
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FOOTLNOTES
“The references to Parts I, 'KII,“ TII; 1V are as follows: "P.a'rt' I-W.J.

Swiatecki, Phys. Rev. 101, 651 (1956); Part II-Phys. Rev. 104,993

(1956); Pa‘rt. III-Paper No. -’P/65.1, Procee_dirigs”of the Second United

Nations International Conference on the Peaceful Uses of Atomic Energy,

Geneva, 1958 (Unifced Na’:ci’o:n’s,' Geneva; 1958); Part IV-S. Cohen and
W. J. Swiatecki, Ann. Phys. _Q,' 67‘ (1962). | |

We are indebted to V." M. Strutinskii, N. Ya. Ly’aéhchenkoand‘

N. A. Popov for sending' us a preprint of their paper, v entitled-”Symmetfic
Figures of quilibriﬁi"n of a Nucleus with a Sharp Surface,' which we
received after ébmpletion of the pfesént calculations. We shall not
attemp to discuss here the relatiovn.of their results t0.0'L‘;."r.S. |

’Ilhe“ momén_ts of inertié were also calculated independently by Frank
Plasil (Z.), using our sets of o.n's. We are grateful to ilim for the op- .
portunity ‘o"f com‘paring the results of the two methods, which were found
to be in agreement.

These calculations cdﬁid.also be carried out for other parameterizations.
In particulaf, for the 'séddle' point at x = 0.0 the expansion of the square
-of R(0) in terms .ofv Legencire poiynomials is more suitable, since only
two terms, P, and PZ’ | are then required to represent the exact saddle-

0

point shape.
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TABIE I
Properties of saddle-point shapes as & function of the parameter x.
% oy % % %10 oy oy %16 %18 »
R(0°) R(6°) m(22°)  Rm(28°) m(2x°) R(3°) R(36°) R(4°) R(4°) R(54°)
R(60°) R(66°) R(72°)  R(7°) R(BY®)  R(90°) Q R.M.S.
¢ B, . . B, R °, ey o5 I, _éLv 1/Jeff.
= 1.00 0.0000  0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000  0.0000 1.0000
1.0000 1.0000 1.0000 1,0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 0.0000 0.0000
o.ooboo ‘1.ooooo 1.00000 0.0000 1.2593  0.,0000 0.6122 1.0000 1.¢ooo 0.0000
= 0.98 0.04%0  0.0007  0.0000 0.0000 0.0001  0.0001  0.0001 0:0000 -0.0003 1,000k
1.0433 1.0427 1.0405 -1.0367  1.0320 1,0266 1.0202 1,013k 1.0067 1.0002
0.9940 0.9887 0.9844 0.9811 b.9791 0.9784 ’ 0.2215 - 0.0014
0.00001 1.0007T4 0.99963 '-0.0148 1,240  0.0063  0.6028 © 0.9578  1.0239  0,06TH
= 0.96 0.0901  0.0031  0.0000 0.0001  0.0001  0.0001 0.0001  0.0000 -0.0002 1.0016
1.091k4 1.0898 1.0850 1.0770 1.0668 1.0547 1.0411 1.0267 1.0125 0.9988
0.9862  0.9753  0.9665 0.9599  0.9559  0.9546 0.4770  0.001%
0.0000k 1.00320 0.99836 -0.0308  1.2201  0.005%  0.5808  0.9135  1.0559  0.1476
= 094  0,1373  0.,0069 -0.0002 " 0,0000 0.0001  0,0001  0,0001  0.,0000 ~0.0003 1.0038
1.1396 1.1371 1.1295 1.1171 1.1010 - 1.0820 1.0608 1.0386 1.0167 0.9960
0.9770 0.9608 0.9478 0.9382 0.9324 0.93%05 ’ 0. ThTT 0.001k4
| 0.00015  1.00734 0.99618 -0.0552  1.1711  0.008  0.5530  0.8712  1.09kk  0.2340
= 0,92 0.1827  0.0124 -0.0003 -0.0001  0.0001  0.0001  0.0001  0.0000 -0.0002 1.0068
1.1867 1.18%2 1.1726 - 1.1555 1.1333 1.1072 1.0783 1,1484% 1.0191 0.9916
0.9669  0.9459 0.9292 0:9170 0.9097  0.9073 1.0224 0.0013
0.000% 1.01282 0.99323 -0.0675  1.1320  0.00k2  0.5242  0.8326  1.1377  0.3221
= 0.90 0.2298  0.0197 -0.0007 -0.0003 ¢ 0.0001  0.0001  0.0001  0.0000 -0.0002 1.0108
1.2353 1.2307 1.2170 1.1949 1.1661 1.1%2h 1,0952 1.0570 1.0200 0.9856
0.9550 0.9295 0.9093 0.8047 0.8860  0.8831 o 1.3231 0.0012
0.0007L 1.01995 0.98932 -0.0821  1.0719  0.0031  0.4960  0.7948 ~ 1.1896  0.4176
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TABLE T (Continued)

x % T T apt ey g T e »
o R(0%)  R(6°)  m(12°) - R(18%) CR(2°) R(%°) "R(36°) R(°)TR(WE) R(5°) -
R(60°) R(66°) R(T2°)  R(7®) R(BY)  R(90°) 7' o Q RM.S.
¢ Bs Bc % - %y ST c3 ‘;)H . . _OC)-L | l/‘;eff.

x=0.88  ©0.2779  0.0289 -0.0012  -0.0007  0.0001  0.0001  0.0001  0.0000 -0,0003  1.0158
o 1.2846 ‘ 1;2f8§ . i.2619 v 1;23h5 1.1958 1.1569 1.1110 1.66#1 .'_1-0190 6,97%8
0.9416  0.9118  0.8885 0.8717 0.8618  0.8585 , 1.6467  0.0012
o.001é5 1.02854  0.98u48  -0.0946 1.0014 0.0036 0.4658 0.7585 1.2499 0.5183

'0.86  0.327%  0.0405 ~0.0018  -0.0012  0,0001  0.0002  0.0001  0.0000 =0.0002  1,0221

B
n

1.3355  1.3286  1.3079 1.278 1.2315  1.1808  1.125%  1.069%  1.0161 ° 0.9680 .
0.9264  0.8926  0.8664 0.8479  0.8369  0.8333 . 1.9986  0.0011
0.00197 1.03867 0.97866 -0.099%  0.939%  0.0030  0.4365  0.7236  1.3200  0.624k

x= 0.84 0.5799 0.0548 -0.0026  -0.00283  0.0000  0.0005  0.0002  0.0000 -0.0002  1.0298
1.3887 1.3804 1.3560 1.3166 1.2652 1.2047 1.1390 1.073%0 1.0109 0.9557
0.9089  0.8713  0.8426 0.8225  0.8107  0.8068 , L 2.3921  0.0011

0.90296 1.05059 0.97164 -0.10%9 0.8601 0.0031 0.4090 0.6894 1.4032 0.7379

x=0.82  0.35h  0.0724 |-0.0035  -0.0039  -0.0001  0.000%  0.0002 10,0000 -0.0002  1.0393
o 1.4k39 1;45u5v | 1.4057 1.35§8" W.1.299h 1.2283 ‘ '1.1513v 1,074k 1_0031v 6.9hdé
0.8889  0.8479  0.81T1 0.7956  0.7831  0.T790 . 2.8311  0.0010
0.00425 1.06428 0.96340 -0.1024 0.T733 0.0031 0.3851 0.6563  1.5011. 0.8575

x = 0.80  0.k953 6}o§uu‘ -ofoéhh -0.0063  -0.000k 0.0007  0.0003  0.0000 =0.0002  1.0511
o 1.5025 i.491A - ;,uséﬁ i.uésé 1.3350 1Q2518 1.1620  1.0731  0.9920 0;922u
0.8657 0.8217  0.7891 0.7666 - 0.7536  0.7T493 v 3.3319  0.0009

0.00591 1.08002 0.9538 -0.0981 . 0.6855  0.0024  0.3620  0.6250  1.6183 '0.9846

0.78 0.5615  0.1222 -0.0054  =0.0101 =-0.0009  0.0012 '0.0005  0.0000 -0.0002  1,0661

%
n

1.5654 1.5526 - 1.5148 1.4537 13723 1.2755 1.1708 © 1.0682  0.9764  0.8996
0.8385 0.7919  0.7579 0.7348  0.7214 . 0.7171 . ) 3.9161  0.0009
0.00798 1.09818 0.94218 -0.0877  0.5918 ,0.0033  O.3474  0.5925  1.7611  1,1200

At
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% %, % ;] %0 %1 %y %6 %8 A
R(0°)  R(6°) m(1°)  Rm(18%) R(24°) R(3°) R(%°) R(42°) R(4B%)  R(54°)
R(60°)  R(66°)  R(72°) R(78%)  R(8L°)  R(90°%) Q RM.S.
¢ By B, 2 ey ol 3 I % Yote,
= 0.76 0.63%60 0.1579 0.0061 -0.0159  -0.0020 0.0020 0.0010 0.0000 -0.0003 1.0852
1.6334 1.6189 1.5758 1.5058 1.4119 1.2991 1.1769 1.0586 0.9551 0.8711
0.8061 0.7576 0.7228 0.6993 0.6859 0.6815 k,6083 0.0008
0.01056  1.11907 0.92861 -0.0742 0.492h 0.0022 0.3343 0.5619 1.9371 1.2633
= 0.T4 0.7231  0.2055 0.0061 -0.0252  -0.00L41 0.0037 0.0019 -0.0001  -0.0005 1.1108
1.7088 1.6923 1.6433 1.5633 1.45k7 1.3227 1.1790 1.0418 0.9255 0.8346
0.7666 0.7171 0.6821 0.6587 0.6454 0.6410 5.456% 0.0009
0.01373 1.14342 0.91237 -0.05T4 0.3926 0.0023 0.3%26k4 0.5326 2.1608 1.4149
= 0.72 0.8295 0.2717 0.004% -0.0k0k  -0.0087 0.0066 0,000  -0.0003 -0.0009
1.7940 1.7753 1.7196 1.6281 1.5021 1.3458 1.1744 1.0135 0.8832 0.7866
0.7170 0.6675 0.633L 0.6104 0.5975 0.5934 ‘ 6.5331 0.0014
0.01762 1.17209 0.89272 -0.0%92 0.2910 0.0036 0.3186 0.5051 2.4547 1.5723
= 0.70 0.9662 0.3685 0.0010 -0.0665 -0,0185 0.0123 0.0091 -0.0006 -0.0023 1.2002
1.8906 1.8695 1.8063 1.7018 1.5550 1.3673 1.1582 0.9667 0.8215 0.7217
0.6528 0.6049 0.5725 0.5511 0.5390 0.5352 7.9330 0.0035
0.022%  1.20555 0.86915 -0.023L 0.1908 0.0040 0.2926 0.4820 2.8493% 1.7239
= 0.68 1.1391 0.5031 0.0106 -0.1098  -0.0371 0.0232 0.0199 -0.0013 -0.0058 1.2785
1.9882 1.9649 1.8946 L7774 1.6094 1.3845 1.1269 0.8971 0.7379 0.6394
0.5742 0.5297 0.5004 0.4809 0.4700 0.4668 9.5991 0.0093
0.02811 1.24006 0.84415  -0.0131 0.1152 0.0053 0.2068 0.4688 3.333h4 1.8329
= 0.66 1.3164 0.6429 0.0142 -0.1640  -0.05Thk 0.0405 0.034k '~ -0.0039 -0.0113 1.3675
2.0562  2.0321  1.95Th - 1.8325  1.6514 1.397h 1.0942  0.8261  0.6542  0.,5597
0.Lk994 0.4586 0.4328 0.4153 0.4055 0.4029 ‘ 10,992k 0.0181
0.03476  1.26480 0.825T2 -0.0112 0.0698 0.0083 0.1439 0.4693 3.7496 1.8640
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TABIE I {Continued)

x % % % % %0 %2 et %6 %8 A
R(0°)  R(6°) R(12°)  R(18%) Rm(24°) R(3°) R(%°) R(u°) R(u8°)  R(5:°)
R(60°) R(66°) R(72°)  R(%) R(B®)  R(9°) Q R.M.S.
¢ By B e €y ! €3 I I Yess.
x = 0.64 1:4596 o.7hi7 0.0033 -0.2108  -0.0668 0.0603 0.0450 -0.0092 -~0.0165 1.4386

2.0851 2.0617 1.9864 1.8590 1.6753 1.4095 1.0780 0.7801 0.5958 0.5031
0.4469 0.4087 0.3852 0.3692 0.3602 0.3580 ’ 11, 7hih 0.0245
0.04193 1.27670 0.81659 -0.0116 0.0528 0.0110 - 0.1143 0.4762 3.9809 1.8489

x = 0.62 1.5601 0.8115 -0.0162 -0.2494  -0.06Th4 0.0798 0.0569 ~0.,0159  -0.0203 1.4948
2,0959  2.0737  1.9992 1.8715  1.6898  1.4213  1.0728  0.7515  0.554k  0.4615
0.40B%  0.3722  0.3502 0.335%  0.3270  0.3249 ' 12,1415 0.0276
0.04937 1.28261 0.81190 -0.0123 0.0419 0.0131 0.0986 0.4837 L4 .1069 1.8237

x = 0.60 1.6478 0.8612  -0.0413 -0.2806 -0.0612 0.0979 0.0524  =0.0231  -0.0225 )' 1.5401
2.0977 2.0770 2.00%9 1.8769 1.6988 11u326 1.0746 0.7348 0.52u2' 0.4291
0.3785  0.3440 0.3230 0.3093  0.%01%  0.2993 12.3410  0.0279
0.05695 1.28558 0.80947 -0.0127  0.0355  0.0127  0.0995  0.4909  4.1736  1.7977

x = 0.58 1.7272 0.9002  ~0.0T00 -0.3068 ~0.0501 0.11kk 0.0503 =0.0%2 -0.023%0 1.5802
2.0958  2,0763  2.0048 1.8789  1.7048  1.44%1  1,0803  0.7250  0.5003  0.LOl11
0.3526  0.3197  0.299% 0.2866  0.2792  0.2771 12.4438  0.0271
0.06460 1.28720 0.80810 -0.0131 0.0%52 0.0139 0.0930 0.4974 4,2109 1.7729

x = 0.56 1.8010 0.9302 -0.1029 -0.3283  -0.0340 0.1289 0.0443  -0.0370 ~0.0218 1.6166
'2.0011  2.0727  2.0029 2.8785  1.7086  1.4530  1.0895  0,7214  0.4813  0.3761
0.3293 °© 0.2980 0.2782 0.2663 0.2593 0.2571 12.4753 0.0286
0.07229 1.28795 0.8074+  -0.0123 0.0234 0.0123 0.0886 0.503%6 . o064 1.7492

x = 0.5 1.8714 0.9518 -0.1406  -0.3451 -0.012hk 0.141F  0.0341 -0.0433 «0.0185 1.6500
2,0840 2.0665 1.9986 1.8762 1.710k4 1.4624 1.1020 0.7237 0.4667 0.3551
0.30T4  0.2779  0.2584 0.2474  0.2409  0.2385 12,4471 - 0.0370
0.07999 1.28804 0.80736 -0.0112 0.0184 0.0085 0.0778 0.5095 4, 2240 1.7258
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TABIE I (Continued)

UCRL-10450

% O, % % %0 %2 %y %6 %8 A

R(0%)  ®(6%) R(12°)  ®(18%) m(2t°) m(30°) R(36°) R(4°) R(8°)  R(5L°)

rR(60°)  R(66°)  R(72%) R(T8%)  ®(84°)  R(90%) Q R.M.S.
¢ Bs Bc <, ey ey <:3 0'7” 9_]_ 1/caeff.

= 0.52 1.9419 0.9633 -0.1867 -0.3554 0.0176 0.1501 0.0177 -0.0485  -0.0123 1.6815
2.0The 2.0572 1.9912 1.8715 1.7101 1.4716 1.1196 0.7337 0.4570 0.3310

0.2856 0.2582 0.23%88 0.2288 0.2228 0.2201 12,352k 0.0551

0.08768 1.28751 0.80786 -0.0123 0.0143% 0.0086 0.0797 0.5157 4,2018 1.7013

= 0.50 2.0142 0.9652  -0.2408 -0.3584 0.0555 0.1544%  -0,0047 -0.0516 . -0.0031 1.7120
2.0623 2.0452 1.9811 1.8650 1.7078 1.4802 1.1413 0.7512 0.4521 0.3098

0.2633  0.2383 0.2190 0.2098 0.2044 0.2013 12.2009 0.0817

0.0953%5 1.28649 0.80886 -0.0119 0.0112 0.0063 0.0679 o.5é20 4.1629 1.6756

= 0.48 2,0807  0.9531 ~0.3001 ~0.3513 0.0996 0.1519 -0.0321 -0.0517  0.008h4 1.7375
2.0480 2,030k 1.9682 1.8563 1.7032 1.4874 1.1664 0.7766 0.4544 0.2917

0.2424 0.2197  0.2005 0.1922 0.1872 0.1839 11.9892 0.1130

0.10296 1.28499 0.81039 -0.0120 0.0130 0.0076 0.0565 0.5283 4.1061 1.6493%

= 0.46 2.1432 0.9367 ~0.3583 -0.3393 0.1428 0.1450 ~0.0588  -0.0490 0.0198 1.7610
2.0341 2.0156 1.9549 i.8h75 1.6981 1.493%0 1.1901  0.8031 0.4596 0.2761

0.2006  0.,2022  0.1834 0.1756  0.1712  0.1678 11,7716 0.1426

0.11052 1.28349 0.81199 -0.0116 0.0118 . 0.0070 0.0481 0.534k4 h.O4T72  1.6242

= 0.4k 2,1982 0.9195 -0.%096 -0.%252 0.1805 0.1354 -0.0820 -0.04L46 0.0296. 1.7815
2,0218 2.0022 1.9428 1.8396 1.6933 1.4968 1.2100 0.8272 0.4662 0.2636

0.2053 0.1867 0.1685 0.1611 0.1572 0.1537 11.5763 0.1674

0.11801 1.28219 0.81343 -0.0120 © 0.0111 0.0053 0.0340 0.5397 3,9943 1.6024

= q.né 2.2479 0.9030 ~0.4558 ~0.3107 0.2136 0.1248 -0.,1017 -0.03%94 0.0377 1.8000
2.0107 1.9903 1.9318 1.8324 1.6889 1.4997 1.2269 0.8486  0.L4731 0.253%

0.1897 0,1727 0,1553 o,1u82 0.1h47 0,1413% 11.4010 0.1875

0.12545 1,28107 0.81473  ~0.0123 0.017h4 0.0052 0.0198 0.5446 3,9468 1.5830
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TABIE I (Continued)

UCRL-10450

% &, % og %0 %p Gy % %8 A

R(0®)  R(6%) R(12°)  R(18%) R(2°) R(%°) R(36°) R(u°) R(8%)  R(5L°)

R(60°)  R(66°) R(72%) R(78°)  ®r(B4)  R(90°) Q R.M.S.
& By B, s Cy €y °3 i I, Ypre,

= 0.40° 2,301k 0.8926  -0.4989 -0.2984 0.2429 0.1145 -0.1185 -0.0339 0.0443 1.8216
2.0016 ‘1.9802 1.9226 1.8266 1.6855 1.5019 1.2403 0.8658 . 0.4779 0.2426

0.1737 o.1581 0.1418 0.1350 0.1319 0.1286 11.2607 0.2038

0.13284  1.28025 0.81574 -0.0098 0.0180 0.0089 0.0033 0.5488 3.9092 1.5662

= 0.38 2.3482 0.8806 -0.5372 -0.2846 0.2683 0.1029  -0.1323 -0.027T7 0.049k - 1.8401
1.9932 1.9711 1.9141 1.8212 1.6822 1,503k 1.2520 0.8818 0.4839 0,234

0.1598 0.1k52 0.1300  0.1235 0.1208 0.1177 11.1309 0.2123

0.14019 1.27951 0.81669 -0.0110 0.0199 0.0126 -0.0101  0.5526 3.8742 1.5515

£0.36  2.3915  0.8663 -0.5T37 . -0.2685  0.2918  0.0897 -0.1443 -0.0207  0.0535  1.8568
1.9850 1.9621 1.9057 1.8156 1.6789 1.5045 1.2627 0.8976 0.4913 0.2279

0.1469 0.1329 0.1191 0.1128 0.1104 0.1075 11.0017 0.2158

0.14750 1.27880 0.81765 -0.0110 0.0216 0.0127 -0.0255 0.5562 3.8393% 1.5374

= 0.3 2.4410 0.8548  -0.6105 -0.2524 0.31%0 0.0757 -0.1547 -0.0132 0.0566 1.8767
1.9775 1.9541 1.8982 1.8107 1.6760 1.5053 1.2720 0.9118 0.4980 0.2211

0.13%28 0.119% ° 0.1071 0.1011 0.0989 0.096}4 10.8881 0.2205

0.15478  1.27822 0.81848  -0.0098 0.0173 0.0127 -0.0399 0.5595 3.8087 1.5246

= 0.32 2,494, 0.8427  -0.6478 -0.2336 ' 0.3348 0.0592 -0.1631  -0.0047 0.0584 1.8984
1.9702 1.9463 1.8910 1.8060 1.6732 1.5058 1.2803 0.9257 0.5056 0.2149

0,1182 Q.1ou8 0.0943 | 0,0886 0.0868 0.0847 10.7785 0.2299

0.16203 1.27768 0.819%0 -0.0106 0.0179 0.0125 -0.0530  0.5626 3.7791 1.5127

= 0.30 2.5464 0.8243  -0.6843 -0.,2087 0.3529 0.0387 -0.1682 0.0055 0.0582 1.9185
1.9624 ‘ 1.938i 1.8833 1.8007 1.6700 1.5059 1.2882 0.94%10 05169 0.2119

0,104k 0.0899 0.0816 0.0762 o.o7u6 0.0730 10.6585 0.2344

0.16924  1.27710 -0.016 0.0119 0.0128 -0.0673  0.565T 3. 7463 1.5009

0.82023




TABLE II

Effect of Scan Size on Energies.

BS | | BC
Half-Scan Standard Scan Double Scan| Half-Scan Standard Scan Double Scan -
09 1.019913 1.01993.0 1.019781 0.989332 0.989323 0.989406 -
0.8 1.080011 1.080016 1.080242 0.953684 0.953682 0.953540.
0.;/' 1.205279 1.205552 "1.205398 0.869347 0.869152 0.869262
0.6 1.285595 1.285578 1.285522 0.809460 0.809474 0.809521
0.5 '1.286564 E 0 1.286494 1.286403 - 0.808785 0.808855 04808946
0.4 1..286248 1.280158 0.815739 O.8158>571

HEE-
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TABLE Iil

. Energy as a Function of the Number of Dimensions.

Dimension

X 1 2 3 4 5 6 7 8 9

0.4 0.13524 013363 0.13332  0.13284
0.5 0.09881 0.09813  0.09622 0.09618  0.09535  0.09535
0.6 0.05940 - 0.05922 0.05774  0.05739  0.05719  0.05695
0.7 0.02676. 0.02272  0.02251 - 0.02243 0.02237  0.02237  0.02237
0.8 0.005961 0.005951 0.605907 - 0.005906 0.005906 0.005906  0.005906 0.005906
0.9 0.001103 0.000712 0.000711 0.000711 "0.000711 0.000711  0.000711  0.000711 0.000711

B 4%

06901 -"TYON



TABLE IV

p
é’/_)L as a Function of the Number of Dimensions.

Dimension
x> 1 2 3 4 s 6 7 8 9
0.4 . 3.8749 | | 3.9116  4.0493  3.9092
0.5 4.4211 4.0875  4.2274 4.1716  4.1506  4.1629
0.6 | " 4.3154 4.4699  4.1789 4,2‘655. 4.1651  4.1736
0.7 ' 4.7233 - 3.0559 2.9265  2.8882 2.8516 ,  2.8515 2.8493
0.8 . 1.6313 1.6299  1.6188 1.6187  1.6184 1.6183 1.6183 1.6183

0.9 1.3034  1.1897  1.1896  1.1896 1.1894  1.1896 1.1896 1.1895 1.1896

o -g¢-

0§%01-T¥ON .
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Saddle -point shapes for various values of x.
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Fig. 1A.
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Fig. 1B. Comparison of necked-in saddle-point shapes for x
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Fig. IC. vCompari‘son of cylinder—Allike saddle-point shapes for x =0.7.
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Fig. 2. The behavior of the major and minor axes of saddle-point
shapes, as functions of x. The trend in Rpyjn/Ro at small .
values of x appears to be appreciably in error, as suggested by
comparison with the known limiting form for x—=0. The value of
Rmax/RO at x = 0 is indicated by a circle. The point where the
Businaro-Gallone family of shapes bifurcates at x = 0.394 has
been indicated by BG. :
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-Fig. 3. The relative distortion energy £ for saddle-point shapes,
as a function of x. The numbers in brackets indicate the degree
of instability. Threshold energies correspond to the label (1).
The transition from an almost linear dependence on x to an almost
cubic dependence on (1 - x) occurs close to x = 0.67. The small
circles connected by a thin line correspond to the energy of two
equal spheroids whose tips are held at a constant separation.

The limiting behavior of £ at small x is indicated.
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Fig. 4. The moments of inertia about axes parallel and at right
angles to the axis of symmetry of the saddle-point shapes are
shown as functions of x. The unit is Q_j\o . the moment of inertia
of a sphere. Limiting values at x=0 are indicated by circles.
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Fig. 5. The reciprocal of the effective moment of inertia -Es\;eff,
as function of x.
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0 0.5 ' 1.0

MU-27996

Fig. 6. The relative quadrupole moment Q as function of x. To
obtain the conventional quadrupole moment, Q should be multi-
plied by (4m/3) times the total charge on the drop, times the
square of R, (the radius of the sphere of equal volume).
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Fig. 7. The values of the expansion coefficients ap, from a,
through ajg, specifying the saddle-point shapes as fuactions
of x.
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: Fig. 8A. The stiffnesses ¢, and c4, corresponding to symmetric

distortions, as functions of x. (Note that c4 is plotted on a scale
reduced by 10.) The slight scatter of the points reflects inaccuracies
in the numerical procedures which are beginning to show up in the
second derivatives cp-
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Fig. 8B. The stiffnesses c; and c2, corresponding to asymmetric
distortions, as functions of x. Note the complicated behavior of

¢y and the critical point xpG, where c¢; changes sign.
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MuB-i323

Fig. 9. Examples of distortions associated with c¢,, the principal
symmetric (fission) coordinate. The saddle shape is shown by
a dashed line, and the result of making a positive or negative
distortion along the 'fission coordinate' is indicated by the full

line. The different cases correspond to x = 0.9, 0.8, 0.7 and

0.6.
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Fig. 10. THhe asymmetric distortion associated with c¢j’'(the center-.
of-mass-shift coordinate).
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MU-27998

Fig. 11. The asymmetric distortion associated with c3 - the principal
intrinsic asymmetry coordinate. The case illustrated refers to
x = 0.4, where the symmetric saddle shape {dashed line) is about to
‘become unstable against an asymmetyic distortion (solid line). This
asymmetric shape is also a member of the Businaro-Gallone family
of shapes for x just in excess of the critical value xgg = 0.39,.
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MU.27997

¥ig. 12. The saddle-point shapes for x = 0.5 and 0.6 are compared
with ¢onfigurations of two spheroids whose tips were held at a
geparation of (0.2) (4nr/3)1/s3 Ry; and whose energies were then
minimized. The energies of the saddles are 0.0953 and 0.0569, to
to be compared with 0.0950 and 0.0572 for the spheroids.
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Fig. 13. The convergence of the calculations of saddle-point shapes,

with the number of a

n's retained, is illustrated by plots of the

major and minor axes of the figures in various approximations.



-52- UCRL-10450

s
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Fig. 14. The saddle-point shape for x = 0.5 as calculated with different )
numbers of a,'s. Note that the representation of the neck region
improves with the inclusion of higher a,'s, but that Legendre
polynomials even beyond P;g would probably continue to produce
small changes. :
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Fig. 15. The determination of xpg from the vanishing of the stiffness
c3 in a plot against x.
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Fig. 16. The convergence of the radius vector at 6 = 0, 30,-42 and 90
deg, for x = 0.5. The number of a,'s retained is shown along the
abscissa.



This report was prepared as an account of Government
sponsored work. Neither the United States, nor the Com-
mission, nor any person acting on behalf of the Commission:

A. Makes any warranty or representation, expressed or
implied, with respect to the accuracy, completeness,
or usefulness of the information contained in this
report, or that the use of any information, appa-
ratus, method, or process disclosed in this report
may not infringe privately owned rights; or

B. Assumes any liabilities with respect to the use of,
or for damages resulting from the use of any infor-
mation, apparatus, method, or process disclosed in:
this report.

As used in the above, "person acting on behalf of the
Commission" includes any employee or contractor of the Com-
mission, or employee of such contractor, to the extent that
such employee or contractor of the Commission, or employee
of such contractor prepares, disseminates, or provides access
to, any information pursuant to his employment or contract
with the Commission, or his employment with such contractor.
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