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Abstract

This paper establishes nonparametric formulas that can be used to bound the aver-

age treatment e�ect in experimental studies in which treatment assignment is random

but subject compliance is imperfect. The bounds provided are the tightest possible,

given the distribution of assignments, treatments, and responses. The formulas show

that even with high rates of noncompliance, experimental data can yield useful and

sometimes accurate information on the average e�ect of a treatment on the population.

1. INTRODUCTION

Consider an experimental study where random assignment has taken place but compliance

is not perfect (i.e., the treatment received di�ers from that assigned). It is well known

that under such conditions a bias may be introduced. Subjects who did not comply with

the assignment may be precisely those who would have responded adversely (positively) to

the treatment; therefore, the actual e�ect of the treatment, when applied uniformly to the

population, might be substantially less (more) e�ective than the study reveals.

In an attempt to avert this bias, analysts sometimes resort to parametric models which

make restrictive commitments to a particular mode of interaction between compliance and

response (Efron and Feldman 1991). Angrist et al. (1996) have identi�ed a set of assump-

tions under which a nonparametric correction formula, called \Instrumental Variables", is

valid for certain subpopulations. Since these subpopulations cannot be identi�ed from em-

pirical observation alone, the need remains to devise alternative, assumption-free formulas

for assessing the e�ect of treatment over the population as a whole. Robins (1989) and
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Manski (1990) have derived such bounds, but did not make full use of the information avail-

able in the data. In this paper, we provide sharp (i.e., the tightest possible) bounds on the

average treatment e�ect.

2. PROBLEM FORMULATION

The canonical partial-compliance setting can be graphically modeled as shown in Figure 1.
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Figure 1: Graphical representation of causal dependencies in a randomized clinical trial with

partial compliance.

We assume that Z, D, and Y are observed dichotomous variables where Z represents

the (randomized) treatment assignment, D is the treatment actually received, and Y is the

observed response. U represents speci�c characteristics of an individual subject, namely,

all factors, both observed and unobserved, that in
uence the way a subject's outcome Y

may depend on the treatment D. The experimental study is modeled as a two-step process

(1) treatment selection and (2) treatment administration. In the �rst step, each subject is

allowed to select a treatment in accordance with the following factors: the assignment (Z),

basic physiological characteristics (U), and possibly, initial reactions to the treatment or

placebo. (Such reactions are not shown explicitly in the graph, since they merely modify

the in
uence of Z and U on D, and the diagram makes no assumption as to the nature of

this in
uence.) Once the treatment D is selected, the treatment administration step begins,

during which subjects are assumed to remain within their selected treatment arms until the

outcome Y is recorded; back and forth switching between placebo and active groups is not

allowed at this stage.

Given this two-stage process, the second assumption is that the assignment (Z) per

se does not alter any physiological characteristics (U) which determine how an individual

would react to any given treatment. This assumption, which Angrist et al. (1996) named

\exclusion restriction" and Manski (1990) called \set-level restriction" is represented in the

causal diagram of Figure 1 by the absence of a direct link from Z to Y or from Z to U ;

all paths between Z and Y go through D. (A fuller account of the statistical and causal

implications of structural diagrams, and their relation to Rubin's model of counterfactuals

(Holland 1988) is given in (Pearl 1995a).)

To facilitate the notation, we let z, d, and y represent, respectively, the values taken by

the variables Z, D, and Y , with the following interpretation: z 2 fz0; z1g, z1 asserts that

treatment has been assigned (z0, its negation); d 2 fd0; d1g, d1 asserts that treatment has

been administered (d0, its negation); and y 2 fy0; y1g, y1 asserts a positive observed response

(y0, its negation). Multivalued or continuous outcomes can easily be accommodated in the

model using the event Y � y as a (dichotomous) outcome variable. Extension to continuous
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treatments will be discussed in Section 3. The domain of U remains unspeci�ed and may,

in general, combine the spaces of several random variables, both discrete and continuous.

The model analyzed invokes two assumptions of independence:

1. For a given individual, the treatment assignment does not in
uence Y directly, but

only through the actual treatment D, that is, Z k Y j fD;Ug.

2. Z and U are marginally independent, that is, Z k U . This independence is partly

ensured through the randomization of Z, which rules out a common cause for both Z

and U , and partly through our second assumption (above) that physiological factors

(U) are not in
uenced by the assignment (Z).

These two independencies impose on the joint distribution the decomposition

P (y; d; z; u) = P (yjd; u)P (djz; u)P (z)P (u)

which, of course, cannot be observed directly because U is unmeasurable. (We take the

liberty of denoting the prior distribution of U by P (u), even though U may consist of

continuous variables.) However, the marginal distribution P (y; d; z) and, in particular, the

conditional distributions

P (y; djz) =
X
u

P (yjd; u)P (djz; u)P (u) (1)

z 2 fz0; z1g, are observed, and these observations constrain the factor P (yjd; u)P (u) to

produce bounds on treatment e�ects.

Treatment e�ects are characterized by a distribution P (yj �d) which stands for the prob-

ability that Y would have been equal to y, if D were equal to d under a randomized exper-

iment. In general, a value annotated with a check (�) will indicate that the corresponding

variable has been set to that value by a randomized control. (Angrist et al. (1996) and Hol-

land (1988) denoted this distribution by P (YD=d), but we �nd the \check" notation more


exible, as it permits one to specify explicitly what is controlled and what is allowed to vary

in any given study (Pearl 1995a).) Thus, to assess the distribution of Y if the treatment D

were applied uniformly to the population, we should calculate

P (yj �d)
4
=

X
u

P (yjd; u)P (u) (2)

where the factors P (yjd; u) and P (u) are the same as those in (1). Similarly, if we are

interested in the average change in Y due to treatment, we should compute the average

causal e�ect, ACE(D ! Y ) (Holland 1988), given by

ACE(D ! Y )
4
= P (y1j �d1)� P (y1j �d0) =

X
u

[P (y1jd1; u)� P (y1jd0; u)] (3)

Our task is then to estimate or bound the expressions in (2) and (3), given the observed

probabilities P (y; djz0) and P (y; djz1), as expressed in (1). This may be accomplished by

a procedure detailed in (Balke and Pearl 1994), which is based on linear programming

optimization coupled with the fact that the domain of U can be partitioned into sixteen

equivalence classes, each representing one of four possible mappings from Z to D conjoined

with one of four possible mappings from D to Y .
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3. RESULTS

Let the conditional distribution P (y; djz) over the observed variables be denoted as follows:

p00:0 = P (y0; d0jz0) p00:1 = P (y0; d0jz1)

p01:0 = P (y0; d1jz0) p01:1 = P (y0; d1jz1)

p10:0 = P (y1; d0jz0) p10:1 = P (y1; d0jz1)

p11:0 = P (y1; d1jz0) p11:1 = P (y1; d1jz1)

Optimization of (2) subject to the equality constraints given in (1) de�nes a linear

programming problem that yields a closed-form solution by enumerating all vertices of the

constraint polygon of the dual problem. This procedure leads to the following bounds:

max

( p10:1
p10:0

p10:0 + p11:0 � p00:1 � p11:1
p01:0 + p10:0 � p00:1 � p01:1

)
� P (y1j �d0) � min

( 1� p00:1
1� p00:0

p01:0 + p10:0 + p10:1 + p11:1
p10:0 + p11:0 + p01:1 + p10:1

)

and

max

( p11:0
p11:1

�p00:0 � p01:0 + p00:1 + p11:1
�p01:0 � p10:0 + p10:1 + p11:1

)
� P (y1j �d1) � min

( 1� p01:1
1� p01:0

p00:0 + p11:0 + p10:1 + p11:1
p10:0 + p11:0 + p00:1 + p11:1

)

In addition, if we optimize the di�erence of the two terms in (3) by the same linear program-

ming technique, we �nd that the expressions for the upper and lower bounds on the average

causal e�ect ACE(D ! Y ) are equal to the di�erence of the corresponding bounds on the

individual terms, i.e., the lower bound on ACE(D ! Y ) is equal to P (y1j �d1)'s lower bound

less P (y1j �d0)'s upper bound, and the upper bound on ACE(D ! Y )) is equal to P (y1j �d1)'s

upper bound less P (y1j �d0)'s lower bound. The resulting formulas are

ACE(D ! Y ) � max

8>>>>><
>>>>>:

p00:0 + p11:1 � 1
p00:1 + p11:1 � 1
p11:0 + p00:1 � 1
p00:0 + p11:0 � 1

2p00:0 + p11:0 + p10:1 + p11:1 � 2
p00:0 + 2p11:0 + p00:1 + p01:1 � 2
p10:0 + p11:0 + 2p00:1 + p11:1 � 2
p00:0 + p01:0 + p00:1 + 2p11:1 � 2

9>>>>>=
>>>>>;

(4)

ACE(D ! Y ) � min

8>>>>><
>>>>>:

1� p10:0 � p01:1
1� p01:0 � p10:1
1� p01:0 � p10:0
1� p01:1 � p10:1

2� 2p01:0 � p10:0 � p10:1 � p11:1
2� p01:0 � 2p10:0 � p00:1 � p01:1
2� p10:0 � p11:0 � 2p01:1 � p10:1
2� p00:0 � p01:0 � p01:1 � 2p10:1

9>>>>>=
>>>>>;

(5)

These bounds constitute substantial improvement over those derived by Robins (1989)

and Manski (1990), which correspond to the four upper terms in both (4) and (5). One can

show that the width of the bounds in (4) and (5) cannot exceed the rate of noncompliance,

P (d1jz0)+P (d0jz1), and may in some cases collapse to a point estimate, even when as many
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as 50% of subjects switch over to unassigned treatments (Pearl 1995b). Precise determina-

tion of treatment e�ects is feasible whenever (a) the percentage of subjects complying with

assignment z0 is the same as those complying with z1 and (b) in at least one treatment arm

d; y and z are perfectly correlated.

This, and other results regarding bounds on treatment e�ects in partial compliance stud-

ies are elaborated in (Balke and Pearl 1993 and Balke 1995). In particular, it is shown that

the basic structural assumptions underlying randomized-assignment experiments, although

not directly testable, imply testable restrictions on the observed distributions. By requiring

that no upper bound be less than the corresponding lower bound, we obtain

P (y0; d0jz0) + P (y1; d0jz1) � 1

P (y0; d1jz0) + P (y1; d1jz1) � 1 (6)

P (y1; d0jz0) + P (y0; d0jz1) � 1

P (y1; d1jz0) + P (y0; d1jz1) � 1

If any of these inequalities is violated, the investigator can deduce that either the assignments

were not properly randomized, or the assignment exerted some direct in
uence on subjects'

responses. These inequalities, when generalized to multivalued variables, assume the simple

form

max
d

X
y

max
z

P (y; djz) � 1

which was called the instrumental inequality in (Pearl 1994).

The instrumental inequality can be further tightened if additional assumptions are made

about subjects' behaviors, for example, that no individual would consistently act contrarian

to his/her assignment, or, mathematically, that for all u we have

P (d1jz1; u) � P (d1jz0; u)

Under this assumption, which Angrist et al. (1996) call monotonicity, the inequalities in (6)

can be tightened (Balke and Pearl 1993) to give

P (y; d1jz1) � P (y; d1jz0)

P (y; d0jz0) � P (y; d0jz1) (7)

for all y 2 fy0; y1g. The monotonicity assumption can sometimes be veri�ed (or enforced)

empirically, for example, by making sure that no subject in the placebo group gains access to

active treatment. In such cases, (7) provides more stringent tests for the model assumptions.

However, in cases where monotonicity cannot be ensured, violation of the inequalities in (7)

may mean that randomization (of Z) was imperfect, Z had a direct e�ect on Y , or contrarian

subjects were present.

It can also be shown (Balke and Pearl 1993) that, when monotonicity holds, the bounds

in (4) and (5) reduce to those derived by Robins (1989) and Manski (1990) (�rst four

entries in (4) and (5)), and the width coincides precisely with the rate of noncompliance,

P (d1jz0) + P (d0jz1).

Finally, the method of causal analysis outlined above permits one to evaluate a wide

variety of counterfactual probabilities, for example, the probability that a given individual

would have recovered had he/she not been assigned treatment (z0), when in actuality he/she

has been assigned the treatment (z1), taken the treatment (d1), and not recovered (y0). This
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N(y; d; z) z0 z1
y0 y1 y0 y1

d0 74 11,514 34 2,385

d1 0 0 12 9,663

Table 1: Count of children classi�ed according to treatment assigned (z), treatment con-

sumed (d), and mortality outcome (y).

intricate probability can be bounded by analyzing the causal e�ect of the assignment in the

subpopulation characterized by fz1; d1; y0g. A general method for obtaining such bounds is

detailed in (Balke and Pearl 1994).

It is possible to extend this analysis to studies in which treatment may take on more

than two values by simply reformulating the linear programming problem over a multivalued

variable D. However, this method becomes computationally expensive, since the number

of equivalence classes in the U domain increases exponentially with the cardinality of D.

Alternatively, using the same linear programming techniques as in the case of dichotomous

treatment, one can derive bounds on the di�erence in causal e�cacy of any two treatment

levels, say d0 and d1, while allowing subjects receiving treatment levels other than d0 and d1
(denoted by dm) to exhibit arbitrary behavior. Remarkably, the bounds derived in this way,

letting d 2 fd0; d1; dmg, are expressed identically to (4) and (5), though no assumptions

whatsoever have been made about the composition of dm, or the relation of any values in

dm to Y (Balke 1995). These bounds represent the worst case (least informative) behavior

of subjects in the dm category, and are implicitly a�ected by the size of the dm category

through the equality P (d0jz) + P (d1jz) + P (dmjz) = 1.

When the treatment is continuous, few subjects, if any, would take on any given level

of treatment precisely. However, it is reasonable to assume that there exists a treatment

interval around each d, within which a subject's outcome is, for all practical purposes,

homogeneous. In other words, for every u we have: P (yjd0; u) � P (yjd00; u) for all d0; d00 2

[d��; d+�]. Under this assumption, which obviously becomes more reasonable as � decreases,

it is possible to apply our previous analysis and derive bounds on the average change in

treatment e�ect between any two treatment levels. This is illustrated in the next section.

4. EXAMPLES

4.1 Vitamin A Supplementation

Consider the study of Vitamin A supplementation in northern Sumatra described by Sommer

et al. (1986) and Sommer and Zeger (1991). In this study, out of 450 villages, 221 were

randomly assigned to the control group and the remaining 229 were assigned to the treatment

group. In the treatment group, oral doses of Vitamin A were administered to the population

at 2{3 months and once again at 6 months; because of government policy, the control group

was not administered a placebo. 12 months after the original census the mortality (y0) of

the population was determined from the time at which the initial dose was administered.

Table 1 presents the �nal subject counts in terms of our partial compliance model notation.
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P (y; djz) z0 z1
y0 y1 y0 y1

d0 0.0064 0.9936 0.0028 0.1972

d1 0.0000 0.0000 0.0010 0.7990

Table 2: Conditional probability distribution P (y; djz) derived from the data in Table 1.

If we make the large-sample assumption and take the sample frequencies as representing

P (y; djz), then Table 2 presents the probability distribution estimated from the counts in

Table 1.

By computing the quantities required for (4) and (5) we obtain

ACE(D ! Y ) � max
n
�0:1946;�0:1982;�0:9972;�0:9936;
�0:9910;�1:9898;�0:2018;�0:3928

o
= �0:1946

ACE(D ! Y ) � min
n

0:0054; 0:8028; 0:0064; 0:8018;
0:0102; 0:0090; 0:8072; 1:5982

o
= 0:0054

Accordingly, we conclude that the average treatment e�ect lies in the range

�0:1946 � ACE(D ! Y ) � 0:0054

which is rather revealing: Vitamin A supplement, if uniformly administered, is seen capable

of increasing mortality rate by much as 19.46%, and is incapable of reducing mortality rate

by more than 0.54%. The intent-to-treat analysis might mislead one to believe that Vitamin

A supplement has a bene�cial e�ect of P (y1jz1)�P (y1jz0) = 0:0026, in total oblivion to the

danger presented at the lower end of the range. The IV estimand advocated in Angrist et

al. (1996) calculates to 0.0035, which further exaggerates the illusionary bene�ts of Vitamin

A supplement.

The techniques described in Balke and Pearl (1994) may also be used to �nd a population

mix that would explain a particular value of the causal e�ect magnitude. For example,

one may wish to inquire: What behavioral characteristics, consistent with the observed

data, would support a detrimental e�ect of ACE(D ! Y ) = �0:1946 shown possible at the

extreme lower end of the range. For the most part, the population under study would have

to be composed of two homogeneous groups. In one group, consisting of almost 80 percent

of the population, all subjects would survive regardless of treatment and would perfectly

comply with their treatment assignment. In the other group, consisting of almost 20 percent

of the population, subjects would die if (and only if) they take Vitamin A supplements and,

not surprisingly, these subjects would refuse Vitamin A supplements under the conditions

prevailing in the study. The ability to associate a population mix with any ACE value

provides a vantage point from which the plausibility of that ACE value can be assessed.

4.2 Coronary Primary Prevention Trial

Consider the Lipid Research Clinics Coronary Primary Prevention Trial data (see Lipid

Research Clinic Program (1984) for an extended description of the clinical trial). A portion

of this data consisting of 337 subjects was analyzed by Efron and Feldman (1991) using

7



P (y; djz) z0 z1
y0 y1 y0 y1

d0 0.971 0.029 0.024 0.000

dm 0.000 0.000 0.436 0.146

d1 0.000 0.000 0.103 0.291

Table 3: Conditional probability distribution P (y; djz) for the Lipid Research Clinic Pro-

gram (1984) data, made discrete by (8) and (9).

a parametric model; this same data set will be used in our analysis. A population of

subjects was assembled and two preliminary cholesterol measurements were obtained: one

prior to a suggested low-cholesterol diet (continuous variable CI1); and one following the

diet period (CI2). The initial cholesterol level (CI ) was taken as a weighted average of

these two measures: CI = 0:25CI1 + 0:75CI2. The subjects were randomized into two

treatment groups; in the �rst group all subjects were prescribed cholestyramine (z1), while

the subjects in the other group were prescribed a placebo (z0). During several years of

treatment, each subject's cholesterol level was measured multiple times, and the average of

these measurements was used as the post-treatment cholesterol level (continuous variable

CF ). The compliance of each subject was determined by tracking the quantity of prescribed

dosage consumed (continuous variable B). The maximum consumption in the data set was

101 units.

In order to apply our analysis to this study, the continuous data obtained in the Lipid

Research Clinic Program (1984) study is made discrete in the following way:

d =

(
d0 if z = z0 or b = 0
d1 if z = z1 and 87 � b � 101
dm otherwise

(8)

y =
n

y0 if cI � cF < 38
y1 if cI � cF � 38 (9)

This discretization assumes that each subject's response to treatment is homogeneous be-

tween 87 and 101 units of cholestyramine. In addition, (8) re
ects the �nding that subjects

assigned placebo (z0) did not take cholestyramine, namely, P (d1jz0) = P (dmjz0) = 0. The

threshold of 38 in (9) was chosen arbitrarily. Clearly, by varying this threshold over the

range of Y one obtains upper and lower bounds on the entire distribution of the treatment

e�ect, P (Y �yj �d1)� P (Y �yj �d0).

If the samples data are interpreted according to (8) and (9), then the conditional distri-

bution over (Z;D; Y ) results in the distribution given in Table 3 (we make the large-sample

assumption and take the sample frequencies as representing P (y; djz)).

By computing the quantities required for (4), we obtain

ACE(D ! Y ) � max
n

0:262;�0:685;�0:976;�0:029;
0:233;�0:902;�1:632;�0:423

o
= 0:262

Those needed for (5) give us

ACE(D ! Y ) � min
n

0:868; 1:000; 0:971; 0:897;
1:680; 1:815; 1:765; 0:926

o
= 0:868

Accordingly, we conclude that the average treatment e�ect lies in the range

0:262 � ACE(D ! Y ) � 0:868
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which is quite informative; the experimenter can categorically state that when applied uni-

formly to the population, a dosage of 84 to 101 units of cholestyramine is guaranteed to

increase by at least 26:2% the probability of reducing a patient's level of cholesterol by 38

points or more. This guarantee is established despite the fact that 60:6% of the subjects in

the treatment group did not comply with their assigned dosage level. For comparison, note

that the intent-to-treat analysis in this study gives P (y1jz1) � P (y1jz0) = 0:408, meaning

that enforcing full compliance might result in as much as 46% improvement and no more

than 14:6% reduction in the proportion of patients bene�ting from the treatment.

5. CONCLUSION

In an attempt to avert confounding bias in randomized studies involving noncompliance,

analysts usually advocate the use of \intent-to-treat" analysis, which compares assignment

groups regardless of the treatment actually received. Estimates derived by such analysis are

free of confounding bias, but decisions based on these estimates require that the experimental

conditions perfectly mimic the conditions prevailing in the eventual usage of the treatment.

In particular, the intent-to-treat analysis is inappropriate when the inducement to receive

treatment changes from what it was in the study, for example, when a drug is o�cially

endorsed by a well-meaning authority.

A similar weakness applies to the analysis of Angrist et al. (1996) who derive causal e�ect

formulas for the unobservable subpopulation of \responsive" subjects, that is, subjects who

would have changed treatment status if given a di�erent assignment. This subpopulation

cannot serve as a basis for policy analysis because it is instrument dependent | individuals

who are responsive in the study may not remain responsive in the �eld, where the incentives

for obtaining treatment di�er from those used in the study.

In policy evaluation studies, �eld incentives are normally more compelling than experi-

mental incentives; hence, treatment e�ectiveness should be assessed by the average causal

e�ect, Eu[P (y1ju; d1) � P (y1ju; d0)] for which we have provided sharp theoretical bounds.

Estimates based solely on intent-to-treat analysis, as well as those based on instrumental

variables, can be misleading as they may lie entirely outside the theoretical bounds. The

formulas established in this paper provide instrument-independent guarantees for policy

analysis and, in addition, should enable analysts to determine the extent to which e�orts to

enforce compliance may increase the overall treatment e�ectiveness.

A topic that should receive considerable attention in future work is the augmentation of

the bounds in (4)-(5) with con�dence intervals, to account for sample variability. Chickering

and Pearl (1996) describe a Bayesian method which, using Gibbs sampling, computes the

posterior distribution of ACE(D ! Y ) given the data. An alternative approach in this

direction is o�ered by the maximum-likelihood ratio test, as applied to the hypothesis H0 :

ACE(D ! Y ) < t, for arbitrary t, since the maximum likelihood function under H0 can be

computed using linear programming.
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