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ABSTRACT 

 

 

This report presents the results of Phase 2 of a multi-year research effort on “Field Investigation of 

Advanced Vehicle Reidentification Techniques and Detector Technologies.”  Phase I of this research was 

conducted under PATH MOU 3008.  Phases I and II of this research extended previous PATH research by 

the authors on MOU 336 “Section-Related Measures of Traffic System Performance: Prototype Field 

Implementation.”  Phase II of this research continued development, field investigation and assessment of 

the latest technologies available for traffic detection and surveillance, for collecting more accurate traffic 

characteristics and traffic data necessary for Intelligent Transportation Systems (ITS) applications.  The 

focus of Phase II of this research was to utilize fully instrumented freeway and signalized intersection sites 

in the California Advanced Transportation Management Systems Testbed in Southern California for field 

investigation of several emerging traffic sensor and detector technologies for vehicle reidentification 

(REID) purposes and real-time traffic performance measurement. As part of this project, a traffic detector 

and surveillance sub-testbed (TDS2) on North I-405 in Irvine became operational in August 2002, and the 

ability to perform REID-based real-time traffic performance measurement in TDS2, developed as part of 

this research, and including section travel times, traffic origins and destinations, and vehicle classification, 

was demonstrated on-line at the PATH Annual Meeting in October 2002.  The very encouraging results 

obtained to date by developing and applying a vehicle reidentification approach for real-time traffic 

performance measurement suggest that further development, implementation and testing of this approach 

would clearly be of value.  

 

 

 

Keywords 

 

vehicle signature, detector, sensor, inductive loop, single loop speed estimation, vehicle classification, 

vehicle reidentification, testbed, freeway, level of service, detector card, data fusion, web-site 
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EXECUTIVE SUMMARY 

 

 

California PATH has been leading research in the field of vehicle reidentification for the purpose of real-

time traffic performance measurement.  The research reported here builds on and extends previous PATH 

research by the authors on “Field Investigation of Advanced Vehicle Reidentification Techniques and 

Detector Technologies, Phase I” (PATH MOU 3008), and “Section-Related Measures of Traffic System 

Performance: Prototype Field Implementation” (MOU 336).  

 

This research continued development, field investigation and assessment of the latest technologies available 

for traffic detection and surveillance, for collecting more accurate traffic characteristics and traffic data 

necessary for Intelligent Transportation Systems (ITS) applications.  The focus of Phase II of this research 

was to utilize fully instrumented freeway and signalized intersection sites in the California Advanced 

Transportation Management Systems Testbed in Southern California for field investigation of several 

emerging traffic sensor and detector technologies for vehicle reidentification (REID) purposes and real-

time traffic performance measurement.  These technologies included the IST-222 high-speed scanning 

detector card from IST, Inc. for capturing vehicle signatures from conventional inductive loops, V2SAT 

video detection system from Loragen Corporation, and the innovative new Embedded Differential 

Inductance Scanning (EDIS) or “Blade” loop detector from IST, Inc.  

 

This study also implemented real-time vehicle reidentification and traffic performance measurement in the 

traffic detection and surveillance sub-testbed (TDS2) on North I-405 in Irvine, which became operational in 

August 2002.  Based on the research and the improved algorithms developed in this study, real-time traffic 

performance measurement in TDS2 (including section travel times, traffic origins and destinations, and 

vehicle classification) was demonstrated on-line at the PATH Annual Meeting in Richmond, California in 

October 2002.  

  

This study also explored the vehicle reidentification problem based on vehicle signatures collected from 

different types of detection technologies, including conventional square inductive loops and the newly 

developed blade inductive loop sensors.  A lexicographic optimization algorithm together with a genetic 

algorithm was introduced to solve the vehicle reidentification problem. Goal programming approaches for 

search space reduction in the vehicle reidentification algorithm both improved the algorithm matching 

performance and the computational burden. The algorithm performed well. For example, less than 10 % 

travel time error was achieved with a 5-minute travel time aggregation period.  Although the number of 

vehicles for which data could be collected in this specific comparative study was small, encouraging results 

were obtained for vehicle reidentification performance in a system of mixed traffic detection technologies.  

In future large-scale applications of vehicle reidentification approaches for real-time traffic performance 
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measurement, management and control, it would be most beneficial and practical if heterogeneous as well 

as homogeneous detection systems could be supported. This initial study yielded many useful insights 

about this important issue, and demonstrated on a small scale the feasibility of vehicle reidentification in a 

system with heterogeneous detection technologies. 

 

Overall, the very encouraging results obtained to date by developing and applying a vehicle reidentification 

approach for real-time traffic performance measurement suggest that further development, implementation 

and testing of this approach would clearly be of value.  
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Task Order 4122 - Field Investigation of Advanced Vehicle Reidentification 

Techniques and Detector Technologies – Phase 2 

 
 

CHAPTER 1   INTRODUCTION 

 

 

1.1  Background 

 

Research in Intelligent Transportation Systems (ITS) addresses various transportation needs such as 

efficiency, safety, environmental protection, mobility, and economic viability.  Different agencies on 

different levels try to utilize ITS for improving the transportation system.  These agencies range from day-

to-day operators and managers of the transportation system to long term designers and planners of the 

transportation infrastructure.  In order to fully exploit the advantages of ITS strategies, accurate and 

appropriate data need to be collected from the transportation network.  Therefore it is vital to develop 

advanced surveillance systems that can properly support the objectives of ITS.  

 

In the United States and Europe, and particularly in California, there is increasing interest in investigating 

methods for obtaining trip travel times and other measures, such as density and origin/destination demands, 

that can be derived from vehicle reidentification systems. By using non-obtrusive and anonymous tracking 

methods, individual vehicles can be identified and correlated over numerous identification stations, and 

very specific real time data can be obtained for any vehicle.   

 

California PATH has been leading research in the field of vehicle reidentification. The actual physical 

sensor for these reidentification systems can be from a variety of different sensor technologies.  It can also 

consist of a combination of technologies. This research builds on and extends previous PATH research by 

the authors on MOU 336 “Section-Related Measures of Traffic System Performance: Prototype Field 

Implementation.” The research investigates the use of the latest technologies available for traffic detection 

for collecting more accurate traffic characteristics and traffic data necessary for ITS applications, but which 

are difficult to obtain.  The primary traffic characteristic that this research attempts to measure more 

accurately is section (or trip) travel time.  Travel time has been identified by Caltrans as particularly 

important for assessing traffic system performance.  Travel times are also important because they are inputs 

to Advanced Traveler Management and Information Systems (ATMIS). The direct measurement of travel 

times via vehicle reidentification avoids the inaccuracies associated with estimation methods using local or 

point speeds obtained from point detectors (such as individual loop or other detector stations).  In addition, 

real-time traffic measures such as dynamic origin/destination demand fractions, lane changing, and section 

densities can be obtained with a vehicle reidentification approach. 
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The research reported here builds on and extends previous PATH research by the authors on “Field 

Investigation of Advanced Vehicle Reidentification Techniques and Detector Technologies, Phase I” 

(PATH MOU 3008), and “Section-Related Measures of Traffic System Performance: Prototype Field 

Implementation” (MOU 336).  The multi-year research effort, of which Phase II (this report) represents the 

final part, consists of three major components, based on fully instrumented signalized intersection and 

freeway sites in the California Advanced Transportation Management Systems Testbed in Southern 

California.  

 

The first component, which was the focus of Phase I, involved major expansion of an ILD (inductve loop 

detector)-based vehicle reidentification system (that was implemented in MOU 336) at a major signalized 

intersection in Irvine, California, to address reidentification of turning vehicles in addition to through 

vehicles, develop techniques for on-line real-time intersection level of service estimation, develop a 

capability for communicating real-time traffic performance data to operators in the City of Irvine 

Transportation Management Center (TMC), conduct initial testing of a new state-of-the-art detector card 

(IST-222) from our research partner IST, Inc., and develop a prototype real-time web-site for internet-based 

access to performance data from the study intersection (and other sites in the future).  In addition, a study 

was undertaken to derive improved estimates of fundamental real-time traffic parameters such as speed, 

volume and vehicle class from single loop detectors and inductive signatures.  Obtaining accurate estimates 

of vehicle speed from single ILD’s (as opposed to dual loop speed traps) enables the vehicle 

reidentification approach developed by the authors to be widely applied in practice, and not limited by the 

existence of double loops. 

 

Phase II of the research (this report) addressed the second and third components.  The second component 

involved a field investigation of several emerging and advanced freeway detector technologies developed 

by the PATH program, including the V2SAT video detector, and a particularly promising new detector 

named the Embedded Differential Inductance Scanning (EDIS)  or “Blade” detector.  The Blade detector 

has a resolution several orders of magnitude greater than regular ILD’s and addresses many of the 

shortcomings of ILD’s.  In addition, this study implemented real-time vehicle reidentification and traffic 

performance measurement in the traffic detection and surveillance sub-testbed (TDS2) on North I-405 in 

Irvine, which became operational in initial form in August 2002.  Based on the research and the improved 

algorithms developed in this study, real-time traffic performance measurement in TDS2 (including section 

travel times, traffic origins and destinations, and vehicle classification) was demonstrated on-line at the 

PATH Annual Meeting in Richmond, California in October 2002.   

 

The third component involved an investigation of the fusion of the various advanced detection systems 

noted above that have been developed by the PATH program, for the purpose of vehicle reidentification (or 
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tracking vehicles from one site to another).  Until now, each advanced surveillance system has been 

researched independently and vehicle reidentification has been studied using feature vectors from a single 

type of detector. 

 

 

1.2  Traffic Detection and Surveillance Sub-testbed (TDS2) 

 

The growing popularity of the Caltrans PeMS (Performance Measurement System), traveler information, 

and other ITS functions have placed an increased emphasis on data validity and the detection systems upon 

which the "intelligence" in ITS is based. The need to have data of known quality, and the increasing 

number of available roadway detector technologies, provided the motivations for the development of a 

unique new Traffic Detection and Surveillance Sub-Testbed (TDS2) facility on the Northbound I-405 

freeway, located within the Southern California ATMS Testbed Network in Caltrans District 12. The 

overall purpose of the TDS2 is to provide a real-world laboratory for the development and evaluation of 

emerging traffic detection and surveillance technologies relative to: appropriateness for ITS operations and 

performance measurement, data quality and consistency, ease of use, ease of installation, and overall cost. 

 

The TDS2 consists of two contiguous sites on a 7-lane freeway (I-405), each pre-wired for power and 

communication for the mounting of any type of detector. When complete, the TDS2 overhead cameras will 

automatically take a picture of every passing vehicle at both the upstream and downstream sites and re-

identify it between the two (V2SAT system). This will provide not only an absolute ground truth upon 

which other detectors can be compared, but will also allow the same detector to be set up at each site to 

evaluate reproducibility as a function of speed, lane, headway, vehicle type, lighting, or other types of 

environmental or traffic conditions which may effect detection accuracy.  

The TDS2 has a number of unique capabilities optimized for detector evaluation, which in aggregate, are 

not duplicated anywhere else in the nation. When the TDS2 is completed, these high tech capabilities will 

include: 

 

1. The video "ground truth" system which will take a picture of each vehicle and automatically re-identify 

it downstream independent of its lane or speed. 

2. Inductive loops with detectors that will output the unique waveform or "signature" of each vehicle and 

then use this information to re-identify each vehicle downstream. This will provide independent 

automatic confirmation of the video re-ID system above. These loop detectors will also output the 

more conventional bivalent data compatible with 170 and 2070 controllers, only with much greater 

accuracy than that produced by loops at other freeway sites. 

3. Three streaming PTZ video cameras that can be accessed and controlled through any web browser 

connected to the internet.  
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4. Wireless broadband communication allowing all types of information to be available real-time across 

the internet. The data passes through the City of Irvine, UCI, and Caltrans communication hardware on 

its way to the web, in a remarkable institutional synergy of interagency cooperation.   

 

Additionally, the TDS2 has two overcrossings with overhead mounting and wiring systems, which can 

allow detectors to be installed over traffic lanes without shutting down lanes. This in itself is a unique 

capability not available anywhere else in California. Moreover, the TDS2 is equipped with poles pre-wired 

for installation of side-fire detectors on the outside shoulder of both sites. One site has also a pole and 

wiring on the inside shoulder to evaluate HOV detectors and/or duel side-fire detectors. 

 

In conjunction with this project, the TDS2 became operational in August 2002 in initial form.  In fact, this 

project contributed directly to the development of some V2SAT capabilities. For example, the V2SAT video 

detection system was implemented with project funding via subcontract in prototype form, and the design 

and implementation of field computer hardware and communications was guided in part by the vehicle 

reidentification concepts and algorithms developed in this research. 

 

1.3  Report Outline 

 

Chapter 2 describes a study of TDS2 freeway inductive loop signature and V2SAT video detection feature 

extraction, for purposes of vehicle reidentification via fusion of loop and video data.  Chapter 3 presents an 

analysis of point traffic data in TDS2 including inductive loop volume accuracy analysis, speed analysis 

and single loop speed estimation.  Chapter 4 presents an analysis of freeway section data in TDS2 including 

ground truthing, vehicle reidentification using loops only and vehicle reidentification based on fusion of 

loop and video data.  Chapter 5 describes data communication and real-time traffic information provision 

via a project web-site.  Chapter 6 presents the results of an initial study of the EDIS or Blade detector, 

including feature extraction and analysis, and a new technique for vehicle reidentification with the blade 

detector.  Finally, Chapter 7 summarizes the conclusions of this research and directions for future research.  

   4



 

CHAPTER 2   FEATURE DATA EXTRACTION 

 

 

2.1. Introduction 

 

This section presents feature derivation from the sensors used in this project.  Loop signature data and 

video data are described.  In both cases, feature vectors are categorized into two categories: vehicle specific 

feature vectors and traffic specific feature vectors.  Vehicle specific feature vectors represent the features 

that are unique according to a vehicle itself, therefore they are invariant over time or location.  Vehicle 

length is a good example for this category.  Traffic specific feature vectors indicate the features that could 

describe either traffic condition or road geometry.  Speed and lane information fall into this category.  

Correlation between feature vectors and repeatability analysis are also presented. 

 

2.2. Loop Signature Data 

 

The advanced IST-222 loop detector card enables capture of the inductance change over the loop at high 

scan rate when a vehicle is present.  These inductance changes are vehicle loop signatures and many feature 

vectors are available by processing the signatures.  Feature description and the correlation among feature 

vectors are mentioned in the following paragraphs.   

 

2.2.1. Vehicle Specific Feature Vector 

 

As mentioned earlier, vehicle specific features represent the “unique” characteristics of vehicles such as 

vehicle length.  In this study, four vectors were chosen as candidates for vehicle specific feature vectors.  

Figure 2.1 and Table 2.1 explain these four features: maximum magnitude, vehicle electronic length, shape 

parameter (SP) and number of high magnitude (NHM). 

 

Figure 2.1.  Signature Feature 
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Table 2.1.  Signature Feature 

Feature Vector Feature Description 

Maximum Magnitude Maximum absolute magnitude value (a) 

Electronic Vehicle Length (d) 

Shape Parameter (SP) Degree of Symmetry ((b)/(b+c)) 

Number of High Magnitude (NHM) Sample number above “0.5” y value after x,y normalization 

 

 

Because vehicle length is the most salient feature vector in representing vehicle type, the correlation 

analysis between vehicle length and other features was investigated.  The main purpose of this study is for 

the vehicle grouping and classification module inside the single loop speed estimation algorithm, which 

will be discussed in Chapter 3. 

 

Based on Figure 2.2 ~ 2.4, the SP and NHM have high correlation with the vehicle electronic length.  

Especially, the SP and vehicle length has a clear “U” curve, 2nd order parabola, relationship. 

 

For the vehicle signature repeatability analysis, feature vectors differences for identical vehicles at different 

locations were investigated.  Figure 2.5. ~ Figure 2.8. show the relationship of the same vehicle features at 

different locations.  It is clear that vehicle length and NHM follow the 45 degree line, which implies the 

reliable feature repeatability.  SP also shows promising vehicle specific feature characteristics, invariability 

over space.  But it is obvious that maximum magnitude doesn’t meet this standard and therefore, was 

eliminated from the vehicle specific feature vector set.  The percentage error for each feature vector 

difference is illustrated in Table 2.2.  According to this table, maximum magnitude yields the highest 

percentage error compared to other 3 feature vectors.  Again this supports the selection of vehicle length, 

SP and NHM for vehicle specific feature vectors. 
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Figure2.2.  Vehicle Length vs Maximum Magnitude 

 

 
Figure 2.3.  Vehicle Length vs SP 
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Figure 2.4.  Vehicle Length vs NHM 
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Figure 2.5.  Vehicle Length at Different Locations 

 

 
Figure 2.6.  Maximum Magnitude at Different Locations 
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Figure 2.7.  Shape Parameter at Different Locations 

 

 
Figure 2.8.  NHM at Different Locations 
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Table 2.2.  Percentage Error of Feature Vectors Difference 

Feature Vector Percentage Error in Feature Difference 

Maximum Magnitude 22.97 

Electronic Length 1.34 

Shape Parameter (SP) 4.02 

Number of High Magnitude (NHM) 2.09 

 

In summary, three vehicle specific feature vectors, vehicle electronic length, SP, and NHM were chosen. 

 

2.2.2. Traffic Specific Feature Vector 

 

Speed, occupancy, lane information and station detection time were classified as traffic specific features.  

In this study, speed was generated using the double loop speed trap.   

 

2.3  V2SAT Data 

 

Video images were generated using the V2SAT system, which was presented in the previous chapter.  From 

the cameras installed right above each traffic lane, the image profile for each individual vehicle was 

captured.  Figure 2.9 shows a sample V2SAT image.  In this section image processing and video feature 

derivation steps are discussed. 

 

 
Figure 2.9.  Sample V2SAT image 

 

 

In order to derive image feature vectors, the following steps were processed.  

• Background subtraction 
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• Color information extraction 

• Conversion into binary plane 

 

 

 

2.3.1 Vehicle Specific Feature Vector 

 

One of the salient feature vectors in image data is the color information, which is usually described as RGB 

planes (Red-Green-Blue).  In this study Matlab was used for RGB extraction.  In Matlab, an image is stored 

in red, green and blue planes and each part of image is determined by the combination of those planes’ 

intensities.  The intensity value range for each plane is from 0 to 1.  The combination of “0” intensities at 

each RGB plane shows black.  In contrast, the combination of “1”’s displays as white image.  The 

following two figures show the difference in RGB planes from two different color vehicles, blue and red 

vehicle.  As is clear in the figures, for the blue car the blue plane is the darkest whereas in case of red car 

the red plane presents the darkest one.  This feature difference will help to distinguish vehicles that have 

similar signatures but different colors and contribute to the higher correct matching rate for vehicle 

reidentification algorithm. 

 

The number of pixels (NP) that falls between an upper and lower intensity threshold value at each color 

plane is also a good vehicle specific feature.  The selection of optimal upper and lower threshold value was 

examined and based on an extensive analysis, 0.9 and 0.1 were chosen as upper and lower threshold values 

respectively.  The repeatability of NP at each color plane for the same vehicles at different location is 

shown in Figure 2.12.  
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Image conversion from RGB planes to binary planes was performed to obtain vehicle length and width.  

Binary planes differ from RGB planes in that the plane intensity value is either 0 or 1 according to the 

specified conversion threshold value.  Figure 2.13 describes vehicle image change at different threshold 

level.  In this study, 0.3 was set as threshold value. 
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Figure 2.10.  RGB planes for Blue Car 
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Figure 2.11.  RGB planes for Red Car 
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Figure 2.12.  NP for identical vehicles at different locations 

 

 

 
Figure 2.13.  Binary Image Conversion 
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2.3.2  Traffic Specific Feature Vector 

 

As for traffic specific feature vectors, station detection time and lane information were selected. 

 

Table 2.3.  Feature Summary 

 

 Loop Signatures Video Images 

Vehicle Specific Features Vehicle Length 

Shape Parameter 

NHM 

RGB 

Vehicle Width 

Vehicle Length 

Traffic Specific Features Lane 

Time stamp 

Speed 

Lane 

Time Stamp 

 

 

2.4 Concluding Comment 

 

In this section, the derivation and selection of salient feature vectors from two different sensors was 

discussed.  Analysis of feature vector correlation and repeatability was also presented. 
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CHAPTER 3   TDS2 FREEWAY POINT DATA ANALYSIS 

 

 

3.1  Loop Volume Accuracy Analysis 

 

3.1.1  Background 

 

The objective of this analysis was to obtain a preliminary volume accuracy estimate of the IST-222 loop 

detectors.  This was achieved through matching of data collected through the IST-222 loop detectors with 

video images obtained from the V2SAT system.   

 

3.1.2 Data 

 

The study data were obtained from a field site on the northbound I-405 freeway at Laguna Canyon on July 

23, 2002.  Two data acquisition stations were instrumented with video and loop waveform data loggers.  

Standard 6 ft × 6 ft (1.82 m × 1.82 m ) loops were used.  Several hours of data were collected, but a smaller 

portion of the data was chosen, when there was sustained data logging in both systems for all lanes 

The period of the analysis was between 1505hrs and 1550hrs on July 23 2002, as it provided optimal 

lighting conditions for the V2SAT video cameras.  In addition, IST-222 and V2SAT equipment were in 

operation for all lanes during this period. 

 

The loop signatures used in this study were obtained using the IST-222 Loop Detectors.  These detectors 

are triggered by the change in inductance of loops embedded in the pavements by ferrous properties of 

passing vehicles.  The subsequent change of inductance as the vehicle passes through is stored as a loop 

signature.  Each signature has an associated date and time stamp and is grouped by lane.  The parameter 

used in this study was the time stamp of the signatures.  There were a total of 5556 loop signature records 

during the analysis period. 

 

All video images obtained from the V2SAT system were stored as JPEG files, and had an associated date 

and time stamp in the file name.  These vehicle images were captured by video cameras mounted over each 

lane.  The date and time stamps were extracted from each file and saved as the dataset for volume accuracy 

analysis.  A total of 5340 V2SAT events were recorded during the analysis period. 

 

A summary of the number of IST and V2SAT events for each lane is shown in Table 3.1.   In all lanes with 

exception of lanes 2 and 3, there were more recorded IST events than V2SAT events.  This is because the 

V2SAT system was generally less sensitive than the IST system, which resulted in some missed vehicle 

events. 
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Table 3.1  Summary of IST and V2SAT events by lanes 

Lane 1 2 3 4 5 6 7 Total 

IST 614 1317 1289 952 773 339 272 5556 

V2SAT 534 1330 1295 886 754 280 261 5340 

 

However, in higher traffic volumes, the IST system suffered from undercounting errors caused by a higher 

incidence of tailgating vehicles, where several single loop events contained more than one vehicle 

signature.  Hence, lanes 2 and 3, which also happened to be the highest volume lanes, had higher volume 

counts from the V2SAT system than the IST system. 

 
3.1.3  Methodology 
 

Validation of V2SAT data 

The purpose of the study was to ground truth the IST data against V2SAT data.  Hence, the first task was to 

remove erroneous video events from the V2SAT data.  These are empty video events triggered by vehicles 

in adjacent lanes, or duplicate video events, such as additional records of the rear of trailers or other long 

vehicles. 

Synchronizing IST and V2SAT data 

The next challenge in the study was to synchronize the times between the IST and the V2SAT system.  The 

IST system used a common time reference for all lanes, while the V2SAT used an individual time stamping 

system for each lane.  This caused a time discrepancy not only between the IST and V2SAT system, but 

also between lanes within the V2SAT system.  In addition, data buffering within the V2SAT system also 

resulted in a small variation between detection time and time stamping. 

 

A program was written in MATLAB to analyze the IST data sequentially and identify a possible match in 

the V2SAT data within the proximity of the offset between the systems.  The proximity window could be 

relaxed to increase the possibility of finding a vehicle within the window, or shrunk to reduce the 

likelihood of a mismatch. 

 

With the randomness of traffic flow, there would only be one true offset value between the IST and V2SAT 

data that would produce the highest match rate, i.e., the highest number of data points in the IST dataset 

with a corresponding V2SAT data point within their corresponding time windows.  These optimum offsets 

for each lane are established by varying the offset values in small incremental values, and finding the value 

with the highest match rate. 
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In order to improve the accuracy of matches, the dataset was sub-divided into 5 minute intervals, for a more 

precise offset to be obtained.  It was found that the offset for each lane was not a constant throughout the 

analysis period.  In fact, the offset varied with each subsequent time interval, and had a general tendency to 

increase with time.  The linearity of the increase in offset with time could not be established with the 

limited number of interval periods. 

Analysis of Volume Accuracy 

The final step is the analysis of volume accuracy of the IST with the V2SAT data.  A time window of 2 

seconds was used in this analysis to obtain matches with the V2SAT data.  Although a larger time window 

always increases the matching rate, it would also increase the possibility of matching to a wrong vehicle.  

Hence, with consideration of realistic car following time gaps, a time window of 2 seconds was determined 

to be the optimal value. 

 

From the analysis, 3 values are obtained.  They are the matched IST and V2SAT events, unmatched IST 

events and unmatched V2SAT events.  Considering that most of the IST events are likely true events 

missed by the V2SAT system and that there are still some positive matches within the unmatched IST and 

V2SAT events missed by the analysis, a lower bound estimate of the volume accuracy the IST system 

would be as follows: 

 

%100

Events V2SAT Unmatched
Events IST UnmatchedEvents Matched
Events IST UnmatchedEvents MatchedAccuracy Volume IST ×



















+
+
+

=  (3.1) 

 

Also, since a significant number of the unmatched IST events are true events, it is reasonable to assume 

that an upper bound estimate of the false or erroneous events in the IST system can be represented by the 

following equation: 

 

%100
Events V2SAT  Unmatched Events Matched

Events IST Unmatched RateEvent  False IST ×





+
=  (3.2) 

 

Such false events are usually double counts caused by lane changing vehicles that pass over inductive loops 

on both lanes. 
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3.1.4  Results 

 

First, a time window of 0.6 seconds was set to capture some of the variability in the time stamping within 

the V2SAT system due to data buffering.  From preliminary investigations, it was found that the offset 

between the IST and V2SAT datasets was between 120 and 180 seconds.  Hence, the offset was ranged 

between 120 and 180 seconds, and unique matches with V2SAT data within the time window of each IST 

data were recorded.  The initial offset values obtained are shown in Table 3.2.  As shown in Figure 3.1, the 

percentage of matches peaked only at a unique offset value for each lane due to the randomness of traffic 

flow.   

Table 3.2  Initial offset values for entire analysis period 

 Lane 1 2 3 4 5 6 7 

Offset 

(seconds) 
170.0 162.9 146.2 154.7 170.1 167.1 147.7 
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Figure 3.1  Initial Offset Analysis between IST and V2SAT datasets 
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With the initial offsets determined, the dataset was sub-divided into 5-minute intervals to obtain more 

accurate offset values that reflect the time drift between the IST and V2SAT system.  The results from this 

offset analysis at 5-minute intervals is summarized in Table 3.3.  It can be observed that there is a general 

increasing trend in offset times with time. 

Table 3.3  Offset Analysis at 5-minute Intervals 

Interval Lane 1 Lane 2 Lane 3 Lane 4 Lane 5 Lane 6 Lane 7 

1505 - 1510 169.3 162.5 145.5 154.5 169.6 166.7 147.0 

1510 - 1515 169.4 162.7 145.6 154.5 169.5 166.7 147.4 

1515 - 1520 169.7 162.8 145.9 154.7 169.9 166.9 147.5 

1520 - 1525 169.5 162.9 146.2 154.6 170.1 167.1 147.6 

1525 - 1530 169.9 162.7 146.1 154.9 170.2 167.3 147.7 

1530 - 1535 169.8 162.9 146.2 155.1 170.2 167.5 148.1 

1535 - 1540 170.3 163.3 146.2 155.2 170.1 167.4 148.0 

1540 - 1545 170.3 163.2 146.4 155.1 170.3 167.3 148.2 

1545 - 1550 170.3 163.2 146.6 155.6 170.6 167.6 148.0 

 

Using a time window of 2 seconds, there were a total of 5051 matched events between the IST and V2SAT 

datasets.  This resulted in a lower bound IST volume accuracy of 95.06% and upper bound IST false event 

rate of 9.46%, obtained using equations 3.1 and 3.2.  The summary of the volume accuracy analysis for all 

lanes is shown in Table 3.4. 

Table 3.4  Summary of volume accuracy analysis across all lanes 

Lane IST V2SAT Matches 
Unmatched 

IST 

Unmatched 

V2SAT 

L.B. Volume 

Accuracy 

U.B. False 

Event Rate 

1 614 534 518 96 16 97.46% 17.98% 

2 1317 1330 1277 40 53 96.13% 3.01% 

3 1289 1295 1242 47 53 96.05% 3.63% 

4 952 886 813 139 73 92.88% 15.69% 

5 773 754 687 86 67 92.02% 11.41% 

6 339 280 267 72 13 96.31% 25.71% 

7 272 261 247 25 14 95.10% 9.58% 

Overall 5556 5340 5051 505 289 95.06% 9.46% 
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3.1.5 Concluding Comments 

 

From the results obtained, the performance of the IST loop detectors gives a volume accuracy of at least 95%.  The 

maximum false event rate of the IST loop detectors is about 9.5%, although this would be an extreme overestimate, 

since it assumes that all unmatched IST events are false events. 

 

Overall, the results from the volume accuracy analysis provide a reasonable estimate to the reliability of IST data.  

This method is inherently limited by the accuracy of the V2SAT data, which the IST data is compared to.  Hence, for 

an improved volume accuracy analysis, the V2SAT system must be made more sensitive to capture 100% of traffic 

events.  In addition, the variability of the time stamp as well as the time drift within the V2SAT system must be 

addressed.  This would allow for the use of a much smaller time window, which would further eliminate possible 

error matches between the IST and V2SAT datasets, further improving the reliability of the analysis. 

 

 

3.2  Speed Analysis 

 

The speed of each lane at each station is illustrated in Figure 3.2 and Figure 3.3.  As expected, the HOV lanes 

showed relatively high speed compared to other lanes.  The speed difference between fastest and slowest lane was 

about 10 ~ 20 mph at both stations.   
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Figure 3.2.  Upstream Speed Distribution according to the lane 

 

 
Figure 3.3.  Downstream Speed Distribution according to the lane 
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Tables 3.5 and 3.6 show the average and standard deviation of vehicle length and speed in each lane.  In case of 

lanes 5 and 6 at both stations, the standard deviations of vehicle length were high because of high truck and trailer 

volumes.  In those cases, the standard deviations of speed were also large compared with other lanes.  This indicates 

the correlation between vehicle composition and speed variation exists.  The investigation on the effect of vehicle 

type heterogeneity on speed variance is one of the interesting future studies.   

 

Rather than the vehicle length distribution, special road geometry was the main cause of high value in speed 

standard deviation at upstream lane 7 (merging lane) and downstream off ramp. 

 

Table 3.5  Upstream Vehicle Length and Speed Statistics 

Length Speed  

Average STD Average STD 

Lane1 (HOV) 4.667444 0.565347 75.35151 4.567755 

Lane2 4.947038 2.105771 75.26212 4.281101 

Lane3 5.173064 2.678814 72.79188 4.528061 

Lane4 5.695 3.637672 70.06944 5.256258 

Lane5 5.798704 3.470313 67.33424 6.281174 

Lane6 5.164232 2.232747 65.17844 6.005204 

Lane7 5.186757 2.192707 63.56187 7.310732 

 

 

 

Table 3.6  Downstream Vehicle Length and Speed Statistics 

Length Speed  

Average STD Average STD 

Lane1 (HOV) 4.758947 1.147045 74.08277 4.986483 

Lane2 (HOV) 4.881813 1.883141 75.62387 4.622439 

Lane3 5.103941 2.481683 73.49872 4.327911 

Lane4 5.287474 3.054583 70.14197 4.416055 

Lane5 5.983259 3.88531 67.13084 5.794152 

Lane6 5.878609 3.51793 64.21106 6.140121 

Off Ramp 5.023153 1.642307 60.44909 6.813628 
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3.3 Single Loop Speed Estimation 

 

A more robust and enhanced single loop speed estimation algorithm was developed based on more than 50,000 

vehicles over 7 hours during AM peak and PM.  Vehicle classification study was also performed as part of single 

loop speed investigation. 

 

3.3.1  Vehicle Grouping 

 

The assumption of same effective vehicle length for single loop speed estimation is a major element contributing to 

speed estimation error.  Therefore, differentiating vehicles into different groups according to vehicle length is the 

first step to improve single loop speed estimation.  Because vehicle length can only be derived after speed 

calculation another vehicle specific feature, shape parameter (SP) was used for vehicle grouping.  The correlation 

analysis between vehicle length and shape parameter was discussed in the previous chapter.  Figure 3.4 depicts the 

vehicle length distribution of each vehicle group.  Vehicle length variance was the highest for group II and this 

resulted in higher speed estimation error as shown in Table 3.7. 

 

 
 

Figure 3.4 Length Distribution for each Vehicle Group 
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3.3.2  Statistical Module 

 

Detailed description of the statistical module can be found in the previous PATH report (Field Investigation of 

Advanced Vehicle Reidentification Techniques and Detector Technologies – Phase I, UCB-ITS-PRR-2002-15) by 

the authors.  Each different statistical model was applied for each vehicle group.  Table 3.7 presents the estimation 

dataset as well as the estimation result using the test dataset.  Speed from double loop speed trap was used as ground 

truth. 

 

 

Table 3.7  Single Loop Speed Estimation Model Summary 

Vehicle Length Estimation Model Dataset Estimation Result 

(with Test Dataset) 

 

Average STD Total Calibration Test Error 

(mps) 

Error 

(mph) 

Error 

(%) 

Group1 4.66 0.51 50,080 25,000 25,080 1.29 2.89 4.90 

Group2 12.31 4.22 786 400 386 1.95 4.37 7.67 

Group3 18.41 2.70 1,356 622 734 1.85 4.15 6.75 

Group4 7.55 2.55 440 200 240 2.02 4.54 8.16 

mps : meter per second 

mph : mile per hour 

 

3.3.3 Estimation Result 

 

Table 3.8 shows the single loop speed estimation result when applied to the whole dataset according to the different 

interval.  Because the speed variation was not high at PM period, the estimation error was relatively small compared 

to the AM case.  In all cases, the percentage average error was less than 4% even though the speed fluctuation was 

high in AM peak period.  Figures 3.5 and 3.6 graphically depict the true and estimated speeds during the AM and 

PM periods, respectively, for the three different aggregation intervals. 

 

Table 3.8  Single Loop Speed Result 

AM PM Aggregation Interval (second) 

Error (mph) Error (%) Error (mph) Error (%) 

30 1.88 3.55 0.92 1.29 

60 1.78 3.33 0.83 1.17 

300 1.45 2.66 1.22 1.07 

 

Figure 3.5 a)  AM Speed Analysis – 30 second interval 
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Figure 3.5 b)  AM Speed Analysis – 60 second interval 

 

 
 

Figure 3.5 c)  AM Speed Analysis – 300 second interval 
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Figure 3.6 a)  PM Speed Analysis – 30 second interval 

 

 
Figure 3.6 b)  PM Speed Analysis – 60 second interval 
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Figure 3.6 c)  PM Speed Analysis – 300 second interval 
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3.3.4 Concluding Comments 

 

Improvement in vehicle grouping will enhance the overall single loop speed estimation result.  Only one vehicle 

specific feature, shape parameter, was used in this vehicle grouping even though the NHM was highly correlated to 

the vehicle length.  This is because NHM can be only obtained once the speed is calculated, meaning this feature is 

not available for the proposed speed estimation algorithm input.  Investigation on vehicle specific features finding 

will enhance the vehicle grouping accuracy.  Moreover, vehicle classification can be automatically achieved while 

vehicle grouping is performed.  This is a very encouraging result considering that vehicle length, the core element 

for vehicle classification, is not directly obtainable in single loop configuration. 
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CHAPTER 4   TDS2 FREEWAY SECTION DATA ANALYSIS 

 

 

4.1. Introduction 

 

Vehicle reidentification using the TDS2 N I-405 freeway data is discussed in this section.  Travel time estimation 

and origin destination matrix estimation are identified as useful outputs from the vehicle reidentification algorithm.  

Sensitivity analysis between reidentification performance and signature feature restriction is also investigated.  The 

last section suggests future vehicle reidentification algorithm enhancement by fusing data from multiple sensors.  

Initial investigation based on a small dataset indicates encouraging results. 

 

4.2. I-405 Freeway Vehicle Reidentification (REID) 

 

4.2.1. Vehicle Reidentification Result 

 

Vehicle reidentification algorithm was tested using the same July 23rd, 2002 dataset mentioned in earlier chapters.  

Figure 4.1 illustrates the proposed vehicle reidentification algorithm procedure.  The results are presented in Table 

4.1 and 4.2.  As defined in Table 4.1, the system reliability rate represents the confidence level of the reidentification 

algorithm result.  The likelihood of having higher matching rate will probably increase if the total algorithm 

declared matching volume (B) is high.  However, this could also yield in high mismatched vehicle pairs and yielding 

high error in traffic parameters estimation.  Therefore, rather than mainly focusing on high correct matching rate, the 

balance between correct matching rate and system reliability rate should be considered.  It is recommendable to set a 

predefined and acceptable system reliability rate that would generate accurate traffic parameters.   

 

Table 4.1.  Reidentification Result 

 

Total Volume (A) 2257 

REID Algorithm Declared Matching Volume (B) 1844 

REID Correct Matching Volume (C) 1626 

Correct Matching Rate (=C/A) 72.04 

System Reliability Rate (=C/B) 88.18 
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Table 4.2.  Reidentification Result by Vehicle Type 

 

Vehicle Type Actual Volume Correct Matching volume Correct Matching Rate % 

Motorcycle 4 3 75 

Passenger Car 1127 735 65.22 

SUV/Van 637 470 73.78 

Truck/Trailer 132 118 89.40 

Pickup 352 296 84.09 

Bus 5 4 80 

Total 2257 1626 72.04 
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Figure 4.1.  Vehicle Reidentification Algorithm Procedure 

 

Table 4.2 describes the reidentification result by vehicle types.  Because the signatures of motorcycle, bus, truck, 

and trailer are so unique, the correct matching rates were relatively higher than that of passenger car.  In order to 

improve the correct matching rate of passenger car, the data fusion methodology will be presented later in this 

chapter.   

 

Table 4.3 shows the sensitivity analysis among algorithm correct matching rate, system reliability and signature 

length restriction threshold.  As we can see when the length restriction value is “0.7”, the algorithm outputs the 

highest correct matching rate.  But it is clear that the system reliability rate is lower in this case compared to the case 

of length restriction “0.5”.  Because it is also important to derive more accurate traffic parameters and section data 

with higher system reliability rate, the threshold value “0.5” was selected in this research. 
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Table 4.3.  Sensitivity Analysis I 

Length Restriction Correct Matching Rate ( %) System Reliability Rate ( %) 

0.1 69.16 88.34 

0.2 71.69 88.36 

0.3 71.82 88.10 

0.4 71.90 88.16 

0.5 72.04 88.18 

0.6 72.04 88.04 

0.7 72.13 88.09 

0.8 72.13 88.05 

 

 

4.2.2. Origin Destination Estimation 

 

Origin-Destination matrix is one of the useful section data from the vehicle reidentification algorithm.  Table 4.4 and 

Table 4.5 present the estimated O-D matrix and true O-D matrix respectively.  Because not all the vehicles were 

matched in the reidentification algorithm, the O-D matrix was estimated by multiplying by a weighting factor.  The 

following formula explains O-D estimation in this research.   

 

 origins ofNumber  :
detectionpoint  from obtainedk  period over time jn destinatioat  observed flow Total :)(_

cationreidentifi  vehiclefrom obtained                               
k  period over time jn destinatio  toiorigin  from  travelingflow  edReidentifi :)(_Re
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The estimated O-D matrix error was examined using two criteria.  One is the correlation analysis as well as the 

linear relationship analysis.  Figure 4.2 shows the linear relationship between estimated and true OD pairs.  The line 

slope in this figure is 45 degree and it is clear that the estimated OD result follows closely the true OD values.  The 

correlation between the two matrices shows 0.99, which indicates high linear correspondence.   
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A misclassified OD pair percentage was used as the second criterion to evaluate estimated OD matrix.  In this 

research, using the following formula, the error was 9.22%.  This means that about 9.22 percent out of total OD 

pairs were assigned on wrong paths.   

 

volumeODTrue
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ndestinatioofnumberm
originofnmbern

where

ErrorOD

OD
OD

OD

TRUE

REID

ijREID

:

lg:

:
:

100*
)abs(

 m

1i

n

1j
ijTRUE

m

1i

n

1j
ijTRUE:

OD

OD


















−

=

∑∑

∑∑

= =

= =

 

 

 

Table 4.4.  Origin Destination Matrix from Vehicle Reidentification 

 1 (HOV) 2 (HOV) 3 4 5 6 Off Ramp 

1 (HOV) 255 12 6 0 0 0 0 

2 10 17 460 60 1 0 0 

3 3 5 63 357 47 1 0 

4 0 4 14 64 311 38 4 

5 0 0 14 19 52 209 29 

6 0 48 3 29 34 0 12 

7 0 0 0 0 18 50 8 

 

Table 4.5.  True Origin Destination Matrix 

 1 (HOV) 2 (HOV) 3 4 5 6 Off Ramp 

1 (HOV) 263 11 1 0 0 0 0 

2 2 22 468 52 11 1 0 

3 0 4 60 347 49 10 1 

4 1 3 11 68 283 43 5 

5 2 3 8 23 57 191 27 

6 0 43 11 30 40 0 14 

7 0 0 1 9 23 53 6 
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Figure 4.2.  Estimated OD and True OD 
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4.2.3. Section Travel Time Estimation 

 

Section travel time is one of the most important parameters for ATMIS and efficient traffic control.  Travel time can 

also serve as an index for traffic variation as well as traffic stability.  Table 4.6 illustrates the estimated section travel 

time error from vehicle reidentification at different aggregation intervals.   

 

Table 4.6.  Travel Time Error 

Aggregation Interval (second) Average % Error 

30 1.67 

60 0.87 

90 1.03 

 

In all cases, the percentage error was less than 1.7%.  The estimated travel time tends to be overestimated.  This can 

be explained from the lower correct matching rate for passenger car, which is in general a high-speed vehicle type.  

In contrast the slow vehicle such as trailer shows high correct matching rate and this is also one factor contributing 

to the travel time overestimation.   

 

Figures 4.3, 4.4 and 4.5 illustrate the derived section travel time at different aggregation intervals along the analysis 

time period.   
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Figure 4.3.  Travel Time at 30 second Aggregation Interval 
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Figure 4.4.  Travel Time at 60 second Aggregation Interval 
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Figure 4.5.  Travel Time at 90 second Aggregation Interval 
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4.3. Vehicle Reidentification Enhancement Using Data Fusion 

 

In order to enhance vehicle reidentification algorithm performance, fusion with the V2SAT video image dataset was 

investigated.  Only a small dataset from the HOV lane was tested for this initial research.  It was assumed that the 

additional vehicle color information from these video images would improve the vehicle reidentification algorithm, 

especially in case of passenger cars where the signature feature vectors are quite similar.   

 

Comparison of vehicle reidentification algorithm performance using different datasets is presented in Table 4.7.  

Even though the improvement rate was not high, the system reliability rate increased significantly, being close to 

100 percent.  The system reliability enhancement yields a low incorrect matching rate, which also reduces errors in 

traffic parameter estimation.  Once again, this confirms the importance of system reliability.   

 

Table 4.7.  Vehicle Reidentification Result Comparison 

Algorithm Result Data Total 

Volume 

(A) 

Correct 

Matching 

(B) 

Incorrect 

Matching 

Total 

Matching 

(C)  

REID Correct 

Matching Rate 

(%, B/A) 

REID Reliability 

Rate 

(%, B/C) 

Loop Signature 

Data 

204 184 6 190 90.2 96.8 

Loop Signature 

and Video Data 

204 187 1 188 91.7 99.5 

 

 

Table 4.8 illustrates the reidentification result by vehicle type.  As expected, the correct matching rate in the 

passenger car group was improved by fusing the loop signature data and video image data.  Figure 4.6 shows an 

example of a passenger car that was matched incorrectly when only loop signature data was applied but correctly 

matched when the fused dataset was used.  It is clear that the signature data for both vehicles are similar.  But from 

the video data, the two vehicles show a different color pattern and this additional information increased the correct 

matching rate.   
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Table 4.8.  Vehicle Reidentification Result by Vehicle Type 

 

Vehicle Type Total Volume Signature Data Signature and  

Video Data 

Passenger Car 93 80 83 

Pickup Truck 73 67 67 

Van/ SUV 37 36 36 

3 – Axle Single Unit Truck 1 1 1 

Total 204 184 187 

 

This data fusion approach is very helpful in deriving a high correct matching rate, especially in the case of passenger 

cars, which usually occupies the largest vehicle category both in freeways and arterials.  Also, the reduced number 

of incorrectly matched vehicle pairs can yield more accurate estimation of traffic parameters.   

 

 
Figure 4.6.  Vehicle Signature and Video Data Comparison 

 

4.4. Conclusion 

 

Vehicle reidentification algorithm result based on loop signature data and fused dataset with video images is 

presented.  The importance of system reliability rate is discussed.  It was also proven that the fused dataset 
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contributes on the increase of system reliability rate.  Consequently, this will improve the accurate traffic parameter 

estimation.   

   45



 

CHAPTER 5   DATA COMMUNICATION AND REAL-TIME TRAFFIC INFORMATION PROVISION 

VIA WEBSITE 

 

 

5.1 Introduction 

 

A website for providing real-time traffic performance data obtained from the vehicle reidentification system to users 

on-line has been operated, and is connected by an existing UCI/City of Irvine network to an industrial PC in the 

controller cabinet running the vehicle reidentification algorithms. This chapter presents the communication method 

between Traffic Detection and Surveillance Sub-testbed (TDS2) on the I-405 northbound freeway and the website. 

The ability to obtain valuable real-time traffic information through the vehicle reidentification results displayed on 

the website is also introduced. 

 

5.2  Data Communication 

 

The TDS2 comprises two contiguous sites 1 km apart along the Northbound I-405 freeway in Irvine – at I-405 and 

Laguna Canyon Road (Figure 5.1), and at I-405 and Sand Canyon Avenue.  It was instrumented with double 

inductive loops in all lanes (including HOV lanes and the off-ramp at Sand Canyon). In addition, overhead vertical-

mount video cameras were installed over each lane of traffic (including the Sand Canyon off-ramp) and were 

connected to a ground-truthing video image processing system. A number of traffic cabinets to house computers, 

communications, and video image processing equipment were also installed (Figure 5.2). 

 

Communications between the upstream and downstream sites is by dedicated high-speed wireless Ethernet, with 

fiber optic cable between the downstream mainline cabinets and the Sand Canyon cabinet. Wireless Ethernet is also 

used to communicate from the downstream site to a City of Irvine cabinet where data enters the City network and is 

sent to the UCI testbed labs and a UCI data and web server, as well as the internet.  

 

An on-line version of the freeway vehicle reidentification algorithm was implemented on the industrial PCs in traffic 

cabinets upstream and downstream and reidentified section data (such as travel time, speed, vehicle-hours, vehicle-

miles, and lane by lane OD flows and travel times) was aggregated into regular time intervals, in most cases 

acceptable minimum intervals such as 60 seconds, at the remote sites. Aggregated data was sent to the data center at 

UCI and received by the data collection server located at the data center. The collection server receives data and 

posts records into the database server. The web server queries data from the database, performs more aggregation if 

needed and presents data in tables and graphs to users. The database is also designed to address future data from 

different and multiple detectors. For efficient and high speed algorithm operation on-site, the aggregated data is sent 

continuously, and the processed individual raw vehicle signatures are stored on-site during the day. The stored 

signature data are transmitted at night when both freeway traffic and the website load are relatively light. Currently, 
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the data collection, database, and web services are integrated into a single server that is an Intel-based dual processor 

running Windows 2000. These services could be distributed over multiple servers in the future. In terms of software, 

the data collection server uses Java, the database server uses Microsoft SQL server, and the web server uses 

ColdFusion. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.1 Upstream of TDS2 on Northbound I-405 freeway (Laguna Canyon) 
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Figure 5.2 Field traffic cabinets 
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5.3  Real-time Traffic Information Provision Via Web-site 

 

Both point traffic data and section traffic data are provided by the website in real time. Various aggregation intervals 

specified by users can be employed to represent dynamic traffic characteristics.   

 

5.3.1  Point Data 

 

Fundamental traffic parameters obtained from individual detector stations are presented by tables and graphs. Figure 

5.3 presents an example of point volume and speed data aggregated over 2 minutes. Vehicle classification 

information is also produced by the vehicle reidentification algorithm and displayed through the website. Vehicle 

classification is the process of vehicle type recognition based on given vehicle characteristics. Accurate vehicle 

classification has many important applications in transportation. Those applications include highway maintenance 

that is highly related to the monitoring of heavy vehicles and traffic safety focusing on identifying the relationship 

between the accident severity and vehicle types. Figure 5.4 presents the website page of real-time vehicle 

classification information. 

 

5.3.2 Section Data 

 

Section data such as travel time, section speed, and reidentified volume are obtained from the reidentified data 

between upstream and downstream locations. One of the nicest features of this study is the ability to provide real-

time origin destination (OD) information. Lane by lane OD information including travel time and volume is also 

presented through the website as shown in Figure 5.5. Real-time OD traffic volume is derived as follows. 
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5.3.3  Real-time Level of Service (LOS) 

 

According to Highway Capacity Manual (HCM), traffic density is the parameter used to define Level Of Service 

(LOS) criteria for basic freeway sections. Unlike speed, density increases as flow increases up to capacity, resulting 
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in a measure of effectiveness which is sensitive to a broad range of flows. Under this project, the vehicle 

reidentification system produces the section density as one of the useful traffic parameters. Therefore, the direct 

measurement for freeway LOS is available. Figure 5.6 shows an example of real-time LOS information. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.3 Point data example 
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Figure 5.4 Real-time vehicle classification information 
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Figure 5.5 Section based traffic information 
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Figure 5.6 Real-time LOS information 
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CHAPTER 6   VEHICLE REIDENTIFICATION USING HETEROGENEOUS DETECTION SYSTEMS 

 

 

  

6.1  Introduction 

 

Travel time has been identified as a particularly important traffic parameter for evaluating the performance of 

dynamic traffic systems by transportation researchers and engineers. It is also important because it is an input to 

advanced transportation management and information systems (ATMIS) to alleviate traffic congestion and its 

associated impacts. 

 

A promising approach to obtain travel times is tracking vehicle to identify their locations and arrival times, so that 

travel times can be readily collected. A variety of sensor technologies have been developed and tested for tracing 

individual vehicles on transportation networks. Use of global positioning system (GPS) and in-vehicle tag-based 

automatic vehicle identification (AVI) technologies have been successfully used for obtaining accurate travel times. 

However, privacy issues still remain with such systems, and a limited market penetration does not yet allow us to 

measure wide-area transportation performance. As a result, it would be advantageous if individual vehicles could be 

traced without any privacy concerns on wide-area transportation networks. 

 

In order to meet the aforementioned requirement, there has recently been substantial interest in implementing 

vehicle reidentification systems that anonymously trace vehicles in a network. Examples include license plate 

matching (1), use of existing loop detectors with high speed scanning detector cards to generate inductive signatures 

(2-8), laser-based detection systems (9) providing vehicle length, and video-based vehicle signature generation (10) 

using video image processing technology.  

 

Previous studies performed by the authors (2-8) have proven that accurate travel times can be obtained from 

inductive signature-based vehicle reidentification using new detector card technology. Because inductive loops are 

still the dominant surveillance system in the U.S. and many other countries, use of such loops for vehicle 

reidentification is potentially quite cost-effective. 

 

This paper investigates the feasibility of real-time vehicle reidentification algorithm development at a signalized 

intersection where different traffic detection technologies were employed at upstream and downstream locations. 

Previous research by the authors on vehicle reidentification has utilized the same traffic sensors (e.g. conventional 

square inductive loops) and detectors (e.g. high speed scanning detectors cards) at both locations. In this study, an 

opportunity arose for the first time to collect a downstream dataset from a temporary installation of a prototype 

innovative inductive loop sensor, known as a “blade” sensor, in conjunction with conventional inductive loops 

upstream. At both locations advanced high speed scanning detector cards were used. 

   54



 

 

The following section of the paper introduces the blade sensor that is able to produce unique vehicle signatures. Data 

collection and vehicle feature extraction for blade signature is presented in the third section. The next section 

describes an algorithm for vehicle reidentification with the heterogeneous detection system used in this study. An 

analysis of travel times using the outputs of the algorithm is then presented. Finally, conclusions including 

comments and findings are provided. 

 

6.2  Blade sensor 

 

Traditional applications of inductive loop sensors have focused on counting vehicles or detecting the presence of 

vehicles. For such purposes, the ideal loop should approximate the vehicle’s periphery (11). A physical 

configuration of 6  is a commonly used size for inductive loops that measure counts and presence. 

More recently, inductive loops have been utilized for outputting inductive signatures for vehicle reidentification 

purposes. The standard 6  loop configuration is not ideal for this purpose since the square 

geometry results in the integration of the inductive signature over the traversal distance. Therefore, if this smoothing 

effect, which can remove distinctive features from the inductive signature, can be eliminated it may make vehicle 

reidentification more effective. The blade sensor addresses the loop configuration problem and incorporates 

additional improvements to the inductive loop detection system through use of a high-speed scanning detector card. 

)8.18.1(6'' mm××

8.1(6'' m×× )8.1 m

 

The blade is a new remote vehicle sensor technology. The physical embodiment of this concept uses two matched 

oscillating LRC circuits whose induction coils are oriented contained within a single, solid ‘sensor blade’ that is then 

embedded in a 3/16 inch wide pavement slot (for a permanent installation). The sensing coil is oriented toward the 

surface of the pavement and the reference coil is oriented toward the base of slot. Because the sensing coil is 

positioned nearer overpassing vehicles, it responds more strongly to this stimulus than the reference coil. Data 

collection is initiated by simultaneously charging both circuits to a threshold voltage using an impulse function and 

then allowing them to rapidly decay to a base line asymptote. This differential signal is amplified and digitized using 

an A/D converter. 

 

A continuous stream of signed integers is generated by the blade sensor, which can be monitored by a dedicated on-

board microprocessor. The resulting measurement data produce the vehicle’s inductive signature. Figure 6.1 shows 

the temporary surface installation of blade sensors as deployed in this study and an example of a blade vehicle 

signature. 

 

In its present configuration, the blade sensor collects data from two parallel sensor blades separated by a distance of 

6 feet and oriented at an angle of 20º to the direction of the traffic flow. This orientation allows for a significant 

amount of valuable data to be generated including speed, the number of axles, and wheel based-vehicle length. The 

prominent peaks shown in Figure 6.1-(d) represent the wheels passing over the sensors. A clearer view of the 
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composite metallic profile of the vehicle, which allows us to differentiate the vehicle wheel part from the vehicle 

body part, can also be seen.  

 

The temporary surface mounted version of the blade sensor is an out-of-pavement installation that does not require 

pavement cutting. This version is particularly useful for short-term studies. 

 

 

 

 

Figure 1 EDIS detectors and EDIS vehicle signature 
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Figure 6.1 Blade sensors and blade vehicle signature 

 

 

6.3  Vehicle signature analysis and feature extraction/selection 

 

Vehicle signature analysis for vehicle reidentifiction can be generally separated into two components: feature 

extraction and classification. The first component seeks to extract salient and parsimonious features from raw 

detector output, while the second component classifies or matches the vehicles using feature vectors. 

 

6.3.1  Data collection 

 

In this study, blade sensors were installed next to existing conventional square inductive loop stations upstream and 

downstream on westbound Irvine Center Drive at the intersection of Alton Parkway and Irvine Center Drive in 
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Irvine, California on January 21, 2003. Vehicle inductive signatures were generated from each type of loop sensor 

using high speed scanning detector cards.  

 

Each of the detector cards being used to collect the blade signatures had a 40GB hard-drive. The signatures were 

recorded to the local hard-drives. A laptop computer was used to start the data collection, set the time, etc., and to 

download the signatures from the cards. Figure 6.2 shows the blade signature data collection layout. 
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Figure 6.2 Data collection layout for blade vehicle signature 

 

One-hour of data collected from 11:40 am to 12:40 pm constituted the available data set for both conventional loop 

and blade loop data. In addition, 140 blade vehicle signatures collected in the right-most lane of the downstream 

detector station and upstream conventional loop signatures constituted the valid signature data set that could be used 

for feature analysis and algorithm development for vehicle reidentification. The vehicle reidentification algorithm 
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was developed and tested based on the different detector systems: the conventional inductive loops upstream and 

blade sensors downstream. Therefore, a vehicle reidentification algorithm was developed with the first 70 vehicle 

pairs, and the other 70 vehicle pairs were used for algorithm testing. Table 6.1 presents the through movement 

vehicles including vehicle types and volumes collected in the right-most lane at the downstream station. 

 

Camcorders were also installed at each station for the purpose of video ground truthing. The video ground truthing 

was performed based on visual inspection identifying an upstream vehicle on a monitor, and then searching for 

matching the corresponding vehicle downstream on another monitor. True travel times were obtained by comparing 

the time stamps of each vehicle at both upstream and downstream stations. 

 

Table 6.1 Blade vehicle classification data for downstream lane 3 (through movement) 

Vehicle type # vehicles % 

Motorcycle 1 0.69 

Bus 1 0.69 

Passenger car 71 51.724 

Pickup 17 11.724 

SUV 33 23.448 

Trailer 2 1.379 

Truck 2 1.379 

Van 13 8.966 

 

 

6.3.2  Vehicle feature extraction from Blade sensor signatures 

 

Vehicle feature extraction is one of the major tasks for accomplishing vehicle reidentification because it seeks to 

extract salient components of vehicle images that would sufficiently differentiate vehicles. As mentioned in the 

previous section, blade loops are more sensitive than existing inductive loops, and are capable of capturing vehicle 

wheel locations in a signature. Use of vehicle wheel information is expected to improve the performance of vehicle 

reidentification. In this paper, we focus on developing a new method for vehicle signature feature extraction for 

blade sensors. Detailed information on feature extraction from conventional loops can be found elsewhere (3,8). 

 

Figure 6.3 shows the feature extraction scheme for vehicles signatures produced by blade loops. Because a blade 

vehicle signature consists of two vehicle parts, namely, the wheel part and the vehicle body part, each part of a 

vehicle signature provides different vehicle features as shown in Figure 6.3. Figure 6.4 presents both conventional 

inductive loop vehicle signatures and blade loop vehicle signatures for different types of vehicles. 
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Figure 6.3 Feature extraction scheme 

 

 

6.3.3  Vehicle feature analyses  

 

This section focuses on the selection of vehicle features that will be used for vehicle reidentification. In this study, 

four vehicle types including passenger car, pickup truck, sport utility vehicle, and van were analyzed.  

 

The feature selection seeks to select the salient features extracted from the vehicle signature that would sufficiently 

differentiate vehicle types. To select salient features, we used Bayes decision theory, which minimizes the 

probability of classification error for feature selection. As shown in Figure 6.5, the overlapping areas,  for the 

probability density functions for each vehicle type represent the probability that could be misclassified. Therefore, 

vehicle features showing the minimum overlapping area can be regarded as salient features that are capable of 

classifying vehicle types more effectively, and can be used for vehicle reidentification.   

iΦ

 

It was found that seven features were salient features based on Bayes decision theory. Those features are lane, 

vehicle length, maximum magnitude of inductance change, standard deviation for whole vehicle signature, shape 

parameter for whole vehicle signature, degree of symmetry for the body part of the signature, and standard deviation 

for the body part of the signature. Figure 6.6 shows the examples of the comparison of the probability density 

functions for vehicle features obtained from different vehicle types. 
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Figure 6.4 Conventional inductive loop vehicle signatures vs. blade loop vehicle signatures 
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Figure 6.5 Misclassification probabilities for hypothetical vehicle classification regions 
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• STD: Standard Deviation, SP: Shape Parameter, DOS: Degree of Symmetry
• PC: Passenger Car, PU: Pickup Truck, VAN: Van, SUV: Sport Utility Vehicle
• STD: Standard Deviation, SP: Shape Parameter, DOS: Degree of Symmetry
• PC: Passenger Car, PU: Pickup Truck, VAN: Van, SUV: Sport Utility Vehicle

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.6 Vehicle feature distribution analyses 

 

 

6.4  Genetically enhanced lexicographic optimization algorithm for vehicle reidentification 

 

The vehicle reidentification problem with heterogeneous detection systems is much more challenging compared to 

the case of using homogeneous detection systems. It is because each detector system has unique characteristics for 

representing vehicle images, resulting from the different level of a detection sensitivity. In order to develop a robust 

vehicle reidentification algorithm that can be successfully used with heterogeneous detector system, both a mapping 

procedure for input features and a genetic algorithm (GA) were incorporated into a lexicographic optimization based 

vehicle reidentification algorithm for enhancing the matching capability. 

 

The lexicographic method is a sequential approach to solve the multi-objective optimization problem. The vehicle 

reidentification problem was formulated as a lexicographical optimization problem consisting of two main 
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components. The first component has several layers to reduce the search space by eliminating upstream vehicle 

signatures that are unlikely to match a given downstream vehicle signature. The second component computes 

discriminant scores to determine vehicle matching, which involves a multiple criteria decision-making process. The 

discriminant function of the second component has feature vectors as independent variables. More detailed 

algorithmic descriptions can be found in Sun et al. (4). The lexicographic optimization approach has the following 

benefits (12): 

 

▪ multiple objectives can be addressed with different levels of priority 

▪ sequential reduction of the feasible set from level to level enhances the computational efficiency 

▪ sensitivity analysis can be conducted separately for each level 

 

Search space reduction consists of four levels of optimization procedures with goal programs. The fundamental idea 

of goal programming is to establish a specific numeric goal for each objective and then search for a solution to 

minimize the weighted sum of deviations of objective functions from respective goals (12). The goal programs that 

can be used for search space reduction are described as follows. 
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This process can generally continue until all objectives considered, although this study used four objectives. These 

first four optimization levels reduce the search space of similar vehicle signature pairs. 

 

The fifth level lexicographic optimization objective can be described as follows: 
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Prior to applying lexicographic optimization for vehicle reidentification, input features should be adjusted since 

downstream vehicle features and upstream vehicle features are from the different detection systems. Adjustment 

factors ( k , ) were employed for adjusting the feature differences between conventional inductive loop signatures 

and blade signatures. Therefore, the distance measure of vehicle feature i  between an upstream loop vehicle feature 

( vf ) and downstream blade vehicle feature ( ) is described by  
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where  denotes the  element of the feature vector and q  is the vector dimension. n thn

 

In order to obtain an optimal set of parameters capable of maximizing vehicle reidentification performance, GA was 

applied. GA is an algorithm that searches the solution space of a function by emulating the mechanism of natural 

selection, that is, the survival of the fittest strategy. Optimization is performed on a set of strings, where each string 

is composed of a sequence of characters. Given an initial population of strings, a genetic algorithm produces a new 

population of strings according to a set of genetic rules. This constitutes one generation. The rules are devised so 

that the new generation tends to have strings that are superior to those in the previous generation. Successive 

generations of strings are produced, each of which tends to produce a superior population (13). The algorithms are 

not only robust but also simple, and do not require the assumption of knowledge of the search space. More detailed 

description of GA can be found in the literature (14). 

 

GA was applied to solve the maximization problem for the vehicle reidentification system. The problem in this 

study was to maximize the Correct Matching Rate (CMR). The fitness function to be optimized by GA is the vehicle 

reidentification algorithm. A set of coefficients for feature vector differences ( P ) that were used in computing 

discriminant scores were prepared by the GA optimizer. Output of the fitness function is the CMR. The 

maximization of CMR is defined as follows: 
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The steps of the GA performed in this study can be summarized as follows. 

  

Step 1: Initialization 

Step 2: Retrieval of fitness (CMR) from vehicle reidentification algorithm 

Step 3: Selection process 

Step 4: Crossover and Mutation 

Step 5: Repeat Step 2-4 
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Figure 6.7 shows the framework for obtaining the optimal set of parameters by GA for the vehicle 

reidentification algorithm. 
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Figure 6.7 Framework for genetically enhanced lexicographic optimization algorithm for vehicle reidentification 
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6.5  Results 

 

Performance measures for the vehicle reidentification algorithm evaluation included the total matching rate (TMR), 

the correct matching rate (CMR), the mismatching rate (MMR), and the matching reliability rate (MRR) were used. 

TMR is the percentage of the total number of matched vehicles declared by the algorithm. CMR is the percentage of 

individual vehicles that the algorithm is able to match correctly. On the other hand, MMR is the percentage of 

individual vehicles that algorithm matches incorrectly. MRR is the ratio of CMR to TMR, and proportion of 

matched vehicles that are correctly matched. Table 6.2 summarizes the vehicle reidentification performance. As 

shown in Table 6.2, the CMR of the training data set was 41.43 %, while the CMR of the testing data set was 

50.00%.  

 

Table 6.2 Vehicle reidentification performance measure  

Data 
TMR: total 

matching rate 

CMR: correct 

matching rate 

MMR: mismatching 

rate (TMR-CMR) 

 MRR: reliability 

Rate (CMR/TMR) 

Training 97.14 % 41.43 % 55.71 % 42.65 % 

Testing 97.14 % 50.00 % 41.43 % 51.47 % 

 

Sensitivity analysis on the effect of the time window (the first goal program in the vehicle reidentification algorithm) 

was performed in terms of travel times between the upstream and downstream stations. When a large time window 

is applied, the algorithm includes many upstream candidate vehicles resulting in increasing the matching possibility 

of the corresponding vehicle. The computational burden and mismatching possibility then increase simultaneously. 

On the other hand, the algorithm can find the corresponding vehicle efficiently with a small time window, but the 

corresponding vehicle could be excluded from the set of candidate vehicles. In addition, since arterial traffic flow is 

interrupted by signal control highly variable travel times result and the effect of the aggregation period on travel 

time accuracy needs to be investigated. Figure 6.8 shows the relationship among time window sizes, aggregation 

periods, and travel time accuracies. In this study, 6.9 aggregation periods were ranging from 2-minute to 10-minutes. 

In order to evaluate travel time accuracy, the mean absolute percentage error (MAPE) was calculated. 
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Figure 6.8 Travel time accuracy analysis 

 

As shown in Figure 6.8, it is obvious that longer aggregation intervals yield smaller errors than those of shorter 

intervals. 112-second was identified as the best time window size to produce the highest travel time accuracy for 

most aggregation intervals. Less than 10% MAPE were achieved for 5-minute and longer aggregation periods. The 

shorter aggregation periods such as 2, 3, and 4-minutes were also able to produce less than 15% MAPEs when a 

112-second time window was applied to derive travel times. Figure 6.9 shows comparisons of the estimated travel 

times obtained by the vehicle reidentification algorithm with the true travel times. It should be noted that results are 

quite encouraging despite the small size of the data set used. 

 

The size of aggregation interval is an important issue for designing real-time traffic management and information 

strategies. As shown in the evaluation results, different aggregation intervals produce different levels of accuracies. 

In addition, shorter aggregation intervals have bigger travel time variations than those of the longer intervals. 

Therefore, the use of rolling averages of travel times on the time horizon would be a possible way to reduce the 

travel time variations. Identifying optimal travel time aggregation intervals for generating useful traffic information 

accounting for the real-time performance of transportation systems is an important issue in the field of traffic 

surveillance and information systems. 
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Figure 6.9 Comparison of travel times 

 

6.6 Conclusions 

 

This study explored the vehicle reidentification problem based on vehicle signatures collected from different types 

of detection technologies, including conventional square inductive loops and newly developed blade inductive loop 

sensors. 

  

A lexicographic optimization algorithm together with a genetic algorithm was introduced to solve the vehicle 

reidentification problem. Goal programming approaches for search space reduction in the vehicle reidentification 

algorithm both improved the algorithm matching performance and the computational burden. The algorithm 

performed well. For example, less than 10 % travel time error was achieved with a 5-minute travel time aggregation 

period. 

 

Although the number of vehicles for which data could be collected was small, encouraging results were obtained for 

vehicle reidentification performance in this system of mixed traffic detection technologies. In future large-scale 
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applications of vehicle reidentification approaches for real-time traffic performance measurement, management and 

control, it would be most beneficial and practical if heterogeneous as well as homogeneous detection systems could 

be supported. This initial study yielded many useful insights about this important issue, and demonstrated on a small 

scale the feasibility of vehicle reidentification in a system with heterogeneous detection technologies. 
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CHAPTER 7 CONCLUSIONS AND FUTURE RESEARCH 
 

 

 7.1  Conclusions 

 

This report presents the results of “Field Investigation of Advanced Vehicle Reidentification Techniques and 

Detector Technologies, Phase II” and  builds on and extends previous PATH research by the authors on “Field 

Investigation of Advanced Vehicle Reidentification Techniques and Detector Technologies, Phase I” (PATH MOU 

3008), and “Section-Related Measures of Traffic System Performance: Prototype Field Implementation” (MOU 

336).  

 

This research continued development, field investigation and assessment of the latest technologies available for 

traffic detection and surveillance, for collecting more accurate traffic characteristics and traffic data necessary for 

Intelligent Transportation Systems (ITS) applications.  The focus of Phase II of this research was to utilize fully 

instrumented freeway and signalized intersection sites in the California Advanced Transportation Management 

Systems Testbed in Southern California for field investigation of several emerging traffic sensor and detector 

technologies for vehicle reidentification (REID) purposes and real-time traffic performance measurement.  These 

technologies included the IST-222 high-speed scanning detector card from IST, Inc. for capturing vehicle signatures 

from conventional inductive loops, V2SAT video detection system from Loragen Corporation, and the innovative 

new Embedded Differential Inductance Scanning (EDIS) or “Blade” loop detector from IST, Inc.  

 

This study also implemented real-time vehicle reidentification and traffic performance measurement in the traffic 

detection and surveillance sub-testbed (TDS2) on North I-405 in Irvine, which became operational in August 2002.  

Based on the research and the improved algorithms developed in this study, real-time traffic performance 

measurement in TDS2 (including section travel times, traffic origins and destinations, and vehicle classification) was 

demonstrated on-line at the PATH Annual Meeting in Richmond, California in October 2002.   

 

The very encouraging results obtained to date by developing and applying a vehicle reidentification approach for 

real-time traffic performance measurement suggest that further development, implementation and testing of this 

approach would clearly be of value.  

 

7.2  Future Research  

 

An important extension of existing field-implemented and tested PATH research on individual vehicle 

reidentification would be to develop methods for assessing freeway and arterial (and transit) system performance for 

the Caltrans PeMS (Performance Measurement System).  PeMS has been adopted by Caltrans as the standard tool 

for assessing freeway system performance, but lacks capabilities for assessing arterial and transit system 
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performance, and strategies that combine freeways, arterials and/or transit and commercial vehicle fleets.  The 

proposed research could directly address each of these limitations in PeMS. 

 

A systematic investigation could be conducted of anonymous vehicle tracking using existing inductive loop 

detectors on both freeway and arterial street facilities combined with new, low-cost high-speed scanning detector 

cards (as utilized in this project) to meet the needs of PeMS.  Both field implementation and microscopic simulation 

could be utilized in a major travel corridor setting, using the Paramics simulation model and field sites that are part 

of the California ATMS testbed network in Irvine, California.  The purpose would be to investigate and develop 

methods for tracking individual vehicles (including specified classes of vehicle such as buses and trucks) across 

multiple detector stations on a freeway and an arterial street network to obtain real-time performance measurements 

(including dynamic or time-varying origin-destination (OD) path flow information such as path travel time and 

volume).  The findings of such a study should be invaluable to Caltrans and other operating agencies interested in 

real-time performance assessment of freeway and arterial street systems, and the implementation of such capabilities 

in PeMS. 
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